Overlap Functions for Measures in Conformal Iterated Function Systems
NASA Astrophysics Data System (ADS)
Mihailescu, Eugen; Urbański, Mariusz
2016-01-01
We employ thermodynamic formalism for the study of conformal iterated function systems (IFS) S = {φ _i}_{i in I} with arbitrary overlaps, and of measures μ on limit sets Λ , which are projections of equilibrium measures hat{μ } with respect to a certain lift map Φ on Σ _I^+ × Λ . No type of Open Set Condition is assumed. We introduce a notion of overlap function and overlap number for such a measure hat{μ } with respect to S; and, in particular a notion of (topological) overlap number o(S). These notions take in consideration the n-chains between points in the limit set. We prove that o(S, hat{μ }) is related to a conditional entropy of hat{μ } with respect to the lift Φ . Various types of projections to Λ of invariant measures are studied. We obtain upper estimates for the Hausdorff dimension HD(μ ) of μ on Λ , by using pressure functions and o(S, hat{μ }). In particular, this applies to projections of Bernoulli measures on Σ _I^+. Next, we apply the results to Bernoulli convolutions ν _λ for λ in (1/2, 1), which correspond to self-similar measures determined by composing, with equal probabilities, the contractions of an IFS with overlaps S_λ . We prove that for all λ in (1/2, 1), there exists a relation between HD(ν _λ ) and the overlap number o(S_λ ). We also estimate o(S_λ ) for certain values of λ.
Process Flow and Functional Analysis of the Iter Cryogenic System
NASA Astrophysics Data System (ADS)
Henry, D.; Chalifour, M.; Forgeas, A.; Kalinin, V.; Monneret, E.; Serio, L.; Vincent, G.; Voigt, T.
2010-04-01
The ITER cryogenic system is presently under design by a large international collaboration. It will start commissioning at Cadarache, south of France in 2015. The system is designed to provide an equivalent refrigeration capacity of 65 kW at 4.5 K for the superconducting magnet and 1300 kW at 80 K for the cryoplant pre-cooling stages and the Cryostat Thermal Shields (CTS). The cryoplant consists of three 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. Two 4.5 K modules are dedicated to the magnet system and a small one is devoted to the cryopumps and Pellet Injection System. One Interconnection box interfaces the cryoplant and a complex cryodistribution system which includes 5 Auxiliary Cold Boxes dedicated to each cryogenic subsystem. The ITER cryogenic system will have to cope with various normal and abnormal operational modes including superconducting magnets quench recovery and fast energy discharge. We will present the general Process Flow Diagram of the cryoplant and cryodistribution system and the operation requirements. The functional analysis of the cryogenic system will be performed leading to a proposal of the cryogenic control system architecture. The instrumentation and control requirements will also be outlined.
NASA Astrophysics Data System (ADS)
Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei
2016-08-01
The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.
NASA Astrophysics Data System (ADS)
Urbański, Mariusz
2016-03-01
Dealing with with countable (finite and infinite alike) alphabet random conformal iterated function systems with overlaps, we formulate appropriate transversality conditions and then prove the relevant, in such a context, the Moran-Bowen formula which determines the Hausdorff dimension of random limit sets in dynamical terms. We also provide large classes of examples of such random systems satisfying the transversality condition.
Long, J.C.S.; Doughty, C.; Hestir, K.; Martel, S.
1992-05-01
Fractured and heterogeneous reservoirs are complex and difficult to characterize. In many cases, the modeling approaches used for making predictions of behavior in such reservoirs have been unsatisfactory. In this paper we describe a new modeling approach which results in a model that has fractal-like qualities. This is an inverse approach which uses observations of reservoir behavior to create a model that can reproduce observed behavior. The model is described by an iterated function system (IFS) that creates a fractal-like object that can be mapped into a conductivity distribution. It may be possible to identify subclasses of Iterated Function Systems which describe geological facies. By limiting the behavior-based search for an IFS to the geologic subclasses, we can condition the reservoir model on geologic information. This technique is under development, but several examples provide encouragement for eventual application to reservoir prediction.
NASA Astrophysics Data System (ADS)
Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.
2014-06-01
The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.
ODE System Solver W. Krylov Iteration & Rootfinding
Hindmarsh, Alan C.
1991-09-09
LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration, LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.
ODE System Solver W. Krylov Iteration & Rootfinding
1991-09-09
LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less
iPFPi: A System for Improving Protein Function Prediction through Cumulative Iterations.
Taha, Kamal; Yoo, Paul D; Alzaabi, Mohammed
2015-01-01
We propose a classifier system called iPFPi that predicts the functions of un-annotated proteins. iPFPi assigns an un-annotated protein P the functions of GO annotation terms that are semantically similar to P. An un-annotated protein P and a GO annotation term T are represented by their characteristics. The characteristics of P are GO terms found within the abstracts of biomedical literature associated with P. The characteristics of Tare GO terms found within the abstracts of biomedical literature associated with the proteins annotated with the function of T. Let F and F/ be the important (dominant) sets of characteristic terms representing T and P, respectively. iPFPi would annotate P with the function of T, if F and F/ are semantically similar. We constructed a novel semantic similarity measure that takes into consideration several factors, such as the dominance degree of each characteristic term t in set F based on its score, which is a value that reflects the dominance status of t relative to other characteristic terms, using pairwise beats and looses procedure. Every time a protein P is annotated with the function of T, iPFPi updates and optimizes the current scores of the characteristic terms for T based on the weights of the characteristic terms for P. Set F will be updated accordingly. Thus, the accuracy of predicting the function of T as the function of subsequent proteins improves. This prediction accuracy keeps improving over time iteratively through the cumulative weights of the characteristic terms representing proteins that are successively annotated with the function of T. We evaluated the quality of iPFPi by comparing it experimentally with two recent protein function prediction systems. Results showed marked improvement. PMID:26357323
Chang, H T; Kuo, C J
1998-03-10
An optical parallel architecture for the random-iteration algorithm to decode a fractal image by use of iterated-function system (IFS) codes is proposed. The code value is first converted into transmittance in film or a spatial light modulator in the optical part of the system. With an optical-to-electrical converter, electrical-to-optical converter, and some electronic circuits for addition and delay, we can perform the contractive affine transformation (CAT) denoted in IFS codes. In the proposed decoding architecture all CAT's generate points (image pixels) in parallel, and these points then are joined for display purposes. Therefore the decoding speed is improved greatly compared with existing serial-decoding architectures. In addition, an error and stability analysis that considers nonperfect elements is presented for the proposed optical system. Finally, simulation results are given to validate the proposed architecture. PMID:18268718
NASA Astrophysics Data System (ADS)
Galatolo, Stefano; Monge, Maurizio; Nisoli, Isaia
2016-07-01
We study the problem of the rigorous computation of the stationary measure and of the rate of convergence to equilibrium of an iterated function system described by a stochastic mixture of two or more dynamical systems that are either all uniformly expanding on the interval, either all contracting. In the expanding case, the associated transfer operators satisfy a Lasota–Yorke inequality, we show how to compute a rigorous approximations of the stationary measure in the L 1 norm and an estimate for the rate of convergence. The rigorous computation requires a computer-aided proof of the contraction of the transfer operators for the maps, and we show that this property propagates to the transfer operators of the IFS. In the contracting case we perform a rigorous approximation of the stationary measure in the Wasserstein–Kantorovich distance and rate of convergence, using the same functional analytic approach. We show that a finite computation can produce a realistic computation of all contraction rates for the whole parameter space. We conclude with a description of the implementation and numerical experiments. All the authors were partially supported by ICTP and by EU Marie-Curie IRSES Brazilian–European partnership in Dynamical Systems (FP7-PEOPLE-2012-IRSES 318999 BREUDS), SG thanks The Leverhulme Trust for support through Network Grant IN-2014-021.
ITER Plasma Control System Development
NASA Astrophysics Data System (ADS)
Snipes, Joseph; ITER PCS Design Team
2015-11-01
The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.
Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.
2009-11-26
A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several
NASA Astrophysics Data System (ADS)
Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.
2009-11-01
A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams
ITER Disruption Mitigation System Design
NASA Astrophysics Data System (ADS)
Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.
2015-11-01
The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.
ITER Construction--Plant System Integration
Tada, E.; Matsuda, S.
2009-02-19
This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.
Space-filling curves of self-similar sets (I): iterated function systems with order structures
NASA Astrophysics Data System (ADS)
Rao, Hui; Zhang, Shu-Qin
2016-07-01
This paper is the first part of a series which provides a systematic treatment of the space-filling curves of self-similar sets. In the present paper, we introduce a notion of linear graph-directed IFS (linear GIFS in short). We show that to construct a space-filling curve of a self-similar set, it amounts to exploring its linear GIFS structures. Compared to the previous methods, such as the L-system or recurrent set method, the linear GIFS approach is simpler, more rigorous and leads to further studies on this topic. We also propose a new algorithm for the beautiful visualization of space-filling curves. In a series of papers Dai et al (2015 arXiv:1511.05411 [math.GN]), Rao and Zhang (2015) and Rao and Zhang (2015), we investigate for a given self-similar set how to get ‘substitution rules’ for constructing space-filling curves, which was obscure in the literature. We solve the problem for self-similar sets of finite type, which covers most of the known results on constructions of space-filling curves.
Iteration of Complex Functions and Newton's Method
ERIC Educational Resources Information Center
Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer
2009-01-01
This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…
Constructing Easily Iterated Functions with Interesting Properties
ERIC Educational Resources Information Center
Sprows, David J.
2009-01-01
A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…
Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.
1988-04-01
A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.
ITER Ion Cyclotron Heating and Fueling Systems
Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.
2005-04-15
The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.
Generalized iterative deconvolution for receiver function estimation
NASA Astrophysics Data System (ADS)
Wang, Yinzhi; Pavlis, Gary L.
2016-02-01
This paper describes a generalization of the iterative deconvolution method commonly used as a component of passive array wavefield imaging. We show that the iterative method should be thought of as a sparse output deconvolution method with the number of terms retained dependent on the convergence criteria. The generalized method we introduce uses an inverse operator to shape the assumed wavelet to a peaked function at zero lag. We show that the conventional method is equivalent to using a damped least-squares spiking filter with extremely large damping and proper scaling. In that case, the inverse operator used in the generalized method reduces to the cross-correlation operator. The theoretical insight of realizing the output is a sparse series provides a basis for the second important addition of the generalized method-an output shaping wavelet. A constant output shaping wavelet is a critical component in scattered wave imaging to avoid mixing data of variable bandwidth. We demonstrate the new approach can improve resolution by using an inverse operator tuned to maximize resolution. We also show that the signal-to-noise ratio of the result can be improved by applying a different convergence criterion than the standard method, which measures the energy left after each iteration. The efficacy of the approach was evaluated with synthetic experiment in various signal and noise conditions. We further validated the approach with real data from the USArray. We compared our results with data from the EarthScope Automated Receiver Survey and found that our results show modest improvements in consistency measured by correlation coefficients with station stacks and a reduced number of outliers.
An iterative method for systems of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1989-01-01
An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.
NASA Astrophysics Data System (ADS)
Iotti, Robert
2015-04-01
ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success
Development of pellet injection systems for ITER
Combs, S.K.; Gouge, M.J.; Baylor, L.R.
1995-12-31
Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application.
Lousteau, D.C.
1994-09-01
The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.
First mirrors for diagnostic systems of ITER
NASA Astrophysics Data System (ADS)
Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics
2007-08-01
The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.
A first characterization of the quench detection system for ITER
Marinucci, C.; Bottura, L. |; Pourrahimi, S.
1995-03-01
The purpose of this paper is to assess the expected response of conventional and non-conventional quench detection sensors proposed for the ITER coils, and to be tested in the QUELL experiment in SULTAN. The assessment is based on simulation of thermohydraulic transients in the ITER coils for various operating conditions, and a tentative definition of the transfer functions of each sensor concept. It is shown that, for the investigated conditions, the co-wound voltage taps are more accurate than hydraulic systems and conventional voltage balance methods. The additional complication associated with the insertion of taps in the conductor is well offset by the low sensitivity to external disturbances.
Iterative solution of high order compact systems
Spotz, W.F.; Carey, G.F.
1996-12-31
We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.
ITER diagnostic systems in development in Ioffe Institute
Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.
2014-08-21
Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.
Fuzzy logic components for iterative deconvolution systems
NASA Astrophysics Data System (ADS)
Northan, Brian M.
2013-02-01
Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.
Circadian gating of neuronal functionality: a basis for iterative metaplasticity.
Iyer, Rajashekar; Wang, Tongfei A; Gillette, Martha U
2014-01-01
Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN), the central circadian (~24-h) clock, experience with light at night induces changes in neuronal state, leading to circadian plasticity. The SCN's endogenous ~24-h time-generator comprises a dynamic series of functional states, which gate plastic responses. This restricts light-induced alteration in SCN state-dynamics and outputs to the nighttime. Endogenously generated circadian oscillators coordinate the cyclic states of excitability and intracellular signaling molecules that prime SCN receptivity to plasticity signals, generating nightly windows of susceptibility. We propose that this constitutes a paradigm of ~24-h iterative metaplasticity, the repeated, patterned occurrence of susceptibility to induction of neuronal plasticity. We detail effectors permissive for the cyclic susceptibility to plasticity. We consider similarities of intracellular and membrane mechanisms underlying plasticity in SCN circadian plasticity and in hippocampal long-term potentiation (LTP). The emerging prominence of the hippocampal circadian clock points to iterative metaplasticity in that tissue as well. Exploring these links holds great promise for understanding circadian shaping of synaptic plasticity, learning, and memory. PMID:25285070
NITSOL: A Newton iterative solver for nonlinear systems
Pernice, M.; Walker, H.F.
1996-12-31
Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.
Thomson scattering diagnostic systems in ITER
NASA Astrophysics Data System (ADS)
Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.
2016-01-01
Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8
ITER fuel storage system conceptual design description
Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.
1990-01-01
Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.
Design Evolution and Analysis of the ITER Cryostat Support System
NASA Astrophysics Data System (ADS)
Xie, Han; Song, Yuntao; Wang, Songke
2015-12-01
The cryostat is a vacuum tight container enveloping the entire basic systems of the ITER tokamak machine, including a vacuum vessel, a superconducting magnet and thermal shield etc. It is evacuated to a pressure of 10-4 Pa to limit the heat transfer via gas conduction and convection to the cryogenically cooled components. Another important function of cryostat is to support all the loads from the tokamak to the concrete floor of the pit by its support system during different operational regimes and accident scenarios. This paper briefly presents the design evolution and associated analysis of the cryostat support system and the structural interface with the building.
Biometric identification using local iterated function
NASA Astrophysics Data System (ADS)
Al-Saidi, N. M. G.; Said, M. R. M.
2014-06-01
Biometric identification protocol has been received an increasing interest recently. It is a process that determines person identity by making use of their biometric features. A new biometric identification method is presented in this paper based on partial self-similarity that used to identify features within fingerprint images. This approach is already used in Fractal Image Compression (FIC) due to their ability to represent the images by a limited number of affine transformations, and its variation of scale, translation or rotation. These features give the recognition process high impact and good performance. To process data in a fingerprint image, it first converted into digital format using Optical Fingerprint Reader (OFR). The verification process is done by comparing these data with the server data. The system analysis shows that the proposed method is efficient in terms of memory and time complexity.
Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.
Liu, Derong; Wei, Qinglai
2014-03-01
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method. PMID:24807455
Convergence Results on Iteration Algorithms to Linear Systems
Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo
2014-01-01
In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640
Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1982-01-01
Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.
Conference on iterative methods for large linear systems
Kincaid, D.R.
1988-12-01
This conference is dedicated to providing an overview of the state of the art in the use of iterative methods for solving sparse linear systems with an eye to contributions of the past, present and future. The emphasis is on identifying current and future research directions in the mainstream of modern scientific computing. Recently, the use of iterative methods for solving linear systems has experienced a resurgence of activity as scientists attach extremely complicated three-dimensional problems using vector and parallel supercomputers. Many research advances in the development of iterative methods for high-speed computers over the past forty years are reviewed, as well as focusing on current research.
An iterative method for indefinite systems of linear equations
NASA Technical Reports Server (NTRS)
Ito, K.
1984-01-01
An iterative method for solving nonsymmetric indefinite linear systems is proposed. The method involves the successive use of a modified version of the conjugate residual method. A numerical example is given to illustrate the method.
Iterative development of visual control systems in a research vivarium.
Bassuk, James A; Washington, Ida M
2014-01-01
The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI) methodology, a lean approach to management at Seattle Children's (Hospital, Research Institute, Foundation), would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart's Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and selected Principles
Iterative Development of Visual Control Systems in a Research Vivarium
Bassuk, James A.; Washington, Ida M.
2014-01-01
The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI) methodology, a lean approach to management at Seattle Children’s (Hospital, Research Institute, Foundation), would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart’s Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and selected
Iterative diagonalization for orbital optimization in natural orbital functional theory.
Piris, M; Ugalde, J M
2009-10-01
A challenging task in natural orbital functional theory is to find an efficient procedure for doing orbital optimization. Procedures based on diagonalization techniques have confirmed its practical value since the resulting orbitals are automatically orthogonal. In this work, a new procedure is introduced, which yields the natural orbitals by iterative diagonalization of a Hermitian matrix F. The off-diagonal elements of the latter are determined explicitly from the hermiticity of the matrix of the Lagrange multipliers. An expression for diagonal elements is absent so a generalized Fockian is undefined in the conventional sense, nevertheless, they may be determined from an aufbau principle. Thus, the diagonal elements are obtained iteratively considering as starting values those coming from a single diagonalization of the matrix of the Lagrange multipliers calculated with the Hartree-Fock orbitals after the occupation numbers have been optimized. The method has been tested on the G2/97 set of molecules for the Piris natural orbital functional. To help the convergence, we have implemented a variable scaling factor which avoids large values of the off-diagonal elements of F. The elapsed times of the computations required by the proposed procedure are compared with a full sequential quadratic programming optimization, so that the efficiency of the method presented here is demonstrated. PMID:19219918
Selecting the projection functions used in an iterative Gabor expansion
NASA Astrophysics Data System (ADS)
Braithwaite, R. N.; Beddoes, Michael P.
1993-11-01
This paper discusses the selection of projection functions used in an iterative implementation of the Gabor expansion. We show that the optimal support-limited projection function corresponds to a truncated version of Bastiaans' biorthonormal projection function for the case of a harmonic lattice. For various support widths, the lower bound of the optimal convergence factor is calculated. It is shown that Gabor's original projection function, which corresponds to the central lobe of Bastiaans' biorthonormal projection function, is truncated too severely, producing a significant overlap with elementary functions from high frequency channels. As a result, the lower bound for the optimal convergence factor and the rate of convergence will approach zero as the signal bandwidth (and the highest frequency Gabor channel) is increased. This work also determines the lower bound of the optimal convergence factor for projection functions implemented using log-polar lattices. For both the harmonic and log-polar lattices, we investigate the trade-off between spread of convergence and the size of the projection function.
Linear Fitted-Q Iteration with Multiple Reward Functions
Lizotte, Daniel J.; Bowling, Michael; Murphy, Susan A.
2013-01-01
We present a general and detailed development of an algorithm for finite-horizon fitted-Q iteration with an arbitrary number of reward signals and linear value function approximation using an arbitrary number of state features. This includes a detailed treatment of the 3-reward function case using triangulation primitives from computational geometry and a method for identifying globally dominated actions. We also present an example of how our methods can be used to construct a real-world decision aid by considering symptom reduction, weight gain, and quality of life in sequential treatments for schizophrenia. Finally, we discuss future directions in which to take this work that will further enable our methods to make a positive impact on the field of evidence-based clinical decision support. PMID:23741197
Chevron beam dump for ITER edge Thomson scattering system.
Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K
2013-10-01
This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated. PMID:24182106
Chevron beam dump for ITER edge Thomson scattering system
Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.
2013-10-15
This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.
Iterative least squares method for global positioning system
NASA Astrophysics Data System (ADS)
He, Y.; Bilgic, A.
2011-08-01
The efficient implementation of positioning algorithms is investigated for Global Positioning System (GPS). In order to do the positioning, the pseudoranges between the receiver and the satellites are required. The most commonly used algorithm for position computation from pseudoranges is non-linear Least Squares (LS) method. Linearization is done to convert the non-linear system of equations into an iterative procedure, which requires the solution of a linear system of equations in each iteration, i.e. linear LS method is applied iteratively. CORDIC-based approximate rotations are used while computing the QR decomposition for solving the LS problem in each iteration. By choosing accuracy of the approximation, e.g. with a chosen number of optimal CORDIC angles per rotation, the LS computation can be simplified. The accuracy of the positioning results is compared for various numbers of required iterations and various approximation accuracies using real GPS data. The results show that very coarse approximations are sufficient for reasonable positioning accuracy. Therefore, the presented method reduces the computational complexity significantly and is highly suited for hardware implementation.
On the JET ITER-Like ICRF antenna and implications for the ICRF system for ITER
NASA Astrophysics Data System (ADS)
Durodie, Frederic; Nightingale, Mark
2009-11-01
A new ``ITER-Like'' Ion Cyclotron Resonance Frequency (ICRF) antenna was installed on the JET tokamak in 2007 and extensively operated on plasma since May 2008 for a wide range of conditions (frequencies: 33, 42 and 47 MHz, L- and ELMy H-mode plasmas, antenna strap - plasma separatrix distances from 9 to 17 cm). Aspects relating to the potential performance and design of the ITER system, will be discussed: (i) the wave coupling performance and validation of the TOPICA modelling code used to predict the coupled power in ITER; (ii) the operation at high coupled power density (up to 6.2 MW/m^2 in L-mode, 4.1 MW/m^2 in H-mode) and high RF voltage on the antenna structure (up to 42 kV); (iii) the coupling of ICRF power during fast variations (ms) in coupling occurring during ELMs and (iv) antenna control in the presence of high mutual coupling between antenna straps.
Optimization of the ITER EC H&CD functional capabilities while relaxing the engineering constraints
NASA Astrophysics Data System (ADS)
Farina, D.; Henderson, M.; Figini, L.; Saibene, G.; Goodman, T.; Kajiwara, K.; Omori, T.; Poli, E.; Strauss, D.; Takahashi, K.
2014-02-01
The work on optimization of the ECH&CD system in ITER is presented with focus on its functional capabilities. Since the conceptual design of the system it has evolved both in goals and functionalities, by considering an expanded range of H&CD applications. A large effort has been devoted to a better integration of the two types of launcher, the equatorial and the upper, both from the point of view of the performance and the impact on the engineering constraints of the design.
NASA Astrophysics Data System (ADS)
Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun
2016-04-01
In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.
Status of the ITER ICRF system design - 'Externally Matched' approach
Lamalle, P. U.; Dumortier, P.; Durodie, F.; Evrard, M.; Louche, F.; Messiaen, A.; Vervier, M.; Shannon, M.; Borthwick, A.; Chuilon, B.; Nightingale, M.; Goulding, R.; Swain, D.
2007-09-28
The design of the ITER ICRF system has been under revision for several years. The paper presents the status of the design proposal based on a 24 strap antenna plug (6 poloidal by 4 toroidal short radiating conductors) in which the straps are passively combined in 8 poloidal triplets by means of 4-port junctions. These triplets are connected in parallel pairwise through matching elements to form 4 load-resilient conjugate-T circuits. All adjustable matching elements are located outside the plug, i.e. in the ITER port cell and in the generator area.
Arc detection for the ICRF system on ITER
NASA Astrophysics Data System (ADS)
D'Inca, R.
2011-12-01
The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.
A new iterative model updating method using incomplete frequency response function data
NASA Astrophysics Data System (ADS)
Gang, Xianyue; Chai, Shan; Allemang, Randall J.; Li, Lijun
2014-04-01
A new iterative model updating method is proposed for reduced model using incomplete frequency response function (FRF) data. It uses a modified difference vector between the analytical and experimental FRF data to construct a linear sensitivity updating equation system. To improve the convergence performance of the proposed algorithm, a concept of pseudo master degree-of-freedom (DOF) is put forward and the finite element (FE) model is reduced to the measured and user selected pseudo DOFs. The FRFs at pseudo master DOFs are estimated using the impedance matrix of iteratively modified analytical model and the measured FRFs at master DOFs. They are only used to improve the sensitivity matrix and difference calculation between the analytical and experimental FRF data without introducing additional difference equation. At the end, a 25 truss structure is used to evaluate the performance of the proposed method.
Hierarchical models and iterative optimization of hybrid systems
NASA Astrophysics Data System (ADS)
Rasina, Irina V.; Baturina, Olga V.; Nasatueva, Soelma N.
2016-06-01
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
NASA Technical Reports Server (NTRS)
Reed, D. A.; Patrick, M. L.
1985-01-01
The applicability of static data flow architectures to the iterative solution of sparse linear systems of equations is investigated. An analytic performance model of a static data flow computation is developed. This model includes both spatial parallelism, concurrent execution in multiple PE's, and pipelining, the streaming of data from array memories through the PE's. The performance model is used to analyze a row partitioned iterative algorithm for solving sparse linear systems of algebraic equations. Based on this analysis, design parameters for the static data flow architecture as a function of matrix sparsity and dimension are proposed.
RAMI Analyses of Heating Neutral Beam and Diagnostic Neutral Beam Systems for ITER
NASA Astrophysics Data System (ADS)
Chang, D. H.; Lee, S.; Hemsworth, R.; van Houtte, D.; Okayama, K.; Sagot, F.; Schunke, B.; Svensson, L.
2011-09-01
A RAMI (Reliability, Availability, Maintainability, Inspectability) analysis has been performed for the heating (& current drive) neutral beam (HNB) and diagnostic neutral beam (DNB) systems of the ITER device [1-3]. The objective of these analyses is to implement RAMI engineering requirements for design and testing to prepare a reliability-centred plan for commissioning, operation, and maintenance of the system in the framework of technical risk control to support the overall ITER Project. These RAMI requirements will correspond to the RAMI targets for the ITER project and the compensating provisions to reach them as deduced from the necessary actions to decrease the risk level of the function failure modes. The RAMI analyses results have to match with the procurement plan of the systems.
Defining the infrared systems for ITER
Reichle, R.; Andrew, P.; Drevon, J.-M.; Encheva, A.; Janeschitz, G.; Levesy, B.; Martin, A.; Pitcher, C. S.; Pitts, R.; Thomas, D.; Vayakis, G.; Walsh, M.; Counsell, G.; Johnson, D.; Kusama, Y.
2010-10-15
The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties.
Defining the infrared systems for ITER.
Reichle, R; Andrew, P; Counsell, G; Drevon, J-M; Encheva, A; Janeschitz, G; Johnson, D; Kusama, Y; Levesy, B; Martin, A; Pitcher, C S; Pitts, R; Thomas, D; Vayakis, G; Walsh, M
2010-10-01
The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties. PMID:21033997
ENVIRONMENTAL QUALITY INFORMATION SYSTEM - EQULS® - ITER
This project consisted of an evaluation of the Environmental Quality Information System (EQuIS) software designed by Earthsoft, Inc. as an environmental data management and analysis platform for monitoring and remediation projects. In consultation with the EQuIS vendor, six pri...
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Status of Europe's contribution to the ITER EC system
NASA Astrophysics Data System (ADS)
Albajar, F.; Aiello, G.; Alberti, S.; Arnold, F.; Avramidis, K.; Bader, M.; Batista, R.; Bertizzolo, R.; Bonicelli, T.; Braunmueller, F.; Brescan, C.; Bruschi, A.; von Burg, B.; Camino, K.; Carannante, G.; Casarin, V.; Castillo, A.; Cauvard, F.; Cavalieri, C.; Cavinato, M.; Chavan, R.; Chelis, J.; Cismondi, F.; Combescure, D.; Darbos, C.; Farina, D.; Fasel, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gantenbein, G.; Gassmann, T.; Gessner, R.; Goodman, T. P.; Gracia, V.; Grossetti, G.; Heemskerk, C.; Henderson, M.; Hermann, V.; Hogge, J. P.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Jin, J.; Kasparek, W.; Koning, J.; Krause, A. S.; Landis, J. D.; Latsas, G.; Li, F.; Mazzocchi, F.; Meier, A.; Moro, A.; Nousiainen, R.; Purohit, D.; Nowak, S.; Omori, T.; van Oosterhout, J.; Pacheco, J.; Pagonakis, I.; Platania, P.; Poli, E.; Preis, A. K.; Ronden, D.; Rozier, Y.; Rzesnicki, T.; Saibene, G.; Sanchez, F.; Sartori, F.; Sauter, O.; Scherer, T.; Schlatter, C.; Schreck, S.; Serikov, A.; Siravo, U.; Sozzi, C.; Spaeh, P.; Spichiger, A.; Strauss, D.; Takahashi, K.; Thumm, M.; Tigelis, I.; Vaccaro, A.; Vomvoridis, J.; Tran, M. Q.; Weinhorst, B.
2015-03-01
The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe's contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems.
Progress on the heating and current drive systems for ITER
Jacquinot, J.; Beaumont, Bertrand; Bora, D.; Campbell, D.; Darbos, Caroline; Decamps, H.; Graceffa, J.; Gassmann, T.; Hemsworth, R.; Henderson, Mark; Kobayashi, N.; Lamalle, Philippe; Schunke, B.; Tanaka, M.; Tanga, A.; Albajar, F.; Bonicelli, T.; Saibene, G.; Sartori, R.; Becoulet, A.; Hoang, G. T.; Inoue, T.; Sakamoto, K.; Takahashi, K.; Watanabe, K.; Goulding, Richard Howell; Rasmussen, David A; Swain, David W; Chakraborty, A.; Mukherjee, A.; Rao, S. L.; Denisov, G.; Nightingale, M.
2009-06-01
The electron cyclotron (EC), ion cyclotron (IC), heating-neutral beam (H-NB) and, although not in the day 1 baseline, lower hybrid (LH) systems intended for ITER have been reviewed in 2007/2008 in light of progress of physics and technology in the field. Although the overall specifications are unchanged, notable changes have been approved. Firstly, it has been emphasized that the H&CD systems are vital for the ITER programme. Consequently, the full 73 MW should be commissioned and available on a routine basis before the D/T phase. Secondly, significant changes have been approved at system level, most notably: the possibility to operate the heating beams at full power during the hydrogen phase requiring new shine through protection; the possibility to operate IC with 2 antennas with increased robustness (no moving parts); the possible increase to 2 MW of key components of the EC transmission systems in order to provide an easier upgrading of the EC power as may be required by the project; the addition of a building dedicated to the RF power sources and to a testing facility for acceptance of diagnostics and heating port plugs. Thirdly, the need of a plan for developing, in time for the active phase, a CD system such as LH suitable for very long pulse operation of ITER was recognised. The review describes these changes and their rationale.
Progress and present status of ITER cryoline system
Badgujar, S.; Bonneton, M.; Chalifour, M.; Forgeas, A.; Serio, L.; Sarkar, B.; Shah, N.
2014-01-29
The cryoline system at ITER forms a very complex network localized inside the Tokamak building, on a dedicated plant bridge and in cryoplant areas. The cooling power produced in the cryoplant is distributed via these lines with a total length of about 3.7 km and interconnecting all the cold boxes of the cryogenic system as well as the cold boxes of various clients (magnets, cryopumps and thermal shield). Distinct layouts and polygonal geometry, nuclear safety and confinement requirements, difficult installation and in-service inspection/repair demand very high reliability and availability for the cryolines. The finalization of the building-embedded plates for supporting the lines, before the detailed design, has made this project technologically more challenging. The conceptual design phase has been completed and procurement arrangements have been signed with India, responsible for providing the system of cryolines and warm lines to ITER, as in kind contribution. The prototype test for the design and performance validation has been planned on a representative cryoline section. After describing the basic features and general layout of the ITER cryolines, the paper presents key design requirements, conceptual design approach, progress and status of the cryolines project as well as challenges to build such a complex cryoline system.
Progress and present status of ITER cryoline system
NASA Astrophysics Data System (ADS)
Badgujar, S.; Bonneton, M.; Chalifour, M.; Forgeas, A.; Serio, L.; Sarkar, B.; Shah, N.
2014-01-01
The cryoline system at ITER forms a very complex network localized inside the Tokamak building, on a dedicated plant bridge and in cryoplant areas. The cooling power produced in the cryoplant is distributed via these lines with a total length of about 3.7 km and interconnecting all the cold boxes of the cryogenic system as well as the cold boxes of various clients (magnets, cryopumps and thermal shield). Distinct layouts and polygonal geometry, nuclear safety and confinement requirements, difficult installation and in-service inspection/repair demand very high reliability and availability for the cryolines. The finalization of the building-embedded plates for supporting the lines, before the detailed design, has made this project technologically more challenging. The conceptual design phase has been completed and procurement arrangements have been signed with India, responsible for providing the system of cryolines and warm lines to ITER, as in kind contribution. The prototype test for the design and performance validation has been planned on a representative cryoline section. After describing the basic features and general layout of the ITER cryolines, the paper presents key design requirements, conceptual design approach, progress and status of the cryolines project as well as challenges to build such a complex cryoline system.
Progress on radio frequency auxiliary heating system designs in ITER
Makowski, M.; Bosia, G.; Elio, F.
1996-09-01
ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined.
AZTEC: A parallel iterative package for the solving linear systems
Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.
1996-12-31
We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.
A new multisplitting asynchronous iterative method for linear system
Da-Wei Chang
1995-12-01
The parallel multisplitting iterative method for solving large nonsingular N x N linear system Ax = b was first presented by O`Leary and White, and it has been further investigated by Neumman and Plemmous, Chang. For improvement and generalization model B by Bru et al, our idea is, if there are more than one processors output y`s concurrently, proc(0) input all these information concurrently and use them to update the old approximation.
Neutron activation system using water flow for ITER
NASA Astrophysics Data System (ADS)
Nishitani, T.; Ebisawa, K.; Kasai, S.; Walker, C.
2003-03-01
A neutron activation system with flowing water using the 16O(n,p)16N reaction has been designed for the International Thermonuclear Experimental Reaction (ITER) neutron yield monitor with temporal resolution, based on the experimental results carried out at the fusion neutronics source (FNS) facility of the Japan Atomic Energy Research Institute. On ITER, irradiation ends will be installed in the filler shielding module between the blanket modules at the equatorial ports. The gamma-ray counting stations will be installed on the upstairs of the pit outside the biological shield. BGO (Bi4Ge3O12) scintillation detectors will be employed to measure 6.13 MeV gamma rays emitted from 16N. The distance between the irradiation end and the counting station is ˜20 m. The performance of the neutron activation system has been evaluated by using the neutron Monte Carlo code MCNP-4b with the JENDL 3.2 library. The reaction rate of 16O(n,p)16N was calculated not only at the irradiation end but also along the transfer line, which showed that the temporal resolution would be less than the ITER requirement of 100 ms including turbulent diffusion effects for the flow velocity of 10 m/s. With a flow velocity of 10 m/s, this system can measure the fusion power from 50 kW to 1 GW of the ITER operation by using two gamma-ray detectors; one detector faces the water pipe directly, and another has a collimator for higher-neutron yield. Also the calculation shows that the reaction rate is relatively insensitive to the change of the plasma position.
