Science.gov

Sample records for iter dfll electromagnetic

  1. Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhun; Song, Yuntao; Wang, Songke; Wang, Xianwei

    2013-08-01

    The ITER equatorial thermal shield is located inside the cryostat and outside the vacuum vessel, and its purpose is to provide a thermal shield from hot components to the superconducting magnets. Electromagnetic analysis of the equatorial thermal shield was performed using the ANSYS code, because electromagnetic load was one of the main loads. The 40° sector finite element model was established including the vacuum vessel, equatorial thermal shield, and superconducting magnets. The main purpose of this analysis was to investigate the eddy current and electromagnetic force in the equatorial thermal shield during plasma disruption. Stress analysis was implemented under the electromagnetic load. The results show that the equatorial thermal shield can accommodate the calculated electromagnetic loads.

  2. Computational study of the electromagnetic forces and torques on different ITER first wall designs.

    SciTech Connect

    Kotulski, Joseph Daniel; Garde, Joseph Maurico; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on different first wall designs for the ITER device. The electromagnetic forces and torques present due to a plasma disruption event are calculated and compared for the different designs.

  3. U.S ITER : electromagnetic analysis of transient forces due to disrupted plasma currents on the ITER shield modules.

    SciTech Connect

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis

    2007-06-01

    This paper describes the electromagnetic analysis that has been completed using the OPERA-3d product to characterize the forces on the ITER shield modules as part of the conceptual design. These forces exist due to the interaction of the eddy currents induced in the shield modules and the large magnetic fields present in the tokamak.

  4. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    SciTech Connect

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  5. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  6. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    SciTech Connect

    Alumbaugh, David Lee

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  7. The application of contraction theory to an iterative formulation of electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Brand, J. C.; Kauffman, J. F.

    1985-01-01

    Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.

  8. The application of contraction theory to an iterative formulation of electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Brand, J. C.; Kauffman, J. F.

    1985-01-01

    Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.

  9. Gyrokinetic electromagnetic isotope effect in ITER-hybrid plasmas and validation

    NASA Astrophysics Data System (ADS)

    Goerler, Tobias; Garcia, Jeronimo; Jenko, Frank

    2015-11-01

    A number of high-realism simulations with the gyrokinetic turbulence code GENE have been performed recently for comparison with experimental measurements in, e.g., ASDEX Upgrade and DIII-D. Some of these successful validation studies will be reviewed briefly as basis for subsequent predictive simulations for a particular ITER hybrid scenario. Here, comprehensive local GENE simulations have been employed considering the multi-component character of such plasmas including impurities, fuel ions, helium ash, up to two fast ion species as well as electromagnetic fluctuations, inter- and intra-species collisions, and external shear effects. The fluxes are in general in good agreement with those in the above ITER study performed with the CRONOS code suite. A particular subject of interest is the turbulent transport comparison between deuterium-tritium (DT) plasmas and pure deuterium (DD) fuel as mostly used in present-day experiments. Here, a strong heat flux drop from DD to DT plasmas can be observed which is in line with experimental evidence found at TFTR and JET. This contribution may hence help to gain a better understanding of this so-called isotope effect and improve projections for future ITER DD- and DT-plasma studies.

  10. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  11. Electromagnetic-thermal-structural coupling analysis of the ITER edge localized mode coil with flexible supports

    NASA Astrophysics Data System (ADS)

    Zhang, Shanwen; Song, Yuntao; Tang, Linlin; Wang, Zhongwei; Ji, Xiang; Du, Shuangsong

    2017-05-01

    In a fusion reactor, the edge localized mode (ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature, high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil (with flexible supports) of ITER (the International Thermonuclear Fusion Reactor), an electromagnetic-thermal-structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.

  12. On the convergence of an iterative formulation of the electromagnetic scattering from an infinite grating of thin wires

    NASA Technical Reports Server (NTRS)

    Brand, J. C.

    1985-01-01

    Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.

  13. A linear response model of the vertical electromagnetic force on a vessel applicable to ITER and future tokamaks

    NASA Astrophysics Data System (ADS)

    Miyamoto, S.

    2011-08-01

    The problem of calculating vertical electromagnetic force on the vacuum vessel of axisymmetric magnetic confinement fusion devices is reformulated to a linear response problem. It is theoretically shown that the treatment of currents in the vessel is reduced to a quantity calculated in the plasma region, the source term or input for vertical force. Vertical force emerges in response to the input, where the transfer function of the response originates in the electromagnetic shielding of the vessel. The model provides an analytical way of calculating vertical force. An example is given in application to a vertical displacement event in ITER. The derived analytical formula provides an approximate explanation of the current quench time dependence of the vertical force obtained using the DINA code.

  14. ITER-like antenna capacitors voltage probes: Circuit/electromagnetic calculations and calibrations

    NASA Astrophysics Data System (ADS)

    Helou, W.; Dumortier, P.; Durodié, F.; Lombard, G.; Nicholls, K.

    2016-10-01

    The analyses illustrated in this manuscript have been performed in order to provide the required data for the amplitude-and-phase calibration of the D-dot voltage probes used in the ITER-like antenna at the Joint European Torus tokamak. Their equivalent electrical circuit has been extracted and analyzed, and it has been compared to the one of voltage probes installed in simple transmission lines. A radio-frequency calibration technique has been formulated and exact mathematical relations have been derived. This technique mixes in an elegant fashion data extracted from measurements and numerical calculations to retrieve the calibration factors. The latter have been compared to previous calibration data with excellent agreement proving the robustness of the proposed radio-frequency calibration technique. In particular, it has been stressed that it is crucial to take into account environmental parasitic effects. A low-frequency calibration technique has been in addition formulated and analyzed in depth. The equivalence between the radio-frequency and low-frequency techniques has been rigorously demonstrated. The radio-frequency calibration technique is preferable in the case of the ITER-like antenna due to uncertainties on the characteristics of the cables connected at the inputs of the voltage probes. A method to extract the effect of a mismatched data acquisition system has been derived for both calibration techniques. Finally it has been outlined that in the case of the ITER-like antenna voltage probes can be in addition used to monitor the currents at the inputs of the antenna.

  15. Three-Dimensional Electromagnetic Modeling of the ITER ICRF Antenna (External Matching Design)

    SciTech Connect

    Louche, F.; Lamalle, P.U.; Dumortier, P.; Messiaen, A.M.

    2005-09-26

    The present work reports on 3D radio-frequency (RF) analysis of a design for the ITER antenna with the CST Microwave Studio registered software. The four-port junctions which connect the straps in triplets have been analyzed. Non-TEM effects do not play any significant role in the relevant frequency domain, and a well-balanced splitting of current between the straps inside a triplet is achieved. The scattering matrix has also been compared with RF measurements on a scaled antenna mockup, and the agreement is very good. Electric field patterns along the system have been obtained, and the RF optimization of the feeding sections is under way.

  16. Calculation and Optimization of ITER Upper VS Feeder Under an Electromagnetic Load

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Xie, Fei; Jin, Huan

    2014-11-01

    The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electromagnetic force will be generated during normal operation by the current flowing in the VS coils, interacting with the external background field. The Lorentz force will induce Tresca stress in the feeder. The amplitudes of the magnetic field and Lorentz force along the conductor running direction have been calculated based on Maxwell's equations. To extract the Tresca stress in the feeder, a finite element model was created using the software ANSYS and an electromagnetic load was applied on the model. According to the analytical design, the stresses were classified and evaluated based on ASME. In order to reduce the Tresca stress, some optimization works have been done and the Tresca stress has had a significant reduction in the optimized model. This analytical work figured out the stress distribution in the feeder and checked the feasibility of the prototype design model. The ANSYS analysis results will provide a guidance for later improvement and fabrication.

  17. Use of the field-iteration method in studying the three-dimensional phased array for electromagnetic hyperthermia

    SciTech Connect

    Deng, T.

    1996-10-01

    The field-iteration method (FIM) is used for simulation of the three-dimensional (3-D) phased array for deep regional hyperthermia at a frequency of 200 MHz. The iterative equation involving the electric field integral equation is derived using the dyadic Green`s function with singularities at source points. The electric field and specific absorption rate distributions in a circular cylindrical model of muscle-like medium and in a model of computerized tomography scans of a liver cancer patient are calculated, respectively, using different amplitudes and/or phases and/or positions of individual applicators of the H-horn phased array. The obtained numerical results compared with the moment method results are analyzed to assess the accuracy of the field-iteration method and also to predict the advantages of the 3-D phased array hyperthermia system.

  18. First-Order Systems Least-Squares Finite Element Methods and Nested Iteration for Electromagnetic Two-Fluid Kinetic-Based Plasma Models

    NASA Astrophysics Data System (ADS)

    Leibs, Christopher A.

    Efforts are currently being directed towards a fully implicit, electromagnetic, JFNK-based solver, motivating the necessity of developing a fluid-based, electromag- netic, preconditioning strategy. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The TFP model couples both an ion and an electron fluid with Maxwell's equations. The fluid equations consist of the conservation of momentum and number density. A Darwin approximation of Maxwell is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with consideration of preconditioning a kinetic-JFNK approach. The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to produce an approximation that is within the basis of attraction for Newton's method on a relatively coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin model yields a nonlinear, first-order system of equa- tions whose Frechet derivative is shown to be uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite element performance and lin- ear systems amenable to solution with Algebraic Multigrid (AMG). To efficiently focus computational resources, an adaptive mesh refinement scheme, based on the accuracy per computational cost, is leveraged. Numerical tests demonstrate the efficacy of the approach, yielding an approximate solution within discretization error in a relatively small number of computational work units.

  19. ITER shielding blanket

    SciTech Connect

    Strebkov, Y.; Blinov, Y.; Avsjannikov, A.

    1994-12-31

    A version of ITER shielding blanket design is presented. Main features of this proposal are: Cu based alloy as structure material of the first wall - integrated in the blanket segment box structure and 316L SS as material of both back/side walls of the box and the shield structure elements; water of medium pressure (up to 4 MPa) as coolant with toroidal direction of flow; two variants of beryllium protection tiles joining (either permanent joints by mince of solid diffusion bonding or demountable attachment with compliant layer; for last versions designs options of tiles attachment units are given). Problems of manufacturing of such blanket segment including its assembly sequence are considered in details. Results of stress problem analysis for thermal, pressure, and electromagnetic loads will be given in this report also.

  20. Fusion Power measurement at ITER

    SciTech Connect

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M.

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  1. Benchmarking ICRF simulations for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  2. US ITER Moving Forward

    ScienceCinema

    US ITER / ORNL

    2016-07-12

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  3. Iter and Ornl

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.; Milora, S. L.

    2004-11-01

    ITER (means ``the way''), a tokamak burning plasma experiment, is the next step device toward making fusion energy a reality. The programmatic objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. ITER began in 1985 as collaboration between the Russian Federation (former Soviet Union), the USA, European Union, and Japan. ITER conceptual and engineering design activities led to a detailed design in 2001. The USA opted out of the project between 1999-2003, but rejoined in 2004 for site selection and construction negotiations. China and Korea joined the project in 2003. Negotiations are continuing and a decision on the site for ITER construction [France versus Japan] is pending. The ITER international undertaking is an unprecedented scale and the six ITER parties represent 40% of the world population. By 2018, ITER will produce a fusion power of 500 million Watts for time periods up to an hour with one-tenth of the power needed to sustain it. Steady state operation is also possible at lower power levels with higher fraction of circulated power. The ITER parties invested about $1 billion into the research and development (R) and related fusion experiments to establish the ITER's feasibility. ORNL has been a key player in the ITER project and contributed to its physics and engineering design and related R since its inception. Recently, the U.S. DOE selected the PPPL/ORNL partnership to lead the U.S. project office for ITER.

  4. Disruptions, loads, and dynamic response of ITER

    SciTech Connect

    Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D.; Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-12-31

    Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures.

  5. Iterated fractional Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Bianchi, Davide; Buccini, Alessandro; Donatelli, Marco; Serra-Capizzano, Stefano

    2015-05-01

    Fractional Tikhonov regularization methods have been recently proposed to reduce the oversmoothing property of the Tikhonov regularization in standard form, in order to preserve the details of the approximated solution. Their regularization and convergence properties have been previously investigated showing that they are of optimal order. This paper provides saturation and converse results on their convergence rates. Using the same iterative refinement strategy of iterated Tikhonov regularization, new iterated fractional Tikhonov regularization methods are introduced. We show that these iterated methods are of optimal order and overcome the previous saturation results. Furthermore, nonstationary iterated fractional Tikhonov regularization methods are investigated, establishing their convergence rate under general conditions on the iteration parameters. Numerical results confirm the effectiveness of the proposed regularization iterations.

  6. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  7. Cryogenic instrumentation for ITER magnets

    NASA Astrophysics Data System (ADS)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  8. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  9. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  10. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  11. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  12. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  13. The ITER design

    NASA Astrophysics Data System (ADS)

    Aymar, R.; Barabaschi, P.; Shimomura, Y.

    2002-05-01

    In 1998, after six years of joint work originally foreseen under the ITER engineering design activities (EDA) agreement, a design for ITER had been developed fulfilling all objectives and the cost target adopted by the ITER parties in 1992 at the start of the EDA. While accepting this design, the ITER parties recognized the possibility that they might be unable, for financial reasons, to proceed to the construction of the then foreseen device. The focus of effort in the ITER EDA since 1998 has been the development of a new design to meet revised technical objectives and a cost reduction target of about 50% of the previously accepted cost estimate. The rationale for the choice of parameters of the design has been based largely on system analysis drawing on the design solutions already developed and using the latest physics results and outputs from technology R&D projects. In so doing the joint central team and home teams converge towards a new design which will allow the exploration of a range of burning plasma conditions. The new ITER design, whilst having reduced technical objectives from its predecessor, will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy. Background, design features, performance, safety features, and R&D and future perspectives of the ITER design are discussed.

  14. Wall conditioning on ITER

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Pitts, Richard A.

    2011-08-01

    Like all tokamaks, ITER will require wall conditioning systems and strategies for successful operation from the point of view of plasma-facing surface preparation. Unlike today's devices however, ITER will have to manage large quantities of tritium fuel, imposing on wall conditioning a major responsibility for tritium inventory control. It will also feature the largest plasma-facing beryllium surface ever used in a tokamak and its high duty cycle and long pulse are expected to lead to the rapid formation of deposited layers in which tritium can accumulate. This paper summarises the currently planned ITER wall conditioning systems and describes the strategy for their use throughout exploitation of the device.

  15. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  16. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  17. Diagnostics for ITER

    SciTech Connect

    Donne, A. J. H.; Hellermann, M. G. von; Barnsley, R.

    2008-10-22

    After an introduction into the specific challenges in the field of diagnostics for ITER (specifically high level of nuclear radiation, long pulses, high fluxes of particles to plasma facing components, need for reliability and robustness), an overview will be given of the spectroscopic diagnostics foreseen for ITER. The paper will describe both active neutral-beam based diagnostics as well as passive spectroscopic diagnostics operating in the visible, ultra-violet and x-ray spectral regions.

  18. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  19. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  20. Robust iterative methods

    SciTech Connect

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  1. Iterated multidimensional wave conversion

    SciTech Connect

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-23

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  2. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.

  3. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.

  4. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  5. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  6. Iterative software kernels

    SciTech Connect

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  7. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  8. The Iterate Manual

    DTIC Science & Technology

    1990-10-01

    is probably a bad idea. A better versica would use a temporary: (defmacro sum-of-squares (expr) (let ((temp ( gensym ))) ’(lot (,temp ,expr)) (sum...val ( gensym )) (tempi ( gensym )) (temp2 ( gensym )) (winner (or var iterate::*result-var*))) ’(progn (with ,max-val - nil) (with ,winner = nil) (cond ((null...the elements of a vector (disregards fill-pointer)" (let ((vect ( gensym )) (end ( gensym )) (index ( gensym ))) ’(progn (with ,vect - v) (with ,end = (array

  9. Iterative initial condition reconstruction

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias

    2017-07-01

    Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.

  10. Neutron cameras for ITER

    SciTech Connect

    Johnson, L.C.; Barnes, C.W.; Batistoni, P.

    1998-12-31

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from {sup 16}N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with {sup 16}N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins.

  11. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  12. Iterative regularization and adaptivity for an electromagnetic coefficient inverse problem

    NASA Astrophysics Data System (ADS)

    Malmberg, John Bondestam; Beilina, Larisa

    2017-07-01

    We study how the choice of the regularization parameter affects the quality of the reconstruction of the dielectric permittivity for an inhomogeneous medium, with data consisting of boundary observations of the electric field. Our method is based on the minimization of a Tikhonov functional and uses a finite element method for computations of the electric field. We conclude that the choice of the regularization parameter does not affect the quality of the reconstruction significantly in the studied cases, and can even be removed with results not significantly different from those with regularization.

  13. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  14. Runaway electrons and ITER

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2017-05-01

    The potential for damage, the magnitude of the extrapolation, and the importance of the atypical—incidents that occur once in a thousand shots—make theory and simulation essential for ensuring that relativistic runaway electrons will not prevent ITER from achieving its mission. Most of the theoretical literature on electron runaway assumes magnetic surfaces exist. ITER planning for the avoidance of halo and runaway currents is focused on massive-gas or shattered-pellet injection of impurities. In simulations of experiments, such injections lead to a rapid large-scale magnetic-surface breakup. Surface breakup, which is a magnetic reconnection, can occur on a quasi-ideal Alfvénic time scale when the resistance is sufficiently small. Nevertheless, the removal of the bulk of the poloidal flux, as in halo-current mitigation, is on a resistive time scale. The acceleration of electrons to relativistic energies requires the confinement of some tubes of magnetic flux within the plasma and a resistive time scale. The interpretation of experiments on existing tokamaks and their extrapolation to ITER should carefully distinguish confined versus unconfined magnetic field lines and quasi-ideal versus resistive evolution. The separation of quasi-ideal from resistive evolution is extremely challenging numerically, but is greatly simplified by constraints of Maxwell’s equations, and in particular those associated with magnetic helicity. The physics of electron runaway along confined magnetic field lines is clarified by relations among the poloidal flux change required for an e-fold in the number of electrons, the energy distribution of the relativistic electrons, and the number of relativistic electron strikes that can be expected in a single disruption event.

  15. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  16. Searching with iterated maps

    PubMed Central

    Elser, V.; Rankenburg, I.; Thibault, P.

    2007-01-01

    In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267

  17. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  18. Runaway electrons and ITER

    NASA Astrophysics Data System (ADS)

    Boozer, Allen

    2016-10-01

    ITER planning for avoiding runaway damage depends on magnetic surface breakup in fast relaxations. These arise in thermal quenches and in the spreading of impurities from massive gas injection or shattered pellets. Surface breakup would prevent a runaway to relativistic energies were it not for non-intercepting flux tubes, which contain magnetic field lines that do not intercept the walls. Such tubes persist near the magnetic axis and in the cores of islands but must dissipate before any confining surfaces re-form. Otherwise, a highly dangerous situation arises. Electrons that were trapped and accelerated in these flux tubes can fill a large volume of stochastic field lines and serve as a seed for the transfer of the full plasma current to runaways. If the outer confining surfaces are punctured, as by a drift into the wall, then the full runaway inventory will be lost in a short pulse along a narrow flux tube. Although not part of ITER planning, currents induced in the walls by the fast magnetic relaxation could be used to passively prevent outer surfaces re-forming. If magnetic surface breakup can be avoided during impurity injection, the plasma current could be terminated in tens of milliseconds by plasma cooling with no danger of runaway. Support by DoE Office of Fusion Energy Science Grant De-FG02-03ER54696.

  19. Microtearing instability in ITER*

    NASA Astrophysics Data System (ADS)

    Wong, King-Lap; Mikkelsen, David; Budny, Robert; Breslau, Joshua

    2010-11-01

    Microtearing modes are found to be unstable in some regions of a simulated ITER H-mode plasma [1] with the GS2 code [2]. Modes with kρs>1 are in the interior (r/a˜0.65-0.85) while longer wavelength modes are in the pedestal region. This instability may keep the pedestal within the peeling-ballooning stability boundary [3]. Microtearing modes can produce stochastic magnetic field similar to RMP coils; they may have similar effects on ELMs by increasing the pedestal width. The possibility of using this technique for ELM mitigation in ITER is explored. We propose to use a deuterium gas jet to control the microtearing instability and the Chirikov parameter at the edge. Preliminary evaluation of its effectiveness will be presented and the limitations of the GS2 code will be discussed based on our understanding from NSTX [4]. *This work is supported by USDoE contract DE-AC02-09CH11466. [4pt] [1] R. V. Budny, Nucl. Fusion (2009)[0pt] [2] W. Dorland et al., Phys. Rev. Lett. (2000).[0pt] [3] P. B. Snyder et al.,Nucl. Fusion (2009).[0pt] [4] K. L. Wong et al., Phys. Rev. Lett. (2007).

  20. Electromagnetic leptogenesis

    SciTech Connect

    Bell, Nicole F.; Law, Sandy S. C.; Kayser, Boris J.

    2008-10-15

    We present a new leptogenesis scenario, where the lepton asymmetry is generated by CP-violating decays of heavy electroweak singlet neutrinos via electromagnetic dipole moment couplings to the ordinary light neutrinos. Akin to the usual scenario where the decays are mediated through Yukawa interactions, we have shown, by explicit calculations, that the desired asymmetry can be produced through the interference of the corresponding tree-level and one-loop decay amplitudes involving the effective dipole moment operators. We also find that the relationship of the leptogenesis scale to the light neutrino masses is similar to that for the standard Yukawa-mediated mechanism.

  1. What Are Electromagnetic Fields?

    MedlinePlus

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  2. Electromagnetic microactuators

    NASA Astrophysics Data System (ADS)

    Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.

    2013-05-01

    High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.

  3. Iterated crowdsourcing dilemma game

    PubMed Central

    Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki

    2014-01-01

    The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space. PMID:24526244

  4. Iterated crowdsourcing dilemma game

    NASA Astrophysics Data System (ADS)

    Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki

    2014-02-01

    The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space.

  5. Designed electromagnetic pulsed therapy: clinical applications.

    PubMed

    Gordon, Glen A

    2007-09-01

    First reduced to science by Maxwell in 1865, electromagnetic technology as therapy received little interest from basic scientists or clinicians until the 1980s. It now promises applications that include mitigation of inflammation (electrochemistry) and stimulation of classes of genes following onset of illness and injury (electrogenomics). The use of electromagnetism to stop inflammation and restore tissue seems a logical phenomenology, that is, stop the inflammation, then upregulate classes of restorative gene loci to initiate healing. Studies in the fields of MRI and NMR have aided the understanding of cell response to low energy EMF inputs via electromagnetically responsive elements. Understanding protein iterations, that is, how they process information to direct energy, we can maximize technology to aid restorative intervention, a promising step forward over current paradigms of therapy.

  6. Electromagnetic Radiation System (EMRS) for Susceptibility Testing.

    DTIC Science & Technology

    ELECTROMAGNETIC COMPATIBILITY, *ELECTROMAGNETIC SUSCEPTIBILITY, COMMUNICATION EQUIPMENT, ELECTRONIC EQUIPMENT, ELECTROMAGNETIC RADIATION , ANTENNAS, ELECTROMAGNETIC INTERFERENCE, RADAR SIGNALS, RADIO SIGNALS, FIELD INTENSITY.

  7. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  8. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  9. Iterative marker excision system.

    PubMed

    Myronovskyi, Maksym; Rosenkränzer, Birgit; Luzhetskyy, Andriy

    2014-05-01

    The deletions of large genomic DNA fragments and consecutive gene knockouts are prerequisites for the generation of organisms with improved properties. One of the key issues in this context is the removal of antibiotic resistance markers from engineered organisms without leaving an active recombinase recognition site. Here, we report the establishment of an iterative marker excision system (IMES) that solves this problem. Based on the phiC31 integrase and its mutant att sites, IMES can be used for highly effective deletion of DNA fragments between inversely oriented B-CC and P-GG sites. The B-CC and P-GG sites are derived from attB and attP by substitution of the central core TT dinucleotide with CC and GG, respectively. An unnatural RR site that resides in the chromosome following deletion is the joining product of the right shoulders of B-CC and P-GG. We show that the RR sites do not recombine with each other as well as the RR site recombines with B-CC. The recombination efficiencies between RR and P-GG or RR and LL are only 0.1 % and 1 %, respectively. Thus, IMES can be used for multistep genomic engineering without risking unwanted DNA recombination. The fabrication of multi-purpose antibiotic cassettes and examples of the utilisation of IMES are described.

  10. ECE Diagnostics for ITER

    NASA Astrophysics Data System (ADS)

    Ellis, Richard; Austin, Max; Beno, Joseph; Rowan, William; Phillips, Perry; Hubbard, Amanda; Pandya, Hitesh; Feder, Russel

    2013-10-01

    ECE on ITER will be used to measure electron temperature profiles and non thermal features of the distribution. The diagnostic has two systems, one radial, and the other viewing at a small oblique angle. Radiation will be conducted to the diagnostic area with large smooth wall waveguide. Emission will be measured with a multichannel Michelson interferometer and two microwave radiometers which cover the fundamental and second harmonic ECE (X and O mode). In-situ calibration employs a hot calibration source which has been designed, constructed, and tested. We report extensive wideband transmission measurements made on the DIII-D Michelson corrugated waveguide system. We have now completed design of the beam splitter box which separates X and O modes for both views. The box inputs are now located flush up against the vacuum windows on the port plug. We have then redesigned the Gaussian beam optics of the system to reduce the size of the calibration sources by 20% to allow a better fit with other diagnostics in the port plug. We will present the details of the entire new design.

  11. Electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  12. Electromagnetic launcher

    SciTech Connect

    Laskaris, E.T.; Chari, M.V.K.

    1990-11-20

    This paper describes an electromagnetic launcher. It comprises: a stationary superconductive coil situated coaxially in a cylindrical vacuum vessel for providing a magnetic field. The superconductive coil having a central aperture, the vacuum vessel having an axially extending bore passing through the central aperture of the superconducting coil; a resistive coil situated coaxially with the superconductive coil and movable axially relative to the stationary superconductive coil, the outer diameter of the resistive coil being smaller than the inner diameter of the bore permitting the resistive coil to pass therethrough; launch activating means coupled to the resistive coil. The launch activating means comprising a shaft joined at one end to the resistive coil, a tube open at both ends, a sliding piston situated in the tube and connected to the other end of the shaft; and power supply means coupled to the resistive coil for providing current of a desired direction and magnitude, so that energization of the resistive coil in the presence of the radial field component of the magnetic field of the superconductive coil creates an axial force on the movable coil, the direction and magnitude of which is dependent on the direction and magnitude of the current in the resistive coil.

  13. The first fusion reactor: ITER

    NASA Astrophysics Data System (ADS)

    Campbell, D. J.

    2016-11-01

    Established by the signature of the ITER Agreement in November 2006 and currently under construction at St Paul-lez-Durance in southern France, the ITER project [1,2] involves the European Union (including Switzerland), China, India, Japan, the Russian Federation, South Korea and the United States. ITER (`the way' in Latin) is a critical step in the development of fusion energy. Its role is to provide an integrated demonstration of the physics and technology required for a fusion power plant based on magnetic confinement.

  14. Structural Analysis of ITER Lower In-Vessel-Viewing Port

    NASA Astrophysics Data System (ADS)

    Cai, Yingxiang; Wu, Songtao; Yu, Jie; Liu, Changle

    2006-11-01

    A finite element model of the International Thermonuclear Experimental Reactor (ITER) in-vessel viewing port was developed by the ANSYS code in order to evaluate the stress level of this structure. The thermal, elastic and modal analyses were made in succession based on the loads designated by the ITER International team. The designed loads include electromagnetic loads, seismic loads, pressure, temperature and gravity. The preliminary results of the finite element analysis (FEA) show that the stress intensity exceeded the allowable stress and the maximum stress was concentrated in the geometric discontinuous region of the shroud stub extension (SSE). Therefore, the SSE has been modified recently. For the modified structure, we found that the stresses do not exceed the allowable value for all load combinations. In addition the modal analysis results show that the natural frequencies of the IVV port structure are located in the typical diapason of seismic excitation.

  15. Detailed Modeling of Grounding Solutions for the ITER ICRF Antenna

    NASA Astrophysics Data System (ADS)

    Kyrytsya, V.; Dumortier, P.; Messiaen, A.; Louche, F.; Durodié, F.

