New methods of testing nonlinear hypothesis using iterative NLLS estimator
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.
NASA Astrophysics Data System (ADS)
Trujillo Bueno, Javier; Manso Sainz, Rafael
1999-05-01
This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.
Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-linear Image Restoration.
Skariah, Deepak G; Arigovindan, Muthuvel
2017-06-19
We develop a novel optimization algorithm, which we call Nested Non-Linear Conjugate Gradient algorithm (NNCG), for image restoration based on quadratic data fitting and smooth non-quadratic regularization. The algorithm is constructed as a nesting of two conjugate gradient (CG) iterations. The outer iteration is constructed as a preconditioned non-linear CG algorithm; the preconditioning is performed by the inner CG iteration that is linear. The inner CG iteration, which performs preconditioning for outer CG iteration, itself is accelerated by an another FFT based non-iterative preconditioner. We prove that the method converges to a stationary point for both convex and non-convex regularization functionals. We demonstrate experimentally that proposed method outperforms the well-known majorization-minimization method used for convex regularization, and a non-convex inertial-proximal method for non-convex regularization functional.
Iterative Nonlocal Total Variation Regularization Method for Image Restoration
Xu, Huanyu; Sun, Quansen; Luo, Nan; Cao, Guo; Xia, Deshen
2013-01-01
In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods. PMID:23776560
On the solution of evolution equations based on multigrid and explicit iterative methods
NASA Astrophysics Data System (ADS)
Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.
2015-08-01
Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.
An iterative method for near-field Fresnel region polychromatic phase contrast imaging
NASA Astrophysics Data System (ADS)
Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.
2017-07-01
We present an iterative method for polychromatic phase contrast imaging that is suitable for broadband illumination and which allows for the quantitative determination of the thickness of an object given the refractive index of the sample material. Experimental and simulation results suggest the iterative method provides comparable image quality and quantitative object thickness determination when compared to the analytical polychromatic transport of intensity and contrast transfer function methods. The ability of the iterative method to work over a wider range of experimental conditions means the iterative method is a suitable candidate for use with polychromatic illumination and may deliver more utility for laboratory-based x-ray sources, which typically have a broad spectrum.
Differential Characteristics Based Iterative Multiuser Detection for Wireless Sensor Networks
Chen, Xiaoguang; Jiang, Xu; Wu, Zhilu; Zhuang, Shufeng
2017-01-01
High throughput, low latency and reliable communication has always been a hot topic for wireless sensor networks (WSNs) in various applications. Multiuser detection is widely used to suppress the bad effect of multiple access interference in WSNs. In this paper, a novel multiuser detection method based on differential characteristics is proposed to suppress multiple access interference. The proposed iterative receive method consists of three stages. Firstly, a differential characteristics function is presented based on the optimal multiuser detection decision function; then on the basis of differential characteristics, a preliminary threshold detection is utilized to find the potential wrongly received bits; after that an error bit corrector is employed to correct the wrong bits. In order to further lower the bit error ratio (BER), the differential characteristics calculation, threshold detection and error bit correction process described above are iteratively executed. Simulation results show that after only a few iterations the proposed multiuser detection method can achieve satisfactory BER performance. Besides, BER and near far resistance performance are much better than traditional suboptimal multiuser detection methods. Furthermore, the proposed iterative multiuser detection method also has a large system capacity. PMID:28212328
Evaluating user reputation in online rating systems via an iterative group-based ranking method
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao
2017-05-01
Reputation is a valuable asset in online social lives and it has drawn increased attention. Due to the existence of noisy ratings and spamming attacks, how to evaluate user reputation in online rating systems is especially significant. However, most of the previous ranking-based methods either follow a debatable assumption or have unsatisfied robustness. In this paper, we propose an iterative group-based ranking method by introducing an iterative reputation-allocation process into the original group-based ranking method. More specifically, the reputation of users is calculated based on the weighted sizes of the user rating groups after grouping all users by their rating similarities, and the high reputation users' ratings have larger weights in dominating the corresponding user rating groups. The reputation of users and the user rating group sizes are iteratively updated until they become stable. Results on two real data sets with artificial spammers suggest that the proposed method has better performance than the state-of-the-art methods and its robustness is considerably improved comparing with the original group-based ranking method. Our work highlights the positive role of considering users' grouping behaviors towards a better online user reputation evaluation.
Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Dufek, Jan
2014-06-01
This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.
Robust iterative method for nonlinear Helmholtz equation
NASA Astrophysics Data System (ADS)
Yuan, Lijun; Lu, Ya Yan
2017-08-01
A new iterative method is developed for solving the two-dimensional nonlinear Helmholtz equation which governs polarized light in media with the optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear Helmholtz equation could have multiple solutions related to phenomena such as optical bistability and symmetry breaking. The new method exhibits a much more robust convergence behavior than existing iterative methods, such as frozen-nonlinearity iteration, Newton's method and damped Newton's method, and it can be used to find solutions when good initial guesses are unavailable. Numerical results are presented for the scattering of light by a nonlinear circular cylinder based on the exact nonlocal boundary condition and a pseudospectral method in the polar coordinate system.
Compensation for the phase-type spatial periodic modulation of the near-field beam at 1053 nm
NASA Astrophysics Data System (ADS)
Gao, Yaru; Liu, Dean; Yang, Aihua; Tang, Ruyu; Zhu, Jianqiang
2017-10-01
A phase-only spatial light modulator is used to provide and compensate for the spatial periodic modulation (SPM) of the near-field beam at the near infrared at 1053nm wavelength with an improved iterative weight-based method. The transmission characteristics of the incident beam has been changed by a spatial light modulator (SLM) to shape the spatial intensity of the output beam. The propagation and reverse propagation of the light in free space are two important processes in the iterative process. The based theory is the beam angular spectrum transmit formula (ASTF) and the principle of the iterative weight-based method. We have made two improvements to the originally proposed iterative weight-based method. We select the appropriate parameter by choosing the minimum value of the output beam contrast degree and use the MATLAB built-in angle function to acquire the corresponding phase of the light wave function. The required phase that compensates for the intensity distribution of the incident SPM beam is iterated by this algorithm, which can decrease the magnitude of the SPM of the intensity on the observation plane. The experimental results show that the phase-type SPM of the near-field beam is subject to a certain restriction. We have also analyzed some factors that make the results imperfect. The experiment results verifies the possible applicability of this iterative weight-based method to compensate for the SPM of the near-field beam.
Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan
2014-08-20
In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
An iterative method for the Helmholtz equation
NASA Technical Reports Server (NTRS)
Bayliss, A.; Goldstein, C. I.; Turkel, E.
1983-01-01
An iterative algorithm for the solution of the Helmholtz equation is developed. The algorithm is based on a preconditioned conjugate gradient iteration for the normal equations. The preconditioning is based on an SSOR sweep for the discrete Laplacian. Numerical results are presented for a wide variety of problems of physical interest and demonstrate the effectiveness of the algorithm.
Efficient solution of the simplified P N equations
Hamilton, Steven P.; Evans, Thomas M.
2014-12-23
We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.
A new iterative triclass thresholding technique in image segmentation.
Cai, Hongmin; Yang, Zhong; Cao, Xinhua; Xia, Weiming; Xu, Xiaoyin
2014-03-01
We present a new method in image segmentation that is based on Otsu's method but iteratively searches for subregions of the image for segmentation, instead of treating the full image as a whole region for processing. The iterative method starts with Otsu's threshold and computes the mean values of the two classes as separated by the threshold. Based on the Otsu's threshold and the two mean values, the method separates the image into three classes instead of two as the standard Otsu's method does. The first two classes are determined as the foreground and background and they will not be processed further. The third class is denoted as a to-be-determined (TBD) region that is processed at next iteration. At the succeeding iteration, Otsu's method is applied on the TBD region to calculate a new threshold and two class means and the TBD region is again separated into three classes, namely, foreground, background, and a new TBD region, which by definition is smaller than the previous TBD regions. Then, the new TBD region is processed in the similar manner. The process stops when the Otsu's thresholds calculated between two iterations is less than a preset threshold. Then, all the intermediate foreground and background regions are, respectively, combined to create the final segmentation result. Tests on synthetic and real images showed that the new iterative method can achieve better performance than the standard Otsu's method in many challenging cases, such as identifying weak objects and revealing fine structures of complex objects while the added computational cost is minimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanming; Wang, Linyuan; Li, Lei
2016-06-15
Purpose: Metal artifact reduction (MAR) is a major problem and a challenging issue in x-ray computed tomography (CT) examinations. Iterative reconstruction from sinograms unaffected by metals shows promising potential in detail recovery. This reconstruction has been the subject of much research in recent years. However, conventional iterative reconstruction methods easily introduce new artifacts around metal implants because of incomplete data reconstruction and inconsistencies in practical data acquisition. Hence, this work aims at developing a method to suppress newly introduced artifacts and improve the image quality around metal implants for the iterative MAR scheme. Methods: The proposed method consists of twomore » steps based on the general iterative MAR framework. An uncorrected image is initially reconstructed, and the corresponding metal trace is obtained. The iterative reconstruction method is then used to reconstruct images from the unaffected sinogram. In the reconstruction step of this work, an iterative strategy utilizing unmatched projector/backprojector pairs is used. A ramp filter is introduced into the back-projection procedure to restrain the inconsistency components in low frequencies and generate more reliable images of the regions around metals. Furthermore, a constrained total variation (TV) minimization model is also incorporated to enhance efficiency. The proposed strategy is implemented based on an iterative FBP and an alternating direction minimization (ADM) scheme, respectively. The developed algorithms are referred to as “iFBP-TV” and “TV-FADM,” respectively. Two projection-completion-based MAR methods and three iterative MAR methods are performed simultaneously for comparison. Results: The proposed method performs reasonably on both simulation and real CT-scanned datasets. This approach could reduce streak metal artifacts effectively and avoid the mentioned effects in the vicinity of the metals. The improvements are evaluated by inspecting regions of interest and by comparing the root-mean-square errors, normalized mean absolute distance, and universal quality index metrics of the images. Both iFBP-TV and TV-FADM methods outperform other counterparts in all cases. Unlike the conventional iterative methods, the proposed strategy utilizing unmatched projector/backprojector pairs shows excellent performance in detail preservation and prevention of the introduction of new artifacts. Conclusions: Qualitative and quantitative evaluations of experimental results indicate that the developed method outperforms classical MAR algorithms in suppressing streak artifacts and preserving the edge structural information of the object. In particular, structures lying close to metals can be gradually recovered because of the reduction of artifacts caused by inconsistency effects.« less
A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures
2014-01-01
Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in this work are freely available at http://www.cs.ubc.ca/~hjabbari/software.php. PMID:24884954
Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.
Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua
2018-02-01
Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Stewart, K.
1984-01-01
Methods based on backward differentiation formulas (BDFs) for solving stiff differential equations require iterating to approximate the solution of the corrector equation on each step. One hope for reducing the cost of this is to make do with iteration matrices that are known to have errors and to do no more iterations than are necessary to maintain the stability of the method. This paper, following work by Klopfenstein, examines the effect of errors in the iteration matrix on the stability of the method. Application of the results to an algorithm is discussed briefly.
A Probabilistic Collocation Based Iterative Kalman Filter for Landfill Data Assimilation
NASA Astrophysics Data System (ADS)
Qiang, Z.; Zeng, L.; Wu, L.
2016-12-01
Due to the strong spatial heterogeneity of landfill, uncertainty is ubiquitous in gas transport process in landfill. To accurately characterize the landfill properties, the ensemble Kalman filter (EnKF) has been employed to assimilate the measurements, e.g., the gas pressure. As a Monte Carlo (MC) based method, the EnKF usually requires a large ensemble size, which poses a high computational cost for large scale problems. In this work, we propose a probabilistic collocation based iterative Kalman filter (PCIKF) to estimate permeability in a liquid-gas coupling model. This method employs polynomial chaos expansion (PCE) to represent and propagate the uncertainties of model parameters and states, and an iterative form of Kalman filter to assimilate the current gas pressure data. To further reduce the computation cost, the functional ANOVA (analysis of variance) decomposition is conducted, and only the first order ANOVA components are remained for PCE. Illustrated with numerical case studies, this proposed method shows significant superiority in computation efficiency compared with the traditional MC based iterative EnKF. The developed method has promising potential in reliable prediction and management of landfill gas production.
Krylov subspace iterative methods for boundary element method based near-field acoustic holography.
Valdivia, Nicolas; Williams, Earl G
2005-02-01
The reconstruction of the acoustic field for general surfaces is obtained from the solution of a matrix system that results from a boundary integral equation discretized using boundary element methods. The solution to the resultant matrix system is obtained using iterative regularization methods that counteract the effect of noise on the measurements. These methods will not require the calculation of the singular value decomposition, which can be expensive when the matrix system is considerably large. Krylov subspace methods are iterative methods that have the phenomena known as "semi-convergence," i.e., the optimal regularization solution is obtained after a few iterations. If the iteration is not stopped, the method converges to a solution that generally is totally corrupted by errors on the measurements. For these methods the number of iterations play the role of the regularization parameter. We will focus our attention to the study of the regularizing properties from the Krylov subspace methods like conjugate gradients, least squares QR and the recently proposed Hybrid method. A discussion and comparison of the available stopping rules will be included. A vibrating plate is considered as an example to validate our results.
Harmonics analysis of the ITER poloidal field converter based on a piecewise method
NASA Astrophysics Data System (ADS)
Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU
2017-12-01
Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.
A heuristic statistical stopping rule for iterative reconstruction in emission tomography.
Ben Bouallègue, F; Crouzet, J F; Mariano-Goulart, D
2013-01-01
We propose a statistical stopping criterion for iterative reconstruction in emission tomography based on a heuristic statistical description of the reconstruction process. The method was assessed for MLEM reconstruction. Based on Monte-Carlo numerical simulations and using a perfectly modeled system matrix, our method was compared with classical iterative reconstruction followed by low-pass filtering in terms of Euclidian distance to the exact object, noise, and resolution. The stopping criterion was then evaluated with realistic PET data of a Hoffman brain phantom produced using the GATE platform for different count levels. The numerical experiments showed that compared with the classical method, our technique yielded significant improvement of the noise-resolution tradeoff for a wide range of counting statistics compatible with routine clinical settings. When working with realistic data, the stopping rule allowed a qualitatively and quantitatively efficient determination of the optimal image. Our method appears to give a reliable estimation of the optimal stopping point for iterative reconstruction. It should thus be of practical interest as it produces images with similar or better quality than classical post-filtered iterative reconstruction with a mastered computation time.
Twostep-by-twostep PIRK-type PC methods with continuous output formulas
NASA Astrophysics Data System (ADS)
Cong, Nguyen Huu; Xuan, Le Ngoc
2008-11-01
This paper deals with parallel predictor-corrector (PC) iteration methods based on collocation Runge-Kutta (RK) corrector methods with continuous output formulas for solving nonstiff initial-value problems (IVPs) for systems of first-order differential equations. At nth step, the continuous output formulas are used not only for predicting the stage values in the PC iteration methods but also for calculating the step values at (n+2)th step. In this case, the integration processes can be proceeded twostep-by-twostep. The resulting twostep-by-twostep (TBT) parallel-iterated RK-type (PIRK-type) methods with continuous output formulas (twostep-by-twostep PIRKC methods or TBTPIRKC methods) give us a faster integration process. Fixed stepsize applications of these TBTPIRKC methods to a few widely-used test problems reveal that the new PC methods are much more efficient when compared with the well-known parallel-iterated RK methods (PIRK methods), parallel-iterated RK-type PC methods with continuous output formulas (PIRKC methods) and sequential explicit RK codes DOPRI5 and DOP853 available from the literature.
Accelerated iterative beam angle selection in IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bangert, Mark, E-mail: m.bangert@dkfz.de; Unkelbach, Jan
2016-03-15
Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based onmore » surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could show that optimized beam ensembles using only a few noncoplanar beam orientations often approach the plan quality of fully noncoplanar ensembles. Conclusions: We conclude that iterative BAS in combination with objective function surrogates can be a viable option to implement automated BAS at clinically acceptable computation times.« less
Iterative CT reconstruction using coordinate descent with ordered subsets of data
NASA Astrophysics Data System (ADS)
Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.
2016-04-01
Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.
Iterative approach as alternative to S-matrix in modal methods
NASA Astrophysics Data System (ADS)
Semenikhin, Igor; Zanuccoli, Mauro
2014-12-01
The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.
Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method
NASA Astrophysics Data System (ADS)
Mehl, S.
2012-12-01
Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.
Song, Junqiang; Leng, Hongze; Lu, Fengshun
2014-01-01
We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303
Gauss-Seidel Iterative Method as a Real-Time Pile-Up Solver of Scintillation Pulses
NASA Astrophysics Data System (ADS)
Novak, Roman; Vencelj, Matja¿
2009-12-01
The pile-up rejection in nuclear spectroscopy has been confronted recently by several pile-up correction schemes that compensate for distortions of the signal and subsequent energy spectra artifacts as the counting rate increases. We study here a real-time capability of the event-by-event correction method, which at the core translates to solving many sets of linear equations. Tight time limits and constrained front-end electronics resources make well-known direct solvers inappropriate. We propose a novel approach based on the Gauss-Seidel iterative method, which turns out to be a stable and cost-efficient solution to improve spectroscopic resolution in the front-end electronics. We show the method convergence properties for a class of matrices that emerge in calorimetric processing of scintillation detector signals and demonstrate the ability of the method to support the relevant resolutions. The sole iteration-based error component can be brought below the sliding window induced errors in a reasonable number of iteration steps, thus allowing real-time operation. An area-efficient hardware implementation is proposed that fully utilizes the method's inherent parallelism.
NASA Astrophysics Data System (ADS)
Trujillo Bueno, J.; Fabiani Bendicho, P.
1995-12-01
Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel methods remain effective even under extreme non-LTE conditions in very fine grids.
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, H
Purpose: This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Methods: FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected tomore » the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergence. Results: The proposed FIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts. Conclusion: FIR is proposed to incorporate AR into IR, with an efficient image reconstruction algorithm based on PFBS. The CBCT results suggest that FIR synergizes AR and IR with improved image quality and reduced axial and half-fan artifacts. The authors was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less
NASA Astrophysics Data System (ADS)
Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho
2018-06-01
In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.
Wang, An; Cao, Yang; Shi, Quan
2018-01-01
In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.
Fast non-interferometric iterative phase retrieval for holographic data storage.
Lin, Xiao; Huang, Yong; Shimura, Tsutomu; Fujimura, Ryushi; Tanaka, Yoshito; Endo, Masao; Nishimoto, Hajimu; Liu, Jinpeng; Li, Yang; Liu, Ying; Tan, Xiaodi
2017-12-11
Fast non-interferometric phase retrieval is a very important technique for phase-encoded holographic data storage and other phase based applications due to its advantage of easy implementation, simple system setup, and robust noise tolerance. Here we present an iterative non-interferometric phase retrieval for 4-level phase encoded holographic data storage based on an iterative Fourier transform algorithm and known portion of the encoded data, which increases the storage code rate to two-times that of an amplitude based method. Only a single image at the Fourier plane of the beam is captured for the iterative reconstruction. Since beam intensity at the Fourier plane of the reconstructed beam is more concentrated than the reconstructed beam itself, the requirement of diffractive efficiency of the recording media is reduced, which will improve the dynamic range of recording media significantly. The phase retrieval only requires 10 iterations to achieve a less than 5% phase data error rate, which is successfully demonstrated by recording and reconstructing a test image data experimentally. We believe our method will further advance the holographic data storage technique in the era of big data.
NASA Astrophysics Data System (ADS)
Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.
2018-02-01
In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).
Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.
Xie, Xianming
2016-08-22
A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.
NASA Astrophysics Data System (ADS)
Chen, Hao; Lv, Wen; Zhang, Tongtong
2018-05-01
We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.
Electromagnetic scattering of large structures in layered earths using integral equations
NASA Astrophysics Data System (ADS)
Xiong, Zonghou; Tripp, Alan C.
1995-07-01
An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, X.; Xiao, W.
2018-04-01
As the geomagnetic sensor is susceptible to interference, a pre-processing total least square iteration method is proposed for calibration compensation. Firstly, the error model of the geomagnetic sensor is analyzed and the correction model is proposed, then the characteristics of the model are analyzed and converted into nine parameters. The geomagnetic data is processed by Hilbert transform (HHT) to improve the signal-to-noise ratio, and the nine parameters are calculated by using the combination of Newton iteration method and the least squares estimation method. The sifter algorithm is used to filter the initial value of the iteration to ensure that the initial error is as small as possible. The experimental results show that this method does not need additional equipment and devices, can continuously update the calibration parameters, and better than the two-step estimation method, it can compensate geomagnetic sensor error well.
A fast reconstruction algorithm for fluorescence optical diffusion tomography based on preiteration.
Song, Xiaolei; Xiong, Xiaoyun; Bai, Jing
2007-01-01
Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion. However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is employed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng
Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). Inmore » each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. Conclusions: A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method.« less
Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction
Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei
2013-01-01
Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. Conclusions: A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method. PMID:23464329
A Method to Solve Interior and Exterior Camera Calibration Parameters for Image Resection
NASA Technical Reports Server (NTRS)
Samtaney, Ravi
1999-01-01
An iterative method is presented to solve the internal and external camera calibration parameters, given model target points and their images from one or more camera locations. The direct linear transform formulation was used to obtain a guess for the iterative method, and herein lies one of the strengths of the present method. In all test cases, the method converged to the correct solution. In general, an overdetermined system of nonlinear equations is solved in the least-squares sense. The iterative method presented is based on Newton-Raphson for solving systems of nonlinear algebraic equations. The Jacobian is analytically derived and the pseudo-inverse of the Jacobian is obtained by singular value decomposition.
Improving cluster-based missing value estimation of DNA microarray data.
Brás, Lígia P; Menezes, José C
2007-06-01
We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is performed iteratively using the recently estimated values. The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation. The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-12-01
We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.
Steady state numerical solutions for determining the location of MEMS on projectile
NASA Astrophysics Data System (ADS)
Abiprayu, K.; Abdigusna, M. F. F.; Gunawan, P. H.
2018-03-01
This paper is devoted to compare the numerical solutions for the steady and unsteady state heat distribution model on projectile. Here, the best location for installing of the MEMS on the projectile based on the surface temperature is investigated. Numerical iteration methods, Jacobi and Gauss-Seidel have been elaborated to solve the steady state heat distribution model on projectile. The results using Jacobi and Gauss-Seidel are shown identical but the discrepancy iteration cost for each methods is gained. Using Jacobi’s method, the iteration cost is 350 iterations. Meanwhile, using Gauss-Seidel 188 iterations are obtained, faster than the Jacobi’s method. The comparison of the simulation by steady state model and the unsteady state model by a reference is shown satisfying. Moreover, the best candidate for installing MEMS on projectile is observed at pointT(10, 0) which has the lowest temperature for the other points. The temperature using Jacobi and Gauss-Seidel for scenario 1 and 2 atT(10, 0) are 307 and 309 Kelvin respectively.
NASA Astrophysics Data System (ADS)
Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.
2014-07-01
The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.
RF Pulse Design using Nonlinear Gradient Magnetic Fields
Kopanoglu, Emre; Constable, R. Todd
2014-01-01
Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286
GWASinlps: Nonlocal prior based iterative SNP selection tool for genome-wide association studies.
Sanyal, Nilotpal; Lo, Min-Tzu; Kauppi, Karolina; Djurovic, Srdjan; Andreassen, Ole A; Johnson, Valen E; Chen, Chi-Hua
2018-06-19
Multiple marker analysis of the genome-wide association study (GWAS) data has gained ample attention in recent years. However, because of the ultra high-dimensionality of GWAS data, such analysis is challenging. Frequently used penalized regression methods often lead to large number of false positives, whereas Bayesian methods are computationally very expensive. Motivated to ameliorate these issues simultaneously, we consider the novel approach of using nonlocal priors in an iterative variable selection framework. We develop a variable selection method, named, iterative nonlocal prior based selection for GWAS, or GWASinlps, that combines, in an iterative variable selection framework, the computational efficiency of the screen-and-select approach based on some association learning and the parsimonious uncertainty quantification provided by the use of nonlocal priors. The hallmark of our method is the introduction of 'structured screen-and-select' strategy, that considers hierarchical screening, which is not only based on response-predictor associations, but also based on response-response associations, and concatenates variable selection within that hierarchy. Extensive simulation studies with SNPs having realistic linkage disequilibrium structures demonstrate the advantages of our computationally efficient method compared to several frequentist and Bayesian variable selection methods, in terms of true positive rate, false discovery rate, mean squared error, and effect size estimation error. Further, we provide empirical power analysis useful for study design. Finally, a real GWAS data application was considered with human height as phenotype. An R-package for implementing the GWASinlps method is available at https://cran.r-project.org/web/packages/GWASinlps/index.html. Supplementary data are available at Bioinformatics online.
Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong
2008-12-01
How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.
NASA Astrophysics Data System (ADS)
Al-Chalabi, Rifat M. Khalil
1997-09-01
Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power reconstruction methodology. The relaxation method, which is the power method, utilizes a constant coefficient matrix within the NEM non-linear iterative strategy. The choice of the MG nesting within the nested iterative strategy enables the incorporation of other non-linear effects with no additional coding effort. In addition, if an eigenvalue problem is being solved, it remains an eigenvalue problem at all grid levels, simplifying coding implementation. The merit of the developed MG method was tested by incorporating it into the NESTLE iterative solver, and employing it to solve four different benchmark problems. In addition to the base cases, three different sensitivity studies are performed, examining the effects of number of MG levels, homogenized coupling coefficients correction (i.e. restriction operator), and fine-mesh reconstruction algorithm (i.e. prolongation operator). The multilevel acceleration scheme developed in this research provides the foundation for developing adaptive multilevel acceleration methods for steady-state and transient NEM nodal neutron diffusion equations. (Abstract shortened by UMI.)
Li, Chuan; Li, Lin; Zhang, Jie; Alexov, Emil
2012-01-01
The Gauss-Seidel method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the Gauss-Seidel method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here we report an efficient and exact (not requiring assumptions) method to parallelize iterations and to reduce the computational time as a linear/nearly linear function of the number of CPUs. In contrast to other existing solutions, our method does not require any assumptions and is equally applicable for solving linear and nonlinear equations. This approach is implemented in the DelPhi program, which is a finite difference Poisson-Boltzmann equation solver to model electrostatics in molecular biology. This development makes the iterative procedure on obtaining the electrostatic potential distribution in the parallelized DelPhi several folds faster than that in the serial code. Further we demonstrate the advantages of the new parallelized DelPhi by computing the electrostatic potential and the corresponding energies of large supramolecular structures. PMID:22674480
A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems ⋆
Ying, Wenjun; Henriquez, Craig S.
2013-01-01
This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green's functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green's functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong. PMID:23519600
Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei
2013-03-01
A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method.
Liu, Xiao; Shi, Jun; Zhou, Shichong; Lu, Minhua
2014-01-01
The dimensionality reduction is an important step in ultrasound image based computer-aided diagnosis (CAD) for breast cancer. A newly proposed l2,1 regularized correntropy algorithm for robust feature selection (CRFS) has achieved good performance for noise corrupted data. Therefore, it has the potential to reduce the dimensions of ultrasound image features. However, in clinical practice, the collection of labeled instances is usually expensive and time costing, while it is relatively easy to acquire the unlabeled or undetermined instances. Therefore, the semi-supervised learning is very suitable for clinical CAD. The iterated Laplacian regularization (Iter-LR) is a new regularization method, which has been proved to outperform the traditional graph Laplacian regularization in semi-supervised classification and ranking. In this study, to augment the classification accuracy of the breast ultrasound CAD based on texture feature, we propose an Iter-LR-based semi-supervised CRFS (Iter-LR-CRFS) algorithm, and then apply it to reduce the feature dimensions of ultrasound images for breast CAD. We compared the Iter-LR-CRFS with LR-CRFS, original supervised CRFS, and principal component analysis. The experimental results indicate that the proposed Iter-LR-CRFS significantly outperforms all other algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingold, E; Dave, J
2014-06-01
Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less
An Automated Baseline Correction Method Based on Iterative Morphological Operations.