Radiation analysis of the ITER pellet injection system
Gouge, M.J. ); Gomes, I.C.; Gomes, L.T.; Stevens, P.N, )
1991-03-01
The results of neutronics calculations for the pellet injection system of the International Thermonuclear Experimental Reactor (ITER) are described. Hands-on maintenance of components in the pellet injection room results in a considerable simplification of maintenance support equipment and in greater system availability. The basic configuration of the pellet injection system includes small-diameter guide tubes with which the pellet may have several small-angle collisions before reaching the plasma. The pellet injector port through which the guide tubes pass will be shared with ITER plasma diagnostics, so the calculation takes into account penetrations to accommodate numerous channels for a neutron spectrometer and neutron and gamma-ray cameras. The conservative assumption of steady-state operation of ITER for 1000 days was taken as the baseline for calculating the activation of components in the pellet injection room. The plasma configuration is based on the current ITER guidelines, the first wall configuration is based on the most recently updated configuration, and the blanket configuration is based on the US proposal for the blanket. The plasma, coils, and blanket regions were analyzed with the Monte Carlo code MCNP. The transport of neutrons through the penetrations was also performed with MCNP. The pellet injection room was modeled with the two-dimensional discrete ordinates code DORT, which was also used for the transport of neutrons during operation and of gamma rays caused by activation. The activation calculations were carried out with the REBATE code. Results from this study indicate that restricted personnel access to the pellet injection room is possible, so limited hands-on maintenance can be performed on the majority of the components in the room.
Contractive multifunctions, fixed point inclusions and iterated multifunction systems
NASA Astrophysics Data System (ADS)
Kunze, H. E.; La Torre, D.; Vrscay, E. R.
2007-06-01
We study the properties of multifunction operators that are contractive in the Covitz-Nadler sense. In this situation, such operators T possess fixed points satisfying the relation x[set membership, variant]Tx. We introduce an iterative method involving projections that guarantees convergence from any starting point x0[set membership, variant]X to a point x[set membership, variant]XT, the set of all fixed points of a multifunction operator T. We also prove a continuity result for fixed point sets XT as well as a "generalized collage theorem" for contractive multifunctions. These results can then be used to solve inverse problems involving contractive multifunctions. Two applications of contractive multifunctions are introduced: (i) integral inclusions and (ii) iterated multifunction systems.
Newton iterative methods for large scale nonlinear systems
Walker, H.F.; Turner, K.
1993-01-01
Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)
Neutron flux monitoring system for ITER-FEAT (abstract)
NASA Astrophysics Data System (ADS)
Kaschuck, Yu.; Krasilnikov, A.; Alekseyev, A.; Amosov, V.; Frunze, V.
2001-01-01
The concept of the neutron flux measurements for International Thermonuclear Experimental Reactor ITER-FEAT is discussed. In spite of the fact that ITER-FEAT has reduced fusion power with respect to ITER-FDR, the requirements for neutron flux monitors are similar—wide dynamic range (seven orders), good temporal resolution (1 ms), and high accuracy (10%). It is clear that fission chambers are the most suitable detectors for this application. However high neutron intensity of the fusion plasma and hard requirements lead to a more sophisticated detection system than the ordinary fission chamber. Another problem is an absolute calibration of the detectors. We propose a neutron flux monitoring system, which consist of microfission chambers placed inside the ITER vacuum chamber, three wide range fission chambers placed outside the vacuum chamber, natural diamond detector based compact neutron monitors placed inside the channels of the neutron cameras, and a compact neutron generator for calibration. Microfission chambers could be installed in the standard plugs with other detectors (vacuum x-ray diode, magnetic probe). 235U could be used as well as threshold fission materials (238U, 237Np, 232Th). In the last case the fission chamber will be covered by a boron shield to reduce the changes in the sensitivity. Wide range fission chambers will operate in both pulse count mode and Campbell mode. High linearity is provided by count mode. Temporal resolution of 1 ms is provided by the count mode at low neutron flux and by the Campbell mode at high flux. The nonlinearity of the fission chamber during the switch from count mode to Campbell mode will be corrected by another fission chamber with low sensitivity operating in count mode. Compact neutron flux monitors placed inside neutron cameras will consist of up to ten natural diamond neutron counters with sensitivity to DT neutrons doubled by properly installed poliethilen radiators. Such monitors provide DT neutron flux
Electrical insulation systems for the ITER CS modules
NASA Astrophysics Data System (ADS)
Reed, R. P.; Martovetsky, N. N.
2014-01-01
For the U.S. fabricated ITER Central Solenoid (CS), six, almost identical, modules will be fabricated, then stacked together. The electrical insulation systems of the CS modules consist of turn, layer, and ground insulation. These electrical systems also serve to bond the coil conductors together. For this purpose, an epoxy resin is transferred into the coil assembly using a carefully designed vacuum-pressure impregnation process. The most important testing procedures, data, and design criteria for the key low-temperature, mechanical, and electrical properties are reviewed. Design of these systems is discussed.
Status of the ITER IC H and CD System
Lamalle, P. U.; Beaumont, B.; Gassmann, T.; Kazarian, F.; Arambhadiya, B.; Bora, D.; Jacquinot, J.; Mitteau, R.; Schueller, F. C.; Tanga, A.; Baruah, U.; Bhardwaj, A.; Kumar, R.; Mukherjee, A.; Singh, N. P.; Singh, R.; Goulding, R.; Rasmussen, D.; Swain, D.; Agarici, G.
2009-11-26
The ITER Ion Cyclotron Heating and Current Drive system will deliver 20 MW of radio frequency power to the plasma in quasi continuous operation during the different phases of the experimental programme. The system also has to perform conditioning of the tokamak first wall at low power between main plasma discharges. This broad range of requirements imposes a high flexibility and a high availability. The paper highlights the physics and design requirements on the IC system, the main features of its subsystems, the predicted performance, and the current procurement and installation schedule.
Design considerations for ITER (International Thermonuclear Experimental Reactor) magnet systems
Henning, C.D.; Miller, J.R.
1988-10-09
The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs.
Iterated Function Systems in the Classroom
ERIC Educational Resources Information Center
Waiveris, Charles
2007-01-01
The title may appear daunting, but the exercises, which can be presented to students from middle school to graduate school, are not. The exercises center on creating fractal images in the xy-plane with free. easy-to-use software and questions appropriate to the level of the student.
Analysis of the ITER LFS Reflectometer Transmission Line System
Hanson, Gregory R; Wilgen, John B; Bigelow, Tim S; Diem, Stephanie J; Biewer, Theodore M
2010-01-01
A critical issue in the design of the ITER Low Field Side (LFS) reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ~42 m of corrugated waveguide and up to 10 miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing mode conversion and reflections in the waveguide are critical to minimizing standing waves and phase errors in the reflectometer-measured phase. The performance of the corrugated waveguide and miter bends is analyzed and recommendations given.
A model of asynchronous iterative algorithms for solving large, sparse, linear systems
NASA Technical Reports Server (NTRS)
Reed, D. A.; Patrick, M. L.
1984-01-01
Solving large, sparse, linear systems of equations is one of the fundamental problems in large scale scientific and engineering computation. A model of a general class of asynchronous, iterative solution methods for linear systems is developed. In the model, the system is solved by creating several cooperating tasks that each compute a portion of the solution vector. This model is then analyzed to determine the expected intertask data transfer and task computational complexity as functions of the number of tasks. Based on the analysis, recommendations for task partitioning are made. These recommendations are a function of the sparseness of the linear system, its structure (i.e., randomly sparse or banded), and dimension.
Efficient iterative method for solving the Dirac-Kohn-Sham density functional theory
NASA Astrophysics Data System (ADS)
Lin, Lin; Shao, Sihong; E, Weinan
2013-07-01
We present for the first time an efficient iterative method to directly solve the four-component Dirac-Kohn-Sham (DKS) density functional theory. Due to the existence of the negative energy continuum in the DKS operator, the existing iterative techniques for solving the Kohn-Sham systems cannot be efficiently applied to solve the DKS systems. The key component of our method is a novel filtering step (F) which acts as a preconditioner in the framework of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the desired eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The LOBPCG-F method introduces mild extra cost compared to the standard LOBPCG method and can be easily implemented. We demonstrate our method in the pseudopotential framework with a planewave basis set which naturally satisfies the kinetic balance prescription. Numerical results for Pt2, Au2, TlF, and Bi2Se3 indicate that the LOBPCG-F method is a robust and efficient method for investigating the relativistic effect in systems containing heavy elements.
Efficient iterative method for solving the Dirac-Kohn-Sham density functional theory
Lin, Lin; Shao, Sihong; E, Weinan
2012-11-06
We present for the first time an efficient iterative method to directly solve the four-component Dirac-Kohn-Sham (DKS) density functional theory. Due to the existence of the negative energy continuum in the DKS operator, the existing iterative techniques for solving the Kohn-Sham systems cannot be efficiently applied to solve the DKS systems. The key component of our method is a novel filtering step (F) which acts as a preconditioner in the framework of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the desired eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The LOBPCG-F method introduces mild extra cost compared to the standard LOBPCG method and can be easily implemented. We demonstrate our method in the pseudopotential framework with a planewave basis set which naturally satisfies the kinetic balance prescription. Numerical results for Pt$_{2}$, Au$_{2}$, TlF, and Bi$_{2}$Se$_{3}$ indicate that the LOBPCG-F method is a robust and efficient method for investigating the relativistic effect in systems containing heavy elements.
NASA Astrophysics Data System (ADS)
Uyanık, K.; Turgut, S.
2013-11-01
In two recent papers, a sure-success version of the Grover iteration has been applied to solve the weight decision problem of a Boolean function and it is shown that it is quadratically faster than any classical algorithm (Braunstein et al. in J Phys A Math Theor 40:8441, 2007; Choi and Braunstein in Quantum Inf Process 10:177, 2011). In this paper, a new approach is proposed to generalize the Grover's iteration so that it becomes exact and its application to the same problem is studied. The regime where a small number of iterations is applied is the main focus of this work. This task is accomplished by presenting the conditions on the decidability of the weights where the decidability problem is reduced to a system of algebraic equations of a single variable. Thus, it becomes easier to decide on distinguishability by solving these equations analytically and, if not possible, numerically. In addition, it is observed that the number of iterations scale as the square root of the iteration number of the corresponding classical probabilistic algorithms.
The efficient parallel iterative solution of large sparse linear systems
Jones, M.T.; Plassmann, P.E.
1992-06-01
The development of efficient, general-purpose software for the iterative solution of sparse linear systems on a parallel MIMD computer requires an interesting combination of expertise. Parallel graph heuristics, convergence analysis, and basic linear algebra implementation issues must all be considered. In this paper, we discuss how we have incorporated recent results in these areas into a general-purpose iterative solver. First, we consider two recently developed parallel graph coloring heuristics. We show how the method proposed by Luby, based on determining maximal independent sets, can be modified to run in an asynchronous manner and give aa expected running time bound for this modified heuristic. In addition, a number of graph reduction heuristics are described that are used in our implementation to improve the individual processor performance. The effect of these various graph reductions on the solution of sparse triangular systems is categorized. Finally, we discuss the performance of this solver from the perspective of two large-scale applications: a piezoelectric crystal finite-element modeling problem, and a nonlinear optimization problem to determine the minimum energy configuration of a three-dimensional, layered superconductor model.
Initial results of systems analysis ETR/ITER design space
Peng, Yueng Kay Martin; Galambos, John D; Reid, R. L.; Strickler, Dennis J
1987-01-01
Preliminary versions of the Engineering Test REactor (ETR) systems code TETRA (Tokamak Engineering Test Reactor Analysis), which determines design solutions by the method of constrained optimization, are used to characterize the International Thermonuclear Experimental Reactor (ITER) and its design parameter space. They find that the physics objectives of high ignition margin and high plasma current lead to minimum size at relatively low aspect ratios (A = 2.5-3.0), while the engineering objective of high neutron wall load (W{sub L} {approx}> 1.0 MW/m{sup 2}) leads to minimum size at higher A ({approx} 3.5). For minimum-size ITERs, the optimal toroidal field coil (TFC) designs fall within a narrow range of maximum fields (10-11 T) with R varying over only a few percent despite a factor of two change in the winding pack current density J{sub wp}. The major radius of the design is found to be sensitive to changes in elongation, inboard distances (such as plasma scrape-off), inductive flux capability, plasma temperature, beta limit, and ignition margin. A preliminary characterization of the US ITER designs with plasma current I{sub p} > 15 MA and R < 4.5 m has been obtained by combining the engineering asumptions for devices such as the Tokamak Ignition/Burn Engineering Reactor (TIBER) with the physics assumptions for devices such as the Compact Ignition Tokamak (CIT) and the Next European Torus (NET). These devices can accommodate a range of full- to reduced-bore, driven (Q < 10), steady-state plasmas for the engineering phase that produces high neutron wall load and fluence.
THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM
Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H
2010-01-01
RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed. The design of the cooling system is described in detail, and RELAP5 results are presented. Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during both normal pulsed power operation and decay heat operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits.
Parallel, iterative solution of sparse linear systems: Models and architectures
NASA Technical Reports Server (NTRS)
Reed, D. A.; Patrick, M. L.
1984-01-01
A model of a general class of asynchronous, iterative solution methods for linear systems is developed. In the model, the system is solved by creating several cooperating tasks that each compute a portion of the solution vector. A data transfer model predicting both the probability that data must be transferred between two tasks and the amount of data to be transferred is presented. This model is used to derive an execution time model for predicting parallel execution time and an optimal number of tasks given the dimension and sparsity of the coefficient matrix and the costs of computation, synchronization, and communication. The suitability of different parallel architectures for solving randomly sparse linear systems is discussed. Based on the complexity of task scheduling, one parallel architecture, based on a broadcast bus, is presented and analyzed.
Simplified thermal model of the ITER magnet system
NASA Astrophysics Data System (ADS)
Furci, Hernán; Luongo, Cesar
2014-09-01
A simplified thermal model of the ITER magnet system has been developed to capture the essence of the magnet heat load dynamics without the need for extensive computations. Idealization of the magnets has been made using mainly two standard types of elements, solids and tubes. No Navier-Stokes equations have been solved for the hydraulics, but instead a simple transport model with approximation for pressure evolution has been used. The model was implemented in C language and used to investigate the important features needed to implement a computationally efficient and fast magnet thermal model capturing overall behavior in terms of superconductor cooling channel description (thermal coupling with jackets, presence of the conductor, importance of the central channel, etc.). Furthermore, the model was benchmarked against validated simulation tools such as SuperMagnet and Vincenta using the ITER Central Solenoid normal operation scenario for comparison. Dynamics were shown to be reproduced in good agreement with results attainable with these more detailed codes, considering the high level of uncertainty on the input parameters, namely the heat transfer coefficients and the values of heat loads.
The cryogenic system for ITER CC superconducting conductor test facility
NASA Astrophysics Data System (ADS)
Peng, Jinqing; Wu, Yu; Liu, Huajun; Shi, Yi; Chen, Jinglin; Ren, Zhibin
2011-01-01
This paper describes the cryogenic system of the International Thermonuclear Experimental Reactor (ITER) Correction Coils (CC) test facility, which consists of a 500 W/4.5 K helium refrigerator, a 50 kA superconducting transformer cryostat (STC) and a background field magnet cryostat (BFMC). The 500 W/4.5 K helium refrigerator synchronously produces both the liquid helium (LHe) and supercritical helium (SHe). The background field magnet and the primary coil of the superconducting transformer (PCST) are cooled down by immersing into 4.2 K LHe. The secondary Cable-In-Conduit Conductor (CICC) coil of the superconducting transformer (SCST), superconducting joints and the testing sample of ITER CC are cooled down by forced-flow supercritical helium. During the commissioning experiment, all the superconducting coils were successfully translated into superconducting state. The background field magnet was fully cooled by immersing it into 4.2 K LHe and generated a maximal background magnetic field of 6.96 T; the temperature of transformer coils and current leads was reduced to 4.3 K; the inlet temperature of SHe loop was 5.6 K, which can meet the cooling requirements of CIC-Conductor and joint boxes. It is noted that a novel heat cut-off device for High Temperature Superconducting (HTS) binary current leads was introduced to reduce the heat losses of transformer cryostat.
Iterative Repair Planning for Spacecraft Operations Using the Aspen System
NASA Technical Reports Server (NTRS)
Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.
2000-01-01
This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.
Iterative phase retrieval algorithms. Part II: Attacking optical encryption systems.
Guo, Changliang; Liu, Shi; Sheridan, John T
2015-05-20
The modified iterative phase retrieval algorithms developed in Part I [Guo et al., Appl. Opt.54, 4698 (2015)] are applied to perform known plaintext and ciphertext attacks on amplitude encoding and phase encoding Fourier-transform-based double random phase encryption (DRPE) systems. It is shown that the new algorithms can retrieve the two random phase keys (RPKs) perfectly. The performances of the algorithms are tested by using the retrieved RPKs to decrypt a set of different ciphertexts encrypted using the same RPKs. Significantly, it is also shown that the DRPE system is, under certain conditions, vulnerable to ciphertext-only attack, i.e., in some cases an attacker can decrypt DRPE data successfully when only the ciphertext is intercepted. PMID:26192505
Tritium processing system for the ITER Li/V blanket test module
Sze, D.K.; Hua, T.Q.; Abdou, M.A.; Dagher, M.A.; Waganer, L.M.
1997-04-01
The purpose of the ITER Blanket Testing Module is to test the operating and performance of candidate blanket concepts under a real fusion environment. To assure fuel self-sufficiency the tritium breeding, recovery and processing have to be demonstrated. The tritium produced in the blanket has to be processed to a purity which can be used for refueling. All these functions need to be accomplished so that the tritium system can be scaled to a commercial fusion power plant from a safety and reliability point of view. This paper summarizes the tritium processing steps, the size of the equipment, power requirements, space requirements, etc. for a self-cooled lithium blanket. This information is needed for the design and layout of the test blanket ancillary system and to assure that the ITER guidelines for remote handling of ancillary equipment can be met.
Gutser, R.; Wimmer, C.; Fantz, U.
2011-02-15
Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.
An iterative algorithm for a system of generalized implicit variational inclusions.
Ahmad, Iqbal; Mishra, Vishnu Narayan; Ahmad, Rais; Rahaman, Mijanur
2016-01-01
In this paper, we introduce a system of generalized implicit variational inclusions which consists of three variational inclusions. We design an iterative algorithm with error terms based on relaxed resolvent operator due to Ahmad et al. (Stat Optim Inf Comput 4:183-193, 2016) for approximating the solution of our system. The convergence of the iterative sequences generated by the iterative algorithm is also discussed. An example is given which satisfy all the conditions of our main result. PMID:27547658
Analysis of the ITER ICRH Decoupling and Matching System
NASA Astrophysics Data System (ADS)
Vervier, M.; Messiaen, A.; Dumortier, P.
2009-11-01
The reference ITER ICRH load resilient matching system uses four 3dB hybrid power splitters. It is proposed to use a "double stub" tuner (DST) configuration for the matching on the reference load and a decoupling system placed between the antenna plug and the matching system to reduce the mutual coupling effects and also to actively control the array current spectrum while requesting the same forward power from all 4 power sources. The paper analyzes (i) the optimization of the matching layout e.g. by varying the distance between the stubs and by the use of two capacitors taking into account the role of the decouplers on the matching requirements; (ii) the practical realization of the decouplers and their insertion into the circuit; (iii) the requests in voltage and current capabilities in the different parts of the system. The paper presents solutions for saving space and to decrease the ratings of the components. The computations are done with the array loading simulated by the TOPICA matrix.
Analysis of the ITER ICRH Decoupling and Matching System
Vervier, M.; Messiaen, A.; Dumortier, P.
2009-11-26
The reference ITER ICRH load resilient matching system uses four 3dB hybrid power splitters. It is proposed to use a 'double stub' tuner (DST) configuration for the matching on the reference load and a decoupling system placed between the antenna plug and the matching system to reduce the mutual coupling effects and also to actively control the array current spectrum while requesting the same forward power from all 4 power sources. The paper analyzes (i) the optimization of the matching layout e.g. by varying the distance between the stubs and by the use of two capacitors taking into account the role of the decouplers on the matching requirements; (ii) the practical realization of the decouplers and their insertion into the circuit; (iii) the requests in voltage and current capabilities in the different parts of the system. The paper presents solutions for saving space and to decrease the ratings of the components. The computations are done with the array loading simulated by the TOPICA matrix.
Higher dimensional systems of differential equations obtainable by iterative use of complex methods
NASA Astrophysics Data System (ADS)
Qadir, Asghar; Mahomed, Fazal M.
2015-04-01
A procedure had been developed to solve systems of two ordinary and partial differential equations (ODEs and PDEs) that could be obtained from scalar complex ODEs by splitting into their real and imaginary parts. The procedure was extended to four dimensional systems obtainable by splitting complex systems of two ODEs into their real and imaginary parts. As it stood, this procedure could be extended to any even dimension but not to odd dimensional systems. In this paper, the complex splitting is used iteratively to obtain three and four dimensional systems of ODEs and four dimensional systems of PDEs for four functions of two and four variables that correspond to a scalar base equation. We also provide characterization criteria for such systems to correspond to the base equation and a clear procedure to construct the base equation. The new systems of four ODEs are distinct from the class obtained by the single split of a two dimensional system. The previous complex methods split each infinitesimal symmetry generator into a pair of operators such that the entire set of operators do not form a Lie algebra. The iterative procedure sheds some light on the emergence of these "Lie-like" operators. In this procedure the higher dimensional system may not have any or the required symmetry for being directly solvable by symmetry and other methods although the base equation can have sufficient symmetry properties. Illustrative examples are provided.
Design of fast tuning elements for the ITER ICH system
Swain, D.W.; Goulding, R.H.
1996-05-01
The coupling between the ion cyclotron (IC) antenna and the ITER plasma (as expressed by the load resistance the antenna sees) will experience relatively fast variations due to plasma edge profile modifications. If uncompensated, these will cause an increase in the amount of power reflected back to the transmitter and ultimately a decrease in the amount of radio frequency (rf) power to the plasma caused by protective suppression of the amount of rf power generated by the transmitter. The goals of this task were to study several alternate designs for a tuning and matching (T&M) system and to recommend some research and development (R&D) tasks that could be carried out to test some of the most promising concepts. Analyses of five different T&M configurations are presented in this report. They each have different advantages and disadvantages, and the choice among them must be made depending on the requirements for the IC system. Several general conclusions emerge from our study: The use of a hybrid splitter as a passive reflected-power dump [``edge localized mode (ELM)-dump``] appears very promising; this configuration will protect the rf power sources from reflected power during changes in plasma loading due to plasma motion or profile changes (e.g., ELM- induced changes in the plasma scrape-off region) and requires no active control of the rf system. Trade-offs between simplicity of design and capability of the system must be made. Simple system designs with few components near the antenna either have high voltages over considerable distances of transmission lines, or they are not easily tuned to operate at different frequencies. Designs using frequency shifts and/or fast tuning elements can provide fast matching over a wide range of plasma loading; however, the designs studied here require components near the antenna, complicating assembly and maintenance. Capacitor-tuned resonant systems may offer a good compromise.
Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems
Benzi, M.; Tuma, M.
1996-12-31
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.
An Overview Of The ITER In-Vessel Coil Systems
Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E; Reed, R P
2009-09-24
ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.
Analytic Solutions of a Second-Order Iterative Functional Differential Equations
NASA Astrophysics Data System (ADS)
Liu, Lingxia
In this paper, the existence of analytic solutions of an iterative functional differential equation is studied. We reduce this problem to finding analytic solutions of a functional differential equation without iteration of the unknown function. For technical reasons, in previous work the constant α given in Schröder transformation is required to fulfill that α is off the unit circle or lies on the circle with the Diophantine condition. In this paper, we break the restraint of the Diophantine condition and obtain results of analytic solutions in the case of α at resonance, i.e., at a root of the unity and the case of α near resonance under the Brjuno condition.
Iterating free-field AdS/CFT: higher spin partition function relations
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Tseytlin, Arkady A.
2016-07-01
We find a simple relation between a free higher spin partition function on the thermal quotient of {{AdS}}d+1 and the partition function of the associated d-dimensional conformal higher spin field defined on the thermal quotient of {{AdS}}d. Starting with a conformal higher spin field defined in {{AdS}}d, one may also associate to with another conformal field in d-1 dimensions, thus iterating AdS/CFT. We observe that in the case of d=4, this iteration leads to a trivial 3d higher spin conformal theory with parity-even non-local action: it describes a zero total number of dynamical degrees of freedom and the corresponding partition function is equal to 1.
The targeted heating and current drive applications for the ITER electron cyclotron system
Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D.; Saibene, G.; Gagliardi, M.; Farina, D.; Figini, L.; Hanson, G.; Poli, E.; Takahashi, K.
2015-02-15
A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.
The targeted heating and current drive applications for the ITER electron cyclotron system
NASA Astrophysics Data System (ADS)
Henderson, M.; Saibene, G.; Darbos, C.; Farina, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gassmann, T.; Hanson, G.; Loarte, A.; Omori, T.; Poli, E.; Purohit, D.; Takahashi, K.
2015-02-01
A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H&CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H&CD systems. An initial attempt has been developed at prioritizing the allocated H&CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (˜12 MA), and Advanced (˜9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.
Farina, D.; Figini, L.; Henderson, M.; Saibene, G.
2014-06-15
The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power deposition was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Sahimi, Muhammad
2016-03-01
This series addresses a fundamental issue in multiple-point statistical (MPS) simulation for generation of realizations of large-scale porous media. Past methods suffer from the fact that they generate discontinuities and patchiness in the realizations that, in turn, affect their flow and transport properties. Part I of this series addressed certain aspects of this fundamental issue, and proposed two ways of improving of one such MPS method, namely, the cross correlation-based simulation (CCSIM) method that was proposed by the authors. In the present paper, a new algorithm is proposed to further improve the quality of the realizations. The method utilizes the realizations generated by the algorithm introduced in Part I, iteratively removes any possible remaining discontinuities in them, and addresses the problem with honoring hard (quantitative) data, using an error map. The map represents the differences between the patterns in the training image (TI) and the current iteration of a realization. The resulting iterative CCSIM—the iCCSIM algorithm—utilizes a random path and the error map to identify the locations in the current realization in the iteration process that need further "repairing;" that is, those locations at which discontinuities may still exist. The computational time of the new iterative algorithm is considerably lower than one in which every cell of the simulation grid is visited in order to repair the discontinuities. Furthermore, several efficient distance functions are introduced by which one extracts effectively key information from the TIs. To increase the quality of the realizations and extracting the maximum amount of information from the TIs, the distance functions can be used simultaneously. The performance of the iCCSIM algorithm is studied using very complex 2-D and 3-D examples, including those that are process-based. Comparison is made between the quality and accuracy of the results with those generated by the original CCSIM
Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER
NASA Astrophysics Data System (ADS)
Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.
2016-01-01
This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.
Active spectroscopic measurements using the ITER diagnostic system
Thomas, D. M.; Counsell, G.; Johnson, D.; Vasu, P.; Zvonkov, A.
2010-10-15
Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale ({approx}1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.
Gas species, their evolution and segregation through the ITER vacuum systems
Pearce, R.J.H.; Antipenkov, Alexander; Bersier, Jean-Louis; Boussier, Bastien; Baylor, Larry R; Gardner, Walter L; Meitner, Steven J
2012-01-01
This paper takes the ITER fueling requirements and current knowledge of gas balance and exhaust from operating tokamaks to predict all likely gas inputs into the ITER Vacuum systems. Areas where gas dynamics modeling is relevant to the ITER design are highlighted. The design and operation of the ITER vacuum system gives an element of segregation of different gas flows and species. This paper analyses the time dependent gas segregation in the vacuum system resulting from different temperature dependences of cryogenic sorption and condensation processes of different gas species. As a specific example, the optimal transfer of Ar-41 through the vacuum system is studied with respect to its decay and the resulting effects on the design of system components.
Bratu's problem: A novel approach using fixed-point iterations and Green's functions
NASA Astrophysics Data System (ADS)
Kafri, H. Q.; Khuri, S. A.
2016-01-01
In this article, the one-dimensional non-linear Bratu's boundary value problem is solved via a novel approach that combines Green's function and fixed point iterative schemes, such as Picard's and Krasnoselskii-Mann's. The convergence of the introduced iterative algorithm is proved using the contraction principle. The method is supported by considering a number of numerical examples that correspond to different cases of eigenvalues. The procedure underlying the strategy reduces calculations and provides highly accurate results in comparison with the exact solution and/or numerical solutions provided in the literature. The current method overcomes the difficulty of treating the problem for eigenvalues near and at the critical value, such as λ = 3 and λ = 3.51, and handles them reliably and very efficiently.
Development of a YAG laser system for the edge Thomson scattering system in ITER
Hatae, T.; Yatsuka, E.; Hayashi, T.; Ono, T.; Kusama, Y.; Yoshida, H.
2012-10-15
A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).
Ferrada, Juan J; Reiersen, Wayne T
2011-01-01
U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment
NASA Astrophysics Data System (ADS)
Shah, Nitin Dineshkumar; Bhattacharya, Ritendra Nath; Sarkar, Biswanath; Badgujar, Satish; Vaghela, Hitensinh; Patel, Pratik
2012-06-01
The prototype cryoline (PTCL) for ITER is a representative cryoline from the complicated network of all cryolines for the project. The PTCL is being designed with four process pipes at temperature level 4.5 K, two process pipes at 80 K and will be manufactured in a 1:1 scale with a configuration of main line and branch line including vacuum barriers. The test objectives are focused to demonstrate best possible risk free engineering and reliable manufacturing of the cryolines as per the ITER functional requirements. The measured physical parameters will assess the confirmation for acceptable heat loads, stresses and mechanical integrity in normal, off-normal and accident scenarios such as a break of insulation vacuum (BIV). The PTCL will be tested to measure heat load at 4.5 K with scaled mass flow rate having the thermal shield at 80 K. Necessary infrastructure along with the control system have been designed, analyzed and optimized within the imposed constraints to fulfill the test objectives. The system approach along with instrumentations and controls, results of the optimization study, and its usefulness in the present context within the constraints of economics and schedule have been described.
Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travere, J. M.; Thellier, C.; Ferme, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.
2012-10-15
ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.
Brown, James Carrington, Tucker
2015-07-28
Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.
Brown, James; Carrington, Tucker
2015-07-28
Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis. PMID:26233104
NASA Astrophysics Data System (ADS)
Brown, James; Carrington, Tucker
2015-07-01
Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.
Dual-laser calibration of Thomson scattering systems in ITER and RFX-mod
NASA Astrophysics Data System (ADS)
Giudicotti, L.; Pasqualotto, R.
2014-04-01
We first review the principles of the dual-laser calibration technique for measuring the relative sensitivities of the spectral channels in a Thomson scattering (TS) diagnostic system by detecting with the same spectrometer the spectra scattered by the same plasma volume from two laser pulses of different wavelengths. A new data analysis method is then introduced, based on the minimization of a single χ2 function, that provides a simpler and more convenient way to determine the measurement errors on the calibration coefficients. The new analysis method is used here to investigate the expected performances of this calibration technique in the core LIDAR TS system of ITER currently under design and in the conventional multipoint TS system of RFX-mod. By calculating the expected calibration errors for typical plasma scenarios we discuss the different possible choices of the calibration laser, the characteristics of the calibrating plasma and other system parameters with an impact on the application of the technique. For ITER core LIDAR TS, designed with Nd : YAG at 1064 nm as main laser, a ruby laser shows slightly better performances as a calibration laser compared with a second harmonic Nd : YAG and a calibration accuracy ˜1% can be achieved in a relatively small number of pairs of laser pulses. In RFX-mod the combination of a Nd : YAG and a Nd : YLF laser systems is the only viable choice, and we find that, in spite of the small difference between the two wavelengths (λ = 1064 nm and λ = 1053 nm, respectively), dual-laser calibration is still possible to the required accuracy with an affordable number of pairs of laser shots.
Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.
2014-08-28
To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.
Saha, Krishnendu; Straus, Kenneth J.; Chen, Yu.; Glick, Stephen J.
2014-01-01
To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555
Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J
2014-08-28
To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555
Lin, Lin; Yang, Chao
2013-10-28
We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.
Wang, Changyuan; Zhang, Jing; Mu, Jing
2012-01-01
A new filter named the maximum likelihood-based iterated divided difference filter (MLIDDF) is developed to improve the low state estimation accuracy of nonlinear state estimation due to large initial estimation errors and nonlinearity of measurement equations. The MLIDDF algorithm is derivative-free and implemented only by calculating the functional evaluations. The MLIDDF algorithm involves the use of the iteration measurement update and the current measurement, and the iteration termination criterion based on maximum likelihood is introduced in the measurement update step, so the MLIDDF is guaranteed to produce a sequence estimate that moves up the maximum likelihood surface. In a simulation, its performance is compared against that of the unscented Kalman filter (UKF), divided difference filter (DDF), iterated unscented Kalman filter (IUKF) and iterated divided difference filter (IDDF) both using a traditional iteration strategy. Simulation results demonstrate that the accumulated mean-square root error for the MLIDDF algorithm in position is reduced by 63% compared to that of UKF and DDF algorithms, and by 7% compared to that of IUKF and IDDF algorithms. The new algorithm thus has better state estimation accuracy and a fast convergence rate. PMID:23012525
NASA Astrophysics Data System (ADS)
Li, Zhifu; Hu, Yueming; Li, Di
2016-08-01
For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.
NASA Astrophysics Data System (ADS)
Szalay, Viktor
1999-11-01
The reconstruction of a function from knowing only its values on a finite set of grid points, that is the construction of an analytical approximation reproducing the function with good accuracy everywhere within the sampled volume, is an important problem in all branches of sciences. One such problem in chemical physics is the determination of an analytical representation of Born-Oppenheimer potential energy surfaces by ab initio calculations which give the value of the potential at a finite set of grid points in configuration space. This article describes the rudiments of iterative and direct methods of potential surface reconstruction. The major new results are the derivation, numerical demonstration, and interpretation of a reconstruction formula. The reconstruction formula derived approximates the unknown function, say V, by linear combination of functions obtained by discretizing the continuous distributed approximating functional (DAF) approximation of V over the grid of sampling. The simplest of contracted and ordinary Hermite-DAFs are shown to be sufficient for reconstruction. The linear combination coefficients can be obtained either iteratively or directly by finding the minimal norm least-squares solution of a linear system of equations. Several numerical examples of reconstructing functions of one and two variables, and very different shape are given. The examples demonstrate the robustness, high accuracy, as well as the caveats of the proposed method. As to the mathematical foundation of the method, it is shown that the reconstruction formula can be interpreted as, and in fact is, frame expansion. By recognizing the relevance of frames in determining analytical approximation to potential energy surfaces, an extremely rich and beautiful toolbox of mathematics has come to our disposal. Thus, the simple reconstruction method derived in this paper can be refined, extended, and improved in numerous ways.
Kawato, M; Isobe, M; Maeda, Y; Suzuki, R
1988-01-01
In order to control visually-guided voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: (1) determination of a desired trajectory in the visual coordinates, (2) transformation of the coordinates of the desired trajectory to the body coordinates and (3) generation of motor command. In this paper, the second and the third problems are treated at computational, representational and hardware levels of Marr. We first study the problems at the computational level, and then propose an iterative learning scheme as a possible algorithm. This is a trial and error type learning such as repetitive training of golf swing. The amount of motor command needed to coordinate activities of many muscles is not determined at once, but in a step-wise, trial and error fashion in the course of a set of repetitions. Actually, the motor command in the (n + 1)-th iteration is a sum of the motor command in the n-th iteration plus two modification terms which are, respectively, proportional to acceleration and speed errors between the desired trajectory and the realized trajectory in the n-th iteration. We mathematically formulate this iterative learning control as a Newton-like method in functional spaces and prove its convergence under appropriate mathematical conditions with use of dynamical system theory and functional analysis. Computer simulations of this iterative learning control of a robotic manipulator in the body or visual coordinates are shown. Finally, we propose that areas 2, 5, and 7 of the sensory association cortex are possible sites of this learning control. Further we propose neural network model which acquires transformation matrices from acceleration or velocity to motor command, which are used in these schemes. PMID:3179342
A comparison of iterative methods for a model coupled system of elliptic equations
Donato, J.M.