    2011-12-01

    The excitation of non-TEM modes around the ITER ICRF antenna plug can considerably increase the level of RF voltages and currents on the ITER plug. First study of these modes and a solution to avoid them in the ITER ion cyclotron range of frequencies were reported in [1]. In this work a detailed analysis of electrical properties of the ITER ICRF antenna with the plug was studied for different grounding solutions with CST Microwave Studio® [2]. Conclusions of an earlier work [ 1 ] were confirmed on the detailed model of the antenna with the plug. Different grounding contacts (capacitive, galvanic and mixed capacitive-galvanic) as well as their distribution inside the plug gap were analyzed. It was shown that capacitive and mixed capacitive-galvanic grounding are less effective because they demand high values of the capacitance and are more sensitive to the frequency and antenna spectrum. In particular a galvanic grounding realized by the contacts put around the perimeter of the plug gap at lm behind the front face of the antenna is the most suitable solution from the electromagnetic point of view. An optimization of the layout and arrangement of the contacts in order to assess and optimize the current distribution on them is under way. Measurements on a scaled mock-up of the complete antenna and the plug are under way for modeling results confirmation.

  16. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  17. ITER Central Solenoid Module Fabrication

    SciTech Connect

    Smith, John

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  18. ITER safety challenges and opportunities

    SciTech Connect

    Piet, S.J.

    1991-01-01

    Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop.

  19. Electromagnetic Fields and Cancer

    MedlinePlus

    ... are in the ionizing radiation part of the electromagnetic spectrum and can damage DNA or cells directly. Low- ... in the non-ionizing radiation part of the electromagnetic spectrum and are not known to damage DNA or ...

  20. Electromagnetic induction methods

    USDA-ARS?s Scientific Manuscript database

    Electromagnetic induction geophysical methods are finding greater and greater use for agricultural purposes. Electromagnetic induction methods measure the electrical conductivity (or resistivity) for a bulk volume of soil directly beneath the surface. An instrument called a ground conductivity meter...

  1. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  2. Electromagnetic Education in India

    ERIC Educational Resources Information Center

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  3. Electromagnetic Education in India

    ERIC Educational Resources Information Center

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  4. Fundamentals of Electromagnetic Phenomena

    NASA Astrophysics Data System (ADS)

    Lorrain, Paul; Corson, Dale R.; Lorrain, Francois

    Based on the classic Electromagnetic Fields and Waves by the same authors, Fundamentals of Electromagnetic Phenomena capitalizes on the older text's traditional strengths--solid physics, inventive problems, and an experimental approach--while offering a briefer, more accessible introduction to the basic principles of electromagnetism.

  5. Relaxation Criteria for Iterated Traffic Simulations

    NASA Astrophysics Data System (ADS)

    Kelly, Terence; Nagel, Kai

    Iterative transportation microsimulations adjust traveler route plans by iterating between a microsimulation and a route planner. At each iteration, the route planner adjusts individuals' route choices based on the preceding microsimulations. Empirically, this process yields good results, but it is usually unclear when to stop the iterative process when modeling real-world traffic. This paper investigates several criteria to judge relaxation of the iterative process, emphasizing criteria related to traveler decision-making.

  6. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  7. Mixed Electromagnetic and Circuit Simulations using Higher-Order Elements and Bases

    SciTech Connect

    Champagne, N J; Rockway, J D; Jandhyala, V

    2003-06-18

    In this paper, an approach to couple higher-order electromagnetic surface integral equations to circuit simulations is presented. Terminals are defined that connect circuit elements to contacts modeled on the distributed electromagnetic domain. A modified charge-current continuity equation is proposed for a generalized KCL connection at the contacts. The distributive electromagnetic integral equations are developed using higher-order bases and elements that allow both better convergence and accuracy for modeling. The resulting scheme enables simultaneous solution of electromagnetic integral equations for arbitrarily-shaped objects and SPICE-like modeling for lumped circuits, and permits design iterations and visualization of the interaction between the two domains.

  8. Error Field Correction in ITER

    SciTech Connect

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.

    2008-05-22

    A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.

  9. Construction Safety Forecast for ITER

    SciTech Connect

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  10. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  11. KAIRUAIN-algorithm applied on electromagnetic imaging

    NASA Astrophysics Data System (ADS)

    Lakhal, A.

    2013-09-01

    For time-harmonic Maxwell equations, we consider an inverse scattering problem for the 3D imaging of the constitutive material of an unknown object from the boundary measurements of the electric field. This problem is ill-posed and nonlinear. We introduce the KAIRUAIN-algorithm which is an iterative method of Newton-Kaczmarz type, where we use the approximate inverse for regularizing the solution of the linearized equation at each Newton iteration. We study the convergence of the algorithm and develop a strategy for the choice of the regularizing parameter in a quite general setting. We apply the KAIRUAIN-algorithm to derive an efficient and stable reconstruction method for electromagnetic imaging. We use experimental data provided by the Institut Fresnel, France, to validate the capability of the reconstruction algorithm to retrieve blindly, without any a priori information, the geometry and the dielectric permittivity of the scattering object.

  12. Short wavelength interferometer for ITER

    SciTech Connect

    Snider, R.T.; Carlstrom, T.N.

    1992-04-01

    There is a need for a real time, reliable density measurement compatible with the restricted access and radiation environment on ITER. Due to the large plasma path length, high density and field, refraction and Faraday rotation effects makes the use of contemporary long wavelength (>50{mu}m) interferometers impractical. In this paper we consider the design of a short wavelength vibration compensated interferometer which allows operation without a prohibitively large vibration isolated structure and permits the optics to be conveniently mounted directly in or on the tokamak. A density interferometer design for ITER incorporating a 10.6 {mu}m CO{sub 2} interferometer with vibration compensation provided by a 3. 39 {mu}m HeNe laser is discussed. The proposed interferometer design requires only a small intrusion into the ITER tokamak without a large support structure, refraction and Faraday rotation problems are avoided, and it provides a density resolution of at least 0.5%. Results are presented from an interferometer installed on the DIII-D tokamak incorporating essential elements of the proposed ITER design including 10.6 and 3.39 {mu}m lasers, a retro-reflector mounted on the vacuum wall of the DIII-D tokamak and real-time density feedback control. In this paper we consider a short wavelength interferometer design that incorporates vibration compensation for use on ITER. Our primary concern is to develop a interferometer design that will produce a reliable real time density monitor. We use the ITER conceptual design activity report as the basis of the design.

  13. Principles of electromagnetic theory

    SciTech Connect

    Kovetz, A.H. )

    1990-01-01

    This book emphasizes the fundamental understanding of the laws governing the behavior of charge and current carrying bodies. Electromagnetism is presented as a classical theory, based-like mechanics-on principles that are independent of the atomic constitution of matter. This book is unique among electromagnetic texts in its treatment of the precise manner in which electromagnetism is linked to mechanics and thermodynamics. Applications include electrostriction, piezoelectricity, ferromagnetism, superconductivity, thermoelectricity, magnetohydrodynamics, radiation from charged particles, electromagnetic wave propagation and guided waves. There are many worked examples of dynamical and thermal effects of electromagnetic fields, and of effects resulting from the motion of bodies.

  14. Iterative Restoration Of Tomosynthetic Slices

    NASA Astrophysics Data System (ADS)

    Ruttimann, U. E.; Groenhuis, R. A.; Webber, R. L.

    1984-08-01

    Tomosynthetic reconstructions suffer from the disadvantage that blurred images of object detail lying outside the plane of interest are superimposed over the desired image of structures in the tomosynthetic plane. It is proposed to selectively reduce these undesired superimpositions by a constrained iterative restoration method. Sufficient conditions are derived ensuring the convergence of the iterations to the exact solution in the absence of noise and constraints. Although in practice the restoration process must be left incomplete because of noise and quantization artifacts, the experimental results demonstrate that for reasons of stability these convergence conditions must be satisfied.

  15. The real mission of ITER

    SciTech Connect

    Wurden, G A

    2009-01-01

    For future machines, the plasma stored energy is going up by factors of 20-40x, and plasma currents by 2-3x, while the surface to volume ratio is at the same time decreasing. Therefore the disruption forces, even for constant B, (which scale like IxB), and associated possible localized heating on machine components, are more severe. Notably, Tore Supra has demonstrated removal of more than 1 GJ of input energy, over nearly a 400 second period. However, the instantaneous stored energy in the Tore Supra system (which is most directly related to the potential for disruption damage) is quite small compared to other large tokamaks. The goal of ITER is routinely described as studying DT burning plasmas with a Q {approx} 10. In reality, ITER has a much more important first order mission. In fact, if it fails at this mission, the consequences are that ITER will never get to the eventual stated purpose of studying a burning plasma. The real mission of ITER is to study (and demonstrate successfully) plasma control with {approx}10-17 MA toroidal currents and {approx}100-400 MJ plasma stored energy levels in long-pulse scenarios. Before DT operation is ever given a go-ahead in ITER, the reality is that ITER must demonstrate routine and reliable control of high energy hydrogen (and deuterium) plasmas. The difficulty is that ITER must simultaneously deal with several technical problems: (1) heat removal at the plasma/wall interface, (2) protection of the wall components from off-normal events, and (3) generation of dust/redeposition of first wall materials. All previous tokamaks have encountered hundred's of major disruptions in the course of their operation. The consequences of a few MA of runaway electrons (at 20-50 MeV) being generated in ITER, and then being lost to the walls are simply catastrophic. They will not be deposited globally, but will drift out (up, down, whatever, depending on control system), and impact internal structures, unless 'ameliorated'. Basically, this

  16. Iterated binomial sums and their associated iterated integrals

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.

    2014-11-01

    We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.

  17. Chevron beam dump for ITER edge Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  18. Operating ITER Robustly Without Disruptions

    NASA Astrophysics Data System (ADS)

    Humphreys, D. A.; Eidietis, N. W.; Hyatt, A. W.; Leuer, J. A.; Luce, T. C.; Strait, E. J.; Walker, M. L.; Welander, A. S.; Wesley, J. C.; Lodestro, L.; Pearlstein, L. D.

    2011-10-01

    Disruptivity in ITER must be minimized to limit downtime and maximize use of the limited number of discharges. Minimizing disruptivity requires sufficient control capability, including robustness to disturbances and disruption avoidance through prediction of controllability limits. Robust control implies a balance of passively stable nominal scenarios, robust operation near or beyond open loop stability limits, and responses to off-normal events to avoid disruptive termination. Such a solution is possible because disruptions result from deterministic loss of controllability due to many proximal causes (e.g. loss of hardware resources, human error, or uncontrollable disturbances), most of which can be addressed with good physics models and known control methods. We illustrate the required approach with DIII-D experiments to assess ITER controllability and pre-qualify ITER scenarios, and with design and analysis ensuring sufficiently robust vertical control for ITER. Supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  19. Networking Theories by Iterative Unpacking

    ERIC Educational Resources Information Center

    Koichu, Boris

    2014-01-01

    An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…

  20. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  1. Iterative method for interferogram processing

    NASA Astrophysics Data System (ADS)

    Kotlyar, Victor V.; Seraphimovich, P. G.; Zalyalov, Oleg K.

    1994-12-01

    We have developed and numerically evaluated an iterative algorithm for interferogram processing including the Fourier-transform method, the Gerchberg-Papoulis algorithm and Wiener's filter-based regularization used in combination. Using a signal-to-noise ratio not less than 1, it has been possible to reconstruct the phase of an object field with accuracy better than 5%.

  2. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  3. The iterative solution of wave propagation in transverse magnetic mode for graded positive-negative

    NASA Astrophysics Data System (ADS)

    Nur Pratiwi, Beta; Suparmi, A.; Cari, C.; Arya Nugraha, Dewanta

    2017-01-01

    The iterative solution was used to obtain the electromagnetic wave propagation in transverse magnetic (TM) mode for a graded positive-negative refractive index. The graded graphs of negative permittivity and negative permeability were obtained in hyperbolic functions. By using hyperbolic function for permittivity and permeability in Maxwell equation and by separation variable, we obtained the electromagnetic differential equation. From the differential equation, we used the approachment using MacLaurin series to obtain the wave vector and magnetic fields equation. The distribution of the magnetic fields were given in graph visualization using Matlab software.

  4. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.

  5. Iteration and Prototyping in Creating Technical Specifications.

    ERIC Educational Resources Information Center

    Flynt, John P.

    1994-01-01

    Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)

  6. Electromagnetic Radiation Analysis

    DTIC Science & Technology

    1978-04-10

    A methodology is given for determining whether electromagnetic radiation of sufficient strength to cause performance degradation to the test item...exists at the test item location. The results of an electromagnetic radiation effects test are used to identify the radio frequencies and electromagnetic ... radiation levels to which the test item is susceptible. Further, using a test bed, comparisons are made with the representative signal levels to

  7. Colorado Conference on iterative methods. Volume 1

    SciTech Connect

    1994-12-31

    The conference provided a forum on many aspects of iterative methods. Volume I topics were:Session: domain decomposition, nonlinear problems, integral equations and inverse problems, eigenvalue problems, iterative software kernels. Volume II presents nonsymmetric solvers, parallel computation, theory of iterative methods, software and programming environment, ODE solvers, multigrid and multilevel methods, applications, robust iterative methods, preconditioners, Toeplitz and circulation solvers, and saddle point problems. Individual papers are indexed separately on the EDB.

  8. Bioinspired iterative synthesis of polyketides

    PubMed Central

    Zheng, Kuan; Xie, Changmin; Hong, Ran

    2015-01-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510

  9. Design of ITER Relief Lines

    NASA Astrophysics Data System (ADS)

    Shah, N.; Choukekar, K.; Jadon, M.; Sarkar, B.; Joshi, B.; Kanzaria, H.; Gehani, V.; Vyas, H.; Pandya, U.; Panjwani, R.; Badgujar, S.; Monneret, E.

    2017-02-01

    The ITER Cryogenic system is one of the most complex cryogenic systems in the world. It includes roughly 5 km of cryogenic transfer line (cryolines) having large number of layout singularities in terms of bends at odd angles and branches. The relief lines are particularly important cryolines as they collect the helium from outlet of all process safety valves of the cryogenic clients and transfers it back to cryoplant. The total length of ITER relief lines is around 1.6 km with process pipe size varying from DN 50 to DN 200. While some part of relief lines carries warm helium for the recovery system, most part of the relief line is vacuum jacketed cryoline which carries cold helium from the clients. The final detailed design of relief lines has been completed. The paper describes the major input data and constraints for design of relief lines, design steps, flexibility and structural analysis approach and major design outcome.

  10. Spectroscopic problems in ITER diagnostics

    NASA Astrophysics Data System (ADS)

    Lisitsa, V. S.; Bureyeva, L. A.; Kukushkin, A. B.; Kadomtsev, M. B.; Krupin, V. A.; Levashova, M. G.; Medvedev, A. A.; Mukhin, E. E.; Shurygin, V. A.; Tugarinov, S. N.; Vukolov, K. Yu

    2012-12-01

    Problems of spectroscopic diagnostics of ITER plasma are under consideration. Three types of diagnostics are presented: 1) Balmer lines spectroscopy in the edge and divertor plasmas; 2) Thomson scattering, 3) charge exchange recombination spectroscopy. The Zeeman-Stark structure of line shapes is discussed. The overlapping of isotopes H-D-T spectral line shapes are presented for the SOL and divertor conditions. The polarization measurements of H-alpha spectral lines for H-D mixture on T-10 tokamak are shown in order to separate Zeeman splitting in more details. The problem of plasma background radiation emission for Thomson scattering in ITER is discussed in details. The line shape of P-7 hydrogen spectral line having a wave length close to laser one is presented together with continuum radiation. The charge exchange recombination spectroscopy (CXRS) is discussed in details. The data on Dα, HeII and CVI measurements in CXRS experiments on T-10 tokamak are presented.

  11. I-mode for ITER?

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Marmar, E.; Hubbard, A.; Hughes, J.; Dominguez, A.; Greenwald, M.

    2011-10-01

    I-mode is a recently explored confinement regime that features a temperature pedestal and H-mode energy confinement, yet with L-mode particle confinement and no density pedestal nor large ELMs. Experiments on Alcator C-Mod and ASDEX-Upgrade show this leads to a stationary collisionless pedestal that inherently does not require ELMs for core impurity and particle control, possibly making I-mode an attractive operating regime for ITER where ELM heat pulses are expected to surpass material limits. We speculate as to how I-mode could be obtained, maintained and exploited for the ITER burning plasma physics mission. Issues examined include I-mode topology and power threshold requirements, pedestal formation, density control, avoiding H-mode, and the response of I-mode to alpha self-heating. Key uncertainties requiring further investigation are identified. Supported by the US DOE Cooperative Agreement DE-FC02-99ER54512.

  12. ITER Test Blanket Module Error Field Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Schaffer, M. J.

    2010-11-01

    Recent experiments at DIII-D used an active-coil mock-up to investigate effects of magnetic error fields similar to those expected from two ferromagnetic Test Blanket Modules (TBMs) in one ITER equatorial port. The largest and most prevalent observed effect was plasma toroidal rotation slowing across the entire radial profile, up to 60% in H-mode when the mock-up local ripple at the plasma was ˜4 times the local ripple expected in front of ITER TBMs. Analysis showed the slowing to be consistent with non-resonant braking by the mock-up field. There was no evidence of strong electromagnetic braking by resonant harmonics. These results are consistent with the near absence of resonant helical harmonics in the TBM field. Global particle and energy confinement in H-mode decreased by <20% for the maximum mock-up ripple, but <5% at the local ripple expected in ITER. These confinement reductions may be linked with the large velocity reductions. TBM field effects were small in L-mode but increased with plasma beta. The L-H power threshold was unaffected within error bars. The mock-up field increased plasma sensitivity to mode locking by a known n=1 test field (n = toroidal harmonic number). In H-mode the increased locking sensitivity was from TBM torque slowing plasma rotation. At low beta, locked mode tolerance was fully recovered by re-optimizing the conventional DIII-D ``I-coils'' empirical compensation of n=1 errors in the presence of the TBM mock-up field. Empirical error compensation in H-mode should be addressed in future experiments. Global loss of injected neutral beam fast ions was within error bars, but 1 MeV fusion triton loss may have increased. The many DIII-D mock-up results provide important benchmarks for models needed to predict effects of TBMs in ITER.

  13. Conceptual design of fusion experimental reactor (FER/ITER)

    NASA Astrophysics Data System (ADS)

    Kimura, Haruyuki; Saigusa, Mikio; Saitoh, Yasushi

    1991-06-01

    Conceptual design of the Ion Cyclotron Wave (ICW) system for the FER and the Japanese contribution to the conceptual design of the International Thermonuclear Experimental Reactor (ITER) Ion Cyclotron Wave (ICW) system are presented. A frequency range of the FER ICW system is 50-85 MHz, which covers 2 omega (sub cT) heating, current drive by transit time magnetic pumping (TTMP) and 2 omega (sub cD) heating. Physics analyses show that the FER and the ITER ICW systems are suitable for the central ion heating and the burn control. The launching systems of the FER ICW system and the ITER high frequency ICW system are characterized by in-port plug and ridged-waveguide-fed 5x4 phased loop array. Merits of those systems are (1) a ceramic support is not necessary inside the cryostat and (2) remote maintenance of the front end part of the launcher is relatively easy. Overall structure of the launching system is consistent with radiation shielding, cooling, pumping, tritium safety and remote maintenance. The launcher has injection capability of 20 MW in the frequency range of 50-85 MHz with the separatrix-antenna distance of 15 cm and steep scrape-off density profile of H-mode. The shape of the ridged waveguide is optimized to provide desired frequency range and power handling capability with a finite element method. Matching between the current strap and the ridged waveguide is satisfactorily good. Thermal analysis of the Faraday shield shows that high electric conductivity low Z material such as beryllium should be chosen for a protection tile of the Faraday shield. A thick Faraday shield is necessary to tolerate electromagnetic force during disruptions. R and D needs for the ITER/FER ICW systems are identified and gain from JT-60/60U ICRF experiments and operations are indicated in connection with them.

  14. US ITER limiter module design

    SciTech Connect

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.

  15. Iterative Methods for Parameter Estimation

    DTIC Science & Technology

    1990-12-01

    IMPULSE RESPONSE (FIR) SYSTEMS ............... 10 A. FIXED DATA ALGORITHMS .................... 10 1. Gauss- Seidel Method ....................... 10 2...potential to provide a less biased least squares solution than a correlation method formulation [Ref. 3]. A. FIXED DATA ALGORITHMS 1. Gauss- Seidel Method A...very simple and straightforward iterative algorithm is the Gauss- Seidel method [Ref. 7]. We drop the superscript M from aM for simplicity. Unless

  16. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  17. Solution accelerators for large scale 3D electromagnetic inverse problems

    SciTech Connect

    Newman, Gregory A.; Boggs, Paul T.

    2004-04-05

    We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.

  18. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  19. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  20. Electromagnetic nonuniformly correlated beams.

    PubMed

    Tong, Zhisong; Korotkova, Olga

    2012-10-01

    A class of electromagnetic sources with nonuniformly distributed field correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. It is shown that the new sources are capable of producing beams with polarization properties that evolve on propagation in a manner much more complex compared to the well-known electromagnetic Gaussian Schell-model beams.

  1. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  2. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  3. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  4. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  5. Computer Code Validation in Electromagnetics

    DTIC Science & Technology

    1989-06-01

    modeling code. This user perception of validity is based on documentation, peer review, user experience and computer resource management. Keywords: Electromagnetic environment effects; Electromagnetic interference; Reprints. (jhd)

  6. Electromagnetism, Second Edition

    NASA Astrophysics Data System (ADS)

    Grant, I. S.; Phillips, W. R.

    2003-09-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Electromagnetism, Second Edition is suitable for a first course in electromagnetism, whilst also covering many topics frequently encountered in later courses. The material has been carefully arranged and allows for flexi-bility in its use for courses of different length and structure. A knowledge of calculus and an elementary knowledge of vectors is assumed, but the mathematical properties of the differential vector operators are described in sufficient detail for an introductory course, and their physical significance in the context of electromagnetism is emphasised. In this Second Edition the authors give a fuller treatment of circuit analysis and include a discussion of the dispersion of electromagnetic waves. Electromagnetism, Second Edition features: The application of the laws of electromagnetism to practical problems such as the behaviour of antennas, transmission lines and transformers. Sets of problems at the end of each chapter to help student understanding, with hints and solutions to the problems given at the end of the book. Optional "starred" sections containing more specialised and advanced material for the more ambitious reader. An Appendix with a thorough discussion of electromagnetic standards and units. Recommended by many institutions. Electromagnetism. Second Edition has also been adopted by the Open University as the

  7. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  8. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  9. On electromagnetic and quantum invisibility

    NASA Astrophysics Data System (ADS)

    Mundru, Pattabhiraju Chowdary

    The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible. In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit, our theory is consistent with Maxwell-Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. This dissertation proposes a multi-shell generic cloaking system. A transparency condition independent of the object's optical and geometrical properties is proposed in the quasi-static regime of operation. The suppression of dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable low-loss shell design is proposed based on the composite metal-dielectric shell. The effects due to dissipation and dispersion on the overall scattering cross-section are thoroughly evaluated. It is shown that a strong reduction of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical simulations for complex shaped particle are performed to validate the analytical theory. The proposed design does not require optical magnetism and is generic in the sense that it is independent of the object's material and geometrical properties. A generic

  10. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  11. Plasma vertical stabilisation in ITER

    NASA Astrophysics Data System (ADS)

    Gribov, Y.; Kavin, A.; Lukash, V.; Khayrutdinov, R.; Huijsmans, G. T. A.; Loarte, A.; Snipes, J. A.; Zabeo, L.

    2015-07-01

    This paper describes the progress in analysis of the ITER plasma vertical stabilisation (VS) system since its design review in 2007-2008. Two indices characterising plasma VS were studied. These are (1) the maximum value of plasma vertical displacement due to free drift that can be stopped by the VS system and (2) the maximum root mean square value of low frequency noise in the dZ/dt measurement signal used in the VS feedback loop. The first VS index was calculated using the PET code for 15 MA plasmas with the nominal position and shape. The second VS index was studied with the DINA code in the most demanding simulations for plasma magnetic control of 15 MA scenarios with the fastest plasma current ramp-up and early X-point formation, the fastest plasma current ramp-down in a divertor configuration, and an H to L mode transition at the current flattop. The studies performed demonstrate that the VS in-vessel coils, adopted recently in the baseline design, significantly increase the range of plasma controllability in comparison with the stabilising systems VS1 and VS2, providing operating margins sufficient to achieve ITER's goals specified in the project requirements. Additionally two sets of the DINA code simulations were performed with the goal of assessment of the capability of the PF system with the VS in-vessel coils: (i) to control the position of runaway electrons generated during disruptions in 15 MA scenarios and (ii) to trigger ELMs in H-mode plasmas of 7.5 MA/2.65 T scenarios planned for the early phase of ITER operation. It was also shown that ferromagnetic structures of the vacuum vessel (ferromagnetic inserts) and test blanket modules insignificantly affect the plasma VS.

  12. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  13. The physics role of ITER

    SciTech Connect

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  14. Benchmarking ICRF Full-wave Solvers for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R. J. Dumont, A. Fukuyama, R. Harvey, E. F. Jaeger, K. Indireshkumar, E. Lerche, D. McCune, C. K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2011-01-06

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  15. Experimental Study on Paschen Tests of ITER Current Lead Insulation

    NASA Astrophysics Data System (ADS)

    Zheng, Jinxing; Song, Yuntao; Huang, Xiongyi; Lu, Kun; Xi, Weibin; Ding, Kaizhon; Ye, Bin; Niu, Erwu

    2013-02-01

    An experimental Paschen test setup has been established to analyze the quality of ITER current lead (CL) insulation and extend the research on Paschen's law under various conditions. Insulation problems can destroy a machine if a Paschen discharge is triggered by an insulation defect that is caused by faulty manufacturing, electromagnetic force, and thermal stress load with a certain degree of vacuum helium or pipe leakage. The results show that the CL insulation mock-up worked well under normal temperature and pressure. Besides, the mock-up also worked well in helium conditions and at 80 K temperature at different pressures. One area of CL insulation was severely destroyed when the 80 K test was conducted after 5 thermal cycles, resulting in Paschen discharge phenomenon. The breakdown voltage is maintained at a relatively low level under different pressure conditions; the change of breakdown voltage was mainly due to the change of pressure, and such change was in line with the Paschen law.

  16. Nuclear technology aspects of ITER vessel-mounted diagnostics

    NASA Astrophysics Data System (ADS)

    Vayakis, George; Bertalot, Luciano; Encheva, Anna; Walker, Chris; Brichard, Benoît; Cheon, M. S.; Chitarin, G.; Hodgson, Eric; Ingesson, Christian; Ishikawa, M.; Kondoh, T.; Meister, Hans; Moreau, Philippe; Peruzzo, Simone; Pak, S.; Pérez-Pichel, Germán; Reichle, Roger; Testa, Duccio; Toussaint, Matthieu; Vermeeren, Ludo; Vershkov, Vladimir

    2011-10-01

    ITER has diagnostics with machine protection, basic and advanced control, and physics roles. Several are distributed on the inner and outer periphery of the vacuum vessel. They have reduced maintainability compared to diagnostics in ports. They also endure some of the highest nuclear and EM loads of any diagnostic for the longest time. They include: Inductive sensors for time-integrated and raw inductive measurements; Steady-state magnetic sensors to correct drifts of the inductive sensors; Bolometer cameras to provide electromagnetic radiation tomography; Microfission chambers and neutron activation stations to provide fusion power and fluence; MM-wave reflectometry to measure the plasma density profile and the plasma-wall distance and; Wiring to service magnetics, bolometry, and in-vessel instrumentation. This paper summarises the key technological issues these diagnostics arising from the nuclear environment, recent progress and outstanding R&D for each system.

  17. Structural Analysis of the ITER VV Lower Port Region

    NASA Astrophysics Data System (ADS)

    Cai, Yingxiang; Wu, Songtao; Yu, Jie

    2007-08-01

    A structural analysis of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel's lower port region was presented by means of a finite element analysis method. The purpose is to evaluate the stress and displacement level on this structure under various combinations of five designed loads, including the gravity of the vacuum vessel, seismic loads, electromagnetic loads, and possible pressure loads to ensure structural safety. The cyclic symmetry finite element model of this structure was developed by using ANSYS code. The results showed that the maximum stress does not exceed the allowable value for any of the load combinations according to ASME code and the nine vacuum vessel (VV) supports have the ability to sustain the entire VV and in vessel-components and withstand load combinations under both normal as well as off-normal operation conditions. Stress mainly concentrates on the connecting region of the VV support and lower port stub extension.