Chen, Yunliang; Dai, Liankui
2018-05-01
Raman spectra usually suffer from baseline drift caused by fluorescence or other reasons. Therefore, baseline correction is a necessary and crucial step that must be performed before subsequent processing and analysis of Raman spectra. An automated baseline correction method based on iterative morphological operations is proposed in this work. The method can adaptively determine the structuring element first and then gradually remove the spectral peaks during iteration to get an estimated baseline. Experiments on simulated data and real-world Raman data show that the proposed method is accurate, fast, and flexible for handling different kinds of baselines in various practical situations. The comparison of the proposed method with some state-of-the-art baseline correction methods demonstrates its advantages over the existing methods in terms of accuracy, adaptability, and flexibility. Although only Raman spectra are investigated in this paper, the proposed method is hopefully to be used for the baseline correction of other analytical instrumental signals, such as IR spectra and chromatograms.
Three dimensional iterative beam propagation method for optical waveguide devices
NASA Astrophysics Data System (ADS)
Ma, Changbao; Van Keuren, Edward
2006-10-01
The finite difference beam propagation method (FD-BPM) is an effective model for simulating a wide range of optical waveguide structures. The classical FD-BPMs are based on the Crank-Nicholson scheme, and in tridiagonal form can be solved using the Thomas method. We present a different type of algorithm for 3-D structures. In this algorithm, the wave equation is formulated into a large sparse matrix equation which can be solved using iterative methods. The simulation window shifting scheme and threshold technique introduced in our earlier work are utilized to overcome the convergence problem of iterative methods for large sparse matrix equation and wide-angle simulations. This method enables us to develop higher-order 3-D wide-angle (WA-) BPMs based on Pade approximant operators and the multistep method, which are commonly used in WA-BPMs for 2-D structures. Simulations using the new methods will be compared to the analytical results to assure its effectiveness and applicability.
Aurumskjöld, Marie-Louise; Ydström, Kristina; Tingberg, Anders; Söderberg, Marcus
2017-01-01
The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose 4 ) and model-based (IMR) iterative reconstruction methods. iDose 4 decreased the noise by 15-45% compared with FBP depending on the level of iDose 4 . The IMR reduced the noise even further, by 60-75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose 4 , and the improvement was even greater with IMR. There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality. © The Foundation Acta Radiologica 2016.
NASA Astrophysics Data System (ADS)
Zhong, XiaoXu; Liao, ShiJun
2018-01-01
Analytic approximations of the Von Kármán's plate equations in integral form for a circular plate under external uniform pressure to arbitrary magnitude are successfully obtained by means of the homotopy analysis method (HAM), an analytic approximation technique for highly nonlinear problems. Two HAM-based approaches are proposed for either a given external uniform pressure Q or a given central deflection, respectively. Both of them are valid for uniform pressure to arbitrary magnitude by choosing proper values of the so-called convergence-control parameters c 1 and c 2 in the frame of the HAM. Besides, it is found that the HAM-based iteration approaches generally converge much faster than the interpolation iterative method. Furthermore, we prove that the interpolation iterative method is a special case of the first-order HAM iteration approach for a given external uniform pressure Q when c 1 = - θ and c 2 = -1, where θ denotes the interpolation iterative parameter. Therefore, according to the convergence theorem of Zheng and Zhou about the interpolation iterative method, the HAM-based approaches are valid for uniform pressure to arbitrary magnitude at least in the special case c 1 = - θ and c 2 = -1. In addition, we prove that the HAM approach for the Von Kármán's plate equations in differential form is just a special case of the HAM for the Von Kármán's plate equations in integral form mentioned in this paper. All of these illustrate the validity and great potential of the HAM for highly nonlinear problems, and its superiority over perturbation techniques.
Accelerated iterative beam angle selection in IMRT.
Bangert, Mark; Unkelbach, Jan
2016-03-01
Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n - 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could show that optimized beam ensembles using only a few noncoplanar beam orientations often approach the plan quality of fully noncoplanar ensembles. We conclude that iterative BAS in combination with objective function surrogates can be a viable option to implement automated BAS at clinically acceptable computation times.
Fast and secure encryption-decryption method based on chaotic dynamics
Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.
1995-01-01
A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.
Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems
NASA Technical Reports Server (NTRS)
Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.
1993-01-01
In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method
NASA Astrophysics Data System (ADS)
Wang, Chengjie; Eldredge, Jeff D.
2014-11-01
A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.
Recent advances in Lanczos-based iterative methods for nonsymmetric linear systems
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Golub, Gene H.; Nachtigal, Noel M.
1992-01-01
In recent years, there has been a true revival of the nonsymmetric Lanczos method. On the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-called look-ahead variants of the Lanczos process have been developed, which remedy this problem. On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear systems have been proposed. This paper gives a survey of some of these recent developments.
The Research of Multiple Attenuation Based on Feedback Iteration and Independent Component Analysis
NASA Astrophysics Data System (ADS)
Xu, X.; Tong, S.; Wang, L.
2017-12-01
How to solve the problem of multiple suppression is a difficult problem in seismic data processing. The traditional technology for multiple attenuation is based on the principle of the minimum output energy of the seismic signal, this criterion is based on the second order statistics, and it can't achieve the multiple attenuation when the primaries and multiples are non-orthogonal. In order to solve the above problems, we combine the feedback iteration method based on the wave equation and the improved independent component analysis (ICA) based on high order statistics to suppress the multiple waves. We first use iterative feedback method to predict the free surface multiples of each order. Then, in order to predict multiples from real multiple in amplitude and phase, we design an expanded pseudo multi-channel matching filtering method to get a more accurate matching multiple result. Finally, we present the improved fast ICA algorithm which is based on the maximum non-Gauss criterion of output signal to the matching multiples and get better separation results of the primaries and the multiples. The advantage of our method is that we don't need any priori information to the prediction of the multiples, and can have a better separation result. The method has been applied to several synthetic data generated by finite-difference model technique and the Sigsbee2B model multiple data, the primaries and multiples are non-orthogonal in these models. The experiments show that after three to four iterations, we can get the perfect multiple results. Using our matching method and Fast ICA adaptive multiple subtraction, we can not only effectively preserve the effective wave energy in seismic records, but also can effectively suppress the free surface multiples, especially the multiples related to the middle and deep areas.
Nonrigid iterative closest points for registration of 3D biomedical surfaces
NASA Astrophysics Data System (ADS)
Liang, Luming; Wei, Mingqiang; Szymczak, Andrzej; Petrella, Anthony; Xie, Haoran; Qin, Jing; Wang, Jun; Wang, Fu Lee
2018-01-01
Advanced 3D optical and laser scanners bring new challenges to computer graphics. We present a novel nonrigid surface registration algorithm based on Iterative Closest Point (ICP) method with multiple correspondences. Our method, called the Nonrigid Iterative Closest Points (NICPs), can be applied to surfaces of arbitrary topology. It does not impose any restrictions on the deformation, e.g. rigidity or articulation. Finally, it does not require parametrization of input meshes. Our method is based on an objective function that combines distance and regularization terms. Unlike the standard ICP, the distance term is determined based on multiple two-way correspondences rather than single one-way correspondences between surfaces. A Laplacian-based regularization term is proposed to take full advantage of multiple two-way correspondences. This term regularizes the surface movement by enforcing vertices to move coherently with their 1-ring neighbors. The proposed method achieves good performances when no global pose differences or significant amount of bending exists in the models, for example, families of similar shapes, like human femur and vertebrae models.
SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, P; Mao, T; Gong, S
2016-06-15
Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimizationmore » trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917).« less
Sparse magnetic resonance imaging reconstruction using the bregman iteration
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo
2013-01-01
Magnetic resonance imaging (MRI) reconstruction needs many samples that are sequentially sampled by using phase encoding gradients in a MRI system. It is directly connected to the scan time for the MRI system and takes a long time. Therefore, many researchers have studied ways to reduce the scan time, especially, compressed sensing (CS), which is used for sparse images and reconstruction for fewer sampling datasets when the k-space is not fully sampled. Recently, an iterative technique based on the bregman method was developed for denoising. The bregman iteration method improves on total variation (TV) regularization by gradually recovering the fine-scale structures that are usually lost in TV regularization. In this study, we studied sparse sampling image reconstruction using the bregman iteration for a low-field MRI system to improve its temporal resolution and to validate its usefulness. The image was obtained with a 0.32 T MRI scanner (Magfinder II, SCIMEDIX, Korea) with a phantom and an in-vivo human brain in a head coil. We applied random k-space sampling, and we determined the sampling ratios by using half the fully sampled k-space. The bregman iteration was used to generate the final images based on the reduced data. We also calculated the root-mean-square-error (RMSE) values from error images that were obtained using various numbers of bregman iterations. Our reconstructed images using the bregman iteration for sparse sampling images showed good results compared with the original images. Moreover, the RMSE values showed that the sparse reconstructed phantom and the human images converged to the original images. We confirmed the feasibility of sparse sampling image reconstruction methods using the bregman iteration with a low-field MRI system and obtained good results. Although our results used half the sampling ratio, this method will be helpful in increasing the temporal resolution at low-field MRI systems.
An adaptive Gaussian process-based iterative ensemble smoother for data assimilation
NASA Astrophysics Data System (ADS)
Ju, Lei; Zhang, Jiangjiang; Meng, Long; Wu, Laosheng; Zeng, Lingzao
2018-05-01
Accurate characterization of subsurface hydraulic conductivity is vital for modeling of subsurface flow and transport. The iterative ensemble smoother (IES) has been proposed to estimate the heterogeneous parameter field. As a Monte Carlo-based method, IES requires a relatively large ensemble size to guarantee its performance. To improve the computational efficiency, we propose an adaptive Gaussian process (GP)-based iterative ensemble smoother (GPIES) in this study. At each iteration, the GP surrogate is adaptively refined by adding a few new base points chosen from the updated parameter realizations. Then the sensitivity information between model parameters and measurements is calculated from a large number of realizations generated by the GP surrogate with virtually no computational cost. Since the original model evaluations are only required for base points, whose number is much smaller than the ensemble size, the computational cost is significantly reduced. The applicability of GPIES in estimating heterogeneous conductivity is evaluated by the saturated and unsaturated flow problems, respectively. Without sacrificing estimation accuracy, GPIES achieves about an order of magnitude of speed-up compared with the standard IES. Although subsurface flow problems are considered in this study, the proposed method can be equally applied to other hydrological models.
NASA Astrophysics Data System (ADS)
Zhang, B.; Sang, Jun; Alam, Mohammad S.
2013-03-01
An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.
Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M
2014-01-01
Digital breast tomosynthesis (DBT) has strong promise to improve sensitivity for detecting breast cancer. DBT reconstruction estimates the breast tissue attenuation using projection views (PVs) acquired in a limited angular range. Because of the limited field of view (FOV) of the detector, the PVs may not completely cover the breast in the x-ray source motion direction at large projection angles. The voxels in the imaged volume cannot be updated when they are outside the FOV, thus causing a discontinuity in intensity across the FOV boundaries in the reconstructed slices, which we refer to as the truncated projection artifact (TPA). Most existing TPA reduction methods were developed for the filtered backprojection method in the context of computed tomography. In this study, we developed a new diffusion-based method to reduce TPAs during DBT reconstruction using the simultaneous algebraic reconstruction technique (SART). Our TPA reduction method compensates for the discontinuity in background intensity outside the FOV of the current PV after each PV updating in SART. The difference in voxel values across the FOV boundary is smoothly diffused to the region beyond the FOV of the current PV. Diffusion-based background intensity estimation is performed iteratively to avoid structured artifacts. The method is applicable to TPA in both the forward and backward directions of the PVs and for any number of iterations during reconstruction. The effectiveness of the new method was evaluated by comparing the visual quality of the reconstructed slices and the measured discontinuities across the TPA with and without artifact correction at various iterations. The results demonstrated that the diffusion-based intensity compensation method reduced the TPA while preserving the detailed tissue structures. The visibility of breast lesions obscured by the TPA was improved after artifact reduction. PMID:23318346
Iterative repair for scheduling and rescheduling
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Deale, Michael
1991-01-01
An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.
Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.
Doneva, Mariya; Amthor, Thomas; Koken, Peter; Sommer, Karsten; Börnert, Peter
2017-09-01
An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data. Copyright © 2017 Elsevier Inc. All rights reserved.
A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Jameson, Antony
1986-01-01
A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.
Unsupervised iterative detection of land mines in highly cluttered environments.
Batman, Sinan; Goutsias, John
2003-01-01
An unsupervised iterative scheme is proposed for land mine detection in heavily cluttered scenes. This scheme is based on iterating hybrid multispectral filters that consist of a decorrelating linear transform coupled with a nonlinear morphological detector. Detections extracted from the first pass are used to improve results in subsequent iterations. The procedure stops after a predetermined number of iterations. The proposed scheme addresses several weaknesses associated with previous adaptations of morphological approaches to land mine detection. Improvement in detection performance, robustness with respect to clutter inhomogeneities, a completely unsupervised operation, and computational efficiency are the main highlights of the method. Experimental results reveal excellent performance.
LDPC-based iterative joint source-channel decoding for JPEG2000.
Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane
2007-02-01
A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.
Using the surface panel method to predict the steady performance of ducted propellers
NASA Astrophysics Data System (ADS)
Cai, Hao-Peng; Su, Yu-Min; Li, Xin; Shen, Hai-Long
2009-12-01
A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction between them was solved by an induced velocity potential iterative method. Compared with the induced velocity iterative method, the method presented can save programming and calculating time. Numerical results for a JD simplified ducted propeller series showed that the method presented is effective for predicting the steady hydrodynamic performance of ducted propellers.
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
NASA Astrophysics Data System (ADS)
Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong
2016-12-01
We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images.
Conjugate gradient coupled with multigrid for an indefinite problem
NASA Technical Reports Server (NTRS)
Gozani, J.; Nachshon, A.; Turkel, E.
1984-01-01
An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.
NASA Astrophysics Data System (ADS)
Klimina, L. A.
2018-05-01
The modification of the Picard approach is suggested that is targeted to the construction of a bifurcation diagram of 2π -periodic motions of mechanical system with a cylindrical phase space. Each iterative step is based on principles of averaging and energy balance similar to the Poincare-Pontryagin approach. If the iterative procedure converges, it provides the periodic trajectory of the system depending on the bifurcation parameter of the model. The method is applied to describe self-sustained rotations in the model of an aerodynamic pendulum.
Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.
2004-01-01
Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.
NASA Astrophysics Data System (ADS)
Swastika, Windra
2017-03-01
A money's nominal value recognition system has been developed using Artificial Neural Network (ANN). ANN with Back Propagation has one disadvantage. The learning process is very slow (or never reach the target) in the case of large number of iteration, weight and samples. One way to speed up the learning process is using Quickprop method. Quickprop method is based on Newton's method and able to speed up the learning process by assuming that the weight adjustment (E) is a parabolic function. The goal is to minimize the error gradient (E'). In our system, we use 5 types of money's nominal value, i.e. 1,000 IDR, 2,000 IDR, 5,000 IDR, 10,000 IDR and 50,000 IDR. One of the surface of each nominal were scanned and digitally processed. There are 40 patterns to be used as training set in ANN system. The effectiveness of Quickprop method in the ANN system was validated by 2 factors, (1) number of iterations required to reach error below 0.1; and (2) the accuracy to predict nominal values based on the input. Our results shows that the use of Quickprop method is successfully reduce the learning process compared to Back Propagation method. For 40 input patterns, Quickprop method successfully reached error below 0.1 for only 20 iterations, while Back Propagation method required 2000 iterations. The prediction accuracy for both method is higher than 90%.
Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz
2013-09-01
Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.
Real-Time Nonlocal Means-Based Despeckling.
Breivik, Lars Hofsoy; Snare, Sten Roar; Steen, Erik Normann; Solberg, Anne H Schistad
2017-06-01
In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.
de Oliveira, Tiago E.; Netz, Paulo A.; Kremer, Kurt; ...
2016-05-03
We present a coarse-graining strategy that we test for aqueous mixtures. The method uses pair-wise cumulative coordination as a target function within an iterative Boltzmann inversion (IBI) like protocol. We name this method coordination iterative Boltzmann inversion (C–IBI). While the underlying coarse-grained model is still structure based and, thus, preserves pair-wise solution structure, our method also reproduces solvation thermodynamics of binary and/or ternary mixtures. In addition, we observe much faster convergence within C–IBI compared to IBI. To validate the robustness, we apply C–IBI to study test cases of solvation thermodynamics of aqueous urea and a triglycine solvation in aqueous urea.
NASA Astrophysics Data System (ADS)
Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.
2016-06-01
A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.
Enhancing sparsity of Hermite polynomial expansions by iterative rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiu; Lei, Huan; Baker, Nathan A.
2016-02-01
Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.
NASA Astrophysics Data System (ADS)
Lavery, N.; Taylor, C.
1999-07-01
Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
Holmes, T J; Liu, Y H
1989-11-15
A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.
Picard Trajectory Approximation Iteration for Efficient Orbit Propagation
2015-07-21
Eqn (8)) for an iterative ap- proximation of eccentric anomaly, and is transformed back to . The Lambert/ Kepler time – eccentric anomaly relationship...of Kepler motion based on spinor regulari- zation, Journal fur die Reine und Angewandt Mathematik 218, 204-219, 1965. [3] Levi-Civita T., Sur la...transformed back to , ,x y z . The Lambert/ Kepler time – eccentric anomaly relationship is iterated by a Newton/Secant method to converge on the
NASA Astrophysics Data System (ADS)
Leclerc, Arnaud; Thomas, Phillip S.; Carrington, Tucker
2017-08-01
Vibrational spectra and wavefunctions of polyatomic molecules can be calculated at low memory cost using low-rank sum-of-product (SOP) decompositions to represent basis functions generated using an iterative eigensolver. Using a SOP tensor format does not determine the iterative eigensolver. The choice of the interative eigensolver is limited by the need to restrict the rank of the SOP basis functions at every stage of the calculation. We have adapted, implemented and compared different reduced-rank algorithms based on standard iterative methods (block-Davidson algorithm, Chebyshev iteration) to calculate vibrational energy levels and wavefunctions of the 12-dimensional acetonitrile molecule. The effect of using low-rank SOP basis functions on the different methods is analysed and the numerical results are compared with those obtained with the reduced rank block power method. Relative merits of the different algorithms are presented, showing that the advantage of using a more sophisticated method, although mitigated by the use of reduced-rank SOP functions, is noticeable in terms of CPU time.
Multilevel acceleration of scattering-source iterations with application to electron transport
Drumm, Clif; Fan, Wesley
2017-08-18
Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less
The role of simulation in the design of a neural network chip
NASA Technical Reports Server (NTRS)
Desai, Utpal; Roppel, Thaddeus A.; Padgett, Mary L.
1993-01-01
An iterative, simulation-based design procedure for a neural network chip is introduced. For this design procedure, the goal is to produce a chip layout for a neural network in which the weights are determined by transistor gate width-to-length ratios. In a given iteration, the current layout is simulated using the circuit simulator SPICE, and layout adjustments are made based on conventional gradient-decent methods. After the iteration converges, the chip is fabricated. Monte Carlo analysis is used to predict the effect of statistical fabrication process variations on the overall performance of the neural network chip.
NASA Astrophysics Data System (ADS)
Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan
2018-06-01
An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Brock, Kristy K; Daly, Michael J; Chan, Harley; Irish, Jonathan C; Siewerdsen, Jeffrey H
2011-04-01
A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.
Liu, Shiyuan; Xu, Shuang; Wu, Xiaofei; Liu, Wei
2012-06-18
This paper proposes an iterative method for in situ lens aberration measurement in lithographic tools based on a quadratic aberration model (QAM) that is a natural extension of the linear model formed by taking into account interactions among individual Zernike coefficients. By introducing a generalized operator named cross triple correlation (CTC), the quadratic model can be calculated very quickly and accurately with the help of fast Fourier transform (FFT). The Zernike coefficients up to the 37th order or even higher are determined by solving an inverse problem through an iterative procedure from several through-focus aerial images of a specially designed mask pattern. The simulation work has validated the theoretical derivation and confirms that such a method is simple to implement and yields a superior quality of wavefront estimate, particularly for the case when the aberrations are relatively large. It is fully expected that this method will provide a useful practical means for the in-line monitoring of the imaging quality of lithographic tools.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
NASA Astrophysics Data System (ADS)
Chew, J. V. L.; Sulaiman, J.
2017-09-01
Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1991-01-01
Efficient iterative solution methods are being developed for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. Thus, the extra work required by iterative schemes can also be designed to perform efficiently on current and future generation scalable, missively parallel machines. An obvious candidate for iteratively solving the system of coupled nonlinear algebraic equations arising in CFD applications is the Newton method. Newton's method was implemented in existing finite difference and finite volume methods. Depending on the complexity of the problem, the number of Newton iterations needed per step to solve the discretized system of equations can, however, vary dramatically from a few to several hundred. Another popular approach based on the classical conjugate gradient method, known as the GMRES (Generalized Minimum Residual) algorithm is investigated. The GMRES algorithm was used in the past by a number of researchers for solving steady viscous and inviscid flow problems with considerable success. Here, the suitability of this algorithm is investigated for solving the system of nonlinear equations that arise in unsteady Navier-Stokes solvers at each time step. Unlike the Newton method which attempts to drive the error in the solution at each and every node down to zero, the GMRES algorithm only seeks to minimize the L2 norm of the error. In the GMRES algorithm the changes in the flow properties from one time step to the next are assumed to be the sum of a set of orthogonal vectors. By choosing the number of vectors to a reasonably small value N (between 5 and 20) the work required for advancing the solution from one time step to the next may be kept to (N+1) times that of a noniterative scheme. Many of the operations required by the GMRES algorithm such as matrix-vector multiplies, matrix additions and subtractions can all be vectorized and parallelized efficiently.
On iterative algorithms for quantitative photoacoustic tomography in the radiative transport regime
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhou, Tie
2017-11-01
In this paper, we present a numerical reconstruction method for quantitative photoacoustic tomography (QPAT), based on the radiative transfer equation (RTE), which models light propagation more accurately than diffusion approximation (DA). We investigate the reconstruction of absorption coefficient and scattering coefficient of biological tissues. An improved fixed-point iterative method to retrieve the absorption coefficient, given the scattering coefficient, is proposed for its cheap computational cost; the convergence of this method is also proved. The Barzilai-Borwein (BB) method is applied to retrieve two coefficients simultaneously. Since the reconstruction of optical coefficients involves the solutions of original and adjoint RTEs in the framework of optimization, an efficient solver with high accuracy is developed from Gao and Zhao (2009 Transp. Theory Stat. Phys. 38 149-92). Simulation experiments illustrate that the improved fixed-point iterative method and the BB method are competitive methods for QPAT in the relevant cases.
An iterative solver for the 3D Helmholtz equation
NASA Astrophysics Data System (ADS)
Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir
2017-09-01
We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.
NASA Astrophysics Data System (ADS)
David, Sabrina; Burion, Steve; Tepe, Alan; Wilfley, Brian; Menig, Daniel; Funk, Tobias
2012-03-01
Iterative reconstruction methods have emerged as a promising avenue to reduce dose in CT imaging. Another, perhaps less well-known, advance has been the development of inverse geometry CT (IGCT) imaging systems, which can significantly reduce the radiation dose delivered to a patient during a CT scan compared to conventional CT systems. Here we show that IGCT data can be reconstructed using iterative methods, thereby combining two novel methods for CT dose reduction. A prototype IGCT scanner was developed using a scanning beam digital X-ray system - an inverse geometry fluoroscopy system with a 9,000 focal spot x-ray source and small photon counting detector. 90 fluoroscopic projections or "superviews" spanning an angle of 360 degrees were acquired of an anthropomorphic phantom mimicking a 1 year-old boy. The superviews were reconstructed with a custom iterative reconstruction algorithm, based on the maximum-likelihood algorithm for transmission tomography (ML-TR). The normalization term was calculated based on flat-field data acquired without a phantom. 15 subsets were used, and a total of 10 complete iterations were performed. Initial reconstructed images showed faithful reconstruction of anatomical details. Good edge resolution and good contrast-to-noise properties were observed. Overall, ML-TR reconstruction of IGCT data collected by a bench-top prototype was shown to be viable, which may be an important milestone in the further development of inverse geometry CT.
Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan
2017-12-13
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.
Hu, Xiaopeng; Wang, Fan
2017-01-01
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031
Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Brock, Kristy K.; Daly, Michael J.; Chan, Harley; Irish, Jonathan C.; Siewerdsen, Jeffrey H.
2011-01-01
Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (“intensity”). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and∕or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5±2.8) mm compared to (3.5±3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance. PMID:21626913
Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali
2011-04-15
Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specificmore » intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.« less
A fast method to emulate an iterative POCS image reconstruction algorithm.
Zeng, Gengsheng L
2017-10-01
Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.
Maxwell iteration for the lattice Boltzmann method with diffusive scaling
NASA Astrophysics Data System (ADS)
Zhao, Weifeng; Yong, Wen-An
2017-03-01
In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.
Ramani, Sathish; Liu, Zhihao; Rosen, Jeffrey; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.
2012-01-01
Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches (based on Stein's Unbiased Risk Estimate— SURE) need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance σ2), and GCV (that does not need σ2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-type ℓ1-regularization. We demonstrate through simulations and experiments with real data that minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observed that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly sub-optimal for MRI. Theoretical derivations in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms. PMID:22531764
Radiofrequency pulse design using nonlinear gradient magnetic fields.
Kopanoglu, Emre; Constable, R Todd
2015-09-01
An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.
Single image super-resolution based on approximated Heaviside functions and iterative refinement
Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian
2018-01-01
One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298
Propagation-based x-ray phase contrast imaging using an iterative phase diversity technique
NASA Astrophysics Data System (ADS)
Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.
2018-03-01
Through the use of a phase diversity technique, we demonstrate a near-field in-line x-ray phase contrast algorithm that provides improved object reconstruction when compared to our previous iterative methods for a homogeneous sample. Like our previous methods, the new technique uses the sample refractive index distribution during the reconstruction process. The technique complements existing monochromatic and polychromatic methods and is useful in situations where experimental phase contrast data is affected by noise.
Iterative-Transform Phase Retrieval Using Adaptive Diversity
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop, the estimated phase ceases to wrap in places where the aberration values become incorporated as part of the diversity function. As a result, as the aberration content is transferred to the diversity function, the phase estimate resembles that of a reference flat.
Noise models for low counting rate coherent diffraction imaging.
Godard, Pierre; Allain, Marc; Chamard, Virginie; Rodenburg, John
2012-11-05
Coherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data.