1993-08-01
Many interesting areas of current industry work deal with non-linear coupled systems of partial differential equations. We examine iterative methods for the solution of a model two-dimensional coupled system based on a linearized form of the two carrier drift-diffusion equations from semiconductor modeling. Discretizing this model system yields a large non-symmetric indefinite sparse matrix. To solve the model system various point and block methods, including the hybrid iterative method Alternate Block Factorization (ABF), are applied. We also employ GMRES with various preconditioners, including block and point incomplete LU (ILU) factorizations. The performance of these methods is compared. It is seen that the preferred ordering of the grid variables and the choice of iterative method are dependent upon the magnitudes of the coupling parameters. For this model, ABF is the most robust of the non-accelerated iterative methods. Among the preconditioners employed with GMRES, the blocked ``by grid point`` version of both the ILU and MILU preconditioners are the most robust and the most time efficient over the wide range of parameter values tested. This information may aid in the choice of iterative methods and preconditioners for solving more complicated, yet analogous, coupled systems.
Status of the ITER Electron Cyclotron Heating and Current Drive System
NASA Astrophysics Data System (ADS)
Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji
2016-01-01
The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.
Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.
Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos
2013-11-01
In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10. PMID:24216821
A policy iteration approach to online optimal control of continuous-time constrained-input systems.
Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L
2013-09-01
This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. PMID:23706414
NASA Astrophysics Data System (ADS)
Naumova, Valeriya; Peter, Steffen
2014-12-01
Inspired by several recent developments in regularization theory, optimization, and signal processing, we present and analyze a numerical approach to multi-penalty regularization in spaces of sparsely represented functions. The sparsity prior is motivated by the largely expected geometrical/structured features of high-dimensional data, which may not be well-represented in the framework of typically more isotropic Hilbert spaces. In this paper, we are particularly interested in regularizers which are able to correctly model and separate the multiple components of additively mixed signals. This situation is rather common as pure signals may be corrupted by additive noise. To this end, we consider a regularization functional composed by a data-fidelity term, where signal and noise are additively mixed, a non-smooth and non-convex sparsity promoting term, and a penalty term to model the noise. We propose and analyze the convergence of an iterative alternating algorithm based on simple iterative thresholding steps to perform the minimization of the functional. By means of this algorithm, we explore the effect of choosing different regularization parameters and penalization norms in terms of the quality of recovering the pure signal and separating it from additive noise. For a given fixed noise level numerical experiments confirm a significant improvement in performance compared to standard one-parameter regularization methods. By using high-dimensional data analysis methods such as principal component analysis, we are able to show the correct geometrical clustering of regularized solutions around the expected solution. Eventually, for the compressive sensing problems considered in our experiments we provide a guideline for a choice of regularization norms and parameters.
ERIC Educational Resources Information Center
Lofton, Glenda G.; And Others
This report presents the results of an initial, iterative performance standards-setting (SS) task of a comprehensive on-the-job statewide teacher assessment system--the System for Teaching and Learning Assessment and Review (STAR). The 1990-91 STAR assesses and makes inferences about the quality of teaching and learning on sets of assessment…
Progress in design and integration of the ITER Electron Cyclotron H&CD system
Darbos, Caroline; Henderson, Mark; Kobayashi, N.; Albajar, F.; Bonicelli, T.; Saibene, G.; Bigelow, Timothy S; Rasmussen, David A; Chavan, R.; Fasel, D.; Hogge, J. P.; Denisov, G. G.; Heidinger, R.; Piosczyk, B.; Thumm, M.; Rao, S. L.; Sakamoto, K.; Takahaski, K.; Thumm, M.
2009-06-01
The Electron Cyclotron system for ITER is an in-kind procurement shared between five parties and the total installed power will be 24 MW, corresponding to a nominal injected power of 20 MW to the plasma, with a possible upgrade up to 48 MW (corresponding to 40 MW injected). Some critical issues have been raised and changes are proposed to simplify these procurements and to facilitate the integration into ITER. The progress in the design and the integration of the EC system into the whole project is presented in this paper, as well as some issues still under studies and some recommendations made by external expert committees.
Block quasi-minimal residual iterations for non-Hermitian linear systems
Freund, R.W.
1994-12-31
Many applications require the solution of multiple linear systems that have the same coefficient matrix, but differ only in their right-hand sides. Instead of applying an iterative method to each of these systems individually, it is usually more efficient to employ a block version of the method that generates blocks of iterates for all the systems simultaneously. An example of such an iteration is the block conjugate gradient algorithm, which was first studied by Underwood and O`Leary. On parallel architectures, block versions of conjugate gradient-type methods are attractive even for the solution of single linear systems, since they have fewer synchronization points than the standard versions of these algorithms. In this talk, the author presents a block version of Freund and Nachtigal`s quasi-minimal residual (QMR) method for the iterative solution of non-Hermitian linear systems. He describes two different implementations of the block-QMR method, one based on a block version of the three-term Lanczos algorithm and one based on coupled two-term block recurrences. In both cases, the underlying block-Lanczos process still allows arbitrary normalizations of the vectors within each block, and the author discusses different normalization strategies. To maintain linear independence within each block, it is usually necessary to reduce the block size in the course of the iteration, and the author describes a deflation technique for performing this reduction. He also present some convergence results, and reports results of numerical experiments with the block-QMR method. Finally, the author discusses possible block versions of transpose-free Lanczos-based iterations such as the TFQMR method.
On the HSS iteration methods for positive definite Toeplitz linear systems
NASA Astrophysics Data System (ADS)
Gu, Chuanqing; Tian, Zhaolu
2009-02-01
We study the HSS iteration method for large sparse non-Hermitian positive definite Toeplitz linear systems, which first appears in Bai, Golub and Ng's paper published in 2003 [Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003) 603-626], and HSS stands for the Hermitian and skew-Hermitian splitting of the coefficient matrix A. In this note we use the HSS iteration method based on a special case of the HSS splitting, where the symmetric part is a centrosymmetric matrix and the skew-symmetric part is a skew-centrosymmetric matrix for a given Toeplitz matrix. Hence, fast methods are available for computing the two half-steps involved in the HSS and IHSS iteration methods. Some numerical results illustrate their effectiveness.
LU-decomposition with iterative refinement for solving sparse linear systems
NASA Astrophysics Data System (ADS)
Al-Kurdi, Ahmad; Kincaid, David R.
2006-01-01
In the solution of a system of linear algebraic equations Ax=b with a large sparse coefficient matrix A, the LU-decomposition with iterative refinement (LUIR) is compared with the LU-decomposition with direct solution (LUDS), which is without iterative refinement. We verify by numerical experiments that the use of sparse matrix techniques with LUIR may result in a reduction of both the computing time and the storage requirements. The powers of a Boolean matrix strategy (PBS) is used in an effort to achieve such a reduction and in an attempt to control the sparsity. We conclude that iterative refinement procedures may be efficiently used as an option in software for the solution of sparse linear systems of equations.
Willert, Jeffrey; Taitano, William T.; Knoll, Dana
2014-09-15
In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computational results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.
Safety Issues and Approach to Meet the Safety Requirements in Tokamak Cooling Water System of ITER
Flanagan, George F; Reyes, Susana; Chang, Keun Pack; Berry, Jan; Kim, Seokho H
2010-01-01
The ITER (Latin for 'the way') tokamak cooling water system (TCWS) consists of several separate systems to cool the major ITER components - the divertor/limiter, the first wall blanket, the neutral beam injector and the vacuum vessel. The ex-vessel part of the TCWS systems provides a confinement function for tritium and activated corrosion products in the cooling water. The Vacuum Vessel System also has a functional safety requirement regarding the residual heat removal from in-vessel components. A preliminary hazards assessment (PHA) was performed for a better understanding of the hazards, initiating events, and defense in depth mechanisms associated with the TCWS. The PHA was completed using the following steps. (1) Hazard Identification. Hazards associated with the TCWS were identified including radiological/chemical/electromagnetic hazards and physical hazards (e.g., high voltage, high pressure, high temperature, falling objects). (2) Hazard Categorization. Hazards identified in step (1) were categorized as to their potential for harm to the workers, the public, and/or the environment. (3) Hazard Evaluation. The design was examined to determine initiating events that might occur and that could expose the public, environment, or workers to the hazard. In addition the system was examined to identify barriers that prevent exposure. Finally, consequences to the public or workers were qualitatively assessed, should the initiating event occur and one or more of the barriers fail. Frequency of occurrence of the initiating event and subsequent barrier failure was qualitatively estimated. (4) Accident Analysis. A preliminary hazards analysis was performed on the conceptual design of the TCWS. As the design progresses, a detailed accident analysis will be performed in the form of a failure modes and effects analysis. The results of the PHA indicated that the principal hazards associated with the TCWS were those associated with radiation. These were low compared to
Green`s function of Maxwell`s equations and corresponding implications for iterative methods
Singer, B.S.; Fainberg, E.B.
1996-12-31
Energy conservation law imposes constraints on the norm and direction of the Hilbert space vector representing a solution of Maxwell`s equations. In this paper, we derive these constrains and discuss the corresponding implications for the Green`s function of Maxwell`s equations in a dissipative medium. It is shown that Maxwell`s equations can be reduced to an integral equation with a contracting kernel. The equation can be solved using simple iterations. Software based on this algorithm have successfully been applied to a wide range of problems dealing with high contrast models. The matrix corresponding to the integral equation has a well defined spectrum. The equation can be symmetrized and solved using different approaches, for instance one of the conjugate gradient methods.
An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics
NASA Technical Reports Server (NTRS)
Baluja, Shumeet
1995-01-01
This report is a repository of the results obtained from a large scale empirical comparison of seven iterative and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets of problem classes which are commonly explored in genetic algorithm literature, are examined. The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network weight optimization, and standard numerical optimization. The search spaces in these problems range from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics. Descriptions of the algorithms tested and the encodings of the problems are described in detail for reproducibility.
From Synthesis to Function via Iterative Assembly of MIDA Boronate Building Blocks
Li, Junqi; Grillo, Anthony S.; Burke, Martin D.
2015-01-01
Small molecules can powerfully benefit society, but the study and optimization of their function is too often impeded by the time-intensive and specialist-dependent process that is typically used to make them. In contrast, general and automated platforms have been developed for peptide, oligonucleotide, and increasingly oligosaccharide synthesis, resulting in on-demand access to these molecules, even for non-specialists. A more generalized and automated approach for making small molecules could similarly help shift the rate limiting step in small molecule science from synthesis to function. Targeting this goal, we have developed a fully automated and increasingly general platform for iterative coupling of boronate building blocks. Analogous to peptide synthesis, the process involves iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. This platform has enabled us and other groups to access many polyene natural products, including the polyene motifs in >75% of all polyene natural products. It further allowed us to derivatize and thereby understand the powerful but also highly toxic antifungal natural product amphotericin B, which has led to the development of less toxic derivatives currently under evaluation as drug candidates. We also discovered a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes, which are versatile intermediates for the synthesis of many Csp3 boronate building blocks that are otherwise difficult to access. We have also expanded the scope of the platform to include Csp3-rich, polycyclic molecules using a linear-to-cyclized strategy, in which Csp3 boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform
Korea's activities for the development of ITER tritium storage and delivery systems
Chung, H.; Shim, M.; Ahn, D. H.; Lee, M.; Hong, C.; Yoshida, H.; Song, K. M.; Kim, D. J.
2008-07-15
The ITER fuel cycle plant is composed of various subsystems such as a long term tritium storage system (LTS), a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea shares in the construction of the ITER fuel cycle plant with the EU (Japan)) and US, and is responsible for the development and supply of the SDS and LTS. The authors thus present details on the development status of the tritium transport container, the long term tritium storage beds, the short-term delivery system T{sub 2}, DT, and the D{sub 2} storage beds, the calorimetry system, and the associated He-3 recovery loop, the over pressure protection systems, and the gas analysis manifold connected to the tritium plant's analytical systems. (authors)
NASA Astrophysics Data System (ADS)
Sarkar, B.; Shah, N.; Vaghela, H.; Bhattacharya, R.; Choukekar, K.; Patel, P.; Chang, H.-S.; Badgujar, S.; Chalifour, M.
2015-12-01
System of Cryoline and Cryo-distribution for ITER has matured to a stage of preliminary design with the advent of industrial associates. Starting from the cold power source, the system of Cryoline and Cryo-distribution transfers the controlled cold power through a large network to the superconducting magnets and cryopumps. The functional responsibility also includes very high reliability and availability with respect to the operation of the ITER machine. Following the completion of conceptual design, it was necessary to perform a detailed engineering study of the complete network of distribution system in totality, before entering in to the industrial phase. This is to ensure the functional responsibility of the system. Value engineering in the area of distribution boxes including interfacing Cryolines has been performed in order to access the integrated reliable performance with respect to the overall cryogenic system, reducing the risk transferred to the industrial partners. These include technical risk assessment, analysis, mitigation plan and implementation with the industrial partners. The paper describes the methodology of technical risk management, value engineering performed to ensure fulfilment of licensing and regulatory obligations, functional reliability, testing and manufacturability by standard industrial processes, so that highly reliable integrated distribution system is delivered for the project.
Yin, Fukang; Song, Junqiang; Leng, Hongze; Lu, Fengshun
2014-01-01
We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid "noise terms" is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303
US ITER / ORNL
2012-03-16
US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.
Tohme, Michel S.; Qi, Jinyi
2010-01-01
Purpose: The accuracy of the system model that governs the transformation from the image space to the projection space in positron emission tomography (PET) greatly affects the quality of reconstructed images. For efficient computation in iterative reconstructions, the system model in PET can be factored into a product of geometric projection and sinogram blurring function. To further speed up reconstruction, fully 3D PET data can be rebinned into a stack of 2D sinograms and then be reconstructed using 2D iterative algorithms. The purpose of this work is to develop a method to estimate the sinogram blurring function to be used in reconstruction of Fourier-rebinned data. Methods: In a previous work, the authors developed an approach to estimating the sinogram blurring function of nonrebinned PET data from experimental scans of point sources. In this study, the authors extend this method to the estimation of sinogram blurring function for Fourier-rebinned PET data. A point source was scanned at a set of sampled positions in the microPET II scanner. The sinogram blurring function is considered to be separable between the transaxial and axial directions. A radially and angularly variant 2D blurring function is estimated from Fourier-rebinned point source scans to model the transaxial blurring with consideration of the detector block structure of the scanner; a space-variant 1D blurring kernel along the axial direction is estimated separately to model the correlation between neighboring planes due to detector intrinsic blurring and Fourier rebinning. The estimated sinogram blurring function is incorporated in a 2D maximum a posteriori (MAP) reconstruction algorithm for image reconstruction. Results: Physical phantom experiments were performed on the microPET II scanner to validate the proposed method. The authors compared the proposed method to 2D MAP reconstruction without sinogram blurring model and 2D MAP reconstruction with a Monte Carlo based blurring model. The
Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG.
Rahol, Jussi; Tissari, Satu
2002-03-21
We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time-consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computational time. PMID:11936181
Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG
NASA Astrophysics Data System (ADS)
Rahola, Jussi; Tissari, Satu
2002-03-01
We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time-consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computational time.
Status of the design of the Diagnostic Residual Gas Analyzer System for ITER first plasma
NASA Astrophysics Data System (ADS)
Biewer, T. M.; Klepper, C. C.; Devan, B.; Graves, V.; Marcus, C.; Younkin, T.; Andrew, P.; Johnson, D. W.
2013-10-01
Among the ITER procurements awarded to the US ITER Domestic Agency, and subsequently to the ORNL Fusion & Materials for Nuclear Systems Division, is the design and fabrication of the Diagnostc Residual Gas Analyzer (DRGA) system. The DRGA system reached the Preliminary Design Review (PDR) in Spring 2013, and has transitioned into the Final Design phase. As a result of the PDR, and ITER systems design evolutions, several design changes have been incorporated into the DRGA system. The design effort has focused on the vacuum and mechanical interface of the DRGA gas sampling tube with the ITER vacuum vessel and cyrostat. Moreover, R&D tasks to demonstrate the 3-sensor instrumentation design (quadrupole mass spectrometer, ion-trap mass spectrometer, and optical Penning gauge) are maturing through the construction and testing of a DRGA prototype at ORNL. Results will be presented at this poster along with the DRGA design overview. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.
Conceptual design of a High Temperature Superconductor current feeder system for ITER
NASA Astrophysics Data System (ADS)
Tanna, V. L.; Fietz, W. H.; Heller, R.; Vostner, A.; Wesche, R.; Zahn, G. R.
2006-06-01
The International Thermonuclear Experimental Reactor (ITER) project envisages a techno-economically feasible solution of its current feeder system in order to reduce the overall cryogenic requirements and operational costs. Since the ITER magnet system has a long stand-by time with respect to its operation duty cycle, it is essential to optimize the operational costs of the current feeder system taking into consideration both, the full current and stand-by modes. The present HTS technology has reached the maturity that HTS conductors are applicable for the current feeder system of ITER. The replacement of the actually planned conventional current leads by HTS current leads would provide considerable savings in the refrigeration investment and operational costs. Another option is the substitution of the water cooled high current aluminum feeders by HTS feeders, so called HTS bus bars. In this paper, the different design options of Bi-2223/Ag HTS based bus bars as prototype unit modules for ITER are discussed. The performance of different cooling schemes for HTS bus bars is studied and the design related critical issues e.g. metallic transition (65 K -300 K) and bending of bus bar, AC loss, thermal loss and reliability of the cooling system are investigated.
Cho, Hyung Min; Chu, Jhih-Wei
2009-10-01
We develop a new method to invert the target profiles of radial distribution functions (RDFs) to the pair forces between particles. The target profiles of RDFs can be obtained from all-atom molecular dynamics (MD) simulations or experiments and the inverted pair forces can be used in molecular simulations at a coarse-grained (CG) scale. Our method is based on a variational principle that determines the mean forces between CG sites after integrating out the unwanted degrees of freedom. The solution of this variational principle has been shown to correspond to the Yvon-Born-Green (YBG) equation [Noid et al., J. Phys. Chem. B 111, 4116 (2007)]. To invert RDFs, we solve the YBG equation iteratively by running a CG MD simulation at each step of iteration. A novelty of the iterative-YBG method is that during iteration, CG forces are updated according to the YBG equation without imposing any approximation as is required by other methods. As a result, only three to ten iterations are required to achieve convergence for all cases tested in this work. Furthermore, we show that not only are the target RDFs reproduced by the iterative solution; the profiles of the three-body correlation function in the YBG equation computed from all-atom and CG simulations also have a better agreement. The iterative-YBG method is applied to compute the CG forces of four molecular liquids to illustrate its efficiency and robustness: water, ethane, ethanol, and a water/methanol mixture. Using the resulting CG forces, all of the target RDFs observed in all-atom MD simulations are reproduced. We also show that the iterative-YBG method can be applied with a virial constraint to expand the representability of a CG force field. The iterative-YBG method thus provides a general and robust framework for computing CG forces from RDFs and could be systematically generalized to go beyond pairwise forces and to include higher-body interactions in a CG force field by applying the aforementioned variational
Myers, N.J.
1994-12-31
The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.
NASA Astrophysics Data System (ADS)
Warisarn, C.; Losuwan, T.; Supnithi, P.; Kovintavewat, P.
2014-05-01
At high recording density, the readback signal of two-dimensional magnetic recording is inevitably corrupted by the two-dimensional (2D) interference consisting of inter-symbol interference and inter-track interference (ITI), which can significantly degrade the overall system performance. This paper proposes an iterative ITI mitigation method using three modified 2D soft-output Viterbi algorithm (2D-SOVA) detectors in conjunction with an iterative processing technique to combat the 2D interference. The codeword of the outer code is divided and then written on three separate tracks. For every iteration, all 2D-SOVA detectors exchange the soft information to improve the reliability of the a priori information and use it in the branch metric calculation, before feeding the refined soft information to the outer decoder. Simulation results show that the proposed method outperforms the conventional receiver and the existing partial ITI mitigation method.
Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems
Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; Thornquist, Heidi
2012-01-01
Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less
Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie
2016-02-01
Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study. PMID:25823038
Rigidifying Acyl Carrier Protein Domain in Iterative Type I PKS CalE8 Does Not Affect Its Function
Lim, Jackwee; Sun, Huihua; Fan, Jing-Song; Hameed, Iman Fahim; Lescar, Julien; Liang, Zhao-Xun; Yang, Daiwen
2012-01-01
Acyl carrier protein (ACP) domains shuttle acyl intermediates among the catalytic domains of multidomain type I fatty acid synthase and polyketide synthase (PKS) systems. It is believed that the unique function of ACPs is associated with their dynamic property, but it remains to be fully elucidated what type of protein dynamics is critical for the shuttling domain. Using NMR techniques, we found that the ACP domain of iterative type I PKS CalE8 from Micromonospora echinospora is highly dynamic on the millisecond-second timescale. Introduction of an interhelical disulfide linkage in the ACP domain suppresses the dynamics on the millisecond-second timescale and reduces the mobility on the picosecond-nanosecond timescale. We demonstrate that the full-length PKS is fully functional upon rigidification of the ACP domain, suggesting that although the flexibility of the disordered terminal linkers may be important for the function of the ACP domain, the internal dynamics of the helical regions is not critical for that function. PMID:23009853
Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System
NASA Astrophysics Data System (ADS)
Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team
2015-11-01
The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.
Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation
NASA Astrophysics Data System (ADS)
Bittner-Rohrhofer, K.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.
2002-11-01
The mechanical properties of glass fiber reinforced plastics (GFRPs) suggested for the turn and ground insulation of the ITER toroidal field (TF) coils are subject to extensive investigations with respect to their design requirements at present. The insulation system used for the ITER TF model coil, manufactured by European industry, consists of a boron-free R-glass fiber reinforced tape, vacuum-pressure impregnated in a DGEBA epoxy system and partly interleaved with polyimide-foils (e.g. Kapton-H-foils). In order to assess the material performance under the actual operating conditions of ITER-FEAT, the system was irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5×10 21 and 1×10 22 m -2 ( E>0.1 MeV). The composite was screened at 77 K using static tensile, short-beam-shear (SBS) as well as double-lap-shear tests prior to and after irradiation. Furthermore, tension-tension fatigue measurements were done in order to simulate the pulsed ITER-FEAT operation. We observe that the mechanical strength and the fracture behavior of these GFRPs after irradiation are strongly influenced by the three factors: the winding direction of the tape, the quality of fabrication and the delamination process.
Analysis of the ITER Low Field Side Reflectometer Transmission Line System
Hanson, Gregory R; Wilgen, John B; Bigelow, Tim S; Diem, Stephanie J; Biewer, Theodore M
2010-01-01
A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of 42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given.
FAIRMAN, ANDREA D.; YIH, ERIKA T.; MCCOY, DANIEL F.; LOPRESTI, EDMUND F.; MCCUE, MICHAEL P.; PARMANTO, BAMBANG; DICIANNO, BRAD E.
2016-01-01
A novel mobile health platform, Interactive Mobile Health and Rehabilitation (iMHere), is being developed to support wellness and self-management among people with chronic disabilities. The iMHere system currently includes a smartphone app with six modules for use by persons with disabilities and a web portal for use by medical and rehabilitation professionals or other support personnel. Our initial clinical research applying use of this system provides insight into the feasibility of employing iMHere in the development of self-management skills in young adults (ages 18–40 years) with spina bifida (SB) (Dicianno, Fairman, et al., 2015). This article describes the iterative design of the iMHere system including usability testing of both the app modules and clinician portal. Our pilot population of persons with SB fostered the creation of a system appropriate for people with a wide variety of functional abilities and needs. As a result, the system is appropriate for use by persons with various disabilities and chronic conditions, not only SB. In addition, the diversity of professionals and support personnel involved in the care of persons with SB also enabled the design and implementation of the iMHere system to meet the needs of an interdisciplinary team of providers who treat various conditions. The iMHere system has the potential to foster communication and collaboration among members of an interdisciplinary healthcare team, including individuals with chronic conditions and disabilities, for a client-centered approach to support self-management skills. PMID:27563387
Fairman, Andrea D; Yih, Erika T; McCoy, Daniel F; Lopresti, Edmund F; McCue, Michael P; Parmanto, Bambang; Dicianno, Brad E
2016-01-01
A novel mobile health platform, Interactive Mobile Health and Rehabilitation (iMHere), is being developed to support wellness and self-management among people with chronic disabilities. The iMHere system currently includes a smartphone app with six modules for use by persons with disabilities and a web portal for use by medical and rehabilitation professionals or other support personnel. Our initial clinical research applying use of this system provides insight into the feasibility of employing iMHere in the development of self-management skills in young adults (ages 18-40 years) with spina bifida (SB) (Dicianno, Fairman, et al., 2015). This article describes the iterative design of the iMHere system including usability testing of both the app modules and clinician portal. Our pilot population of persons with SB fostered the creation of a system appropriate for people with a wide variety of functional abilities and needs. As a result, the system is appropriate for use by persons with various disabilities and chronic conditions, not only SB. In addition, the diversity of professionals and support personnel involved in the care of persons with SB also enabled the design and implementation of the iMHere system to meet the needs of an interdisciplinary team of providers who treat various conditions. The iMHere system has the potential to foster communication and collaboration among members of an interdisciplinary healthcare team, including individuals with chronic conditions and disabilities, for a client-centered approach to support self-management skills. PMID:27563387
A laser scanning system for metrology and viewing in ITER
Spampinato, P.T.; Barry, R.E.; Menon, M.M.; Herndon, J.N.; Dagher, M.A.; Maslakowski, J.E.
1996-05-01
The construction and operation of a next-generation fusion reactor will require metrology to achieve and verify precise alignment of plasma-facing components and inspection in the reactor vessel. The system must be compatible with the vessel environment of high gamma radiation (10{sup 4} Gy/h), ultra-high-vacuum (10{sup {minus}8} torr), and elevated temperature (200 C). The high radiation requires that the system be remotely deployed. A coherent frequency modulated laser radar-based system will be integrated with a remotely operated deployment mechanism to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of a biological shield. The deployment mechanism will be a mast-like positioning system. Radiation-damage tests will be conducted on critical sensor components at Oak Ridge National Laboratory to determine threshold damage levels and effects on data transmission. This paper identifies the requirements for International Thermonuclear Experimental Reactor metrology and viewing and describes a remotely operated precision ranging and surface mapping system.
2012-01-01
Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this. PMID:22676920
NASA Technical Reports Server (NTRS)
Johnson, I. L., Jr.
1976-01-01
The Fletcher-Powell version of the Davidon variable metric unconstrained minimization technique is described. Equations that have been used successfully with the Davidon-Fletcher-Powell penalty function technique for solving constrained minimization problems and the advantages and disadvantages of using them are discussed. The experience gained in the behavior of the method while iterating is also related.
ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER
In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...
Twin-Screw Extruder Development for the ITER Pellet Injection System
Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk; Fehling, Dan T; McGill, James M; Rasmussen, David A; Leachman, J. W.
2009-01-01
The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pellets used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ≈5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ≈15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.
On the assessment of spatial resolution of PET systems with iterative image reconstruction
NASA Astrophysics Data System (ADS)
Gong, Kuang; Cherry, Simon R.; Qi, Jinyi
2016-03-01
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System
Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude
2011-01-01
The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle
An iterative approach to the optimal co-design of linear control systems
NASA Astrophysics Data System (ADS)
Jiang, Yu; Wang, Yebin; Bortoff, Scott A.; Jiang, Zhong-Ping
2016-04-01
This paper investigates the optimal co-design of both physical plants and control policies for a class of continuous-time linear control systems. The optimal co-design of a specific linear control system is commonly formulated as a nonlinear non-convex optimisation problem (NNOP), and solved by using iterative techniques, where the plant parameters and the control policy are updated iteratively and alternately. This paper proposes a novel iterative approach to solve the NNOP, where the plant parameters are updated by solving a standard semi-definite programming problem, with non-convexity no longer involved. The proposed system design is generally less conservative in terms of the system performance compared to the conventional system-equivalence-based design, albeit the range of applicability is slightly reduced. A practical optimisation algorithm is proposed to compute a sub-optimal solution ensuring the system stability, and the convergence of the algorithm is established. The effectiveness of the proposed algorithm is illustrated by its application to the optimal co-design of a physical load positioning system.
Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor
NASA Astrophysics Data System (ADS)
Yang, Xiuqing; Luo, Minzhou; Mei, Tao; Yao, Damao
2009-06-01
The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.
NASA Astrophysics Data System (ADS)
Li, Jinsha; Li, Junmin
2016-07-01
In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.
NASA Astrophysics Data System (ADS)
Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing
2015-08-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
Degenerate neuronal systems sustaining cognitive functions
Noppeney, Uta; Friston, Karl J; Price, Cathy J
2004-01-01
The remarkable resilience of cognitive functions to focal brain damage suggests that multiple degenerate neuronal systems can sustain the same function either via similar mechanisms or by implementing different cognitive strategies. In degenerate functional neuroanatomy, multiple degenerate neuronal systems might be present in a single brain where they are either co-activated or remain latent during task performance. In degeneracy over subjects, a particular function may be sustained by only one neuronal system within a subject, but by different systems over subjects. Degeneracy over subjects might have arisen from (ab)normal variation in neurodevelopmental trajectories or long-term plastic changes following structural lesions. We discuss how degenerate neuronal systems can be revealed using (1) intersubject variability, (2) multiple lesion studies and (3) an iterative approach integrating information from lesion and functional imaging studies. PMID:15610392
Huang, Chen
2016-03-28
A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system's density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, we introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials. PMID:27036426
NASA Astrophysics Data System (ADS)
Huang, Chen
2016-03-01
A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system's density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, we introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials.
NASA Technical Reports Server (NTRS)
Lee, Mark
1991-01-01
Many companies, including Xerox and Texas Instruments, are using cross functional systems to deal with the increasingly complex and competitive business environment. However, few firms within the aerospace industry appear to be aware of the significant benefits that cross functional systems can provide. Those benefits are examined and a flexible methodology is discussed that companies can use to identify and develop cross functional systems that will help improve organizational performance. In addition, some of the managerial issues are addressed that cross functional systems may raise and specific examples are used to explore networking's contributions to cross functional systems.
Design of the Remote Steerable ECRH launching system for the ITER upper ports
NASA Astrophysics Data System (ADS)
Verhoeven, A. G. A.; Elzendoorn, B. S. Q.; Bongers, W. A.; Bruschi, A.; Cirant, S.; Danilov, I.; Fernandez, A.; Gantenbein, G.; Graswinckel, M. F.; Heidinger, R.; Kasparek, W.; Kleefeldt, K.; Kruijt, O. G.; Lamers, B.; Piosczyk, B.; Plaum, B.; Ronden, D. M. S.; Saibene, G.; Zohm, H.
2005-01-01
An ECRH (electron-cyclotron resonance heating) launching system for the ITER upper ports is being designed. The aim of the system is to inject Electron Cyclotron Waves (ECW) in the ITER plasma in order to stabilize neoclassical tearing modes (NTM). Each of the four upper-port launchers consists of six mm-wave lines capable of transmitting high power up to 2 MW per line at 170 GHz. In order to exploit the capability of ECW for localized heating and current drive over a range of plasma radii in ITER, the ECH&CD upper port launcher must have a beam steering capability. The Remote Steering (RS) principle has great advantages, because it enables to avoid steerable mirrors with flexible cooling lines at the plasma-facing end of the launcher. The principle consists of a long, corrugated, square waveguide having the steerable optics placed outside of the first confinement boundary of the vacuum vessel. All vulnerable components are far away from the hostile plasma environment. Furthermore, the RS launching system enables to do maintenance on the system during shutdown, without affecting the torus vacuum and the blanket cooling circuits.
A Second-Order Iterative Implicit Explicit Hybrid Scheme for Hyperbolic Systems of Conservation Laws
NASA Astrophysics Data System (ADS)
Dai, Wenlong; Woodward, Paul R.
1996-10-01
An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples.
Recent advances in Lanczos-based iterative methods for nonsymmetric linear systems
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Golub, Gene H.; Nachtigal, Noel M.
1992-01-01
In recent years, there has been a true revival of the nonsymmetric Lanczos method. On the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-called look-ahead variants of the Lanczos process have been developed, which remedy this problem. On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear systems have been proposed. This paper gives a survey of some of these recent developments.
NASA Astrophysics Data System (ADS)
Chien, Chiang-Ju; Lee, Fu-Shin; Wang, Jhen-Cheng
2007-01-01
For trajectory tracking of a piezoelectric actuator system, an enhanced iterative learning control (ILC) scheme based on wavelet transform filtering (WTF) is proposed in this research. The enhanced ILC scheme incorporates a state compensation in the ILC formula. Combining state compensation with iterative learning, the scheme enhances tracking accuracies substantially, in comparison to the conventional D-type ILC and a proportional control-aided D-type ILC. The wavelet transform is adopted to filter learnable tracking errors without phase shift. Based on both a time-frequency analysis of tracking errors and a convergence bandwidth analysis of ILC, a two-level WTF is chosen for ILC in this study. The enhanced ILC scheme using WTF was applied to track two desired trajectories, one with a single frequency and the other with multiple frequencies, respectively. Experimental results validate the efficacy of the enhanced ILC in terms of the speed of convergence and the level of long-term tracking errors.
Newton iterative methods for large scale nonlinear systems. Progress report, 1992--1993
Walker, H.F.; Turner, K.
1993-06-01
Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)
Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M
2011-06-01
High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. PMID:21721690
Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.
2011-06-15
High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.
Concept development for the ITER equatorial port visible/infrared wide angle viewing system
Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S.; and others
2012-10-15
The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.
Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna
NASA Astrophysics Data System (ADS)
Vrancken, M.; Lerche, E.; Blackman, T.; Dumortier, P.; Durodié, F.; Evrard, M.; Goulding, R. H.; Graham, M.; Huygen, S.; Jacquet, P.; Kaye, A.; Mayoral, M.-L.; Nightingale, M. P. S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.
2009-11-01
The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma.
Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna
Vrancken, M.; Lerche, E.; Dumortier, P.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.
2009-11-26
The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma.
Analysis of the ITER low field side reflectometer transmission line system.
Hanson, G R; Wilgen, J B; Bigelow, T S; Diem, S J; Biewer, T M
2010-10-01
A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ∼42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given. PMID:21033952
Henning, C.D.; Miller, J.R.
1988-10-09
The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs.
RF Sources for the ITER Ion Cyclotron Heating and Current Drive System
Hosea, J.; Brunkhorst, C.; Fredd, E.; Goulding, R. H.; Goulding, R. H.; Greenough, N.; Kung, C.; Rasmussen, D. A.; Swain, D. W.; Wilson, J. R.
2005-10-04
The RF source requirements for the ITER ion cyclotron (IC) heating and current drive system are very challenging ? 20 MW CW power into an antenna load with a VSWR of up to 2 over the frequency range of 35-65 MHz. For the two present antenna designs under consideration, 8 sources providing 2.5 MW each are to be employed. For these sources, the outputs of two final power amplifiers (FPAs), using the high power CPI 4CM2500KG tube, are combined with a 180? hybrid combiner to easily meet the ITER IC source requirements ? 2.5 MW is supplied at a VSWR of 2 at ? 70% of the maximum tube power available in class B operation. The cylindrical cavity configuration for the FPAs is quite compact so that the 8 combined sources fit into the space allocated at the ITER site with room to spare. The source configuration is described in detail and its projected operating power curves are presented. Although the CPI tube has been shown to be stable under high power operating conditions on many facilities, a test of the combined FPA source arrangement is in preparation using existing high power 30 MHz amplifiers to assure that this configuration can be made robustly stable for all phases at a VSWR up to 2. The possibility of using 12 sources to feed a suitably modified antenna design is also discussed in the context of providing flexibility for specifying the final IC antenna design.