  18. Iterated Stretching of Viscoelastic Jets

    NASA Technical Reports Server (NTRS)

    Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny

    1999-01-01

    We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.

  19. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  20. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  1. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  2. Communication-optimal iterative methods

    NASA Astrophysics Data System (ADS)

    Demmel, J.; Hoemmen, M.; Mohiyuddin, M.; Yelick, K.

    2009-07-01

    Data movement, both within the memory system of a single processor node and between multiple nodes in a system, limits the performance of many Krylov subspace methods that solve sparse linear systems and eigenvalue problems. Here, s iterations of algorithms such as CG, GMRES, Lanczos, and Arnoldi perform s sparse matrix-vector multiplications and Ω(s) vector reductions, resulting in a growth of Ω(s) in both single-node and network communication. By reorganizing the sparse matrix kernel to compute a set of matrix-vector products at once and reorganizing the rest of the algorithm accordingly, we can perform s iterations by sending O(log P) messages instead of Ω(s·log P) messages on a parallel machine, and reading the on-node components of the matrix A from DRAM to cache just once on a single node instead of s times. This reduces communication to the minimum possible. We discuss both algorithms and an implementation of GMRES on a single node of an 8-core Intel Clovertown. Our implementations achieve significant speedups over the conventional algorithms.

  3. Experimental Evidence on Iterated Reasoning in Games.

    PubMed

    Grehl, Sascha; Tutić, Andreas

    2015-01-01

    We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects' cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects' skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning.

  4. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  5. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  6. Electromagnetic and Weak Interactions

    NASA Astrophysics Data System (ADS)

    Salam, A.; Ward, J. C.

    One of the recurrent dreams in elementary particles physics is that of a possible fundamental synthesis between electro-magnetism and weak interactions [1]. The idea has its origin in the following shared characteristics…

  7. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  8. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  9. Looking beyond ITER: Toroidal concept improvement

    SciTech Connect

    Sheffield, J.

    1993-01-01

    The International Thermonuclear Experimental Reactor (ITER) will demonstrate ignition and undertake fusion reactor systems integration and testing. Its design will be based upon relatively conservative physics assumptions. More attractive reactor configurations than those based upon ITER physics and the ITER configuration appear possible. The Toroidal Physics Experiment (TPX) will study tokamak behavior under a variety of conditions which may allow operation of improved combinations of beta, transport, and recirculating power. However, TPX still retains a configuration similar to ITER. Two alternative approaches appear interesting, based upon recent experimental results: the very low aspect ratio tokamak, or spherical torus, and the stellarator.

  10. Looking beyond ITER: Toroidal concept improvement

    SciTech Connect

    Sheffield, J.

    1993-06-01

    The International Thermonuclear Experimental Reactor (ITER) will demonstrate ignition and undertake fusion reactor systems integration and testing. Its design will be based upon relatively conservative physics assumptions. More attractive reactor configurations than those based upon ITER physics and the ITER configuration appear possible. The Toroidal Physics Experiment (TPX) will study tokamak behavior under a variety of conditions which may allow operation of improved combinations of beta, transport, and recirculating power. However, TPX still retains a configuration similar to ITER. Two alternative approaches appear interesting, based upon recent experimental results: the very low aspect ratio tokamak, or spherical torus, and the stellarator.

  11. Electromagnetically induced phase grating.

    PubMed

    de Araujo, Luís E E

    2010-04-01

    I propose an electromagnetically induced phase grating based on the giant Kerr nonlinearity of an atomic medium under electromagnetically induced transparency. The atomic phase grating behaves similarly to an ideal sinusoidal phase grating, and it is capable of producing a pi phase excursion across a weak probe beam along with high transmissivity. The grating is created with arbitrarily weak fields, and diffraction efficiencies as high as 30% are predicted.

  12. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  13. The compact electromagnetic device optimization modeling of seismo-electromagnetic processes for the Earth

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2009-04-01

    The electromagnetically equivalent device model [1]-[2] is extended as considering the whole Earth like a complete system in this paper. The crustal structures are considered as a complex network of distributed circuits involving slot antenna arrays, open waveguides, cavities, transmission strip lines, attenuators, frequency converters, dividers, couplings in the electromagnetically equivalent device model of the complete system of Earth (EEDMCSE). The variations at the geo-data taken at any port of the EEDMCSE give some functional relationships on the electromagnetic characteristics of the distributed complex network explained above. The mappings said here are based on the transformations among both the temporal and the spatial variations of both geo-data and the electromagnetic characteristics of the distributed complex network [2]. The Finite Difference Time Domain Method is used at the evaluations. The temporal variations at the mappings of EEDMCSE at specific locations extract the mechanisms explaining the relationships among the characteristics of the distributed complex network and seismic phenomena of Earth in the future. A mapping is established between the parameter space of the geo-data and the characteristics of the electromagnetically equivalent device model. The temporal variations of the geo-data are correlated to the self-optimizing the specific characteristics of the electromagnetically equivalent device. The relationships said here give a possibility of predicting the geo-data. Using the inverses of the mappings generates the evaluations giving the predictability conditions involving restrictions. The inversion of the mapping exploits a fine model at predicting the natural iterations of the geo-data at future on both the region connected the port and some locations non-related to the port either geologically or seismically or phenomenologically relating to the earth [1] - [5]. 2 References [1] T. Sengor,"The electromagnetic device optimization

  14. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  15. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  16. Preconditioning techniques for the iterative solution of scattering problems

    NASA Astrophysics Data System (ADS)

    Egidi, Nadaniela; Maponi, Pierluigi

    2008-09-01

    We consider a time-harmonic electromagnetic scattering problem for an inhomogeneous medium. Some symmetry hypotheses on the refractive index of the medium and on the electromagnetic fields allow to reduce this problem to a two-dimensional scattering problem. This boundary value problem is defined on an unbounded domain, so its numerical solution cannot be obtained by a straightforward application of usual methods, such as for example finite difference methods, and finite element methods. A possible way to overcome this difficulty is given by an equivalent integral formulation of this problem, where the scattered field can be computed from the solution of a Fredholm integral equation of second kind. The numerical approximation of this problem usually produces large dense linear systems. We consider usual iterative methods for the solution of such linear systems, and we study some preconditioning techniques to improve the efficiency of these methods. We show some numerical results obtained with two well known Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

  17. Divertor interferometer diagnostic for ITER

    SciTech Connect

    Brower, D. L.; Deng, B. H.; Ding, W. X.

    2006-10-15

    In the harsh environment of the divertor region in ITER, plasmas spanning a huge density range from 10{sup 19} to 10{sup 22} m{sup -3} are anticipated making measurement of the electron density particularly challenging. For any reasonable wavelength choice, the total phase measured by a conventional two-color interferometer system is always >>2{pi} and therefore subject to fringe counting errors. This problem can be remedied by adding a polarimeter capability whereby the Cotton-Mouton effect is measured or by employing differential interferometry. Using either approach, the total phase is always <<2{pi}. The conceptual design of an interferometer system along with possible wavelength choices will be explored.

  18. Iterative phase retrieval without support.

    PubMed

    Wu, J S; Weierstall, U; Spence, J C H; Koch, C T

    2004-12-01

    An iterative phase retrieval method for nonperiodic objects has been developed from the charge-flipping algorithm proposed in crystallography. A combination of the hybrid input-output (HIO) algorithm and the flipping algorithm has greatly improved performance. In this combined algorithm the flipping algorithm serves to find the support (object boundary) dynamically, and the HIO part improves convergence and moves the algorithm out of local minima. It starts with a single intensity measurement in the Fourier domain and does not require a priori knowledge of the support in the image domain. This method is suitable for general image recovery from oversampled diffuse elastic x-ray and electron-diffraction intensities. The relationship between this algorithm and the output-output algorithm is elucidated.

  19. Iterative phase retrieval without support

    NASA Astrophysics Data System (ADS)

    Wu, J. S.; Weierstall, U.; Spence, J. C. H.; Koch, C. T.

    2004-12-01

    An iterative phase retrieval method for nonperiodic objects has been developed from the charge-flipping algorithm proposed in crystallography. A combination of the hybrid input-output (HIO) algorithm and the flipping algorithm has greatly improved performance. In this combined algorithm the flipping algorithm serves to find the support (object boundary) dynamically, and the HIO part improves convergence and moves the algorithm out of local minima. It starts with a single intensity measurement in the Fourier domain and does not require a priori knowledge of the support in the image domain. This method is suitable for general image recovery from oversampled diffuse elastic x-ray and electron-diffraction intensities. The relationship between this algorithm and the output-output algorithm is elucidated.

  20. Planning as an Iterative Process

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2012-01-01

    Activity planning for missions such as the Mars Exploration Rover mission presents many technical challenges, including oversubscription, consideration of time, concurrency, resources, preferences, and uncertainty. These challenges have all been addressed by the research community to varying degrees, but significant technical hurdles still remain. In addition, the integration of these capabilities into a single planning engine remains largely unaddressed. However, I argue that there is a deeper set of issues that needs to be considered namely the integration of planning into an iterative process that begins before the goals, objectives, and preferences are fully defined. This introduces a number of technical challenges for planning, including the ability to more naturally specify and utilize constraints on the planning process, the ability to generate multiple qualitatively different plans, and the ability to provide deep explanation of plans.

  1. Investigation of 'Conjugate T' Load-Resilient ICRF Antenna Systems - Application to the JET ITER-Like and to a Possible ITER ICRF System

    SciTech Connect

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Durodie, F.; Evrard, M.; Louche, F.; Vervier, M.; Weynants, R.

    2005-09-26

    The paper reports on the radio-frequency (RF) analysis of multiple-short-strap load-resilient ICRF antenna systems, applied to the JET ITER-Like and to a proposed ITER ICRF system. The short radiating straps minimize the antenna voltage and the 'conjugate T' load resilient matching circuit aims at reliable power delivery to ELMy H mode plasmas. The two designs mainly differ by the use of in-vessel matching capacitors for the JET array, whereas the proposed ITER design uses an optimized combination of straps in parallel and ex-vessel matching by means of line stretchers. Asymmetries and mutual coupling between straps strongly influence the performance of such load-resilient circuits and complicate their operation. These effects have been analyzed in detail along two parallel lines of investigation: (i) Detailed RF simulations, in which the input impedance matrix of the ICRF arrays has been computed with a three-dimensional electromagnetic code and incorporated in realistic models of the transmission and matching circuits, (ii) Comprehensive RF measurements on a scaled-down mockup of the proposed ITER antenna. Ongoing work to optimize array performance and to develop practical matching procedures and reliable automatic control of the matching elements is discussed. The main outstanding issues are reliable arc detection and demonstration of a robust array control algorithm.

  2. Metamorphic manipulating mechanism design for MCCB using index reduced iteration

    NASA Astrophysics Data System (ADS)

    Xu, Jinghua; Zhang, Shuyou; Zhao, Zhen; Lin, Xiaoxia

    2013-03-01

    The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003

  3. Iterative methods for weighted least-squares

    SciTech Connect

    Bobrovnikova, E.Y.; Vavasis, S.A.

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  4. An accelerated subspace iteration for eigenvector derivatives

    NASA Technical Reports Server (NTRS)

    Ting, Tienko

    1991-01-01

    An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.

  5. Rater Variables Associated with ITER Ratings

    ERIC Educational Resources Information Center

    Paget, Michael; Wu, Caren; McIlwrick, Joann; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin

    2013-01-01

    Advocates of holistic assessment consider the ITER a more authentic way to assess performance. But this assessment format is subjective and, therefore, susceptible to rater bias. Here our objective was to study the association between rater variables and ITER ratings. In this observational study our participants were clerks at the University of…

  6. Colorado Conference on iterative methods. Volume 2

    SciTech Connect

    1994-12-31

    The conference provided a forum for many topics in iterative methods. Volume II presents sessions on these topics: nonsymmetric solvers, parallel computation, ODE solvers, multigrid and multilevel methods, applications, robust iterative methods, preconditioners, Toeplitz and circulant matrix solvers, and saddle point problems. Individual papers are indexed separately on the EDB.

  7. New concurrent iterative methods with monotonic convergence

    SciTech Connect

    Yao, Qingchuan

    1996-12-31

    This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

  8. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  9. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    SciTech Connect

    Takahashi, K.; Imai, T.; Kobayashi, N.; Sakamoto, K.; Kasugai, A.; Hayakawa, A.; Mori, S.; Mohri, K.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguide lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.

  10. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed.

  11. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  12. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  13. Electromagnetic properties of baryons

    SciTech Connect

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.

    2011-10-21

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  14. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  15. Seismic electromagnetic study in China

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua

    2016-04-01

    Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).

  16. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  17. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-09-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ``International Thermonuclear Experimental Reactor (ITER)`` will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  18. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  19. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  20. Electromagnetic integral equation approach based on contraction operator and solution optimization in Krylov subspace

    NASA Astrophysics Data System (ADS)

    Singer, B. Sh.

    2008-12-01

    The paper presents a new code for modelling electromagnetic fields in complicated 3-D environments and provides examples of the code application. The code is based on an integral equation (IE) for the scattered electromagnetic field, presented in the form used by the Modified Iterative Dissipative Method (MIDM). This IE possesses contraction properties that allow it to be solved iteratively. As a result, for an arbitrary earth model and any source of the electromagnetic field, the sequence of approximations converges to the solution at any frequency. The system of linear equations that represents a finite-dimensional counterpart of the continuous IE is derived using a projection definition of the system matrix. According to this definition, the matrix is calculated by integrating the Green's function over the `source' and `receiver' cells of the numerical grid. Such a system preserves contraction properties of the continuous equation and can be solved using the same iterative technique. The condition number of the system matrix and, therefore, the convergence rate depends only on the physical properties of the model under consideration. In particular, these parameters remain independent of the numerical grid used for numerical simulation. Applied to the system of linear equations, the iterative perturbation approach generates a sequence of approximations, converging to the solution. The number of iterations is significantly reduced by finding the best possible approximant inside the Krylov subspace, which spans either all accumulated iterates or, if it is necessary to save the memory, only a limited number of the latest iterates. Optimization significantly reduces the number of iterates and weakens its dependence on the lateral contrast of the model. Unlike more traditional conjugate gradient approaches, the iterations are terminated when the approximate solution reaches the requested relative accuracy. The number of the required iterates, which for simple

  1. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  2. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  3. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  4. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  5. Electromagnetic power absorber

    NASA Technical Reports Server (NTRS)

    Iwasaki, R. S. (Inventor)

    1979-01-01

    A structure is presented with a surface portion of dielectric material which passes electromagnetic radiation and with a portion below the surface which includes material that absorbs the radiation, the face of the structure being formed with numerous steep ridges. The steepness of the dielectric material results in a high proportion of the electromagnetic energy passing through the surface for absorption by the absorbing material under the surface. A backing of aluminum or other highly heat-conductive and reflective material lies under the face and has very steep protuberances supporting the absorbing and dielectric materials.

  6. Astrophysical probes of electromagnetic neutrinos

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Kouzakov, Konstantin A.; Li, Yu-Feng; Lokhov, Alexey V.; Studenikin, Alexander I.; Zhou, Shun

    2017-09-01

    Electromagnetic properties of massive neutrinos and current best astrophysical bounds on neutrino magnetic moment and millicharge are outlined. Future probes of electromagnetic neutrinos from a core-collapse supernova with JUNO are discussed.

  7. JET helps prepare for ITER operation

    NASA Astrophysics Data System (ADS)

    Watkins, Michael

    2005-10-01

    The main focus of the JET programme (2006-10) in preparation of ITER operation is a new ITER-like ICRH antenna (total RF power increased to ˜15MW), a new ITER-like first wall (beryllium in the main chamber, tungsten in the divertor, and possibly CFC at the strike points), upgraded NB power (to 35MW/20s or 17.5MW/10s), and an improved diagnostic and control capability. Mass flows for ITER Scenarios with the ITER-like first wall will be optimised, particularly to minimise in-vessel tritium inventory, since this must be controlled strictly in ITER and has been shown on JET with a carbon first wall to depend sensitively on plasma conditions. Higher power will allow confinement scalings to be resolved for normalised parameters closer to ITER (beta dependence of ELMy H-modes, confinement of improved H-modes at low ρ*) and offers the prospect of high beta operation at high current and density, and new fully non-inductive, high performance, ITB discharges sustained to long pulse by real time current and pressure profile control, particularly in bootstrap current dominated regimes. Together, the first wall and increased heating power place strict constraints on the optimisation of ITER scenarios for long pulse operation with low melt damage. Large ELMs (in excess of 1MJ; marginally accessible on JET at present) and disruptions could cause melt severe damage which must be studied and controlled. The testing and optimisation of techniques for ELM mitigation (impurity seeding, demonstrated on JET; use of a new high frequency pellet injector (10-60Hz) to prevent large ELMs, demonstrated on ASDEX Upgrade) and disruption mitigation (fast gas injection from a new disruption mitigation valve, demonstrated on DIII-D) will be even more relevant under the ITER-like edge plasma conditions accessible with the increased power. Acknowledgement : Contributors to EFDA-JET Workprogramme

  8. Fast Time Response Electromagnetic Disruption Mitigation Concept

    SciTech Connect

    Raman, R.; Jarboe, T.; Jernigan, Thomas C.; Menard, J.; Gerhardt, S. P.; Ono, M.; Baylor, Larry R.; Lay, W. S.

    2015-09-28

    An important and urgent issue for ITER is predicting and controlling disruptions. Tokamaks and spherical tokamaks have the potential to disrupt. Methods to rapidly quench the discharge after an impending disruption is detected are essential to protect the vessel and internal components. The warning time for the onset of some disruptions in tokamaks could be <10 ms, which poses stringent requirements on the disruption mitigation system for reactor systems. In this proposed method, a cylindrical boron nitride projectile containing a radiative payload composed of boron, boron nitride, or beryllium particulate matter and weighing similar to 15 g is accelerated to velocities on the order of 1 to 2 km/s in <2 ms in a linear rail gun accelerator. A partially fragmented capsule is then injected into the tokamak discharge in the 3- to 6-ms timescale, where the radiative payload is dispersed. The device referred to as an electromagnetic particle injector has the potential to meet the short warning timescales for which a reactor disruption mitigation system must be built. The system is fully electromagnetic, with no mechanical moving parts, which ensures high reliability after a period of long standby.

  9. Fast Time Response Electromagnetic Disruption Mitigation Concept

    DOE PAGES

    Raman, R.; Jarboe, T.; Jernigan, Thomas C.; ...

    2015-09-28

    An important and urgent issue for ITER is predicting and controlling disruptions. Tokamaks and spherical tokamaks have the potential to disrupt. Methods to rapidly quench the discharge after an impending disruption is detected are essential to protect the vessel and internal components. The warning time for the onset of some disruptions in tokamaks could be <10 ms, which poses stringent requirements on the disruption mitigation system for reactor systems. In this proposed method, a cylindrical boron nitride projectile containing a radiative payload composed of boron, boron nitride, or beryllium particulate matter and weighing similar to 15 g is accelerated tomore » velocities on the order of 1 to 2 km/s in <2 ms in a linear rail gun accelerator. A partially fragmented capsule is then injected into the tokamak discharge in the 3- to 6-ms timescale, where the radiative payload is dispersed. The device referred to as an electromagnetic particle injector has the potential to meet the short warning timescales for which a reactor disruption mitigation system must be built. The system is fully electromagnetic, with no mechanical moving parts, which ensures high reliability after a period of long standby.« less

  10. Iterative restoration algorithms for nonlinear constraint computing

    NASA Astrophysics Data System (ADS)

    Szu, Harold

    A general iterative-restoration principle is introduced to facilitate the implementation of nonlinear optical processors. The von Neumann convergence theorem is generalized to include nonorthogonal subspaces which can be reduced to a special orthogonal projection operator by applying an orthogonality condition. This principle is shown to permit derivation of the Jacobi algorithm, the recursive principle, the van Cittert (1931) deconvolution method, the iteration schemes of Gerchberg (1974) and Papoulis (1975), and iteration schemes using two Fourier conjugate domains (e.g., Fienup, 1981). Applications to restoring the image of a double star and division by hard and soft zeros are discussed, and sample results are presented graphically.

  11. New stopping criteria for iterative root finding

    PubMed Central

    Nikolajsen, Jorgen L.

    2014-01-01

    A set of simple stopping criteria is presented, which improve the efficiency of iterative root finding by terminating the iterations immediately when no further improvement of the roots is possible. The criteria use only the function evaluations already needed by the root finding procedure to which they are applied. The improved efficiency is achieved by formulating the stopping criteria in terms of fractional significant digits. Test results show that the new stopping criteria reduce the iteration work load by about one-third compared with the most efficient stopping criteria currently available. This is achieved without compromising the accuracy of the extracted roots. PMID:26064544

  12. ITER CS Intermodule Support Structure

    SciTech Connect

    Myatt, R.; Freudenberg, Kevin D

    2011-01-01

    With five independently driven, bi-polarity power supplies, the modules of the ITER central solenoid (CS) can be energized in aligned or opposing field directions. This sets up the possibility for repelling modules, which indeed occurs, particularly between CS2L and CS3L around the End of Burn (EOB) time point. Light interface compression between these two modules at EOB and wide variations in these coil currents throughout the pulse produce a tendency for relative motion or slip. Ideally, the slip is purely radial as the modules breathe without any accumulative translational motion. In reality, however, asymmetries such as nonuniformity in intermodule friction, lateral loads from a plasma Vertical Disruption Event (VDE), magnetic forces from manufacturing and assembly tolerances, and earthquakes can all contribute to a combination of radial and lateral module motion. This paper presents 2D and 3D, nonlinear, ANSYS models which simulate these various asymmetries and determine the lateral forces which must be carried by the intermodule structure. Summing all of these asymmetric force contributions leads to a design-basis lateral load which is used in the design of various support concepts: the CS-CDR centering rings and a variation, the 2001 FDR baseline radial keys, and interlocking castles structures. Radial key-type intermodule structure interface slip and stresses are tracked through multiple 15 MA scenario current pulses to demonstrate stable motion following the first few cycles. Detractions and benefits of each candidate intermodule structure are discussed, leading to the simplest and most robust configuration which meets the design requirements: match-drilled radial holes and pin-shaped keys.

  13. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  14. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  15. Weak and electromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    One of the recurrent dreams in elementary particle physics is that of a possible fundamental synthesis between electromagnetism and weak interaction. The idea has its origin in the following shared characteristics: 1. Both forces affect equally all forms of matter -leptons as well as hadrons. 2. Both are vector in character. 3. Both (individually) possess universal coupling strengths.

  16. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  17. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  18. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  19. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  20. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  1. Optical electromagnetic radiation detector

    NASA Astrophysics Data System (ADS)

    Miceli, W. J.; Ludman, J. E.

    1985-08-01

    An optical electromagnetic radiation detector is invented having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as its is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna.

  2. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  3. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  4. Electromagnetic pulse bombs' defense

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Yongbin; Li, Juan; Wang, Jianzhong

    2007-11-01

    With the high power microwave devices development, the high power microwave electromagnetic pulse bombs (E-bombs) have become practical abroad. The development of conventional E-bombs devices allows their use in nonnuclear confrontations. E-bombs are powerful enough to damage communication, radar, navigation and computer systems. This paper discusses effects of EMP on electrical system and how to defend the EMP.

  5. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  6. The Physics Basis of ITER Confinement

    SciTech Connect

    Wagner, F.

    2009-02-19

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  7. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  8. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  9. Archimedes' Pi--An Introduction to Iteration.

    ERIC Educational Resources Information Center

    Lotspeich, Richard

    1988-01-01

    One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)

  10. Archimedes' Pi--An Introduction to Iteration.

    ERIC Educational Resources Information Center

    Lotspeich, Richard

    1988-01-01

    One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)

  11. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER.

  12. An application of fast algorithms to numerical electromagnetic modeling

    SciTech Connect

    Bezvoda, V.; Segeth, K.

    1987-03-01

    Numerical electromagnetic modeling by the finite-difference or finite-element methods leads to a large sparse system of linear algebraic equations. Fast direct methods, requiring an order of at most q log q arithmetic operations to solve a system of q equations, cannot easily be applied to such a system. This paper describes the iterative application of a fast method, namely cyclic reduction, to the numerical solution of the Helmholtz equation with a piecewise constant imaginary coefficient of the absolute term in a plane domain. By means of numerical tests the advantages and limitations of the method compared with classical direct methods are discussed. The iterative application of the cyclic reduction method is very efficient if one can exploit a known solution of a similar (e.g., simpler) problem as the initial approximation. This makes cyclic reduction a powerful tool in solving the inverse problem by trial-and-error.

  13. Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding.

    PubMed

    Azghani, Masoumeh; Kosmas, Panagiotis; Marvasti, Farokh

    2015-02-01

    We propose a new image recovery method to improve the resolution in microwave imaging applications. Scattered field data obtained from a simplified breast model with closely located targets is used to formulate an electromagnetic inverse scattering problem, which is then solved using the Distorted Born Iterative Method (DBIM). At each iteration of the DBIM method, an underdetermined set of linear equations is solved using our proposed sparse recovery algorithm, IMATCS. Our results demonstrate the ability of the proposed method to recover small targets in cases where traditional DBIM approaches fail. Furthermore, in order to regularize the sparse recovery algorithm, we propose a novel L(2) -based approach and prove its convergence. The simulation results indicate that the L(2)-regularized method improves the robustness of the algorithm against the ill-posed conditions of the EM inverse scattering problem. Finally, we demonstrate that the regularized IMATCS-DBIM approach leads to fast, accurate and stable reconstructions of highly dense breast compositions.

  14. Coupling characteristics of the ITER relevant lower hybrid antenna in Tore Supra: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X.

    2011-12-01

    A new concept of lower hybrid antenna for current drive has been proposed for ITER [Bibet et al, Nuclear Fusion 1995]: the Passive Active Multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has been recently installed on the tokamak Tore Supra. The paper summarizes the comprehensive experimental characterization of the linear coupling properties of the PAM antenna to the Tore Supra plasmas. These experimental results are systematically compared with the linear wave coupling theory via the linear ALOHA code. Good agreement between experimental results and ALOHA have been obtained. The detailed validation of the coupling modelling is an important step toward the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  15. An iterative analytic—numerical method for scattering from a target buried beneath a rough surface

    NASA Astrophysics Data System (ADS)

    Xu, Run-Wen; Guo, Li-Xin; Wang, Rui

    2014-11-01

    An efficiently iterative analytical—numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.

  16. Wedge scattering by the method of iteration

    SciTech Connect

    Holliday, D.; DeRaad, L.L. Jr.; St-Cyr, G.J.

    1993-07-01

    We have investigated scattering from the classic wedge and have shown that the method of iteration of the surface current integral equation predicts currents and backscattered fields that are good approximations to the Sommerfeld solution. The method of iteration has also been applied to truncated wedges on flat surfaces with the result that the scattering from this wedge is been to be very much different from the Sommerfeld solution. These results and their implications for ocean backscatter are reported herein.

  17. Iterative consolidation of unorganized point clouds.

    PubMed

    Liu, Shengjun; Chan, Kwan-Chung; Wang, Charlie C L

    2012-01-01

    Unorganized point clouds obtained from 3D shape acquisition devices usually present noise, outliers, and nonuniformities. The proposed framework consolidates unorganized points through an iterative procedure of interlaced downsampling and upsampling. Selection operations remove outliers while preserving geometric details. The framework improves the uniformity of points by moving the downsampled particles and refining point samples. Surface extrapolation fills missed regions. Moreover, an adaptive sampling strategy speeds up the iterations. Experimental results demonstrate the framework's effectiveness.

  18. Iterative methods for design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Yoon, B. G.

    1989-01-01

    A numerical method is presented for design sensitivity analysis, using an iterative-method reanalysis of the structure generated by a small perturbation in the design variable; a forward-difference scheme is then employed to obtain the approximate sensitivity. Algorithms are developed for displacement and stress sensitivity, as well as for eignevalues and eigenvector sensitivity, and the iterative schemes are modified so that the coefficient matrices are constant and therefore decomposed only once.