Variable aperture-based ptychographical iterative engine method
NASA Astrophysics Data System (ADS)
Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng
2018-02-01
A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willert, Jeffrey; Taitano, William T.; Knoll, Dana
In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computationalmore » results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.« less
Shen, Junlin; Du, Xiangying; Guo, Daode; Cao, Lizhen; Gao, Yan; Yang, Qi; Li, Pengyu; Liu, Jiabin; Li, Kuncheng
2013-01-01
Objectives To evaluate the clinical value of noise-based tube current reduction method with iterative reconstruction for obtaining consistent image quality with dose optimization in prospective electrocardiogram (ECG)-triggered coronary CT angiography (CCTA). Materials and Methods We performed a prospective randomized study evaluating 338 patients undergoing CCTA with prospective ECG-triggering. Patients were randomly assigned to fixed tube current with filtered back projection (Group 1, n = 113), noise-based tube current with filtered back projection (Group 2, n = 109) or with iterative reconstruction (Group 3, n = 116). Tube voltage was fixed at 120 kV. Qualitative image quality was rated on a 5-point scale (1 = impaired, to 5 = excellent, with 3–5 defined as diagnostic). Image noise and signal intensity were measured; signal-to-noise ratio was calculated; radiation dose parameters were recorded. Statistical analyses included one-way analysis of variance, chi-square test, Kruskal-Wallis test and multivariable linear regression. Results Image noise was maintained at the target value of 35HU with small interquartile range for Group 2 (35.00–35.03HU) and Group 3 (34.99–35.02HU), while from 28.73 to 37.87HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 20% and 51% reduction in effective dose for Group 2 (2.9 mSv) and Group 3 (1.8 mSv) were achieved compared with Group 1 (3.7 mSv). After adjustment for scan characteristics, iterative reconstruction was associated with 26% reduction in effective dose. Conclusion Noise-based tube current reduction method with iterative reconstruction maintains image noise precisely at the desired level and achieves consistent image quality. Meanwhile, effective dose can be reduced by more than 50%. PMID:23741444
NASA Astrophysics Data System (ADS)
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Kernel-based least squares policy iteration for reinforcement learning.
Xu, Xin; Hu, Dewen; Lu, Xicheng
2007-07-01
In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.
NASA Astrophysics Data System (ADS)
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
Iteration of ultrasound aberration correction methods
NASA Astrophysics Data System (ADS)
Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond
2004-05-01
Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.
NASA Astrophysics Data System (ADS)
Broggini, Filippo; Wapenaar, Kees; van der Neut, Joost; Snieder, Roel
2014-01-01
An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed information about the heterogeneities in the medium is needed. The iterative scheme generalizes the Marchenko equation for inverse scattering to the seismic reflection problem. To give insight in the mechanism of the iterative method, its steps for a simple layered medium are analyzed using physical arguments based on the stationary phase method. The retrieved Green's wavefield is shown to correctly contain the multiples due to the inhomogeneities present in the medium. Additionally, a variant of the iterative scheme enables decomposition of the retrieved wavefield into its downgoing and upgoing components. These wavefields then enable creation of a ghost-free image of the medium with either cross correlation or multidimensional deconvolution, presenting an advantage over standard prestack migration.
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W
2016-05-21
The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.
NASA Astrophysics Data System (ADS)
Wang, Q.; Alfalou, A.; Brosseau, C.
2016-04-01
Here, we report a brief review on the recent developments of correlation algorithms. Several implementation schemes and specific applications proposed in recent years are also given to illustrate powerful applications of these methods. Following a discussion and comparison of the implementation of these schemes, we believe that all-numerical implementation is the most practical choice for application of the correlation method because the advantages of optical processing cannot compensate the technical and/or financial cost needed for an optical implementation platform. We also present a simple iterative algorithm to optimize the training images of composite correlation filters. By making use of three or four iterations, the peak-to-correlation energy (PCE) value of correlation plane can be significantly enhanced. A simulation test using the Pointing Head Pose Image Database (PHPID) illustrates the effectiveness of this statement. Our method can be applied in many composite filters based on linear composition of training images as an optimization means.
Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter
2016-01-01
Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used. PMID:27185492
Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT
NASA Astrophysics Data System (ADS)
Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R.; Sinusas, Albert J.; Liu, Chi
2015-09-01
Due to the limited spatial resolution, partial volume effect has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods include perturbation geometry transfer matrix (pGTM), pGTM followed by multi-target correction (MTC), pGTM with known concentration in blood pool, the former followed by MTC and our newly proposed methods, which perform the MTC method iteratively, where the mean values in all regions are estimated and updated by the MTC-corrected images each time in the iterative process. The NCAT phantom was simulated for cardiovascular imaging with 99mTc-tetrofosmin, a myocardial perfusion agent, and 99mTc-red blood cell (RBC), a pure intravascular imaging agent. Images were acquired at six different count levels to investigate the performance of PVC methods in both high and low count levels for low-dose applications. We performed two large animal in vivo cardiac imaging experiments following injection of 99mTc-RBC for evaluation of intramyocardial blood volume (IMBV). The simulation results showed our proposed iterative methods provide superior performance than other existing PVC methods in terms of image quality, quantitative accuracy, and reproducibility (standard deviation), particularly for low-count data. The iterative approaches are robust for both 99mTc-tetrofosmin perfusion imaging and 99mTc-RBC imaging of IMBV and blood pool activity even at low count levels. The animal study results indicated the effectiveness of PVC to correct the overestimation of IMBV due to blood pool contamination. In conclusion, the iterative PVC methods can achieve more accurate quantification, particularly for low count cardiac SPECT studies, typically obtained from low-dose protocols, gated studies, and dynamic applications.
Adaptively Tuned Iterative Low Dose CT Image Denoising
Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.
2015-01-01
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972
Parallel iterative solution for h and p approximations of the shallow water equations
Barragy, E.J.; Walters, R.A.
1998-01-01
A p finite element scheme and parallel iterative solver are introduced for a modified form of the shallow water equations. The governing equations are the three-dimensional shallow water equations. After a harmonic decomposition in time and rearrangement, the resulting equations are a complex Helmholz problem for surface elevation, and a complex momentum equation for the horizontal velocity. Both equations are nonlinear and the resulting system is solved using the Picard iteration combined with a preconditioned biconjugate gradient (PBCG) method for the linearized subproblems. A subdomain-based parallel preconditioner is developed which uses incomplete LU factorization with thresholding (ILUT) methods within subdomains, overlapping ILUT factorizations for subdomain boundaries and under-relaxed iteration for the resulting block system. The method builds on techniques successfully applied to linear elements by introducing ordering and condensation techniques to handle uniform p refinement. The combined methods show good performance for a range of p (element order), h (element size), and N (number of processors). Performance and scalability results are presented for a field scale problem where up to 512 processors are used. ?? 1998 Elsevier Science Ltd. All rights reserved.
Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods
Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.
2013-01-01
Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822
Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael
2018-06-01
To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
An iterative method for the localization of a neutron source in a large box (container)
NASA Astrophysics Data System (ADS)
Dubinski, S.; Presler, O.; Alfassi, Z. B.
2007-12-01
The localization of an unknown neutron source in a bulky box was studied. This can be used for the inspection of cargo, to prevent the smuggling of neutron and α emitters. It is important to localize the source from the outside for safety reasons. Source localization is necessary in order to determine its activity. A previous study showed that, by using six detectors, three on each parallel face of the box (460×420×200 mm 3), the location of the source can be found with an average distance of 4.73 cm between the real source position and the calculated one and a maximal distance of about 9 cm. Accuracy was improved in this work by applying an iteration method based on four fixed detectors and the successive iteration of positioning of an external calibrating source. The initial positioning of the calibrating source is the plane of detectors 1 and 2. This method finds the unknown source location with an average distance of 0.78 cm between the real source position and the calculated one and a maximum distance of 3.66 cm for the same box. For larger boxes, localization without iterations requires an increase in the number of detectors, while localization with iterations requires only an increase in the number of iteration steps. In addition to source localization, two methods for determining the activity of the unknown source were also studied.
A Decomposition Method for Security Constrained Economic Dispatch of a Three-Layer Power System
NASA Astrophysics Data System (ADS)
Yang, Junfeng; Luo, Zhiqiang; Dong, Cheng; Lai, Xiaowen; Wang, Yang
2018-01-01
This paper proposes a new decomposition method for the security-constrained economic dispatch in a three-layer large-scale power system. The decomposition is realized using two main techniques. The first is to use Ward equivalencing-based network reduction to reduce the number of variables and constraints in the high-layer model without sacrificing accuracy. The second is to develop a price response function to exchange signal information between neighboring layers, which significantly improves the information exchange efficiency of each iteration and results in less iterations and less computational time. The case studies based on the duplicated RTS-79 system demonstrate the effectiveness and robustness of the proposed method.
Variable aperture-based ptychographical iterative engine method.
Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng
2018-02-01
A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Low-memory iterative density fitting.
Grajciar, Lukáš
2015-07-30
A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. © 2015 Wiley Periodicals, Inc.
Implicit methods for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Yoon, S.; Kwak, D.
1990-01-01
Numerical solutions of the Navier-Stokes equations using explicit schemes can be obtained at the expense of efficiency. Conventional implicit methods which often achieve fast convergence rates suffer high cost per iteration. A new implicit scheme based on lower-upper factorization and symmetric Gauss-Seidel relaxation offers very low cost per iteration as well as fast convergence. High efficiency is achieved by accomplishing the complete vectorizability of the algorithm on oblique planes of sweep in three dimensions.
PRIFIRA: General regularization using prior-conditioning for fast radio interferometric imaging†
NASA Astrophysics Data System (ADS)
Naghibzadeh, Shahrzad; van der Veen, Alle-Jan
2018-06-01
Image formation in radio astronomy is a large-scale inverse problem that is inherently ill-posed. We present a general algorithmic framework based on a Bayesian-inspired regularized maximum likelihood formulation of the radio astronomical imaging problem with a focus on diffuse emission recovery from limited noisy correlation data. The algorithm is dubbed PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) and is based on a direct embodiment of the regularization operator into the system by right preconditioning. The resulting system is then solved using an iterative method based on projections onto Krylov subspaces. We motivate the use of a beamformed image (which includes the classical "dirty image") as an efficient prior-conditioner. Iterative reweighting schemes generalize the algorithmic framework and can account for different regularization operators that encourage sparsity of the solution. The performance of the proposed method is evaluated based on simulated one- and two-dimensional array arrangements as well as actual data from the core stations of the Low Frequency Array radio telescope antenna configuration, and compared to state-of-the-art imaging techniques. We show the generality of the proposed method in terms of regularization schemes while maintaining a competitive reconstruction quality with the current reconstruction techniques. Furthermore, we show that exploiting Krylov subspace methods together with the proper noise-based stopping criteria results in a great improvement in imaging efficiency.
NASA Astrophysics Data System (ADS)
Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.
2013-09-01
Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understanding and validate the models of the in vessel build-up of the T inventory in ITER and future D-T devices. So far, research in these areas is largely supported by post-mortem analysis of wall tiles. However, access to samples will be very much restricted in the next-generation devices (such as ITER, JT-60SA, W7-X, etc) with actively cooled plasma-facing components (PFC) and increasing duty cycle. This has motivated the development of methods to measure the deposition of material and retention of plasma fuel on the walls of fusion devices in situ, without removal of PFC samples. For this purpose, laser-based methods are the most promising candidates. Their feasibility has been assessed in a cooperative undertaking in various European associations under EFDA coordination. Different laser techniques have been explored both under laboratory and tokamak conditions with the emphasis to develop a conceptual design for a laser-based wall diagnostic which is integrated into an ITER port plug, aiming to characterize in situ relevant parts of the inner wall, the upper region of the inner divertor, part of the dome and the upper X-point region.
Restoration of multichannel microwave radiometric images
NASA Technical Reports Server (NTRS)
Chin, R. T.; Yeh, C. L.; Olson, W. S.
1983-01-01
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation.
An improved 3D MoF method based on analytical partial derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2016-12-01
MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.
A multi-frequency iterative imaging method for discontinuous inverse medium problem
NASA Astrophysics Data System (ADS)
Zhang, Lei; Feng, Lixin
2018-06-01
The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Quan, Haiyang; Wu, Fan; Hou, Xi
2015-10-01
New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.
ERIC Educational Resources Information Center
McClain, Arianna D.; Hekler, Eric B.; Gardner, Christopher D.
2013-01-01
Background: Previous research from the fields of computer science and engineering highlight the importance of an iterative design process (IDP) to create more creative and effective solutions. Objective: This study describes IDP as a new method for developing health behavior interventions and evaluates the effectiveness of a dining hall--based…
Item Purification Does Not Always Improve DIF Detection: A Counterexample with Angoff's Delta Plot
ERIC Educational Resources Information Center
Magis, David; Facon, Bruno
2013-01-01
Item purification is an iterative process that is often advocated as improving the identification of items affected by differential item functioning (DIF). With test-score-based DIF detection methods, item purification iteratively removes the items currently flagged as DIF from the test scores to get purified sets of items, unaffected by DIF. The…
Optimisation of reconstruction--reprojection-based motion correction for cardiac SPECT.
Kangasmaa, Tuija S; Sohlberg, Antti O
2014-07-01
Cardiac motion is a challenging cause of image artefacts in myocardial perfusion SPECT. A wide range of motion correction methods have been developed over the years, and so far automatic algorithms based on the reconstruction--reprojection principle have proved to be the most effective. However, these methods have not been fully optimised in terms of their free parameters and implementational details. Two slightly different implementations of reconstruction--reprojection-based motion correction techniques were optimised for effective, good-quality motion correction and then compared with each other. The first of these methods (Method 1) was the traditional reconstruction-reprojection motion correction algorithm, where the motion correction is done in projection space, whereas the second algorithm (Method 2) performed motion correction in reconstruction space. The parameters that were optimised include the type of cost function (squared difference, normalised cross-correlation and mutual information) that was used to compare measured and reprojected projections, and the number of iterations needed. The methods were tested with motion-corrupt projection datasets, which were generated by adding three different types of motion (lateral shift, vertical shift and vertical creep) to motion-free cardiac perfusion SPECT studies. Method 2 performed slightly better overall than Method 1, but the difference between the two implementations was small. The execution time for Method 2 was much longer than for Method 1, which limits its clinical usefulness. The mutual information cost function gave clearly the best results for all three motion sets for both correction methods. Three iterations were sufficient for a good quality correction using Method 1. The traditional reconstruction--reprojection-based method with three update iterations and mutual information cost function is a good option for motion correction in clinical myocardial perfusion SPECT.
A holistic calibration method with iterative distortion compensation for stereo deflectometry
NASA Astrophysics Data System (ADS)
Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian
2018-07-01
This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.
Shi, Guoliang; Liu, Jiayuan; Wang, Haiting; Tian, Yingze; Wen, Jie; Shi, Xurong; Feng, Yinchang; Ivey, Cesunica E; Russell, Armistead G
2018-02-01
PM 2.5 is one of the most studied atmospheric pollutants due to its adverse impacts on human health and welfare and the environment. An improved model (the chemical mass balance gas constraint-Iteration: CMBGC-Iteration) is proposed and applied to identify source categories and estimate source contributions of PM 2.5. The CMBGC-Iteration model uses the ratio of gases to PM as constraints and considers the uncertainties of source profiles and receptor datasets, which is crucial information for source apportionment. To apply this model, samples of PM 2.5 were collected at Tianjin, a megacity in northern China. The ambient PM 2.5 dataset, source information, and gas-to-particle ratios (such as SO 2 /PM 2.5 , CO/PM 2.5 , and NOx/PM 2.5 ratios) were introduced into the CMBGC-Iteration to identify the potential sources and their contributions. Six source categories were identified by this model and the order based on their contributions to PM 2.5 was as follows: secondary sources (30%), crustal dust (25%), vehicle exhaust (16%), coal combustion (13%), SOC (7.6%), and cement dust (0.40%). In addition, the same dataset was also calculated by other receptor models (CMB, CMB-Iteration, CMB-GC, PMF, WALSPMF, and NCAPCA), and the results obtained were compared. Ensemble-average source impacts were calculated based on the seven source apportionment results: contributions of secondary sources (28%), crustal dust (20%), coal combustion (18%), vehicle exhaust (17%), SOC (11%), and cement dust (1.3%). The similar results of CMBGC-Iteration and ensemble method indicated that CMBGC-Iteration can produce relatively appropriate results. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the inversion of geodetic integrals defined over the sphere using 1-D FFT
NASA Astrophysics Data System (ADS)
García, R. V.; Alejo, C. A.
2005-08-01
An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.
Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures
NASA Astrophysics Data System (ADS)
Huang, Bi-Hua; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan
2016-10-01
We delve a little deeper into the construction of shortcuts to adiabatic passage for three-level systems by iterative interaction picture (multiple Schrödinger dynamics). As an application example, we use the deduced iterative based shortcuts to rapidly generate the Greenberger-Horne-Zeilinger (GHZ) state in a three-atom system with the help of quantum Zeno dynamics. Numerical simulation shows the dynamics designed by the iterative picture method is physically feasible and the shortcut scheme performs much better than that using the conventional adiabatic passage techniques. Also, the influences of various decoherence processes are discussed by numerical simulation and the results prove that the scheme is fast and robust against decoherence and operational imperfection.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Ge, Jian-Hua
2012-12-01
Single-carrier (SC) transmission with frequency-domain equalization (FDE) is today recognized as an attractive alternative to orthogonal frequency-division multiplexing (OFDM) for communication application with the inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel. In this paper, we investigate an iterative receiver based on minimum mean square error (MMSE) decision feedback equalizer (DFE) with symbol rate and fractional rate samplings in the frequency domain (FD) and serially concatenated trellis coded modulation (SCTCM) decoder. Based on sound speed profiles (SSP) measured in the lake and finite-element ray tracking (Bellhop) method, the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. Performance results show that the proposed iterative receiver can significantly improve the performance and obtain better data transmission than FD linear and adaptive decision feedback equalizers, especially in adopting fractional rate sampling.
Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing
NASA Astrophysics Data System (ADS)
Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng
2017-05-01
Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.
Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina
2018-06-01
Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.
Density control in ITER: an iterative learning control and robust control approach
NASA Astrophysics Data System (ADS)
Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.
2018-01-01
Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.
Banerjee, Amartya S; Lin, Lin; Suryanarayana, Phanish; Yang, Chao; Pask, John E
2018-06-12
We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (>1,000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to (1) compute a set of vectors that span the occupied subspace of the Hamiltonian; (2) reduce subspace diagonalization to just partially occupied states; and (3) obtain those states in an efficient, scalable manner via an inner Chebyshev filter iteration. By reducing the necessary computation to just partially occupied states and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 s on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).
Radiative transfer in molecular lines
NASA Astrophysics Data System (ADS)
Asensio Ramos, A.; Trujillo Bueno, J.; Cernicharo, J.
2001-07-01
The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.
Virtual fringe projection system with nonparallel illumination based on iteration
NASA Astrophysics Data System (ADS)
Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian
2017-06-01
Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.
NASA Astrophysics Data System (ADS)
Mao, Deqing; Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu
2018-01-01
Doppler beam sharpening (DBS) is a critical technology for airborne radar ground mapping in forward-squint region. In conventional DBS technology, the narrow-band Doppler filter groups formed by fast Fourier transform (FFT) method suffer from low spectral resolution and high side lobe levels. The iterative adaptive approach (IAA), based on the weighted least squares (WLS), is applied to the DBS imaging applications, forming narrower Doppler filter groups than the FFT with lower side lobe levels. Regrettably, the IAA is iterative, and requires matrix multiplication and inverse operation when forming the covariance matrix, its inverse and traversing the WLS estimate for each sampling point, resulting in a notably high computational complexity for cubic time. We propose a fast IAA (FIAA)-based super-resolution DBS imaging method, taking advantage of the rich matrix structures of the classical narrow-band filtering. First, we formulate the covariance matrix via the FFT instead of the conventional matrix multiplication operation, based on the typical Fourier structure of the steering matrix. Then, by exploiting the Gohberg-Semencul representation, the inverse of the Toeplitz covariance matrix is computed by the celebrated Levinson-Durbin (LD) and Toeplitz-vector algorithm. Finally, the FFT and fast Toeplitz-vector algorithm are further used to traverse the WLS estimates based on the data-dependent trigonometric polynomials. The method uses the Hermitian feature of the echo autocorrelation matrix R to achieve its fast solution and uses the Toeplitz structure of R to realize its fast inversion. The proposed method enjoys a lower computational complexity without performance loss compared with the conventional IAA-based super-resolution DBS imaging method. The results based on simulations and measured data verify the imaging performance and the operational efficiency.
An iterative method for airway segmentation using multiscale leakage detection
NASA Astrophysics Data System (ADS)
Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.
2017-02-01
There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.
An analytically iterative method for solving problems of cosmic-ray modulation
NASA Astrophysics Data System (ADS)
Kolesnyk, Yuriy L.; Bobik, Pavol; Shakhov, Boris A.; Putis, Marian
2017-09-01
The development of an analytically iterative method for solving steady-state as well as unsteady-state problems of cosmic-ray (CR) modulation is proposed. Iterations for obtaining the solutions are constructed for the spherically symmetric form of the CR propagation equation. The main solution of the considered problem consists of the zero-order solution that is obtained during the initial iteration and amendments that may be obtained by subsequent iterations. The finding of the zero-order solution is based on the CR isotropy during propagation in the space, whereas the anisotropy is taken into account when finding the next amendments. To begin with, the method is applied to solve the problem of CR modulation where the diffusion coefficient κ and the solar wind speed u are constants with an Local Interstellar Spectra (LIS) spectrum. The solution obtained with two iterations was compared with an analytical solution and with numerical solutions. Finally, solutions that have only one iteration for two problems of CR modulation with u = constant and the same form of LIS spectrum were obtained and tested against numerical solutions. For the first problem, κ is proportional to the momentum of the particle p, so it has the form κ = k0η, where η =p/m_0c. For the second problem, the diffusion coefficient is given in the form κ = k0βη, where β =v/c is the particle speed relative to the speed of light. There was a good matching of the obtained solutions with the numerical solutions as well as with the analytical solution for the problem where κ = constant.
Nguyen, Van-Giang; Lee, Soo-Jin
2016-07-01
Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Parallel solution of the symmetric tridiagonal eigenproblem. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1989-10-01
This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed-memory Multiple Instruction, Multiple Data multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speed up, and accuracy. Experiments on an IPSC hypercube multiprocessor reveal that Cuppen's method ismore » the most accurate approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effect of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptions of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less
Parallel solution of the symmetric tridiagonal eigenproblem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1989-01-01
This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed memory MIMD multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues, and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speedup, and accuracy. Experiments on an iPSC hyper-cube multiprocessor reveal that Cuppen's method is the most accuratemore » approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effects of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptations of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less
Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1992-01-01
Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.
Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo
2016-01-01
On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.
Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo
2016-01-01
On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654
Yan, Yumeng; Wen, Zeyu; Zhang, Di; Huang, Sheng-You
2018-05-18
RNA-RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA-RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA-RNA interactions based on a training set of 97 diverse RNA-RNA complexes. The double-iterative strategy circumvented the reference state problem in knowledge-based scoring functions by updating the potentials through iteration and also overcame the decoy-dependent limitation in previous iterative methods by constructing the decoys iteratively. The derived scoring function, which is referred to as DITScoreRR, was evaluated on an RNA-RNA docking benchmark of 60 test cases and compared with three other scoring functions. It was shown that for bound docking, our scoring function DITScoreRR obtained the excellent success rates of 90% and 98.3% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 63.3% and 71.7% for van der Waals interactions, 45.0% and 65.0% for ITScorePP, and 11.7% and 26.7% for ZDOCK 2.1, respectively. For unbound docking, DITScoreRR achieved the good success rates of 53.3% and 71.7% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 13.3% and 28.3% for van der Waals interactions, 11.7% and 26.7% for our ITScorePP, and 3.3% and 6.7% for ZDOCK 2.1, respectively. DITScoreRR also performed significantly better in ranking decoys and obtained significantly higher score-RMSD correlations than the other three scoring functions. DITScoreRR will be of great value for the prediction and design of RNA structures and RNA-RNA complexes.
A Laplacian based image filtering using switching noise detector.
Ranjbaran, Ali; Hassan, Anwar Hasni Abu; Jafarpour, Mahboobe; Ranjbaran, Bahar
2015-01-01
This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.
Region of interest processing for iterative reconstruction in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Kopp, Felix K.; Nasirudin, Radin A.; Mei, Kai; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.
2015-03-01
The recent advancements in the graphics card technology raised the performance of parallel computing and contributed to the introduction of iterative reconstruction methods for x-ray computed tomography in clinical CT scanners. Iterative maximum likelihood (ML) based reconstruction methods are known to reduce image noise and to improve the diagnostic quality of low-dose CT. However, iterative reconstruction of a region of interest (ROI), especially ML based, is challenging. But for some clinical procedures, like cardiac CT, only a ROI is needed for diagnostics. A high-resolution reconstruction of the full field of view (FOV) consumes unnecessary computation effort that results in a slower reconstruction than clinically acceptable. In this work, we present an extension and evaluation of an existing ROI processing algorithm. Especially improvements for the equalization between regions inside and outside of a ROI are proposed. The evaluation was done on data collected from a clinical CT scanner. The performance of the different algorithms is qualitatively and quantitatively assessed. Our solution to the ROI problem provides an increase in signal-to-noise ratio and leads to visually less noise in the final reconstruction. The reconstruction speed of our technique was observed to be comparable with other previous proposed techniques. The development of ROI processing algorithms in combination with iterative reconstruction will provide higher diagnostic quality in the near future.
NASA Astrophysics Data System (ADS)
An, Hyunuk; Ichikawa, Yutaka; Tachikawa, Yasuto; Shiiba, Michiharu
2012-11-01
SummaryThree different iteration methods for a three-dimensional coordinate-transformed saturated-unsaturated flow model are compared in this study. The Picard and Newton iteration methods are the common approaches for solving Richards' equation. The Picard method is simple to implement and cost-efficient (on an individual iteration basis). However it converges slower than the Newton method. On the other hand, although the Newton method converges faster, it is more complex to implement and consumes more CPU resources per iteration than the Picard method. The comparison of the two methods in finite-element model (FEM) for saturated-unsaturated flow has been well evaluated in previous studies. However, two iteration methods might exhibit different behavior in the coordinate-transformed finite-difference model (FDM). In addition, the Newton-Krylov method could be a suitable alternative for the coordinate-transformed FDM because it requires the evaluation of a 19-point stencil matrix. The formation of a 19-point stencil is quite a complex and laborious procedure. Instead, the Newton-Krylov method calculates the matrix-vector product, which can be easily approximated by calculating the differences of the original nonlinear function. In this respect, the Newton-Krylov method might be the most appropriate iteration method for coordinate-transformed FDM. However, this method involves the additional cost of taking an approximation at each Krylov iteration in the Newton-Krylov method. In this paper, we evaluated the efficiency and robustness of three iteration methods—the Picard, Newton, and Newton-Krylov methods—for simulating saturated-unsaturated flow through porous media using a three-dimensional coordinate-transformed FDM.
Liu, Wanli
2017-01-01
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897
On the use of the energy probability distribution zeros in the study of phase transitions
NASA Astrophysics Data System (ADS)
Mól, L. A. S.; Rodrigues, R. G. M.; Stancioli, R. A.; Rocha, J. C. S.; Costa, B. V.
2018-04-01
This contribution is devoted to cover some technical aspects related to the use of the recently proposed energy probability distribution zeros in the study of phase transitions. This method is based on the partial knowledge of the partition function zeros and has been shown to be extremely efficient to precisely locate phase transition temperatures. It is based on an iterative method in such a way that the transition temperature can be approached at will. The iterative method will be detailed and some convergence issues that has been observed in its application to the 2D Ising model and to an artificial spin ice model will be shown, together with ways to circumvent them.
Multishot cartesian turbo spin-echo diffusion imaging using iterative POCSMUSE Reconstruction.