NASA Astrophysics Data System (ADS)
Huang, Chuanjun; Huang, Rongjin; Li, Laifeng
2014-01-01
High field superconducting magnets need strong non-superconducting components for structural reinforcement. For instance, the ITER magnet system (MS) consists of cable-in-conduit conductor, coil case, magnet support, and insulating materials. Investigation of mechanical properties at magnet operation temperature with specimens machined at the final manufacturing stages of the conductor jacket materials, magnet support material, and insulating materials, even the component of the full-size conductor jacket is necessary to establish sound databases for the products. In China, almost all mechanical property tests of structural materials for the ITER MS, including conductor jacket materials of TF coils, PF coils, CCs, case material of CCs, conductor jacket materials of Main Busbars (MB) and Corrector Busbars (CB), material of magnet supports, and insulating materials of CCs have been carried out at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS). In this paper, the mechanical property test facilities are briefly demonstrated and the mechanical tests on the structural materials for the ITER MS, highlighting test rigs as well as test methods, are presented.
NASA Astrophysics Data System (ADS)
Zhao, Guo-Zhong; Chen, Gang; Kang, Zhan
2012-04-01
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.
Design and Analysis of the Main AC/DC Converter System for ITER
NASA Astrophysics Data System (ADS)
Sheng, Zhicai; Xu, Liuwei; Fu, Peng
2012-04-01
A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.
NASA Astrophysics Data System (ADS)
Kafri, H. Q.; Khuri, S. A.; Sayfy, A.
2016-03-01
In this paper, a novel approach is introduced for the solution of the non-linear Troesch's boundary value problem. The underlying strategy is based on Green's functions and fixed-point iterations, including Picard's and Krasnoselskii-Mann's schemes. The resulting numerical solutions are compared with both the analytical solutions and numerical solutions that exist in the literature. Convergence of the iterative schemes is proved via manipulation of the contraction principle. It is observed that the method handles the boundary layer very efficiently, reduces lengthy calculations, provides rapid convergence, and yields accurate results particularly for large eigenvalues. Indeed, to our knowledge, this is the first time that this problem is solved successfully for very large eigenvalues, actually the rate of convergence increases as the magnitude of the eigenvalues increases.
The ITER divertor Thomson scattering system: engineering and advanced hardware solutions
NASA Astrophysics Data System (ADS)
Mukhin, E. E.; Semenov, V. V.; Razdobarin, A. G.; Tolstyakov, S. Yu; Kochergin, M. M.; Kurskiev, G. S.; Berezutsky, A. A.; Podushnikova, K. A.; Masyukevich, S. V.; Chernakov, P. V.; Borovkov, A. I.; Modestov, V. S.; Nemov, A. S.; Voinov, A. S.; Kornev, A. F.; Stupnikov, V. K.; Borisov, A. A.; Baranov, G. N.; Koval, A. N.; Makushina, A. F.; Yelizarov, B. A.; Kukushkin, A. S.; Encheva, A.; Andrew, P.
2012-02-01
A divertor Thomson scattering (TS) system being developed for ITER has incorporated proven solutions from currently available TS systems. On the other hand any ITER diagnostic has to operate in a hostile environment and very restricted access geometry. Therefore the operation in an environment of intensive stray light, plasma background radiation, the necessity meet the requirement using only a 20 mm gap between divertor cassettes for plasma diagnosis as well as to measure plasma temperatures as low as 1 eV severely constrain the divertor TS diagnostic design. The challenging solutions of this novel diagnostic system which has to ensure its steady performance and also the operability and maintenance are the focus of this report. One of the most demanding parts of the in-vessel diagnostic equipment development is the design assessment using different engineering analyses. The task definition and first results of thermal, e/m and seismic analyses are provided. The process of further improving of the design involves identification of susceptible areas and multiple iterations of the design, as needed. One of the key points for all Thomson scattering diagnostics are the laser capabilities. A high-performance and high-power laser system using a steady-state and high-repetitive mode Nd:YAG laser (2J, 50-100Hz, 3ns) has been developed. The reduced laser pulse duration matched with high-speed low-noise APD detector can be very important under high background light level. For diagnostics such as Thomson scattering and Raman spectroscopy, a high-degree of discrimination against stray light at the laser wavelength is required for successful detection of wavelength-shifted light from the laser-plasma interaction region. For this case of high stray light level, a triple grating polychromator characterized by high rejection and high transmission has been designed and developed. The novel polychromator design minimizes stray light while still maintaining a relatively high
Dutta, Samrat; Patchaikani, Prem Kumar; Behera, Laxmidhar
2016-07-01
This paper presents a single-network adaptive critic-based controller for continuous-time systems with unknown dynamics in a policy iteration (PI) framework. It is assumed that the unknown dynamics can be estimated using the Takagi-Sugeno-Kang fuzzy model with arbitrary precision. The successful implementation of a PI scheme depends on the effective learning of critic network parameters. Network parameters must stabilize the system in each iteration in addition to approximating the critic and the cost. It is found that the critic updates according to the Hamilton-Jacobi-Bellman formulation sometimes lead to the instability of the closed-loop systems. In the proposed work, a novel critic network parameter update scheme is adopted, which not only approximates the critic at current iteration but also provides feasible solutions that keep the policy stable in the next step of training by combining a Lyapunov-based linear matrix inequalities approach with PI. The critic modeling technique presented here is the first of its kind to address this issue. Though multiple literature exists discussing the convergence of PI, however, to the best of our knowledge, there exists no literature, which focuses on the effect of critic network parameters on the convergence. Computational complexity in the proposed algorithm is reduced to the order of (Fz)(n-1) , where n is the fuzzy state dimensionality and Fz is the number of fuzzy zones in the states space. A genetic algorithm toolbox of MATLAB is used for searching stable parameters while minimizing the training error. The proposed algorithm also provides a way to solve for the initial stable control policy in the PI scheme. The algorithm is validated through real-time experiment on a commercial robotic manipulator. Results show that the algorithm successfully finds stable critic network parameters in real time for a highly nonlinear system. PMID:26259150
Antigravitational Functional System
NASA Astrophysics Data System (ADS)
Dorogovtsev, V. N.
2008-06-01
The purpose of this paper is the description of the main components and basic functioning principles of the antigravitational functional system (AFS). Methods: literary review and theoretical analysis of the neurogenic regulation functional system. The concept of a functional system was formulated in the beginning of the 20th century. Functional system was described as dynamic, self-organizing, central-peripheral functional integration structures of the nervous system whose activity was aiming at achieving adaptive useful results. The main difference between functional system and proposed regulating principles is the physiological mechanism presence of the prospective result prediction (action result acceptor). Action is programmed for defined result receiving. This is anticipatory regulation principle. Using this principle AFS provides timely cardiovascular system preparing for its impending functional conditions changes. It seems that gravity intolerance in the beginning and after space flight is related with AFS regulation peculiarities. There is a necessity for the AFS advanced study. It is very important to create safe and comfort conditions for astronauts adaptation during gravitational loading changes as well as for certain diseases prophylaxis on the Earth.
NASA Astrophysics Data System (ADS)
Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.
2006-03-01
Fiber reinforced plastics will be used as insulation systems for the superconducting magnet coils of ITER. The fast neutron and gamma radiation environment present at the magnet location will lead to serious material degradation, particularly of the insulation. For this reason, advanced radiation-hard resin systems are of special interest. In this study various R-glass fiber / Kapton reinforced DGEBA epoxy and cyanate ester composites fabricated by the vacuum pressure impregnation method were investigated. All systems were irradiated at ambient temperature (340 K) in the TRIGA reactor (Vienna) to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). Short-beam shear and static tensile tests were carried out at 77 K prior to and after irradiation. In addition, tension-tension fatigue measurements were used in order to assess the mechanical performance of the insulation systems under the pulsed operation conditions of ITER. For the cyanate ester based system the influence of interleaving Kapton layers on the static and dynamic material behavior was investigated as well.
Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.
2006-03-31
Fiber reinforced plastics will be used as insulation systems for the superconducting magnet coils of ITER. The fast neutron and gamma radiation environment present at the magnet location will lead to serious material degradation, particularly of the insulation. For this reason, advanced radiation-hard resin systems are of special interest. In this study various R-glass fiber / Kapton reinforced DGEBA epoxy and cyanate ester composites fabricated by the vacuum pressure impregnation method were investigated. All systems were irradiated at ambient temperature (340 K) in the TRIGA reactor (Vienna) to a fast neutron fluence of 1x1022 m-2 (E>0.1 MeV). Short-beam shear and static tensile tests were carried out at 77 K prior to and after irradiation. In addition, tension-tension fatigue measurements were used in order to assess the mechanical performance of the insulation systems under the pulsed operation conditions of ITER. For the cyanate ester based system the influence of interleaving Kapton layers on the static and dynamic material behavior was investigated as well.
Berry, Jan; Ferrada, Juan J; Curd, Warren; Dell Orco, Dr. Giovanni; Barabash, Vladimir; Kim, Seokho H
2011-01-01
During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support
Hagstrom, T.; Radhakrishnan, K.
1994-12-31
The authors report on some iterative methods which they have tested for use in combustion simulations. In particular, they have developed a code to solve zero Mach number reacting flow equations with complex reaction and diffusion physics. These equations have the form of a nonlinear parabolic system coupled with constraints. In semi-discrete form, one obtains DAE`s of index two or three depending on the number of spatial dimensions. The authors have implemented a fourth order (fully implicit) BDF method in time, coupled with a suite of fourth order explicit and implicit spatial difference approximations. Most codes they know of for simulating reacting flows use a splitting strategy to march in time. This results in a sequence of nonlinear systems to solve, each of which has a simpler structure than the one they are faced with. The rapid and robust solution of the coupled system is the essential requirement for the success of their approach. They have implemented and analyzed nonlinear generalizations of conjugate gradient-like methods for nonsymmetric systems, including CGS and the quasi-Newton based method of Eirola and Nevanlinna. They develop a general framework for the nonlinearization of linear methods in terms of the acceleration of fixed-point iterations, where the latter is assumed to include the {open_quote}preconditioning{open_quote}. Their preconditioning is a single step of a split method, using lower order spatial difference approximations as well as simplified (Fickian) approximations of the diffusion physics.
ProVac3D and Application to the Neutral Beam Injection System of ITER
Luo, X.; Dremel, M.; Day, Ch.
2008-12-31
In order to heat the confined plasma up to 100 million degrees Celsius and initiate a sustained fusion reaction, ITER will use several heating mechanisms at the same time, of which Neutral Beam Injection (NBI) systems play an important role. The NBI includes several internal gas sources and has to be operated under vacuum conditions. We have developed ProVac3D, a Monte Carlo simulation code, to calculate gas dynamics and the density profiles in volumes of interest inside NBI. This enables us to elaborate our in-situ and state-of-the-art cryogenic pump design and estimate the corresponding pumping speed.
The search for high level parallelism for the iterative solution of large sparse linear systems
Young, D.M.
1988-07-01
In this paper the author is concerned with the numerical solution, based on iterative methods, of large sparse systems of linear algebraic equations of the type which arise in the numerical solution of elliptic and parabolic partial differential equations by finite difference or finite element methods. He considers linear systems of the form Au = b where A is a given N x N matrix which is large and sparse and where b is a given N x 1 column vector. He will assumes that A is symmetric and positive definite (SPD). He considers iterative algorithms which consist of a basic iterative method, such as the Richardson, Jacobi, SSOR or incomplete Cholesky method, combined with an acceleration procedure such as Chebyshev acceleration or conjugate gradient acceleration. The object of this paper is, however, to examine some high-level methods for achieving parallelism. Such techniques involve only matrix/vector operations and do not involve working with blocks of the matrix, subdividing the region, or using different meshes. It is expected that if effective high-level methods could be developed, they could be combined with block and domain decomposition methods, and related methods, to obtain even greater speedups. It is also expected that by working at a higher level it will eventually be possible to develop general purpose software for parallel machines similar to the ITPACK software packages which have already been developed for sequential and vector machines. The discussion here is primarily devoted to describing various techniques which the author and others have considered for obtaining high-level parallelism. The author plans to continue research on these techniques and eventually to develop algorithms and programs for multiprocessors based on them.
A protection system for the JET ITER-like wall based on imaging diagnostics
Arnoux, G.; Balboa, I.; Balshaw, N.; Beldishevski, M.; Cramp, S.; Felton, R.; Goodyear, A.; Horton, A.; Kinna, D.; McCullen, P.; Obrejan, K.; Patel, K.; Lomas, P. J.; Rimini, F.; Stamp, M.; Stephen, A.; Thomas, P. D.; Williams, J.; Wilson, J.; Zastrow, K.-D. [Euratom and others
2012-10-15
The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.
Basermann, A.
1994-12-31
For the solution of discretized ordinary or partial differential equations it is necessary to solve systems of equations or eigenproblems with coefficient matrices of different sparsity pattern, depending on the discretization method; using the finite element method (FE) results in largely unstructured systems of equations. Sparse eigenproblems play particularly important roles in the analysis of elastic solids and structures. In the corresponding FE models, the natural frequencies and mode shapes of free vibration are determined as are buckling loads and modes. Another class of problems is related to stability analysis, e.g. of electrical networks. Moreover, approximations of extreme eigenvalues are useful for solving sets of linear equations, e.g. for determining condition numbers of symmetric positive definite matrices or for conjugate gradients methods with polynomial preconditioning. Iterative methods for solving linear systems and eigenproblems mainly consist of matrix-vector products and vector-vector operations; the main work in each iteration is usually the computation of matrix-vector products. Therein, accessing the vector is determined by the sparsity pattern and the storage scheme of the matrix.
A protection system for the JET ITER-like wall based on imaging diagnostics.
Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D
2012-10-01
The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented. PMID:23130796
Truncated States Obtained by Iteration
NASA Astrophysics Data System (ADS)
Cardoso B., W.; Almeida G. de, N.
2008-02-01
We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.
A block iterative LU solver for weakly coupled linear systems. [in fluid dynamics equations
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1977-01-01
A hybrid technique, called the block iterative LU solver, is proposed for solving the linear equations resulting from a finite element numerical analysis of certain fluid dynamics problems where the equations are weakly coupled between distinct sets of variables. Either the block Jacobi iterative method or the block Gauss-Seidel iterative solver is combined with LU decomposition.
Li, K; Safavi-Naeini, M; Franklin, D R; Han, Z; Rosenfeld, A B; Hutton, B; Lerch, M L F
2015-09-01
A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix--an essential part of statistical iterative reconstruction algorithms--becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of 5 x 10(7) and 2.5 x 10(7)are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring
Low-bit rate feedback strategies for iterative IA-precoded MIMO-OFDM-based systems.
Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio
2014-01-01
Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274
Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems
Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio
2014-01-01
Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274
Evolution of the Design of Cold Mass Support for the ITER Magnet Feeder System
NASA Astrophysics Data System (ADS)
Lu, Kun; Song, Yuntao; Niu, Erwu; Zhou, Tinzhi; Wang, Zhongwei; Chen, Yonghua; Zhu, Yinfeng
2013-02-01
This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15 kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force.
Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System
Meitner, Steven J; Baylor, Larry R; Carbajo, Juan J; Combs, Stephen Kirk; Fehling, Dan T; Foust, Charles R; McFee, Marshall T; McGill, James M; Rasmussen, David A; Sitterson, R G; Sparks, Dennis O; Qualls, A L
2009-07-01
A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connected to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.
LSRN: A PARALLEL ITERATIVE SOLVER FOR STRONGLY OVER- OR UNDERDETERMINED SYSTEMS*
Meng, Xiangrui; Saunders, Michael A.; Mahoney, Michael W.
2014-01-01
We describe a parallel iterative least squares solver named LSRN that is based on random normal projection. LSRN computes the min-length solution to minx∈ℝn ‖Ax − b‖2, where A ∈ ℝm × n with m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be included. Since A is involved only in matrix-matrix and matrix-vector multiplications, it can be a dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse or a fast linear operator. The preconditioning phase consists of a random normal projection, which is embarrassingly parallel, and a singular value decomposition of size ⌈γ min(m, n)⌉ × min(m, n), where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is well-conditioned, with a strong concentration result on the extreme singular values, and hence that the number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative method. As we demonstrate, the Chebyshev method is particularly efficient for solving large problems on clusters with high communication cost. Numerical results show that on a shared-memory machine, LSRN is very competitive with LAPACK’s DGELSD and a fast randomized least squares solver called Blendenpik on large dense problems, and it outperforms the least squares solver from SuiteSparseQR on sparse problems without sparsity patterns that can be exploited to reduce fill-in. Further experiments show that LSRN scales well on an Amazon Elastic Compute Cloud cluster. PMID:25419094
Weinmann, Andreas; Storath, Martin
2015-01-01
Signals with discontinuities appear in many problems in the applied sciences ranging from mechanics, electrical engineering to biology and medicine. The concrete data acquired are typically discrete, indirect and noisy measurements of some quantities describing the signal under consideration. The task is to restore the signal and, in particular, the discontinuities. In this respect, classical methods perform rather poor, whereas non-convex non-smooth variational methods seem to be the correct choice. Examples are methods based on Mumford–Shah and piecewise constant Mumford–Shah functionals and discretized versions which are known as Blake–Zisserman and Potts functionals. Owing to their non-convexity, minimization of such functionals is challenging. In this paper, we propose a new iterative minimization strategy for Blake–Zisserman as well as Potts functionals and a related jump-sparsity problem dealing with indirect, noisy measurements. We provide a convergence analysis and underpin our findings with numerical experiments.
Iterative nonlinear ISI cancellation in optical tilted filter-based Nyquist 4-PAM system
NASA Astrophysics Data System (ADS)
Ju, Cheng; Liu, Na
2016-09-01
The conventional double sideband (DSB) modulation and direct detection scheme suffers from severer power fading, linear and nonlinear inter-symbol interference (ISI) caused by fiber dispersion and square-law direct detection. The system's frequency response deteriorates at high frequencies owing to the limited device bandwidth. Moreover, the linear and nonlinear ISI is enhanced induced by the bandwidth limited effect. In this paper, an optical tilted filter is used to mitigate the effect of power fading, and improve the high frequency response of bandwidth limited device in Nyquist 4-ary pulse amplitude modulation (4-PAM) system. Furtherly, iterative technique is introduced to mitigate the nonlinear ISI caused by the combined effects of electrical Nyquist filter, limited device bandwidth, optical tilted filter, dispersion, and square-law photo-detection. Thus, the system's frequency response is greatly improved and the delivery distance can be extended.
Iterative solutions to the steady-state density matrix for optomechanical systems.
Nation, P D; Johansson, J R; Blencowe, M P; Rimberg, A J
2015-01-01
We present a sparse matrix permutation from graph theory that gives stable incomplete lower-upper preconditioners necessary for iterative solutions to the steady-state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse and is the only method found to be stable at large Hilbert space dimensions. This allows for steady-state solutions to otherwise intractable quantum optomechanical systems. PMID:25679739
Iterative solution of general sparse linear systems on clusters of workstations
Lo, Gen-Ching; Saad, Y.
1996-12-31
Solving sparse irregularly structured linear systems on parallel platforms poses several challenges. First, sparsity makes it difficult to exploit data locality, whether in a distributed or shared memory environment. A second, perhaps more serious challenge, is to find efficient ways to precondition the system. Preconditioning techniques which have a large degree of parallelism, such as multicolor SSOR, often have a slower rate of convergence than their sequential counterparts. Finally, a number of other computational kernels such as inner products could ruin any gains gained from parallel speed-ups, and this is especially true on workstation clusters where start-up times may be high. In this paper we discuss these issues and report on our experience with PSPARSLIB, an on-going project for building a library of parallel iterative sparse matrix solvers.
Fast secant methods for the iterative solution of large nonsymmetric linear systems
NASA Technical Reports Server (NTRS)
Deuflhard, Peter; Freund, Roland; Walter, Artur
1990-01-01
A family of secant methods based on general rank-1 updates was revisited in view of the construction of iterative solvers for large non-Hermitian linear systems. As it turns out, both Broyden's good and bad update techniques play a special role, but should be associated with two different line search principles. For Broyden's bad update technique, a minimum residual principle is natural, thus making it theoretically comparable with a series of well known algorithms like GMRES. Broyden's good update technique, however, is shown to be naturally linked with a minimum next correction principle, which asymptotically mimics a minimum error principle. The two minimization principles differ significantly for sufficiently large system dimension. Numerical experiments on discretized partial differential equations of convection diffusion type in 2-D with integral layers give a first impression of the possible power of the derived good Broyden variant.
Bai, Fang; Liao, Sha; Gu, Junfeng; Jiang, Hualiang; Wang, Xicheng; Li, Honglin
2015-04-27
Metalloproteins, particularly zinc metalloproteins, are promising therapeutic targets, and recent efforts have focused on the identification of potent and selective inhibitors of these proteins. However, the ability of current drug discovery and design technologies, such as molecular docking and molecular dynamics simulations, to probe metal-ligand interactions remains limited because of their complicated coordination geometries and rough treatment in current force fields. Herein we introduce a robust, multiobjective optimization algorithm-driven metalloprotein-specific docking program named MpSDock, which runs on a scheme similar to consensus scoring consisting of a force-field-based scoring function and a knowledge-based scoring function. For this purpose, in this study, an effective knowledge-based zinc metalloprotein-specific scoring function based on the inverse Boltzmann law was designed and optimized using a dynamic sampling and iteration optimization strategy. This optimization strategy can dynamically sample and regenerate decoy poses used in each iteration step of refining the scoring function, thus dramatically improving both the effectiveness of the exploration of the binding conformational space and the sensitivity of the ranking of the native binding poses. To validate the zinc metalloprotein-specific scoring function and its special built-in docking program, denoted MpSDockZn, an extensive comparison was performed against six universal, popular docking programs: Glide XP mode, Glide SP mode, Gold, AutoDock, AutoDock4Zn, and EADock DSS. The zinc metalloprotein-specific knowledge-based scoring function exhibited prominent performance in accurately describing the geometries and interactions of the coordination bonds between the zinc ions and chelating agents of the ligands. In addition, MpSDockZn had a competitive ability to sample and identify native binding poses with a higher success rate than the other six docking programs. PMID:25746437
NASA Astrophysics Data System (ADS)
Chuyanov, V. A.
1996-10-01
The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.
An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)
Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O.; Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S.; Shinto, K.; Wada, M.
2012-02-15
An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.
NASA Astrophysics Data System (ADS)
Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.
2016-06-01
A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.
NASA Astrophysics Data System (ADS)
Smolders, K.; Volckaert, M.; Swevers, J.
2008-11-01
This paper presents a nonlinear model-based iterative learning control procedure to achieve accurate tracking control for nonlinear lumped mechanical continuous-time systems. The model structure used in this iterative learning control procedure is new and combines a linear state space model and a nonlinear feature space transformation. An intuitive two-step iterative algorithm to identify the model parameters is presented. It alternates between the estimation of the linear and the nonlinear model part. It is assumed that besides the input and output signals also the full state vector of the system is available for identification. A measurement and signal processing procedure to estimate these signals for lumped mechanical systems is presented. The iterative learning control procedure relies on the calculation of the input that generates a given model output, so-called offline model inversion. A new offline nonlinear model inversion method for continuous-time, nonlinear time-invariant, state space models based on Newton's method is presented and applied to the new model structure. This model inversion method is not restricted to minimum phase models. It requires only calculation of the first order derivatives of the state space model and is applicable to multivariable models. For periodic reference signals the method yields a compact implementation in the frequency domain. Moreover it is shown that a bandwidth can be specified up to which learning is allowed when using this inversion method in the iterative learning control procedure. Experimental results for a nonlinear single-input-single-output system corresponding to a quarter car on a hydraulic test rig are presented. It is shown that the new nonlinear approach outperforms the linear iterative learning control approach which is currently used in the automotive industry on durability test rigs.
Research on long pulse ECRH system of EAST in support of ITER
Wang, Xiaojie Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang; Wei, Wei
2015-12-10
Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam’s launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER
Research on long pulse ECRH system of EAST in support of ITER
NASA Astrophysics Data System (ADS)
Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Wei, Wei; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang
2015-12-01
Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam's launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER
Preconditioned Iterative Solver
2002-08-01
AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.
Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher
2013-10-01
This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example. PMID:24808590
Zucca, C.; Sauter, O.; Fable, E.; Henderson, M. A.; Polevoi, A.; Saibene, G.
2008-11-01
The effect of the predicted local electron cyclotron current driven by the optimized electron cyclotron system on ITER is discussed. A design variant was recently proposed to enlarge the physics program covered by the upper and equatorial launchers. By extending the functionality range of the upper launcher, significant control capabilities of the sawtooth period can be obtained. The upper launcher improvement still allows enough margin to exceed the requirements for neoclassical tearing mode stabilization, for which it was originally designed. The analysis of the sawtooth control is carried on with the ASTRA transport code, coupled with the threshold model by Por-celli, to study the control capabilities of the improved upper launcher on the sawtooth instability. The simulations take into account the significant stabilizing effect of the fusion alpha particles. The sawtooth period can be increased by a factor of 1.5 with co-ECCD outside the q = 1 surface, and decreased by at least 30% with co-ECCD inside q = 1. The present ITER base-line design has the electron cyclotron launchers providing only co-ECCD. The variant for the equatorial launcher proposes the possibility to drive counter-ECCD with 1 of the 3 rows of mirrors: the counter-ECCD can then be balanced with co-ECCD and provide pure ECH with no net driven current. The difference between full co-ECCD off-axis using all 20MW from the equatorial launcher and 20MW co-ECCD driven by 2/3 from the equatorial launcher and 1/3 from the upper launcher is shown to be negligible. Cnt-ECCD also offers greater control of the plasma current density, therefore this analysis addresses the performance of the equatorial launcher to control the central q profile. The equatorial launcher is shown to control very efficiently the value of q{sub 0.2}-q{sub min} in advanced scenarios, if one row provides counter-ECCD.
Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.
2014-01-29
As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.
Duckworth, Robert C; Baylor, Larry R; Meitner, Steven J; Combs, Stephen Kirk; Ha, Tam T; Morrow, Michael; Biewer, Theodore M; Rasmussen, David A; Hechler, Michael P; Pearce, R.J.H.; Dremel, M.; Boissin, Jean Claude
2014-01-01
As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype
NASA Astrophysics Data System (ADS)
Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.
2014-01-01
As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.
NASA Astrophysics Data System (ADS)
Maiti, T.; Eaton, D. W. S.; Liu, Q.; Sales de Andrade, E.
2014-12-01
Our study is based on the receiver-function (RF) analysis of a hypothetical regional geological model that extends from oceanic to thick cratonic lithosphere. RF techniques are used to study the interior of Earth. Teleseismic P waves are followed by a series of scattered waves, which occur due to P-to-S converted phases. The sequence of these scattered waves on a time series can be represented by receiver function (RF) for the station and may vary with the incidence angle and azimuth of the incoming P-wave. Here we use iterative deconvolution method to study receiver functions, which provides RF estimates with low noise levels. This method is based on least-squares minimization of the difference between the observed horizontal seismogram and a predicted signal generated by the convolution of an iterative spike train with the vertical-component of seismogram. The study is based on a hypothetical model (800x800x400km) on a mesh with 10 km grid spacing that is smoothly embedded within a standard global Earth model. Physical properties of the regional model match with prescribed surface heat-flow and geoid boundary conditions computed using an approach based on thermodynamics, mineral physics, and solid-Earth geophysics. The model also incorporates seismic anisotropy in the mantle beneath the hypothetical continent. A three dimensional model is computed that approximates the mantle flow around the hypothetical continental lithospheric keel. The anisotropy is computed from the flow model and is incorporated to the model. Synthetic seismograms are computed using SPECFEM3D_GLOBE, which provides full wave-equation modelling of seismic wave propagation incorporating material properties such as anisotropy, attenuation and fluid-solid interfaces. To ensure a realistic (non-ideal) azimuthal distribution, the event locations are based on a subset of a ten-year global catalog from 2001 to 2010 within the magnitude range from 6.0 to 7.0.
Design of Electron Cyclotron Heating and Current Drive System of ITER
Kobayashi, N.; Bigelow, T.; Rasmussen, D.; Bonicelli, T.; Ramponi, G.; Saibene, G.; Cirant, S.; Denisov, G.; Heidinger, R.; Piosczyk, B.; Henderson, M.; Hogge, J.-P.; Thumm, M.; Tran, M. Q.; Rao, S. L.; Sakamoto, K.; Takahashi, K.; Temkin, R. J.; Verhoeven, A. G. A.; Zohm, H.
2007-09-28
Since the end of EDA, the design of the Electron Cyclotron Heating and Current Drive (ECH and CD) system has been modified to respond to progress in physics understanding and change of interface conditions. Nominal RF power of 20 MW is shared by four upper launchers or one equatorial launcher RF beams are steered by front steering mirrors providing wide sweeping angle for the RF beam. DC high voltage power supply may be composed of IGBT pulse step modulators because of high frequency modulation and design flexibility to three different types of 170 GHz gyrotrons provided by three parties. The RF power from the 170 GHz gyrotron is transmitted to the launcher by 63.5 mm{phi} corrugated waveguide line and remotely switched by a waveguide switch between the upper launcher and the equatorial launcher. The ECH and CD system has also a start-up sub-system for assist of initial discharge composed of three 127.5 GHz gyrotrons and a dedicated DC high voltage power supply. Three of transmission lines are shared between 170 GHz gyrotron and 127.5 GHz gyrotron so as to inject RF beam for the start-up through the equatorial launcher. R and Ds of components for high power long pulse and mirror steering mechanism have been on-going in the parties to establish a reliable ITER ECH and CD system.
Iterative methods for large scale nonlinear and linear systems. Final report, 1994--1996
Walker, H.F.
1997-09-01
The major goal of this research has been to develop improved numerical methods for the solution of large-scale systems of linear and nonlinear equations, such as occur almost ubiquitously in the computational modeling of physical phenomena. The numerical methods of central interest have been Krylov subspace methods for linear systems, which have enjoyed great success in many large-scale applications, and newton-Krylov methods for nonlinear problems, which use Krylov subspace methods to solve approximately the linear systems that characterize Newton steps. Krylov subspace methods have undergone a remarkable development over the last decade or so and are now very widely used for the iterative solution of large-scale linear systems, particularly those that arise in the discretization of partial differential equations (PDEs) that occur in computational modeling. Newton-Krylov methods have enjoyed parallel success and are currently used in many nonlinear applications of great scientific and industrial importance. In addition to their effectiveness on important problems, Newton-Krylov methods also offer a nonlinear framework within which to transfer to the nonlinear setting any advances in Krylov subspace methods or preconditioning techniques, or new algorithms that exploit advanced machine architectures. This research has resulted in a number of improved Krylov and Newton-Krylov algorithms together with applications of these to important linear and nonlinear problems.
GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules
Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I.; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego
2011-01-01
Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. PMID:21750718
Requirements and interfaces to cryogenic and power supply plants for the ITER magnet system
Yoshida, K.; Kalinin, V.; Stoner, S.
1996-12-31
This paper describes the requirements and interfaces of cryogenic and power supply plants for the ITER magnet system. The heat loads and mass flow rates of the magnet system is evaluated to keep coil temperature within 6.5 K during the plasma operation of 2200 s. The helium consumption in the current leads is estimated for a current feed of 4.5 MA from 4 K to 300 K. The location of the electrical insulation breaks is compared near winding and outside of cryostat. The terminal box is designed for interfacing the cryogenic and power supply systems. Separate vacuums for the cryostat and the cryolines facilitate maintenance of all cryogenic components without warm-up of the whole system. A superconducting busbar is used to supply current from a current connector at the coil to the vapor-cooled lead in the coil terminal box. The layout of cryogenic lines and equipment is designed to consider space limitations and routing restrictions in the tokamak hall and the electrical termination building. The main parameters of the cryogenic plant (cryoplant) are discussed.
NASA Technical Reports Server (NTRS)
Kincaid, D. R.; Young, D. M.
1984-01-01
Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.
Choi, Seung W; Gibbons, Laura E; Crane, Paul K
2011-03-01
Logistic regression provides a flexible framework for detecting various types of differential item functioning (DIF). Previous efforts extended the framework by using item response theory (IRT) based trait scores, and by employing an iterative process using group-specific item parameters to account for DIF in the trait scores, analogous to purification approaches used in other DIF detection frameworks. The current investigation advances the technique by developing a computational platform integrating both statistical and IRT procedures into a single program. Furthermore, a Monte Carlo simulation approach was incorporated to derive empirical criteria for various DIF statistics and effect size measures. For purposes of illustration, the procedure was applied to data from a questionnaire of anxiety symptoms for detecting DIF associated with age from the Patient-Reported Outcomes Measurement Information System. PMID:21572908
Shear/compressive properties of candidate ITER insulation systems at low temperatures
NASA Astrophysics Data System (ADS)
Fabian, P. E.; Reed, R. P.; Schutz, J. B.; Bauer-McDaniel, T. S.
Shear/compression tests were performed at 76 and 4 K on candidate composite insulation systems for the International Thermonuclear Experimental Reactor (ITER) toroidal field coils. The insulation systems tested consisted of vacuum-pressure impregnated, pre-impregnated, and high-pressure laminate systems that included electrical barriers such as polyimide film or mica/glass. Sandwich-style specimens, in which the composite insulation is bonded to two AISI 316 stainless steel chips, were used. Two specimens were loaded at an angle, which resulted in combined shear and compressive stresses, and tested simultaneously. Various shear/compression ratios were achieved by using different test fixtures, each at a different angle (15 °, 45 °, 75 ° and 84 °) from the vertical direction. The shear strengths of specimens loaded at 15 ° to 75 ° increased with increasing compressive stress; these specimens experienced shear failures. For specimens loaded at 84 °, the compressive stress increased and the shear strength decreased; the failure modes of these specimens were more compressive than shear. The effects of electrical barriers on shear/compressive properties are also reported.
Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System
Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H
2010-01-01
A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.
Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings
NASA Astrophysics Data System (ADS)
Tadza, N.; Laurenson, D.; Thompson, J. S.
2014-11-01
This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.
GPU computing with Kaczmarz’s and other iterative algorithms for linear systems
Elble, Joseph M.; Sahinidis, Nikolaos V.; Vouzis, Panagiotis
2009-01-01
The graphics processing unit (GPU) is used to solve large linear systems derived from partial differential equations. The differential equations studied are strongly convection-dominated, of various sizes, and common to many fields, including computational fluid dynamics, heat transfer, and structural mechanics. The paper presents comparisons between GPU and CPU implementations of several well-known iterative methods, including Kaczmarz’s, Cimmino’s, component averaging, conjugate gradient normal residual (CGNR), symmetric successive overrelaxation-preconditioned conjugate gradient, and conjugate-gradient-accelerated component-averaged row projections (CARP-CG). Computations are preformed with dense as well as general banded systems. The results demonstrate that our GPU implementation outperforms CPU implementations of these algorithms, as well as previously studied parallel implementations on Linux clusters and shared memory systems. While the CGNR method had begun to fall out of favor for solving such problems, for the problems studied in this paper, the CGNR method implemented on the GPU performed better than the other methods, including a cluster implementation of the CARP-CG method. PMID:20526446
Clemens, M.; Weiland, T.