  19. Accelerated Schwarz iterations for Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Nagid, Nabila; Belhadj, Hassan; Amattouch, Mohamed Ridouan

    2017-01-01

    In this paper, the Restricted additive Schwarz (RAS) method is applied to solve Helmholtz equation. To accelerate the RAS iterations, we propose to apply the vector ɛ-algorithm. Some convergence analysis of the proposed method is presented, and applied succeffully to Helmholtz problem. The obtained results show the efficiency of the proposed approach. Moreover, the algorithm yields much faster convergence than the classical Schwarz iterations.

  20. Novel aspects of plasma control in ITER

    NASA Astrophysics Data System (ADS)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  1. Novel aspects of plasma control in ITER

    DOE PAGES

    Humphreys, David; Ambrosino, G.; de Vries, Peter; ...

    2015-02-12

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  2. Novel aspects of plasma control in ITER

    SciTech Connect

    Humphreys, David; Ambrosino, G.; Felici, Federico; Kim, Sun H.; Jackson, Gary; Kallenbach, A.; Kolemen, Egemen; Lister, J.; Moreau, D.; Pironti, A.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-12

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  3. Iterative methods based upon residual averaging

    NASA Technical Reports Server (NTRS)

    Neuberger, J. W.

    1980-01-01

    Iterative methods for solving boundary value problems for systems of nonlinear partial differential equations are discussed. The methods involve subtracting an average of residuals from one approximation in order to arrive at a subsequent approximation. Two abstract methods in Hilbert space are given and application of these methods to quasilinear systems to give numerical schemes for such problems is demonstrated. Potential theoretic matters related to the iteration schemes are discussed.

  4. An Iterative Soft-Decision Decoding Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Koumoto, Takuya; Takata, Toyoo; Kasami, Tadao

    1996-01-01

    This paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. Simulation results for the RM(64,22), EBCH(64,24), RM(64,42) and EBCH(64,45) codes show that the proposed decoding algorithm achieves practically (or near) optimal error performance with significant reduction in decoding computational complexity. The average number of search iterations is also small even for low signal-to-noise ratio.

  5. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  6. Iterated sequence databank search methods.

    PubMed

    Taylor, W R; Brown, N P

    1999-06-15

    Iterated sequence databank search methods were assessed from the viewpoint of someone with the sequence of a novel gene product wishing to find distant relatives to their protein and, with the specific searches against the PDB, also hoping to find a relative of known structure. We examined three methods in detail, spanning a range from simple pattern-matching to sophisticated weighted profiles. Rather than apply these methods 'blindly' (with default parameters) to a large number of test queries, we have concentrated on the globins, so allowing a more detailed investigation of each method on different data subsets with different parameter settings. Despite their widespread use, regular-expression matching proved to be very limited-seldom extending beyond the sub-family from which the pattern was derived. To attain any generality, the patterns had to be 'stripped-down' to include only the most highly conserved parts. The QUEST program avoided these problems by introducing a more flexible (weighted) matching. On the PDB sequences this was highly effective, missing only a few globins with probes based on each sub-family or even a single representative from each sub-family. In addition, very few false-positives were encountered, and those that did match, often only did so for a few cycles before being lost again. On the larger sequence collection, however, QUEST encountered problems with maintaining (or achieving) the alignment of the full globin family. psi-BLAST also recognised almost all the globins when matching against the PDB sequences, typically, missing three or four of the most distantly related sequences while picking-up a few false-positives. In contrast to QUEST, psi-BLAST performed very well on the larger databank, getting almost a full collection of globins although still retaining the same proportion of false-positives. SAM applied to the PDB sequences performed reasonably well with the myoglobin and hemoglobin families as probes, missing, typically

  7. Accurate Design of Low Backscattering Metasurface Using Iterative Fourier Transform Algorithm.

    PubMed

    Wang, Dan; Liu, Zhen Guo; Zhao, Jie; Cheng, Qiang; Cui, Tie Jun

    2017-09-12

    An accurate method is proposed to design low-backscattering metasurfaces efficiently using an iterative Fourier transform algorithm, which avoids the large amount of time-consuming numerical simulations of complicated electromagnetic problems and provides satisfactory performance to reduce the backward scattering. As an example of the application, a broadband low-backscattering metasurface is designed, fabricated, and characterized. Both full-wave simulation and measured results reveal that the proposed method offers a rapid and efficient tool to manipulate the scattering behaviors of the metasurface, and thus realizes significant scattering reductions.

  8. RF Measurements and Modeling from the JET-ITER Like Antenna Testing

    SciTech Connect

    Vrancken, M.; Dumortier, P.; Durodie, F.; Huygen, S.; Lamalle, P. U.; Messiaen, A. M.; Vervier, M.; Argouarch, A.; Blackman, T.; Graham, M.; Nicholls, K.; Nightingale, M.

    2007-09-28

    The RF characteristics of the JET-ITER Like (JET-IL) antenna relevant for operation on plasma have been assessed using full wave three Dimensional (3D) electromagnetic CST registered Microwave Studio (MWS) simulations, measurements of the full 8-port antenna strap array S/Z-matrix, and RF circuit modeling. These efforts are made in parallel with the high voltage testing of the antenna inside a vacuum tank and the hardware implementation of a RF (Radio Frequency) matching feedback control system prior to installation of the antenna on the JET tokamak.

  9. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  10. Disruption scenarios, their mitigation and operation window in ITER

    NASA Astrophysics Data System (ADS)

    Sugihara, M.; Shimada, M.; Fujieda, H.; Gribov, Yu.; Ioki, K.; Kawano, Y.; Khayrutdinov, R.; Lukash, V.; Ohmori, J.

    2007-04-01

    The impacts of plasma disruptions on ITER have been investigated in detail to confirm the robustness of the design of the machine to the potential consequential loads. The loads include both electro-magnetic (EM) and heat loads on the in-vessel components and the vacuum vessel. Several representative disruption scenarios are specified based on newly derived physics guidelines for the shortest current quench time as well as the maximum product of halo current fraction and toroidal peaking factor arising from disruptions in ITER. Disruption simulations with the DINA code and EM load analyses with a 3D finite element method code are performed for these scenarios. Some margins are confirmed in the EM load on in-vessel components due to induced eddy and halo currents for these representative scenarios. However, the margins are not very large. The heat load on various parts of the first wall due to the vertical movement and the thermal quench (TQ) is calculated with a 2D heat conduction code based on the database of heat deposition during disruptions and simulation results with the DINA code. For vertical displacement event, it is found that the beryllium (Be) wall does not melt during the vertical movement, prior to the TQ. Significant melting is anticipated for the upper Be wall and the tungsten divertor baffle due to TQ after the vertical movement. However, its impact could be substantially mitigated by implementing a reliable detection system of the vertical movement and a mitigation system, e.g. massive noble gas injection. Some melting of the upper Be wall is anticipated at major disruptions. At least several tens of unmitigated disruptions must be considered even if an advanced prediction/mitigation system is implemented. With these unmitigated disruptions, the loss of the Be layer is expected to be within ap30-100 µm/event out of a 10 mm thick Be first wall.

  11. Forward modeling of geophysical electromagnetic methods using Comsol

    NASA Astrophysics Data System (ADS)

    Butler, S. L.; Zhang, Z.

    2016-02-01

    In geophysical electromagnetic methods, time-varying magnetic fields are measured at Earth's surface that are produced by electrical currents inside the Earth in order to constrain subsurface conductivity and geological structure. These methods are widely used for mineral exploration and environmental investigations, and are increasingly being used in hydrocarbon exploration as well. Forward modeling of exploration geophysics methods is useful for the purpose of survey planning, for understanding the method, especially for students, and as part of an iteration process in inverting measured data. Modeling electromagnetic methods remains an area of active research. In most geophysical methods, the electromagnetic frequency is sufficiently low that the wavelength of the radiation is much larger than the area of interest. As such, the quasi-static approximation is valid. Comsol Multiphysics' AC/DC module solves Maxwell's equations in the quasi-static approximation and in this contribution, we will show examples of its use in modeling magnetometric resistivity (MMR), very low frequency (VLF) techniques, as well as frequency and time-domain induction-based electromagnetic techniques. Solutions are compared with benchmarks from the literature.

  12. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  13. Electromagnetic targeting of guns

    SciTech Connect

    Pogue, E.W.; Boat, R.M.; Holden, D.N.; Lopez, J.R.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Electromagnetic pulse (EMP) signals produced from explosives being fired have been reported in the literature for fifty years. When a gun is fired it produces an EMP muzzle blast signal. The strength and nature of these signals was first analyzed in the early 1970s, while the results were interesting, no follow-up studies were conducted. With modern detection and signal processing technology, we believe that these signals could be used to instantaneously locate guns of virtually all calibers as they fire. The objective of our one-year project was to establish the basic nature of these signals and their utility in the concept of electromagnetic targeting of guns.

  14. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  15. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  16. Electromagnetic acoustic imaging.

    PubMed

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  17. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  18. Ordinary electromagnetic mode instability

    NASA Technical Reports Server (NTRS)

    Cheng, C. Z.

    1974-01-01

    The instability of the ordinary electromagnetic mode propagating perpendicular to an external magnetic field is studied for a single-species plasma with ring velocity distribution. The marginal instability boundaries for both the purely growing mode and the propagating growing modes are calculated from the instability criteria. The dispersion characteristics for various sets of plasma parameters are also given. The typical growth rates are of the order of the cyclotron frequency.

  19. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  20. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  1. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  2. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  3. Electromagnetic Hammer for Metalworking

    NASA Technical Reports Server (NTRS)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; Nameth, P.; Okelly, K.; Phillips, H.; Rollo, J.; Rupert, E.; Sykes, H.; Vitrano, E.; Woods, M.

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  4. Earth's Electromagnetic Environment

    NASA Astrophysics Data System (ADS)

    Constable, Catherine

    2016-01-01

    The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10^{-4}-10^4 Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10^4 Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at ˜1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth's internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz-3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3-30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7-2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.

  5. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  6. Energetic particle physics issues for ITER

    SciTech Connect

    Cheng, C.Z.; Budny, R.; Fu, G.Y.

    1996-12-31

    This paper summarizes our present understanding of the following energetic/alpha particle physics issues for the 21 MA, 20 TF coil ITER Interim Design configuration and operational scenarios: (a) toroidal field ripple effects on alpha particle confinement, (b) energetic particle interaction with low frequency MHD modes, (c) energetic particle excitation of toroidal Alfven eigenmodes, and (d) energetic particle transport due to MHD modes. TF ripple effects on alpha loss in ITER under a number of different operating conditions are found to be small with a maximum loss of 1%. With careful plasma control in ITER reversed-shear operation, TF ripple induced alpha loss can be reduced to below the nominal ITER design limit of 5%. Fishbone modes are expected to be unstable for {beta}{sub {alpha}} > 1%, and sawtooth stabilization is lost if the ideal kink growth rate exceeds 10% of the deeply trapped alpha precessional drift frequency evaluated at the q = 1 surface. However, it is expected that the fishbone modes will lead only to a local flattening of the alpha profile due to small banana size. MHD modes observed during slow decrease of stored energy after fast partial electron temperature collapse in JT-60U reversed-shear experiments may be resonant type instabilities; they may have implications on the energetic particle confinement in ITER reversed-shear operation. From the results of various TAE stability code calculations, ITER equilibria appear to lie close to TAE linear stability thresholds. However, the prognosis depends strongly on q profile and profiles of alpha and other high energy particles species. If TAE modes are unstable in ITER, the stochastic diffusion is the main loss mechanism, which scales with ({delta}B{sub r}/B){sup 2}, because of the relatively small alpha particle banana orbit size. For isolated TAE modes the particle loss is very small, and TAE modes saturate via the resonant wave-particle trapping process at very small amplitude.

  7. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  8. Nuclear Electromagnetic Pulse Review

    NASA Astrophysics Data System (ADS)

    Dinallo, Michael

    2011-04-01

    Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.

  9. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were

  10. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  11. Comparison of Iterative and Non-Iterative Strain-Gage Balance Load Calculation Methods

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    The accuracy of iterative and non-iterative strain-gage balance load calculation methods was compared using data from the calibration of a force balance. Two iterative and one non-iterative method were investigated. In addition, transformations were applied to balance loads in order to process the calibration data in both direct read and force balance format. NASA's regression model optimization tool BALFIT was used to generate optimized regression models of the calibration data for each of the three load calculation methods. This approach made sure that the selected regression models met strict statistical quality requirements. The comparison of the standard deviation of the load residuals showed that the first iterative method may be applied to data in both the direct read and force balance format. The second iterative method, on the other hand, implicitly assumes that the primary gage sensitivities of all balance gages exist. Therefore, the second iterative method only works if the given balance data is processed in force balance format. The calibration data set was also processed using the non-iterative method. Standard deviations of the load residuals for the three load calculation methods were compared. Overall, the standard deviations show very good agreement. The load prediction accuracies of the three methods appear to be compatible as long as regression models used to analyze the calibration data meet strict statistical quality requirements. Recent improvements of the regression model optimization tool BALFIT are also discussed in the paper.

  12. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  13. U.S. Contributions to ITER

    SciTech Connect

    Ned R. Sauthoff

    2005-05-13

    The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.

  14. [The ideographic iteration mark in Senkinho].

    PubMed

    Matsuoka, Takanori; Yamashita, Koichi; Murasaki, Toru

    2006-06-01

    In the 7th century, Senkinho was written by Sonshibaku in the Tang dynasty China. This book that was altered in 1066 in the north Sung dynasty China has become known in the world now. However four series of books remained intact, as they were not modified. The names of each book were Senkinho Kentoushi-syouraibon, the Shincho-sonshinjin senkinho, Stein book, and the Kozlov book. Senkinho Kentoushi-syouraibon and Shincho-sonshinjin Senkinho are in Japan, while Stein and the Kozlov books are in the United Kingdom and Russia respectively. We researched the ideographic iteration marks in these books. In Senkinho Kentoushi-syouraibon, several ideographic iteration marks were used. But in Shincho-sonshinjin senkinho and the Kozlov book, only one ideographic iteration mark was used. Furthermore, there were two types of ideographic iteration marks in the Chinese character text of Senkinho Kentoushi-syouraibon. We estimated that the ideographic iteration marks in the Katakana character were transcribed between the middle era of Kamakura Japan and the early era of Muromachi Japan.

  15. Simulation of Hybrid Operation Modes in ITER

    SciTech Connect

    Na, Y S; Kessel, C. E.; Park, Jin Myung

    2008-01-01

    As one of the international thermonuclear experimental reactor (ITER) primary operation modes, the hybrid mode aims at establishing plasmas with significant fusion power and low loop voltage to drive an inductive current to test reactor-relevant components in extended pulse lengths at high neutron fluence. In this paper, predictive modeling of the hybrid mode is presented. The potential of hybrid modes is investigated with respect to fusion performance and the non-inductive current drive fraction in ITER. Simulations are performed with the ASTRA transport code by employing a physics-based heat transport model. Here, the particle transport is prescribed. The effect of electron cyclotron current drive (ECCD) to establish a low magnetic shear in the center of the plasma is also discussed. The simulations show that fusion gains and the non-inductive current drive fractions of up to 8.4 and 49 %, respectively, can be achieved in hybrid modes at ITER.

  16. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1983-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  17. The ITER in-vessel system

    SciTech Connect

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  18. Robust iterative method for nonlinear Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Yuan, Lijun; Lu, Ya Yan

    2017-08-01

    A new iterative method is developed for solving the two-dimensional nonlinear Helmholtz equation which governs polarized light in media with the optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear Helmholtz equation could have multiple solutions related to phenomena such as optical bistability and symmetry breaking. The new method exhibits a much more robust convergence behavior than existing iterative methods, such as frozen-nonlinearity iteration, Newton's method and damped Newton's method, and it can be used to find solutions when good initial guesses are unavailable. Numerical results are presented for the scattering of light by a nonlinear circular cylinder based on the exact nonlocal boundary condition and a pseudospectral method in the polar coordinate system.

  19. US solid breeder blanket design for ITER

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )

    1990-09-01

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  20. Re-starting an Arnoldi iteration

    SciTech Connect

    Lehoucq, R.B.

    1996-12-31

    The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.

  1. Rotation and neoclassical ripple transport in ITER

    DOE PAGES

    Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.; ...

    2017-07-13

    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less

  2. The Dynamics of Some Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations is analyzed using the theory of dynamical systems. With the aid of parallel Connection Machines (CM-2 and CM-5), the associated bifurcation diagrams as a function of the time step, and the complex behavior of the associated 'numerical basins of attraction' of these iterative implicit schemes are revealed and compared. Studies showed that all of the four implicit LMMs exhibit a drastic distortion and segmentation but less shrinkage of the basin of attraction of the true solution than standard explicit methods. The numerical basins of attraction of a noniterative implicit procedure mimic more closely the basins of attraction of the differential equations than the iterative implicit procedures for the four implicit LMMs.

  3. Selection of plasma facing materials for ITER

    SciTech Connect

    Ulrickson, M.; Barabash, V.; Chiocchio, S.

    1996-10-01

    ITER will be the first tokamak having long pulse operation using deuterium-tritium fuel. The problem of designing heat removal structures for steady state in a neutron environment is a major technical goal for the ITER Engineering Design Activity (EDA). The steady state heat flux specified for divertor components is 5 MW/m{sup 2} for normal operation with transients to 15 MW/m{sup 2} for up to 10 s. The selection of materials for plasma facing components is one of the major research activities. Three materials are being considered for the divertor; carbon fiber composites, beryllium, and tungsten. This paper discusses the relative advantages and disadvantages of these materials. The final section of plasma facing materials for the ITER divertor will not be made until the end of the EDA.

  4. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2013-01-01

    Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.

  5. Fast iterative reconstruction method for PROPELLER MRI

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Dai, Jianping; Shi, Jinquan

    2009-10-01

    Patient motion during scanning will introduce artifacts in the reconstructed image in MRI imaging. Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) MRI is an effective technique to correct for motion artifacts. The iterative method that combine the preconditioned conjugate gradient (PCG) algorithm with nonuniform fast Fourier transformation (NUFFT) operations is applied to PROPELLER MRI in the paper. But the drawback of the method is long reconstruction time. In order to make it viable in clinical situation, parallel optimization of the iterative method on modern GPU using CUDA is proposed. The simulated data and in vivo data from PROPELLER MRI are respectively reconstructed in order to test the method. The experimental results show that image quality is improved compared with gridding method using the GPU based iterative method with compatible reconstruction time.

  6. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  7. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  8. High-Altitude Electromagnetic Pulse (HEMP) Testing

    DTIC Science & Technology

    2015-07-09

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-2-620A High-Altitude Electromagnetic Pulse (HEMP...planning and execution of testing Army/DOD equipment to determine the effects of Horizontal Component High Altitude Electromagnetic Pulse (HEMP... Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY

  9. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  10. Iterative Vessel Segmentation of Fundus Images.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2015-07-01

    This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.

  11. Accelerated iterative beam angle selection in IMRT

    SciTech Connect

    Bangert, Mark; Unkelbach, Jan

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could

  12. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  13. Iterative algorithms for processing experimental data

    SciTech Connect

    Tretiak, K. K.

    2016-10-15

    The need to solve linear and nonlinear integral equations arise, e.g., in recovering plasma parameters from the data of multichannel diagnostics. The paper presents an iterative method for solving integral equations with a singularity at the upper limit of integration. The method consists in constructing successive approximations and calculating the integral by quadrature formulas in each integration interval. An example of application of the iterative algorithm to numerically solve an integral equation similar to those arising in recovering the plasma density profile from reflectometry data is presented.

  14. Scheduling and rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.

  15. Iterated learning and the evolution of language.

    PubMed

    Kirby, Simon; Griffiths, Tom; Smith, Kenny

    2014-10-01

    Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modified Iterative Extended Hueckel. 1: Theory

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    Iterative Extended Huekel is modified by inclusion of explicit effective internuclear and electronic interactions. The one electron energies are shown to obey a variational principle because of the form of the effective electronic interactions. The modifications permit mimicking of aspects of valence bond theory with the additional feature that the energies associated with valence bond type structures are explicitly calculated. In turn, a hybrid molecular, orbital valence, bond scheme is introduced which incorporates variant total molecular electronic density distributions similar to the way that Iterative Extended Hueckel incorporates atoms.

  17. Tiny Electromagnetic Explosions

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2017-08-01

    This paper considers electromagnetic transients of a modest total energy ({ E }≳ {10}40 erg) and small initial size ({ R }≳ {10}-1 cm). They could be produced during collisions between relativistic field structures (e.g., macroscopic magnetic dipoles) that formed around or before cosmic electroweak symmetry breaking. The outflowing energy has a dominant electromagnetic component; a subdominant thermal component (temperature > 1 GeV) supplies inertia in the form of residual {e}+/- . A thin shell forms, expanding subluminally and attaining a Lorentz factor ˜ {10}6{--7} before decelerating. Drag is supplied by the reflection of an ambient magnetic field and deflection of ambient free electrons. Emission of low-frequency (GHz-THz) superluminal waves takes place through three channels: (i) reflection of the ambient magnetic field; (ii) direct linear conversion of the embedded magnetic field into a superluminal mode; and (iii) excitation outside the shell by corrugation of its surface. The escaping electromagnetic pulse is very narrow (a few wavelengths), so the width of the detected transient is dominated by propagation effects. GHz radio transients are emitted from (i) the dark matter halos of galaxies and (ii) the near-horizon regions of supermassive black holes that formed via direct gas collapse and now accrete slowly. Brighter and much narrower 0.01-1 THz pulses are predicted at a rate at least comparable to fast radio bursts, experiencing weaker scattering and absorption. The same explosions also accelerate protons up to ˜ {10}19 eV, and heavier nuclei up to 1020-21 eV.

  18. Electromagnetic levitation applications

    SciTech Connect

    Bayazitoglu, Y.

    1996-11-01

    At high temperatures, most materials react with the walls of their containers. This inevitably leads to material contamination and property degradation. Therefore, it becomes difficult to process materials to the required degree of purity and/or measure their properties at high temperatures. Levitation melting has been used on earth and microgravity since to circumvent this problem. In this paper, first a broad survey of the work done in electromagnetic levitation since its invention is given. Then the heat generation due to an alternating magnetic field is studied. Finally, the application of levitation melting in the determination of thermal diffusivity, emissivity, surface tension and viscosity of liquid metals is presented.

  19. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  20. Electromagnetic Meissner effect launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1991-01-01

    An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.

  1. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  2. Electromagnetic strong plasma turbulence

    SciTech Connect

    Melatos, A.; Jenet, F. A.; Robinson, P. A.

    2007-02-15

    The first large-scale simulations of continuously driven, two-dimensional electromagnetic strong plasma turbulence are performed, for electron thermal speeds 0.01c{<=}v{<=}0.57c, by integrating the Zakharov equations for coupled Langmuir and transverse (T) waves near the plasma frequency. Turbulence scalings and wave number spectra are calculated, a transition is found from a mix of trapped and free T eigenstates for v{>=}0.1c to just free eigenstates for v{<=}0.1c, and wave energy densities are observed to undergo slow quasiperiodic oscillations.

  3. Advanced electromagnetic gun simulation

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; George, E. B.; Lippert, J. R.; Balius, A. R.

    1986-11-01

    The architecture, software and application of a simulation system for evaluating electromagnetic gun (EMG) operability, maintainability, test data and performance tradeoffs are described. The system features a generic preprocessor designed for handling the large data rates necessary for EMG simulations. The preprocessor and postprocessor operate independent of the EMG simulation, which is viewed through windows by the user, who can then select the areas of the simulation desired. The simulation considers a homopolar generator, busbars, pulse shaping coils, the barrel, switches, and prime movers. In particular, account is taken of barrel loading by the magnetic field, Lorentz force and plasma pressure.

  4. High-Performance Computational Electromagnetics in Frequency-Domain and Time-Domain

    DTIC Science & Technology

    2015-03-04

    for sound-hard acoustic scattering problems were put forth in [15]; use of these equations gives rise to very significant improvements in iterations...Bruno, O., Elling, T. and Turc, C., Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering problems...solutions for some of the most challenging scattering problems in science and engineering. Electromagnetic scattering . Frequency domain solvers. Integral

  5. An iterative parallel sparse matrix equation solver with application to finite element modeling of electromagnetic scattering

    SciTech Connect

    Cwik, T.; Jamnejad, V.; Zuffada, C.

    1994-12-31

    The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.

  6. On the Implementation and Performance of Iterative Methods for Computational Electromagnetics

    DTIC Science & Technology

    1985-12-01

    result, Fourier harmonics decouple and can be found independently, then superimposed to produce the total solution. This procedure is known as a "body of...in computational efficiency between these two approaches depends on the number of Fourier harmonics excited by the incident field and on the radius of...under consideration is shown in Figure 7.1. If the vector com- ponents of the current density are expanded in Fourier harmonics J (z) e j m (7.1) z zm

  7. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  8. STRUCTURAL RESPONSE TO INTENSE ELECTROMAGNETIC RADIATION.

    DTIC Science & Technology

    EXPLODING WIRES, *GLASS, *DAMAGE, ELECTROMAGNETIC RADIATION , ENERGY CONVERSION, ENERGY CONVERSION, ELECTROMAGNETIC RADIATION , ELECTROMAGNETIC ... RADIATION , PLASTICS, PLASMAS(PHYSICS), STRESSES, THERMAL STRESSES, INSTRUMENTATION, ELECTRICAL RESISTANCE, ELECTRIC DISCHARGES, THERMOCOUPLES, MATHEMATICAL ANALYSIS, MATHEMATICAL ANALYSIS.

  9. Metamaterials beyond electromagnetism

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  10. The HPS electromagnetic calorimeter

    DOE PAGES

    Balossino, I.; Baltzell, N.; Battaglieri, M.; ...

    2017-02-22

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  11. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  12. Electromagnetically driven liquid iris

    NASA Astrophysics Data System (ADS)

    Jang, Deasung; Jeong, Jin Won; Lee, Dae Young; Kim, Dae Geun; Chung, Sang Kug

    2016-11-01

    This paper describes a tunable liquid iris driven by electromagnetic actuation for miniature cameras. To examine the magnetic effect on a ferrofluid, the contact angle modification of a sessile ferrofluid droplet is tested using a neodymium magnet and an electric coil which 2.5 A current is applied to. The contact angle variations of the ferrofluid droplet for each test are 21.3 and 18.1 degrees, respectively. As a proof of concept, a pretest of a tunable iris actuated by electromagnetic effect is performed by using a hollow cylinder cell. As applying the current, the aperture diameter is adjusted from 4.06 mm at 0A to 3.21 mm at 2.0A. Finally, a tunable liquid iris (9 x 9 x 2 mm3) , consisting of two connected circular microchannels, is realized using MEMS technology. the aperture diameter of the tunable liquid iris is able to be modified from 1.72 mm at 0 A to 1.15 mm at 2.6 A. This tunable optical iris has potential applications not only for portable electronic devices but also in biomedical fields such as optical coherence tomography and microsurgery. This work was supported by 2016 Research Fund of Myongji University.

  13. Metamaterials beyond electromagnetism.

    PubMed

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  14. Electro-magnetic compatibility

    NASA Astrophysics Data System (ADS)

    Maidment, H.

    1980-05-01

    The historical background to the growth in problems of electromagnetic compatibility (EMC) in UK Military aircraft is reviewed and the present approach for minimizing these problems during development is discussed. The importance of using representative aircraft for final EMC assessments is stressed, and the methods of approach in planning and executing such tests are also outlined. The present equipment qualification procedures are based on assumptions regarding the electromagnetic fields present within the airframe, and the nature of the coupling mechanisms. These cannot be measured with any certainty in representative aircraft. Thus EMC assessments rely on practical tests. Avionics systems critical to flight safety, and systems vital to mission effectiveness require test methods that provide a measure of the safety and performance margins available to account for variations that occur in production and service use. Some proven methods are available, notably for detonator circuits, but in most other areas further work is required. Encouraging process has been made in the use of current probes for the measurement of interfering signals on critical signal lines, in conjunction with complementary test house procedures, as a means for obtaining the safety margins required in flight and engine control systems. Performance margins for mission systems using digital techniques are difficult to determine, and there is a need for improved test techniques. The present EMC qualification tests for equipment in the laboratory do not guarantee freedom from interference when installed, and the results are limited in value for correlating with aircraft tests.