Zhang, Zhe; Zhang, Bing; Li, Ming; Liang, Xue; Chen, Xiaodong; Liu, Renyuan; Zhang, Xin; Guo, Hua
2017-07-01
To report a diffusion imaging technique insensitive to off-resonance artifacts and motion-induced ghost artifacts using multishot Cartesian turbo spin-echo (TSE) acquisition and iterative POCS-based reconstruction of multiplexed sensitivity encoded magnetic resonance imaging (MRI) (POCSMUSE) for phase correction. Phase insensitive diffusion preparation was used to deal with the violation of the Carr-Purcell-Meiboom-Gill (CPMG) conditions of TSE diffusion-weighted imaging (DWI), followed by a multishot Cartesian TSE readout for data acquisition. An iterative diffusion phase correction method, iterative POCSMUSE, was developed and implemented to eliminate the ghost artifacts in multishot TSE DWI. The in vivo human brain diffusion images (from one healthy volunteer and 10 patients) using multishot Cartesian TSE were acquired at 3T and reconstructed using iterative POCSMUSE, and compared with single-shot and multishot echo-planar imaging (EPI) results. These images were evaluated by two radiologists using visual scores (considering both image quality and distortion levels) from 1 to 5. The proposed iterative POCSMUSE reconstruction was able to correct the ghost artifacts in multishot DWI. The ghost-to-signal ratio of TSE DWI using iterative POCSMUSE (0.0174 ± 0.0024) was significantly (P < 0.0005) smaller than using POCSMUSE (0.0253 ± 0.0040). The image scores of multishot TSE DWI were significantly higher than single-shot (P = 0.004 and 0.006 from two reviewers) and multishot (P = 0.008 and 0.004 from two reviewers) EPI-based methods. The proposed multishot Cartesian TSE DWI using iterative POCSMUSE reconstruction can provide high-quality diffusion images insensitive to motion-induced ghost artifacts and off-resonance related artifacts such as chemical shifts and susceptibility-induced image distortions. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:167-174. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Zhao, Jin; Han-Ming, Zhang; Bin, Yan; Lei, Li; Lin-Yuan, Wang; Ai-Long, Cai
2016-03-01
Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. Projected supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
FBILI method for multi-level line transfer
NASA Astrophysics Data System (ADS)
Kuzmanovska, O.; Atanacković, O.; Faurobert, M.
2017-07-01
Efficient non-LTE multilevel radiative transfer calculations are needed for a proper interpretation of astrophysical spectra. In particular, realistic simulations of time-dependent processes or multi-dimensional phenomena require that the iterative method used to solve such non-linear and non-local problem is as fast as possible. There are several multilevel codes based on efficient iterative schemes that provide a very high convergence rate, especially when combined with mathematical acceleration techniques. The Forth-and-Back Implicit Lambda Iteration (FBILI) developed by Atanacković-Vukmanović et al. [1] is a Gauss-Seidel-type iterative scheme that is characterized by a very high convergence rate without the need of complementing it with additional acceleration techniques. In this paper we make the implementation of the FBILI method to the multilevel atom line transfer in 1D more explicit. We also consider some of its variants and investigate their convergence properties by solving the benchmark problem of CaII line formation in the solar atmosphere. Finally, we compare our solutions with results obtained with the well known code MULTI.
NASA Astrophysics Data System (ADS)
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.
2018-01-01
We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.
Varying face occlusion detection and iterative recovery for face recognition
NASA Astrophysics Data System (ADS)
Wang, Meng; Hu, Zhengping; Sun, Zhe; Zhao, Shuhuan; Sun, Mei
2017-05-01
In most sparse representation methods for face recognition (FR), occlusion problems were usually solved via removing the occlusion part of both query samples and training samples to perform the recognition process. This practice ignores the global feature of facial image and may lead to unsatisfactory results due to the limitation of local features. Considering the aforementioned drawback, we propose a method called varying occlusion detection and iterative recovery for FR. The main contributions of our method are as follows: (1) to detect an accurate occlusion area of facial images, an image processing and intersection-based clustering combination method is used for occlusion FR; (2) according to an accurate occlusion map, the new integrated facial images are recovered iteratively and put into a recognition process; and (3) the effectiveness on recognition accuracy of our method is verified by comparing it with three typical occlusion map detection methods. Experiments show that the proposed method has a highly accurate detection and recovery performance and that it outperforms several similar state-of-the-art methods against partial contiguous occlusion.
Neural network approach to proximity effect corrections in electron-beam lithography
NASA Astrophysics Data System (ADS)
Frye, Robert C.; Cummings, Kevin D.; Rietman, Edward A.
1990-05-01
The proximity effect, caused by electron beam backscattering during resist exposure, is an important concern in writing submicron features. It can be compensated by appropriate local changes in the incident beam dose, but computation of the optimal correction usually requires a prohibitively long time. We present an example of such a computation on a small test pattern, which we performed by an iterative method. We then used this solution as a training set for an adaptive neural network. After training, the network computed the same correction as the iterative method, but in a much shorter time. Correcting the image with a software based neural network resulted in a decrease in the computation time by a factor of 30, and a hardware based network enhanced the computation speed by more than a factor of 1000. Both methods had an acceptably small error of 0.5% compared to the results of the iterative computation. Additionally, we verified that the neural network correctly generalized the solution of the problem to include patterns not contained in its training set.
[Target volume segmentation of PET images by an iterative method based on threshold value].
Castro, P; Huerga, C; Glaría, L A; Plaza, R; Rodado, S; Marín, M D; Mañas, A; Serrada, A; Núñez, L
2014-01-01
An automatic segmentation method is presented for PET images based on an iterative approximation by threshold value that includes the influence of both lesion size and background present during the acquisition. Optimal threshold values that represent a correct segmentation of volumes were determined based on a PET phantom study that contained different sizes spheres and different known radiation environments. These optimal values were normalized to background and adjusted by regression techniques to a two-variable function: lesion volume and signal-to-background ratio (SBR). This adjustment function was used to build an iterative segmentation method and then, based in this mention, a procedure of automatic delineation was proposed. This procedure was validated on phantom images and its viability was confirmed by retrospectively applying it on two oncology patients. The resulting adjustment function obtained had a linear dependence with the SBR and was inversely proportional and negative with the volume. During the validation of the proposed method, it was found that the volume deviations respect to its real value and CT volume were below 10% and 9%, respectively, except for lesions with a volume below 0.6 ml. The automatic segmentation method proposed can be applied in clinical practice to tumor radiotherapy treatment planning in a simple and reliable way with a precision close to the resolution of PET images. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Qin; Berman, Benjamin P.; Schumacher, Justin; Liang, Yongguang; Gavrielides, Marios A.; Yang, Hao; Zhao, Binsheng; Petrick, Nicholas
2017-03-01
Tumor volume measured from computed tomography images is considered a biomarker for disease progression or treatment response. The estimation of the tumor volume depends on the imaging system parameters selected, as well as lesion characteristics. In this study, we examined how different image reconstruction methods affect the measurement of lesions in an anthropomorphic liver phantom with a non-uniform background. Iterative statistics-based and model-based reconstructions, as well as filtered back-projection, were evaluated and compared in this study. Statistics-based and filtered back-projection yielded similar estimation performance, while model-based yielded higher precision but lower accuracy in the case of small lesions. Iterative reconstructions exhibited higher signal-to-noise ratio but slightly lower contrast of the lesion relative to the background. A better understanding of lesion volumetry performance as a function of acquisition parameters and lesion characteristics can lead to its incorporation as a routine sizing tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less
Numerical Computation of Subsonic Conical Diffuser Flows with Nonuniform Turbulent Inlet Conditions
1977-09-01
Gauss - Seidel Point Iteration Method . . . . . . . . . . . . . . . 7.0 FACTORS AFFECTING THE RATE OF CONVERGENCE OF THE POINT...can be solved in several ways. For simplicity, a standard Gauss - Seidel iteration method is used to obtain the solution . The method updates the...FACTORS AFFECTING THE RATE OF CONVERGENCE OF THE POINT ITERATION ,ŘETHOD The advantage of using the Gauss - Seidel point iteration method to
NASA Astrophysics Data System (ADS)
Wang, Yi-Hong; Wu, Guo-Cheng; Baleanu, Dumitru
2013-10-01
The variational iteration method is newly used to construct various integral equations of fractional order. Some iterative schemes are proposed which fully use the method and the predictor-corrector approach. The fractional Bagley-Torvik equation is then illustrated as an example of multi-order and the results show the efficiency of the variational iteration method's new role.
A novel iterative scheme and its application to differential equations.
Khan, Yasir; Naeem, F; Šmarda, Zdeněk
2014-01-01
The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.
A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method
NASA Astrophysics Data System (ADS)
Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang
2016-01-01
Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR.
A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method
Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang
2016-01-01
Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR. PMID:26781194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, S; Zhang, Y; Ma, J
Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less
Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun
2017-03-01
H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.
Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz
2015-01-01
Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.
NASA Astrophysics Data System (ADS)
Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.
2016-10-01
We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.
Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media
NASA Astrophysics Data System (ADS)
Jakobsen, Morten; Tveit, Svenn
2018-05-01
We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.
Tučník, Petr; Bureš, Vladimír
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.
ITER-relevant calibration technique for soft x-ray spectrometer.
Rzadkiewicz, J; Książek, I; Zastrow, K-D; Coffey, I H; Jakubowska, K; Lawson, K D
2010-10-01
The ITER-oriented JET research program brings new requirements for the low-Z impurity monitoring, in particular for the Be—the future main wall component of JET and ITER. Monitoring based on Bragg spectroscopy requires an absolute sensitivity calibration, which is challenging for large tokamaks. This paper describes both “component-by-component” and “continua” calibration methods used for the Be IV channel (75.9 Å) of the Bragg rotor spectrometer deployed on JET. The calibration techniques presented here rely on multiorder reflectivity calculations and measurements of continuum radiation emitted from helium plasmas. These offer excellent conditions for the absolute photon flux calibration due to their low level of impurities. It was found that the component-by-component method gives results that are four times higher than those obtained by means of the continua method. A better understanding of this discrepancy requires further investigations.
A frequency dependent preconditioned wavelet method for atmospheric tomography
NASA Astrophysics Data System (ADS)
Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny
2013-12-01
Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.
On iterative processes in the Krylov-Sonneveld subspaces
NASA Astrophysics Data System (ADS)
Ilin, Valery P.
2016-10-01
The iterative Induced Dimension Reduction (IDR) methods are considered for solving large systems of linear algebraic equations (SLAEs) with nonsingular nonsymmetric matrices. These approaches are investigated by many authors and are charachterized sometimes as the alternative to the classical processes of Krylov type. The key moments of the IDR algorithms consist in the construction of the embedded Sonneveld subspaces, which have the decreasing dimensions and use the orthogonalization to some fixed subspace. Other independent approaches for research and optimization of the iterations are based on the augmented and modified Krylov subspaces by using the aggregation and deflation procedures with present various low rank approximations of the original matrices. The goal of this paper is to show, that IDR method in Sonneveld subspaces present an original interpretation of the modified algorithms in the Krylov subspaces. In particular, such description is given for the multi-preconditioned semi-conjugate direction methods which are actual for the parallel algebraic domain decomposition approaches.
Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.
Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S
2015-07-27
In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.
Iterative deblending of simultaneous-source data using a coherency-pass shaping operator
NASA Astrophysics Data System (ADS)
Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Zhang, Dong; Li, Chao; Pan, Xiao; Chen, Yangkang
2017-10-01
Simultaneous-source acquisition helps greatly boost an economic saving, while it brings an unprecedented challenge of removing the crosstalk interference in the recorded seismic data. In this paper, we propose a novel iterative method to separate the simultaneous source data based on a coherency-pass shaping operator. The coherency-pass filter is used to constrain the model, that is, the unblended data to be estimated, in the shaping regularization framework. In the simultaneous source survey, the incoherent interference from adjacent shots greatly increases the rank of the frequency domain Hankel matrix that is formed from the blended record. Thus, the method based on rank reduction is capable of separating the blended record to some extent. However, the shortcoming is that it may cause residual noise when there is strong blending interference. We propose to cascade the rank reduction and thresholding operators to deal with this issue. In the initial iterations, we adopt a small rank to severely separate the blended interference and a large thresholding value as strong constraints to remove the residual noise in the time domain. In the later iterations, since more and more events have been recovered, we weaken the constraint by increasing the rank and shrinking the threshold to recover weak events and to guarantee the convergence. In this way, the combined rank reduction and thresholding strategy acts as a coherency-pass filter, which only passes the coherent high-amplitude component after rank reduction instead of passing both signal and noise in traditional rank reduction based approaches. Two synthetic examples are tested to demonstrate the performance of the proposed method. In addition, the application on two field data sets (common receiver gathers and stacked profiles) further validate the effectiveness of the proposed method.
Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K
2014-12-01
An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides comparable image quality and diagnostic assessment at a 73% lower radiation dose.
Solution of Cubic Equations by Iteration Methods on a Pocket Calculator
ERIC Educational Resources Information Center
Bamdad, Farzad
2004-01-01
A method to provide students a vision of how they can write iteration programs on an inexpensive programmable pocket calculator, without requiring a PC or a graphing calculator is developed. Two iteration methods are used, successive-approximations and bisection methods.
NASA Astrophysics Data System (ADS)
Klein, Andreas; Gerlach, Gerald
1998-09-01
This paper deals with the simulation of the fluid-structure interaction phenomena in micropumps. The proposed solution approach is based on external coupling of two different solvers, which are considered here as `black boxes'. Therefore, no specific intervention is necessary into the program code, and solvers can be exchanged arbitrarily. For the realization of the external iteration loop, two algorithms are considered: the relaxation-based Gauss-Seidel method and the computationally more extensive Newton method. It is demonstrated in terms of a simplified test case, that for rather weak coupling, the Gauss-Seidel method is sufficient. However, by simply changing the considered fluid from air to water, the two physical domains become strongly coupled, and the Gauss-Seidel method fails to converge in this case. The Newton iteration scheme must be used instead.
An improved 2D MoF method by using high order derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2017-11-01
The MoF (Moment of Fluid) method is one of the most accurate approaches among various interface reconstruction algorithms. Alike other second order methods, the MoF method needs to solve an implicit optimization problem to obtain the optimal approximate interface, so an iteration process is inevitable under most circumstances. In order to solve the optimization efficiently, the properties of the objective function are worthy of studying. In 2D problems, the first order derivative has been deduced and applied in the previous researches. In this paper, the high order derivatives of the objective function are deduced on the convex polygon. We show that the nth (n ≥ 2) order derivatives are discontinuous, and the number of the discontinuous points is two times the number of the polygon edge. A rotation algorithm is proposed to successively calculate these discontinuous points, thus the target interval where the optimal solution is located can be determined. Since the high order derivatives of the objective function are continuous in the target interval, the iteration schemes based on high order derivatives can be used to improve the convergence rate. Moreover, when iterating in the target interval, the value of objective function and its derivatives can be directly updated without explicitly solving the volume conservation equation. The direct update makes a further improvement of the efficiency especially when the number of edges of the polygon is increasing. The Halley's method, which is based on the first three order derivatives, is applied as the iteration scheme in this paper and the numerical results indicate that the CPU time is about half of the previous method on the quadrilateral cell and is about one sixth on the decagon cell.
Realization of Comfortable Massage by Using Iterative Learning Control Based on EEG
NASA Astrophysics Data System (ADS)
Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira
Recently the massage chair is used by a lot of people because they are able to use it easily at home. However a present massage chair only realizes the massage motion. Moreover the massage chair can not consider the user’s condition and massage force. On the other hand, the professional masseur is according to presume the mental condition by patient’s reaction. Then this paper proposes the method of applying masseur’s procedure for the massage chair using iterative learning control based on EEG. And massage force is estimated by acceleration sensor. The realizability of the proposed method is verified by the experimental works using the massage chair.
Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2011-09-01
We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony; ...
2018-04-20
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
NASA Astrophysics Data System (ADS)
Muhiddin, F. A.; Sulaiman, J.
2017-09-01
The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.
2016-01-01
Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Leapfrog variants of iterative methods for linear algebra equations
NASA Technical Reports Server (NTRS)
Saylor, Paul E.
1988-01-01
Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S; Hoffman, J; McNitt-Gray, M
Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Ana; Pereira, Rita C.; Sousa, Jorge
The Instituto de Plasmas e Fusao Nuclear (IPFN) has developed dedicated re-configurable modules based on field programmable gate array (FPGA) devices for several nuclear fusion machines worldwide. Moreover, new Advanced Telecommunication Computing Architecture (ATCA) based modules developed by IPFN are already included in the ITER catalogue. One of the requirements for re-configurable modules operating in future nuclear environments including ITER is the remote update capability. Accordingly, this work presents an alternative method for FPGA remote programing to be implemented in new ATCA based re-configurable modules. FPGAs are volatile devices and their programming code is usually stored in dedicated flash memoriesmore » for properly configuration during module power-on. The presented method is capable to store new FPGA codes in Serial Peripheral Interface (SPI) flash memories using the PCIexpress (PCIe) network established on the ATCA back-plane, linking data acquisition endpoints and the data switch blades. The method is based on the Xilinx Quick Boot application note, adapted to PCIe protocol and ATCA based modules. (authors)« less
NASA Astrophysics Data System (ADS)
Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.
2014-09-01
Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the MCPI significantly and will likely be useful for other applications where efficiently computed approximate orbit solutions are needed.
Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
Semenikhin, Igor; Zanuccoli, Mauro
2013-12-01
In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Petrongolo, M; Wang, T
Purpose: A general problem of dual-energy CT (DECT) is that the decomposition is sensitive to noise in the two sets of dual-energy projection data, resulting in severely degraded qualities of decomposed images. We have previously proposed an iterative denoising method for DECT. Using a linear decomposition function, the method does not gain the full benefits of DECT on beam-hardening correction. In this work, we expand the framework of our iterative method to include non-linear decomposition models for noise suppression in DECT. Methods: We first obtain decomposed projections, which are free of beam-hardening artifacts, using a lookup table pre-measured on amore » calibration phantom. First-pass material images with high noise are reconstructed from the decomposed projections using standard filter-backprojection reconstruction. Noise on the decomposed images is then suppressed by an iterative method, which is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, we include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Analytical formulae are derived to compute the variance-covariance matrix from the measured decomposition lookup table. Results: We have evaluated the proposed method via phantom studies. Using non-linear decomposition, our method effectively suppresses the streaking artifacts of beam-hardening and obtains more uniform images than our previous approach based on a linear model. The proposed method reduces the average noise standard deviation of two basis materials by one order of magnitude without sacrificing the spatial resolution. Conclusion: We propose a general framework of iterative denoising for material decomposition of DECT. Preliminary phantom studies have shown the proposed method improves the image uniformity and reduces noise level without resolution loss. In the future, we will perform more phantom studies to further validate the performance of the purposed method. This work is supported by a Varian MRA grant.« less
Retinal biometrics based on Iterative Closest Point algorithm.
Hatanaka, Yuji; Tajima, Mikiya; Kawasaki, Ryo; Saito, Koko; Ogohara, Kazunori; Muramatsu, Chisako; Sunayama, Wataru; Fujita, Hiroshi
2017-07-01
The pattern of blood vessels in the eye is unique to each person because it rarely changes over time. Therefore, it is well known that retinal blood vessels are useful for biometrics. This paper describes a biometrics method using the Jaccard similarity coefficient (JSC) based on blood vessel regions in retinal image pairs. The retinal image pairs were rough matched by the center of their optic discs. Moreover, the image pairs were aligned using the Iterative Closest Point algorithm based on detailed blood vessel skeletons. For registration, perspective transform was applied to the retinal images. Finally, the pairs were classified as either correct or incorrect using the JSC of the blood vessel region in the image pairs. The proposed method was applied to temporal retinal images, which were obtained in 2009 (695 images) and 2013 (87 images). The 87 images acquired in 2013 were all from persons already examined in 2009. The accuracy of the proposed method reached 100%.
Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems
NASA Astrophysics Data System (ADS)
Leuschner, Matthias; Fritzen, Felix
2017-11-01
Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.
High resolution x-ray CMT: Reconstruction methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.K.
This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited formore » high accuracy, tomographic reconstruction codes.« less
Survey on the Performance of Source Localization Algorithms.
Fresno, José Manuel; Robles, Guillermo; Martínez-Tarifa, Juan Manuel; Stewart, Brian G
2017-11-18
The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton-Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm.
Survey on the Performance of Source Localization Algorithms
2017-01-01
The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton–Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm. PMID:29156565
Ait Kaci Azzou, S; Larribe, F; Froda, S
2016-10-01
In Ait Kaci Azzou et al. (2015) we introduced an Importance Sampling (IS) approach for estimating the demographic history of a sample of DNA sequences, the skywis plot. More precisely, we proposed a new nonparametric estimate of a population size that changes over time. We showed on simulated data that the skywis plot can work well in typical situations where the effective population size does not undergo very steep changes. In this paper, we introduce an iterative procedure which extends the previous method and gives good estimates under such rapid variations. In the iterative calibrated skywis plot we approximate the effective population size by a piecewise constant function, whose values are re-estimated at each step. These piecewise constant functions are used to generate the waiting times of non homogeneous Poisson processes related to a coalescent process with mutation under a variable population size model. Moreover, the present IS procedure is based on a modified version of the Stephens and Donnelly (2000) proposal distribution. Finally, we apply the iterative calibrated skywis plot method to a simulated data set from a rapidly expanding exponential model, and we show that the method based on this new IS strategy correctly reconstructs the demographic history. Copyright © 2016. Published by Elsevier Inc.
Development of an evidence-based review with recommendations using an online iterative process.
Rudmik, Luke; Smith, Timothy L
2011-01-01
The practice of modern medicine is governed by evidence-based principles. Due to the plethora of medical literature, clinicians often rely on systematic reviews and clinical guidelines to summarize the evidence and provide best practices. Implementation of an evidence-based clinical approach can minimize variation in health care delivery and optimize the quality of patient care. This article reports a method for developing an "Evidence-based Review with Recommendations" using an online iterative process. The manuscript describes the following steps involved in this process: Clinical topic selection, Evidence-hased review assignment, Literature review and initial manuscript preparation, Iterative review process with author selection, and Manuscript finalization. The goal of this article is to improve efficiency and increase the production of evidence-based reviews while maintaining the high quality and transparency associated with the rigorous methodology utilized for clinical guideline development. With the rise of evidence-based medicine, most medical and surgical specialties have an abundance of clinical topics which would benefit from a formal evidence-based review. Although clinical guideline development is an important methodology, the associated challenges limit development to only the absolute highest priority clinical topics. As outlined in this article, the online iterative approach to the development of an Evidence-based Review with Recommendations may improve productivity without compromising the quality associated with formal guideline development methodology. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.
Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems
NASA Astrophysics Data System (ADS)
Wang, Xue-Zhong; Huang, Ting-Zhu; Fu, Ying-Ding
2007-09-01
In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss-Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.
Tomography by iterative convolution - Empirical study and application to interferometry
NASA Technical Reports Server (NTRS)
Vest, C. M.; Prikryl, I.
1984-01-01
An algorithm for computer tomography has been developed that is applicable to reconstruction from data having incomplete projections because an opaque object blocks some of the probing radiation as it passes through the object field. The algorithm is based on iteration between the object domain and the projection (Radon transform) domain. Reconstructions are computed during each iteration by the well-known convolution method. Although it is demonstrated that this algorithm does not converge, an empirically justified criterion for terminating the iteration when the most accurate estimate has been computed is presented. The algorithm has been studied by using it to reconstruct several different object fields with several different opaque regions. It also has been used to reconstruct aerodynamic density fields from interferometric data recorded in wind tunnel tests.
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; ...
2017-09-14
In this paper, we describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. Themore » use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. Finally, we also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.« less
Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł
2007-04-21
A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao
In this paper, we describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. Themore » use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. Finally, we also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.« less
Li, Haichen; Yaron, David J
2016-11-08
A least-squares commutator in the iterative subspace (LCIIS) approach is explored for accelerating self-consistent field (SCF) calculations. LCIIS is similar to direct inversion of the iterative subspace (DIIS) methods in that the next iterate of the density matrix is obtained as a linear combination of past iterates. However, whereas DIIS methods find the linear combination by minimizing a sum of error vectors, LCIIS minimizes the Frobenius norm of the commutator between the density matrix and the Fock matrix. This minimization leads to a quartic problem that can be solved iteratively through a constrained Newton's method. The relationship between LCIIS and DIIS is discussed. Numerical experiments suggest that LCIIS leads to faster convergence than other SCF convergence accelerating methods in a statistically significant sense, and in a number of cases LCIIS leads to stable SCF solutions that are not found by other methods. The computational cost involved in solving the quartic minimization problem is small compared to the typical cost of SCF iterations and the approach is easily integrated into existing codes. LCIIS can therefore serve as a powerful addition to SCF convergence accelerating methods in computational quantum chemistry packages.
A blind deconvolution method based on L1/L2 regularization prior in the gradient space
NASA Astrophysics Data System (ADS)
Cai, Ying; Shi, Yu; Hua, Xia
2018-02-01
In the process of image restoration, the result of image restoration is very different from the real image because of the existence of noise, in order to solve the ill posed problem in image restoration, a blind deconvolution method based on L1/L2 regularization prior to gradient domain is proposed. The method presented in this paper first adds a function to the prior knowledge, which is the ratio of the L1 norm to the L2 norm, and takes the function as the penalty term in the high frequency domain of the image. Then, the function is iteratively updated, and the iterative shrinkage threshold algorithm is applied to solve the high frequency image. In this paper, it is considered that the information in the gradient domain is better for the estimation of blur kernel, so the blur kernel is estimated in the gradient domain. This problem can be quickly implemented in the frequency domain by fast Fast Fourier Transform. In addition, in order to improve the effectiveness of the algorithm, we have added a multi-scale iterative optimization method. This paper proposes the blind deconvolution method based on L1/L2 regularization priors in the gradient space can obtain the unique and stable solution in the process of image restoration, which not only keeps the edges and details of the image, but also ensures the accuracy of the results.
Regularized minimum I-divergence methods for the inverse blackbody radiation problem
NASA Astrophysics Data System (ADS)
Choi, Kerkil; Lanterman, Aaron D.; Shin, Jaemin
2006-08-01
This paper proposes iterative methods for estimating the area temperature distribution of a blackbody from its total radiated power spectrum measurements. This is called the inverse blackbody radiation problem. This problem is inherently ill-posed due to the characteristics of the kernel in the underlying integral equation given by Planck's law. The functions involved in the problem are all non-negative. Csiszár's I-divergence is an information-theoretic discrepancy measure between two non-negative functions. We derive iterative methods for minimizing Csiszár's I-divergence between the measured power spectrum and the power spectrum arising from the estimate according to the integral equation. Due to the ill-posedness of the problem, unconstrained algorithms often produce poor estimates, especially when the measurements are corrupted by noise. To alleviate this difficulty, we apply regularization methods to our algorithms. Penalties based on Shannon's entropy, the L1-norm and Good's roughness are chosen to suppress the undesirable artefacts. When a penalty is applied, the pertinent optimization that needs to be performed at each iteration is no longer trivial. In particular, Good's roughness causes couplings between estimate components. To handle this issue, we adapt Green's one-step-late method. This choice is based on the important fact that our minimum I-divergence algorithms can be interpreted as asymptotic forms of certain expectation-maximization algorithms. The effectiveness of our methods is illustrated via various numerical experiments.
An hp symplectic pseudospectral method for nonlinear optimal control
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Stephen F.
This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.
Fast algorithm for spectral mixture analysis of imaging spectrometer data
NASA Astrophysics Data System (ADS)
Schouten, Theo E.; Klein Gebbinck, Maurice S.; Liu, Z. K.; Chen, Shaowei
1996-12-01
Imaging spectrometers acquire images in many narrow spectral bands but have limited spatial resolution. Spectral mixture analysis (SMA) is used to determine the fractions of the ground cover categories (the end-members) present in each pixel. In this paper a new iterative SMA method is presented and tested using a 30 band MAIS image. The time needed for each iteration is independent of the number of bands, thus the method can be used for spectrometers with a large number of bands. Further a new method, based on K-means clustering, for obtaining endmembers from image data is described and compared with existing methods. Using the developed methods the available MAIS image was analyzed using 2 to 6 endmembers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.