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Lung, Shu
2009-01-01
Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability
NASA Astrophysics Data System (ADS)
jjeherrera; Duffield, John; ZoloftNotWorking; esromac; protogonus; mleconte; cmfluteguy; adivita
2014-07-01
In reply to the physicsworld.com news story “US sanctions on Russia hit ITER council” (20 May, http://ow.ly/xF7oc and also June p8), about how a meeting of the fusion experiment's council had to be moved from St Petersburg and the US Congress's call for ITER boss Osamu Motojima to step down.
Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-Da)
NASA Astrophysics Data System (ADS)
Lasnier, C. J.; Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.
2014-11-01
An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.
Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D
Lasnier, C. J. Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.
2014-11-15
An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.
System matrix analysis for sparse-view iterative image reconstruction in X-ray CT.
Wang, Linyuan; Zhang, Hanming; Cai, Ailong; Li, Yongl; Yan, Bin; Li, Lei; Hu, Guoen
2015-01-01
Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, used for investigations in compressive sensing (CS) claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is non-trivial, as both the singularity of undersampled reconstruction and the sufficient view number for sparse-view reconstruction are ill-defined. In this paper, the singular value decomposition method is used to study the condition number and singularity of the system matrix and the regularized matrix. An estimation method of the empirical lower bound is proposed, which is helpful for estimating the number of projection views required for exact reconstruction. Simulation studies show that the singularity of the system matrices for different projection views is effectively reduced by regularization. Computing the condition number of a regularized matrix is necessary to provide a reference for evaluating the singularity and recovery potential of reconstruction algorithms using regularization. The empirical lower bound is helpful for estimating the projections view number with a sparse reconstruction algorithm. PMID:25567402
Study on mitigation of pulsed heat load for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.
2015-03-01
One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.
Parallel iterative solution of sparse linear systems using orderings from graph coloring heuristics
Jones, M.T.; Plassmann, P.E.
1990-12-01
The efficiency of a parallel implementation of the conjugate gradient method preconditioned by an incomplete Cholesky factorization can vary dramatically depending on the column ordering chosen. One method to minimize the number of major parallel steps is to choose an ordering based on a coloring of the symmetric graph representing the nonzero adjacency structure of the matrix. In this paper, we compare the performance of the preconditioned conjugate gradient method using these coloring orderings with a number of standard orderings on matrices arising from applications in structural engineering. Because optimal colorings for these systems may not be a priori known: we employ several graph coloring heuristics to obtain consistent colorings. Based on lower bounds obtained from the local structure of these systems, we find that the colorings determined by these heuristics are nearly optimal. For these problems, we find that the increase in parallelism afforded by the coloring-based orderings more than offsets any increase in the number of iterations required for the convergence of the conjugate gradient algorithm.
A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.
2001-01-01
Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.
Inventing and improving ribozyme function: rational design versus iterative selection methods
NASA Technical Reports Server (NTRS)
Breaker, R. R.; Joyce, G. F.
1994-01-01
Two major strategies for generating novel biological catalysts exist. One relies on our knowledge of biopolymer structure and function to aid in the 'rational design' of new enzymes. The other, often called 'irrational design', aims to generate new catalysts, in the absence of detailed physicochemical knowledge, by using selection methods to search a library of molecules for functional variants. Both strategies have been applied, with considerable success, to the remodeling of existing ribozymes and the development of ribozymes with novel catalytic function. The two strategies are by no means mutually exclusive, and are best applied in a complementary fashion to obtain ribozymes with the desired catalytic properties.
Qualification of the US made conductors for ITER TF magnet system
Martovetsky, N; Hatfield, D; Miller, J; Bruzzone, P; Stepanov, B; Seber, B
2009-10-08
The US Domestic Agency (USDA) is one of the six suppliers of the TF conductor for ITER. In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.
Qualification of the US Made Conductors for ITER TF Magnet System
Martovetsky, Nicolai N; Hatfield, Daniel R; Miller, John R; Bruzzone, P.; Stepanov, B.; Seber, B.
2010-01-01
The US Domestic Agency (USDA) is one of the six suppliers of the TF conductor for ITER. In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.
Status of the ITER ion cyclotron heating and current drive system
NASA Astrophysics Data System (ADS)
Lamalle, P.; Beaumont, B.; Kazarian, F.; Gassmann, T.; Agarici, G.; Montemayor, T. Alonzo; Bamber, R.; Bernard, J.-M.; Boilson, D.; Cadinot, A.; Calarco, F.; Colas, L.; Courtois, X.; Deibele, C.; Durodié, F.; Fano, J.; Fredd, E.; Goulding, R.; Greenough, N.; Hillairet, J.; Jacquinot, J.; Kaye, A. S.; Kočan, M.; Labidi, H.; Leichtle, D.; Loarte, A.; McCarthy, M.; Messiaen, A.; Meunier, L.; Mukherjee, A.; Oberlin-Harris, C.; Patel, A. M.; Peters, B.; Rajnish, K.; Rasmussen, D.; Sanabria, R.; Sartori, R.; Singh, R.; Swain, D.; Trivedi, R. G.; Turner, A.
2015-12-01
The paper reports on latest developments for the ITER Ion Cyclotron Heating and Current Drive system: imminent acceptance tests of a prototype power supply at full power; successful factory acceptance of candidate RF amplifier tubes which will be tested on dedicated facilities; further design integration and experimental validation of transmission line components under 6MW hour-long pulses. The antenna Faraday shield thermal design has been validated above requirements by cyclic high heat flux tests. R&D on ceramic brazing is under way for the RF vacuum windows. The antenna port plug RF design is stable but major evolution of the mechanical design is in preparation to achieve compliance with the load specification, warrant manufacturability and incorporate late interface change requests. The antenna power coupling capability predictions have been strengthened by showing that, if the plasma scrape-off layer turns out to be steep and the edge density low, the reference burning plasma can realistically be displaced to improve the coupling.
Wilson, M.L.; Barnard, R.W.; Gauthier, J.H. |
1994-04-01
Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone. Probabilistic analyses are performed for aqueous and gaseous flow and transport, human intrusion, and basaltic magmatic activity. Results of the calculations lead to a number of recommendations concerning studies related to site characterization. Primary among these are the recommendations to obtain better information on percolation flux at Yucca Mountain, on the presence or absence of flowing fractures, and on physical and chemical processes influencing gaseous flow. Near-field thermal and chemical processes, and waste-container degradation are also areas where additional investigations may reduce important uncertainties. Recommendations for repository and waste-package design studies are: (1) to evaluate the performance implications of large-size containers, and (2) to investigate in more detail the implications of high repository thermal power output on the adjacent host rock and on the spent fuel.
Shin, Sangkyun; Lee, Deukhee; Kim, Youngjun; Park, Sehyung
2012-01-01
It is required to use a stereotactic frame on a patient's crainial surface to access an intracerebral hematoma in conventional ICH (Intracerebral Hemorrhage) removal surgery. Since ICH using a stereotactic frame is an invasive procedure and also takes a long time, we attempt to develop a robotic ICH removal procedure with a markerless registration system using an optical 3-D scanner. Preoperative planning is performed using a patient's CT (Computed Tomography) images, which include the patient's 3-D geometrical information on the hematoma and internal structures of brain. To register the preplanned data and the intraoperative patient's data, the patient's facial surface is scanned by an optical 3-D scanner on the bed in the operating room. The intraoperatively scanned facial surface is registered to the pose of the patient's preoperative facial surface. The conventional ICP (Iterative Closest Point) algorithm can be used for the registration. In this paper, we propose a weighted ICP in order to improve the accuracy of the registration results. We investigated facial regions that can be used as anatomical landmarks. The facial regions for the landmarks in the preoperative 3-D model are weighted for more accurate registration. We increase weights at the relatively undeformed facial regions, and decrease weights at the other regions. As a result, more accurate and robust registration can be achieved from the preoperative data even with local facial shape changes. PMID:23367127
Component tests for the ITER Ion Cyclotron Transmission Line and Matching System - Status and Plans
NASA Astrophysics Data System (ADS)
Goulding, R. H.; McCarthy, M. P.; Deibele, C. E.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Campbell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.; Kung, C.
2015-11-01
New Z0 = 50 Ω gas-cooled component designs for the ITER Ion Cyclotron Heating and Current Drive System have been successfully tested at high RF power levels. They include two types featuring spoke-ring assembly (SRA) inner conductor supports: 20° elbows, and variable length assembly bellows, both achieving RF voltages > 35 kV peak, and currents ~ 760 A peak during quasi-steady state operation. The SRA utilizes mechanically preloaded fused quartz spokes, increasing lateral load handling capability. Components with SRA supports have been seismically tested, with no variation in low power electrical performance detected after testing. A 3 MW four-port switch has also been successfully tested at high RF power, and tests of a 6 MW hybrid power splitter are planned in the near future. Latest results will be presented. Plans for arc localization tests in a 60 m SRA transmission line run, and RF tests of Z0 = 50 Ω and Z0 = 20 Ω matching components with water-cooled inner conductors will also be discussed. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Noise performance of statistical model based iterative reconstruction in clinical CT systems
NASA Astrophysics Data System (ADS)
Li, Ke; Tang, Jie; Chen, Guang-Hong
2014-03-01
The statistical model based iterative reconstruction (MBIR) method has been introduced to clinical CT systems. Due to the nonlinearity of this method, the noise characteristics of MBIR are expected to differ from those of filtered backprojection (FBP). This paper reports an experimental characterization of the noise performance of MBIR equipped on several state-of-the-art clinical CT scanners at our institution. The thoracic section of an anthropomorphic phantom was scanned 50 times to generate image ensembles for noise analysis. Noise power spectra (NPS) and noise standard deviation maps were assessed locally at different anatomical locations. It was found that MBIR lead to significant reduction in noise magnitude and improvement in noise spatial uniformity when compared with FBP. Meanwhile, MBIR shifted the NPS of the reconstructed CT images towards lower frequencies along both the axial and the z frequency axes. This effect was confirmed by a relaxed slice thicknesstradeoff relationship shown in our experimental data. The unique noise characteristics of MBIR imply that extra effort must be made to optimize CT scanning parameters for MBIR to maximize its potential clinical benefits.
Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System
NASA Astrophysics Data System (ADS)
Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.
2014-10-01
High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
ERIC Educational Resources Information Center
French, Brian F.; Maller, Susan J.
2007-01-01
Two unresolved implementation issues with logistic regression (LR) for differential item functioning (DIF) detection include ability purification and effect size use. Purification is suggested to control inaccuracies in DIF detection as a result of DIF items in the ability estimate. Additionally, effect size use may be beneficial in controlling…
Performance of the ITER ICRH system as expected from TOPICA and ANTITER II modelling
NASA Astrophysics Data System (ADS)
Messiaen, A.; Koch, R.; Weynants, R. R.; Dumortier, P.; Louche, F.; Maggiora, R.; Milanesio, D.
2010-02-01
The performance on plasma of the antennas of the proposed ITER ICRF system is evaluated by means of the antenna 24 × 24 impedance matrix provided by the TOPICA code and confirmed and interpreted by the semi-analytical code ANTITER II (summarized in an appendix). From this analysis the following system characteristics can be derived: (1) a roughly constant power capability in the entire 40-55 MHz frequency band with the same maximum voltage in the eight feeding lines is obtained for all the considered heating and current drive phasings on account of the broadbanding effect of service stubs. (2) The power capability of the array significantly depends on the distance of the antenna to the separatrix, the density profile in the scrape-off layer (SOL) and on the strap current toroidal and poloidal phasings. The dependence on phasing is stronger for wider SOL. (3) To exceed a radiated power capability of 20 MW per antenna array in the upper part of the frequency band, with a separatrix-wall distance of 17 cm and a conservative short decay plasma edge density profile, the system voltage stand-off must be 45 kV and well chosen combinations of toroidal and poloidal phasing are needed. (4) On account of the plasma gyrotropy and of poloidal magnetic field, special care must be taken in choosing the optimal toroidal current drive and poloidal phasings. The ANTITER II analysis shows furthermore that important coaxial and surface mode excitation can only be expected in the monopole toroidal phasing, that strong wave reflection from a steep density profile significantly reduces the coupling even if the separatrix is closer to the antenna and that the part of the edge density profile having a density lower than the cut-off density pertaining to the considered phasing does not significantly contribute to the coupling.
Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor
Kim, Seokho H; Berry, Jan
2011-01-01
U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.
NASA Astrophysics Data System (ADS)
Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.
2016-02-01
We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson-Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-ups that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. Overall, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Jia, Yingmin; Du, Junping
2015-04-01
This paper is devoted to the robust finite-time output consensus problems of multi-agent systems under directed graphs, where all agents and their communication topologies are subject to interval uncertainties. Distributed protocols are constructed by using iterative learning control (ILC) algorithms, where information is exchanged only at the end of one iteration and learning is used to update the control inputs after each iteration. It is proved that under ILC-based protocols, the finite-time consensus can be achieved with an increasing number of iterations if the communication network of agents is guaranteed to have a spanning tree. Moreover, if the information of any desired terminal output is available to a portion (not necessarily all) of the agents, then the consensus output that all agents finally reach can be enabled to be the desired terminal output. It is also proved that for all ILC-based protocols, gain selections can be provided in terms of bound values, and consensus conditions can be developed associated with bound matrices. Simulation results are given to demonstrate the effectiveness of our theoretical results.
ERIC Educational Resources Information Center
Meghabghab, George
2001-01-01
Discusses the evaluation of search engines and uses neural networks in stochastic simulation of the number of rejected Web pages per search query. Topics include the iterative radial basis functions (RBF) neural network; precision; response time; coverage; Boolean logic; regression models; crawling algorithms; and implications for search engine…
NASA Astrophysics Data System (ADS)
Brown, James; Carrington, Tucker
2015-06-01
For decades scientists have attempted to use ideas of classical mechanics to choose basis functions for calculating spectra. The hope is that a classically-motivated basis set will be small because it covers only the dynamically important part of phase space. One popular idea is to use phase-space localized (PSL) basis functions. Because the overlap matrix, in the matrix eigenvalue problem obtained by using PSL functions with the variational method, is not an identity, it is costly to use iterative methods to solve the matrix eigenvalue problem. Iterative methods are imperative if one wishes to avoid storing matrices which is important for larger molecules. Recently we showed it was possible to circumvent the orthogonality (overlap) problem and use iterative eigensolvers. Here, we present calculated vibrational energies of CH_2O and CH_3CN using the iterative Arnoldi algorithm and PSL functions, and show that our PSL basis is competitive with other previously used basis sets for these molecules. J. Brown and T. Carrington Jr., Phys. Rev. Lett. 114, 058901 (2015).
Finite-approximation-error-based discrete-time iterative adaptive dynamic programming.
Wei, Qinglai; Wang, Fei-Yue; Liu, Derong; Yang, Xiong
2014-12-01
In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The generalized value iteration algorithm permits an arbitrary positive semi-definite function to initialize it, which overcomes the disadvantage of traditional value iteration algorithms. When the iterative control law and iterative performance index function in each iteration cannot accurately be obtained, for the first time a new "design method of the convergence criteria" for the finite-approximation-error-based generalized value iteration algorithm is established. A suitable approximation error can be designed adaptively to make the iterative performance index function converge to a finite neighborhood of the optimal performance index function. Neural networks are used to implement the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the developed method. PMID:25265640
NASA Astrophysics Data System (ADS)
Tohme, Michel S.; Qi, Jinyi
2009-06-01
The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 × 3 line phantom, an ultra-micro resolution phantom and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP
Tohme, Michel S.; Qi, Jinyi
2009-01-01
The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can be easily applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3-by-3 line phantom, an ultra-micro resolution phantom, and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP
Joubert, W.; Carey, G.F.
1994-12-31
A great need exists for high performance numerical software libraries transportable across parallel machines. This talk concerns the PCG package, which solves systems of linear equations by iterative methods on parallel computers. The features of the package are discussed, as well as techniques used to obtain high performance as well as transportability across architectures. Representative numerical results are presented for several machines including the Connection Machine CM-5, Intel Paragon and Cray T3D parallel computers.
Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 1
Wilson, M.L.; Gauthier, J.H.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Guerin, D.C.; Lu, N.; Martinez, M.J.
1994-04-01
Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.
Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 2
Wilson, M.L.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Martinez, M.J.; Gauthier, J.H.; Guerin, D.C.; Lu, N.
1994-04-01
Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.
NASA Astrophysics Data System (ADS)
Pan, Xuemei; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2016-04-01
A kind of multilevel authentication system for multiple-image based on modulated real part synthesis and iterative phase multiplexing in the Fresnel domain is proposed. In the design process of the low-level authentication system, a series of normalized real part information are iteratively generated by phase retrieval algorithm in the Fresnel domain, and the final private keys for different individual low-level certification images can be fabricated by binary amplitude modulation, superposition, synthesis, and sampling; while in the design process of the high-level authentication system, the final private keys for different individual high-level certification images can be generated by iterative phase information encoding and multiplexing. During the high-level authentication, the meaningful certification image can be reconstructed by the inverse Fresnel transform with the corresponding correct private keys, meanwhile, the correlation coefficient is utilized as judgment criterion; while in the low-level authentication, with the help of correct keys, the noise-like image with meaningless information can be recovered, but a remarkable peak output in the nonlinear correlation coefficient can be generated, which is adopted as the criterion to judge whether the low-level authentication is successful or not. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.
On The Problem Of In-vessel Mirrors For Diagnostic Systems Of ITER
Voitsenya, V. S.; Litnovsky, A.
2008-03-12
The present status of the investigations with ITER-candidate mirror materials and directed on solution of the in-vessel mirror problem, are presented in the paper. The current tasks in the R and D of diagnostic mirrors and outstanding questions are discussed.
Air pollution control system research: An iterative approach to developing affordable systems
Watt, L.C.; Cannon, F.S.; Heinsohn, R.J.; Spaeder, T.A.; Darvin, C.H.
1993-12-31
The research will be accomplished on lab scale, pilot scale, and production air pollution control systems (APCS). The production system, to be installed at Marine Corps Logistics Base (MCLB) Barstow, CA, will treat the exhaust from three paint booths which will be modified to recirculate a large percentage of their exhaust. These recirculation systems are, themselves, a critical element in the overall R and D effort. The goal of the program is to conduct an R and D effort which will improve and demonstrate a combination of technologies intended to make VOC treatment both effective and affordable. The US Marine Corps, the other services and industry will each benefit.
Air pollution control system research: An iterative approach to developing affordable systems
NASA Technical Reports Server (NTRS)
Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.
1995-01-01
This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.
NASA Astrophysics Data System (ADS)
Doggett, J.; Salpietro, E.; Shatalov, G.
1991-07-01
The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.
Rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.
Experimental neutronics tests for a neutron activation system for the European ITER TBM
Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom
2014-08-21
We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.
Loads specification and embedded plate definition for the ITER cryoline system
NASA Astrophysics Data System (ADS)
Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.
2015-12-01
ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.
Wathen, A.; Golub, G.
1996-12-31
A simple fixed point linearisation of the Navier-Stokes equations leads to the Oseen problem which after appropriate discretisation yields large sparse linear systems with coefficient matrices of the form (A B{sup T} B -C). Here A is non-symmetric but its symmetric part is positive definite, and C is symmetric and positive semi-definite. Such systems arise in other situations. In this talk we will describe and present some analysis for an iteration based on an indefinite and symmetric preconditioner of the form (D B{sup T} B -C).
Rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.
Li, Ke; Tang, Jie; Chen, Guang-Hong
2014-04-15
Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial
Li, Ke; Tang, Jie; Chen, Guang-Hong
2014-01-01
Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo®, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)−β with the component β ≈ 0.25, which violated the classical σ ∝ (dose)−0.5 power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared
Rozga, Agata; Smith, Christopher J; Oberleitner, Ron; Abowd, Gregory D; Arriaga, Rosa I
2015-01-01
Background Observing behavior in the natural environment is valuable to obtain an accurate and comprehensive assessment of a child’s behavior, but in practice it is limited to in-clinic observation. Research shows significant time lag between when parents first become concerned and when the child is finally diagnosed with autism. This lag can delay early interventions that have been shown to improve developmental outcomes. Objective To develop and evaluate the design of an asynchronous system that allows parents to easily collect clinically valid in-home videos of their child’s behavior and supports diagnosticians in completing diagnostic assessment of autism. Methods First, interviews were conducted with 11 clinicians and 6 families to solicit feedback from stakeholders about the system concept. Next, the system was iteratively designed, informed by experiences of families using it in a controlled home-like experimental setting and a participatory design process involving domain experts. Finally, in-field evaluation of the system design was conducted with 5 families of children (4 with previous autism diagnosis and 1 child typically developing) and 3 diagnosticians. For each family, 2 diagnosticians, blind to the child’s previous diagnostic status, independently completed an autism diagnosis via our system. We compared the outcome of the assessment between the 2 diagnosticians, and between each diagnostician and the child’s previous diagnostic status. Results The system that resulted through the iterative design process includes (1) NODA smartCapture, a mobile phone-based application for parents to record prescribed video evidence at home; and (2) NODA Connect, a Web portal for diagnosticians to direct in-home video collection, access developmental history, and conduct an assessment by linking evidence of behaviors tagged in the videos to the Diagnostic and Statistical Manual of Mental Disorders criteria. Applying clinical judgment, the diagnostician
Generalized Kac lemma for recurrence time in iterated open quantum systems
NASA Astrophysics Data System (ADS)
Sinkovicz, P.; Kiss, T.; Asbóth, J. K.
2016-05-01
We consider recurrence to the initial state after repeated actions of a quantum channel. After each iteration a projective measurement is applied to check recurrence. The corresponding return time is known to be an integer for the special case of unital channels, including unitary channels. We prove that for a more general class of quantum channels the expected return time can be given as the inverse of the weight of the initial state in the steady state. This statement is a generalization of the Kac lemma for classical Markov chains.
Saadd, Y.
1994-12-31
In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.
NASA Astrophysics Data System (ADS)
Bansal, G.; Mishra, S.; Pandya, K.; Bandyopadhyay, M.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Shah, S.; Phukan, A.; Roopesh, G.; Ahmed, I.; Chakraborty, A. K.; Singh, M. J.; Schunke, B.; Hemsworth, R.; Svensson, L.; Chareyre, J.; Graceffa, J.
2013-02-01
Positioning of Cesium (Cs) oven modules in the complex interface dominated space envelope of a negative ion source such as Diagnostic Neutral Beam (DNB) source for ITER is a challenge not only for the designer of the ion source, but also that of remote handling. A more user friendly design of the Cs delivery could emerge from the consideration of a possibility of injecting the Cs from an oven located outside the vacuum envelope of the ion source, thereby ensuring an ease of Cs refilling and oven maintenance. The design of such a delivery system involves long transmission path of lengths ˜4 m, from ambient to vacuum. System design involves incorporation of a low loss transmission tube enveloped by highly reflective inner surface pipe to reduce the heat losses and therefore heating of the nearby systems. A combination of all metallic valves operated at high temperatures has been incorporated in such a way that the Cs refilling or oven maintenance can be done without breaking the ion source vacuum. Removable joints in the oven heating elements are provided at specific locations to remove the Cs oven for ion source maintenance. Experimental data on Cs transmission over such a long length, required for an effective design of a co-axial transmission, is not presently available. However, an experiment has been carried out in ITER-India making measurements of Cs distribution in coaxial transmission of a length of more than 5 m. These experiments incorporate an additional feature of multiple nozzle distributor based Cs delivery into the ion source which might help in reducing the need of multiple Cs ovens in large ion sources like ITER. The Cs flux from the oven is measured by surface ionization detector (SID). The angular distribution of the Cs flux is measured by a movable SID in linear direction and has been found in good agreement with the calculations. The Cs inventory in the oven reservoir was measured by electrical resistivity measurements methods. The paper
NASA Astrophysics Data System (ADS)
Bahçeci, Salim; Koca, Mutlu
2010-12-01
In impulse radio ultra-wideband (IR-UWB) systems where the channel lengths are on the order of a few hundred taps, conventional use of frequency-domain (FD) processing for channel estimation and equalization may not be feasible because the need to add a cyclic prefix (CP) to each block causes a significant reduction in the spectral efficiency. On the other hand, using no or short CP causes the interblock interference (IBI) and thus degradation in the receiver performance. Therefore, in order to utilize FD receiver processing UWB systems without a significant loss in the spectral efficiency and the performance, IBI cancellation mechanisms are needed in both the channel estimation and equalization operations. For this reason, in this paper, we consider the joint FD channel estimation and equalization for IR-UWB systems with short cyclic prefix (CP) and propose a novel iterative receiver employing soft IBI estimation and cancellation within both its FD channel estimator and FD equalizer components. We show by simulation results that the proposed FD receiver attains performances close to that of the full CP case in both line-of-sight (LOS) and non-line-of-sight (NLOS) UWB channels after only a few iterations.
Peng, Y.K.M.; Galambos, J.D.; Reid, R.L.; Strickler, D.J.; Kalsi, S.; Deleanu, L.
1987-01-01
Preliminary versions of the Engineering Test Reactor (ETR) systems code TETRA (Tokamak Engineering Test Reactor Analysis), which determines design solutions by the method of constrained optimization, are used to characterize the International Thermonuclear Experimental Reactor (ITER) and its design parameter space. We find that the physics objectives of high ignition margin and high plasma current lead to minimum size at relatively low aspect ratios (A = 2.5-3.0), while the engineering objective of high neutron wall load (W/sub L/ /approx gt/ 1.0 MW/m/sup 2/) leads to minimum size at higher A (/approximately/3.5). For minimum-size ITERs, the optimal toroidal field coil (TFC) designs fall within a narrow range of maximum fields (10-11 T) with R varying over only a few percent despite a factor of two change in the winding pack current density J/sub wp/. The major radius of the design is found to be sensitive to changes in elongation, inboard distances (such as plasma scrape-off), inductive flux capability, plasma temperature, beta limit, and ignition margin. A preliminary characterization of the US ITER designs with plasma current I/sub p/ > 15 MA and R < 4.5 m has been obtained by combining the engineering assumptions for devices such as the Tokamak Ignition/Burn Engineering Reactor (TIBER) with the physics assumptions for devices such as the Compact Ignition Tokamak (CIT) and the Next European Torus (NET). These devices can accommodate a range of full- to reduced-bore, driven (Q < 10), steady-state plasmas for the engineering phase that produces high neutron wall load and fluence. 12 refs., 4 figs., 3 tabs.
Study of the choice of the decoupling layout for the ITER ICRH system
Vervier, M. Messiaen, A.; Ongena, J.; Durodié, F.
2015-12-10
10 decouplers are used to neutralize the mutual coupling effects and to control the current amplitude of the 24 straps array of the ITER ICRH antenna in the case of current drive phasing. In the case of heating phasing only 4 decouplers are active and the array current control needs to act on the ratio between the power delivered by the 4 generators. This ratio is very sensitive to the precise adjustment of the antenna array phasing. The maximum total radiated power capability is then limited when the power of one generator reaches its maximum value. With the addition of four switches all 10 installed decouplers are made active and can act on all mutual coupling effects with equal source power from the 4 generators. With four more switches the current drive phasing could work with a reduced poloidal phasing resulting in a 35% increase of its coupling to the plasma.
An iterative model-based cogging compensator for the Green Bank Telescope servo system
NASA Astrophysics Data System (ADS)
Franke, Timothy; Weadon, Timothy; Ford, John; Garcia-Sanz, Mario
2014-07-01
This paper outlines an anti-cogging methodology and summarizes the current state of motor cogging cancellation on the Green Bank Telescope (GBT). An iterative, model-based algorithm is developed for finding the anticogging signal which yields rapid convergence. This method fills a gap in present methodologies in that it can serve as a drop-in cogging solution which operates in the presence of unknown structural dynamics as well as with an existing feedback controller. The algorithm is described and demonstrated on a 40 HP DC brushed motor test bed and also on the GBT's elevation axis motors. Results and implementation experience from deploying the algorithm on a motor test bed and on the GBT are discussed.
Parallelizable restarted iterative methods for nonsymmetric linear systems. Part 1: Theory
Joubert, W.D.; Carey, G.F.
1991-05-01
Large sparse nonsymmetric problems of the form Au = b are frequently solved using restarted conjugate gradient-type algorithms such as the popular GCR and GMRES algorithms. In this study the authors define a new class of algorithms which generate the same iterates as the standard GMRES algorithm but require as little as half of the computational expense. This performance improvement is obtained by using short economical three-term recurrences to replace the long recurrence used by GMRES. The new algorithms are shown to have good numerical properties in typical cases, and the new algorithms may be easily modified to be as numerically safe as standard GMRES. Numerical experiments with these algorithms are given in Part 2, in which they demonstrate the improved performance of the new schemes on different computer architectures.
NASA Astrophysics Data System (ADS)
Huang, Yi-Cheng; Chan, Manuel; Hsin, Yi-Ping; Ko, Ching-Chang
This study presents the control design and tests of an intra-oral hydraulic system for quantitatively loading of a dental implant. The computer-controlled system was developed and employed for better pressure error compensation by PID (proportional-integral-derivative) control and point-to-point iterative learning algorithm. In vitro experiments showed that implant loading is precisely controlled (error 3%) for 0.5Hz loading without air inclusion, and reasonably performed (error<10%) with air inclusion up to 20% of the total hydraulic volume. The PID controller maintains forces at the desired level while the learning controller eliminates overshoot/undershoot at the onset of each loading cycle. The system can be potentially used for in vivo animal studies for better understanding of how bone responds to implant loading. Quantitative information derived from this biomechanical model will add to improved designs of dental implants.
NASA Astrophysics Data System (ADS)
Nakatsuji, H.; Nakashima, H.; Kurokawa, Y.; Ishikawa, A.
2007-12-01
A local Schrödinger equation (LSE) method is proposed for solving the Schrödinger equation (SE) of general atoms and molecules without doing analytic integrations over the complement functions of the free ICI (iterative-complement-interaction) wave functions. Since the free ICI wave function is potentially exact, we can assume a flatness of its local energy. The variational principle is not applicable because the analytic integrations over the free ICI complement functions are very difficult for general atoms and molecules. The LSE method is applied to several 2 to 5 electron atoms and molecules, giving an accuracy of 10-5 Hartree in total energy. The potential energy curves of H2 and LiH molecules are calculated precisely with the free ICI LSE method. The results show the high potentiality of the free ICI LSE method for developing accurate predictive quantum chemistry with the solutions of the SE.
Systems security and functional readiness
Bruckner, D.G.
1988-01-01
In Protective Programming Planning, it is important that every facility or installation be configured to support the basic functions and mission of the using organization. This paper addresses the process of identifying the key functional operations of our facilities in Europe and providing the security necessary to keep them operating in natural and man-made threat environments. Functional Readiness is important since many of our existing facilities in Europe were not constructed to meet the demands of today's requirements. There are increased requirements for real-time systems with classified terminals and stringent access control, tempest and other electronic protection devices. One must prioritize the operations of these systems so that essential functions are provided even when the facilities are affected by overt or covert hostile activities.
Holzem, Katherine M.; Madden, Eli J.; Efimov, Igor R.
2014-01-01
Human cardiac electrophysiology (EP) is a unique system for computational modelling at multiple scales. Due to the complexity of the cardiac excitation sequence, coordinated activity must occur from the single channel to the entire myocardial syncytium. Thus, sophisticated computational algorithms have been developed to investigate cardiac EP at the level of ion channels, cardiomyocytes, multicellular tissues, and the whole heart. Although understanding of each functional level will ultimately be important to thoroughly understand mechanisms of physiology and disease, cardiac arrhythmias are expressly the product of cardiac tissue—containing enough cardiomyocytes to sustain a reentrant loop of activation. In addition, several properties of cardiac cellular EP, that are critical for arrhythmogenesis, are significantly altered by cell-to-cell coupling. However, relevant human cardiac EP data, upon which to develop or validate models at all scales, has been lacking. Thus, over several years, we have developed a paradigm for multiscale human heart physiology investigation and have recovered and studied over 300 human hearts. We have generated a rich experimental dataset, from which we better understand mechanisms of arrhythmia in human and can improve models of human cardiac EP. In addition, in collaboration with computational physiologists, we are developing a database for the deposition of human heart experimental data, including thorough experimental documentation. We anticipate that accessibility to this human heart dataset will further human EP computational investigations, as well as encourage greater data transparency within the field of cardiac EP. PMID:25362174
NASA Astrophysics Data System (ADS)
Kaneko, Osamu; Nguyen, Hien Thi; Wadagaki, Yusuke; Yamamoto, Shigeru
This paper provides a practical and meaningful application of controller parameter tuning. Here, we propose a simultaneous attainment of a desired controller and a mathematical model of a plant by utilizing the fictitious reference iterative tuning (FRIT), which is a useful method of controller parameter tuning with only one-shot experimental data, in the internal model control (IMC) architecture. Particularly, this paper focuses on systems with unstable zeros which cannot be eliminated in many applications. We explain how the utilization of the FRIT is effective for obtaining not only the desired control parameter values but also an appropriate mathematical model of the plant. In order to show the effectiveness and the validity of the proposed method, we give illustrative examples.
Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system
NASA Astrophysics Data System (ADS)
Hillairet, J.; Achard, J.; Bae, Y. S.; Bernard, J. M.; Dechambre, N.; Delpech, L.; Ekedahl, A.; Faure, N.; Goniche, M.; Kim, J.; Larroque, S.; Magne, R.; Marfisi, L.; Namkung, W.; Park, H.; Park, S.; Poli, S.; Vulliez, K.
2014-02-01
CEA/IRFM is conducting R&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported.
Miller, Gregory H.
2003-08-06
In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in common practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.
Li, Ke; Garrett, John; Ge, Yongshuai; Chen, Guang-Hong
2014-01-01
Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo®, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice
Li, Ke; Chen, Guang-Hong; Garrett, John; Ge, Yongshuai
2014-07-15
Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than
Human nervous system function emulator.
Frenger, P
2000-01-01
This paper describes a modular, extensible, open-systems design for a multiprocessor network which emulates the major functions of the human nervous system. Interchangeable hardware/software components, a socketed software bus with plug-and-play capability and self diagnostics are included. The computer hardware is based on IEEE P996.1 bus cards. Its operating system utilizes IEEE 1275 standard software. Object oriented design techniques and programming are featured. A machine-independent high level script-based command language was created for this project. Neural anatomical structures which were emulated include the cortex, brainstem, cerebellum, spinal cord, autonomic and peripheral nervous systems. Motor, sensory, autoregulatory, and higher cognitive artificial intelligence, behavioral and emotional functions are provided. The author discusses how he has interfaced this emulator to machine vision, speech recognition/speech synthesis, an artificial neural network and a dexterous hand to form an android robotic platform. PMID:10834247
Channeled spectropolarimetry using iterative reconstruction
NASA Astrophysics Data System (ADS)
Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.
2016-05-01
Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.