  15. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  16. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  17. The HPS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Balossino, I.; Baltzell, N.; Battaglieri, M.; Bondì, M.; Buchanan, E.; Calvo, D.; Celentano, A.; Charles, G.; Colaneri, L.; D'Angelo, A.; Napoli, M. De; Vita, R. De; Dupré, R.; Egiyan, H.; Ehrhart, M.; Filippi, A.; Garçon, M.; Gevorgyan, N.; Girod, F.-X.; Guidal, M.; Holtrop, M.; Iurasov, V.; Kubarovsky, V.; Livingston, K.; McCarty, K.; McCormick, J.; McKinnon, B.; Osipenko, M.; Paremuzyan, R.; Randazzo, N.; Rauly, E.; Raydo, B.; Rindel, E.; Rizzo, A.; Rosier, P.; Sipala, V.; Stepanyan, S.; Szumila-Vance, H.; Weinstein, L. B.

    2017-05-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called ;heavy photon.; Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  18. Electromagnetically Induced Entanglement

    PubMed Central

    Yang, Xihua; Xiao, Min

    2015-01-01

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing. PMID:26314514

  19. Iteration of Complex Functions and Newton's Method

    ERIC Educational Resources Information Center

    Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer

    2009-01-01

    This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…

  20. Iterative solution of the Helmholtz equation

    SciTech Connect

    Larsson, E.; Otto, K.

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  1. On the safety of ITER accelerators

    PubMed Central

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  2. Constructing Easily Iterated Functions with Interesting Properties

    ERIC Educational Resources Information Center

    Sprows, David J.

    2009-01-01

    A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…

  3. Matched filter based iterative adaptive approach

    NASA Astrophysics Data System (ADS)

    Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William

    2016-05-01

    Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.

  4. ITER faces further five-year delay

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2016-06-01

    The €14bn ITER fusion reactor currently under construction in Cadarache, France, will require an additional cash injection of €4.6bn if it is to start up in 2025 - a target date that is already five years later than currently scheduled.

  5. Solving Differential Equations Using Modified Picard Iteration

    ERIC Educational Resources Information Center

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  6. Iterated rippled noise discrimination at long durations.

    PubMed

    Yost, William A

    2009-09-01

    Iterated rippled noise (IRN) was used to study discrimination of IRN stimuli with a lower number of iterations from IRN stimuli with a higher number of iterations as a function of stimulus duration (100-2000 ms). Such IRN stimuli differ in the strength of the repetition pitch. In some cases, the gain used to generate IRN stimuli was adjusted so that both IRN stimuli in the discrimination task had the same height of the first peak in the autocorrelation function or autocorrelogram. In previous work involving short-duration IRN stimuli (<500 ms), listeners were not able to discriminate between IRN stimuli that had different numbers of iterations but the same height of the first peak in the autocorrelation function. In the current study, IRN discrimination performance improved with increases in duration, even in cases when the height of the first peak in the autocorrelation was the same for the two IRN stimuli. Thus, future studies involving discrimination of IRN stimuli may need to use longer durations (1 s or greater) than those that have been used in the past.

  7. Iteration and Anxiety in Mathematical Literature

    ERIC Educational Resources Information Center

    Capezzi, Rita; Kinsey, L. Christine

    2016-01-01

    We describe our experiences in team-teaching an honors seminar on mathematics and literature. We focus particularly on two of the texts we read: Georges Perec's "How to Ask Your Boss for a Raise" and Alain Robbe-Grillet's "Jealousy," both of which make use of iterative structures.

  8. Microtearing Instability In The ITER Pedestal

    SciTech Connect

    Wong, K. L.; Mikkelsen, D. R.; Rewoldt, G. M.; Budny, R.

    2010-12-01

    Unstable microtearing modes are discovered by the GS2 gyrokinetic siimulation code, in the pedestal region of a simulated ITER H-mode plasma with approximately 400 WM DT fusion power. Existing nonlinear theory indicates that these instabilities should produce stochastic magnetic fields and broaden the pedestal. The resulted electron thermal conductivity is estimated and the implications of these findings are discussed.

  9. Constructing Easily Iterated Functions with Interesting Properties

    ERIC Educational Resources Information Center

    Sprows, David J.

    2009-01-01

    A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…

  10. Solving Differential Equations Using Modified Picard Iteration

    ERIC Educational Resources Information Center

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  11. An Iterative Item Bias Detection Method.

    ERIC Educational Resources Information Center

    Van Der Flier, Henk; And Others

    1984-01-01

    Two strategies for assessing item bias are discussed: methods comparing item difficulties unconditional on ability and methods comparing probabilities of response conditional on ability. Results suggest that the iterative logit method is an improvement on the noniterative one and is efficient in detecting biased and unbiased items. (Author/DWH)

  12. Some Pleasures and Perils of Iteration.

    ERIC Educational Resources Information Center

    Cannon, Lawrence O.; Elich, Joe

    1993-01-01

    Entering a value into a calculator and repeatedly performing a function f(x) on the calculator can lead to the solution of the equation f(x)=x. Explores the outcomes of performing this iterative process on the calculator. Discusses how patterns of the resulting sequences converge, diverge, become cyclic, or display chaotic behavior. (MDH)

  13. ITER Cryoplant Final Design and Construction

    NASA Astrophysics Data System (ADS)

    Monneret, E.; Benkheira, L.; Fauve, E.; Henry, D.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.; Forgeas, A.; Navion-Maillot, N.

    2017-02-01

    The ITER Tokamak supraconducting magnets, thermal shields and cryopumps will require tremendous amount of cooling power. With an average need of 75 kW at 4.5 K and of 600 kW at 80 K, ITER requires a world class cryogenic complex. ITER then relies on a Cryoplant which consists in a cluster of systems dedicated to the management of all fluids required for the Tokamak operation. From storage and purification to liquefaction and refrigeration, the Cryoplant will supply to the distribution system, all fluids to be circulated in the Tokamak. It includes Liquid Helium Plants and Liquid Nitrogen Plants, which generate all of the refrigeration power, an 80 K helium loop capable to circulate large quantities of helium through thermal shields, and all the auxiliaries required for gas storage, purification, and onsite nitrogen production. From the conceptual phase, the design of the Cryoplant has evolved and is now nearing completion. This proceeding will present the final design of the Cryoplant and the organization for the construction phase. Also the latest status of the ITER Cryogenic System will be introduced.

  14. Knots in electromagnetism

    NASA Astrophysics Data System (ADS)

    Arrayás, M.; Bouwmeester, D.; Trueba, J. L.

    2017-01-01

    Maxwell equations in vacuum allow for solutions with a non-trivial topology in the electric and magnetic field line configurations at any given moment in time. One example is a space filling congruence of electric and magnetic field lines forming circles lying on the surfaces of nested tori. In this example the electric, magnetic and Poynting vector fields are orthogonal everywhere. As time evolves the electric and magnetic fields expand and deform without changing the topology and energy, while the Poynting vector structure remains unchanged while propagating with the speed of light. The topology is characterized by the concept of helicity of the field configuration. Helicity is an important fundamental concept and for massless fields it is a conserved quantity under conformal transformations. We will review several methods by which linked and knotted electromagnetic (spin-1) fields can be derived. A first method, introduced by A. Rañada, uses the formulation of the Maxwell equations in terms of differential forms combined with the Hopf map from the three-sphere S3 to the two-sphere S2. A second method is based on spinor and twistor theory developed by R. Penrose in which elementary twistor functions correspond to the family of electromagnetic torus knots. A third method uses the Bateman construction of generating null solutions from complex Euler potentials. And a fourth method uses special conformal transformations, in particular conformal inversion, to generate new linked and knotted field configurations from existing ones. This fourth method is often accompanied by shifting singularities in the field to complex space-time points. Of course the various methods must be closely related to one another although they have been developed largely independently and they suggest different directions in which to expand the study of topologically non-trivial field configurations. It will be shown how the twistor formulation allows for a direct extension to massless

  15. An iterative approach of protein function prediction

    PubMed Central

    2011-01-01

    Background Current approaches of predicting protein functions from a protein-protein interaction (PPI) dataset are based on an assumption that the available functions of the proteins (a.k.a. annotated proteins) will determine the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins). Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-directed, although functions of some proteins are unknown for some reasons at present. That means when we use the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results. In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein interactions, however, was not considered in the existing prediction algorithms. Results In this paper, we propose a new prediction approach that predicts protein functions iteratively. This iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the prediction quality of our algorithm and other similar algorithms. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed approach in predicting unknown protein functions. Conclusions The iterative approach is more likely to reflect the real biological nature between proteins when predicting functions. A proper definition of protein similarity from protein functions is the key to predicting functions iteratively. The

  16. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  17. SOME SPECULATIONS ON ELECTROMAGNETIC THEORY,

    DTIC Science & Technology

    An attempt is made to derive Maxwell’s equation of an Electromagnetic field, in vacuo, from the relativistic Liouville’s equation for the photon gas...intensity, while half of the difference of the two functions, divided by square root of (-1) is the magnetic field intensity. Two vector wave functions satisfy Maxwell’s equation of Electromagnetic wave in vacuo. (Author)

  18. Electromagnetics laboratory annual report, 1994

    NASA Astrophysics Data System (ADS)

    Lindell, I. V.; Sihvola, A. H.

    1995-01-01

    Activities of the Electromagnetics Laboratory during 1994 are described in this report. As highlights of the output stand the monographs Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston) and History of Electrical Engineering (Otatieto, Espoo, in Finnish). Also, the total number of papers published and accepted for publication in international refereed journals show a new record, 40 items.

  19. Exploration of the Electromagnetic Environment

    ERIC Educational Resources Information Center

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  20. Exploration of the Electromagnetic Environment

    ERIC Educational Resources Information Center

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  1. ELM heat flux in the ITER divertor

    SciTech Connect

    Leonard, A.W.; Osborne, T.H.; Hermann, A.; Suttrop, W.; Itami, K.; Lingertat, J.; Loarte, A.

    1998-07-01

    Edge-Localized-Modes (ELMs) have the potential to produce unacceptable levels of erosion of the ITER divertor. Ablation of the carbon divertor target will occur if the surface temperature rises above about 2,500 C. Because a large number of ELMs, {ge}1000, are expected in each discharge it is important that the surface temperature rise due to an individual ELM remain below this threshold. Calculations that have been carried out for the ITER carbon divertor target indicate ablation will occur for ELM energy {ge}0.5MJ/m{sup 2} if it is deposited in 0.1 ms, or 1.2 MJ/m{sup 2} if the deposition time is 1.0 ms. Since {Delta}T{proportional_to}Q{Delta}t{sup {minus}1/2}, an ablation threshold can be estimated at Q{Delta}t{sup {minus}1/2}{approx}45 MJm{sup {minus}2} s{sup {minus}1/2} where Q is the divertor ELM energy density in J-m{sup {minus}2} and {Delta}t is the time in seconds for that deposition. If a significant fraction of ELMs exceed this threshold then an unacceptable level of erosion may take place. The ablation parameter in ITER can be determined by scaling four factors from present experiments: the ELM energy loss from the core plasma, the fraction of ELM energy deposited on the divertor target, the area of the ELM profile onto the target, and the time for the ELM deposition. ELM data from JET, ASDEX-Upgrade, JT-60U, DIII-D and Compass-D have been assembled by the ITER Divertor Modeling and Database expert group into a database for the purpose of predicting these factors for ELMs in the ITER divertor.

  2. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE PAGES

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; ...

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  3. Engineering aspects of design and integration of ECE diagnostic in ITER

    SciTech Connect

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A; Vacas, C.; Vayakis, G.; Walsh, M. J.; Kubo, S.

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  4. Analysis of the direction of plasma vertical movement during major disruptions in ITER

    NASA Astrophysics Data System (ADS)

    Lukash, Victor; Sugihara, Masayoshi; Gribov, Yuri; Fujieda, Hirobumi

    2005-12-01

    The plasma movement in the upward direction (away from the X-point) after the thermal quench (TQ) of major disruptions in ITER is favourable for the machine design, since the downward movement causes larger electromagnetic (EM) load due to the induced eddy and halo currents. Vertical directions of plasma movement after the TQ in ITER are investigated using the predictive mode of the DINA code. Three dominant parameters in determining the direction of plasma movement are identified: (i) the rate of plasma current quench (plasma temperature after the TQ), (ii) the width of plasma current mixing area just after the TQ (change of the internal plasma inductance li) and (iii) the initial vertical position of plasma column before the TQ. It is shown that the reference ITER plasma moves upwards after the TQ, if the electron temperature after the TQ is less than 10 eV and the drop of li does not exceed 0.2 for the present reference initial vertical position (55.5 cm above the centre of the machine). It is also shown that the operational domain leading to the upward movement is considerably large for disruptions with fast current quench, which could generate quite severe EM load due to the induced eddy current combined with the induced halo current if the movement is downwards.

  5. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  6. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  7. Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets

    SciTech Connect

    Martovetsky, N N

    2007-08-20

    Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.

  8. Reducing the latency of the Fractal Iterative Method to half an iteration

    NASA Astrophysics Data System (ADS)

    Béchet, Clémentine; Tallon, Michel

    2013-12-01

    The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.

  9. Overview on Experiments On ITER-like Antenna On JET And ICRF Antenna Design For ITER

    SciTech Connect

    Nightingale, M. P. S.; Blackman, T.; Edwards, D.; Fanthome, J.; Graham, M.; Hamlyn-Harris, C.; Hancock, D.; Jacquet, P.; Mayoral, M.-L.; Monakhov, I.; Nicholls, K.; Stork, D.; Whitehurst, A.; Wilson, D.; Wooldridge, E.

    2009-11-26

    Following an overview of the ITER Ion Cyclotron Resonance Frequency (ICRF) system, the JET ITER-like antenna (ILA) will be described. The ILA was designed to test the following ITER issues: (a) reliable operation at power densities of order 8 MW/m{sup 2} at voltages up to 45 kV using a close-packed array of straps; (b) powering through ELMs using an internal (in-vacuum) conjugate-T junction; (c) protection from arcing in a conjugate-T configuration, using both existing and novel systems; and (d) resilience to disruption forces. ITER-relevant results have been achieved: operation at high coupled power density; control of the antenna matching elements in the presence of high inter-strap coupling, use of four conjugate-T systems (as would be used in ITER, should a conjugate-T approach be used); operation with RF voltages on the antenna structures up to 42 kV; achievement of ELM tolerance with a conjugate-T configuration by operating at 3{omega} real impedance at the conjugate-T point; and validation of arc detection systems on conjugate-T configurations in ELMy H-mode plasmas. The impact of these results on the predicted performance and design of the ITER antenna will be reviewed. In particular, the implications of the RF coupling measured on JET will be discussed.

  10. Electromagnetic Gyrokinetic Simulations

    SciTech Connect

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  11. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  12. On steady electromagnetic equilibria

    NASA Astrophysics Data System (ADS)

    Lehnert, B.

    1986-12-01

    The existence of steady electromagnetic equilibrium states predicted by an extended Lorentz invariant formulation of Maxwell's equations is analyzed. General equilibrium solutions are outlined which lead to integrated field quantities of the system, such as total charge qo, magnetic moment Mo, mass mo and angular momentum so. The quantization of moMo/qo in terms of Bohr magnetons is shown to be equivalent to the proposed resonance condition of circulating self-confined radiation. Exact equilibrium solutions were deduced in two simple cases, thereby leading to a so of the same order as that of the electron, and to a qo one order of magnitude larger than the electronic charge. A variational procedure is suggested in search for states of minimum charge, under the subsidiary quantum conditions on moMo/qo and so, i.e., by varying the profile of the electric space charge distribution.

  13. Electromagnetic nucleon form factors

    SciTech Connect

    Bender, A.; Roberts, C.D.; Frank, M.R.

    1995-08-01

    The Dyson-Schwinger equation framework is employed to obtain expressions for the electromagnetic nucleon form factor. In generalized impulse approximation the form factor depends on the dressed quark propagator, the dressed quark-photon vertex, which is crucial to ensuring current conservation, and the nucleon Faddeev amplitude. The approach manifestly incorporates the large space-like-q{sup 2} renormalization group properties of QCD and allows a realistic extrapolation to small space-like-q{sup 2}. This extrapolation allows one to relate experimental data to the form of the quark-quark interaction at small space-like-q{sup 2}, which is presently unknown. The approach provides a means of unifying, within a single framework, the treatment of the perturbative and nonperturbative regimes of QCD. The wealth of experimental nucleon form factor data, over a large range of q{sup 2}, ensures that this application will provide an excellent environment to test, improve and extend our approach.

  14. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  15. Electromagnetically revolving sphere viscometer

    NASA Astrophysics Data System (ADS)

    Hosoda, Maiko; Sakai, Keiji

    2014-12-01

    In this paper, we propose a new method of low viscosity measurement, in which the rolling of a probe sphere on the flat solid bottom of a sample cell is driven remotely and the revolution speed of the probe in a sample liquid gives the viscosity measurements. The principle of this method is based on the electromagnetically spinning technique that we developed, and the method is effective especially for viscosity measurements at levels below 100 mPa·s with an accuracy higher than 1%. The probe motion is similar to that in the well-known rolling sphere (ball) method. However, our system enables a steady and continuous measurement of viscosity, which is problematic using the conventional method. We also discuss the limits of the measurable viscosity range common to rolling-sphere-type viscometers by considering the accelerating motion of a probe sphere due to gravity, and we demonstrate the performance of our methods.

  16. Electromagnetic scattering theory

    NASA Technical Reports Server (NTRS)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  17. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C. C.

    1997-02-01

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domain CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.

  18. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  19. Superconducting electromagnetic thruster

    SciTech Connect

    Meng, J.

    1993-02-11

    An electromagnetic thruster for marine vehicles using a jet of water driven by the interaction of a mutually perpendicular intensified magnetic field and an intensified electric field is disclosed. The intensified magnetic field is produced by superconducting coils cooled by a coolant such as liquid helium. An intensified electric field is produced by passing high amperage current across the seawater jet. These interacting fields produce a Lorentz force perpendicular to mutually perpendicular electric and magnetic field vectors which is used to drive the seawater jet. In some embodiments, the force may also be used to draw water into the jet from the boundary layer flow around the vehicle thereby reducing boundary layer turbulence and associated radiated noise.

  20. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  1. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  2. Updating Plasma Scattering of Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Sheffield, J.

    2010-05-01

    The monograph Plasma Scattering of Electromagnetic Radiation was published by Academic Press in 1975. A Russian edition, Atomidzat, came out in 1978. An updated version is being prepared by D. Froula, S. Glenzer. N Luhmann, and J. Sheffield for publication in 2010 by Elsevier. The new version will discuss the broader applications of Thomson scattering, which include the full range of plasmas used in research and industry. The expansion of the field has been made possible by the growing number of powerful radiation sources (from X-rays to microwaves), detectors, and innovative techniques. When the book was published, the highest temperatures in laboratory plasmas were around 2 keV for the electrons. Compare this to today's 25 keV where the relativistic effects are dramatic. The application to low temperature plasmas with Te in the range of 1 - 30+ eV, important in industry, has grown. Important capabilities have been developed in the areas of energetic particle, micro-instability, and high energy density plasma measurements. For the future, we look forward to the use of scattering as a diagnostic on the large new fusion facilities-NIF, LMJ, and ITER.

  3. Model Based Iterative Reconstruction for Bright Field Electron Tomography (Postprint)

    DTIC Science & Technology

    2013-02-01

    Reconstruction Technique ( SIRT ) are applied to the data. Model based iterative reconstruction (MBIR) provides a powerful framework for tomographic...the reconstruction when the typical algorithms such as Filtered Back Projection (FBP) and Simultaneous Iterative Reconstruction Technique ( SIRT ) are

  4. Maximal Stationary Iterative Methods for the Solution of Operator Equations,

    DTIC Science & Technology

    dimensional case, 2 < or = m < or = + infinity, the author proves that interpolatory iteration is maximal for n = 0 in the class of iterations using values of the first s derivatives at n previous points. Author)

  5. The Iterative Structure Analysis of Montgomery Modular Multiplication

    NASA Astrophysics Data System (ADS)

    Jinbo, Wang

    2007-09-01

    Montgomery modular multiplication (MMM) plays a crucial role in the implementation of modular exponentiations of public-key cryptography. In this paper, we discuss the iterative structure and extend the iterative bound condition of MMM. It can be applied to complicated modular exponentiations. Based on the iterative condition of MMM, we can directly use non-modular additions, subtractions and even simple multiplications instead of the modular forms, which make modular exponentiation operation very efficient but more importantly iterative applicability of MMM.

  6. Iterative performance of various formulations of the SPN equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhuang; Ragusa, Jean C.; Morel, Jim E.

    2013-11-01

    In this paper, the Standard, Composite, and Canonical forms of the Simplified PN (SPN) equations are reviewed and their corresponding iterative properties are compared. The Gauss-Seidel (FLIP), Explicit, and preconditioned Source Iteration iterative schemes have been analyzed for both isotropic and highly anisotropic (Fokker-Planck) scattering. The iterative performance of the various SPN forms is assessed using Fourier analysis, corroborated with numerical experiments.

  7. Application Of Iterative Reconstruction Techniques To Conventional Circular Tomography

    NASA Astrophysics Data System (ADS)

    Ghosh Roy, D. N.; Kruger, R. A.; Yih, B. C.; Del Rio, S. P.; Power, R. L.

    1985-06-01

    Two "point-by-point" iteration procedures, namely, Iterative Least Square Technique (ILST) and Simultaneous Iterative Reconstructive Technique (SIRT) were applied to classical circular tomographic reconstruction. The technique of tomosynthetic DSA was used in forming the tomographic images. Reconstructions of a dog's renal and neck anatomy are presented.

  8. Convergence analysis for a modified SP iterative method.

    PubMed

    Öztürk Çeliker, Fatma

    2014-01-01

    We consider a new iterative method due to Kadioglu and Yildirim (2014) for further investigation. We study convergence analysis of this iterative method when applied to class of contraction mappings. Furthermore, we give a data dependence result for fixed point of contraction mappings with the help of the new iteration method.

  9. Eliminating unpredictable variation through iterated learning.

    PubMed

    Smith, Kenny; Wonnacott, Elizabeth

    2010-09-01

    Human languages may be shaped not only by the (individual psychological) processes of language acquisition, but also by population-level processes arising from repeated language learning and use. One prevalent feature of natural languages is that they avoid unpredictable variation. The current work explores whether linguistic predictability might result from a process of iterated learning in simple diffusion chains of adults. An iterated artificial language learning methodology was used, in which participants were organised into diffusion chains: the first individual in each chain was exposed to an artificial language which exhibited unpredictability in plural marking, and subsequent learners were exposed to the language produced by the previous learner in their chain. Diffusion chains, but not isolate learners, were found to cumulatively increase predictability of plural marking by lexicalising the choice of plural marker. This suggests that such gradual, cumulative population-level processes offer a possible explanation for regularity in language. 2010 Elsevier B.V. All rights reserved.

  10. ITER Shape Controller and Transport Simulations

    SciTech Connect

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  11. Approaches to confined alpha diagnostics on ITER

    SciTech Connect

    Fisher, R.K.

    2004-10-01

    Three approaches to obtain information on the confined fast alphas in the International Thermonuclear Experimental Reactor (ITER) are proposed. The first technique measures the energetic charge exchange (CX) neutrals that result from the alpha collision-induced knock-on fuel ion tails undergoing electron capture on the MeV D neutral beams planned for heating and current drive. The second technique measures the energetic knock-on neutron tail due to alphas using the lengths of the proton recoil tracks produced by neutron collisions in nuclear emulsions. The range of the 14 to 20 MeV recoil protons increases by {approx}140 {mu}m per MeV. The third approach would measure the CX helium neutrals resulting from confined alphas capturing two electrons in the ablation cloud surrounding a dense gas jet that has been proposed for disruption mitigation in ITER.

  12. New iterative solvers for the NAG Libraries

    SciTech Connect

    Salvini, S.; Shaw, G.

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  13. Development of structural design criteria for ITER.

    SciTech Connect

    Majumdar, S.

    1998-06-22

    The irradiation environment experienced by the in-vessel components of fusion reactors such as HER presents structural design challenges not envisioned in the development of existing structural design criteria such as the ASME Code or RCC-MR. From the standpoint of design criteria, the most significant issues stem from the irradiation-induced changes in material properties, specifically the reduction of ductility, strain hardening capability, and fracture toughness with neutron irradiation. Recently, Draft 7 of the interim ITER structural design criteria (ISDC), which provide new rules for guarding against such problems, was released for trial use by the ITER designers. The new rules, which were derived from a simple model based on the concept of elastic follow up factor, provide primary and secondary stress limits as functions of uniform elongation and ductility. The implication of these rules on the allowable surface heat flux on typical first walls made of type 316 stainless steel and vanadium alloys are discussed.

  14. Thermomechanical analysis of the ITER breeding blanket

    SciTech Connect

    Majumdar, S.; Gruhn, H.; Gohar, Y.; Giegerich, M.

    1997-03-01

    Thermomechanical performance of the ITER breeding blanket is an important design issue because it requires first, that the thermal expansion mismatch between the blanket structure and the blankets internals (such as, beryllium multiplier and tritium breeders) can be accommodated without creating high stresses, and second, that the thermomechanical deformation of various interfaces within the blanket does not create high resistance to heat flow and consequent unacceptably high temperatures in the blanket materials. Thermomechanical analysis of a single beryllium block sandwiched between two stainless steel plates was carried out using the finite element code ABAQUS to illustrate the importance of elastic deformation on the temperature distributions. Such an analysis for the whole ITER blanket needs to be conducted in the future. Uncertainties in the thermomechanical contact analysis can be reduced by bonding the beryllium blocks to the stainless steel plates by a thin soft interfacial layer.

  15. Iterative Reconstruction of Coded Source Neutron Radiographs

    NASA Astrophysics Data System (ADS)

    Santos-Villalobos, Hector J.; Bingham, Philip R.; Gregor, Jens

    2013-06-01

    A coded source facilitates high-resolution neutron imaging through magnification but requires that the radiographic data be deconvolved. A comparison of convolution-based and model-based de-blurring algorithms has been performed. Two convolution-based approaches are assessed, direct deconvolution and an iterative algorithm based on a maximum likelihood estimation (MLE)-like framework. The model-based approach specifies a geometric model of the neutron beam with a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used to study the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized based on known values.

  16. Iterative Brinkman penalization for remeshed vortex methods

    NASA Astrophysics Data System (ADS)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony; Walther, Jens Honoré

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time steps, than what is customary in the Brinkman penalization, thus reducing its computational cost while maintaining the capability of the method to handle complex geometries. We demonstrate the accuracy of our method by considering challenging benchmark problems such as flow past an impulsively started cylinder and normal to an impulsively started and accelerated flat plate. We find that the present method enhances significantly the accuracy of the Brinkman penalization technique for the simulations of highly unsteady flows past complex geometries.

  17. Linear iterative solvers for implicit ODE methods

    NASA Technical Reports Server (NTRS)

    Saylor, Paul E.; Skeel, Robert D.

    1990-01-01

    The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method.

  18. Electromagnetic modeling in accelerator designs

    SciTech Connect

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described.

  19. Electromagnetic Field Effects in Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  20. Nonlinear electromagnetic fields and symmetries

    NASA Astrophysics Data System (ADS)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  1. Statistical properties of an iterated arithmetic mapping

    SciTech Connect

    Feix, M.R.; Rouet, J.L.

    1994-07-01

    We study the (3x = 1)/2 problem from a probabilistic viewpoint and show a forgetting mechanism for the last k binary digits of the seed after k iterations. The problem is subsequently generalized to a trifurcation process, the (lx + m)/3 problem. Finally the sequence of a set of seeds is empirically shown to be equivalent to a random walk of the variable log{sub 2}x (or log{sub 3} x) though computer simulations.

  2. ICRF Review: From ERASMUS To ITER

    SciTech Connect

    Weynants, R. R.

    2009-11-26

    This is a personal account of how I saw ICRF evolve since 1974, with a presentation that is ordered according to the topics: heating, antenna coupling, impurity generation/mitigation and system technology. The nature of the main issues is each time reviewed, recent findings are incorporated, and it is shown how the ICRF community has been able to react to sometimes rapidly changing demands and is indeed resolutely preparing ITER.