2011-02-18
Transcriptional regulatory networks are being determined using “reverse engineering” methods that infer connections based on correlations in gene state. Corroboration of such networks through independent means such as evidence from the biomedical literature is desirable. Here, we explore a novel approach, a bootstrapping version of our previous Cross-Ontological Analytic method (XOA) that can be used for semi-automated annotation and verification of inferred regulatory connections, as well as for discovery of additional functional relationships between the genes. First, we use our annotation and network expansion method on a biological network learned entirely from the literature. We show how new relevant linksmore » between genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. Second, we apply our method to annotation, verification, and expansion of a set of regulatory connections found by the Context Likelihood of Relatedness algorithm.« less
Anisotropic elastic moduli reconstruction in transversely isotropic model using MRE
NASA Astrophysics Data System (ADS)
Song, Jiah; In Kwon, Oh; Seo, Jin Keun
2012-11-01
Magnetic resonance elastography (MRE) is an elastic tissue property imaging modality in which the phase-contrast based MRI imaging technique is used to measure internal displacement induced by a harmonically oscillating mechanical vibration. MRE has made rapid technological progress in the past decade and has now reached the stage of clinical use. Most of the research outcomes are based on the assumption of isotropy. Since soft tissues like skeletal muscles show anisotropic behavior, the MRE technique should be extended to anisotropic elastic property imaging. This paper considers reconstruction in a transversely isotropic model, which is the simplest case of anisotropy, and develops a new non-iterative reconstruction method for visualizing the elastic moduli distribution. This new method is based on an explicit representation formula using the Newtonian potential of measured displacement. Hence, the proposed method does not require iterations since it directly recovers the anisotropic elastic moduli. We perform numerical simulations in order to demonstrate the feasibility of the proposed method in recovering a two-dimensional anisotropic tensor.
Domain decomposition methods for the parallel computation of reacting flows
NASA Technical Reports Server (NTRS)
Keyes, David E.
1988-01-01
Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.
Varying-energy CT imaging method based on EM-TV
NASA Astrophysics Data System (ADS)
Chen, Ping; Han, Yan
2016-11-01
For complicated structural components with wide x-ray attenuation ranges, conventional fixed-energy computed tomography (CT) imaging cannot obtain all the structural information. This limitation results in a shortage of CT information because the effective thickness of the components along the direction of x-ray penetration exceeds the limit of the dynamic range of the x-ray imaging system. To address this problem, a varying-energy x-ray CT imaging method is proposed. In this new method, the tube voltage is adjusted several times with the fixed lesser interval. Next, the fusion of grey consistency and logarithm demodulation are applied to obtain full and lower noise projection with a high dynamic range (HDR). In addition, for the noise suppression problem of the analytical method, EM-TV (expectation maximization-total Jvariation) iteration reconstruction is used. In the process of iteration, the reconstruction result obtained at one x-ray energy is used as the initial condition of the next iteration. An accompanying experiment demonstrates that this EM-TV reconstruction can also extend the dynamic range of x-ray imaging systems and provide a higher reconstruction quality relative to the fusion reconstruction method.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T; Zhu, L
Purpose: Conventional dual energy CT (DECT) reconstructs CT and basis material images from two full-size projection datasets with different energy spectra. To relax the data requirement, we propose an iterative DECT reconstruction algorithm using one full scan and a second sparse-view scan by utilizing redundant structural information of the same object acquired at two different energies. Methods: We first reconstruct a full-scan CT image using filtered-backprojection (FBP) algorithm. The material similarities of each pixel with other pixels are calculated by an exponential function about pixel value differences. We assume that the material similarities of pixels remains in the second CTmore » scan, although pixel values may vary. An iterative method is designed to reconstruct the second CT image from reduced projections. Under the data fidelity constraint, the algorithm minimizes the L2 norm of the difference between pixel value and its estimation, which is the average of other pixel values weighted by their similarities. The proposed algorithm, referred to as structure preserving iterative reconstruction (SPIR), is evaluated on physical phantoms. Results: On the Catphan600 phantom, SPIR-based DECT method with a second 10-view scan reduces the noise standard deviation of a full-scan FBP CT reconstruction by a factor of 4 with well-maintained spatial resolution, while iterative reconstruction using total-variation regularization (TVR) degrades the spatial resolution at the same noise level. The proposed method achieves less than 1% measurement difference on electron density map compared with the conventional two-full-scan DECT. On an anthropomorphic pediatric phantom, our method successfully reconstructs the complicated vertebra structures and decomposes bone and soft tissue. Conclusion: We develop an effective method to reduce the number of views and therefore data acquisition in DECT. We show that SPIR-based DECT using one full scan and a second 10-view scan can provide high-quality DECT images and accurate electron density maps as conventional two-full-scan DECT.« less
Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform
Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos
2013-01-01
Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028
Iterated learning and the evolution of language.
Kirby, Simon; Griffiths, Tom; Smith, Kenny
2014-10-01
Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu
2014-03-01
Statistical iterative reconstruction and post-log data restoration algorithms for CT noise reduction have been widely studied and these techniques have enabled us to reduce irradiation doses while maintaining image qualities. In low dose scanning, electronic noise becomes obvious and it results in some non-positive signals in raw measurements. The nonpositive signal should be converted to positive signal so that it can be log-transformed. Since conventional conversion methods do not consider local variance on the sinogram, they have difficulty of controlling the strength of the filtering. Thus, in this work, we propose a method to convert the non-positive signal to the positive signal by mainly controlling the local variance. The method is implemented in two separate steps. First, an iterative restoration algorithm based on penalized weighted least squares is used to mitigate the effect of electronic noise. The algorithm preserves the local mean and reduces the local variance induced by the electronic noise. Second, smoothed raw measurements by the iterative algorithm are converted to the positive signal according to a function which replaces the non-positive signal with its local mean. In phantom studies, we confirm that the proposed method properly preserves the local mean and reduce the variance induced by the electronic noise. Our technique results in dramatically reduced shading artifacts and can also successfully cooperate with the post-log data filter to reduce streak artifacts.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Comparing direct and iterative equation solvers in a large structural analysis software system
NASA Technical Reports Server (NTRS)
Poole, E. L.
1991-01-01
Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.
Upwind relaxation methods for the Navier-Stokes equations using inner iterations
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Ng, Wing-Fai; Walters, Robert W.
1992-01-01
A subsonic and a supersonic problem are respectively treated by an upwind line-relaxation algorithm for the Navier-Stokes equations using inner iterations to accelerate steady-state solution convergence and thereby minimize CPU time. While the ability of the inner iterative procedure to mimic the quadratic convergence of the direct solver method is attested to in both test problems, some of the nonquadratic inner iterative results are noted to have been more efficient than the quadratic. In the more successful, supersonic test case, inner iteration required only about 65 percent of the line-relaxation method-entailed CPU time.
New-Sum: A Novel Online ABFT Scheme For General Iterative Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Dingwen; Song, Shuaiwen; Krishnamoorthy, Sriram
Emerging high-performance computing platforms, with large component counts and lower power margins, are anticipated to be more susceptible to soft errors in both logic circuits and memory subsystems. We present an online algorithm-based fault tolerance (ABFT) approach to efficiently detect and recover soft errors for general iterative methods. We design a novel checksum-based encoding scheme for matrix-vector multiplication that is resilient to both arithmetic and memory errors. Our design decouples the checksum updating process from the actual computation, and allows adaptive checksum overhead control. Building on this new encoding mechanism, we propose two online ABFT designs that can effectively recovermore » from errors when combined with a checkpoint/rollback scheme.« less
Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm
NASA Astrophysics Data System (ADS)
Elahi, Sana; kaleem, Muhammad; Omer, Hammad
2018-01-01
Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.
NASA Astrophysics Data System (ADS)
Sanz, D.; Ruiz, M.; Castro, R.; Vega, J.; Afif, M.; Monroe, M.; Simrock, S.; Debelle, T.; Marawar, R.; Glass, B.
2016-04-01
To aid in assessing the functional performance of ITER, Fission Chambers (FC) based on the neutron diagnostic use case deliver timestamped measurements of neutron source strength and fusion power. To demonstrate the Plant System Instrumentation & Control (I&C) required for such a system, ITER Organization (IO) has developed a neutron diagnostics use case that fully complies with guidelines presented in the Plant Control Design Handbook (PCDH). The implementation presented in this paper has been developed on the PXI Express (PXIe) platform using products from the ITER catalog of standard I&C hardware for fast controllers. Using FlexRIO technology, detector signals are acquired at 125 MS/s, while filtering, decimation, and three methods of neutron counting are performed in real-time via the onboard Field Programmable Gate Array (FPGA). Measurement results are reported every 1 ms through Experimental Physics and Industrial Control System (EPICS) Channel Access (CA), with real-time timestamps derived from the ITER Timing Communication Network (TCN) based on IEEE 1588-2008. Furthermore, in accordance with ITER specifications for CODAC Core System (CCS) application development, the software responsible for the management, configuration, and monitoring of system devices has been developed in compliance with a new EPICS module called Nominal Device Support (NDS) and RIO/FlexRIO design methodology.
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061
AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.
Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S
2017-09-01
Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.
Discrete Fourier Transform in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2015-01-01
An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.
The PBL-Evaluator: A Web-Based Tool for Assessment in Tutorials.
ERIC Educational Resources Information Center
Chaves, John F.; Chaves, John A.; Lantz, Marilyn S.
1998-01-01
Describes design and use of the PBL Evaluator, a computer-based method of evaluating dental students' clinical problem-solving skills. Analysis of Indiana University students' self-, peer, and tutor ratings for one iteration of a course in critical thinking and professional behavior shows differences in these ratings. The method is found useful…
The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.
Strohmeier, Daniel; Bekhti, Yousra; Haueisen, Jens; Gramfort, Alexandre
2016-10-01
Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l 1 -norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l 0.5 -quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.
A novel Iterative algorithm to text segmentation for web born-digital images
NASA Astrophysics Data System (ADS)
Xu, Zhigang; Zhu, Yuesheng; Sun, Ziqiang; Liu, Zhen
2015-07-01
Since web born-digital images have low resolution and dense text atoms, text region over-merging and miss detection are still two open issues to be addressed. In this paper a novel iterative algorithm is proposed to locate and segment text regions. In each iteration, the candidate text regions are generated by detecting Maximally Stable Extremal Region (MSER) with diminishing thresholds, and categorized into different groups based on a new similarity graph, and the texted region groups are identified by applying several features and rules. With our proposed overlap checking method the final well-segmented text regions are selected from these groups in all iterations. Experiments have been carried out on the web born-digital image datasets used for robust reading competition in ICDAR 2011 and 2013, and the results demonstrate that our proposed scheme can significantly reduce both the number of over-merge regions and the lost rate of target atoms, and the overall performance outperforms the best compared with the methods shown in the two competitions in term of recall rate and f-score at the cost of slightly higher computational complexity.
NASA Technical Reports Server (NTRS)
Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.
1987-01-01
In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.
A self-adapting system for the automated detection of inter-ictal epileptiform discharges.
Lodder, Shaun S; van Putten, Michel J A M
2014-01-01
Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form "IED nominations", each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20-30 min recordings 1 took approximately 5 min. The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents.
A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem
2013-02-01
obtained by using the block Gauss – Seidel iterative meth- od. To show the convergence of the iterative method, we define the error between two...models to the general multiple cavity setting. Numerical examples indicate that the convergence of the Gauss – Seidel iterative method depends on the...variational approach. A block Gauss – Seidel iterative method is introduced to solve the cou- pled system of the multiple cavity scattering problem, where
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures.
Loss, Leandro A; Bebis, George; Parvin, Bahram
2011-08-01
In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is validated on delineating adherens junctions that are imaged through fluorescence microscopy. However, the method is also applicable for screening other organisms based on characteristics of their cell wall structures. Adherens junctions maintain tissue structural integrity and cell-cell interactions. Visually, they exhibit fibrous patterns that may be diffused, heterogeneous in fluorescence intensity, or punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates.
Rueda, Oscar M; Diaz-Uriarte, Ramon
2007-10-16
Yu et al. (BMC Bioinformatics 2007,8: 145+) have recently compared the performance of several methods for the detection of genomic amplification and deletion breakpoints using data from high-density single nucleotide polymorphism arrays. One of the methods compared is our non-homogenous Hidden Markov Model approach. Our approach uses Markov Chain Monte Carlo for inference, but Yu et al. ran the sampler for a severely insufficient number of iterations for a Markov Chain Monte Carlo-based method. Moreover, they did not use the appropriate reference level for the non-altered state. We rerun the analysis in Yu et al. using appropriate settings for both the Markov Chain Monte Carlo iterations and the reference level. Additionally, to show how easy it is to obtain answers to additional specific questions, we have added a new analysis targeted specifically to the detection of breakpoints. The reanalysis shows that the performance of our method is comparable to that of the other methods analyzed. In addition, we can provide probabilities of a given spot being a breakpoint, something unique among the methods examined. Markov Chain Monte Carlo methods require using a sufficient number of iterations before they can be assumed to yield samples from the distribution of interest. Running our method with too small a number of iterations cannot be representative of its performance. Moreover, our analysis shows how our original approach can be easily adapted to answer specific additional questions (e.g., identify edges).
NASA Astrophysics Data System (ADS)
Shi, Aiye; Wang, Chao; Shen, Shaohong; Huang, Fengchen; Ma, Zhenli
2016-10-01
Chi-squared transform (CST), as a statistical method, can describe the difference degree between vectors. The CST-based methods operate directly on information stored in the difference image and are simple and effective methods for detecting changes in remotely sensed images that have been registered and aligned. However, the technique does not take spatial information into consideration, which leads to much noise in the result of change detection. An improved unsupervised change detection method is proposed based on spatial constraint CST (SCCST) in combination with a Markov random field (MRF) model. First, the mean and variance matrix of the difference image of bitemporal images are estimated by an iterative trimming method. In each iteration, spatial information is injected to reduce scattered changed points (also known as "salt and pepper" noise). To determine the key parameter confidence level in the SCCST method, a pseudotraining dataset is constructed to estimate the optimal value. Then, the result of SCCST, as an initial solution of change detection, is further improved by the MRF model. The experiments on simulated and real multitemporal and multispectral images indicate that the proposed method performs well in comprehensive indices compared with other methods.
A conjugate gradient method for solving the non-LTE line radiation transfer problem
NASA Astrophysics Data System (ADS)
Paletou, F.; Anterrieu, E.
2009-12-01
This study concerns the fast and accurate solution of the line radiation transfer problem, under non-LTE conditions. We propose and evaluate an alternative iterative scheme to the classical ALI-Jacobi method, and to the more recently proposed Gauss-Seidel and successive over-relaxation (GS/SOR) schemes. Our study is indeed based on applying a preconditioned bi-conjugate gradient method (BiCG-P). Standard tests, in 1D plane parallel geometry and in the frame of the two-level atom model with monochromatic scattering are discussed. Rates of convergence between the previously mentioned iterative schemes are compared, as are their respective timing properties. The smoothing capability of the BiCG-P method is also demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang
2004-05-01
We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.
Du, Shaoyi; Xu, Yiting; Wan, Teng; Hu, Huaizhong; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao
2017-01-01
The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm.
Du, Shaoyi; Xu, Yiting; Wan, Teng; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao
2017-01-01
The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm. PMID:29176780
Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M
2014-12-01
To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.
Seismic tomography of the southern California crust based on spectral-element and adjoint methods
NASA Astrophysics Data System (ADS)
Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen
2010-01-01
We iteratively improve a 3-D tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral-element method (SEM) in combination with an adjoint method. The initial 3-D model is provided by the Southern California Earthquake Center. The data set comprises three-component seismic waveforms (i.e. both body and surface waves), filtered over the period range 2-30 s, from 143 local earthquakes recorded by a network of 203 stations. Time windows for measurements are automatically selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based on frequency-dependent multitaper traveltime differences. The gradient of the misfit function and related finite-frequency sensitivity kernels for each earthquake are computed using an adjoint technique. The kernels are combined using a source subspace projection method to compute a model update at each iteration of a gradient-based minimization algorithm. The inversion involved 16 iterations, which required 6800 wavefield simulations. The new crustal model, m16, is described in terms of independent shear (VS) and bulk-sound (VB) wave speed variations. It exhibits strong heterogeneity, including local changes of +/-30 per cent with respect to the initial 3-D model. The model reveals several features that relate to geological observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies across faults. The quality of the new model is validated by quantifying waveform misfits of full-length seismograms from 91 earthquakes that were not used in the tomographic inversion. The new model provides more accurate synthetic seismograms that will benefit seismic hazard assessment.
Development of a pressure based multigrid solution method for complex fluid flows
NASA Technical Reports Server (NTRS)
Shyy, Wei
1991-01-01
In order to reduce the computational difficulty associated with a single grid (SG) solution procedure, the multigrid (MG) technique was identified as a useful means for improving the convergence rate of iterative methods. A full MG full approximation storage (FMG/FAS) algorithm is used to solve the incompressible recirculating flow problems in complex geometries. The algorithm is implemented in conjunction with a pressure correction staggered grid type of technique using the curvilinear coordinates. In order to show the performance of the method, two flow configurations, one a square cavity and the other a channel, are used as test problems. Comparisons are made between the iterations, equivalent work units, and CPU time. Besides showing that the MG method can yield substantial speed-up with wide variations in Reynolds number, grid distributions, and geometry, issues such as the convergence characteristics of different grid levels, the choice of convection schemes, and the effectiveness of the basic iteration smoothers are studied. An adaptive grid scheme is also combined with the MG procedure to explore the effects of grid resolution on the MG convergence rate as well as the numerical accuracy.
Nested Krylov methods and preserving the orthogonality
NASA Technical Reports Server (NTRS)
Desturler, Eric; Fokkema, Diederik R.
1993-01-01
Recently the GMRESR inner-outer iteraction scheme for the solution of linear systems of equations was proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and Vassilevski and Saad (FGMRES). The outer iteration is GCR, which minimizes the residual over a given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction vector by approximately solving the residual equation. However, the optimality of the approximation over the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal corrections to the solution in the outer iteration, as components of the outer iteration directions may reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular, non-symmetric operator. We will discuss some important properties, and we will show by experiments that, in terms of matrix vector products, this modification (almost) always leads to better convergence. However, because we do more orthogonalizations, it does not always give an improved performance in CPU-time. Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer GCR process. The experimental results indicate that for such methods it is advantageous to preserve the orthogonality in the inner iteration. Of course we can also use iteration schemes other than GMRES as the inner method; methods with short recurrences like GICGSTAB are of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasaki, Akira; Kubota, Mamoru; Hirota, Junichi
2006-11-15
We have redeveloped a high-energy x-ray spectra estimation method reported by Iwasaki et al. [A. Iwasaki, H. Matsutani, M. Kubota, A. Fujimori, K. Suzaki, and Y. Abe, Radiat. Phys. Chem. 67, 81-91 (2003)]. The method is based on the iterative perturbation principle to minimize differences between measured and calculated transmission curves, originally proposed by Waggener et al. [R. G. Waggener, M. M. Blough, J. A. Terry, D. Chen, N. E. Lee, S. Zhang, and W. D. McDavid, Med. Phys. 26, 1269-1278 (1999)]. The method can estimate spectra applicable for media at least from water to lead using only about tenmore » energy bins. Estimating spectra of 4-15 MV x-ray beams from a linear accelerator, we describe characteristic features of the method with regard to parameters including the prespectrum, number of transmission measurements, number of energy bins, energy bin widths, and artifactual bipeaked spectrum production.« less
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
NASA Technical Reports Server (NTRS)
Kutepov, A. A.; Kunze, D.; Hummer, D. G.; Rybicki, G. B.
1991-01-01
An iterative method based on the use of approximate transfer operators, which was designed initially to solve multilevel NLTE line formation problems in stellar atmospheres, is adapted and applied to the solution of the NLTE molecular band radiative transfer in planetary atmospheres. The matrices to be constructed and inverted are much smaller than those used in the traditional Curtis matrix technique, which makes possible the treatment of more realistic problems using relatively small computers. This technique converges much more rapidly than straightforward iteration between the transfer equation and the equations of statistical equilibrium. A test application of this new technique to the solution of NLTE radiative transfer problems for optically thick and thin bands (the 4.3 micron CO2 band in the Venusian atmosphere and the 4.7 and 2.3 micron CO bands in the earth's atmosphere) is described.
Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.
Junker, André; Brenner, Karl-Heinz
2018-03-01
The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.
NASA Astrophysics Data System (ADS)
Betté, Srinivas; Diaz, Julio C.; Jines, William R.; Steihaug, Trond
1986-11-01
A preconditioned residual-norm-reducing iterative solver is described. Based on a truncated form of the generalized-conjugate-gradient method for nonsymmetric systems of linear equations, the iterative scheme is very effective for linear systems generated in reservoir simulation of thermal oil recovery processes. As a consequence of employing an adaptive implicit finite-difference scheme to solve the model equations, the number of variables per cell-block varies dynamically over the grid. The data structure allows for 5- and 9-point operators in the areal model, 5-point in the cross-sectional model, and 7- and 11-point operators in the three-dimensional model. Block-diagonal-scaling of the linear system, done prior to iteration, is found to have a significant effect on the rate of convergence. Block-incomplete-LU-decomposition (BILU) and block-symmetric-Gauss-Seidel (BSGS) methods, which result in no fill-in, are used as preconditioning procedures. A full factorization is done on the well terms, and the cells are ordered in a manner which minimizes the fill-in in the well-column due to this factorization. The convergence criterion for the linear (inner) iteration is linked to that of the nonlinear (Newton) iteration, thereby enhancing the efficiency of the computation. The algorithm, with both BILU and BSGS preconditioners, is evaluated in the context of a variety of thermal simulation problems. The solver is robust and can be used with little or no user intervention.
Calibration free beam hardening correction for cardiac CT perfusion imaging
NASA Astrophysics Data System (ADS)
Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.
2016-03-01
Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.
Photoacoustic image reconstruction via deep learning
NASA Astrophysics Data System (ADS)
Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes
2018-02-01
Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.
Iterated reaction graphs: simulating complex Maillard reaction pathways.
Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W
2001-01-01
This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.
Transport synthetic acceleration with opposing reflecting boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less
Reducing the latency of the Fractal Iterative Method to half an iteration
NASA Astrophysics Data System (ADS)
Béchet, Clémentine; Tallon, Michel
2013-12-01
The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.
Iterative inversion of deformation vector fields with feedback control.
Dubey, Abhishek; Iliopoulos, Alexandros-Stavros; Sun, Xiaobai; Yin, Fang-Fang; Ren, Lei
2018-05-14
Often, the inverse deformation vector field (DVF) is needed together with the corresponding forward DVF in four-dimesional (4D) reconstruction and dose calculation, adaptive radiation therapy, and simultaneous deformable registration. This study aims at improving both accuracy and efficiency of iterative algorithms for DVF inversion, and advancing our understanding of divergence and latency conditions. We introduce a framework of fixed-point iteration algorithms with active feedback control for DVF inversion. Based on rigorous convergence analysis, we design control mechanisms for modulating the inverse consistency (IC) residual of the current iterate, to be used as feedback into the next iterate. The control is designed adaptively to the input DVF with the objective to enlarge the convergence area and expedite convergence. Three particular settings of feedback control are introduced: constant value over the domain throughout the iteration; alternating values between iteration steps; and spatially variant values. We also introduce three spectral measures of the displacement Jacobian for characterizing a DVF. These measures reveal the critical role of what we term the nontranslational displacement component (NTDC) of the DVF. We carry out inversion experiments with an analytical DVF pair, and with DVFs associated with thoracic CT images of six patients at end of expiration and end of inspiration. The NTDC-adaptive iterations are shown to attain a larger convergence region at a faster pace compared to previous nonadaptive DVF inversion iteration algorithms. By our numerical experiments, alternating control yields smaller IC residuals and inversion errors than constant control. Spatially variant control renders smaller residuals and errors by at least an order of magnitude, compared to other schemes, in no more than 10 steps. Inversion results also show remarkable quantitative agreement with analysis-based predictions. Our analysis captures properties of DVF data associated with clinical CT images, and provides new understanding of iterative DVF inversion algorithms with a simple residual feedback control. Adaptive control is necessary and highly effective in the presence of nonsmall NTDCs. The adaptive iterations or the spectral measures, or both, may potentially be incorporated into deformable image registration methods. © 2018 American Association of Physicists in Medicine.
2003-06-01
delivery Data Access (1980s) "What were unit sales in New England last March?" Relational databases (RDBMS), Structured Query Language ( SQL ...macros written in Visual Basic for Applications ( VBA ). 32 Iteration Two: Class Diagram Tech OASIS Export ScriptImport Filter Data ProcessingMethod 1...MS Excel * 1 VBA Macro*1 contains sends data to co nt ai ns executes * * 1 1 contains contains Figure 20. Iteration two class diagram The
Tail Biting Trellis Representation of Codes: Decoding and Construction
NASA Technical Reports Server (NTRS)
Shao. Rose Y.; Lin, Shu; Fossorier, Marc
1999-01-01
This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.
1990-02-01
noise. Tobias B. Orloff Work began on developing a high quality rendering algorithm based on the radiosity method. The algorithm is similar to...previous progressive radiosity algorithms except for the following improvements: 1. At each iteration vertex radiosities are computed using a modified scan...line approach, thus eliminating the quadratic cost associated with a ray tracing computation of vortex radiosities . 2. At each iteration the scene is
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement
Hao, Yansong; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-01-01
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency. PMID:29597280
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement.
Ren, Bangyue; Hao, Yansong; Wang, Huaqing; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-03-28
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency.
Iterative deep convolutional encoder-decoder network for medical image segmentation.
Jung Uk Kim; Hak Gu Kim; Yong Man Ro
2017-07-01
In this paper, we propose a novel medical image segmentation using iterative deep learning framework. We have combined an iterative learning approach and an encoder-decoder network to improve segmentation results, which enables to precisely localize the regions of interest (ROIs) including complex shapes or detailed textures of medical images in an iterative manner. The proposed iterative deep convolutional encoder-decoder network consists of two main paths: convolutional encoder path and convolutional decoder path with iterative learning. Experimental results show that the proposed iterative deep learning framework is able to yield excellent medical image segmentation performances for various medical images. The effectiveness of the proposed method has been proved by comparing with other state-of-the-art medical image segmentation methods.
Paul, Sabyasachi; Sarkar, P K
2013-04-01
Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.
Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki
2017-12-09
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
NASA Astrophysics Data System (ADS)
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
Application of Gauss's law space-charge limited emission model in iterative particle tracking method
NASA Astrophysics Data System (ADS)
Altsybeyev, V. V.; Ponomarev, V. A.
2016-11-01
The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.
Image based method for aberration measurement of lithographic tools
NASA Astrophysics Data System (ADS)
Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa
2018-01-01
Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor
Park, Jinho; Park, Hasil
2017-01-01
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826
TH-AB-BRA-09: Stability Analysis of a Novel Dose Calculation Algorithm for MRI Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelyak, O; Fallone, B; Cross Cancer Institute, Edmonton, AB
2016-06-15
Purpose: To determine the iterative deterministic solution stability of the Linear Boltzmann Transport Equation (LBTE) in the presence of magnetic fields. Methods: The LBTE with magnetic fields under investigation is derived using a discrete ordinates approach. The stability analysis is performed using analytical and numerical methods. Analytically, the spectral Fourier analysis is used to obtain the convergence rate of the source iteration procedures based on finding the largest eigenvalue of the iterative operator. This eigenvalue is a function of relevant physical parameters, such as magnetic field strength and material properties, and provides essential information about the domain of applicability requiredmore » for clinically optimal parameter selection and maximum speed of convergence. The analytical results are reinforced by numerical simulations performed using the same discrete ordinates method in angle, and a discontinuous finite element spatial approach. Results: The spectral radius for the source iteration technique of the time independent transport equation with isotropic and anisotropic scattering centers inside infinite 3D medium is equal to the ratio of differential and total cross sections. The result is confirmed numerically by solving LBTE and is in full agreement with previously published results. The addition of magnetic field reveals that the convergence becomes dependent on the strength of magnetic field, the energy group discretization, and the order of anisotropic expansion. Conclusion: The source iteration technique for solving the LBTE with magnetic fields with the discrete ordinates method leads to divergent solutions in the limiting cases of small energy discretizations and high magnetic field strengths. Future investigations into non-stationary Krylov subspace techniques as an iterative solver will be performed as this has been shown to produce greater stability than source iteration. Furthermore, a stability analysis of a discontinuous finite element space-angle approach (which has been shown to provide the greatest stability) will also be investigated. Dr. B Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less
Self-consistent field for fragmented quantum mechanical model of large molecular systems.