Yan, Chengfei; Grinter, Sam Z; Merideth, Benjamin Ryan; Ma, Zhiwei; Zou, Xiaoqin
2016-06-27
In this study, we developed two iterative knowledge-based scoring functions, ITScore_pdbbind(rigid) and ITScore_pdbbind(flex), using rigid decoy structures and flexible decoy structures, respectively, that were generated from the protein-ligand complexes in the refined set of PDBbind 2012. These two scoring functions were evaluated using the 2013 and 2014 CSAR benchmarks. The results were compared with the results of two other scoring functions, the Vina scoring function and ITScore, the scoring function that we previously developed from rigid decoy structures for a smaller set of protein-ligand complexes. A graph-based method was developed to evaluate the root-mean-square deviation between two conformations of the same ligand with different atom names and orders due to different file preparations, and the program is freely available. Our study showed that the two new scoring functions developed from the larger training set yielded significantly improved performance in binding mode predictions. For binding affinity predictions, all four scoring functions showed protein-dependent performance. We suggest the development of protein-family-dependent scoring functions for accurate binding affinity prediction. PMID:26389744
Visible and Infrared Optical Design for the ITER Upper Ports
Lasnier, C; Seppala, L; Morris, K; Groth, M; Fenstermacher, M; Allen, S; Synakowski, E; Ortiz, J
2007-03-01
This document contains the results of an optical design scoping study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. ITER is an international collaboration to build a large fusion energy tokamak with a goal of demonstrating net fusion power for pulses much longer than the energy confinement time. At the time of this report, six of the ITER upper ports are planned to each to contain a camera system for recording visible and infrared light, as well as other diagnostics. the performance specifications for the temporal and spatial resolution of this system are shown in the Section II, Functional Specifications. They acknowledge a debt to Y. Corre and co-authors of the CEA Cadarache report ''ITER wide-angle viewing and thermographic and visible system''. Several of the concepts used in this design are derived from that CEA report. The infrared spatial resolution for optics of this design is diffraction-limited by the size of the entrance aperture, at lower resolution than listed in the ITER diagnostic specifications. The size of the entrance aperture is a trade-off between spatial resolution, optics size in the port, and the location of relay optics. The signal-to-noise ratio allows operation at the specified time resolutions.
Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo
1996-04-29
There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.
Iterative optimization calibration method for stereo deflectometry.
Ren, Hongyu; Gao, Feng; Jiang, Xiangqian
2015-08-24
An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy. PMID:26368180
Spectroscopic Measurement System for ITER Divertor Plasma: Impurity Influx Monitor (divertor)
Sugie, Tatsuo; Ogawa, Hiroaki; Kusama, Yoshinori; Kasai, Satoshi
2008-03-12
The detailed design of the Impurity Influx Monitor (divertor) has been carried out to provide the measurement capability in the harsh environment such as higher irradiation levels of neutron, gamma-ray and particles than in present devices. The in-situ calibration system using a micro retro-reflector array has been developed to monitor the sensitivity change of the optical system due to the environmental effects. The optical alignment system for the Monitor has been developed by using a dedicated optics for alignment in the collection optics for measurement.
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
The ITER project construction status
NASA Astrophysics Data System (ADS)
Motojima, O.
2015-10-01
The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.
Iterative solutions of sparse linear systems on systolic arrays. Technical report
Melhem, R.
1987-03-01
The idea of grouping the non-zero elements of a sparse matrix into few strips that are almost parallel is applied to the design of a systolic accelerator for sparse matrix operations. This accelerator is, then, integrated into a complete systolic system for the solution of large sparse linear systems of equations. The design demonstrates that the application of systolic arrays is not limited to regular computations, and that computationally irregular problems may be solved on systolic networks if local storage is provided in each systolic cell for buffering the irregularity in the data movement and for absorbing the irregularity in the computation.
NASA Technical Reports Server (NTRS)
Callini, Gianluca
2016-01-01
The drive for the journey to Mars is in a higher gear than ever before. We are developing new spacecraft and life support systems to take humans to the Red Planet. The journey that development hardware takes before its final incarnation in a fully integrated spacecraft can take years, as is the case for the Orion environmental control and life support system (ECLSS). Through the Pressure Integrated Suit Test (PIST) series, NASA personnel at Johnson Space Center have been characterizing the behavior of a closed loop ECLSS in the event of cabin depressurization. This kind of testing - one of the most hazardous activities performed at JSC - requires an iterative approach, increasing in complexity and hazards). The PIST series, conducted in the Crew and Thermal Systems Division (CTSD) 11-ft Chamber, started with unmanned test precursors before moving to a human-in-the-loop phase, and continues to evolve with the eventual goal of a qualification test for the final system that will be installed on Orion. Meanwhile, the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program is an effort to research and develop technologies that will work in concert to support habitation on Mars. September 2015 marked the first unmanned HESTIA test, with the goal of characterizing how ECLSS technologies work together in a closed environment. HESTIA will culminate in crewed testing, but it can benefit from the lessons learned from another test that is farther ahead in its development and life cycle. Discussing PIST and HESTIA, this paper illustrates how we approach testing, the kind of information that facility teams need to ensure efficient collaborations and successful testing, and how we can apply what we learn to execute future tests.
Pontana, François; Billard, Anne-Sophie; Duhamel, Alain; Schmidt, Bernhard; Faivre, Jean-Baptiste; Hachulla, Eric; Matran, Régis; Remy, Jacques; Remy-Jardin, Martine
2016-04-01
Purpose To evaluate the effect of iterative reconstruction on the depiction of systemic sclerosis-related interstitial lung disease (ILD) when the radiation dose is reduced by 60%. Materials and Methods This study was based on retrospective interpretation of prospectively acquired data over a 12-month period and approved by the institutional review board. The requirement to obtain informed consent was waived. Fifty-five chest computed tomographic (CT) examinations were performed in 38 women and 17 men (mean age, 55.8 years; range, 23-82 years) by using a dual-source CT unit with (a) both tubes set at similar energy (120 kVp) and (b) the total reference milliampere seconds (ie, 110 mAs) split up in a way that 40% was applied to tube A and 60% to tube B. Two series of images were generated simultaneously from the same dataset: (a) standard-dose images (generated from both tubes) reconstructed with filtered back projection (group 1, the reference standard) and (b) reduced-dose images (generated from tube A; 60% dose reduction) reconstructed with sinogram-affirmed iterative reconstruction (SAFIRE) (group 2). In both groups, the analyzed parameters comprised the image noise and the visualization and conspicuity of CT features of ILD. Two readers independently analyzed images from both groups. Results were compared by using the Wilcoxon test for paired samples; the 95% confidence interval was calculated when appropriate. Results The mean level of objective noise in group 2 was significantly lower than that in group 1 (22.02 HU vs 26.23 HU, respectively; P < .0001). The CT features of ILD in group 1 were always depicted in group 2, with subjective conspicuity scores (a) improved in group 2 for ground-glass opacity, reticulation, and bronchiectasis and/or bronchiolectasis and (b) identical in both groups for honeycombing. The interobserver agreement for their depiction was excellent in both groups (κ, 0.84-0.98). Conclusion Despite a 60% dose reduction, images
Duckworth, Robert C; Baylor, Larry R; Meitner, Steven J; Combs, Stephen Kirk; Rasmussen, David A; Edgemon, Timothy D; Hechler, Michael P; Barbier, Charlotte N; Pearce, R.J.H.; Kersevan, R.; Dremel, M.; Boissin, Jean Claude
2012-01-01
As part of the vacuum system for the ITER fusion project, a cryogenic viscouscompressor (CVC) is being developed to collect hydrogenic exhaust gases from the toruscryopumps and compress them to a high enough pressure by regeneration for pumping tothe tritium reprocessing facility. Helium impurities that are a byproduct of the fusionreactions pass through the CVC and are pumped by conventional vacuum pumps andexhausted to the atmosphere. Before the development of a full-scale CVC, a representative,small-scale test prototype was designed, fabricated, and tested. With cooling provided bycold helium gas, hydrogen gas was introduced into the central column of the test prototypepump at flow rates between 0.001 g/s and 0.008 g/s. Based on the temperatures and flowrates of the cold helium gas, different percentages of hydrogen gas were frozen to the column surface wall as the hydrogen gas flow rate increased. Results from the measured temperatures and pressures will form a benchmark that will be used to judge future heattransfer enhancements to the prototype CVC and to develop a computational fluid dynamicmodel that will help develop design parameters for the full-scale CVC.
Some results from the second iteration of total-system performance assessment for Yucca Mountain
Wilson, M.L.
1994-05-01
The second preliminary total-system performance assessment for the potential radioactive-waste-repository site at Yucca Mountain has recently been completed. This paper summarizes results for nominal aqueous and gaseous releases using the composite-porosity flow model. The results are found to be sensitive to the type of unsaturated-zone flow, to percolation flux and climate change, to saturated-zone dilution, to container-wetting processes and container-corrosion processes, to fuel-matrix alteration rate and radionuclide solubilities (especially for {sup 237}Np), and to bulk permeability and retardation of gaseous {sup 14}C. These are areas that should be given priority in the site-characterization program. Specific recommendations are given in the full report of the study.
High resolution non-iterative aperture synthesis.
Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A
2016-03-21
The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816
Evaluation of Clipping Based Iterative PAPR Reduction Techniques for FBMC Systems
Kollár, Zsolt
2014-01-01
This paper investigates filter bankmulticarrier (FBMC), a multicarrier modulation technique exhibiting an extremely low adjacent channel leakage ratio (ACLR) compared to conventional orthogonal frequency division multiplexing (OFDM) technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR) is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER). PMID:24558338
Development and irradiation test of lost alpha detection system for ITER.
Nishiura, M; Nagasaka, T; Fujioka, K; Fujimoto, Y; Tanaka, T; Ido, T; Yamamoto, S; Kashiwa, S; Sasao, M
2010-10-01
We developed a lost alpha detection system to use in burning plasma experiments. The scintillators of Ag:ZnS and polycrystalline Ce:YAG were designed for a high-temperature environment, and the optical transmission line was designed to transmit from the scintillator to the port plug. The required optical components of lenses and mirrors were irradiated using the fission reactor with the initial result that there was no clear change after the irradiation with a neutron flux of 9.6×10(17) nm(-2) s(-1) for 48 h. We propose a diagnostic of alpha particle loss, so-called alpha particle induced gamma ray spectroscopy. The initial laboratory test has been carried out by the use of the Ce doped Lu(2)SiO(5) scintillator detector and an Am-Be source to detect the 4.44 MeV high energy gamma ray due to the (9)Be(α,nγ)(12)C reaction. PMID:21033839
Describing functions for nonlinear optical systems.
Ghosh, A K
1997-10-10
The concept of describing functions is useful for analyzing and designing nonlinear systems. A proposal for using the idea of describing functions for studying the behavior of a nonlinear optical processing system is given. The describing function can be used in the same way that a coherent transfer function or optical transfer function is used to characterize linear, shift-invariant optical processors. Two coherent optical systems for measuring the magnitude of the describing function of nonlinear optical processors are suggested. PMID:18264243
Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)
1990-01-01
Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.
Identification of boiler inlet transfer functions and estimation of system parameters
NASA Technical Reports Server (NTRS)
Miles, J. H.
1972-01-01
An iterative computer method is described for identifying boiler transfer functions using frequency response data. An objective penalized performance measure and a nonlinear minimization technique are used to cause the locus of points generated by a transfer function to resemble the locus of points obtained from frequency response measurements. Different transfer functions can be tried until a satisfactory empirical transfer function of the system is found. To illustrate the method, some examples and some results from a study of a set of data consisting of measurements of the inlet impedance of a single tube forced flow boiler with inserts are given.
NASA Astrophysics Data System (ADS)
Mehrabi Pari, Sharareh; Javidan, Kurosh; Taghavi Shahri, Fatemeh
2016-05-01
The "Laplace Transform Method" is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.
Iterative Magnetometer Calibration
NASA Technical Reports Server (NTRS)
Sedlak, Joseph
2006-01-01
This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.
Zhang, Cheng; Tao, Lin; Qin, Chu; Zhang, Peng; Chen, Shangying; Zeng, Xian; Xu, Feng; Chen, Zhe; Yang, Sheng Yong; Chen, Yu Zong
2015-01-01
Similarity-based clustering and classification of compounds enable the search of drug leads and the structural and chemogenomic studies for facilitating chemical, biomedical, agricultural, material and other industrial applications. A database that organizes compounds into similarity-based as well as scaffold-based and property-based families is useful for facilitating these tasks. CFam Chemical Family database http://bidd2.cse.nus.edu.sg/cfam was developed to hierarchically cluster drugs, bioactive molecules, human metabolites, natural products, patented agents and other molecules into functional families, superfamilies and classes of structurally similar compounds based on the literature-reported high, intermediate and remote similarity measures. The compounds were represented by molecular fingerprint and molecular similarity was measured by Tanimoto coefficient. The functional seeds of CFam families were from hierarchically clustered drugs, bioactive molecules, human metabolites, natural products, patented agents, respectively, which were used to characterize families and cluster compounds into families, superfamilies and classes. CFam currently contains 11 643 classes, 34 880 superfamilies and 87 136 families of 490 279 compounds (1691 approved drugs, 1228 clinical trial drugs, 12 386 investigative drugs, 262 881 highly active molecules, 15 055 human metabolites, 80 255 ZINC-processed natural products and 116 783 patented agents). Efforts will be made to further expand CFam database and add more functional categories and families based on other types of molecular representations. PMID:25414339
Adaptive iterative reconstruction
NASA Astrophysics Data System (ADS)
Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.
2011-03-01
It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2009-01-01
A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.
Mesh generation/refinement using fractal concepts and iterated function systems
NASA Technical Reports Server (NTRS)
Bova, S. W.; Carey, G. F.
1992-01-01
A novel method of mesh generation is proposed which is based on the use of fractal concepts to derive contractive, affine transformations. The transformations are constructed in such a manner that the attractors of the resulting maps are a union of the points, lines and surfaces in the domain. In particular, the mesh nodes may be generated recursively as a sequence of points which are obtained by applying the transformations to a coarse background mesh constructed from the given boundary data. A Delaunay triangulation or similar edge connection approach can then be performed on the resulting set of nodes in order to generate the mesh. Local refinement of an existing mesh can also be performed using the procedure. The method is easily extended to three dimensions, in which case the Delaunay triangulation is replaced by an analogous 3D tesselation.
A Fixed-Point Iteration Method with Quadratic Convergence
Walker, Kevin P.; Sham, Sam
2012-01-01
The fixed-point iteration algorithm is turned into a quadratically convergent scheme for a system of nonlinear equations. Most of the usual methods for obtaining the roots of a system of nonlinear equations rely on expanding the equation system about the roots in a Taylor series, and neglecting the higher order terms. Rearrangement of the resulting truncated system then results in the usual Newton-Raphson and Halley type approximations. In this paper the introduction of unit root functions avoids the direct expansion of the nonlinear system about the root, and relies, instead, on approximations which enable the unit root functions to considerably widen the radius of convergence of the iteration method. Methods for obtaining higher order rates of convergence and larger radii of convergence are discussed.
Iterated binomial sums and their associated iterated integrals
NASA Astrophysics Data System (ADS)
Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.
2014-11-01
We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.
Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems
NASA Astrophysics Data System (ADS)
Reed, Claude B.; Hua, Thanh Q.; Natesan, Ken; Kirillov, Igor R.; Vitkovski, Ivan V.; Anisimov, Aleksandr M.
1995-03-01
A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al2O3/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.
NASA Astrophysics Data System (ADS)
Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P. U.; Durodié, F.; Koch, R.; Louche, F.; Weynants, R.
2009-05-01
The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.
On the interplay between inner and outer iterations for a class of iterative methods
Giladi, E.
1994-12-31
Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.
ITER LHe Plants Parallel Operation
NASA Astrophysics Data System (ADS)
Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.
The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.
Software Systems: Consequence versus Functionality
Berg, Ray; Winter, Victor L.
1999-08-05
The purpose of this panel is to present different perspectives and opinions regarding the issues surrounding why software should or shouldn't be entrusted with critical (high consequence) functionality.
Iterative methods for weighted least-squares
Bobrovnikova, E.Y.; Vavasis, S.A.
1996-12-31
A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.
An Iterative Reweighted Method for Tucker Decomposition of Incomplete Tensors
NASA Astrophysics Data System (ADS)
Yang, Linxiao; Fang, Jun; Li, Hongbin; Zeng, Bing
2016-09-01
We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an Nth-order tensor in terms of N factor matrices and a core tensor via multilinear operations. To exploit the underlying multilinear low-rank structure in high-dimensional datasets, we propose a group-based log-sum penalty functional to place structural sparsity over the core tensor, which leads to a compact representation with smallest core tensor. The method for Tucker decomposition is developed by iteratively minimizing a surrogate function that majorizes the original objective function, which results in an iterative reweighted process. In addition, to reduce the computational complexity, an over-relaxed monotone fast iterative shrinkage-thresholding technique is adapted and embedded in the iterative reweighted process. The proposed method is able to determine the model complexity (i.e. multilinear rank) in an automatic way. Simulation results show that the proposed algorithm offers competitive performance compared with other existing algorithms.
Prindle, N.H.; Mendenhall, F.T.; Trauth, K.; Boak, D.M.; Beyeler, W.; Hora, S.; Rudeen, D.
1996-05-01
The Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories (SNL). SPM provides an analytical basis for supporting programmatic decisions for the Waste Isolation Pilot Plant (WIPP) to meet selected portions of the applicable US EPA long-term performance regulations. The first iteration of SPM (SPM-1), the prototype for SPM< was completed in 1994. It served as a benchmark and a test bed for developing the tools needed for the second iteration of SPM (SPM-2). SPM-2, completed in 1995, is intended for programmatic decision making. This is Volume II of the three-volume final report of the second iteration of the SPM. It describes the technical input and model implementation for SPM-2, and presents the SPM-2 technical baseline and the activities, activity outcomes, outcome probabilities, and the input parameters for SPM-2 analysis.
Transfer function characteristics of super resolving systems
NASA Technical Reports Server (NTRS)
Milster, Tom D.; Curtis, Craig H.
1992-01-01
Signal quality in an optical storage device greatly depends on the optical system transfer function used to write and read data patterns. The problem is similar to analysis of scanning optical microscopes. Hopkins and Braat have analyzed write-once-read-many (WORM) optical data storage devices. Herein, transfer function analysis of magnetooptic (MO) data storage devices is discussed with respect to improving transfer-function characteristics. Several authors have described improving the transfer function as super resolution. However, none have thoroughly analyzed the MO optical system and effects of the medium. Both the optical system transfer function and effects of the medium of this development are discussed.
Acceleration of iterative image restoration algorithms.
Biggs, D S; Andrews, M
1997-03-10
A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability. PMID:18250863
Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.
2010-04-08
Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2x10{sup 22} m{sup -2}(E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.
NASA Astrophysics Data System (ADS)
Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.
2010-04-01
Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.
Writing to Persuade: A Systemic Functional View
ERIC Educational Resources Information Center
Schulze, Joshua
2011-01-01
This study explores how a genre-based approach to writing instruction influenced by both genre theory and systemic functional linguistics supported the academic writing development of English language learners (ELLs) transitioning to middle school. Drawing on Systemic Functional Linguistics (SFL) as a tool for pedagogy and linguistic analysis, the…
NASA Astrophysics Data System (ADS)
Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee
2014-10-01
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image
Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee
2014-10-21
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml(-1) iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml(-1)) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image
Joubert, W.D.; Carey, G.F.; Kohli, H.; Lorber, A.; McLay, R.T.; Shen, Y.; Berner, N.A. |; Kalhan, A. |
1995-01-01
PCG (Preconditioned Conjugate Gradient package) is a system for solving linear equations of the form Au = b, for A a given matrix and b and u vectors. PCG, employing various gradient-type iterative methods coupled with preconditioners, is designed for general linear systems, with emphasis on sparse systems such as these arising from discretization of partial differential equations arising from physical applications. It can be used to solve linear equations efficiently on parallel computer architectures. Much of the code is reusable across architectures and the package is portable across different systems; the machines that are currently supported is listed. This manual is intended to be the general-purpose reference describing all features of the package accessible to the user; suggestions are also given regarding which methods to use for a given problem.
ERIC Educational Resources Information Center
Dobbs, David E.
2009-01-01
The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…
Functional Risk Modeling for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Thomson, Fraser; Mathias, Donovan; Go, Susie; Nejad, Hamed
2010-01-01
We introduce an approach to risk modeling that we call functional modeling , which we have developed to estimate the capabilities of a lunar base. The functional model tracks the availability of functions provided by systems, in addition to the operational state of those systems constituent strings. By tracking functions, we are able to identify cases where identical functions are provided by elements (rovers, habitats, etc.) that are connected together on the lunar surface. We credit functional diversity in those cases, and in doing so compute more realistic estimates of operational mode availabilities. The functional modeling approach yields more realistic estimates of the availability of the various operational modes provided to astronauts by the ensemble of surface elements included in a lunar base architecture. By tracking functional availability the effects of diverse backup, which often exists when two or more independent elements are connected together, is properly accounted for.
Function Analysis and Decomposistion using Function Analysis Systems Technique
J. R. Wixson
1999-06-01
The "Father of Value Analysis", Lawrence D. Miles, was a design engineer for General Electric in Schenectady, New York. Miles developed the concept of function analysis to address difficulties in satisfying the requirements to fill shortages of high demand manufactured parts and electrical components during World War II. His concept of function analysis was further developed in the 1960s by Charles W. Bytheway, a design engineer at Sperry Univac in Salt Lake City, Utah. Charles Bytheway extended Mile's function analysis concepts and introduced the methodology called Function Analysis Systems Techniques (FAST) to the Society of American Value Engineers (SAVE) at their International Convention in 1965 (Bytheway 1965). FAST uses intuitive logic to decompose a high level, or objective function into secondary and lower level functions that are displayed in a logic diagram called a FAST model. Other techniques can then be applied to allocate functions to components, individuals, processes, or other entities that accomplish the functions. FAST is best applied in a team setting and proves to be an effective methodology for functional decomposition, allocation, and alternative development.
Function Analysis and Decomposistion using Function Analysis Systems Technique
Wixson, James Robert
1999-06-01
The "Father of Value Analysis", Lawrence D. Miles, was a design engineer for General Electric in Schenectady, New York. Miles developed the concept of function analysis to address difficulties in satisfying the requirements to fill shortages of high demand manufactured parts and electrical components during World War II. His concept of function analysis was further developed in the 1960s by Charles W. Bytheway, a design engineer at Sperry Univac in Salt Lake City, Utah. Charles Bytheway extended Mile's function analysis concepts and introduced the methodology called Function Analysis Systems Technique (FAST) to the Society of American Value Engineers (SAVE) at their International Convention in 1965 (Bytheway 1965). FAST uses intuitive logic to decompose a high level, or objective function into secondary and lower level functions that are displayed in a logic diagram called a FAST model. Other techniques can then be applied to allocate functions to components, individuals, processes, or other entities that accomplish the functions. FAST is best applied in a team setting and proves to be an effective methodology for functional decomposition, allocation, and alternative development.
A component analysis based on serial results analyzing performance of parallel iterative programs
Richman, S.C.
1994-12-31
This research is concerned with the parallel performance of iterative methods for solving large, sparse, nonsymmetric linear systems. Most of the iterative methods are first presented with their time costs and convergence rates examined intensively on sequential machines, and then adapted to parallel machines. The analysis of the parallel iterative performance is more complicated than that of serial performance, since the former can be affected by many new factors, such as data communication schemes, number of processors used, and Ordering and mapping techniques. Although the author is able to summarize results from data obtained after examining certain cases by experiments, two questions remain: (1) How to explain the results obtained? (2) How to extend the results from the certain cases to general cases? To answer these two questions quantitatively, the author introduces a tool called component analysis based on serial results. This component analysis is introduced because the iterative methods consist mainly of several basic functions such as linked triads, inner products, and triangular solves, which have different intrinsic parallelisms and are suitable for different parallel techniques. The parallel performance of each iterative method is first expressed as a weighted sum of the parallel performance of the basic functions that are the components of the method. Then, one separately examines the performance of basic functions and the weighting distributions of iterative methods, from which two independent sets of information are obtained when solving a given problem. In this component approach, all the weightings require only serial costs not parallel costs, and each iterative method for solving a given problem is represented by its unique weighting distribution. The information given by the basic functions is independent of iterative method, while that given by weightings is independent of parallel technique, parallel machine and number of processors.
NASA Astrophysics Data System (ADS)
Xu, Shiyu; Zhang, Zhenxi; Chen, Ying
2014-03-01
Statistical iterative reconstruction exhibits particularly promising since it provides the flexibility of accurate physical noise modeling and geometric system description in transmission tomography system. However, to solve the objective function is computationally intensive compared to analytical reconstruction methods due to multiple iterations needed for convergence and each iteration involving forward/back-projections by using a complex geometric system model. Optimization transfer (OT) is a general algorithm converting a high dimensional optimization to a parallel 1-D update. OT-based algorithm provides a monotonic convergence and a parallel computing framework but slower convergence rate especially around the global optimal. Based on an indirect estimation on the spectrum of the OT convergence rate matrix, we proposed a successively increasing factor- scaled optimization transfer (OT) algorithm to seek an optimal step size for a faster rate. Compared to a representative OT based method such as separable parabolic surrogate with pre-computed curvature (PC-SPS), our algorithm provides comparable image quality (IQ) with fewer iterations. Each iteration retains a similar computational cost to PC-SPS. The initial experiment with a simulated Digital Breast Tomosynthesis (DBT) system shows that a total 40% computing time is saved by the proposed algorithm. In general, the successively increasing factor-scaled OT exhibits a tremendous potential to be a iterative method with a parallel computation, a monotonic and global convergence with fast rate.
Prospects of ITER Instability Control
NASA Astrophysics Data System (ADS)
Kolemen, Egemen
2015-11-01
Prospects for real-time MHD stability analysis, plasma response calculations, and their use in ELM, NTM, RWM control and EFC will be discussed. ITER will need various controls to work together in order to achieve the stated goal of Q >= 10 for multiple minutes. These systems will allow operating at high beta while avoiding disruptions that may lead to damage to the reactor. However, it has not yet been demonstrated whether the combined real-time feedback control aim is feasible given the spectrum of plasma instabilities, the quality of the real-time diagnostic measurement/analysis, and the actuator set at ITER. We will explain challenges of instability control for ITER based on experimental and simulation results. We will demonstrate that it will not be possible to parameterize all possible disruption avoidance and ramp down scenarios that ITER may encounter. An alternative approach based on real-time MHD stability analysis and plasma response calculations, and its use in ELM, NTM, RWM control and EFC, will be demonstrated. Supported by the US DOE under DE-AC02-09CH11466.
Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.
1994-07-08
Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.
NASA Astrophysics Data System (ADS)
Lenkeit, Florian; Wübben, Dirk; Dekorsy, Armin
2013-12-01
In this article, distributed interleave-division multiplexing space-time codes (dIDM-STCs) are applied for multi-user two-hop decode-and-forward (DF) relay networks. In case of decoding errors at the relays which propagate to the destination, severe performance degradations can occur as the original detection scheme for common IDM-STCs does not take any reliability information about the first hop into account. Here, a novel reliability-aware iterative detection scheme (RAID) for dIDM-STCs is proposed. This new detection scheme takes the decoding reliability of the relays for each user into account for the detection at the destination. Performance evaluations show that the proposed RAID scheme clearly outperforms the original detection scheme and that in certain scenarios even a better performance than for adaptive relaying schemes can be achieved.
Functional systems with orthogonal dynamic covalent bonds.
Wilson, Adam; Gasparini, Giulio; Matile, Stefan
2014-03-21
This review summarizes the use of orthogonal dynamic covalent bonds to build functional systems. Dynamic covalent bonds are unique because of their dual nature. They can be as labile as non-covalent interactions or as permanent as covalent bonds, depending on conditions. Examples from nature, reaching from the role of disulfides in protein folding to thioester exchange in polyketide biosynthesis, indicate how dynamic covalent bonds are best used in functional systems. Several synthetic functional systems that employ a single type of dynamic covalent bonds have been reported. Considering that most functional systems make simultaneous use of several types of non-covalent interactions together, one would expect the literature to contain many examples in which different types of dynamic covalent bonds are similarly used in tandem. However, the incorporation of orthogonal dynamic covalent bonds into functional systems is a surprisingly rare and recent development. This review summarizes the available material comprehensively, covering a remarkably diverse collection of functions. However, probably more revealing than the specific functions addressed is that the questions asked are consistently quite unusual, very demanding and highly original, focusing on molecular systems that can self-sort, self-heal, adapt, exchange, replicate, transcribe, or even walk and "think" (logic gates). This focus on adventurous chemistry off the beaten track supports the promise that with orthogonal dynamic covalent bonds we can ask questions that otherwise cannot be asked. The broad range of functions and concepts covered should appeal to the supramolecular organic chemist but also to the broader community. PMID:24287608
Automated Testcase Generation for Numerical Support Functions in Embedded Systems
NASA Technical Reports Server (NTRS)
Schumann, Johann; Schnieder, Stefan-Alexander
2014-01-01
We present a tool for the automatic generation of test stimuli for small numerical support functions, e.g., code for trigonometric functions, quaternions, filters, or table lookup. Our tool is based on KLEE to produce a set of test stimuli for full path coverage. We use a method of iterative deepening over abstractions to deal with floating-point values. During actual testing the stimuli exercise the code against a reference implementation. We illustrate our approach with results of experiments with low-level trigonometric functions, interpolation routines, and mathematical support functions from an open source UAS autopilot.
The Nervous System and Gastrointestinal Function
ERIC Educational Resources Information Center
Altaf, Muhammad A.; Sood, Manu R.
2008-01-01
The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…
Grine, D.; Vervier, M.; Messiaen, A.; Dumortier, P.
2011-12-23
Each of the two ICRH antennas for ITER must couple 20MW to the plasma in the 40-55MHz band via an array of 24 radiating shorted straps fed by four generators. The matching system must provide automatic matching control on the mean load provided by the plasma and be resilient (parallel {Gamma}{sub G} parallel <0.2) to a wide range of fast antenna load excursions occurring in ELMy plasmas. Furthermore, good control of the current distribution in the strap array must be possible for the various heating and current drive scenarios. Two load resilient matching options have been considered for ITER: the 4 'Conjugate-T'(CT) and the 4 hybrids ones, the first being presently considered as a back-up option. Automatic control of these 2 options has been developed, and tested for optimization on a low-powered scaled mock-up. Successful implementation of the simultaneous feedback control of 11 actuators for the matching of the 4 CT and for the control of the toroidal phasing has already been achieved. The matching and the array current control of the 3dB hybrid option are provided by simultaneous feedback control of the decouplers and double stub tuners (in total 23 actuators) and this has also been successfully achieved for the full array. The paper discusses the circuit implementation and presents the obtained results.
NASA Astrophysics Data System (ADS)
Grine, D.; Vervier, M.; Messiaen, A.; Dumortier, P.
2011-12-01
Each of the two ICRH antennas for ITER must couple 20MW to the plasma in the 40-55MHz band via an array of 24 radiating shorted straps fed by four generators. The matching system must provide automatic matching control on the mean load provided by the plasma and be resilient (‖ΓG‖<0.2) to a wide range of fast antenna load excursions occurring in ELMy plasmas. Furthermore, good control of the current distribution in the strap array must be possible for the various heating and current drive scenarios. Two load resilient matching options have been considered for ITER: the 4 `Conjugate-T' (CT) and the 4 hybrids ones, the first being presently considered as a back-up option [1]. Automatic control of these 2 options has been developed, and tested for optimization on a low-powered scaled mock-up. Successful implementation of the simultaneous feedback control of 11 actuators for the matching of the 4 CT and for the control of the toroidal phasing has already been achieved [2]. The matching and the array current control of the 3dB hybrid option are provided by simultaneous feedback control of the decouplers and double stub tuners (in total 23 actuators) and this has also been successfully achieved for the full array. The paper discusses the circuit implementation and presents the obtained results.
Perl Modules for Constructing Iterators
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2009-01-01
The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.
THERMAL INFLUENCES ON NERVOUS SYSTEM FUNCTION
The effects of cooling and warming on neural function are reviewed. he literature is presented progressively from the subcellular through the cellular level to the neural systems level. emporal measures relevant to membrane activity, action potentials, synaptic transmission and e...
Human Systems Integration: Requirements and Functional Decomposition
NASA Technical Reports Server (NTRS)
Berson, Barry; Gershzohn, Gary; Boltz, Laura; Wolf, Russ; Schultz, Mike
2005-01-01
This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given.
Electrostatic camera system functional design study
NASA Technical Reports Server (NTRS)
Botticelli, R. A.; Cook, F. J.; Moore, R. F.
1972-01-01
A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.
Functional Translational Readthrough: A Systems Biology Perspective.
Schueren, Fabian; Thoms, Sven
2016-08-01
Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries. PMID:27490485
Functional Translational Readthrough: A Systems Biology Perspective
Schueren, Fabian
2016-01-01
Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries. PMID:27490485
NASA Astrophysics Data System (ADS)
Clery, Daniel
2015-01-01
Bernard Bigot, chair of France’s Alternative Energies and Atomic Energy Commission (CEA), has been chosen as the next director-general of ITER - the experimental fusion reactor currently being built in Cadarache, France.
ITER convertible blanket evaluation
Wong, C.P.C.; Cheng, E.
1995-09-01
Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.
Functional stability of cerebral circulatory system
NASA Technical Reports Server (NTRS)
Moskalenko, Y. Y.
1980-01-01
The functional stability of the cerebral circulation system seems to be based on the active mechanisms and on those stemming from specific of the biophysical structure of the system under study. This latter parameter has some relevant criteria for its quantitative estimation. The data obtained suggest that the essential part of the mechanism for active responses of cerebral vessels which maintains the functional stability of this portion of the vascular system, consists of a neurogenic component involving central nervous structures localized, for instance, in the medulla oblongata.
Equilibrium time-correlation functions for one-dimensional hard-point systems
NASA Astrophysics Data System (ADS)
Mendl, Christian B.; Spohn, Herbert
2014-07-01
As recently proposed, the long-time behavior of equilibrium time-correlation functions for one-dimensional systems are expected to be captured by a nonlinear extension of fluctuating hydrodynamics. We outline the predictions from the theory aimed at the comparison with molecular dynamics. We report on numerical simulations of a fluid with a hard-shoulder potential and of a hard-point gas with alternating masses. These models have in common that the collision time is zero and their dynamics amounts to iterating collision by collision. The theory is well confirmed, with the twist that the nonuniversal coefficients are still changing at longest accessible times.
Wavelet excited measurement of system transfer function.
Olkkonen, H; Olkkonen, J T
2007-02-01
This article introduces a new method, which is referred to as the wavelet excitation method (WEM), for the measurement of the system transfer function. Instead of commonly used impulse or sine wave excitations, the method uses a sequential excitation by biorthogonal symmetric wavelets. The system transfer function is reconstructed from the output measurements. In the WEM the signals can be designed so that if N different excitation sequences are used and the excitation rate is f, the sampling rate of the analog-to-digital converter can be reduced to f/N. The WEM is especially advantageous in testing systems, where high quality impulse excitation cannot be applied. The WEM gave consistent results in transfer function measurements of various multistage amplifiers with the linear circuit analysis (SPICE) and the sine wave excitation methods. The WEM makes available new high speed sensor applications, where the sampling rate of the sensor may be considerably lower compared with the system bandwidth. PMID:17578145
Relations among Functional Systems in Behavior Analysis
Thompson, Travis
2007-01-01
This paper proposes that an organism's integrated repertoire of operant behavior has the status of a biological system, similar to other biological systems, like the nervous, cardiovascular, or immune systems. Evidence from a number of sources indicates that the distinctions between biological and behavioral events is often misleading, engendering counterproductive explanatory controversy. A good deal of what is viewed as biological (often thought to be inaccessible or hypothetical) can become publicly measurable variables using currently available and developing technologies. Moreover, such endogenous variables can serve as establishing operations, discriminative stimuli, conjoint mediating events, and maintaining consequences within a functional analysis of behavior and need not lead to reductionistic explanation. I suggest that explanatory misunderstandings often arise from conflating different levels of analysis and that behavior analysis can extend its reach by identifying variables operating within a functional analysis that also serve functions in other biological systems. PMID:17575907
Zheng, Z; Papenhausen, E; Mueller, K
2013-11-01
Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics--DQS--by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios. PMID:24145253
NASA Astrophysics Data System (ADS)
Zheng, Z.; Papenhausen, E.; Mueller, K.