  3. Iterates of a Berezin-type transform

    NASA Astrophysics Data System (ADS)

    Liu, Congwen

    2007-05-01

    Let be the open unit ball of and dV denote the Lebesgue measure on normalized so that the measure of equals 1. Suppose . The Berezin-type transform of f is defined by We prove that if then the iterates converge to the Poisson extension of the boundary values of f, as k-->[infinity]. This can be viewed as a higher dimensional generalization of a previous result obtained independently by Englis and Zhu.

  4. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  5. Iterative solution of high order compact systems

    SciTech Connect

    Spotz, W.F.; Carey, G.F.

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  6. Fourier analysis of the SOR iteration

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Trefethen, L. N.

    1986-01-01

    The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.

  7. ITER plasma safety interface models and assessments

    SciTech Connect

    Uckan, N.A.; Bartels, H-W.; Honda, T.; Putvinski, S.; Amano, T.; Boucher, D.; Post, D.; Wesley, J.

    1996-12-31

    Physics models and requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics specifications are provided for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event). A safety analysis code SAFALY has been developed to investigate plasma anomaly events. The plasma response to ex-vessel component failure and machine response to plasma transients are considered.

  8. Iterative solution of the supereigenvalue model

    NASA Astrophysics Data System (ADS)

    Plefka, Jan C.

    1995-02-01

    An integral form of the discrete superloop equations for the supereigenvalue model of Alvarez-Gaumé, Itoyama, Mañes and Zadra is given. By a change of variables from coupling constants to moments we find a compact form of the planar solution for general potentials. In this framework an iterative scheme for the calculation of higher genera contributions to the free energy and the multi-loop correlators is developed. We present explicit results for genus one.

  9. Iterative pass optimization of sequence data.

    PubMed

    Wheeler, Ward C

    2003-06-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  10. Iterative Decoding of Concatenated Codes: A Tutorial

    NASA Astrophysics Data System (ADS)

    Regalia, Phillip A.

    2005-12-01

    The turbo decoding algorithm of a decade ago constituted a milestone in error-correction coding for digital communications, and has inspired extensions to generalized receiver topologies, including turbo equalization, turbo synchronization, and turbo CDMA, among others. Despite an accrued understanding of iterative decoding over the years, the "turbo principle" remains elusive to master analytically, thereby inciting interest from researchers outside the communications domain. In this spirit, we develop a tutorial presentation of iterative decoding for parallel and serial concatenated codes, in terms hopefully accessible to a broader audience. We motivate iterative decoding as a computationally tractable attempt to approach maximum-likelihood decoding, and characterize fixed points in terms of a "consensus" property between constituent decoders. We review how the decoding algorithm for both parallel and serial concatenated codes coincides with an alternating projection algorithm, which allows one to identify conditions under which the algorithm indeed converges to a maximum-likelihood solution, in terms of particular likelihood functions factoring into the product of their marginals. The presentation emphasizes a common framework applicable to both parallel and serial concatenated codes.

  11. Iterative pass optimization of sequence data

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  12. Conformal mapping and convergence of Krylov iterations

    SciTech Connect

    Driscoll, T.A.; Trefethen, L.N.

    1994-12-31

    Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.

  13. Recent ADI iteration analysis and results

    SciTech Connect

    Wachspress, E.L.

    1994-12-31

    Some recent ADI iteration analysis and results are discussed. Discovery that the Lyapunov and Sylvester matrix equations are model ADI problems stimulated much research on ADI iteration with complex spectra. The ADI rational Chebyshev analysis parallels the classical linear Chebyshev theory. Two distinct approaches have been applied to these problems. First, parameters which were optimal for real spectra were shown to be nearly optimal for certain families of complex spectra. In the linear case these were spectra bounded by ellipses in the complex plane. In the ADI rational case these were spectra bounded by {open_quotes}elliptic-function regions{close_quotes}. The logarithms of the latter appear like ellipses, and the logarithms of the optimal ADI parameters for these regions are similar to the optimal parameters for linear Chebyshev approximation over superimposed ellipses. W.B. Jordan`s bilinear transformation of real variables to reduce the two-variable problem to one variable was generalized into the complex plane. This was needed for ADI iterative solution of the Sylvester equation.

  14. Iterative solution of the semiconductor device equations

    SciTech Connect

    Bova, S.W.; Carey, G.F.

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  15. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  16. The dynamics of iterated transportation simulations

    SciTech Connect

    Nagel, K.; Rickert, M.; Simon, P.M.

    1998-12-01

    Transportation-related decisions of people often depend on what everybody else is doing. For example, decisions about mode choice, route choice, activity scheduling, etc., can depend on congestion, caused by the aggregated behavior of others. From a conceptual viewpoint, this consistency problem causes a deadlock, since nobody can start planning because they do not know what everybody else is doing. It is the process of iterations that is examined in this paper as a method for solving the problem. In this paper, the authors concentrate on the aspect of the iterative process that is probably the most important one from a practical viewpoint, and that is the ``uniqueness`` or ``robustness`` of the results. Also, they define robustness more in terms of common sense than in terms of a mathematical formalism. For this, they do not only want a single iterative process to converge, but they want the result to be independent of any particular implementation. The authors run many computational experiments, sometimes with variations of the same code, sometimes with totally different code, in order to see if any of the results are robust against these changes.

  17. Iterative pass optimization of sequence data

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  18. ITER Creation Safety File Expertise Results

    NASA Astrophysics Data System (ADS)

    Perrault, D.

    2013-06-01

    In March 2010, the ITER operator delivered the facility safety file to the French "Autorité de Sûreté Nucléaire" (ASN) as part of its request for the creation decree, legally necessary before building works can begin on the site. The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the ASN, recently completed its expertise of the safety measures proposed for ITER, on the basis of this file and of additional technical documents from the operator. This paper presents the IRSN's main conclusions. In particular, they focus on the radioactive materials involved, the safety and radiation protection demonstration (suitability of risk management measures…), foreseeable accidents, building and safety important component design and, finally, wastes and effluents to be produced. This assessment was just the first legally-required step in on-going safety monitoring of the ITER project, which will include other complete regulatory re-evaluations.

  19. [Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].

    PubMed

    Nowak, D; Radon, K

    2004-02-26

    The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.

  20. Earthquake prediction with electromagnetic phenomena

    SciTech Connect

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  1. Electromagnetic Showers at High Energy

    ERIC Educational Resources Information Center

    Loos, J. S.; Dawson, S. L.

    1978-01-01

    Some of the properties of electromagnetic showers observed in an experimental study are illustrated. Experimental data and results from quantum electrodynamics are discussed. Data and theory are compared using computer simulation. (BB)

  2. Conical electromagnetic radiation flux concentrator

    NASA Technical Reports Server (NTRS)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  3. Electromagnetic Showers at High Energy

    ERIC Educational Resources Information Center

    Loos, J. S.; Dawson, S. L.

    1978-01-01

    Some of the properties of electromagnetic showers observed in an experimental study are illustrated. Experimental data and results from quantum electrodynamics are discussed. Data and theory are compared using computer simulation. (BB)

  4. Electromagnetic Hadronic Form-Factors

    SciTech Connect

    Robert Edwards

    2004-06-01

    We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks.

  5. The role of ITER in the US MFE Program Strategy

    SciTech Connect

    Glass, A.J.

    1992-07-01

    I want to discuss the role of ITER in the US MFE Program Strategy. I should stress that any opinions I present are purely my own. I`m not speaking ex cathedra, I`m not speaking for the ITER Home Team, and I`m not speaking for the Lawrence Livermore National Laboratory. I`m giving my own personal opinions. In discussing the role of ITER, we have to recognize that ITER plays several roles, and I want to identify how ITER influences MFE program strategy through each of its roles.

  6. The role of ITER in the US MFE Program Strategy

    SciTech Connect

    Glass, A.J.

    1992-07-01

    I want to discuss the role of ITER in the US MFE Program Strategy. I should stress that any opinions I present are purely my own. I'm not speaking ex cathedra, I'm not speaking for the ITER Home Team, and I'm not speaking for the Lawrence Livermore National Laboratory. I'm giving my own personal opinions. In discussing the role of ITER, we have to recognize that ITER plays several roles, and I want to identify how ITER influences MFE program strategy through each of its roles.

  7. Speeding up Newton-type iterations for stiff problems

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinto, S.; Rojas-Bello, R.

    2005-09-01

    Iterative schemes based on the Cooper and Butcher iteration [5] are considered, in order to implement highly implicit Runge-Kutta methods on stiff problems. By introducing two appropriate parameters in the scheme, a new iteration making use of the last two iterates, is proposed. Specific schemes of this type for the Gauss, Radau IA-IIA and Lobatto IIIA-B-C processes are developed. It is also shown that in many situations the new iteration presents a faster convergence than the original.

  8. Evaluation of ITER MSE Viewing Optics

    SciTech Connect

    Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R

    2007-03-26

    The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on the design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate

  9. New advances in three dimensional transient electromagnetic inversion

    SciTech Connect

    Newman, Gregory A.; Commer, Michael

    2004-06-16

    Inversion of transient electromagnetic (TEM) data sets to image the subsurface three-dimensional (3-D) electrical conductivity and magnetic permeability properties can be done directly in the time domain. The technique, first introduced by Wang et al. (1994) for causal and diffusive electromagnetic fields and subsequently implemented by Zhdanov and Portniaguine (1997) in the framework of iterative migration, is based upon imaging methods originally developed for seismic wavefields (Claerbout, 1971; Tarantola, 1984). In this paper we advance the original derivations of Wang et al. (1994) and Zhdanov and Portniaguine (1997) to treat non-causal TEM fields, as well as correct a flaw in the theory for treatment of magnetic field data. Our 3D imaging scheme is based on a conjugate-gradient search for the minimum of an error functional involving EM measurements governed by Maxwell's equations without displacement currents. Treatment for magnetic field, voltage (time derivative of the magnetic field) and electric field data are given. The functional can be computed by propagating the data errors back into the model in reverse time along with a DC field, sourced by the integrated data errors over the measurement time range. By correlating these fields, including the time-integrated back-propagated fields, with the corresponding incident field and its initial value at each image point, efficient computational forms for the gradients are developed. The forms of the gradients allow for additional efficiencies when voltage and electric field data are inverted. In such instances the combined data errors can be back-propagated jointly, significantly reducing the computation time required to solve the inverse problem. The inversion algorithm is applied to the long offset transient electromagnetic measurement (LOTEM) configuration thereby demonstrating its capability in inverting non-causal field measurements of electric field and voltage, sourced by a grounded wire, over complex

  10. Electromagnetic holographic imaging of bioimpedance

    NASA Astrophysics Data System (ADS)

    Smith, Dexter G.; Ko, Harvey W.; Lee, Benjamin R.; Partin, Alan W.

    1998-05-01

    The electromagnetic bioimpedance method has successfully measured the very subtle conductivity changes associated with brain edema and prostate tumor. This method provides noninvasive measurements using non-ionizing magnetic fields applied with a small coil that avoids the use of contact electrodes. This paper introduces results from combining a holographic signal processing algorithm and a low power coil system that helps provide the 3D image of impedance contrast that should make the noninvasive electromagnetic bioimpedance method useful in health care.

  11. Electromagnetic Metrics of Mental Workload.

    DTIC Science & Technology

    1987-09-01

    D-AiBS 285 ELECTROMAGNETIC METRICS OF MENTAL AdORIKLOAD(U) PURDUE t/, UNIV LAFAYETTE IN EEG SIGNAL PROCESSING LRB RUNON ET AL SEP 87 AFOSR-TR-87-ib.3...ACCESSION NO 61102F 2313 A4 11 TITLE (Include Security Claiwfication) Electromagnetic Metrics of Mental Workload (U) 12 PERSONAL AUTHOR(S) Aunon, J. I...sustained high level of workload can lead to mental exhaustion. Previous research has indicated that heart rate lariability and evoked potentials in

  12. Electromagnetic Counterparts to Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; GROWTH Collaboration; iPTF/ZTF Collaboration

    2017-01-01

    The direct detection of gravitational waves from merging black holes marks the dawn of a new era. I will present ongoing efforts and prospectsto identify and characterize the electromagnetic counterpart. Among the various models for electromagnetic emission from binary neutronstar mergers, free neutron decay gives the most luminous and fast-evolving optical counterpart. I will describe a co-ordinated global effort, the GROWTH (Global Relay of Observatories Watching Transients Happen) network working in tandem with the Zwicky Transient Facility.

  13. High Dielectric Dummy Loads for ITER ICRH Antenna Laboratory Testing: Numerical Simulation of One Triplet Loading by Ferroelectric Ceramics

    SciTech Connect

    Champeaux, S.; Gouard, Ph.; Bottollier-Curtet, H.; Dumortier, P.; Koch, R.; Kyrytsya, V.; Messiaen, A.

    2011-12-23

    Up to now, classical 'water' loads have been used for low power testing of ITER ICRH prototype or mock-up antennas . A fair description of the antenna frequency response is obtained excepted for the phasing (0 {pi} 0 {pi}). High dielectric loads are requested to improve the antenna response in the low frequency band. In view of laboratory testing, dummy loads are also required to have efficient wave spatial attenuation to avoid standing waves and to minimize load volume. In this paper, barium titanate ceramic powders mixed with water are shown to exhibit very attractive electromagnetic properties. Coupling performance of one triplet of the ITER ICRH antenna to such kind of loads is numerically investigated. The radiated wave attenuation into the load is also characterized. In spite of its frequency dispersion, 'barium titanate' loads are shown to allow the characterization of the full scale triplet frequency response on a scaled-down mock-up.

  14. Alfvén eigenmode evolution computed with the VENUS and KINX codes for the ITER baseline scenario

    NASA Astrophysics Data System (ADS)

    Isaev, M. Yu.; Medvedev, S. Yu.; Cooper, W. A.

    2017-02-01

    A new application of the VENUS code is described, which computes alpha particle orbits in the perturbed electromagnetic fields and its resonant interaction with the toroidal Alfvén eigenmodes (TAEs) for the ITER device. The ITER baseline scenario with Q = 10 and the plasma toroidal current of 15 MA is considered as the most important and relevant for the International Tokamak Physics Activity group on energetic particles (ITPA-EP). For this scenario, typical unstable TAE-modes with the toroidal index n = 20 have been predicted that are localized in the plasma core near the surface with safety factor q = 1. The spatial structure of ballooning and antiballooning modes has been computed with the ideal MHD code KINX. The linear growth rates and the saturation levels taking into account the damping effects and the different mode frequencies have been calculated with the VENUS code for both ballooning and antiballooning TAE-modes.

  15. High Dielectric Dummy Loads for ITER ICRH Antenna Laboratory Testing: Numerical Simulation of One Triplet Loading by Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Champeaux, S.; Gouard, Ph.; Bottollier-Curtet, H.; Dumortier, P.; Koch, R.; Kyrytsya, V.; Messiaen, A.

    2011-12-01

    Up to now, classical "water" loads have been used for low power testing of ITER ICRH prototype or mock-up antennas . A fair description of the antenna frequency response is obtained excepted for the phasing (0 π 0 π). High dielectric loads are requested to improve the antenna response in the low frequency band [1]. In view of laboratory testing, dummy loads are also required to have efficient wave spatial attenuation to avoid standing waves and to minimize load volume. In this paper, barium titanate ceramic powders mixed with water are shown to exhibit very attractive electromagnetic properties. Coupling performance of one triplet of the ITER ICRH antenna to such kind of loads is numerically investigated. The radiated wave attenuation into the load is also characterized. In spite of its frequency dispersion, "barium titanate" loads are shown to allow the characterization of the full scale triplet frequency response on a scaled-down mock-up.

  16. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    SciTech Connect

    Zhai, Y.; Loesser, G.; Smith, M.; Udintsev, V.; Giacomin, T., T.; Khodak, A.; Johnson, D,; Feder, R,

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  17. Electromagnetically driven peristaltic pump

    DOEpatents

    Marshall, Douglas W.

    2000-01-01

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  18. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  19. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  20. Electromagnetic Launch to Space

    NASA Astrophysics Data System (ADS)

    McNab, I. R.

    Many advances in electromagnetic (EM) propulsion technology have occurred in recent years. Linear motor technology for low-velocity and high-mass applications is being developed for naval catapults. Such technology could serve as the basis for a first-stage booster launch--as suggested by the US National Aeronautics and Space Administration (NASA) in the Maglifter concept. Using railguns, laboratory experiments have demonstrated launch velocities of 2-3 km/s and muzzle energies > 8 MJ. The extension of this technology to the muzzle velocities ( 7500 m/s) and energies ( 10 GJ) needed for the direct launch of payloads into orbit is very challenging but may not be impossible. For launch to orbit, even long launchers (> 1000 m) would need to operate at accelerations > 1000 G to reach the required velocities, so it would only be possible to launch rugged payloads, such as fuel, water, and materiel. Interest is being shown in such concepts by US, European, Russian, and Chinese researchers. An intermediate step proposed in France could be to launch payloads to sounding rocket altitudes for ionospheric research.

  1. Electromagnetic ion beam instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Foosland, D. W.; Smith, C. W.; Lee, M. A.; Goldstein, M. L.

    1984-01-01

    The linear theory of electromagnetic instabilities driven by an energetic ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma is considered. Numerical solutions of the full dispersion equation are presented. At propagation parallel to the magnetic field, there are four distinct instabilities. A sufficiently energetic beam gives rise to two unstable modes with right-hand polarization, one resonant with the beam, the other nonresonant. A beam with sufficiently large T (perpendicular to B)/T (parallel to B) gives rise to the left-hand ion cyclotron anisotropy instability at relatively small beam velocities, and a sufficiently hot beam drives unstable a left-hand beam resonant mode. The parametric dependences of the growth rates for the three high beam velocity instabilities are presented here. In addition, some properties at oblique propagation are examined. It is demonstrated that, as the beam drift velocity is increased, relative maxima in growth rates can arise at harmonics of the ion cyclotron resonance for both right and left elliptically polarized modes.

  2. Electromagnetic Interference on Pacemakers

    PubMed Central

    Erdogan, Okan

    2002-01-01

    External sources, either within or outside the hospital environment, may interfere with the appropriate function of pacemakers which are being implanted all around the world in current medical practice. The patient and the physician who is responsible for follow-up of the pacing systems may be confronted with some specific problems regarding the various types of electromagnetic interference (EMI). To avoid these unwanted EMI effects one must be aware of this potential problem and need to take some precautions. The effects of EMI on pacemaker function and precautions to overcome some specific problems were discussed in this review article. There are many sources of EMI interacting with pacemakers. Magnetic resonance imaging creates real problem and should be avoided in pacemaker patients. Cellular phones might be responsible for EMI when they were held on the same side with the pacemaker. Otherwise they don't cause any specific type of interaction with pacemakers. Sale security systems are not a problem if one walks through it without lingering in or near it. Patients having unipolar pacemaker systems are prone to develop EMI because of pectoral muscle artifacts during vigorous active physical exercise. PMID:17006562

  3. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  4. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  5. Simultaneous iterative reconstruction technique for diffuse optical tomography imaging: iteration criterion and image recognition

    NASA Astrophysics Data System (ADS)

    Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei

    2008-02-01

    Diffuse optical tomography (DOT) is an emerging technique for biomedical imaging. The imaging quality of the DOT strongly depends on the reconstruction algorithm. In this paper, four inhomogeneities with various shapes of absorption distributions are simulated by a continues-wave DOT system. The DOT images are obtained based on the simultaneous iterative reconstruction technique (SIRT) method. To solve the trade-off problem between time consumption of reconstruction process and accuracy of reconstructed image, the iteration process needs a optimization criterion in algorithm. In this paper, the comparison between the root mean square error (RMSE) and the convergence rate (CR) in SIRT algorithm are demonstrated. From the simulation results, the CR reveals the information of global minimum in the iteration process. Based on the CR calculation, the SIRT can offer higher efficient image reconstructing in DOT system.

  6. FASART: An iterative reconstruction algorithm with inter-iteration adaptive NAD filter.

    PubMed

    Zhou, Ziying; Li, Yugang; Zhang, Fa; Wan, Xiaohua

    2015-01-01

    Electron tomography (ET) is an essential imaging technique for studying structures of large biological specimens. These structures are reconstructed from a set of projections obtained at different sample orientations by tilting the specimen. However, most of existing reconstruction methods are not appropriate when the data are extremely noisy and incomplete. A new iterative method has been proposed: adaptive simultaneous algebraic reconstruction with inter-iteration adaptive non-linear anisotropic diffusion (NAD) filter (FASART). We also adopted an adaptive parameter and discussed the step for the filter in this reconstruction method. Experimental results show that FASART can restrain the noise generated in the process of iterative reconstruction and still preserve the more details of the structure edges.

  7. Corneal topography matching by iterative registration.

    PubMed

    Wang, Junjie; Elsheikh, Ahmed; Davey, Pinakin G; Wang, Weizhuo; Bao, Fangjun; Mottershead, John E

    2014-11-01

    Videokeratography is used for the measurement of corneal topography in overlapping portions (or maps) which must later be joined together to form the overall topography of the cornea. The separate portions are measured from different viewpoints and therefore must be brought together by registration of measurement points in the regions of overlap. The central map is generally the most accurate, but all maps are measured with uncertainty that increases towards the periphery. It becomes the reference (or static) map, and the peripheral (or dynamic) maps must then be transformed by rotation and translation so that the overlapping portions are matched. The process known as registration, of determining the necessary transformation, is a well-understood procedure in image analysis and has been applied in several areas of science and engineering. In this article, direct search optimisation using the Nelder-Mead algorithm and several variants of the iterative closest/corresponding point routine are explained and applied to simulated and real clinical data. The measurement points on the static and dynamic maps are generally different so that it becomes necessary to interpolate, which is done using a truncated series of Zernike polynomials. The point-to-plane iterative closest/corresponding point variant has the advantage of releasing certain optimisation constraints that lead to persistent registration and alignment errors when other approaches are used. The point-to-plane iterative closest/corresponding point routine is found to be robust to measurement noise, insensitive to starting values of the transformation parameters and produces high-quality results when using real clinical data.

  8. Iterative repair for scheduling and rescheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Deale, Michael

    1991-01-01

    An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.

  9. Iterative filtering procedure for the Vlasov equation

    SciTech Connect

    Chriaa, K.; Skarka, V.; Carati, D. |

    1997-01-01

    An iterative filtering scheme is used for deriving the evolution of large scales in a plasma. The information lost by filtering out the small-scale fluctuations is accounted for by the introduction of an effective propagator and vertex operators in the Vlasov equation. These renormalizing terms correspond to large-scale diffusive effects. A general expression for the fluxes of energy and particles is obtained. The transport coefficients are explicitly derived for the quasilinear limit and the guiding center approximation. {copyright} {ital 1997} {ital The American Physical Society}

  10. Deterministic convergence in iterative phase shifting

    SciTech Connect

    Luna, Esteban; Salas, Luis; Sohn, Erika; Ruiz, Elfego; Nunez, Juan M.; Herrera, Joel

    2009-03-10

    Previous implementations of the iterative phase shifting method, in which the phase of a test object is computed from measurements using a phase shifting interferometer with unknown positions of the reference, do not provide an accurate way of knowing when convergence has been attained. We present a new approach to this method that allows us to deterministically identify convergence. The method is tested with a home-built Fizeau interferometer that measures optical surfaces polished to {lambda}/100 using the Hydra tool. The intrinsic quality of the measurements is better than 0.5 nm. Other possible applications for this technique include fringe projection or any problem where phase shifting is involved.

  11. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  12. Preconditioned iterative methods for fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Lin, Fu-Rong; Yang, Shi-Wei; Jin, Xiao-Qing

    2014-01-01

    In this paper, we are concerned with numerical methods for the solution of initial-boundary value problems of anomalous diffusion equations of order α∈(1,2). The classical Crank-Nicholson method is used to discretize the fractional diffusion equation and then the spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Two preconditioned iterative methods, namely, the preconditioned generalized minimal residual (preconditioned GMRES) method and the preconditioned conjugate gradient for normal residual (preconditioned CGNR) method, are proposed to solve relevant linear systems. Numerical experiments are given to illustrate the efficiency of the methods.

  13. Iterative least squares functional networks classifier.

    PubMed

    El-Sebakhy, Emad A; Hadi, Ali S; Faisal, Kanaan A

    2007-05-01

    This paper proposes unconstrained functional networks as a new classifier to deal with the pattern recognition problems. Both methodology and learning algorithm for this kind of computational intelligence classifier using the iterative least squares optimization criterion are derived. The performance of this new intelligent systems scheme is demonstrated and examined using real-world applications. A comparative study with the most common classification algorithms in both machine learning and statistics communities is carried out. The study was achieved with only sets of second-order linearly independent polynomial functions to approximate the neuron functions. The results show that this new framework classifier is reliable, flexible, stable, and achieves a high-quality performance.

  14. Unifying iteration rule for fractal objects

    NASA Astrophysics Data System (ADS)

    Kittel, A.; Parisi, J.; Peinke, J.; Baier, G.; Klein, M.; Rössler, O. E.

    1997-03-01

    We introduce an iteration rule for real numbers capable to generate attractors with dragon-, snowflake-, sponge-, or Swiss-flag-like cross sections. The idea behind it is the mapping of a torus into two (or more) shrunken and twisted tori located inside the previous one. Three distinct parameters define the symmetry, the dimension, and the connectedness or disconnectedness of the fractal object. For some selected triples of parameter values, a couple of well known fractal geometries (e.g. the Cantor set, the Sierpinski gasket, or the Swiss flag) can be gained as special cases.

  15. Design of the ITER ICRF Antenna

    SciTech Connect

    Hancock, D.; Nightingale, M.; Bamber, R.; Dalton, N.; Lister, J.; Porton, M.; Shannon, M.; Wilson, D.; Wooldridge, E.; Winkler, K.

    2011-12-23

    The CYCLE consortium has been designing the ITER ICRF antenna since March 2010, supported by an F4E grant. Following a brief introduction to the consortium, this paper: describes the present status and layout of the design; highlights the key mechanical engineering features; shows the expected impact of cooling and radiation issues on the design and outlines the need for future R and D to support the design process. A key design requirement is the need for the mechanical design and analysis to be consistent with all requirements following from the RF physics and antenna layout optimisation. As such, this paper complements that of Durodie et al.

  16. Bounds for nonlinear composites via iterated homogenization

    NASA Astrophysics Data System (ADS)

    Ponte Castañeda, P.

    2012-09-01

    Improved estimates of the Hashin-Shtrikman-Willis type are generated for the class of nonlinear composites consisting of two well-ordered, isotropic phases distributed randomly with prescribed two-point correlations, as determined by the H-measure of the microstructure. For this purpose, a novel strategy for generating bounds has been developed utilizing iterated homogenization. The general idea is to make use of bounds that may be available for composite materials in the limit when the concentration of one of the phases (say phase 1) is small. It then follows from the theory of iterated homogenization that it is possible, under certain conditions, to obtain bounds for more general values of the concentration, by gradually adding small amounts of phase 1 in incremental fashion, and sequentially using the available dilute-concentration estimate, up to the final (finite) value of the concentration (of phase 1). Such an approach can also be useful when available bounds are expected to be tighter for certain ranges of the phase volume fractions. This is the case, for example, for the "linear comparison" bounds for porous viscoplastic materials, which are known to be comparatively tighter for large values of the porosity. In this case, the new bounds obtained by the above-mentioned "iterated" procedure can be shown to be much improved relative to the earlier "linear comparison" bounds, especially at low values of the porosity and high triaxialities. Consistent with the way in which they have been derived, the new estimates are, strictly, bounds only for the class of multi-scale, nonlinear composites consisting of two well-ordered, isotropic phases that are distributed with prescribed H-measure at each stage in the incremental process. However, given the facts that the H-measure of the sequential microstructures is conserved (so that the final microstructures can be shown to have the same H-measure), and that H-measures are insensitive to length scales, it is conjectured

  17. Resolution in Electromagnetic Prospecting

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Schramm, K. A.