Jin, Yingdi; Su, Neil Qiang; Xu, Xin; Hu, Hao
2016-01-30
Fragment-based linear scaling quantum chemistry methods are a promising tool for the accurate simulation of chemical and biomolecular systems. Because of the coupled inter-fragment electrostatic interactions, a dual-layer iterative scheme is often employed to compute the fragment electronic structure and the total energy. In the dual-layer scheme, the self-consistent field (SCF) of the electronic structure of a fragment must be solved first, then followed by the updating of the inter-fragment electrostatic interactions. The two steps are sequentially carried out and repeated; as such a significant total number of fragment SCF iterations is required to converge the total energy and becomes the computational bottleneck in many fragment quantum chemistry methods. To reduce the number of fragment SCF iterations and speed up the convergence of the total energy, we develop here a new SCF scheme in which the inter-fragment interactions can be updated concurrently without converging the fragment electronic structure. By constructing the global, block-wise Fock matrix and density matrix, we prove that the commutation between the two global matrices guarantees the commutation of the corresponding matrices in each fragment. Therefore, many highly efficient numerical techniques such as the direct inversion of the iterative subspace method can be employed to converge simultaneously the electronic structure of all fragments, reducing significantly the computational cost. Numerical examples for water clusters of different sizes suggest that the method shall be very useful in improving the scalability of fragment quantum chemistry methods. © 2015 Wiley Periodicals, Inc.
A three phase optimization method for precopy based VM live migration.
Sharma, Sangeeta; Chawla, Meenu
2016-01-01
Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.
Sub-aperture switching based ptychographic iterative engine (sasPIE) method for quantitative imaging
NASA Astrophysics Data System (ADS)
Sun, Aihui; Kong, Yan; Jiang, Zhilong; Yu, Wei; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng
2018-03-01
Though ptychographic iterative engine (PIE) has been widely adopted in the quantitative micro-imaging with various illuminations as visible light, X-ray and electron beam, the mechanical inaccuracy in the raster scanning of the sample relative to the illumination always degrades the reconstruction quality seriously and makes the resolution reached much lower than that determined by the numerical aperture of the optical system. To overcome this disadvantage, the sub-aperture switching based PIE method is proposed: the mechanical scanning in the common PIE is replaced by the sub-aperture switching, and the reconstruction error related to the positioning inaccuracy is completely avoided. The proposed technique remarkably improves the reconstruction quality, reduces the complexity of the experimental setup and fundamentally accelerates the data acquisition and reconstruction.
Gaussian mixed model in support of semiglobal matching leveraged by ground control points
NASA Astrophysics Data System (ADS)
Ma, Hao; Zheng, Shunyi; Li, Chang; Li, Yingsong; Gui, Li
2017-04-01
Semiglobal matching (SGM) has been widely applied in large aerial images because of its good tradeoff between complexity and robustness. The concept of ground control points (GCPs) is adopted to make SGM more robust. We model the effect of GCPs as two data terms for stereo matching between high-resolution aerial epipolar images in an iterative scheme. One term based on GCPs is formulated by Gaussian mixture model, which strengths the relation between GCPs and the pixels to be estimated and encodes some degree of consistency between them with respect to disparity values. Another term depends on pixel-wise confidence, and we further design a confidence updating equation based on three rules. With this confidence-based term, the assignment of disparity can be heuristically selected among disparity search ranges during the iteration process. Several iterations are sufficient to bring out satisfactory results according to our experiments. Experimental results validate that the proposed method outperforms surface reconstruction, which is a representative variant of SGM and behaves excellently on aerial images.
Gao, Wei; Liu, Yalong; Xu, Bo
2014-12-19
A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated measurements with outliers are inherent. By integrating both merits of iterated divided difference filtering (IDDF) and Huber's M-estimation methodology, the new filtering method could not only achieve more accurate estimation and faster convergence contrast to standard divided difference filtering (DDF) in conditions of weak observability and large initial error, but also exhibit robustness with respect to outlier measurements, for which the standard IDDF would exhibit severe degradation in estimation accuracy. The correctness as well as validity of the algorithm is demonstrated through experiment results.
Multivariable frequency domain identification via 2-norm minimization
NASA Technical Reports Server (NTRS)
Bayard, David S.
1992-01-01
The author develops a computational approach to multivariable frequency domain identification, based on 2-norm minimization. In particular, a Gauss-Newton (GN) iteration is developed to minimize the 2-norm of the error between frequency domain data and a matrix fraction transfer function estimate. To improve the global performance of the optimization algorithm, the GN iteration is initialized using the solution to a particular sequentially reweighted least squares problem, denoted as the SK iteration. The least squares problems which arise from both the SK and GN iterations are shown to involve sparse matrices with identical block structure. A sparse matrix QR factorization method is developed to exploit the special block structure, and to efficiently compute the least squares solution. A numerical example involving the identification of a multiple-input multiple-output (MIMO) plant having 286 unknown parameters is given to illustrate the effectiveness of the algorithm.
Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang
2018-01-01
Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai
2018-03-01
The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
NASA Astrophysics Data System (ADS)
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad
2017-07-01
This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.
Efficient relaxed-Jacobi smoothers for multigrid on parallel computers
NASA Astrophysics Data System (ADS)
Yang, Xiang; Mittal, Rajat
2017-03-01
In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.
Qing Liu; Zhihui Lai; Zongwei Zhou; Fangjun Kuang; Zhong Jin
2016-01-01
Low-rank matrix completion aims to recover a matrix from a small subset of its entries and has received much attention in the field of computer vision. Most existing methods formulate the task as a low-rank matrix approximation problem. A truncated nuclear norm has recently been proposed as a better approximation to the rank of matrix than a nuclear norm. The corresponding optimization method, truncated nuclear norm regularization (TNNR), converges better than the nuclear norm minimization-based methods. However, it is not robust to the number of subtracted singular values and requires a large number of iterations to converge. In this paper, a TNNR method based on weighted residual error (TNNR-WRE) for matrix completion and its extension model (ETNNR-WRE) are proposed. TNNR-WRE assigns different weights to the rows of the residual error matrix in an augmented Lagrange function to accelerate the convergence of the TNNR method. The ETNNR-WRE is much more robust to the number of subtracted singular values than the TNNR-WRE, TNNR alternating direction method of multipliers, and TNNR accelerated proximal gradient with Line search methods. Experimental results using both synthetic and real visual data sets show that the proposed TNNR-WRE and ETNNR-WRE methods perform better than TNNR and Iteratively Reweighted Nuclear Norm (IRNN) methods.
Fast divide-and-conquer algorithm for evaluating polarization in classical force fields
NASA Astrophysics Data System (ADS)
Nocito, Dominique; Beran, Gregory J. O.
2017-03-01
Evaluation of the self-consistent polarization energy forms a major computational bottleneck in polarizable force fields. In large systems, the linear polarization equations are typically solved iteratively with techniques based on Jacobi iterations (JI) or preconditioned conjugate gradients (PCG). Two new variants of JI are proposed here that exploit domain decomposition to accelerate the convergence of the induced dipoles. The first, divide-and-conquer JI (DC-JI), is a block Jacobi algorithm which solves the polarization equations within non-overlapping sub-clusters of atoms directly via Cholesky decomposition, and iterates to capture interactions between sub-clusters. The second, fuzzy DC-JI, achieves further acceleration by employing overlapping blocks. Fuzzy DC-JI is analogous to an additive Schwarz method, but with distance-based weighting when averaging the fuzzy dipoles from different blocks. Key to the success of these algorithms is the use of K-means clustering to identify natural atomic sub-clusters automatically for both algorithms and to determine the appropriate weights in fuzzy DC-JI. The algorithm employs knowledge of the 3-D spatial interactions to group important elements in the 2-D polarization matrix. When coupled with direct inversion in the iterative subspace (DIIS) extrapolation, fuzzy DC-JI/DIIS in particular converges in a comparable number of iterations as PCG, but with lower computational cost per iteration. In the end, the new algorithms demonstrated here accelerate the evaluation of the polarization energy by 2-3 fold compared to existing implementations of PCG or JI/DIIS.
Iterative Strain-Gage Balance Calibration Data Analysis for Extended Independent Variable Sets
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred
2011-01-01
A new method was developed that makes it possible to use an extended set of independent calibration variables for an iterative analysis of wind tunnel strain gage balance calibration data. The new method permits the application of the iterative analysis method whenever the total number of balance loads and other independent calibration variables is greater than the total number of measured strain gage outputs. Iteration equations used by the iterative analysis method have the limitation that the number of independent and dependent variables must match. The new method circumvents this limitation. It simply adds a missing dependent variable to the original data set by using an additional independent variable also as an additional dependent variable. Then, the desired solution of the regression analysis problem can be obtained that fits each gage output as a function of both the original and additional independent calibration variables. The final regression coefficients can be converted to data reduction matrix coefficients because the missing dependent variables were added to the data set without changing the regression analysis result for each gage output. Therefore, the new method still supports the application of the two load iteration equation choices that the iterative method traditionally uses for the prediction of balance loads during a wind tunnel test. An example is discussed in the paper that illustrates the application of the new method to a realistic simulation of temperature dependent calibration data set of a six component balance.
A comparison theorem for the SOR iterative method
NASA Astrophysics Data System (ADS)
Sun, Li-Ying
2005-09-01
In 1997, Kohno et al. have reported numerically that the improving modified Gauss-Seidel method, which was referred to as the IMGS method, is superior to the SOR iterative method. In this paper, we prove that the spectral radius of the IMGS method is smaller than that of the SOR method and Gauss-Seidel method, if the relaxation parameter [omega][set membership, variant](0,1]. As a result, we prove theoretically that this method is succeeded in improving the convergence of some classical iterative methods. Some recent results are improved.
Relations between elliptic multiple zeta values and a special derivation algebra
NASA Astrophysics Data System (ADS)
Broedel, Johannes; Matthes, Nils; Schlotterer, Oliver
2016-04-01
We investigate relations between elliptic multiple zeta values (eMZVs) and describe a method to derive the number of indecomposable elements of given weight and length. Our method is based on representing eMZVs as iterated integrals over Eisenstein series and exploiting the connection with a special derivation algebra. Its commutator relations give rise to constraints on the iterated integrals over Eisenstein series relevant for eMZVs and thereby allow to count the indecomposable representatives. Conversely, the above connection suggests apparently new relations in the derivation algebra. Under https://tools.aei.mpg.de/emzv we provide relations for eMZVs over a wide range of weights and lengths.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1972-01-01
A set of equations which transform position and angular orientation of the centroid of the payload platform of a six-degree-of-freedom motion simulator into extensions of the simulator's actuators has been derived and is based on a geometrical representation of the system. An iterative scheme, Newton-Raphson's method, has been successfully used in a real time environment in the calculation of the position and angular orientation of the centroid of the payload platform when the magnitude of the actuator extensions is known. Sufficient accuracy is obtained by using only one Newton-Raphson iteration per integration step of the real time environment.
Iterative procedures for space shuttle main engine performance models
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1989-01-01
Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented.
An implementation of the QMR method based on coupled two-term recurrences
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noeel M.
1992-01-01
The authors have proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR), for solving non-Hermitian linear systems. In the original implementation of the QMR method, the Lanczos process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of three-term recurrences. It has been observed that, in finite precision arithmetic, vector iterations based on three-term recursions are usually less robust than mathematically equivalent coupled two-term vector recurrences. This paper presents a look-ahead algorithm that constructs the Lanczos basis vectors by means of coupled two-term recursions. Implementation details are given, and the look-ahead strategy is described. A new implementation of the QMR method, based on this coupled two-term algorithm, is described. A simplified version of the QMR algorithm without look-ahead is also presented, and the special case of QMR for complex symmetric linear systems is considered. Results of numerical experiments comparing the original and the new implementations of the QMR method are reported.
Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella
2016-12-09
Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive effects. The proposed model consists of three phases. In the first phase, rough set-based methods are used to select the most discriminative features for reducing the classification time and improving the classification performance. Due to the imbalanced class distribution, in the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique are used to solve the problem of imbalanced datasets. ITerative Sampling (ITS) method is proposed to avoid the limitations of those methods. ITS method has two steps. The first step (sampling step) iteratively modifies the prior distribution of the minority and majority classes. In the second step, a data cleaning method is used to remove the overlapping that is produced from the first step. In the third phase, Bagging classifier is used to classify an unknown drug into toxic or non-toxic. The experimental results proved that the proposed model performed well in classifying the unknown samples according to all toxic effects in the imbalanced datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr; Lee, Taewon
2015-09-15
Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue compositionmore » for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of conditions. Our GPU-based fast MCS implementation took approximately 3 s to generate each angular projection for a 6 cm thick breast, which is believed to make this process acceptable for clinical applications. In addition, the clinical preferences of three radiologists were evaluated; the preference for the proposed method compared to the preference for the convolution-based method was statistically meaningful (p < 0.05, McNemar test). Conclusions: The proposed fully iterative scatter correction method and the GPU-based fast MCS using tissue-composition ratio estimation successfully improved the image quality within a reasonable computational time, which may potentially increase the clinical utility of DBT.« less
Parallel iterative methods for sparse linear and nonlinear equations
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.
A three-dimensional wide-angle BPM for optical waveguide structures.
Ma, Changbao; Van Keuren, Edward
2007-01-22
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
NASA Astrophysics Data System (ADS)
Yarmohammadi, M.; Javadi, S.; Babolian, E.
2018-04-01
In this study a new spectral iterative method (SIM) based on fractional interpolation is presented for solving nonlinear fractional differential equations (FDEs) involving Caputo derivative. This method is equipped with a pre-algorithm to find the singularity index of solution of the problem. This pre-algorithm gives us a real parameter as the index of the fractional interpolation basis, for which the SIM achieves the highest order of convergence. In comparison with some recent results about the error estimates for fractional approximations, a more accurate convergence rate has been attained. We have also proposed the order of convergence for fractional interpolation error under the L2-norm. Finally, general error analysis of SIM has been considered. The numerical results clearly demonstrate the capability of the proposed method.
A three-dimensional wide-angle BPM for optical waveguide structures
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2007-01-01
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
Advances in Global Adjoint Tomography - Data Assimilation and Inversion Strategy
NASA Astrophysics Data System (ADS)
Ruan, Y.; Lei, W.; Lefebvre, M. P.; Modrak, R. T.; Smith, J. A.; Bozdag, E.; Tromp, J.
2016-12-01
Seismic tomography provides the most direct way to understand Earth's interior by imaging elastic heterogeneity, anisotropy and anelasticity. Resolving thefine structure of these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models. On the supercomputer "Titan" at Oak Ridge National Laboratory, we are employing a spectral-element method (Komatitsch & Tromp 1999, 2002) in combination with an adjoint method (Tromp et al., 2005) to accurately calculate theoretical seismograms and Frechet derivatives. Using 253 carefully selected events, Bozdag et al. (2016) iteratively determined a transversely isotropic earth model (GLAD_M15) using 15 preconditioned conjugate-gradient iterations. To obtain higher resolution images of the mantle, we have expanded our database to more than 4,220 Mw5.0-7.0 events occurred between 1995 and 2014. Instead of using the entire database all at once, we choose to draw subsets of about 1,000 events from our database for each iteration to achieve a faster convergence rate with limited computing resources. To provide good coverage of deep structures, we selected approximately 700 deep and intermedia earthquakes and 300 shallow events to start a new iteration. We reinverted the CMT solutions of these events in the latest model, and recalculated synthetic seismograms. Using the synthetics as reference seismograms, we selected time windows that show good agreement with data and make measurements within the windows. From the measurements we further assess the overall quality of each event and station, and exclude bad measurements base upon certain criteria. So far, with very conservative criteria, we have assimilated more than 8.0 million windows from 1,000 earthquakes in three period bands for the new iteration. For subsequent iterations, we will change the period bands and window selecting criteria to include more window. In the inversion, dense array data (e.g., USArray) usually dominate model updates. In order to better handle this issue, we introduced weighting of stations and events based upon their relative distance and showed that the contribution from dense array is better balanced in the Frechet derivatives. We will present a summary of this form of data assimilation and preliminary results of the first few iterations.
2.5D transient electromagnetic inversion with OCCAM method
NASA Astrophysics Data System (ADS)
Li, R.; Hu, X.
2016-12-01
In the application of time-domain electromagnetic method (TEM), some multidimensional inversion schemes are applied for imaging in the past few decades to overcome great error produced by 1D model inversion when the subsurface structure is complex. The current mainstream multidimensional inversion for EM data, with the finite-difference time-domain (FDTD) forward method, mainly implemented by Nonlinear Conjugate Gradient (NLCG). But the convergence rate of NLCG heavily depends on Lagrange multiplier and maybe fail to converge. We use the OCCAM inversion method to avoid the weakness. OCCAM inversion is proven to be a more stable and reliable method to image the subsurface 2.5D electrical conductivity. Firstly, we simulate the 3D transient EM fields governed by Maxwell's equations with FDTD method. Secondly, we use the OCCAM inversion scheme with the appropriate objective error functional we established to image the 2.5D structure. And the data space OCCAM's inversion (DASOCC) strategy based on OCCAM scheme were given in this paper. The sensitivity matrix is calculated with the method of time-integrated back-propagated fields. Imaging result of example model shown in Fig. 1 have proven that the OCCAM scheme is an efficient inversion method for TEM with FDTD method. The processes of the inversion iterations have shown the great ability of convergence with few iterations. Summarizing the process of the imaging, we can make the following conclusions. Firstly, the 2.5D imaging in FDTD system with OCCAM inversion demonstrates that we could get desired imaging results for the resistivity structure in the homogeneous half-space. Secondly, the imaging results usually do not over-depend on the initial model, but the iteration times can be reduced distinctly if the background resistivity of initial model get close to the truthful model. So it is batter to set the initial model based on the other geologic information in the application. When the background resistivity fit the truthful model well, the imaging of anomalous body only need a few iteration steps. Finally, the speed of imaging vertical boundaries is slower than the speed of imaging the horizontal boundaries.
A new numerical method for calculating extrema of received power for polarimetric SAR
Zhang, Y.; Zhang, Jiahua; Lu, Z.; Gong, W.
2009-01-01
A numerical method called cross-step iteration is proposed to calculate the maximal/minimal received power for polarized imagery based on a target's Kennaugh matrix. This method is much more efficient than the systematic method, which searches for the extrema of received power by varying the polarization ellipse angles of receiving and transmitting polarizations. It is also more advantageous than the Schuler method, which has been adopted by the PolSARPro package, because the cross-step iteration method requires less computation time and can derive both the maximal and minimal received powers, whereas the Schuler method is designed to work out only the maximal received power. The analytical model of received-power optimization indicates that the first eigenvalue of the Kennaugh matrix is the supremum of the maximal received power. The difference between these two parameters reflects the depolarization effect of the target's backscattering, which might be useful for target discrimination. ?? 2009 IEEE.
A Self-Adapting System for the Automated Detection of Inter-Ictal Epileptiform Discharges
Lodder, Shaun S.; van Putten, Michel J. A. M.
2014-01-01
Purpose Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Methods Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form “IED nominations”, each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Key Findings Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20–30 min recordings 1took approximately 5 min. Significance The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents. PMID:24454813
ERIC Educational Resources Information Center
Mathews, John H.
1989-01-01
Describes Newton's method to locate roots of an equation using the Newton-Raphson iteration formula. Develops an adaptive method overcoming limitations of the iteration method. Provides the algorithm and computer program of the adaptive Newton-Raphson method. (YP)
Self-calibration method without joint iteration for distributed small satellite SAR systems
NASA Astrophysics Data System (ADS)
Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan
2013-12-01
The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.
An accelerated subspace iteration for eigenvector derivatives
NASA Technical Reports Server (NTRS)
Ting, Tienko
1991-01-01
An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.
SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, H
2015-06-15
Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Efficient Storage Scheme of Covariance Matrix during Inverse Modeling
NASA Astrophysics Data System (ADS)
Mao, D.; Yeh, T. J.
2013-12-01
During stochastic inverse modeling, the covariance matrix of geostatistical based methods carries the information about the geologic structure. Its update during iterations reflects the decrease of uncertainty with the incorporation of observed data. For large scale problem, its storage and update cost too much memory and computational resources. In this study, we propose a new efficient storage scheme for storage and update. Compressed Sparse Column (CSC) format is utilized to storage the covariance matrix, and users can assign how many data they prefer to store based on correlation scales since the data beyond several correlation scales are usually not very informative for inverse modeling. After every iteration, only the diagonal terms of the covariance matrix are updated. The off diagonal terms are calculated and updated based on shortened correlation scales with a pre-assigned exponential model. The correlation scales are shortened by a coefficient, i.e. 0.95, every iteration to show the decrease of uncertainty. There is no universal coefficient for all the problems and users are encouraged to try several times. This new scheme is tested with 1D examples first. The estimated results and uncertainty are compared with the traditional full storage method. In the end, a large scale numerical model is utilized to validate this new scheme.
PET Image Reconstruction Incorporating 3D Mean-Median Sinogram Filtering
NASA Astrophysics Data System (ADS)
Mokri, S. S.; Saripan, M. I.; Rahni, A. A. Abd; Nordin, A. J.; Hashim, S.; Marhaban, M. H.
2016-02-01
Positron Emission Tomography (PET) projection data or sinogram contained poor statistics and randomness that produced noisy PET images. In order to improve the PET image, we proposed an implementation of pre-reconstruction sinogram filtering based on 3D mean-median filter. The proposed filter is designed based on three aims; to minimise angular blurring artifacts, to smooth flat region and to preserve the edges in the reconstructed PET image. The performance of the pre-reconstruction sinogram filter prior to three established reconstruction methods namely filtered-backprojection (FBP), Maximum likelihood expectation maximization-Ordered Subset (OSEM) and OSEM with median root prior (OSEM-MRP) is investigated using simulated NCAT phantom PET sinogram as generated by the PET Analytical Simulator (ASIM). The improvement on the quality of the reconstructed images with and without sinogram filtering is assessed according to visual as well as quantitative evaluation based on global signal to noise ratio (SNR), local SNR, contrast to noise ratio (CNR) and edge preservation capability. Further analysis on the achieved improvement is also carried out specific to iterative OSEM and OSEM-MRP reconstruction methods with and without pre-reconstruction filtering in terms of contrast recovery curve (CRC) versus noise trade off, normalised mean square error versus iteration, local CNR versus iteration and lesion detectability. Overall, satisfactory results are obtained from both visual and quantitative evaluations.
NASA Astrophysics Data System (ADS)
Singh, Randhir; Das, Nilima; Kumar, Jitendra
2017-06-01
An effective analytical technique is proposed for the solution of the Lane-Emden equations. The proposed technique is based on the variational iteration method (VIM) and the convergence control parameter h . In order to avoid solving a sequence of nonlinear algebraic or complicated integrals for the derivation of unknown constant, the boundary conditions are used before designing the recursive scheme for solution. The series solutions are found which converges rapidly to the exact solution. Convergence analysis and error bounds are discussed. Accuracy, applicability of the method is examined by solving three singular problems: i) nonlinear Poisson-Boltzmann equation, ii) distribution of heat sources in the human head, iii) second-kind Lane-Emden equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Gregory H.
2003-08-06
In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in commonmore » practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.« less
Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-01-16
The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners formore » solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the problem of evaluating f(A)v which arises in statistical sampling. 11. As an application to the methods we developed, we tackled the problem of computing the diagonal of the inverse of a matrix. This arises in statistical applications as well as in many applications in physics. We explored probing methods as well as domain-decomposition type methods. 12. A collaboration with researchers from Toulouse, France, considered the important problem of computing the Schur complement in a domain-decomposition approach. 13. We explored new ways of preconditioning linear systems, based on low-rank approximations.« less
Parallelized implicit propagators for the finite-difference Schrödinger equation
NASA Astrophysics Data System (ADS)
Parker, Jonathan; Taylor, K. T.
1995-08-01
We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.
NASA Astrophysics Data System (ADS)
Milić, Ivan; Atanacković, Olga
2014-10-01
State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator within either Jacobi or Gauss-Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems, Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J=a+bS between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.
NASA Astrophysics Data System (ADS)
Arteaga, Santiago Egido
1998-12-01
The steady-state Navier-Stokes equations are of considerable interest because they are used to model numerous common physical phenomena. The applications encountered in practice often involve small viscosities and complicated domain geometries, and they result in challenging problems in spite of the vast attention that has been dedicated to them. In this thesis we examine methods for computing the numerical solution of the primitive variable formulation of the incompressible equations on distributed memory parallel computers. We use the Galerkin method to discretize the differential equations, although most results are stated so that they apply also to stabilized methods. We also reformulate some classical results in a single framework and discuss some issues frequently dismissed in the literature, such as the implementation of pressure space basis and non- homogeneous boundary values. We consider three nonlinear methods: Newton's method, Oseen's (or Picard) iteration, and sequences of Stokes problems. All these iterative nonlinear methods require solving a linear system at every step. Newton's method has quadratic convergence while that of the others is only linear; however, we obtain theoretical bounds showing that Oseen's iteration is more robust, and we confirm it experimentally. In addition, although Oseen's iteration usually requires more iterations than Newton's method, the linear systems it generates tend to be simpler and its overall costs (in CPU time) are lower. The Stokes problems result in linear systems which are easier to solve, but its convergence is much slower, so that it is competitive only for large viscosities. Inexact versions of these methods are studied, and we explain why the best timings are obtained using relatively modest error tolerances in solving the corresponding linear systems. We also present a new damping optimization strategy based on the quadratic nature of the Navier-Stokes equations, which improves the robustness of all the linearization strategies considered and whose computational cost is negligible. The algebraic properties of these systems depend on both the discretization and nonlinear method used. We study in detail the positive definiteness and skewsymmetry of the advection submatrices (essentially, convection-diffusion problems). We propose a discretization based on a new trilinear form for Newton's method. We solve the linear systems using three Krylov subspace methods, GMRES, QMR and TFQMR, and compare the advantages of each. Our emphasis is on parallel algorithms, and so we consider preconditioners suitable for parallel computers such as line variants of the Jacobi and Gauss- Seidel methods, alternating direction implicit methods, and Chebyshev and least squares polynomial preconditioners. These work well for moderate viscosities (moderate Reynolds number). For small viscosities we show that effective parallel solution of the advection subproblem is a critical factor to improve performance. Implementation details on a CM-5 are presented.
Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.
Fessler, J A; Booth, S D
1999-01-01
Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.
Hu, B.X.; He, C.
2008-01-01
An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases. ?? International Association for Mathematical Geology 2008.
NASA Astrophysics Data System (ADS)
Domnisoru, L.; Modiga, A.; Gasparotti, C.
2016-08-01
At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.
Inverse imaging of the breast with a material classification technique.
Manry, C W; Broschat, S L
1998-03-01
In recent publications [Chew et al., IEEE Trans. Blomed. Eng. BME-9, 218-225 (1990); Borup et al., Ultrason. Imaging 14, 69-85 (1992)] the inverse imaging problem has been solved by means of a two-step iterative method. In this paper, a third step is introduced for ultrasound imaging of the breast. In this step, which is based on statistical pattern recognition, classification of tissue types and a priori knowledge of the anatomy of the breast are integrated into the iterative method. Use of this material classification technique results in more rapid convergence to the inverse solution--approximately 40% fewer iterations are required--as well as greater accuracy. In addition, tumors are detected early in the reconstruction process. Results for reconstructions of a simple two-dimensional model of the human breast are presented. These reconstructions are extremely accurate when system noise and variations in tissue parameters are not too great. However, for the algorithm used, degradation of the reconstructions and divergence from the correct solution occur when system noise and variations in parameters exceed threshold values. Even in this case, however, tumors are still identified within a few iterations.
Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography
NASA Technical Reports Server (NTRS)
Xu, Feng; Deshpande, Manohar
2012-01-01
Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.
ERIC Educational Resources Information Center
Dobbs, David E.
2009-01-01
The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…
NASA Astrophysics Data System (ADS)
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
Bellesi, Luca; Wyttenbach, Rolf; Gaudino, Diego; Colleoni, Paolo; Pupillo, Francesco; Carrara, Mauro; Braghetti, Antonio; Puligheddu, Carla; Presilla, Stefano
2017-01-01
The aim of this work was to evaluate detection of low-contrast objects and image quality in computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image detriment. Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values. Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-alternative forced-choice test) and model observers were performed across the various images. Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR) algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction, preserving image quality and low-contrast detectability for human radiological evaluation. According to the model observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the model observer was unable to provide a result. IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a good image detectability. Model observer can in principle be useful to assist human performance in CT low-contrast detection tasks and in dose optimisation.
Improving space debris detection in GEO ring using image deconvolution
NASA Astrophysics Data System (ADS)
Núñez, Jorge; Núñez, Anna; Montojo, Francisco Javier; Condominas, Marta
2015-07-01
In this paper we present a method based on image deconvolution to improve the detection of space debris, mainly in the geostationary ring. Among the deconvolution methods we chose the iterative Richardson-Lucy (R-L), as the method that achieves better goals with a reasonable amount of computation. For this work, we used two sets of real 4096 × 4096 pixel test images obtained with the Telescope Fabra-ROA at Montsec (TFRM). Using the first set of data, we establish the optimal number of iterations in 7, and applying the R-L method with 7 iterations to the images, we show that the astrometric accuracy does not vary significantly while the limiting magnitude of the deconvolved images increases significantly compared to the original ones. The increase is in average about 1.0 magnitude, which means that objects up to 2.5 times fainter can be detected after deconvolution. The application of the method to the second set of test images, which includes several faint objects, shows that, after deconvolution, up to four previously undetected faint objects are detected in a single frame. Finally, we carried out a study of some economic aspects of applying the deconvolution method, showing that an important economic impact can be envisaged.
Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou
2018-02-08
The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.
Deblurring in digital tomosynthesis by iterative self-layer subtraction
NASA Astrophysics Data System (ADS)
Youn, Hanbean; Kim, Jee Young; Jang, SunYoung; Cho, Min Kook; Cho, Seungryong; Kim, Ho Kyung
2010-04-01
Recent developments in large-area flat-panel detectors have made tomosynthesis technology revisited in multiplanar xray imaging. However, the typical shift-and-add (SAA) or backprojection reconstruction method is notably claimed by a lack of sharpness in the reconstructed images because of blur artifact which is the superposition of objects which are out of planes. In this study, we have devised an intuitive simple method to reduce the blur artifact based on an iterative approach. This method repeats a forward and backward projection procedure to determine the blur artifact affecting on the plane-of-interest (POI), and then subtracts it from the POI. The proposed method does not include any Fourierdomain operations hence excluding the Fourier-domain-originated artifacts. We describe the concept of the self-layer subtractive tomosynthesis and demonstrate its performance with numerical simulation and experiments. Comparative analysis with the conventional methods, such as the SAA and filtered backprojection methods, is addressed.
Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.
2016-01-21
Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.
A Build-Up Interior Method for Linear Programming: Affine Scaling Form
1990-02-01
initiating a major iteration imply convergence in a finite number of iterations. Each iteration t of the Dikin algorithm starts with an interior dual...this variant with the affine scaling method of Dikin [5] (in dual form). We have also looked into the analogous variant for the related Karmarkar’s...4] G. B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963). [5] I. I. Dikin , "Iterative solution of
Dealing with gene expression missing data.
Brás, L P; Menezes, J C
2006-05-01
Compared evaluation of different methods is presented for estimating missing values in microarray data: weighted K-nearest neighbours imputation (KNNimpute), regression-based methods such as local least squares imputation (LLSimpute) and partial least squares imputation (PLSimpute) and Bayesian principal component analysis (BPCA). The influence in prediction accuracy of some factors, such as methods' parameters, type of data relationships used in the estimation process (i.e. row-wise, column-wise or both), missing rate and pattern and type of experiment [time series (TS), non-time series (NTS) or mixed (MIX) experiments] is elucidated. Improvements based on the iterative use of data (iterative LLS and PLS imputation--ILLSimpute and IPLSimpute), the need to perform initial imputations (modified PLS and Helland PLS imputation--MPLSimpute and HPLSimpute) and the type of relationships employed (KNNarray, LLSarray, HPLSarray and alternating PLS--APLSimpute) are proposed. Overall, it is shown that data set properties (type of experiment, missing rate and pattern) affect the data similarity structure, therefore influencing the methods' performance. LLSimpute and ILLSimpute are preferable in the presence of data with a stronger similarity structure (TS and MIX experiments), whereas PLS-based methods (MPLSimpute, IPLSimpute and APLSimpute) are preferable when estimating NTS missing data.
NASA Astrophysics Data System (ADS)
Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing
2015-10-01
Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.
NASA Astrophysics Data System (ADS)
Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo
2018-02-01
In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.
An iterative shrinkage approach to total-variation image restoration.
Michailovich, Oleg V
2011-05-01
The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a situation, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information--commonly referred to as simply priors--is essential for image restoration, rendering it stable and robust to noise. Moreover, using the priors makes the recovered images exhibit some plausible features of their original counterpart. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In this present paper, a different approach to the solution of the problem is proposed based upon the method of iterative shrinkage (aka iterated thresholding). In the proposed method, the TV-based image restoration is performed through a recursive application of two simple procedures, viz. linear filtering and soft thresholding. Therefore, the method can be identified as belonging to the group of first-order algorithms which are efficient in dealing with images of relatively large sizes. Another valuable feature of the proposed method consists in its working directly with the TV functional, rather then with its smoothed versions. Moreover, the method provides a single solution for both isotropic and anisotropic definitions of the TV functional, thereby establishing a useful connection between the two formulae. Finally, a number of standard examples of image deblurring are demonstrated, in which the proposed method can provide restoration results of superior quality as compared to the case of sparse-wavelet deconvolution.
Preconditioned conjugate-gradient methods for low-speed flow calculations
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Preconditioned Conjugate Gradient methods for low speed flow calculations
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
The motional Stark effect diagnostic for ITER using a line-shift approach.
Foley, E L; Levinton, F M; Yuh, H Y; Zakharov, L E
2008-10-01
The United States has been tasked with the development and implementation of a motional Stark effect (MSE) system on ITER. In the harsh ITER environment, MSE is particularly susceptible to degradation, as it depends on polarimetry, and the polarization reflection properties of surfaces are highly sensitive to thin film effects due to plasma deposition and erosion of a first mirror. Here we present the results of a comprehensive study considering a new MSE-based approach to internal plasma magnetic field measurements for ITER. The proposed method uses the line shifts in the MSE spectrum (MSE-LS) to provide a radial profile of the magnetic field magnitude. To determine the utility of MSE-LS for equilibrium reconstruction, studies were performed using the ESC-ERV code system. A near-term opportunity to test the use of MSE-LS for equilibrium reconstruction is being pursued in the implementation of MSE with laser-induced fluorescence on NSTX. Though the field values and beam energies are very different from ITER, the use of a laser allows precision spectroscopy with a similar ratio of linewidth to line spacing on NSTX as would be achievable with a passive system on ITER. Simulation results for ITER and NSTX are presented, and the relative merits of the traditional line polarization approach and the new line-shift approach are discussed.
Bryant, Jamie; Sanson-Fisher, Rob; Tzelepis, Flora; Henskens, Frans; Paul, Christine; Stevenson, William
2014-01-01
Background Effective communication with cancer patients and their families about their disease, treatment options, and possible outcomes may improve psychosocial outcomes. However, traditional approaches to providing information to patients, including verbal information and written booklets, have a number of shortcomings centered on their limited ability to meet patient preferences and literacy levels. New-generation Web-based technologies offer an innovative and pragmatic solution for overcoming these limitations by providing a platform for interactive information seeking, information sharing, and user-centered tailoring. Objective The primary goal of this paper is to discuss the advantages of comprehensive and iterative Web-based technologies for health information provision and propose a four-phase framework for the development of Web-based information tools. Methods The proposed framework draws on our experience of constructing a Web-based information tool for hematological cancer patients and their families. The framework is based on principles for the development and evaluation of complex interventions and draws on the Agile methodology of software programming that emphasizes collaboration and iteration throughout the development process. Results The DoTTI framework provides a model for a comprehensive and iterative approach to the development of Web-based informational tools for patients. The process involves 4 phases of development: (1) Design and development, (2) Testing early iterations, (3) Testing for effectiveness, and (4) Integration and implementation. At each step, stakeholders (including researchers, clinicians, consumers, and programmers) are engaged in consultations to review progress, provide feedback on versions of the Web-based tool, and based on feedback, determine the appropriate next steps in development. Conclusions This 4-phase framework is evidence-informed and consumer-centered and could be applied widely to develop Web-based programs for a diverse range of diseases. PMID:24641991
Groupwise Image Registration Guided by a Dynamic Digraph of Images.
Tang, Zhenyu; Fan, Yong
2016-04-01
For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.
Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.
NASA Astrophysics Data System (ADS)
Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.
1997-08-01
A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (<10) formal solutions of the RT equation. It combines, for the first time, non-linear multigrid iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.
Culturally Based Intervention Development: The Case of Latino Families Dealing with Schizophrenia
ERIC Educational Resources Information Center
Barrio, Concepcion; Yamada, Ann-Marie
2010-01-01
Objectives: This article describes the process of developing a culturally based family intervention for Spanish-speaking Latino families with a relative diagnosed with schizophrenia. Method: Our iterative intervention development process was guided by a cultural exchange framework and based on findings from an ethnographic study. We piloted this…
Terminal iterative learning control based station stop control of a train
NASA Astrophysics Data System (ADS)
Hou, Zhongsheng; Wang, Yi; Yin, Chenkun; Tang, Tao
2011-07-01
The terminal iterative learning control (TILC) method is introduced for the first time into the field of train station stop control and three TILC-based algorithms are proposed in this study. The TILC-based train station stop control approach utilises the terminal stop position error in previous braking process to update the current control profile. The initial braking position, or the braking force, or their combination is chosen as the control input, and corresponding learning law is developed. The terminal stop position error of each algorithm is guaranteed to converge to a small region related with the initial offset of braking position with rigorous analysis. The validity of the proposed algorithms is verified by illustrative numerical examples.
NASA Astrophysics Data System (ADS)
Sampoorna, M.; Trujillo Bueno, J.
2010-04-01
The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.
A new art code for tomographic interferometry
NASA Technical Reports Server (NTRS)
Tan, H.; Modarress, D.
1987-01-01
A new algebraic reconstruction technique (ART) code based on the iterative refinement method of least squares solution for tomographic reconstruction is presented. Accuracy and the convergence of the technique is evaluated through the application of numerically generated interferometric data. It was found that, in general, the accuracy of the results was superior to other reported techniques. The iterative method unconditionally converged to a solution for which the residual was minimum. The effects of increased data were studied. The inversion error was found to be a function of the input data error only. The convergence rate, on the other hand, was affected by all three parameters. Finally, the technique was applied to experimental data, and the results are reported.
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian
2018-06-01
A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.
ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA)*
Kim, Donghwan; Fessler, Jeffrey A.
2017-01-01
This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11]. PMID:29805242
Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang
2012-10-21
A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.
ERIC Educational Resources Information Center
Smith, Michael
1990-01-01
Presents several examples of the iteration method using computer spreadsheets. Examples included are simple iterative sequences and the solution of equations using the Newton-Raphson formula, linear interpolation, and interval bisection. (YP)
Jiang, Rui; McKanna, James; Calabrese, Samantha; Seif El-Nasr, Magy
2017-08-01
Herein we describe a methodology for developing a game-based intervention to raise awareness of Chlamydia and other sexually transmitted infections among youth in Boston's underserved communities. We engaged in three design-based experiments. These utilized mixed methods, including playtesting and assessment methods, to examine the overall effectiveness of the game. In this case, effectiveness is defined as (1) engaging the target group, (2) increasing knowledge about Chlamydia, and (3) changing attitudes toward Chlamydia testing. These three experiments were performed using participants from different communities and with slightly different versions of the game, as we iterated through the design/feedback process. Overall, participants who played the game showed a significant increase in participants' knowledge of Chlamydia compared with those in the control group (P = 0.0002). The version of the game, including elements specifically targeting systemic thinking, showed significant improvement in participants' intent to get tested compared with the version of the game without such elements (Stage 2: P > 0.05; Stage 3: P = 0.0045). Furthermore, during both Stage 2 and Stage 3, participants showed high levels of enjoyment, mood, and participation and moderate levels of game engagement and social engagement. During Stage 3, however, participants' game engagement (P = 0.0003), social engagement (P = 0.0003), and participation (P = 0.0003) were significantly higher compared with those of Stage 2. Thus, we believe that motivation improvements from Stage 2 to 3 were also effective. Finally, participants' overall learning effectiveness was correlated with their prepositive affect (r = 0.52) and their postproblem hierarchy (r = -0.54). The game improved considerably from its initial conception through three stages of iterative design and feedback. Our assessment methods for each stage targeted and integrated learning, health, and engagement outcomes. Lessons learned through this iterative design process are a great contribution to the games for health community, especially in targeting the development of health and learning goals through game design.
A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems
NASA Astrophysics Data System (ADS)
Chan, Tony; Szeto, Tedd
1994-03-01
We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Zuo, Chao; Idir, Mourad
A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less
Huang, Lei; Zuo, Chao; Idir, Mourad; ...
2015-04-21
A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less
Domain decomposition methods for systems of conservation laws: Spectral collocation approximations
NASA Technical Reports Server (NTRS)
Quarteroni, Alfio
1989-01-01
Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
Iterative methods for tomography problems: implementation to a cross-well tomography problem
NASA Astrophysics Data System (ADS)
Karadeniz, M. F.; Weber, G. W.
2018-01-01
The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz’s algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.
Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations
NASA Astrophysics Data System (ADS)
Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.
2018-03-01
Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.
Pseudo-time methods for constrained optimization problems governed by PDE
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1995-01-01
In this paper we present a novel method for solving optimization problems governed by partial differential equations. Existing methods are gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equations per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step since, in most problems of practical interest, the design equation involves much less unknowns that that of either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests show that the new method allows the solution of the optimization problem in a cost of solving the analysis problems just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers.
Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method
NASA Astrophysics Data System (ADS)
Kang, Yanyan; Ding, Xianrong; Xu, Fan; Zhang, Changkuan; Ge, Xiaoping
2017-05-01
Tidal flats, which are both a natural ecosystem and a type of landscape, are of significant importance to ecosystem function and land resource potential. Morphologic monitoring of tidal flats has become increasingly important with respect to achieving sustainable development targets. Remote sensing is an established technique for the measurement of topography over tidal flats; of the available methods, the waterline method is particularly effective for constructing a digital elevation model (DEM) of intertidal areas. However, application of the waterline method is more limited in large-scale, shifting tidal flats areas, where the tides are not synchronized and the waterline is not a quasi-contour line. For this study, a topographical map of the intertidal regions within the Radial Sand Ridges (RSR) along the Jiangsu Coast, China, was generated using an iterative approach on the waterline method. A series of 21 multi-temporal satellite images (18 HJ-1A/B CCD and three Landsat TM/OLI) of the RSR area collected at different water levels within a five month period (31 December 2013-28 May 2014) was used to extract waterlines based on feature extraction techniques and artificial further modification. These 'remotely-sensed waterlines' were combined with the corresponding water levels from the 'model waterlines' simulated by a hydrodynamic model with an initial generalized DEM of exposed tidal flats. Based on the 21 heighted 'remotely-sensed waterlines', a DEM was constructed using the ANUDEM interpolation method. Using this new DEM as the input data, it was re-entered into the hydrodynamic model, and a new round of water level assignment of waterlines was performed. A third and final output DEM was generated covering an area of approximately 1900 km2 of tidal flats in the RSR. The water level simulation accuracy of the hydrodynamic model was within 0.15 m based on five real-time tide stations, and the height accuracy (root mean square error) of the final DEM was 0.182 m based on six transects of measured data. This study aimed at construction of an accurate DEM for a large-scale, high-variable zone within a short timespan based on an iterative way of the waterline method.
NASA Astrophysics Data System (ADS)
Massambone de Oliveira, Rafael; Salomão Helou, Elias; Fontoura Costa, Eduardo
2016-11-01
We present a method for non-smooth convex minimization which is based on subgradient directions and string-averaging techniques. In this approach, the set of available data is split into sequences (strings) and a given iterate is processed independently along each string, possibly in parallel, by an incremental subgradient method (ISM). The end-points of all strings are averaged to form the next iterate. The method is useful to solve sparse and large-scale non-smooth convex optimization problems, such as those arising in tomographic imaging. A convergence analysis is provided under realistic, standard conditions. Numerical tests are performed in a tomographic image reconstruction application, showing good performance for the convergence speed when measured as the decrease ratio of the objective function, in comparison to classical ISM.
A New Newton-Like Iterative Method for Roots of Analytic Functions
ERIC Educational Resources Information Center
Otolorin, Olayiwola
2005-01-01
A new Newton-like iterative formula for the solution of non-linear equations is proposed. To derive the formula, the convergence criteria of the one-parameter iteration formula, and also the quasilinearization in the derivation of Newton's formula are reviewed. The result is a new formula which eliminates the limitations of other methods. There is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Guoyan
2010-04-15
Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less
Holland, Alexander; Aboy, Mateo
2009-07-01
We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.
Image enhancement in positron emission mammography
NASA Astrophysics Data System (ADS)
Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.
2017-02-01
Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).
Dynamic adaptive learning for decision-making supporting systems
NASA Astrophysics Data System (ADS)
He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.
2008-03-01
This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.
DEM Calibration Approach: design of experiment
NASA Astrophysics Data System (ADS)
Boikov, A. V.; Savelev, R. V.; Payor, V. A.
2018-05-01
The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.
A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
Cai, Binghuang; Jiang, Xia
2014-04-01
Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. Copyright © 2013 Elsevier Inc. All rights reserved.
Threshold-driven optimization for reference-based auto-planning
NASA Astrophysics Data System (ADS)
Long, Troy; Chen, Mingli; Jiang, Steve; Lu, Weiguo
2018-02-01
We study threshold-driven optimization methodology for automatically generating a treatment plan that is motivated by a reference DVH for IMRT treatment planning. We present a framework for threshold-driven optimization for reference-based auto-planning (TORA). Commonly used voxel-based quadratic penalties have two components for penalizing under- and over-dosing of voxels: a reference dose threshold and associated penalty weight. Conventional manual- and auto-planning using such a function involves iteratively updating the preference weights while keeping the thresholds constant, an unintuitive and often inconsistent method for planning toward some reference DVH. However, driving a dose distribution by threshold values instead of preference weights can achieve similar plans with less computational effort. The proposed methodology spatially assigns reference DVH information to threshold values, and iteratively improves the quality of that assignment. The methodology effectively handles both sub-optimal and infeasible DVHs. TORA was applied to a prostate case and a liver case as a proof-of-concept. Reference DVHs were generated using a conventional voxel-based objective, then altered to be either infeasible or easy-to-achieve. TORA was able to closely recreate reference DVHs in 5-15 iterations of solving a simple convex sub-problem. TORA has the potential to be effective for auto-planning based on reference DVHs. As dose prediction and knowledge-based planning becomes more prevalent in the clinical setting, incorporating such data into the treatment planning model in a clear, efficient way will be crucial for automated planning. A threshold-focused objective tuning should be explored over conventional methods of updating preference weights for DVH-guided treatment planning.
NASA Astrophysics Data System (ADS)
Wang, Q.; Elbouz, M.; Alfalou, A.; Brosseau, C.
2017-06-01
We present a novel method to optimize the discrimination ability and noise robustness of composite filters. This method is based on the iterative preprocessing of training images which can extract boundary and detailed feature information of authentic training faces, thereby improving the peak-to-correlation energy (PCE) ratio of authentic faces and to be immune to intra-class variance and noise interference. By adding the training images directly, one can obtain a composite template with high discrimination ability and robustness for face recognition task. The proposed composite correlation filter does not involve any complicated mathematical analysis and computation which are often required in the design of correlation algorithms. Simulation tests have been conducted to check the effectiveness and feasibility of our proposal. Moreover, to assess robustness of composite filters using receiver operating characteristic (ROC) curves, we devise a new method to count the true positive and false positive rates for which the difference between PCE and threshold is involved.
Automatic knee cartilage delineation using inheritable segmentation
NASA Astrophysics Data System (ADS)
Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.
2008-03-01
We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.
A Universal Tare Load Prediction Algorithm for Strain-Gage Balance Calibration Data Analysis
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2011-01-01
An algorithm is discussed that may be used to estimate tare loads of wind tunnel strain-gage balance calibration data. The algorithm was originally developed by R. Galway of IAR/NRC Canada and has been described in the literature for the iterative analysis technique. Basic ideas of Galway's algorithm, however, are universally applicable and work for both the iterative and the non-iterative analysis technique. A recent modification of Galway's algorithm is presented that improves the convergence behavior of the tare load prediction process if it is used in combination with the non-iterative analysis technique. The modified algorithm allows an analyst to use an alternate method for the calculation of intermediate non-linear tare load estimates whenever Galway's original approach does not lead to a convergence of the tare load iterations. It is also shown in detail how Galway's algorithm may be applied to the non-iterative analysis technique. Hand load data from the calibration of a six-component force balance is used to illustrate the application of the original and modified tare load prediction method. During the analysis of the data both the iterative and the non-iterative analysis technique were applied. Overall, predicted tare loads for combinations of the two tare load prediction methods and the two balance data analysis techniques showed excellent agreement as long as the tare load iterations converged. The modified algorithm, however, appears to have an advantage over the original algorithm when absolute voltage measurements of gage outputs are processed using the non-iterative analysis technique. In these situations only the modified algorithm converged because it uses an exact solution of the intermediate non-linear tare load estimate for the tare load iteration.
Gutser, R; Wimmer, C; Fantz, U
2011-02-01
Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.
Non-iterative distance constraints enforcement for cloth drapes simulation
NASA Astrophysics Data System (ADS)
Hidajat, R. L. L. G.; Wibowo, Arifin, Z.; Suyitno
2016-03-01
A cloth simulation represents the behavior of cloth objects such as flag, tablecloth, or even garments has application in clothing animation for games and virtual shops. Elastically deformable models have widely used to provide realistic and efficient simulation, however problem of overstretching is encountered. We introduce a new cloth simulation algorithm that replaces iterative distance constraint enforcement steps with non-iterative ones for preventing over stretching in a spring-mass system for cloth modeling. Our method is based on a simple position correction procedure applied at one end of a spring. In our experiments, we developed a rectangle cloth model which is initially at a horizontal position with one point is fixed, and it is allowed to drape by its own weight. Our simulation is able to achieve a plausible cloth drapes as in reality. This paper aims to demonstrate the reliability of our approach to overcome overstretches while decreasing the computational cost of the constraint enforcement process due to an iterative procedure that is eliminated.
Toward Generalization of Iterative Small Molecule Synthesis
Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.
2018-01-01
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152
Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems
NASA Astrophysics Data System (ADS)
Kang, Yan-Mei
2016-09-01
For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.
Lin, Jyh-Miin; Patterson, Andrew J; Chang, Hing-Chiu; Gillard, Jonathan H; Graves, Martin J
2015-10-01
To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p < 0.001). In vivo study validated the increased signal-to-noise ratio, which is over four times higher than with density compensation. Image sharpness index was improved using the regularized reconstruction implemented. The rFOV strategy permits near real-time iterative reconstruction to improve the image quality of PROPELLER images. Substantial improvements in image quality metrics were validated in the experiments. The concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.
Learning to improve iterative repair scheduling
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene
1992-01-01
This paper presents a general learning method for dynamically selecting between repair heuristics in an iterative repair scheduling system. The system employs a version of explanation-based learning called Plausible Explanation-Based Learning (PEBL) that uses multiple examples to confirm conjectured explanations. The basic approach is to conjecture contradictions between a heuristic and statistics that measure the quality of the heuristic. When these contradictions are confirmed, a different heuristic is selected. To motivate the utility of this approach we present an empirical evaluation of the performance of a scheduling system with respect to two different repair strategies. We show that the scheduler that learns to choose between the heuristics outperforms the same scheduler with any one of two heuristics alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikkinen, J. A.; Nora, M.
2011-02-15
Gyrokinetic equations of motion, Poisson equation, and energy and momentum conservation laws are derived based on the reduced-phase-space Lagrangian and inverse Kruskal iteration introduced by Pfirsch and Correa-Restrepo [J. Plasma Phys. 70, 719 (2004)]. This formalism, together with the choice of the adiabatic invariant J=
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin
2015-10-21
For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.
Implementation of an improved adaptive-implicit method in a thermal compositional simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, T.B.
1988-11-01
A multicomponent thermal simulator with an adaptive-implicit-method (AIM) formulation/inexact-adaptive-Newton (IAN) method is presented. The final coefficient matrix retains the original banded structure so that conventional iterative methods can be used. Various methods for selection of the eliminated unknowns are tested. AIM/IAN method has a lower work count per Newtonian iteration than fully implicit methods, but a wrong choice of unknowns will result in excessive Newtonian iterations. For the problems tested, the residual-error method described in the paper for selecting implicit unknowns, together with the IAN method, had an improvement of up to 28% of the CPU time over the fullymore » implicit method.« less
NASA Astrophysics Data System (ADS)
Citro, V.; Luchini, P.; Giannetti, F.; Auteri, F.
2017-09-01
The study of the stability of a dynamical system described by a set of partial differential equations (PDEs) requires the computation of unstable states as the control parameter exceeds its critical threshold. Unfortunately, the discretization of the governing equations, especially for fluid dynamic applications, often leads to very large discrete systems. As a consequence, matrix based methods, like for example the Newton-Raphson algorithm coupled with a direct inversion of the Jacobian matrix, lead to computational costs too large in terms of both memory and execution time. We present a novel iterative algorithm, inspired by Krylov-subspace methods, which is able to compute unstable steady states and/or accelerate the convergence to stable configurations. Our new algorithm is based on the minimization of the residual norm at each iteration step with a projection basis updated at each iteration rather than at periodic restarts like in the classical GMRES method. The algorithm is able to stabilize any dynamical system without increasing the computational time of the original numerical procedure used to solve the governing equations. Moreover, it can be easily inserted into a pre-existing relaxation (integration) procedure with a call to a single black-box subroutine. The procedure is discussed for problems of different sizes, ranging from a small two-dimensional system to a large three-dimensional problem involving the Navier-Stokes equations. We show that the proposed algorithm is able to improve the convergence of existing iterative schemes. In particular, the procedure is applied to the subcritical flow inside a lid-driven cavity. We also discuss the application of Boostconv to compute the unstable steady flow past a fixed circular cylinder (2D) and boundary-layer flow over a hemispherical roughness element (3D) for supercritical values of the Reynolds number. We show that Boostconv can be used effectively with any spatial discretization, be it a finite-difference, finite-volume, finite-element or spectral method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlin, Thibaut, E-mail: thibaut.merlin@telecom-bretagne.eu; Visvikis, Dimitris; Fernandez, Philippe
2015-02-15
Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimationmore » of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a wavelet-based denoising in the reconstruction process to better correct for PVE. Future work includes further evaluations of the proposed method on clinical datasets and the use of improved PSF models.« less
Projected 1981 exposure estimates using iterative proportional fitting
DOT National Transportation Integrated Search
1985-10-01
1981 VMT estimates categorized by eight driver, vehicle, and environmental : variables are produced. These 1981 estimates are produced using analytical : methods developed in a previous report. The estimates are based on 1977 : NPTS data (the latest ...