2013-11-01
Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics--DQS--by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios.
Oak Ridge Environmental Information System (OREIS) functional system design document
Birchfield, T.E.; Brown, M.O.; Coleman, P.R.
1994-03-01
The OREIS Functional System Design document provides a detailed functional description of the Oak Ridge Environmental Information System (OREIS). It expands the system requirements defined in the OREIS Phase 1-System Definition Document (ES/ER/TM-34). Documentation of OREIS development is based on the Automated Data Processing System Development Methodology, a Martin Marietta Energy Systems, Inc., procedure written to assist in developing scientific and technical computer systems. This document focuses on the development of the functional design of the user interface, which includes the integration of commercial applications software. The data model and data dictionary are summarized briefly; however, the Data Management Plan for OREIS (ES/ER/TM-39), a companion document to the Functional System Design document, provides the complete data dictionary and detailed descriptions of the requirements for the data base structure. The OREIS system will provide the following functions, which are executed from a Menu Manager: (1) preferences, (2) view manager, (3) macro manager, (4) data analysis (assisted analysis and unassisted analysis), and (5) spatial analysis/map generation (assisted ARC/INFO and unassisted ARC/INFO). Additional functionality includes interprocess communications, which handle background operations of OREIS.
Transfer Function Control for Biometric Monitoring System
NASA Technical Reports Server (NTRS)
Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodinsky, Carlos M. (Inventor)
2015-01-01
A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.
Thermal enclosure system functional simulation user's manual
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1994-01-01
A form and function simulation of the thermal enclosure system (TES) for a microgravity protein crystal growth experiment has been developed as part of an investigation of the benefits and limitations of intravehicular telerobotics to aid in microgravity science and production. A user can specify the time, temperature, and sample rate profile for a given experiment, and menu options and status are presented on an LCD display. This report describes the features and operational procedures for the functional simulation.
Finn, P.A.; Sze, D.K. . Fusion Power Program); Clemmer, R.G. )
1990-11-01
The tritium recovery system for the US ITER Li{sub 2}O/Be water cooled blanket processes two separate helium purge streams to recover tritium from the Li{sub 2}O zones and the Be zones of the blanket, to process the waste products, and to recirculate the helium back to the blanket. The components are selected to minimize the tritium inventory of the recovery system, and to minimize waste products. The system is robust to either an increase in the tritium release rate or to an in-leak of water in the purge system. Three major components were used to process these streams, first, 5A molecular sieves at {minus}196{degree}C separate hydrogen from the helium, second, a solid oxide electrolysis unit is used to reduce all molecular water, and third, a palladium/silver diffuser is used to ensure that only hydrogen (H{sub 2}, HT) species reach the cryogenic distillation unit. Other units are present to recover tritium from waste products but the three major components are the basis of the blanket tritium recovery system. 32 refs.
Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions
Zhai, Y
2014-03-03
ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.
In-vehicle information system functions
Tufano, D.R.; Spelt, P.F.; Knee, H.E.
1997-04-01
This paper describes the functional requirement for an In-Vehicle Information System (IVIS), which will manage and display all driving-related information from many sources. There are numerous information systems currently being fielded or developed (e.g., routing and navigation, collision avoidance). However, without a logical integration of all of the possible on-board information, there is a potential for overwhelming the driver. The system described in this paper will filter and prioritize information across all sources, and present it to the driver in a timely manner, within a unified interface. To do this, IVIS will perform three general functions: (1) interact with other, on-board information subsystems and the vehicle; (2) manage the information by filtering, prioritizing, and integrating it; and (3) interact with the driver, both in terms of displaying information to the driver and allowing the driver to input requests, goals and preferences. The functional requirements described in this paper have either been derived from these three high-level functions or are directly mandated by the overriding requirements for modularity and flexibility. IVIS will have to be able to accommodate different types of information subsystems, of varying level of sophistication. The system will also have to meet the diverse needs of different types of drivers (private, commercial, transit), who may have very different levels of expertise in using information systems.
Demonstration Advanced Avionics System (DAAS) function description
NASA Technical Reports Server (NTRS)
Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.
1982-01-01
The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.
Energy landscapes and functions of supramolecular systems.
Tantakitti, Faifan; Boekhoven, Job; Wang, Xin; Kazantsev, Roman V; Yu, Tao; Li, Jiahe; Zhuang, Ellen; Zandi, Roya; Ortony, Julia H; Newcomb, Christina J; Palmer, Liam C; Shekhawat, Gajendra S; de la Cruz, Monica Olvera; Schatz, George C; Stupp, Samuel I
2016-04-01
By means of two supramolecular systems-peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps-we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, functions and energy landscapes are linked, superseding the more traditional connection between molecular design and function. PMID:26779883
Energy landscapes and functions of supramolecular systems
NASA Astrophysics Data System (ADS)
Tantakitti, Faifan; Boekhoven, Job; Wang, Xin; Kazantsev, Roman V.; Yu, Tao; Li, Jiahe; Zhuang, Ellen; Zandi, Roya; Ortony, Julia H.; Newcomb, Christina J.; Palmer, Liam C.; Shekhawat, Gajendra S.; de La Cruz, Monica Olvera; Schatz, George C.; Stupp, Samuel I.
2016-04-01
By means of two supramolecular systems--peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps--we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, functions and energy landscapes are linked, superseding the more traditional connection between molecular design and function.
Energy landscapes and function of supramolecular systems
Tantakitti, Faifan; Boekhoven, Job; Wang, Xin; Kazantsev, Roman; Yu, Tao; Li, Jiahe; Zhuang, Ellen; Zandi, Roya; Ortony, Julia H.; Newcomb, Christina J.; Palmer, Liam C.; Shekhawat, Gajendra S.; de la Cruz, Monica Olvera; Schatz, George C.; Stupp, Samuel I.
2015-01-01
By means of two supramolecular systems - peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps - we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, function and energy landscape are linked, superseding the more traditional connection between molecular design and function. PMID:26779883
Knoerzer, Markus; Szydzik, Crispin; Tovar-Lopez, Francisco Javier; Tang, Xinke; Mitchell, Arnan; Khoshmanesh, Khashayar
2016-02-01
Dielectrophoresis is a widely used means of manipulating suspended particles within microfluidic systems. In order to efficiently design such systems for a desired application, various numerical methods exist that enable particle trajectory plotting in two or three dimensions based on the interplay of hydrodynamic and dielectrophoretic forces. While various models are described in the literature, few are capable of modeling interactions between particles as well as their surrounding environment as these interactions are complex, multifaceted, and computationally expensive to the point of being prohibitive when considering a large number of particles. In this paper, we present a numerical model designed to enable spatial analysis of the physical effects exerted upon particles within microfluidic systems employing dielectrophoresis. The model presents a means of approximating the effects of the presence of large numbers of particles through dynamically adjusting hydrodynamic drag force based on particle density, thereby introducing a measure of emulated particle-particle and particle-liquid interactions. This model is referred to as "dynamic drag force based on iterative density mapping." The resultant numerical model is used to simulate and predict particle trajectory and velocity profiles within a microfluidic system incorporating curved dielectrophoretic microelectrodes. The simulated data are compared favorably with experimental data gathered using microparticle image velocimetry, and is contrasted against simulated data generated using traditional "effective moment Stokes-drag method," showing more accurate particle velocity profiles for areas of high particle density. PMID:26643028
Quality Function Deployment for Large Systems
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1992-01-01
Quality Function Deployment (QFD) is typically applied to small subsystems. This paper describes efforts to extend QFD to large scale systems. It links QFD to the system engineering process, the concurrent engineering process, the robust design process, and the costing process. The effect is to generate a tightly linked project management process of high dimensionality which flushes out issues early to provide a high quality, low cost, and, hence, competitive product. A pre-QFD matrix linking customers to customer desires is described.
Ned R. Sauthoff
2005-05-13
The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.
Iterated multidimensional wave conversion
NASA Astrophysics Data System (ADS)
Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.
2011-12-01
Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.
Scheduling and rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.
NASA Astrophysics Data System (ADS)
Probe, A.; Macomber, B.; Kim, D.; Woollands, R.; Junkins, J.
2014-09-01
Modified Chebyshev Picard Iteration (MCPI) is a numerical method for approximating solutions of Ordinary Differential Equations (ODEs). MCPI uses Picard Iteration with Orthogonal Chebyshev Polynomial basis functions to recursively update approximate time histories of system states. Unlike stepping numerical integrators, such as explicit Runge-Kutta methods, MCPI approximates large segments of the trajectory by evaluating the forcing function at multiple nodes along the current approximation during each iteration. Importantly, the Picard sequence theoretically converges to the solution over large time intervals if the forces are continuous and once differentiable. Orthogonality of the basis functions and a vector-matrix formulation allow for low overhead cost, efficient iterations, and parallel evaluation of the forcing function. Despite these advantages MCPI only achieves a geometric rate of convergence. Depending on the quality of the starting approximation, MCPI sometimes requires more function evaluations than competing methods; for parallel applications, this is not a serious drawback, but may be for some serial applications. To improve efficiency, the Terminal Convergence Approximation Modified Chebyshev Picard Iteration (TCA-MCPI) was developed. TCA-MCPI takes advantage of the property that once moderate accuracy of the approximating trajectory has been achieved, the subsequent displacement of nodes asymptotically approaches zero. Applying judicious approximation methods to the force function at each node in the terminal convergence iterations is shown to dramatically reduce the computational cost to achieve accurate convergence. To illustrate this approach we consider high-order spherical-harmonic gravity for high accuracy orbital propagation. When combined with a starting approximation from the 2-body solution TCA-MCPI, is shown to outperform 2 current state-of-practice integration methods for astrodynamics. This paper presents the development of TCA
Iterative method for generating correlated binary sequences
NASA Astrophysics Data System (ADS)
Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.
2014-11-01
We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.
On the entropy function in sociotechnical systems
Montroll, Elliott W.
1981-01-01
The entropy function H = -Σpj log pj (pj being the probability of a system being in state j) and its continuum analogue H = ∫p(x) log p(x) dx are fundamental in Shannon's theory of information transfer in communication systems. It is here shown that the discrete form of H also appears naturally in single-lane traffic flow theory. In merchandising, goods flow from a whole-saler through a retailer to a customer. Certain features of the process may be deduced from price distribution functions derived from Sears Roebuck and Company catalogues. It is found that the dispersion in logarithm of catalogue prices of a given year has remained about constant, independently of the year, for over 75 years. From this it may be inferred that the continuum entropy function for the variable logarithm of price had inadvertently, through Sears Roebuck policies, been maximized for that firm subject to the observed dispersion. PMID:16593136
Tetracycline Regulated Systems in Functional Oncogenomics
Welman, Arkadiusz; Barraclough, Jane; Dive, Caroline
2007-01-01
The increasing number of proteomic and DNA-microarray studies is continually providing a steady acquisition of data on the molecular abnormalities associated with human tumors. Rapid translation of this accumulating biological information into better diagnostics and more effective cancer therapeutics in the clinic depends on the use of robust function-testing strategies. Such strategies should allow identification of molecular lesions that are essential for the maintenance of the transformed phenotype and enable validation of potential drug-targets. The tetracycline regulated gene expression/ suppression systems (Tet-systems) developed and optimized by bioengineers over recent years seem to be very well suited for the function-testing purposes in cancer research. We review the history and latest improvements in Tet-technology in the context of functional oncogenomics. PMID:23645981
A Functional Cartography of Cognitive Systems.
Mattar, Marcelo G; Cole, Michael W; Thompson-Schill, Sharon L; Bassett, Danielle S
2015-12-01
One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems-including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems-engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual
Functional imaging of the musculoskeletal system
2015-01-01
Functional imaging, which provides information of how tissues function rather than structural information, is well established in neuro- and cardiac imaging. Many musculoskeletal structures, such as ligaments, fascia and mineralized bone, have by definition a mainly structural role and clearly don’t have the same functional capacity as the brain, heart, liver or kidney. The main functionally responsive musculoskeletal tissues are the bone marrow, muscle and nerve and, as such, magnetic resonance (MR) functional imaging has primarily addressed these areas. Proton or phosphorus spectroscopy, other fat quantification techniques, perfusion imaging, BOLD imaging, diffusion and diffusion tensor imaging (DTI) are the main functional techniques applied. The application of these techniques in the musculoskeletal system has mainly been research orientated where they have already greatly enhanced our understanding of marrow physiology, muscle physiology and neural function. Going forwards, they will have a greater clinical impact helping to bridge the disconnect often seen between structural appearances and clinical symptoms, allowing a greater understanding of disease processes and earlier recognition of disease, improving prognostic prediction and optimizing the monitoring of treatment effect. PMID:26029633
The Teleost Octavolateralis System: Structure and Function
NASA Technical Reports Server (NTRS)
Popper, Arthur N.
1996-01-01
This paper considers the detection of vibrational signals (including sound) by the two components of the octavolateralis system, the ear and mechanosensory lateral line. Together, these systems provide fishes with a good deal of information about their surrounding environment, and enable fishes to detect both predators and prey. While the mechanisms by which fishes and zooplankton produce and detect signals may differ, it is clear that the physical principles underlying the signals themselves are identical, no matter whether we are dealing with fish or zooplankton. Thus, an understanding of signal production and detection mechanisms by fishes can be of significant help in understanding how similar systems would function in zooplankton.
EDITORIAL: ECRH physics and technology in ITER
NASA Astrophysics Data System (ADS)
Luce, T. C.
2008-05-01
It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter
Adaptive functional systems: Learning with chaos
NASA Astrophysics Data System (ADS)
Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.
2010-12-01
We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.
Low-memory iterative density fitting.
Grajciar, Lukáš
2015-07-30
A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. PMID:26058451
ERIC Educational Resources Information Center
Muench, Donald L.
2007-01-01
The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…
Duff, I.
1994-12-31
This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.
Dr. Norbert Holtkamp
2010-01-08
ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.
A Library of Basic System Functions
1995-06-01
BASELIB is a support library for developing high-level library software. Its design is adaptable to other applications (utility routines, compilers, loaders, large application systems, etc.). BASELIB functions perform commonly-used system and I/O requests available in LTSS operating systems. BASELIB routines are machine dependent; they are closely tied to the machine and operating system for which they were programmed. However, an attempt was made to maintain compatibility and consistency across machines at the BASELIB calling levelmore » to provide a common base for moving large software systems across machines. It allows the programmer to structure higher level software in a machine independent fashion. Miscellaneous routines are included to perform character and string manipulation, number conversion, and output-file name generation.« less
A Library of Basic System Functions
1995-06-01
BASELIB is a support library for developing high-level library software. Its design is adaptable to other applications (utility routines, compilers, loaders, large application systems, etc.). BASELIB functions perform commonly-used system and I/O requests available in LTSS operating systems. BASELIB routines are machine-dependent; they are closely tied to the machine and operating system for which they were programmed. However, an attempt was made to maintain compatibility and consistency across machines at the BASELIB calling level tomore » provide a common base for moving large software systems across machines. It allows the programmer to structure higher-level software in a machine- independent fashion. Miscellaneous routines are included to perform character and string manipulation, number conversion, and output-file name generation.« less
A Functional Cartography of Cognitive Systems
Mattar, Marcelo G.; Cole, Michael W.; Thompson-Schill, Sharon L.; Bassett, Danielle S.
2015-01-01
One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems—including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems—engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual
Iterates of maps with symmetry
NASA Technical Reports Server (NTRS)
Chossat, Pascal; Golubitsky, Martin
1988-01-01
Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.
Representation-Independent Iteration of Sparse Data Arrays
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.
NASA Astrophysics Data System (ADS)
Leibs, Christopher A.
Efforts are currently being directed towards a fully implicit, electromagnetic, JFNK-based solver, motivating the necessity of developing a fluid-based, electromag- netic, preconditioning strategy. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The TFP model couples both an ion and an electron fluid with Maxwell's equations. The fluid equations consist of the conservation of momentum and number density. A Darwin approximation of Maxwell is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with consideration of preconditioning a kinetic-JFNK approach. The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to produce an approximation that is within the basis of attraction for Newton's method on a relatively coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin model yields a nonlinear, first-order system of equa- tions whose Frechet derivative is shown to be uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite element performance and lin- ear systems amenable to solution with Algebraic Multigrid (AMG). To efficiently focus computational resources, an adaptive mesh refinement scheme, based on the accuracy per computational cost, is leveraged. Numerical tests demonstrate the efficacy of the approach, yielding an approximate solution within discretization error in a relatively small number of computational work units.
[Contrast transfer function of the visual system].
Pak, M A; Cleveland, S J
1991-09-01
Visually evoked potentials were used to determine the spatial contrast response function of the visual system and the visual acuity of the pigeon. The spatial contrast response describes the relationship between the contrast in a pattern of vertical stripes, whose luminance is a function of position, and the amplitude of the visually evoked response at various spatial frequencies for a given temporal frequency (pattern reversal frequency); it indicates how particular spatial frequencies are attenuated in the visual system. The visually evoked responses were recorded using monopolar stainless steel electrodes inserted into the stratum griseum superficiale of the optic tectum; the depth of penetration was determined on the basis of a stereotactic atlas. The stimulus patterns were generated on a video monitor placed 75 cm in front of the animal's eye perpendicular to the optic axis. The spatial contrast response function measured at 10% contrast and 0.5 Hz reversal frequency shows a peak at a spatial frequency of 0.5 c/deg, corresponding to 1 degree of visual angle, and decreases progressively at higher spatial frequencies. The high-frequency limit (cut-off frequency) for resolution of sinusoidal gratings, estimated from the contrast response function, is 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc. PMID:1657228
ITER Cryoplant Status and Economics of the LHe plants
NASA Astrophysics Data System (ADS)
Monneret, E.; Chalifour, M.; Bonneton, M.; Fauve, E.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.
The ITER cryoplant is composed of helium and nitrogen refrigerators and generator combined with 80 K helium loop plants and external purification systems. Storage and recovery of the helium inventory is provided in warm and cold (80 K and 4.5 K) helium tanks.The conceptual design of the ITER cryoplant has been completed, the technical requirements defined for industrial procurement and contracts signed with industry. Each contract covers the design, manufacturing, installation and commissioning. Design is under finalization and manufacturing has started. First deliveries are scheduled by end of 2015.The various cryoplant systems are designed based on recognized codes and international standards to meet the availability, the reliability and the time between maintenance imposed by the long-term uninterrupted operation of the ITER Tokamak. In addition, ITER has to consider the constraint of a nuclear installation.ITER Organization (IO) is responsible for the liquid helium (LHe) Plants contract signed end of 2012 with industry. It is composed of three LHe Plants, working in parallel and able to provide a total average cooling capacity of 75 kW at 4.5 K. Based on concept designed developed with industries and the procurement phase, ITER has accumulated data to broaden the scaling laws for costing such systems.After describing the status of ITER cryoplant part of the cryogenic system, we shall present the economics of the ITER LHe Plants based on key design requirements, choice and challenges of this ITER Organization procurement.
NASA Astrophysics Data System (ADS)
Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.
2013-09-01
Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are
Magnet design technical report---ITER definition phase
Henning, C.
1989-04-28
This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.
Alpha-physics and measurement requirements for ITER
Zweben, S.J.; Young, K.M.; Putvinski, S.; Petrov, M.P.; Sadler, G.; Tobita, K.
1995-12-31
This paper reviews alpha particle physics issues in ITER and their implications for alpha particle measurements. A comparison is made between alpha heating in ITER and NBI and ICRH heating systems in present tokamaks, and alpha particle issues in ITER are discussed in three physics areas: `single particle` alpha effects, `collective` alpha effects, and RF interactions with alpha particles. 29 refs., 4 figs., 4 tabs.
Simulation and Analysis of the Hybrid Operating Mode in ITER
Kessel, C.E.; Budny, R.V.; Indireshkumar, K.
2005-09-22
The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.
ITER- International Toxicity Estimates for Risk, new TOXNET database.
Tomasulo, Patricia
2005-01-01
ITER, the International Toxicity Estimates for Risk database, joined the TOXNET system in the winter of 2004. ITER features international comparisons of environmental health risk assessment information and contains over 620 chemical records. ITER includes data from the EPA, Health Canada, the National Institute of Public Health and the Environment of the Netherlands, and other organizations that provide risk values that have been peer-reviewed. PMID:15760833
NASA Technical Reports Server (NTRS)
Callini, Gianluca
2016-01-01
With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.
Symbolic Computational Algebra Applied to Picard Iteration.
ERIC Educational Resources Information Center
Mathews, John
1989-01-01
Uses muMATH to illustrate the step-by-step process in translating mathematical theory into the symbolic manipulation setting. Shows an application of a Picard iteration which uses a computer to generate a sequence of functions which converge to a solution. (MVL)
Planetary mass function and planetary systems
NASA Astrophysics Data System (ADS)
Dominik, M.
2011-02-01
With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.
NASA Astrophysics Data System (ADS)
Zare Hosseinzadeh, Ali; Bagheri, Abdollah; Ghodrati Amiri, Gholamreza; Koo, Ki-Young
2014-04-01
In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors.
Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.
1995-12-31
A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.
Preliminary Master Logic Diagram for ITER operation
Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.
1998-04-01
This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.
International Thermonuclear Experimental Reactor (ITER) neutral beam design
Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)
1990-10-01
This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.
On the entropy function in sociotechnical systems.
Montroll, E W
1981-12-01
The entropy function H = -Sigmap(j) log p(j) (p(j) being the probability of a system being in state j) and its continuum analogue H = integralp(x) log p(x) dx are fundamental in Shannon's theory of information transfer in communication systems. It is here shown that the discrete form of H also appears naturally in single-lane traffic flow theory. In merchandising, goods flow from a whole-saler through a retailer to a customer. Certain features of the process may be deduced from price distribution functions derived from Sears Roebuck and Company catalogues. It is found that the dispersion in logarithm of catalogue prices of a given year has remained about constant, independently of the year, for over 75 years. From this it may be inferred that the continuum entropy function for the variable logarithm of price had inadvertently, through Sears Roebuck policies, been maximized for that firm subject to the observed dispersion. PMID:16593136
Correlation functions for glass-forming systems
Jacobs
2000-07-01
We present a simple, linear, partial-differential equation for the density-density correlation function in a glass-forming system. The equation is written down on the basis of fundamental and general considerations of linearity, symmetry, stability, thermodynamic irreversibility and consistency with the equation of continuity (i.e. , conservation of matter). The dynamical properties of the solutions show a change in behavior characteristic of the liquid-glass transition as a function of one of the parameters (temperature). The equation can be shown to lead to the simplest mode-coupling theory of glasses and provides a partial justification of this simplest theory. It provides also a method for calculating the space dependence of the correlation functions not available otherwise. The results suggest certain differences in behavior between glassy solids and glass-forming liquids which may be accessible to experiment. A brief discussion is presented of how the method can be applied to other systems such as sandpiles and vortex glasses in type II superconductors. PMID:11088609
Sequential dynamical systems with threshold functions.
Barrett, C. L.; Hunt, H. B.; Marathe, M. V.; Ravi, S. S.; Rosenkrantz, D. J.; Stearns, R. E.
2001-01-01
A sequential dynamical system (SDS) (see [BH+01] and the references therein) consists of an undirected graph G(V,E) where each node {nu} {epsilon} V is associated with a Boolean state (s{sub {nu}}) and a symmetric Boolean function f{sub {nu}} (called the local transition function at {nu}). The inputs to f{sub {nu}} are s{sub {nu}} and the states of all the nodes adjacent to {nu}. In each step of the SDS, the nodes update their state values using their local transition functions in the order specified by a given permutation {pi} of the nodes. A configuration of the SDS is an n-tuple (b{sub 1}, b{sub 2}...,b{sub n}) where n = |V| and b{sub i} {epsilon} {l_brace}0,1{r_brace} is the state value of node {nu}{sub i}. The system starts in a specified initial configuration and each step of the SDS produces a (possibly new) configuration.
US solid breeder blanket design for ITER
Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )
1990-09-01
The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.
Challenges for Cryogenics at Iter
NASA Astrophysics Data System (ADS)
Serio, L.
2010-04-01
Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.
CEBAF NEW DIGITAL LLRF SYSTEM EXTENDED FUNCTIONALITY
T. Allison; K. Davis; H. Dong; C. Hovater; L. King; J. Musson; T. Plawski
2007-06-18
The new digital LLRF system for the CEBAF 12GeV accelerator will perform a variety of tasks, beyond field control [1]. In this paper we present the superconducting cavity resonance control system designed to minimize RF power during gradient ramp and to minimize RF power during steady state operation. Based on the calculated detuning angle, which represents the difference between reference and cavity resonance frequency, the cavity length will be adjusted with a mechanical tuner. The tuner has two mechanical driving devices, a stepper motor and a piezo-tuner, to yield a combination of coarse and fine control. Although LLRF piezo processing speed can achieve 10 kHz bandwidth, only 10 Hz speed is needed for 12 GeV upgrade. There will be a number of additional functions within the LLRF system; heater controls to maintain cryomodule's heat load balance, ceramic window temperature monitoring, waveguide vacuum interlocks, ARC detector interlock and quench detection. The additional functions will be divided between the digital board, incorporating an Altera FPGA and an embedded EPICS IOC. This paper will also address hardware evolution and test results performed with different SC cavities.
Functional relationship-based alarm processing system
Corsberg, Daniel R.
1989-01-01
A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary.
Functional relationship-based alarm processing system
Corsberg, D.R.
1988-04-22
A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary. 12 figs.
Design realization towards the qualification test of ITER cold circulator
NASA Astrophysics Data System (ADS)
Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Patel, P.; Das, J.; Srinivasa, M.; Shukla, V.
2015-12-01
Cold circulators, part of ITER Cryo-distribution system, have now reached to a stage of final qualification to demonstrate the design to cater the maximum mass flow and operational demands of the toroidal field (TF) superconducting magnet of ITER with a very high isentropic efficiency. The design for the two numbers of TF cold circulators are now complete gratifying additionally the operational requirements of poloidal field & central solenoid superconducting magnet as well as the cryopumps towards the fulfilment of standardization aspects. Management of physical and functional interfaces has been identified as one the most critical aspect towards the performance of cold circulator. All the interfaces of cold circulators have been analysed with the help of optimized interfacing parameters of Test Auxiliary Cold Box (TACB) and cryogenic test facility at JAEA, Japan during the course of design finalization. Testing at the warm conditions after completion of precise manufacturing of cold circulators has been performed before integrating into the TACB to fulfil the Japanese as well as European regulatory requirements simultaneously. The paper elaborates the methodology of interface management and control, analysis performed towards the interface management and preliminary test results towards the qualification test of the ITER cold circulator.
Assessment of the ITER EC Upper Launcher Performance
NASA Astrophysics Data System (ADS)
Figini, Lorenzo; Farina, Daniela; Poli, Emanuele; Sauter, Olivier; Bruschi, Alessandro; Goodman, Timothy; Moro, Alessandro; Platania, Paola; Sozzi, Carlo; Cavinato, Mario; Saibene, Gabriella; Henderson, Mark
2015-03-01
The 24 MW ITER Electron Cyclotron (EC) Heating and Current Drive (H&CD) system, operating at 170 GHz, consists of one Equatorial (EL) and four Upper Launchers (UL). The main task of the UL will be the control of Magneto-Hydrodynamic (MHD) activity such as Neoclassical Tearing Modes (NTMs) at the q=3/2 and q=2 surfaces, but it will also be needed for current profile tailoring in advanced scenarios and to assist plasma break-down and L- to H-mode transition. Moreover, it is required to be e.ective both when ITER will operate at nominal and reduced magnetic field magnitude. Here the performance of the UL is assessed through the study of the full temporal evolution of di.erent scenarios, including the reference ITER 15MA H-mode plasma, a half-field case at 2.65T, and a steady state scenario. The ECCD efficiency has been evaluated for a wide range of injection angles, deriving the optimal angles and the power required for NTMs stabilization, as well as the steering range necessary to reach the rational surfaces during all the phases of the discharge. The steering sensitivity to shifts of the target or aiming errors has been estimated too. The result is an assessment of the UL design requirements to achieve the desired functionalities, which, together with the engineering limits, will be used to drive the optimization and finalization of the UL design.
NASA Astrophysics Data System (ADS)
Ruilier, C.; Krawczyk, R.; Sghedoni, M.; Chanal, O.; Degrelle, C.; Pirson, L.; Simane, O.; Thomas, E.
2007-09-01
ESA's Darwin mission is devoted to direct detection and spectroscopic characterisation of Earth-like planets in the thermal infrared domain by nulling interferometry in space. This technique requires deep and stable starlight rejection to an efficiency around 106 over the whole spectral band. Darwin is a major target for Thales Alenia Space, and is considered as a strategic part of its programme roadmap. In this paper we present the main outcomes of the Darwin mission study conducted by Thales Alenia Space from Oct. 2005 to Jul. 2007. Studying this mission in depth, our proposed most promising configuration features spacecraft in non planar arrangement (called Emma). It offers the best science return in terms of number of stars detected and sky accessibility while staying compliant with mass and volume constraints of a single Ariane 5 launch. Our solution dramatically alleviates engineering constraints thanks to a fully non deployable concept. As compared to the more conventional planar arrangement (called Charles), Emma suppresses Single Point Failures and spurious flexible modes, thus maximising both the system reliability and the stability of the dynamical environment. Emma is fully compatible with either 3 or 4 collectors.
Strategy for the absolute neutron emission measurement on ITER
Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.
2010-10-15
Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.
Generating functions for canonical systems of fermions.
Pain, Jean-Christophe; Gilleron, Franck; Porcherot, Quentin
2011-06-01
The method proposed by Pratt to derive recursion relations for systems of degenerate fermions [S. Pratt, Phys. Rev. Lett. 84, 4255 (2000)] relies on diagrammatic techniques. This efficient formalism assumes no explicit two-body interactions, makes possible the inclusion of conservation laws, and requires low computational time. In this Brief Report, we show that such recursion relations can be obtained from generating functions, without any restriction in relation to the number of conservation laws (e.g., total energy or angular momentum). PMID:21797523
NASA Astrophysics Data System (ADS)
Bottacin-Busolin, Andrea; Wörman, Anders; Zmijewski, Nicholas
2013-04-01
A main challenge for the planning and management of water resources is the development of strategies for regulation of multireservoir systems under a complex stochastic environment. The sequential decision problem involving the release of water from multiple reservoirs depends on the stochastic variability of the hydrologic inflows over a spectrum of time scales. An important distinction is made between short-term and mid-term planning: the first is associated with regulation on the hourly scale within the one-week time horizon, whilst the second is associated with the weekly scale within the one-year horizon. Although a variety of optimization methods have been suggested, the achievement of a global optimum in the operation of large-scale systems is hindered by their high dimensional state space and by the stochastic nature of the hydrologic inflows. In this work, operational plans for multireservoir systems are derived via an approximate dynamic programming approach using a policy iteration algorithm. The algorithm is based on an off-line learning process in which policies are evaluated for a number of stochastic inflow scenarios by constructing approximations of their value functions, and the resulting value functions are used iteratively to design new, improved policies. In the mid-term planning phase, inflow scenarios are generated with a periodic autoregressive model that is calibrated against historical inflow data, and the policy iteration algorithm leads to a cyclostationary operating policy. In the short-term planning phase, the mid-term value function is used to calculate the value of a policy at the end of the short-term operating horizon, and synthetic inflow scenarios are generated by perturbing streamflow forecasts with Gaussian noise, following Zhao et al. (Water Resour. Res., 48, W01540, 2012). The variance of the noise is assumed to increase linearly over time and converges to the local variance of the historical time series. A case study is
Surface properties of functional polymer systems
NASA Astrophysics Data System (ADS)
Wong, Derek
Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
ITER Port Interspace Pressure Calculations
Carbajo, Juan J; Van Hove, Walter A
2016-01-01
The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.
NASA Astrophysics Data System (ADS)
Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.
2013-10-01
The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).
Bio-functionalized silk hydrogel microfluidic systems.
Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L
2016-07-01
Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. PMID:27077566
Safety and Environmental Activities for ITER
NASA Astrophysics Data System (ADS)
Saji, G.; Aymar, R.; Bartels, H.-W.; Gordon, C. W.; Gulden, W.; Holl, D. H.; Iida, H.; Inabe, T.; Iseli, M.; Kashirski, A. V.; Kolbasov, B. N.; Krivosheev, M.; McCarthy, K. A.; Marbach, G.; Morozov, S. I.; Natalizio, A.; Petti, D. A.; Piet, S. J.; Poucet, A. E.; Raeder, J.; Seki, Y.; Topilski, L. N.
1997-09-01
This paper will summarize highlights of the safety approach and discuss the ITER EDA safety activities. The ITER safety approach is driven by three major objectives: (1) Enhancement or improvement of fusion's intrinsic safety characteristics to the maximum extent feasible, which includes a minimization of the dependence on dedicated “safety systems”; (2) Selection of conservative design parameters and development of a robust design to accommodate uncertainties in plasma physics as well as the lack of operational experience and data; and (3) Integration of engineered mitigation systems to enhance the safety assurance against potentially hazardous inventories in the device by deploying well-established “nuclear safety” approaches and methodologies tailored as appropriate for ITER.
Infrared Imaging System for Studying Brain Function
NASA Technical Reports Server (NTRS)
Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath
2007-01-01
A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be
Messiaen, A.; Dumortier, P.; Lamalle, P. U.; Vervier, M.
2007-09-28
The reference matching solution for ITER grouping the 24 straps of the ITER antenna array in 4 'conjugate T' (CT) circuits through pre-matching network is investigated starting from the S matrix measurements versus antenna loading made on the mock-up of the original design. Six decouplers alleviate the mutual coupling effects between the 4 matching circuits and their power sources. All matching actuators are outside the antenna plug. The matching procedure allows the control of load resilience and plasma excitation spectrum for heating and current drive.
Elser, V.; Rankenburg, I.; Thibault, P.
2007-01-01
In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267
ERIC Educational Resources Information Center
Seybert, Jacob; Stark, Stephen
2012-01-01
A Monte Carlo study was conducted to examine the accuracy of differential item functioning (DIF) detection using the differential functioning of items and tests (DFIT) method. Specifically, the performance of DFIT was compared using "testwide" critical values suggested by Flowers, Oshima, and Raju, based on simulations involving large numbers of…
A Study of Morrison's Iterative Noise Removal Method. Final Report M. S. Thesis
NASA Technical Reports Server (NTRS)
Ioup, G. E.; Wright, K. A. R.
1985-01-01
Morrison's iterative noise removal method is studied by characterizing its effect upon systems of differing noise level and response function. The nature of data acquired from a linear shift invariant instrument is discussed so as to define the relationship between the input signal, the instrument response function, and the output signal. Fourier analysis is introduced, along with several pertinent theorems, as a tool to more thorough understanding of the nature of and difficulties with deconvolution. In relation to such difficulties the necessity of a noise removal process is discussed. Morrison's iterative noise removal method and the restrictions upon its application are developed. The nature of permissible response functions is discussed, as is the choice of the response functions used.
New controller for functional electrical stimulation systems.