    2014-12-01

    Low-frequency electromagnetic (EM) signals are commonly used in geophysical exploration of the shallow subsurface. Sensitivity to conductivity implies they are particularly useful for inferring fluid content of porous media. However, low-frequency EM wavefields are diffusive, and have significantly larger wavelengths compared to seismic signals of equal frequency. The wavelength of a 30 Hz sinusoid propagating with seismic velocity 3000 m/s is 100 m, whereas an analogous EM signal diffusing through a conductive body of 0.1 S/m (clayey shale) has wavelength 1825 m. The larger wavelength has implications for resolution of the EM prospecting method. We are investigating resolving power of the EM method via theoretical and numerical experiments. Normal incidence plane wave reflection/transmission by a thin geologic bed is amenable to analytic solution. Responses are calculated for beds that are conductive or resistive relative to the host rock. Preliminary results indicate the classic seismic resolution/detection limit of bed thickness ~1/8 wavelength is not achieved. EM responses for point or line current sources recorded by general acquisition geometries are calculated with a 3D finite-difference algorithm. These exhibit greater variability which may allow inference of bed thickness. We also examine composite responses of two point scatterers with separation when illuminated by an incident EM field. This is analogous to the Rayleigh resolution problem of estimating angular separation between two light sources. The First Born Approximation implies that perturbations in permittivity, permeability, and conductivity have different scattering patterns, which may be indicators of EM medium properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Novel electromagnetic micropump

    NASA Astrophysics Data System (ADS)

    Feldmann, M.; Demming, S.; Lesche, C.; Büttgenbach, S.

    2007-12-01

    The mergence of partial aspects and functional components of micro actuators and micro fluidic technology allows the development of complex micro systems, which are more and more interesting for MEMS application, especially for BioMEMS. This enormous potential is shown in this article showing the realization of an electro magnetic micro pump. The basic build-up consists of a polymer magnet integrated into a pump chamber of a fluidic PDMS device, which is located above a double layer micro coil. By applying a current, the polymer magnet performs a bidirectional movement, which results in a pumping effect by the two arranged passive check valves being perpendicularly arranged to the flow channels. The valve membrane is flexible and opens the channel towards the flow direction. The advantage of this configuration is that leakage can be avoided by the special geometrical configuration of the fluid chamber and the valves. The fabrication process includes UV depth lithography using AZ9260, electroforming of copper for the double layer spiral coil and Epon SU-8 for insulation, embedding and manufacturing of the valve seat. Furthermore, the fluidic devices are realized by replica molding of PDMS using a multilayer SU-8 master. Furthermore, a new technology for realizing micro polymer magnets was optimized and deployed. Using these fabrication processes, a magnetic micro actuator has already been developed based on the movable plunger principle, which forms the basic set-up of the micro pump. This actuator is monolithically fabricated and successfully tested. In addition, the fluidic system of the micro pump was successfully fabricated and tested. In order to connect the valve seats based on SU-8 to the PDMS fluidic chamber and the valve lips, a special bonding process was developed. The combination of the fluidic system with the electromagnetic part is currently under investigation. The dimension of the micro pump is about 10 × 6 × 3 mm.

  19. Megawatt Electromagnetic Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James; Lapointe, Michael; Mikellides, Pavlos

    2003-01-01

    The NASA Glenn Research Center program in megawatt level electric propulsion is centered on electromagnetic acceleration of quasi-neutral plasmas. Specific concepts currently being examined are the Magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). In the case of the MPD thruster, a multifaceted approach of experiments, computational modeling, and systems-level models of self field MPD thrusters is underway. The MPD thruster experimental research consists of a 1-10 MWe, 2 ms pulse-forming-network, a vacuum chamber with two 32 diffusion pumps, and voltage, current, mass flow rate, and thrust stand diagnostics. Current focus is on obtaining repeatable thrust measurements of a Princeton Benchmark type self field thruster operating at 0.5-1 gls of argon. Operation with hydrogen is the ultimate goal to realize the increased efficiency anticipated using the lighter gas. Computational modeling is done using the MACH2 MHD code, which can include real gas effects for propellants of interest to MPD operation. The MACH2 code has been benchmarked against other MPD thruster data, and has been used to create a point design for a 3000 second specific impulse (Isp) MPD thruster. This design is awaiting testing in the experimental facility. For the PIT, a computational investigation using MACH2 has been initiated, with experiments awaiting further funding. Although the calculated results have been found to be sensitive to the initial ionization assumptions, recent results have agreed well with experimental data. Finally, a systems level self-field MPD thruster model has been developed that allows for a mission planner or system designer to input Isp and power level into the model equations and obtain values for efficiency, mass flow rate, and input current and voltage. This model emphasizes algebraic simplicity to allow its incorporation into larger trajectory or system optimization codes. The systems level approach will be extended to the pulsed inductive

  20. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  1. THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS

  2. Final Report on ITER Task Agreement 81-08

    SciTech Connect

    Richard L. Moore

    2008-03-01

    As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of the ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.

  3. Averaging and Metropolis iterations for positron emission tomography.

    PubMed

    Szirmay-Kalos, László; Magdics, Milán; Tóth, Balázs; Bükki, Tamás

    2013-03-01

    Iterative positron emission tomography (PET) reconstruction computes projections between the voxel space and the lines of response (LOR) space, which are mathematically equivalent to the evaluation of multi-dimensional integrals. The dimension of the integration domain can be very high if scattering needs to be compensated. Monte Carlo (MC) quadrature is a straightforward method to approximate high-dimensional integrals. As the numbers of voxels and LORs can be in the order of hundred millions and the projection also depends on the measured object, the quadratures cannot be precomputed, but Monte Carlo simulation should take place on-the-fly during the iterative reconstruction process. This paper presents modifications of the maximum likelihood, expectation maximization (ML-EM) iteration scheme to reduce the reconstruction error due to the on-the-fly MC approximations of forward and back projections. If the MC sample locations are the same in every iteration step of the ML-EM scheme, then the approximation error will lead to a modified reconstruction result. However, when random estimates are statistically independent in different iteration steps, then the iteration may either diverge or fluctuate around the solution. Our goal is to increase the accuracy and the stability of the iterative solution while keeping the number of random samples and therefore the reconstruction time low. We first analyze the error behavior of ML-EM iteration with on-the-fly MC projections, then propose two solutions: averaging iteration and Metropolis iteration. Averaging iteration averages forward projection estimates during the iteration sequence. Metropolis iteration rejects those forward projection estimates that would compromise the reconstruction and also guarantees the unbiasedness of the tracer density estimate. We demonstrate that these techniques allow a significant reduction of the required number of samples and thus the reconstruction time. The proposed methods are built into

  4. Computational electromagnetic methods for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Gomez, Luis J.

    Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3

  5. Impurity transport due to electromagnetic drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Pusztai, Istvan; Mollén, Albert; Fülöp, Tünde

    2012-10-01

    In the view of an increasing interest in high β operation scenarios, such as hybrid scenarios for ITER the question of finite β effects on the impurity transport is a critical issue due to possible fuel dilution and radiative cooling in the core. Here, electromagnetic effects at finite β on impurity transport are studied through local linear gyro-kinetic simulations with gyro [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]; in particular we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBM) and micro-tearing modes (MTM) in spherical (NSTX) and standard tokamaks (AUG and JET).

  6. Spectral iterative algorithm for RCS computation in electrically large or intermediate perfectly conducting cavities

    NASA Astrophysics Data System (ADS)

    Rius, Juan M.; Lozano, Angel; Jofre, Lluis; Cardama, Angel

    1994-06-01

    A novel algorithm designed to compute efficiently and accurately the high-frequency electromagnetic scattering from open-ended waveguide cavities is presented. The cavity is converted into a stepped-waveguide model so that the field spectra are propagated, forward and backward, along each waveguide section. As boundary conditions for perfect electric conductors are applied via image theory, they are of local nature and take into account only the first-order interactions between each pair of waveguide sections. Accordingly, additional forward-backward iterations must be performed if multiple interactions are to be taken into account. Finally, the radar cross section due to the interior irradiation is calculated by a Kirchhoff-based aperture integral. Good agreement with method of moments and hybrid modal solutions is found, as well as with experimental data, for two-dimensional and three-dimensional cavities with rectangular cross section.

  7. Electromagnetic stabilization of tokamak microturbulence in a high-β regime

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Garcia, J.; Görler, T.; Jenko, F.; Mantica, P.; Told, D.; Bourdelle, C.; Hatch, D. R.; Hogeweij, G. M. D.; Johnson, T.; Pueschel, M. J.; Schneider, M.

    2015-01-01

    The impact of electromagnetic stabilization and flow shear stabilization on ITG turbulence is investigated. Analysis of a low-β JET L-mode discharge illustrates the relation between ITG stabilization and proximity to the electromagnetic instability threshold. This threshold is reduced by suprathermal pressure gradients, highlighting the effectiveness of fast ions in ITG stabilization. Extensive linear and nonlinear gyrokinetic simulations are then carried out for the high-β JET hybrid discharge 75225, at two separate locations at inner and outer radii. It is found that at the inner radius, nonlinear electromagnetic stabilization is dominant and is critical for achieving simulated heat fluxes in agreement with the experiment. The enhancement of this effect by suprathermal pressure also remains significant. It is also found that flow shear stabilization is not effective at the inner radii. However, at outer radii the situation is reversed. Electromagnetic stabilization is negligible while the flow shear stabilization is significant. These results constitute the high-β generalization of comparable observations found at low-β at JET. This is encouraging for the extrapolation of electromagnetic ITG stabilization to future devices. An estimation of the impact of this effect on the ITER hybrid scenario leads to a 20% fusion power improvement.

  8. Diverse Power Iteration Embeddings and Its Applications

    SciTech Connect

    Huang H.; Yoo S.; Yu, D.; Qin, H.

    2014-12-14

    Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.

  9. Iterative image reconstruction in spectral CT

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Michel, Eric; Kim, Hye S.; Kim, Jae G.; Han, Byung H.; Cho, Min H.; Lee, Soo Y.

    2012-03-01

    Scan time of spectral-CTs is much longer than conventional CTs due to limited number of x-ray photons detectable by photon-counting detectors. However, the spectral pixel information in spectral-CT has much richer information on physiological and pathological status of the tissues than the CT-number in conventional CT, which makes the spectral- CT one of the promising future imaging modalities. One simple way to reduce the scan time in spectral-CT imaging is to reduce the number of views in the acquisition of projection data. But, this may result in poorer SNR and strong streak artifacts which can severely compromise the image quality. In this work, spectral-CT projection data were obtained from a lab-built spectral-CT consisting of a single CdTe photon counting detector, a micro-focus x-ray tube and scan mechanics. For the image reconstruction, we used two iterative image reconstruction methods, the simultaneous iterative reconstruction technique (SIRT) and the total variation minimization based on conjugate gradient method (CG-TV), along with the filtered back-projection (FBP) to compare the image quality. From the imaging of the iodine containing phantoms, we have observed that SIRT and CG-TV are superior to the FBP method in terms of SNR and streak artifacts.

  10. Suboptimal fractal coding scheme using iterative transformation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Soo; Chung, Jae-won

    2001-05-01

    This paper presents a new fractal coding scheme to find a suboptimal transformation by performing an iterative encoding process. The optimal transformation can be defined as the transformation generating the closest attractor to an original image. Unfortunately, it is impossible in practice to find the optimal transformation, due to the heavy computational burden. In this paper, however, by means of some new theorems related with contractive transformations and attractors. It is shown that for some specific cases the optimal or suboptimal transformations can be obtained. The proposed method obtains a suboptimal transformation by performing iterative processes as is done in decoding. Thus, it requires more computation than the conventional method, but it improves the image quality. For a simple case where the optimal transformation can actually be found, the proposed method is experimentally evaluated against both the optimal method and the conventional method. For a general case where the optimal transformation in unavailable due to heavy computational complexity, the proposed method is also evaluated in comparison with the conventional method.

  11. The ITER Radial Neutron Camera Detection System

    SciTech Connect

    Marocco, D.; Belli, F.; Esposito, B.; Petrizzi, L.; Riva, M.; Bonheure, G.; Kaschuck, Y.

    2008-03-12

    A multichannel neutron detection system (Radial Neutron Camera, RNC) will be installed on the ITER equatorial port plug 1 for total neutron source strength, neutron emissivity/ion temperature profiles and n{sub t}/n{sub d} ratio measurements [1]. The system is composed by two fan shaped collimating structures: an ex-vessel structure, looking at the plasma core, containing tree sets of 12 collimators (each set lying on a different toroidal plane), and an in-vessel structure, containing 9 collimators, for plasma edge coverage. The RNC detecting system will work in a harsh environment (neutron fiux up to 10{sup 8}-10{sup 9} n/cm{sup 2} s, magnetic field >0.5 T or in-vessel detectors), should provide both counting and spectrometric information and should be flexible enough to cover the high neutron flux dynamic range expected during the different ITER operation phases. ENEA has been involved in several activities related to RNC design and optimization [2,3]. In the present paper the up-to-date design and the neutron emissivity reconstruction capabilities of the RNC will be described. Different options for detectors suitable for spectrometry and counting (e.g. scintillators and diamonds) focusing on the implications in terms of overall RNC performance will be discussed. The increase of the RNC capabilities offered by the use of new digital data acquisition systems will be also addressed.

  12. Critical Assessment of Pressure Gauges for ITER

    SciTech Connect

    Tabares, Francisco L.; Tafalla, David; Garcia-Cortes, Isabel

    2008-03-12

    The density and flux of molecular species in ITER, largely dominated by the molecular form of the main plasma components and the He ash, is a valuable parameter of relevance not only for operation purposes but also for validating existing neutral particle models of direct implications in divertor performance. An accurate and spatially resolved monitoring of this parameter implies the proper selection of pressure gauges able to cope with the very unique and aggressive environment to be expected in a fusion reactor. To date, there is no standard gauge fulfilling all the requirements, which encompass high neutron and gamma fluxes, together with strong magnetic field and temperature excursions and dusty environment. In the present work, a review of the challenges to face in the measurement of neutral pressure in ITER, together with existing technologies and developments to be made in some of them for their application to the task is presented. Particular attention is paid to R and D needs of existing concepts with potential use in future designs.

  13. Transport analysis of tungsten impurity in ITER

    NASA Astrophysics Data System (ADS)

    Murakami, Y.; Amano, T.; Shimizu, K.; Shimada, M.

    2003-03-01

    The radial distribution of tungsten impurity in ITER is calculated by using the 1.5D transport code TOTAL coupled with NCLASS, which can solve the neo-classical impurity flux considering arbitrary aspect ratio and collisionality. An impurity screening effect is observed when the density profile is flat and the line radiation power is smaller than in the case without impurity transport by a factor of 2. It is shown that 90 MW of line radiation power is possible without significant degradation of plasma performance ( HH98( y,2) ˜1) when the fusion power is 700 MW (fusion gain Q=10). The allowable tungsten density is about 7×10 15/m 3, which is 0.01% of the electron density and the increase of the effective ionic charge Zeff is about 0.39. In this case, the total radiation power is more than half of the total heating power 210 MW, and power to the divertor region is less than 100 MW. This operation regime gives an opportunity for high fusion power operation in ITER with acceptable divertor conditions. Simulations for the case with an internal transport barrier (ITB) are also performed and it is found that impurity shielding by an ITB is possible with density profile control.

  14. Pedestal stability comparison and ITER pedestal prediction

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Aiba, N.; Beurskens, M.; Groebner, R. J.; Horton, L. D.; Hubbard, A. E.; Hughes, J. W.; Huysmans, G. T. A.; Kamada, Y.; Kirk, A.; Konz, C.; Leonard, A. W.; Lönnroth, J.; Maggi, C. F.; Maingi, R.; Osborne, T. H.; Oyama, N.; Pankin, A.; Saarelma, S.; Saibene, G.; Terry, J. L.; Urano, H.; Wilson, H. R.

    2009-08-01

    The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling-ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

  15. Iterative deconvolution methods for ghost imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Situ, Guohai

    2016-10-01

    Ghost imaging (GI) is an important technique in single-pixel imaging. It has been demonstrated that GI has applications in various areas such as imaging through harsh environments and optical encryption. Correlation is widely used to reconstruct the object image in GI. But it only offers the signal-to-noise ratios (SNR) of the reconstructed image linearly proportional to the number of measurements. Here, we develop a kind of iterative deconvolution methods for GI. With the known image transmission matrix in GI, the first one uses an iterative algorithm to decrease the error between the reconstructed image and the ground-truth image. Ideally, the error converges to a minimum for speckle patterns when the number of measurements is larger than the number of resolution cells. The second technique, Gerchberg-Saxton (GS) like GI, takes the advantage of the integral property of the Fourier transform, and treats the captured data as constraints for image reconstruction. According to this property, we can regard the data recorded by the bucket detector as the Fourier transform of the object image evaluated at the origin. Each of the speckle patterns randomly selects certain spectral components of the object and shift them to the origin in the Fourier space. One can use these constraints to reconstruct the image with the GS algorithm. This deconvolution method is suitable for any single pixel imaging models. Compared to conventional GI, both techniques offer a nonlinear growth of the SNR value with respect to the number of measurements.

  16. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-05-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  17. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  18. ITER plant layout and site services

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    2000-03-01

    The ITER site has not yet been determined. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electrical power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, demineralized water, steam and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radiation exposure of workers and the public. To prevent interference between services of different types and for efficient arrangement of buildings, structures and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographical centre of the site. The locations of the buildings on the generic site were selected to meet all design requirements at minimum total project cost. A similar approach was used to determine the locations of services above, at and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography, resulting primarily in changes to the length of services that link the buildings and equipment.

  19. Iterative dip-steering median filter

    NASA Astrophysics Data System (ADS)

    Huo, Shoudong; Zhu, Weihong; Shi, Taikun

    2017-09-01

    Seismic data are always contaminated with high noise components, which present processing challenges especially for signal preservation and its true amplitude response. This paper deals with an extension of the conventional median filter, which is widely used in random noise attenuation. It is known that the standard median filter works well with laterally aligned coherent events but cannot handle steep events, especially events with conflicting dips. In this paper, an iterative dip-steering median filter is proposed for the attenuation of random noise in the presence of multiple dips. The filter first identifies the dominant dips inside an optimized processing window by a Fourier-radial transform in the frequency-wavenumber domain. The optimum size of the processing window depends on the intensity of random noise that needs to be attenuated and the amount of signal to be preserved. It then applies median filter along the dominant dip and retains the signals. Iterations are adopted to process the residual signals along the remaining dominant dips in a descending sequence, until all signals have been retained. The method is tested by both synthetic and field data gathers and also compared with the commonly used f-k least squares de-noising and f-x deconvolution.

  20. Prediction and Optimization of the ITER Pedestal

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Meneghini, O.; Beurskens, M. N. A.; Hughes, J. W.; Osborne, T. H.; Wilson, H. R.

    2016-10-01

    The structure of the edge transport barrier, or pedestal, plays an important role in ITER performance, with fusion power predicted to scale roughly with the square of the pedestal pressure. Understanding the physics of the pedestal is also critical to reliably suppressing or mitigating ELMs. We present tests of the EPED model, which predicts pedestal structure based on the intersection of two calculated criticality constraints, on more than 800 cases on existing tokamaks, and assess model accuracy across a range of parameters including normalized gyroradius. The EPED model is found to predict observations significantly more accurately than existing empirical pedestal models. The model is then used both independently, and coupled to core transport predictions from TGLF and NEO, using OMFIT, to predict and optimize ITER performance, including exploring possible operation in the Super H-Mode regime. Work supported by contracts DE-FG02-95ER54309, FC02-06ER54873, and DE-FC02-04ER54698.

  1. Iterative Mechanism Solutions with Scenario and ADAMS

    NASA Technical Reports Server (NTRS)

    Rhoades, Daren

    2006-01-01

    This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.

  2. ITER Central Solenoid support structure analysis

    SciTech Connect

    Freudenberg, Kevin D; Myatt, R.

    2011-01-01

    The ITER Central Solenoid (CS) is comprised of six independent coils held together by a pre-compression support structure. This structure must provide enough preload to maintain sufficient coil-to-coil contact and interface load throughout the current pulse. End of burn (EOB) represents one of the most extreme time-points doing the reference scenario when the currents in the CS3 coils oppose those of CS1 & CS2. The CS structure is performance limited by the room temperature static yield requirements needed to support the roughly 180 MN preload to resist coil separation during operation. This preload is applied by inner and external tie plates along the length of the coil stack by mechanical fastening methods utilizing Superbolt technology. The preloading structure satisfies the magnet structural design criteria of ITER and will be verified during mockup studies. The solenoid is supported from the bottom of the toroidal field (TF) coil casing in both the vertical radial directions. The upper support of the CS coil structure maintains radial registration with the TF coil in the event of vertical disruptions (VDE) loads and earthquakes. All of these structure systems are analyzed via a global finite element analysis (FEA). The model includes a complete sector of the TF coil and the CS coil/structure in one self-consistent analysis. The corresponding results and design descriptions are described in this report.

  3. Iterative Mechanism Solutions with Scenario and ADAMS

    NASA Technical Reports Server (NTRS)

    Rhoades, Daren

    2006-01-01

    This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.

  4. Pedestal stability comparison and ITER pedestal prediction

    SciTech Connect

    Snyder, P.; Alba, N; Beurskens, M.; Horton, L D

    2009-01-01

    The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

  5. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  6. Laser cleaning of ITER's diagnostic mirrors

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  7. Diverse power iteration embeddings: Theory and practice

    DOE PAGES

    Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...

    2015-11-09

    Manifold learning, especially spectral embedding, is known as one of the most effective learning approaches on high dimensional data, but for real-world applications it raises a serious computational burden in constructing spectral embeddings for large datasets. To overcome this computational complexity, we propose a novel efficient embedding construction, Diverse Power Iteration Embedding (DPIE). DPIE shows almost the same effectiveness of spectral embeddings and yet is three order of magnitude faster than spectral embeddings computed from eigen-decomposition. Our DPIE is unique in that (1) it finds linearly independent embeddings and thus shows diverse aspects of dataset; (2) the proposed regularized DPIEmore » is effective if we need many embeddings; (3) we show how to efficiently orthogonalize DPIE if one needs; and (4) Diverse Power Iteration Value (DPIV) provides the importance of each DPIE like an eigen value. As a result, such various aspects of DPIE and DPIV ensure that our algorithm is easy to apply to various applications, and we also show the effectiveness and efficiency of DPIE on clustering, anomaly detection, and feature selection as our case studies.« less

  8. 3D electromagnetic inversion for environmental site characterization

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1997-04-01

    A 3-D non-linear electromagnetic inversion scheme has been developed to produce images of subsurface conductivity structure from electromagnetic geophysical data. The solution is obtained by successive linearized model updates where full forward modeling is employed at each iteration to compute model sensitivities and predicted data. Regularization is applied to the problem to provide stability. Because the inverse part of the problem requires the solution of 10`s to 100`s of thousands of unknowns, and because each inverse iteration requires many forward models to be computed, the code has been implemented on massively parallel computer platforms. The use of the inversion code to image environmental sites is demonstrated on a data set collected with the Apex Parametrics {open_quote}MaxMin I-8S{close_quote} over a section of stacked barrels and metal filled boxes at the Idaho National Laboratory`s {open_quote}Cold Test Pit{close_quote}. The MaxMin is a loop-loop frequency domain system which operates from 440 Hz up to 56 kHz using various coil separations; for this survey coil separations of 15, 30 and 60 feet were employed. The out-of phase data are shown to be of very good quality while the in-phase are rather noisy due to slight mispositioning errors, which cause improper cancellation of the primary free space field in the receiver. Weighting the data appropriately by the estimated noise and applying the inversion scheme is demonstrated to better define the structure of the pit. In addition, comparisons are given for single coil separations and multiple separations to show the benefits of using multiple offset data.

  9. Coupling characteristics of the ITER-relevant lower hybrid antenna in Tore Supra: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X.; Achard, J.; Berger-By, G.; Belo, J.; Corbel, E.; Delpech, L.; Ohsako, T.; Prou, M.

    2011-02-01

    A new concept of lower hybrid antenna for current drive has been proposed for ITER (Bibet et al 1995 Nucl. Fusion 35 1213-23): the passive active multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has recently been installed on the tokamak Tore Supra. This paper summarizes the comprehensive experimental characterization of the coupling properties of the PAM antenna to the Tore Supra plasmas. In this paper, the electromagnetic properties of the antenna are measured at a reduced power (<1 MW) to allow a systematic comparison with linear wave coupling theory and the associated modelling based on the linear ALOHA code. In a wide range of edge electron densities at the antenna aperture (spanning a factor 20 from 0.5 × nc to 10 × nc where nc is the slow wave density cut-off, nc = 1.7 × 1017 m-3 at 3.7 GHz) and antenna phasing, the ALOHA simulations reproduce the experimental results observed on Tore Supra. In addition, reduced power reflection coefficients (<5%) are measured at a low edge density, close to nc, i.e. in the range 0.5-3 × nc. Measurement and analysis with ALOHA of the antenna-plasma scattering matrices provide explanation of the good coupling properties of the PAM antenna close to nc by highlighting the crucial role of the slow wave intercoupling between active and passive waveguides through the plasma edge. This detailed validation of the coupling modelling is an important step towards the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  10. Electromagnetic pion form factor

    SciTech Connect

    Roberts, C.D.

    1995-08-01

    A phenomenological Dyson-Schwinger/Bethe-Salpeter equation approach to QCD, formalized in terms of a QCD-based model field theory, the Global Color-symmetry Model (GCM), was used to calculate the generalized impulse approximation contribution to the electromagnetic pion form factor at space-like q{sup 2} on the domain [0,10] GeV{sup 2}. In effective field theories this form factor is sometimes understood as simply being due to Vector Meson Dominance (VMD) but this does not allow for a simple connection with QCD where the VMD contribution is of higher order than that of the quark core. In the GCM the pion is treated as a composite bound state of a confined quark and antiquark interacting via the exchange of colored vector-bosons. A direct study of the quark core contribution is made, using a quark propagator that manifests the large space-like-q{sup 2} properties of QCD, parameterizes the infrared behavior and incorporates confinement. It is shown that the few parameters which characterize the infrared form of the quark propagator may be chosen so as to yield excellent agreement with the available data. In doing this one directly relates experimental observables to properties of QCD at small space-like-q{sup 2}. The incorporation of confinement eliminates endpoint and pinch singularities in the calculation of F{sub {pi}}(q{sup 2}). With asymptotic freedom manifest in the dressed quark propagator the calculation yields q{sup 4}F{sub {pi}}(q{sup 2}) = constant, up to [q{sup 2}]- corrections, for space-like-q{sup 2} {approx_gt} 35 GeV{sup 2}, which indicates that soft, nonperturbative contributions dominate the form factor at presently accessible q{sup 2}. This means that the often-used factorization Ansatz fails in this exclusive process. A paper describing this work was submitted for publication. In addition, these results formed the basis for an invited presentation at a workshop on chiral dynamics and will be published in the proceedings.

  11. A unified noise analysis for iterative image estimation

    SciTech Connect

    Qi, Jinyi

    2003-07-03

    Iterative image estimation methods have been widely used in emission tomography. Accurate estimate of the uncertainty of the reconstructed images is essential for quantitative applications. While theoretical approach has been developed to analyze the noise propagation from iteration to iteration, the current results are limited to only a few iterative algorithms that have an explicit multiplicative update equation. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient type algorithms. One advantage is that proposed method does not require an explicit expression of the preconditioner and hence it is applicable to some algorithms that involve line searches. By deriving fixed point expression from the iteration based results, we show that the iteration based noise analysis is consistent with the xed point based analysis. Examples in emission tomography and transmission tomography are shown.

  12. Convergence Results on Iteration Algorithms to Linear Systems

    PubMed Central

    Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo

    2014-01-01

    In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640

  13. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  14. Holographic estimate of electromagnetic mass

    NASA Astrophysics Data System (ADS)

    Hong, Deog Ki

    2015-08-01

    Using the gauge/gravity duality, we calculate the electromagnetic contributions to hadron masses, where mass generates dynamically by strong QCD interactions. Based on the Sakai-Sugimoto model of holographic QCD we find that the electromagnetic mass of proton is 0.48 MeV larger than that of neutron, which is in agreement with recent lattice results. Similarly for pions we obtain m π± - m π 0 = 1.8 MeV, roughly half of the experimental value. The electromagnetic mass of pions is found to be independent of N c and 't Hooft coupling and its scale is set only by the Kaluza-Klein scale of the model, M KK = 949 MeV.

  15. Electron microscopy of electromagnetic waveforms

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Baum, P.