Fisekovic, N; Popovic, D B
2001-07-01
A novel, self-contained controller for functional electrical stimulation systems has been designed. The development was motivated by the need to have a general purpose, easy to use controller capable of stimulating many muscle groups, thus restoring complex motor functions (e.g. standing, walking, reaching, and grasping). The designed controller can regulate the frequency, pulse duration, and charge balance on up to 16 channels, and execute pre-programmed and sensory-driven control operations. The controller supports up to eight analog and six digital sensors, and comprises a memory block for including history of the sensory data (time series). Five independent timers provide the basis for the multi-modal and multi-level control of movement. The PC compatible interface is realised via an IR serial communication channel. The PC based software is user friendly and fully menu driven. This paper also presents a case study where the controller was implemented to restore walking in a paraplegic subject. The assistive system comprised the novel controller, the power and output stages of an eight-channel FES system (IEEE Trans Rehabil Eng, TRE-2 (1994) 234), ankle-foot orthoses, and a rolling walker. Stimulation was applied with surface electrodes positioned over the motoneurons that innervate muscles responsible for the hip and knee flexion and extension. The sensory system included goniometers at knee and hip joints, force-sensing resistors built in the shoe insoles, and digital accelerometers at the hips. A rule-based control algorithm was generated following a two-step procedure: (1) simulation and (2) machine learning as described in earlier studies (IEEE Trans Rehab Eng, TRE-7 (1999) 69). The paraplegic subject walked faster, and with less physiological effort, when automatic control was applied as compared to hand-control. This case study, as well as a previous one for assisting grasping (The design and testing of a new programmable electronic stimulator. N
Challenges and status of ITER conductor production
NASA Astrophysics Data System (ADS)
Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.
2014-04-01
Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and
APT LLRF control system functionality and architecture
Regan, A.H.; Rohlev, A.S.; Ziomek, C.D.
1996-09-01
1% amplitude and l{degree} phase. The feedback control system requires a phase-stable RF reference subsystem signal to correctly phase each cavity. Also, instead of a single klystron RF source for individual accelerating cavities, multiple klystrons will drive a string of resonantly coupled cavities, based on input from a single LLRF feedback control system. To achieve maximum source efficiency, we will be employing single fast feedback controls around individual klystrons such that the gain and phase characteristics of each will be ``identical.`` In addition, resonance control is performed by providing a proper drive signal to structure cooling water valves in order to keep the cavity resonant during operation. To quickly respond to RF shutdowns, and hence rapid accelerating cavity cool- down, due to RF fault conditions, drive frequency agility in the main feedback control subsystem will also be incorporated. Top level block diagrams will be presented and described for each of the aforementioned subsystems as they will first be developed and demonstrated on the Low Energy Demonstrator Accelerator (LEDA) The low-level RF (LLRF) control system for the Accelerator Production of Tritium (APT) will perform various functions. Foremost is the feedback control of the accelerating fields within the cavity in order to maintain field stability within
Polymorphonuclear neutrophil function in systemic sclerosis.
Czirják, L; Dankó, K; Sipka, S; Zeher, M; Szegedi, G
1987-01-01
In vitro functions of polymorphonuclear (PMN) neutrophils were studied in 20 patients with progressive systemic sclerosis (PSS). An increase in the basal chemiluminescence (CL) activity of peripheral blood PMNs was found, suggesting that these cells had been preactivated in vivo. Patients with more extensive skin disease or signs of disease progression tended to have higher basal CL values. Active oxygen products during the respiratory burst may increase the extent of inflammatory and fibrotic processes and could be involved in the endothelial injury in PSS. The stimulatory capacity of CL response was normal in our study. No alterations were found in the opsonised yeast phagocytic activity of granulocytes when compared with control values. The binding of erythrocyte-antibody particles was found also to be normal. A depressed chemotactic activity of PMN cells against zymosan activated serum was also shown. The cause of the decreased chemotaxis of PMNs remains to be elucidated. PMID:3592786
Function analysis for waste information systems
Sexton, J.L.; Neal, C.T.; Heath, T.C.; Starling, C.D.
1996-04-01
This study has a two-fold purpose. It seeks to identify the functional requirements of a waste tracking information system and to find feasible alternatives for meeting those requirements on the Oak Ridge Reservation (ORR) and the Portsmouth (PORTS) and Paducah (PGDP) facilities; identify options that offer potential cost savings to the US government and also show opportunities for improved efficiency and effectiveness in managing waste information; and, finally, to recommend a practical course of action that can be immediately initiated. In addition to identifying relevant requirements, it also identifies any existing requirements that are currently not being completely met. Another aim of this study is to carry out preliminary benchmarking by contacting representative companies about their strategic directions in waste information. The information obtained from representatives of these organizations is contained in an appendix to the document; a full benchmarking effort, however, is beyond the intended scope of this study.
Variational wave functions for homogenous Bose systems
Sueto, Andras; Szepfalusy, Peter
2008-02-15
We study variational wave functions of the product form, factorizing according to the wave vectors k, for the ground state of a system of bosons interacting via positive pair interactions with a positive Fourier transform. Our trial functions are members of different orthonormal bases in Fock space. Each basis contains a quasiparticle vacuum state and states with an arbitrary finite number of quasiparticles. One of the bases is that of Valatin and Butler (VB), introduced fifty years ago and parametrized by an infinite set of variables determining Bogoliubov's canonical transformation for each k. In another case, inspired by Nozieres and Saint James the canonical transformation for k=0 is replaced by a shift in the creation/annihilation operators. For the VB basis we prove that the lowest energy is obtained in a state with {approx}{radical}(volume) quasiparticles in the zero mode. The number of k=0 physical particles is of the order of the volume and its fluctuation is anomalously large, resulting in an excess energy. The same fluctuation is normal in the second type of optimized bases, the minimum energy is smaller and is attained in a vacuum state. Associated quasiparticle theories and questions about the gap in their spectrum are also discussed.
One-electron diatomics in momentum space. II. Second and third iterated LCAO solutions
Koga, T.; Kawa-ai, R.
1986-05-15
Recurrence formulas are derived for the iterative LCAO solution of the one-electron two-center Schroedinger equation in the Fock representation. The results are applied to the second and third iterated LCAO solutions of the H/sup +//sub 2/ system at various internuclear distances R. For 0< or =R< or =20 (a.u.), the maximum errors in the electronic energy are reduced to 2.7% (second iterated) and 1.6% (third iterated), which should be compared with the previous errors of 28.2% (zeroth iterated) and 4.7% (first iterated).
NASA Astrophysics Data System (ADS)
Messiaen, A.; Vervier, M.; Dumortier, P.; Lamalle, P.; Louche, F.
2006-07-01
A mock-up of the complete antenna array (24 straps grouped in 8 triplets) of the ICRH system with external matching for ITER has been constructed with a length reduction factor of 5. At a frequency increased by the same factor the electrical properties of the full-scale system can be measured in the presence of non-dispersive medium. A movable water tank in front of the array simulates variable plasma loading. Measurements of the matching performances of various external circuit configurations and of the scattering matrix of the system show (i) the non-negligible effect of mutual coupling on load resilient matching by Conjugate T (CT) or hybrid leading to coupling between the matching actuators and the generators and asymmetry in power distribution, (ii) good load resilience of a single CT for the right choice of configuration and number of matching parameters, (iii) the large number of matching solutions for coupled CTs and (iv) the benefit of passive power distribution to the straps. This has been successfully tested in the case of the complete array. The power is passively distributed among the upper half and the bottom half of the 24 radiating straps of the antenna plug. The 4 top and 4 bottom triplets are, respectively, set in parallel outside the antenna plug near a voltage anti-node by means of T junctions. The load resilient matching (VSWR <1.3 for an antenna loading variation of about 1-8 Ω m-1) is then obtained by a 4-parameters single CT configuration or a hybrid. The maximum voltage along the line remains equal to the one in the antenna plug and there is a fair power share between the straps. A straightforward robust matching procedure of the complete array is described. The effective radiation resistance of different toroidal and poloidal phasing conditions is measured and compared. The paper also underlines the significant influence of the presence of the electrostatic screen and the resulting increase in the recess of the straps on the reduction of
Iterative image reconstruction techniques: cardiothoracic computed tomography applications.
Cho, Young Jun; Schoepf, U Joseph; Silverman, Justin R; Krazinski, Aleksander W; Canstein, Christian; Deak, Zsuzsanna; Grimm, Jochen; Geyer, Lucas L
2014-07-01
Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available. PMID:24662334
Doughty, C
1995-12-01
The highly heterogeneous nature of most geologic media, coupled with the restricted view of the subsurface available through boreholes, makes it difficult to determine the spatial distribution of subsurface hydrologic properties. Without such a description one cannot predict how fluid flow or solute transport will occur through permeable geologic media, and these predictions are critically needed to address many important environmental problems, including toxic chemical spills, leaking underground storage tanks, and long-term radioactive waste isolation. A common concern of these problems is the possible existence of high-permeability pathways connecting the problem to the biosphere. An understanding of flow and transport behavior is also necessary to optimize energy extraction from petroleum or geothermal reservoirs, where identifying low-permeability barriers that compartmentalize reservoirs and hamper efficient resource utilization is a key problem. The present work describes the development and application of a new inverse method for determining the spatial distribution of hydrologic properties (permeability and specific storage) in heterogeneous geologic media, using pressure transients from interference well tests. The method employs fractal concepts to improve efficiency and reliability. It is applicable to any sort of heterogeneous geologic medium in which wells communicate with each other, whether it be porous, fractured, or a combination thereof. Application to field data from a shallow aquifer at Kesterson Reservoir agrees well with an independent analysis using traditional well-test analysis methods. Application to a series of interference tests conducted at the Gypsy Pilot Site produces a detailed picture of the subsurface, which compares favorably with cross-well seismic imaging studies. 53 refs.
Doughty, C.A.
1996-05-01
The hydrologic properties of heterogeneous geologic media are estimated by simultaneously inverting multiple observations from well-test data. A set of pressure transients observed during one or more interference tests is compared to the corresponding values obtained by numerically simulating the tests using a mathematical model. The parameters of the mathematical model are varied and the simulation repeated until a satisfactory match to the observed pressure transients is obtained, at which point the model parameters are accepted as providing a possible representation of the hydrologic property distribution. Restricting the search to parameters that represent fractal hydrologic property distributions can improve the inversion process. Far fewer parameters are needed to describe heterogeneity with a fractal geometry, improving the efficiency and robustness of the inversion. Additionally, each parameter set produces a hydrologic property distribution with a hierarchical structure, which mimics the multiple scales of heterogeneity often seen in natural geological media. Application of the IFS inverse method to synthetic interference-test data shows that the method reproduces the synthetic heterogeneity successfully for idealized heterogeneities, for geologically-realistic heterogeneities, and when the pressure data includes noise.
Iterative electro-optic matrix processor
NASA Astrophysics Data System (ADS)
Carlotto, M. J.
An electro-optic vector matrix processor with electronic feedback is described. The iterative optical processor (IOP) is designed for the rapid solution of linear algebraic equations. The IOP and the iterative algorithm it realizes are analyzed and simulated. A version of the system was fabricated using advanced solid state light sources and detectors plus fiber optic technology, and its performance is evaluated. An extension of the system using wavelength multiplexing is developed and the basic system concepts demonstrated. Its use in the restoration of degraded images or signals (deconvolution) and the computation of matrix eigenvectors and eigenvalues and matrix inversion are demonstrated. The two major case studies pursued are: adaptive phased array radar processing and optimal control. In the former case, the system is used to compute the adaptive antenna weights for a radar system. In the latter case, the IOP solves the linear quadratic regular and algebraic Ricatti equations of modern control theory.
Tomographic bioluminescence imaging by an iteratively re-weighted minimization
NASA Astrophysics Data System (ADS)
Wu, Ping; Liu, Kai; Xue, Zhenwen; Guo, Wei; Qin, Chenghu; Tian, Jie
2012-03-01
Tomographic bioluminescence imaging (TBI), with visible light emission in living organisms, is an effective way of molecular imaging, which allows for the study of ongoing tumor biological processes in vivo and non-invasively. This newly developed technology enables three-dimensional accuracy localization and quantitative analysis of the target tumor cells in small animal via reconstructing the images acquired by the high-resolution imaging system. Due to the difficulty of reconstruction, which is often referred to an ill-posed inverse problem, continuous efforts are still made to find more practical and efficient approaches. In this paper, an iteratively re-weighted minimization (IRM) has been applied to reconstruct the entire source distribution, which is known as sparse signals, inside the target tissue with the limited outgoing photon density on its boundary. By introducing a weight function into the objective function, we convert the lp norm problem into a more simple form of l2 norm to reduce the computational complexity. The weight function is updated in each iterative step to compute the final optimal solution more efficiently. This method is proved to be robust to different parameters, and mouse experiments are conducted to validate the feasibility of IRM approach, which is also reliable at whole-body imaging.
THE CONTINUOUS FLOW ANALYZER AUTOMATION SYSTEM. PART I - FUNCTIONAL SPECIFICATIONS
This document contains the project definition, the functional requirements, and the functional design for a proposed computer automation system for the continuous flow analyzer. The proposed system will accomplish real-time data acquisition, calibration, baseline correction, calc...
Nuclear analyses for the ITER ECRH launcher
NASA Astrophysics Data System (ADS)
Serikov, A.; Fischer, U.; Heidinger, R.; Spaeh, P.; Stickel, S.; Tsige-Tamirat, H.
2008-05-01
Computational results of the nuclear analyses for the ECRH launcher integrated into the ITER upper port are presented. The purpose of the analyses was to provide the proof for the launcher design that the nuclear requirements specified in the ITER project can be met. The aim was achieved on the basis of 3D neutronics radiation transport calculations using the Monte Carlo code MCNP. In the course of the analyses an adequate shielding configuration against neutron and gamma radiation was developed keeping the necessary empty space for mm-waves propagation in accordance with the ECRH physics guidelines. Different variants of the shielding configuration for the extended performance front steering launcher (EPL) were compared in terms of nuclear response functions in the critical positions. Neutron damage (dpa), nuclear heating, helium production rate, neutron and gamma fluxes have been calculated under the conditions of ITER operation. It has been shown that the radiation shielding criteria are satisfied and the supposed shutdown dose rates are below the ITER nuclear design limits.
Functional foveae in an electrosensory system.
Bacelo, Joao; Engelmann, Jacob; Hollmann, Michael; von der Emde, Gerhard; Grant, Kirsty
2008-11-20
Several species of Mormyrid weakly electric fish have a mobile chin protuberance that serves as a mobile antenna during prey detection, tracking behaviors, and foraging for food. It has been proposed that it constitutes a fovea of the electrosensory system. The distribution of the three types of receptor organs involved in active imaging of the local surroundings, prey detection, and passive electroreception, and their central projection to the electrosensory lobe (ELL), have been studied in Gnathonemus petersii. Density distributions were compared for different body regions. Primary afferent projections were labeled with biocytin or biotinylated dextrans. This showed that there is considerable central "over-representation" of the mandibular and nasal regions of the sensory surface involved in electrolocation, at the expense of the other body regions investigated. This over-representation is not a mere effect of the very high density of receptor organs in these areas, but is found to be due to central magnification. This magnification differs between the subclasses of electroreceptors, suggesting a functional segregation in the brain. We conclude that the chin protuberance and the nasal region are the regions of greatest sensitivity for the resistive, capacitive, and low-frequency characteristics of the environment, and are probably most important in prey detection, whereas other regions of the skin with a lesser resolution and sensitivity to phase distortion of the EOD, in particular the trunk, are probably designed for imaging larger, inanimate features of the environment. Our data support the hypothesis that the chin appendage and nasal region are functionally distinct electrosensory foveae. PMID:18803238
Rau, B.R.
1996-02-01
Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.
Self-consistent second-order Green's function perturbation theory for periodic systems
NASA Astrophysics Data System (ADS)
Rusakov, Alexander A.; Zgid, Dominika
2016-02-01
Despite recent advances, systematic quantitative treatment of the electron correlation problem in extended systems remains a formidable task. Systematically improvable Green's function methods capable of quantitatively describing weak and at least qualitatively strong correlations appear as promising candidates for computational treatment of periodic systems. We present a periodic implementation of temperature-dependent self-consistent 2nd-order Green's function (GF2) method, where the self-energy is evaluated in the basis of atomic orbitals. Evaluating the real-space self-energy in atomic orbitals and solving the Dyson equation in k-space are the key components of a computationally feasible algorithm. We apply this technique to the one-dimensional hydrogen lattice — a prototypical crystalline system with a realistic Hamiltonian. By analyzing the behavior of the spectral functions, natural occupations, and self-energies, we claim that GF2 is able to recover metallic, band insulating, and at least qualitatively Mott regimes. We observe that the iterative nature of GF2 is essential to the emergence of the metallic and Mott phases.
Functional Nanomaterials Useful for Magnetic Refrigeration Systems
NASA Astrophysics Data System (ADS)
Aslani, Amir
Magnetic refrigeration is an emerging energy efficient and environmentally friendly refrigeration technology. The principle of magnetic refrigeration is based on the effect of varying a magnetic field on the temperature change of a magnetocaloric material (refrigerant). By applying a magnetic field, the magnetic moments of a magnetic material tend to align parallel to it, and the thermal energy released in this process heats the material. Reversibly, the magnetic moments become randomly oriented when the magnetic field is removed, and the material cools down. The heating and the cooling of a refrigerant in response to a changing magnetic field is similar to the heating and the cooling of a gaseous medium in response to an adiabatic compression and expansion in a conventional refrigeration system. One requirement to make a practical magnetic refrigerator is to have a large temperature change per unit of applied magnetic field, with sufficiently wide operating temperature. So far, no commercially viable magnetic refrigerator has been built primarily due to the low temperature change of bulk refrigerants, the added burden of hysteresis, and the system's low cooling capacity. The purpose of this dissertation is to explore magnetic refrigeration system. First, the Active Magnetic Regenerator (AMR) system built by Shir et al at the GWU's Institute for Magnetics Research (IMR) is optimized by tuning the heat transfer medium parameters and system's operating conditions. Next, by reviewing literature and works done so far on refrigerants, a number of materials that may be suitable to be used in magnetic refrigeration technology were identified. Theoretical work by Bennett et al showed an enhancement in magnetocaloric effect of magnetic nanoparticles. Research was performed on functional magnetic nanoparticles and their use in magnetic refrigeration technology. Different aspects such as the size, shape, chemical composition, structure and interaction of the nanoparticle with
NASA Astrophysics Data System (ADS)
Ma, Sangback
In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The
Image Restoration Using the Damped Richardson-Lucy Iteration
NASA Astrophysics Data System (ADS)
White, R. L.
describe a new image restoration iteration that dramatically reduces noise amplification while retaining the good characteristics and efficiency of the RL method. The method is based on a modified form of the Poisson likelihood function that is flatter in the vicinity of a good fit. The resulting iteration is very similar to the RL iteration, but with a new spatially adaptive damping factor that prevents noise amplification in regions of the image where a smooth model provides an adequate fit to the data; thus, I call this the damped RL iteration . The damped iteration converges as fast or faster than the RL method. Results will be shown for both simulated data and Hubble Space Telescope images.
Towards plasma cleaning of ITER first mirrors
NASA Astrophysics Data System (ADS)
Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.
2015-06-01
To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.
Spectral resolvability of iterated rippled noise
NASA Astrophysics Data System (ADS)
Yost, William A.
2005-04-01
A forward-masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays, number of iterations, and stimulus durations. The differences in the forward-masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability, and these results were compared to estimates obtained from a gamma-tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak-to-valley ratio. For high number of iterations, long delays, and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th, or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch, pitch strength, and timbre of IRN stimuli. [Work supported by a grant from NIDCD.
Iterative solution of the Helmholtz equation
Larsson, E.; Otto, K.
1996-12-31
We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.
NASA Technical Reports Server (NTRS)
Ioup, G. E.; Whitehorn, M. A.
1981-01-01
Linear filtering techniques currently used for the restoration of noisy, blurred or otherwise degraded image data are discussed and new techniques related to the iterative techniques of Morrison and van Cittert are developed and implemented. Programs written for the implementation are discussed in the appendices. It is shown that the new techniques are convergent for any system response function, and they are applied to the task of restoring a severely blurred image.
Kouri, Donald J.; Vijay, Amrendra; Zhang, Haiyan; Zhang, Jingfeng; Hoffman, David K.
2007-05-01
A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.
Picard Iteration, Chebyshev Polynomials and Chebyshev-Picard Methods: Application in Astrodynamics
NASA Astrophysics Data System (ADS)
Junkins, John L.; Bani Younes, Ahmad; Woollands, Robyn M.; Bai, Xiaoli
2013-12-01
This paper extends previous work on parallel-structured Modified Chebyshev Picard Iteration (MCPI) Methods. The MCPI approach iteratively refines path approximation of the state trajectory for smooth nonlinear dynamical systems and this paper shows that the approach is especially suitable for initial value problems of astrodynamics. Using Chebyshev polynomials, as the orthogonal approximation basis, it is straightforward to distribute the computation of force functions needed in MCPI to generate the polynomial coefficients (approximating the path iterations) to different processors. Combining Chebyshev polynomials with Picard iteration, MCPI methods iteratively refines path estimates over large time intervals chosen to be within the domain of convergence of Picard iteration. The developed vector-matrix form makes MCPI methods computationally efficient and a more systematic approach is given, leading to a modest correction to results in the published dissertation by Bai. The power of MCPI methods for solving IVPs is clearly illustrated using a simple nonlinear differential equation with a known analytical solution. Compared with the most common integration scheme, the standard Runge-Kutta 4-5 method as implemented in MATLAB, MCPI methods generate solutions with better accuracy as well as orders of magnitude speedups, on a serial machine. MCPI performance is also compared to state of the art integrators such as the Runge-Kutta Nystrom 12(10) methods applied to the relevant orbit mechanics problems. The MCPI method is shown to be well-suited to solving these problems in serial processors with over an order of magnitude speedup relative to known methods. Furthermore, the approach is parallel-structured so that it is suited for parallel implementation and further speedups. When used in conjunction with the recently developed local gravity approximations in conjunction with parallel computation, we anticipate MCPI will enable revolutionary speedups while ensuring
New iterative solvers for the NAG Libraries
Salvini, S.; Shaw, G.
1996-12-31
The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.
FUNCTIONAL SPECIFICATIONS FOR AN ADVANCED CHROMATOGRAPHY AUTOMATION SYSTEM
This document contains a project definition, a set of functional requirements, and a functional design for a system which will link a commercial chromatography data system to the EPA Laboratory Automation System. A Varian 220L Chromatography Data System was selected as the protot...
Iterative methods for symmetric ill-conditioned Toeplitz matrices
Huckle, T.
1996-12-31
We consider ill-conditioned symmetric positive definite, Toeplitz systems T{sub n}x = b. If we want to solve such a system iteratively with the conjugate gradient method, we can use band-Toeplitz-preconditioners or Sine-Transform-peconditioners M = S{sub n}{Lambda}S{sub n}, S{sub n} the Sine-Transform-matrix and {Lambda} a diagonal matrix. A Toeplitz matrix T{sub n} = (t{sub i-j)}{sub i}{sup n},{sub j=1} is often related to an underlying function f defined by the coefficients t{sub j}, j = -{infinity},..,-1,0, 1,.., {infinity}. There are four cases, for which we want to determine a preconditioner M: - T{sub n} is related to an underlying function which is given explicitly; - T{sub n} is related to an underlying function that is given by its Fourier coefficients; - T{sub n} is related to an underlying function that is unknown; - T{sub n} is not related to an underlying function. Especially for the first three cases we show how positive definite and effective preconditioners based on the Sine-Transform can be defined for general nonnegative underlying function f. To define M, we evaluate or estimate the values of f at certain positions, and build a Sine-transform matrix with these values as eigenvalues. Then, the spectrum of the preconditioned system is bounded from above and away from zero.
PFMFind: a system for discovery of peptide homology and function
Stojmirović, Aleksandar; Andreae, Peter; Boland, Mike; Jordan, Thomas William; Pestov, Vladimir G.
2014-01-01
Protein Fragment Motif Finder (PFMFind) is a system that enables e cient discovery of relationships between short fragments of protein sequences using similarity search. It supports queries based on amino acid similarity matrices and position specific score matrices (PSSMs) obtained through an iterative procedure. PSSM construction is customisable through plugins written in Python. PFMFind consists of a GUI client, an index for fast similarity search and a relational database for storing search results and sequence annotations. It is written mostly in Python. The components of PFMFind communicate through TCP/IP sockets and can be located on different physical machines. PFMFind is freely available for download (under a GPL licence) from http://pfmfind.stojmirovic.org PMID:24479118
PFMFind: a system for discovery of peptide homology and function.
Stojmirović, Aleksandar; Andreae, Peter; Boland, Mike; Jordan, Thomas William; Pestov, Vladimir G
2013-01-01
Protein Fragment Motif Finder (PFMFind) is a system that enables e cient discovery of relationships between short fragments of protein sequences using similarity search. It supports queries based on amino acid similarity matrices and position specific score matrices (PSSMs) obtained through an iterative procedure. PSSM construction is customisable through plugins written in Python. PFMFind consists of a GUI client, an index for fast similarity search and a relational database for storing search results and sequence annotations. It is written mostly in Python. The components of PFMFind communicate through TCP/IP sockets and can be located on different physical machines. PFMFind is freely available for download (under a GPL licence) from http://pfmfind.stojmirovic.org. PMID:24479118
Functional self-organization in complex systems
Fontana, W. Santa Fe Inst., NM )
1990-01-01
A novel approach to functional self-organization is presented. It consists of a universe generated by a formal language that defines objects (=programs), their meaning (=functions), and their interactions (=composition). Results obtained so far are briefly discussed. 17 refs., 5 figs.
Abrishami, V; Bilbao-Castro, J R; Vargas, J; Marabini, R; Carazo, J M; Sorzano, C O S
2015-10-01
We describe a fast and accurate method for the reconstruction of macromolecular complexes from a set of projections. Direct Fourier inversion (in which the Fourier Slice Theorem plays a central role) is a solution for dealing with this inverse problem. Unfortunately, the set of projections provides a non-equidistantly sampled version of the macromolecule Fourier transform in the single particle field (and, therefore, a direct Fourier inversion) may not be an optimal solution. In this paper, we introduce a gridding-based direct Fourier method for the three-dimensional reconstruction approach that uses a weighting technique to compute a uniform sampled Fourier transform. Moreover, the contrast transfer function of the microscope, which is a limiting factor in pursuing a high resolution reconstruction, is corrected by the algorithm. Parallelization of this algorithm, both on threads and on multiple CPU's, makes the process of three-dimensional reconstruction even faster. The experimental results show that our proposed gridding-based direct Fourier reconstruction is slightly more accurate than similar existing methods and presents a lower computational complexity both in terms of time and memory, thereby allowing its use on larger volumes. The algorithm is fully implemented in the open-source Xmipp package and is downloadable from http://xmipp.cnb.csic.es. PMID:26094203
G. Douglas Loesser, et. al.
2012-09-21
The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.
NASA Astrophysics Data System (ADS)
Jaeger, E. F.; Berry, L. A.; Myra, J. R.
2006-10-01
Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).
Iterative denoising of ghost imaging.
Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie
2014-10-01
We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001
Continuous and discrete describing function analysis of the LST system
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Singh, G.; Yackel, R. A.
1973-01-01
A describing function of the control moment gyros (CMG) frictional nonlinearity is derived using the analytic torque equation. Computer simulation of the simplified Large Space Telescope (LST) system with the analytic torque expression is discussed along with the transfer functions of the sampled-data LST system, and the discrete describing function of the GMC frictionality.
18 CFR 301.7 - Average System Cost methodology functionalization.
Code of Federal Regulations, 2011 CFR
2011-04-01
... methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... SYSTEM COST METHODOLOGY FOR SALES FROM UTILITIES TO BONNEVILLE POWER ADMINISTRATION UNDER NORTHWEST POWER ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each...
18 CFR 301.7 - Average System Cost methodology functionalization.
Code of Federal Regulations, 2010 CFR
2010-04-01
... methodology functionalization. 301.7 Section 301.7 Conservation of Power and Water Resources FEDERAL ENERGY... SYSTEM COST METHODOLOGY FOR SALES FROM UTILITIES TO BONNEVILLE POWER ADMINISTRATION UNDER NORTHWEST POWER ACT § 301.7 Average System Cost methodology functionalization. (a) Functionalization of each...
Iterative solution of the semiconductor device equations
Bova, S.W.; Carey, G.F.
1996-12-31
Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.
Two-factor authentication system based on optical interference and one-way hash function
NASA Astrophysics Data System (ADS)
He, Wenqi; Peng, Xiang; Meng, Xiangfeng; Liu, Xiaoli
2012-10-01
We present a two-factor authentication method to verify the personal identification who tries to access an optoelectronic system. This method is based on the optical interference principle and the traditional one-way Hash function (e.g. MD5). The authentication process is straightforward, the phase key and the password-controlled phase lock of one user are loading on two Spatial Light Modulators (SLMs) in advance, by which two coherent beams are modulated and then interference with each other at the output plane leading to an output image. By comparing the output image with all the standard certification images in the database, the system can thus verify the user's identity. However, the system designing process involves an iterative Modified Phase Retrieval Algorithm (MPRA). For an uthorized user, a phase lock is first created based on a "Digital Fingerprint (DF)", which is the result of a Hash function on a preselected user password. The corresponding phase key can then be determined by use of the phase lock and a designated standard certification image. Note that the encode/design process can only be realized by digital means while the authentication process could be achieved digitally or optically. Computer simulations were also given to validate the proposed approach.
Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Lewis, Mark; Oostdyk, Rebecca; Perotti, Jose
2009-01-01
When setting out to model and/or simulate a complex mechanical or electrical system, a modeler is faced with a vast array of tools, software, equations, algorithms and techniques that may individually or in concert aid in the development of the model. Mature requirements and a well understood purpose for the model may considerably shrink the field of possible tools and algorithms that will suit the modeling solution. Is the model intended to be used in an offline fashion or in real-time? On what platform does it need to execute? How long will the model be allowed to run before it outputs the desired parameters? What resolution is desired? Do the parameters need to be qualitative or quantitative? Is it more important to capture the physics or the function of the system in the model? Does the model need to produce simulated data? All these questions and more will drive the selection of the appropriate tools and algorithms, but the modeler must be diligent to bear in mind the final application throughout the modeling process to ensure the model meets its requirements without needless iterations of the design. The purpose of this paper is to describe the considerations and techniques used in the process of creating a functional fault model of a liquid hydrogen (LH2) system that will be used in a real-time environment to automatically detect and isolate failures.
The Delis-Kaplan Executive Function System: A Review
ERIC Educational Resources Information Center
Swanson, Jewel
2005-01-01
The Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 2001a) is a set of standardized tests for comprehensively assessing higher-level cognitive functions, referred to as "executive functions," in both children and adults (aged 8 to 89). Executive functions draw on the individual's more fundamental or primary cognitive…
Vector Lyapunov Functions for Stochastic Interconnected Systems
NASA Technical Reports Server (NTRS)
Boussalis, D.
1985-01-01
Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.
Relations among Functional Systems in Behavior Analysis
ERIC Educational Resources Information Center
Thompson, Travis
2007-01-01
This paper proposes that an organism's integrated repertoire of operant behavior has the status of a biological system, similar to other biological systems, like the nervous, cardiovascular, or immune systems. Evidence from a number of sources indicates that the distinctions between biological and behavioral events is often misleading, engendering…
NASA Astrophysics Data System (ADS)
Gomez-Cardona, Daniel; Li, Ke; Lubner, Meghan G.; Pickhardt, Perry J.; Chen, Guang-Hong
2015-03-01
The significance of understanding the noise properties of clinical CT systems is twofold: First, as the diagnostic performance (particularly for the detection of low contrast lesions) is strongly limited by noise, a thorough study of the dependence of image noise on scanning and reconstruction parameters would enable the desired image quality to be achieved with the least amount of radiation dose; Second, a clear understanding of the noise properties of CT systems would allow the limitations in existing CT systems to be identified and improved. The recent introduction of the model-based iterative reconstruction (MBIR) method has introduced strong nonlinearity to clinical CT systems and violated the classical relationship between CT noise properties and CT system parameters, therefore it is necessary to perform a comprehensive study on the noise properties of MBIR. The purpose of this study was to systematically study the dependence of the noise magnitude and noise texture of MBIR on x-ray tube potential (kV), tube current (mA), and radiation dose level. It has been found that the noise variance σ2 of MBIR has relaxed dependence on kV and mA, which can be described as power-law relationships as σ2 ~kV-1 and σ2 ~ mA-0.4, respectively. The shape of the noise power spectrum (NPS) demonstrated a strong dependence on kV and mA, but it remained constant as long as the radiation dose level was the same. These semi-empirical relationships can be potentially used to guide the optimal selection of kV and mA when prescribing CT scans with the maximal dose reduction.
Distributed Minimal Residual (DMR) method for acceleration of iterative algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungsoo; Dulikravich, George S.
1991-01-01
A new method for enhancing the convergence rate of iterative algorithms for the numerical integration of systems of partial differential equations was developed. It is termed the Distributed Minimal Residual (DMR) method and it is based on general Krylov subspace methods. The DMR method differs from the Krylov subspace methods by the fact that the iterative acceleration factors are different from equation to equation in the system. At the same time, the DMR method can be viewed as an incomplete Newton iteration method. The DMR method was applied to Euler equations of gas dynamics and incompressible Navier-Stokes equations. All numerical test cases were obtained using either explicit four stage Runge-Kutta or Euler implicit time integration. The formulation for the DMR method is general in nature and can be applied to explicit and implicit iterative algorithms for arbitrary systems of partial differential equations.
A preliminary engineering assessment of the ITER CDA ECH Launcher
Bigelow, T.S.; Swain, D.W. ); Sawan, M. )
1994-10-15
A preliminary engineering study of the ITER electron cyclotron heating (ECH) launcher configuration proposed by the ITER Conceptual Design Activity (CDA) team has been performed to assess its survivability in the ITER nuclear environment. Potential problem areas are with the vacuum windows, the plasma-facing mirrors, and some of the other high-power waveguide components that are untested in a reactor environment. The study indicates that the CDA design is quite robust, since the mirror power density is relatively low and the windows are well shielded. Although the CDA ECH system is unlikely to be built as proposed, most analysis techniques developed to study this system will apply to future ITER ECH system configurations. The vacuum window is likely to be the most difficult launcher component to develop. Design for a proposed resonant ring for high-power testing of windows using existing lower-power gyrotrons is presented.
A preliminary engineering assessment of the ITER CDA ECH launcher
Bigelow, T.S.; Swain, D.W.; Sawan, M.
1993-06-01
A preliminary engineering study of the ITER electron cyclotron heating (ECH) launcher configuration proposed by the ITER Conceptual Design Activity (CDA) team has been performed to assess its survivability in the ITER nuclear environment. Potential problem areas are with the vacuum windows, the plasma-facing mirrors, and some of the other high-power waveguide components that are untested in a reactor environment. The study indicates that the CDA design is quite robust, since the mirror power density is relatively low and the windows are well shielded. Although the CDA ECH system is unlikely to be built as proposed, most analysis techniques developed to study this system will apply to future ITER ECH system configurations. The vacuum window is likely to be the most difficult launcher component to develop. Design for a proposed resonant ring for high-power testing of windows using existing lower-power gyrotrons is presented.
Rotorcraft digital advanced avionics system (RODAAS) functional description
NASA Technical Reports Server (NTRS)
Peterson, E. M.; Bailey, J.; Mcmanus, T. J.
1985-01-01
A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.