    2016-07-01

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  16. Un-renormalized classical electromagnetism

    SciTech Connect

    Ibison, Michael . E-mail: ibison@earthtech.org

    2006-02-15

    This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in that respect because its initial exclusion of self-action was later found to be untenable in the relativistic domain. Pursing the same end, this paper examines instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinite forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized.

  17. Dipole-induced electromagnetic transparency.

    PubMed

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric

    2014-10-17

    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

  18. Electromagnetic jets from compact objects

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1987-01-01

    The possibility that at least some astrophysical jets are initially electromagnetic in origin is examined. Subsequent pick-up of ionization would convert such electromagnetic jets into hydrodynamic jets. In such a model, relativistic outflow is formed into highly collimated beams simply through the interaction with the surrounding medium. Forming jets under such general circumstances is encouraging in view of the range of scales that appear to be involved. The overall properties of such jets are largely determined by a single dimensionless parameter: the characteristic electrostatic potential drop rewritten as a particle Lorentz factor. Consequently, the determination of any one observable, such as the total power output, also determines the particle energy scale, the electromagnetic field strengths, etc.

  19. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  20. Development and test of the ITER conductor joints

    SciTech Connect

    Martovetsky, N., LLNL

    1998-05-14

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.

  1. Alpha-physics and measurement requirements for ITER

    SciTech Connect

    Zweben, S.J.; Young, K.M.; Putvinski, S.; Petrov, M.P.; Sadler, G.; Tobita, K.

    1995-12-31

    This paper reviews alpha particle physics issues in ITER and their implications for alpha particle measurements. A comparison is made between alpha heating in ITER and NBI and ICRH heating systems in present tokamaks, and alpha particle issues in ITER are discussed in three physics areas: `single particle` alpha effects, `collective` alpha effects, and RF interactions with alpha particles. 29 refs., 4 figs., 4 tabs.

  2. Electromagnetic navigation during flexible bronchoscopy.

    PubMed

    Schwarz, Yehuda; Mehta, Atul C; Ernst, Armin; Herth, Felix; Engel, Ahuva; Besser, Doron; Becker, Heinrich D

    2003-01-01

    Flexible bronchoscopy is routinely utilized in the diagnosis and treatment of various lung diseases. Nondiagnostic bronchoscopy leads to more invasive interventions, such as transthoracic needle aspiration, mediastinoscopy or even thoracotomy. Electromagnetic navigation is a novel technology that facilitates approaching peripheral lung lesions, which are difficult to sample by conventional means. The navigation system involves creating an electromagnetic field around the chest and localizing an endoscopic tool using a microsensor overlaid upon previously acquired CT images. To determine the practicality, accuracy and safety of real-time electromagnetic navigation, coupled with previously acquired 3D CT images, in locating artificially created peripheral lung lesions in a swine model. Peripheral lung lesions were created in four swine models by insertion of a metal tube (1 x 10 mm) via a transthoracic approach. An electromagnetic field was created by placing the animal on an electromagnetic location board. A position sensor incorporated into the distal tip of a dedicated tool was used to navigate to the various target lesions. Information gathered in real time during bronchoscopy was presented on a monitor simultaneously by displaying previously acquired CT images. Upon reaching the target lesion, biopsies were performed and the functionality and safety of the superDimension/Bronchus System was observed and documented. The registration accuracy expressed by the fiducial target registration error, expressing both the registration quality and the stability of fiducial (registration) points, was 4.5 mm on average. No adverse effects, such as pneumothorax or internal bleeding, were encountered in any of the animals in this study. Real-time electromagnetic positioning technology coupled with previously acquired CT images is an accurate technology added to standard bronchoscopy to assist in reaching peripheral lung lesions and performing biopsies. Copyright 2003 S. Karger

  3. Efficient imaging of single-hole electromagnetic data

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Wilt, Mike

    2002-04-01

    The extended Born, or localized nonlinear (LN) approximation, of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is shown to be greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. The extended Born solution provides an efficient means for selecting an optimum regularization parameter, because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable at each iteration. In addition, the IE formulation readily contains a sensitivity matrix, which can be revised at each iteration at little expense. In this paper we show inversion results using synthetic and field data. The result from field data is compared with that of a 3-D inversion scheme.

  4. 3D reconstruction of the magnetic vector potential using model based iterative reconstruction

    DOE PAGES

    Prabhat, K. C.; Aditya Mohan, K.; Phatak, Charudatta; ...

    2017-07-03

    Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less

  5. Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Song, Zhiquan; Fu, Peng; Jiang, Li; Li, Jinchao; Wang, Min; Dong, Lin

    2016-10-01

    Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear Experimental Reactor (ITER) poloidal field (PF) converter system, shielding of the AC busbar is required to decrease the temperature rise of the surrounds to satisfy the design requirement. Three special types of AC busbar with natural cooling, air cooling and water cooling busbar structure have been proposed and investigated in this paper. For each cooling scheme, a 3D finite model based on the proposed structure has been developed to perform the electromagnetic and thermal analysis to predict their operation behavior. Comparing the analysis results of the three different cooling patterns, water cooling has more advantages than the other patterns and it is selected to be the thermal dissipation pattern for the AC busbar of ITER PF converter unit. The approach to qualify the suitable cooling scheme in this paper can be provided as a reference on the thermal dissipation design of AC busbar in the converter system. supported by National Natural Science Foundation of China (No. 51407179)

  6. Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER

    NASA Astrophysics Data System (ADS)

    Groebner, R. J.; Chang, C. S.; Hughes, J. W.; Maingi, R.; Snyder, P. B.; Xu, X. Q.; Boedo, J. A.; Boyle, D. P.; Callen, J. D.; Canik, J. M.; Cziegler, I.; Davis, E. M.; Diallo, A.; Diamond, P. H.; Elder, J. D.; Eldon, D. P.; Ernst, D. R.; Fulton, D. P.; Landreman, M.; Leonard, A. W.; Lore, J. D.; Osborne, T. H.; Pankin, A. Y.; Parker, S. E.; Rhodes, T. L.; Smith, S. P.; Sontag, A. C.; Stacey, W. M.; Walk, J.; Wan, W.; Wang, E. H.-J.; Watkins, J. G.; White, A. E.; Whyte, D. G.; Yan, Z.; Belli, E. A.; Bray, B. D.; Candy, J.; Churchill, R. M.; Deterly, T. M.; Doyle, E. J.; Fenstermacher, M. E.; Ferraro, N. M.; Hubbard, A. E.; Joseph, I.; Kinsey, J. E.; LaBombard, B.; Lasnier, C. J.; Lin, Z.; Lipschultz, B. L.; Liu, C.; Ma, Y.; McKee, G. R.; Ponce, D. M.; Rost, J. C.; Schmitz, L.; Staebler, G. M.; Sugiyama, L. E.; Terry, J. L.; Umansky, M. V.; Waltz, R. E.; Wolfe, S. M.; Zeng, L.; Zweben, S. J.

    2013-09-01

    Joint experiment/theory/modelling research has led to increased confidence in predictions of the pedestal height in ITER. This work was performed as part of a US Department of Energy Joint Research Target in FY11 to identify physics processes that control the H-mode pedestal structure. The study included experiments on C-Mod, DIII-D and NSTX as well as interpretation of experimental data with theory-based modelling codes. This work provides increased confidence in the ability of models for peeling-ballooning stability, bootstrap current, pedestal width and pedestal height scaling to make correct predictions, with some areas needing further work also being identified. A model for pedestal pressure height has made good predictions in existing machines for a range in pressure of a factor of 20. This provides a solid basis for predicting the maximum pedestal pressure height in ITER, which is found to be an extrapolation of a factor of 3 beyond the existing data set. Models were studied for a number of processes that are proposed to play a role in the pedestal ne and Te profiles. These processes include neoclassical transport, paleoclassical transport, electron temperature gradient turbulence and neutral fuelling. All of these processes may be important, with the importance being dependent on the plasma regime. Studies with several electromagnetic gyrokinetic codes show that the gradients in and on top of the pedestal can drive a number of instabilities.

  7. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  8. Electromagnetic suspension and levitation techniques

    NASA Astrophysics Data System (ADS)

    Jayawant, B. V.

    1988-04-01

    A comprehensive account is given of state-of-the-art and prospective electromagnetic and electromechanical suspension/levitation technologies, using both conventional and superconducting materials, with a view both to their performance improvements over differently grounded technologies and their economic feasibility. In addition to passenger-carrying vehicles, controlled DC electromagnet technologies have been applied to frictionless magnetic bearings, flow meters, conveyor systems, high-speed machine tool spindles, ultracentrifuges, turboalternators, corrosive-liquid pumps, gas compressors, high-vacuum pumps, and energy storage flywheels. Attention is given to the commercial prospects for devices based on superconducting magnets.

  9. Electromagnetic zonal flow residual responses

    NASA Astrophysics Data System (ADS)

    Catto, Peter J.; Parra, Felix I.; Pusztai, István

    2017-08-01

    The collisionless axisymmetric zonal flow residual calculation for a tokamak plasma is generalized to include electromagnetic perturbations. We formulate and solve the complete initial value zonal flow problem by retaining the fully self-consistent axisymmetric spatial perturbations in the electric and magnetic fields. Simple expressions for the electrostatic, shear and compressional magnetic residual responses are derived that provide a fully electromagnetic test of the zonal flow residual in gyrokinetic codes. Unlike the electrostatic potential, the parallel vector potential and the parallel magnetic field perturbations need not relax to flux functions for all possible initial conditions.

  10. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  11. Electromagnetic interference in critical care.

    PubMed

    Lapinsky, Stephen E; Easty, Anthony C

    2006-09-01

    Mobile communication and wireless data transmission are playing an increasing role in health care. Reports describing medical device malfunction related to cellular phones have raised awareness about the problem of electromagnetic interference. Although initial institutional responses were to ban cellular devices in hospitals, these restrictions are relaxing as the knowledge base in this area expands. Medical device malfunction is extremely rare if the distance from the transmitting device is greater than 1 m. This article reviews the current understanding of electromagnetic interference as it applies to the technology-rich critical care environment.

  12. Electromagnetic computations for fusion devices

    SciTech Connect

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs.

  13. ITER Cryoplant Status and Economics of the LHe plants

    NASA Astrophysics Data System (ADS)

    Monneret, E.; Chalifour, M.; Bonneton, M.; Fauve, E.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.

    The ITER cryoplant is composed of helium and nitrogen refrigerators and generator combined with 80 K helium loop plants and external purification systems. Storage and recovery of the helium inventory is provided in warm and cold (80 K and 4.5 K) helium tanks.The conceptual design of the ITER cryoplant has been completed, the technical requirements defined for industrial procurement and contracts signed with industry. Each contract covers the design, manufacturing, installation and commissioning. Design is under finalization and manufacturing has started. First deliveries are scheduled by end of 2015.The various cryoplant systems are designed based on recognized codes and international standards to meet the availability, the reliability and the time between maintenance imposed by the long-term uninterrupted operation of the ITER Tokamak. In addition, ITER has to consider the constraint of a nuclear installation.ITER Organization (IO) is responsible for the liquid helium (LHe) Plants contract signed end of 2012 with industry. It is composed of three LHe Plants, working in parallel and able to provide a total average cooling capacity of 75 kW at 4.5 K. Based on concept designed developed with industries and the procurement phase, ITER has accumulated data to broaden the scaling laws for costing such systems.After describing the status of ITER cryoplant part of the cryogenic system, we shall present the economics of the ITER LHe Plants based on key design requirements, choice and challenges of this ITER Organization procurement.

  14. The explosive divergence in iterative maps of matrices

    NASA Astrophysics Data System (ADS)

    Navickas, Zenonas; Ragulskis, Minvydas; Vainoras, Alfonsas; Smidtaite, Rasa

    2012-11-01

    The effect of explosive divergence in generalized iterative maps of matrices is defined and described using formal algebraic techniques. It is shown that the effect of explosive divergence can be observed in an iterative map of square matrices of order 2 if and only if the matrix of initial conditions is a nilpotent matrix and the Lyapunov exponent of the corresponding scalar iterative map is greater than zero. Computational experiments with the logistic map and the circle map are used to illustrate the effect of explosive divergence occurring in iterative maps of matrices.

  15. No-go theorem for iterations of unknown quantum gates

    NASA Astrophysics Data System (ADS)

    Soleimanifar, Mehdi; Karimipour, Vahid

    2016-01-01

    We propose a no-go theorem by proving the impossibility of constructing a deterministic quantum circuit that iterates a unitary oracle by calling it only once. Different schemes are provided to bypass this result and to approximately realize the iteration. The optimal scheme is also studied. An interesting observation is that for a large number of iterations, a trivial strategy like using the identity channel has the optimal performance, and preprocessing, postprocessing, or using resources like entanglement does not help at all. Intriguingly, the number of iterations, when being large enough, does not affect the performance of the proposed schemes.

  16. Unsupervised iterative detection of land mines in highly cluttered environments.

    PubMed

    Batman, Sinan; Goutsias, John

    2003-01-01

    An unsupervised iterative scheme is proposed for land mine detection in heavily cluttered scenes. This scheme is based on iterating hybrid multispectral filters that consist of a decorrelating linear transform coupled with a nonlinear morphological detector. Detections extracted from the first pass are used to improve results in subsequent iterations. The procedure stops after a predetermined number of iterations. The proposed scheme addresses several weaknesses associated with previous adaptations of morphological approaches to land mine detection. Improvement in detection performance, robustness with respect to clutter inhomogeneities, a completely unsupervised operation, and computational efficiency are the main highlights of the method. Experimental results reveal excellent performance.

  17. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  18. A synopsis of collective alpha effects and implications for ITER

    SciTech Connect

    Sigmar, D.J.

    1990-10-01

    This paper discusses the following: Alpha Interaction with Toroidal Alfven Eigenmodes; Alpha Interaction with Ballooning Modes; Alpha Interaction with Fishbone Oscillations; and Implications for ITER.

  19. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... to Radiofrequency Electromagnetic Fields; Reassessment of Exposure to Radiofrequency Electromagnetic..., and 95 Human Exposure to Radiofrequency Electromagnetic Fields AGENCY: Federal Communications... electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references...

  20. From the electromagnetic pulse to high-power electromagnetics

    NASA Astrophysics Data System (ADS)

    Baum, Carl E.

    1992-06-01

    This paper updates the published literature of the late 1970's concerning the development of requisite technology for the nuclear EMP. EMP has impacted a set of related areas that can be collectively referred to as high-power electromagnetics. This includes high-power microwaves, direct-strike lightning, and some aspects of transient radar.

  1. Bathymetry, electromagnetic streamlines and the marine controlled source electromagnetic method

    NASA Astrophysics Data System (ADS)

    Pethick, Andrew 12Harris, Brett

    2014-07-01

    Seafloor topography must influence the strength and direction of electromagnetic fields generated during deep ocean controlled source electromagnetic surveying. Neither mathematical equation nor rules of thumb provide a clear perspective of how changes in water column thickness alters electromagnetic fields that engulf hundreds of cubic kilometres of air, ocean, host and reservoir. We use streamline visualisation to provide a generalised representation of how electromagnetic fields propagate into a 2D geo-electrical setting that includes strong bathymetry. Of particular interest are: (i)' dead zones' where electric fields at the ocean floor are demonstrated to be weak and (ii) the 'airwave' that appears in the electric field streamlines as circulating vortices with a shape that is clearly influenced by changes in ocean depth. Our analysis of the distribution of electric fields for deep and shallow water examples alludes to potential benefits from placement of receivers and/or transmitters higher in the water column as is the case for towed receiver geometries. Real-time streamline representation probably holds the most value at the survey planning stage, especially for shallow water marine EM surveys where ocean bottom topography is likely to be consequential.

  2. Determination of Electromagnetic Source Direction as an Eigenvalue Problem

    NASA Astrophysics Data System (ADS)

    Martínez-Oliveros, Juan C.; Lindsey, Charles; Bale, Stuart D.; Krucker, Säm

    2012-07-01

    Low-frequency solar and interplanetary radio bursts are generated at frequencies below the ionospheric plasma cutoff and must therefore be measured in space, with deployable antenna systems. The problem of measuring both the general direction and polarization of an electromagnetic source is commonly solved by iterative fitting methods such as linear regression that deal simultaneously with both directional and polarization parameters. We have developed a scheme that separates the problem of deriving the source direction from that of determining the polarization, avoiding iteration in a multi-dimensional manifold. The crux of the method is to first determine the source direction independently of concerns as to its polarization. Once the source direction is known, its direct characterization in terms of Stokes vectors, in a single iteration if desired, is relatively simple. This study applies the source-direction determination to radio signatures of flares received by STEREO. We studied two previously analyzed radio type III bursts and found that the results of the eigenvalue decomposition technique are consistent with those obtained previously by Reiner et al. ( Solar Phys. 259, 255, 2009). For the type III burst observed on 7 December 2007, the difference in travel times from the derived source location to STEREO A and B is the same as the difference in the onset times of the burst profiles measured by the two spacecraft. This is consistent with emission originating from a single, relatively compact source. For the second event of 29 January 2008, the relative timing does not agree, suggesting emission from two sources separated by 0.1 AU, or perhaps from an elongated region encompassing the apparent source locations.

  3. Analysis of the ITER central solenoid insert (CSI) coil stability tests

    NASA Astrophysics Data System (ADS)

    Savoldi, L.; Bonifetto, R.; Breschi, M.; Isono, T.; Martovetsky, N.; Ozeki, H.; Zanino, R.

    2017-07-01

    At the end of the test campaign of the ITER Central Solenoid Insert (CSI) coil in 2015, after 16,000 electromagnetic (EM) cycles, some tests were devoted to the study of the conductor stability, through the measurement of the Minimum Quench Energy (MQE). The tests were performed by means of an inductive heater (IH), located in the high-field region of the CSI and wrapped around the conductor. The calorimetric calibration of the IH is presented here, aimed at assessing the energy deposited in the conductor for different values of the IH electrical operating conditions. The MQE of the conductor of the ITER CS module 3L can be estimated as ∼200 J ± 20%, deposited on the whole conductor on a length of ∼10 cm (the IH length) in ∼40 ms, at current and magnetic field conditions relevant for the ITER CS operation. The repartition of the energy deposited in the conductor under the IH is computed to be ∼10% in the cable and 90% in the jacket by means of a 3D Finite Elements EM model. It is shown how this repartition implies that the bundle (cable + helium) heat capacity is fully available for stability on the time scale of the tested disturbances. This repartition is used in input to the thermal-hydraulic analysis performed with the 4C code, to assess the capability of the model to accurately reproduce the stability threshold of the conductor. The MQE computed by the code for this disturbance is in good agreement with the measured value, with an underestimation within 15% of the experimental value.

  4. On the electromagnetic scattering from infinite rectangular conducting grids

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1985-01-01

    The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.

  5. [Methods of dosimetry in evaluation of electromagnetic fields' biological action].

    PubMed

    Rubtsova, N B; Perov, S Iu

    2012-01-01

    Theoretical and experimental dosimetry can be used for adequate evaluation of the effects of radiofrequency electromagnetic fields. In view of the tough electromagnetic environment in aircraft, pilots' safety is of particular topicality. The dosimetric evaluation is made from the quantitative characteristics of the EMF interaction with bio-objects depending on EM energy absorption in a unit of tissue volume or mass calculated as a specific absorbed rate (SAR) and measured in W/kg. Theoretical dosimetry employs a number of computational methods to determine EM energy, as well as the augmented method of boundary conditions, iterative augmented method of boundary conditions, moments method, generalized multipolar method, finite-element method, time domain finite-difference method, and hybrid methods combining several decision plans modeling the design philosophy of navigation, radiolocation and human systems. Because of difficulties with the experimental SAR estimate, theoretical dosimetry is regarded as the first step in analysis of the in-aircraft conditions of exposure and possible bio-effects.

  6. FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors

    SciTech Connect

    Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio

    2013-03-19

    Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclic loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.

  7. Modeling of an ITER Antenna Module, in Vacuum, and with Facing Plasma

    NASA Astrophysics Data System (ADS)

    Smithe, David; Carlsson, Johan; Austin, Travis; Stoltz, Peter; Karipides, Dan

    2009-11-01

    We report on the process of modeling the electromagnetic properties of a single ITER module, including Faraday screen, with the finite-difference time-domain software, VORPAL. CAD drawings and other descriptive materials are used to create an input file and geometry description suitable for EM modeling. Though finite-difference based, this software provides finite-element-like accuracy in the geometry representation, due to its cut-cell boundary capability. Parametric descriptions and enhancements are also used to resolve issues, add drive terms, and diagnostic features, and to insure reusability, e.g., for simulation of an entire antenna assembly in the future, and for installation into a larger toroidal-geometry simulation. Vacuum electromagnetic properties, such as peak fields and radiation impedance are measured, and compared with existing data, where possible. In addition, this software contains a time-domain plasma model that allows seamless integration with edge and possibly even internal plasma. An investigation of the electrical properties is then repeated for sensible edge plasma parameters.

  8. ITER L-mode confinement database

    SciTech Connect

    Kaye, S.M.

    1997-10-06

    This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated only (OH). Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER.

  9. Robust tooth surface reconstruction by iterative deformation.

    PubMed

    Jiang, Xiaotong; Dai, Ning; Cheng, Xiaosheng; Wang, Jun; Peng, Qingjin; Liu, Hao; Cheng, Cheng

    2016-01-01

    Digital design technologies have been applied extensively in dental medicine, especially in the field of dental restoration. The all-ceramic crown is an important restoration type of dental CAD systems. This paper presents a robust tooth surface reconstruction algorithm for all-ceramic crown design. The algorithm involves three necessary steps: standard tooth initial positioning and division; salient feature point extraction using Morse theory; and standard tooth deformation using iterative Laplacian Surface Editing and mesh stitching. This algorithm can retain the morphological features of the tooth surface well. It is robust and suitable for almost all types of teeth, including incisor, canine, premolar, and molar. Moreover, it allows dental technicians to use their own preferred library teeth for reconstruction. The algorithm has been successfully integrated in our Dental CAD system, more than 1000 clinical cases have been tested to demonstrate the robustness and effectiveness of the proposed algorithm.

  10. ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION

    SciTech Connect

    Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

    2009-06-11

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  11. ITER Central Solenoid Coil Insulation Qualification

    SciTech Connect

    Martovetsky, Nicolai N; Mann Jr, Thomas Latta; Miller, John L; Freudenberg, Kevin D; Reed, Richard P; Walsh, Robert P; McColskey, J D; Evans, D

    2010-01-01

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  12. Electron Cyclotron Emission Diagnostics on ITER

    NASA Astrophysics Data System (ADS)

    Ellis, Richard; Austin, Max; Phillips, Perry; Rowan, William; Beno, Joseph; Auroua, Abelhamid; Feder, Russell; Patel, Ashish; Hubbard, Amanda; Pandya, Hitesh

    2010-11-01

    Electron cyclotron emission (ECE) will be employed on ITER to measure the radial profile of electron temperature and non thermal features of the electron distribution as well as measurements of ELMs, magnetic islands, high frequency instabilities, and turbulence. There are two quasioptical systems, designed with Gaussian beam analysis. One view is radial, primarily for temperature profile measurement, the other views at a small angle to radial for measuring non-thermal emission. Radiation is conducted to by a long corrugated waveguide to a multichannel Michelson interferometer which provides wide wavelength coverage but limited time response as well as two microwave radiometers which cover the fundamental and second harmonic ECE and provide excellent time response. Measurements will be made in both X and O mode. In-situ calibration is provided by a novel hot calibration source. We discuss spatial resolution and the implications for physics studies.

  13. Robot Calibration Using Iteration and Differential Kinematics

    NASA Astrophysics Data System (ADS)

    Ye, S. H.; Wang, Y.; Ren, Y. J.; Li, D. K.

    2006-10-01

    In the applications of seam laser tracking welding robot and general measuring robot station based on stereo vision, the robot calibration is the most difficult step during the whole system calibration progress. Many calibration methods were put forward, but the exact location of base frame has to be known no matter which method was employed. However, the accurate base frame location is hard to be known. In order to obtain the position of base coordinate, this paper presents a novel iterative algorithm which can also get parameters' deviations at the same time. It was a method of employing differential kinematics to solve link parameters' deviations and approaching real values step-by-step. In the end, experiment validation was provided.

  14. Iterative restoration of SPECT projection images

    NASA Astrophysics Data System (ADS)

    Glick, S. J.; Xia, Weishi

    1997-04-01

    Photon attenuation and the limited nonstationary spatial resolution of the detector can reduce both qualitative and quantitative image quality in single photon emission computed tomography (SPECT). In this paper, a reconstruction approach is described which can compensate for both of these degradations. The approach involves processing the projection data with Bellini's method for attenuation compensation followed by an iterative deconvolution technique which uses the frequency distance principle (FDP) to model the distance-dependent camera blur. Modeling of the camera blur with the FDP allows an efficient implementation using fast Fourier transform (FFT) methods. After processing of the projection data, reconstruction is performed using filtered backprojection. Simulation studies using two different brain phantoms show that this approach gives reconstructions with a favorable bias versus noise tradeoff, provides no visually undesirable noise artifacts, and requires a low computational load.

  15. Iterative methods for Toeplitz-like matrices

    SciTech Connect

    Huckle, T.

    1994-12-31

    In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.

  16. Structural analysis of ITER magnet feeders

    SciTech Connect

    Ilyin, Yuri; Gung, Chen-Yu; Bauer, Pierre; Chen, Yonghua; Jong, Cornelis; Devred, Arnaud; Mitchell, Neil; Lorriere, Philippe; Farek, Jaromir; Nannini, Matthieu

    2012-06-15

    This paper summarizes the results of the static structural analyses, which were conducted in support of the ITER magnet feeder design with the aim of validating certain components against the structural design criteria. While almost every feeder has unique features, they all share many common constructional elements and the same functional specifications. The analysis approach to assess the load conditions and stresses that have driven the design is equivalent for all feeders, except for particularities that needed to be modeled in each case. The mechanical analysis of the feeders follows the sub-modeling approach: the results of the global mechanical model of a feeder assembly are used as input for the detailed models of the feeder' sub-assemblies or single components. Examples of such approach, including the load conditions, stress assessment criteria and solutions for the most critical components, are discussed. It has been concluded that the feeder system is safe in the referential operation scenarios. (authors)

  17. ITER L-Mode Confinement Database

    SciTech Connect

    S.M. Kaye and the ITER Confinement Database Working Group

    1997-10-01

    This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated (OH) only. Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L-mode thermal confinement time scaling was determined from a subset of 1312 entries for which the thermal confinement time scaling was provided.

  18. Orbit of an image under iterated system

    NASA Astrophysics Data System (ADS)

    Singh, S. L.; Mishra, S. N.; Jain, Sarika

    2011-03-01

    An orbital picture depicts the path of an object under semi-group of transformations. The concept initially given by Barnsley [3] has utmost importance in image compression, biological modeling and other areas of fractal geometry. In this paper, we introduce superior iterations to study the role of linear and nonlinear transformations on the orbit of an object. Various characteristics of the computed figures have been discussed to indicate the usefulness of study in mathematical analysis. Modified algorithms are given to compute the orbital picture and V-variable orbital picture. An algorithm to calculate the distance between images makes the study motivating. A brief discussion about the proof of the Cauchy sequence of images is also given.

  19. Chaos automata: iterated function systems with memory

    NASA Astrophysics Data System (ADS)

    Ashlock, Dan; Golden, Jim

    2003-07-01

    Transforming biological sequences into fractals in order to visualize them is a long standing technique, in the form of the traditional four-cornered chaos game. In this paper we give a generalization of the standard chaos game visualization for DNA sequences. It incorporates iterated function systems that are called under the control of a finite state automaton, yielding a DNA to fractal transformation system with memory. We term these fractal visualizers chaos automata. The use of memory enables association of widely separated sequence events in the drawing of the fractal, finessing the “forgetfulness” of other fractal visualization methods. We use a genetic algorithm to train chaos automata to distinguish introns and exons in Zea mays (corn). A substantial issue treated here is the creation of a fitness function that leads to good visual separation of distinct data types.

  20. Plasma-sprayed beryllium for ITER

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Youchison, D.L.; Watson, R.D.; Walsh, D.S.

    1995-12-31

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and negative transferred-arc cleaning to prepare beryllium surfaces prior to depositing beryllium. Information will also b presented on thermal fatigue tests which were performed on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.