Perturbation-iteration theory for analyzing microwave striplines
NASA Technical Reports Server (NTRS)
Kretch, B. E.
1985-01-01
A perturbation-iteration technique is presented for determining the propagation constant and characteristic impedance of an unshielded microstrip transmission line. The method converges to the correct solution with a few iterations at each frequency and is equivalent to a full wave analysis. The perturbation-iteration method gives a direct solution for the propagation constant without having to find the roots of a transcendental dispersion equation. The theory is presented in detail along with numerical results for the effective dielectric constant and characteristic impedance for a wide range of substrate dielectric constants, stripline dimensions, and frequencies.
NASA Astrophysics Data System (ADS)
Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.
2017-03-01
Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.
Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.
2016-01-15
Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less
Material nonlinear analysis via mixed-iterative finite element method
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1992-01-01
The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.
Terascale Optimal PDE Simulations (TOPS) Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Professor Olof B. Widlund
2007-07-09
Our work has focused on the development and analysis of domain decomposition algorithms for a variety of problems arising in continuum mechanics modeling. In particular, we have extended and analyzed FETI-DP and BDDC algorithms; these iterative solvers were first introduced and studied by Charbel Farhat and his collaborators, see [11, 45, 12], and by Clark Dohrmann of SANDIA, Albuquerque, see [43, 2, 1], respectively. These two closely related families of methods are of particular interest since they are used more extensively than other iterative substructuring methods to solve very large and difficult problems. Thus, the FETI algorithms are part ofmore » the SALINAS system developed by the SANDIA National Laboratories for very large scale computations, and as already noted, BDDC was first developed by a SANDIA scientist, Dr. Clark Dohrmann. The FETI algorithms are also making inroads in commercial engineering software systems. We also note that the analysis of these algorithms poses very real mathematical challenges. The success in developing this theory has, in several instances, led to significant improvements in the performance of these algorithms. A very desirable feature of these iterative substructuring and other domain decomposition algorithms is that they respect the memory hierarchy of modern parallel and distributed computing systems, which is essential for approaching peak floating point performance. The development of improved methods, together with more powerful computer systems, is making it possible to carry out simulations in three dimensions, with quite high resolution, relatively easily. This work is supported by high quality software systems, such as Argonne's PETSc library, which facilitates code development as well as the access to a variety of parallel and distributed computer systems. The success in finding scalable and robust domain decomposition algorithms for very large number of processors and very large finite element problems is, e.g., illustrated in [24, 25, 26]. This work is based on [29, 31]. Our work over these five and half years has, in our opinion, helped advance the knowledge of domain decomposition methods significantly. We see these methods as providing valuable alternatives to other iterative methods, in particular, those based on multi-grid. In our opinion, our accomplishments also match the goals of the TOPS project quite closely.« less
Investigation of a Parabolic Iterative Solver for Three-dimensional Configurations
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Watson, Willie R.; Mani, Ramani
2007-01-01
A parabolic iterative solution procedure is investigated that seeks to extend the parabolic approximation used within the internal propagation module of the duct noise propagation and radiation code CDUCT-LaRC. The governing convected Helmholtz equation is split into a set of coupled equations governing propagation in the positive and negative directions. The proposed method utilizes an iterative procedure to solve the coupled equations in an attempt to account for possible reflections from internal bifurcations, impedance discontinuities, and duct terminations. A geometry consistent with the NASA Langley Curved Duct Test Rig is considered and the effects of acoustic treatment and non-anechoic termination are included. Two numerical implementations are studied and preliminary results indicate that improved accuracy in predicted amplitude and phase can be obtained for modes at a cut-off ratio of 1.7. Further predictions for modes at a cut-off ratio of 1.1 show improvement in predicted phase at the expense of increased amplitude error. Possible methods of improvement are suggested based on analytic and numerical analysis. It is hoped that coupling the parabolic iterative approach with less efficient, high fidelity finite element approaches will ultimately provide the capability to perform efficient, higher fidelity acoustic calculations within complex 3-D geometries for impedance eduction and noise propagation and radiation predictions.
Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
NASA Astrophysics Data System (ADS)
Williamson, Daniel B.; Blaker, Adam T.; Sinha, Bablu
2017-04-01
In this paper we discuss climate model tuning and present an iterative automatic tuning method from the statistical science literature. The method, which we refer to here as iterative refocussing (though also known as history matching), avoids many of the common pitfalls of automatic tuning procedures that are based on optimisation of a cost function, principally the over-tuning of a climate model due to using only partial observations. This avoidance comes by seeking to rule out parameter choices that we are confident could not reproduce the observations, rather than seeking the model that is closest to them (a procedure that risks over-tuning). We comment on the state of climate model tuning and illustrate our approach through three waves of iterative refocussing of the NEMO (Nucleus for European Modelling of the Ocean) ORCA2 global ocean model run at 2° resolution. We show how at certain depths the anomalies of global mean temperature and salinity in a standard configuration of the model exceeds 10 standard deviations away from observations and show the extent to which this can be alleviated by iterative refocussing without compromising model performance spatially. We show how model improvements can be achieved by simultaneously perturbing multiple parameters, and illustrate the potential of using low-resolution ensembles to tune NEMO ORCA configurations at higher resolutions.
Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N
2016-07-12
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.
Curvelet-domain multiple matching method combined with cubic B-spline function
NASA Astrophysics Data System (ADS)
Wang, Tong; Wang, Deli; Tian, Mi; Hu, Bin; Liu, Chengming
2018-05-01
Since the large amount of surface-related multiple existed in the marine data would influence the results of data processing and interpretation seriously, many researchers had attempted to develop effective methods to remove them. The most successful surface-related multiple elimination method was proposed based on data-driven theory. However, the elimination effect was unsatisfactory due to the existence of amplitude and phase errors. Although the subsequent curvelet-domain multiple-primary separation method achieved better results, poor computational efficiency prevented its application. In this paper, we adopt the cubic B-spline function to improve the traditional curvelet multiple matching method. First, select a little number of unknowns as the basis points of the matching coefficient; second, apply the cubic B-spline function on these basis points to reconstruct the matching array; third, build constraint solving equation based on the relationships of predicted multiple, matching coefficients, and actual data; finally, use the BFGS algorithm to iterate and realize the fast-solving sparse constraint of multiple matching algorithm. Moreover, the soft-threshold method is used to make the method perform better. With the cubic B-spline function, the differences between predicted multiple and original data diminish, which results in less processing time to obtain optimal solutions and fewer iterative loops in the solving procedure based on the L1 norm constraint. The applications to synthetic and field-derived data both validate the practicability and validity of the method.
NASA Astrophysics Data System (ADS)
Monteiller, Vadim; Chevrot, Sébastien; Komatitsch, Dimitri; Wang, Yi
2015-08-01
We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic waveforms. We model the propagation of seismic waves using our recently developed direct solution method/spectral-element method hybrid technique, which allows us to simulate the propagation of short-period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral and vertical directions. The iterative inversion starts from a smooth 1-D model derived from the IASP91 reference Earth model. We invert both radial and vertical component waveforms, starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very close to the true model, in contrast to inversions involving short-period waveforms only, which always get trapped into a local minimum of the cost function.
ERIC Educational Resources Information Center
Lai, K. Robert; Lan, Chung Hsien
2006-01-01
This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…
NASA Astrophysics Data System (ADS)
Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao
2017-02-01
Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.
Two-dimensional imaging of two types of radicals by the CW-EPR method
NASA Astrophysics Data System (ADS)
Czechowski, Tomasz; Krzyminiewski, Ryszard; Jurga, Jan; Chlewicki, Wojciech
2008-01-01
The CW-EPR method of image reconstruction is based on sample rotation in a magnetic field with a constant gradient (50 G/cm). In order to obtain a projection (radical density distribution) along a given direction, the EPR spectra are recorded with and without the gradient. Deconvolution, then gives the distribution of the spin density. Projection at 36 different angles gives the information that is necessary for reconstruction of the radical distribution. The problem becomes more complex when there are at least two types of radicals in the sample, because the deconvolution procedure does not give satisfactory results. We propose a method to calculate the projections for each radical, based on iterative procedures. The images of density distribution for each radical obtained by our procedure have proved that the method of deconvolution, in combination with iterative fitting, provides correct results. The test was performed on a sample of polymer PPS Br 111 ( p-phenylene sulphide) with glass fibres and minerals. The results indicated a heterogeneous distribution of radicals in the sample volume. The images obtained were in agreement with the known shape of the sample.
Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner
2011-09-26
Coherent diffraction imaging (CDI) for visualizing objects at atomic resolution has been realized as a promising tool for imaging single molecules. Drawbacks of CDI are associated with the difficulty of the numerical phase retrieval from experimental diffraction patterns; a fact which stimulated search for better numerical methods and alternative experimental techniques. Common phase retrieval methods are based on iterative procedures which propagate the complex-valued wave between object and detector plane. Constraints in both, the object and the detector plane are applied. While the constraint in the detector plane employed in most phase retrieval methods requires the amplitude of the complex wave to be equal to the squared root of the measured intensity, we propose a novel Fourier-domain constraint, based on an analogy to holography. Our method allows achieving a low-resolution reconstruction already in the first step followed by a high-resolution reconstruction after further steps. In comparison to conventional schemes this Fourier-domain constraint results in a fast and reliable convergence of the iterative reconstruction process. © 2011 Optical Society of America
The application of contraction theory to an iterative formulation of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Brand, J. C.; Kauffman, J. F.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...
2017-03-05
Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.
A non-iterative extension of the multivariate random effects meta-analysis.
Makambi, Kepher H; Seung, Hyunuk
2015-01-01
Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.
A Newton-Raphson Method Approach to Adjusting Multi-Source Solar Simulators
NASA Technical Reports Server (NTRS)
Snyder, David B.; Wolford, David S.
2012-01-01
NASA Glenn Research Center has been using an in house designed X25 based multi-source solar simulator since 2003. The simulator is set up for triple junction solar cells prior to measurements b y adjusting the three sources to produce the correct short circuit current, lsc, in each of three AM0 calibrated sub-cells. The past practice has been to adjust one source on one sub-cell at a time, iterating until all the sub-cells have the calibrated Isc. The new approach is to create a matrix of measured lsc for small source changes on each sub-cell. A matrix, A, is produced. This is normalized to unit changes in the sources so that Ax(delta)s = (delta)isc. This matrix can now be inverted and used with the known Isc differences from the AM0 calibrated values to indicate changes in the source settings, (delta)s = A ·'x.(delta)isc This approach is still an iterative one, but all sources are changed during each iteration step. It typically takes four to six steps to converge on the calibrated lsc values. Even though the source lamps may degrade over time, the initial matrix evaluation i s not performed each time, since measurement matrix needs to be only approximate. Because an iterative approach is used the method will still continue to be valid. This method may become more important as state-of-the-art solar cell junction responses overlap the sources of the simulator. Also, as the number of cell junctions and sources increase, this method should remain applicable.
Chu, Joyce P.; Huynh, Loanie; Areán, Patricia
2011-01-01
Objectives Main objectives were to familiarize the reader with a theoretical framework for modifying evidence-based interventions for cultural groups, and to provide an example of one method, Formative Method for Adapting Psychotherapies (FMAP), in the adaptation of an evidence-based intervention for a cultural group notorious for refusing mental health treatment. Methods Provider and client stakeholder input combined with an iterative testing process within the FMAP framework was utilized to create the Problem Solving Therapy—Chinese Older Adult (PST-COA) manual for depression. Data from pilot-testing the intervention with a clinically depressed Chinese elderly woman are reported. Results PST-COA is categorized as a ‘culturally-adapted’ treatment, where core mediating mechanisms of PST were preserved, but cultural themes of measurement methodology, stigma, hierarchical provider-client relationship expectations, and acculturation enhanced core components to make PST more understandable and relevant for Chinese elderly. Modifications also encompassed therapeutic framework and peripheral elements affecting engagement and retention. PST-COA applied with a depressed Chinese older adult indicated remission of clinical depression and improvement in mood. Fidelity with and acceptability of the treatment was sufficient as the client completed and reported high satisfaction with PST-COA. Conclusions PST, as a non-emotion-focused, evidence-based intervention, is a good fit for depressed Chinese elderly. Through an iterative stakeholder process of cultural adaptation, several culturally-specific modifications were applied to PST to create the PST-COA manual. PST-COA preserves core therapeutic PST elements but includes cultural adaptations in therapeutic framework and key administration and content areas that ensure greater applicability and effectiveness for the Chinese elderly community. PMID:21500283
Hudson, H M; Ma, J; Green, P
1994-01-01
Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.
NASA Astrophysics Data System (ADS)
Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.
2011-07-01
Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.
NASA Technical Reports Server (NTRS)
Brand, J. C.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
Efficient numerical method of freeform lens design for arbitrary irradiance shaping
NASA Astrophysics Data System (ADS)
Wojtanowski, Jacek
2018-05-01
A computational method to design a lens with a flat entrance surface and a freeform exit surface that can transform a collimated, generally non-uniform input beam into a beam with a desired irradiance distribution of arbitrary shape is presented. The methodology is based on non-linear elliptic partial differential equations, known as Monge-Ampère PDEs. This paper describes an original numerical algorithm to solve this problem by applying the Gauss-Seidel method with simplified boundary conditions. A joint MATLAB-ZEMAX environment is used to implement and verify the method. To prove the efficiency of the proposed approach, an exemplary study where the designed lens is faced with the challenging illumination task is shown. An analysis of solution stability, iteration-to-iteration ray mapping evolution (attached in video format), depth of focus and non-zero étendue efficiency is performed.
Adjoint Tomography of the Southern California Crust (Invited) (Invited)
NASA Astrophysics Data System (ADS)
Tape, C.; Liu, Q.; Maggi, A.; Tromp, J.
2009-12-01
We iteratively improve a three-dimensional tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral-element method (SEM) in combination with an adjoint method. The initial 3D model is provided by the Southern California Earthquake Center. The dataset comprises three-component seismic waveforms (i.e. both body and surface waves), filtered over the period range 2-30 s, from 143 local earthquakes recorded by a network of 203 stations. Time windows for measurements are automatically selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based on frequency-dependent multitaper traveltime differences. The gradient of the misfit function and related finite-frequency sensitivity kernels for each earthquake are computed using an adjoint technique. The kernels are combined using a source subspace projection method to compute a model update at each iteration of a gradient-based minimization algorithm. The inversion involved 16 iterations, which required 6800 wavefield simulations and a total of 0.8 million CPU hours. The new crustal model, m16, is described in terms of independent shear (Vs) and bulk-sound (Vb) wavespeed variations. It exhibits strong heterogeneity, including local changes of ±30% with respect to the initial 3D model. The model reveals several features that relate to geologic observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies across faults. The quality of the new model is validated by quantifying waveform misfits of full-length seismograms from 91 earthquakes that were not used in the tomographic inversion. The new model provides more accurate synthetic seismograms that will benefit seismic hazard assessment.
Nasirudin, Radin A.; Mei, Kai; Panchev, Petar; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Fiebich, Martin; Noël, Peter B.
2015-01-01
Purpose The exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead to new techniques in computed tomography (CT) that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR). Method The proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods. Results Decomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms. Conclusion It is demonstrated that the combination of the additional information from Spectral CT and statistical reconstruction can significantly improve image quality, especially streaking artifacts caused by the presence of materials with high atomic numbers. PMID:25955019
Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao
2014-10-07
In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Elia, M.; Edwards, H. C.; Hu, J.
Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less
D'Elia, M.; Edwards, H. C.; Hu, J.; ...
2018-01-18
Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less
NASA Astrophysics Data System (ADS)
Peng, Chengtao; Qiu, Bensheng; Zhang, Cheng; Ma, Changyu; Yuan, Gang; Li, Ming
2017-07-01
Over the years, the X-ray computed tomography (CT) has been successfully used in clinical diagnosis. However, when the body of the patient to be examined contains metal objects, the image reconstructed would be polluted by severe metal artifacts, which affect the doctor's diagnosis of disease. In this work, we proposed a dynamic re-weighted total variation (DRWTV) technique combined with the statistic iterative reconstruction (SIR) method to reduce the artifacts. The DRWTV method is based on the total variation (TV) and re-weighted total variation (RWTV) techniques, but it provides a sparser representation than TV and protects the tissue details better than RWTV. Besides, the DRWTV can suppress the artifacts and noise, and the SIR convergence speed is also accelerated. The performance of the algorithm is tested on both simulated phantom dataset and clinical dataset, which are the teeth phantom with two metal implants and the skull with three metal implants, respectively. The proposed algorithm (SIR-DRWTV) is compared with two traditional iterative algorithms, which are SIR and SIR constrained by RWTV regulation (SIR-RWTV). The results show that the proposed algorithm has the best performance in reducing metal artifacts and protecting tissue details.
Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo
2015-02-01
In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral line intensity values and chromium concentrations in different samples. And then their respective linear correlations were compared. The experimental results showed that the linear correlation of the intensity values of spectral feature lines and the concentrations of chromium in different samples, which was obtained by damped least squares method, was better than that one obtained by least squares method. And therefore, damped least squares method was stable, reliable and suitable for separating, fitting and extracting spectral feature lines in laser induced breakdown spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Yanfei, E-mail: yanfeijing@uestc.edu.c; Huang Tingzhu, E-mail: tzhuang@uestc.edu.c; Duan Yong, E-mail: duanyong@yahoo.c
This study is mainly focused on iterative solutions with simple diagonal preconditioning to two complex-valued nonsymmetric systems of linear equations arising from a computational chemistry model problem proposed by Sherry Li of NERSC. Numerical experiments show the feasibility of iterative methods to some extent when applied to the problems and reveal the competitiveness of our recently proposed Lanczos biconjugate A-orthonormalization methods to other classic and popular iterative methods. By the way, experiment results also indicate that application specific preconditioners may be mandatory and required for accelerating convergence.
NASA Astrophysics Data System (ADS)
Shirzaei, M.; Walter, T. R.
2009-10-01
Modern geodetic techniques provide valuable and near real-time observations of volcanic activity. Characterizing the source of deformation based on these observations has become of major importance in related monitoring efforts. We investigate two random search approaches, simulated annealing (SA) and genetic algorithm (GA), and utilize them in an iterated manner. The iterated approach helps to prevent GA in general and SA in particular from getting trapped in local minima, and it also increases redundancy for exploring the search space. We apply a statistical competency test for estimating the confidence interval of the inversion source parameters, considering their internal interaction through the model, the effect of the model deficiency, and the observational error. Here, we present and test this new randomly iterated search and statistical competency (RISC) optimization method together with GA and SA for the modeling of data associated with volcanic deformations. Following synthetic and sensitivity tests, we apply the improved inversion techniques to two episodes of activity in the Campi Flegrei volcanic region in Italy, observed by the interferometric synthetic aperture radar technique. Inversion of these data allows derivation of deformation source parameters and their associated quality so that we can compare the two inversion methods. The RISC approach was found to be an efficient method in terms of computation time and search results and may be applied to other optimization problems in volcanic and tectonic environments.
Solving large test-day models by iteration on data and preconditioned conjugate gradient.
Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A
1999-12-01
A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.
Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement
NASA Astrophysics Data System (ADS)
Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team
2017-11-01
Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.
NASA Astrophysics Data System (ADS)
Molde, H.; Zwick, D.; Muskulus, M.
2014-12-01
Support structures for offshore wind turbines are contributing a large part to the total project cost, and a cost saving of a few percent would have considerable impact. At present support structures are designed with simplified methods, e.g., spreadsheet analysis, before more detailed load calculations are performed. Due to the large number of loadcases only a few semimanual design iterations are typically executed. Computer-assisted optimization algorithms could help to further explore design limits and avoid unnecessary conservatism. In this study the simultaneous perturbation stochastic approximation method developed by Spall in the 1990s was assessed with respect to its suitability for support structure optimization. The method depends on a few parameters and an objective function that need to be chosen carefully. In each iteration the structure is evaluated by time-domain analyses, and joint fatigue lifetimes and ultimate strength utilization are computed from stress concentration factors. A pseudo-gradient is determined from only two analysis runs and the design is adjusted in the direction that improves it the most. The algorithm is able to generate considerably improved designs, compared to other methods, in a few hundred iterations, which is demonstrated for the NOWITECH 10 MW reference turbine.
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
Blade design and analysis using a modified Euler solver
NASA Technical Reports Server (NTRS)
Leonard, O.; Vandenbraembussche, R. A.
1991-01-01
An iterative method for blade design based on Euler solver and described in an earlier paper is used to design compressor and turbine blades providing shock free transonic flows. The method shows a rapid convergence, and indicates how much the flow is sensitive to small modifications of the blade geometry, that the classical iterative use of analysis methods might not be able to define. The relationship between the required Mach number distribution and the resulting geometry is discussed. Examples show how geometrical constraints imposed upon the blade shape can be respected by using free geometrical parameters or by relaxing the required Mach number distribution. The same code is used both for the design of the required geometry and for the off-design calculations. Examples illustrate the difficulty of designing blade shapes with optimal performance also outside of the design point.
NASA Astrophysics Data System (ADS)
Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.
2017-12-01
We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.
Fletcher, E; Carmichael, O; Decarli, C
2012-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.
Fletcher, E.; Carmichael, O.; DeCarli, C.
2013-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843
Feature-based three-dimensional registration for repetitive geometry in machine vision
Gong, Yuanzheng; Seibel, Eric J.
2016-01-01
As an important step in three-dimensional (3D) machine vision, 3D registration is a process of aligning two or multiple 3D point clouds that are collected from different perspectives together into a complete one. The most popular approach to register point clouds is to minimize the difference between these point clouds iteratively by Iterative Closest Point (ICP) algorithm. However, ICP does not work well for repetitive geometries. To solve this problem, a feature-based 3D registration algorithm is proposed to align the point clouds that are generated by vision-based 3D reconstruction. By utilizing texture information of the object and the robustness of image features, 3D correspondences can be retrieved so that the 3D registration of two point clouds is to solve a rigid transformation. The comparison of our method and different ICP algorithms demonstrates that our proposed algorithm is more accurate, efficient and robust for repetitive geometry registration. Moreover, this method can also be used to solve high depth uncertainty problem caused by little camera baseline in vision-based 3D reconstruction. PMID:28286703
NASA Astrophysics Data System (ADS)
Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko
2018-05-01
Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.
de Lima, Camila; Salomão Helou, Elias
2018-01-01
Iterative methods for tomographic image reconstruction have the computational cost of each iteration dominated by the computation of the (back)projection operator, which take roughly O(N 3 ) floating point operations (flops) for N × N pixels images. Furthermore, classical iterative algorithms may take too many iterations in order to achieve acceptable images, thereby making the use of these techniques unpractical for high-resolution images. Techniques have been developed in the literature in order to reduce the computational cost of the (back)projection operator to O(N 2 logN) flops. Also, incremental algorithms have been devised that reduce by an order of magnitude the number of iterations required to achieve acceptable images. The present paper introduces an incremental algorithm with a cost of O(N 2 logN) flops per iteration and applies it to the reconstruction of very large tomographic images obtained from synchrotron light illuminated data.
Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni
2016-01-01
Background Iterative reconstruction methods have attracted attention for reducing radiation doses in computed tomography (CT). Purpose To investigate the detectability of pancreatic calcification using dose-reduced CT reconstructed with model-based iterative construction (MBIR) and adaptive statistical iterative reconstruction (ASIR). Material and Methods This prospective study approved by Institutional Review Board included 85 patients (57 men, 28 women; mean age, 69.9 years; mean body weight, 61.2 kg). Unenhanced CT was performed three times with different radiation doses (reference-dose CT [RDCT], low-dose CT [LDCT], ultralow-dose CT [ULDCT]). From RDCT, LDCT, and ULDCT, images were reconstructed with filtered-back projection (R-FBP, used for establishing reference standard), ASIR (L-ASIR), and MBIR and ASIR (UL-MBIR and UL-ASIR), respectively. A lesion (pancreatic calcification) detection test was performed by two blinded radiologists with a five-point certainty level scale. Results Dose-length products of RDCT, LDCT, and ULDCT were 410, 97, and 36 mGy-cm, respectively. Nine patients had pancreatic calcification. The sensitivity for detecting pancreatic calcification with UL-MBIR was high (0.67–0.89) compared to L-ASIR or UL-ASIR (0.11–0.44), and a significant difference was seen between UL-MBIR and UL-ASIR for one reader (P = 0.014). The area under the receiver-operating characteristic curve for UL-MBIR (0.818–0.860) was comparable to that for L-ASIR (0.696–0.844). The specificity was lower with UL-MBIR (0.79–0.92) than with L-ASIR or UL-ASIR (0.96–0.99), and a significant difference was seen for one reader (P < 0.01). Conclusion In UL-MBIR, pancreatic calcification can be detected with high sensitivity, however, we should pay attention to the slightly lower specificity. PMID:27110389
Stochastic optimal operation of reservoirs based on copula functions
NASA Astrophysics Data System (ADS)
Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen
2018-02-01
Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.
Choi, Se Y; Ahn, Seung H; Choi, Jae D; Kim, Jung H; Lee, Byoung-Il; Kim, Jeong-In
2016-01-01
Objective: The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses. Methods: A 5 × 5 × 5 mm3 uric acid stone was placed in a physical human phantom at the level of the pelvis. 3 tube voltages (120, 100 and 80 kV) and 4 current–time products (100, 70, 30 and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with FBP, statistical IR (Levels 5–7) and knowledge-based IMR (soft-tissue Levels 1–3). The radiation dose, objective image quality and signal-to-noise ratio (SNR) were evaluated, and subjective assessments were performed. Results: The effective doses ranged from 0.095 to 2.621 mSv. Knowledge-based IMR showed better objective image noise and SNR than did FBP and statistical IR. The subjective image noise of FBP was worse than that of statistical IR and knowledge-based IMR. The subjective assessment scores deteriorated after a break point of 100 kV and 30 mAs. Conclusion: At the setting of 100 kV and 30 mAs, the radiation dose can be decreased by approximately 84% while keeping the subjective image assessment. Advances in knowledge: Patients with urolithiasis can be evaluated with ultralow-dose non-enhanced CT using a knowledge-based IMR algorithm at a substantially reduced radiation dose with the imaging quality preserved, thereby minimizing the risks of radiation exposure while providing clinically relevant diagnostic benefits for patients. PMID:26577542
Noniterative implicit method for tracking particles in mixed Lagrangian-Eulerian formulations
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Dasgupta, A.
1993-01-01
The existing implicit methods for the current initial value problems (IVPs) concerning particle-laden flows are complicated and iterative in nature. This paper presents a noniterative implicit method which can be used with pressure-based as well as with density-based algorithms. The method is illustrated by analyzing a dilute dispersion of noninteracting solid particles in an isothermal flow in a passage bounded by one straight wall and one wavy wall, in which all particles are spherical and have a finite velociy relative to the continuum phase at the inflow boundary.
Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace.
Zhang, Cheng; Lai, Chun-Liang; Pettitt, B Montgomery
The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution.
Large-scale expensive black-box function optimization
NASA Astrophysics Data System (ADS)
Rashid, Kashif; Bailey, William; Couët, Benoît
2012-09-01
This paper presents the application of an adaptive radial basis function method to a computationally expensive black-box reservoir simulation model of many variables. An iterative proxy-based scheme is used to tune the control variables, distributed for finer control over a varying number of intervals covering the total simulation period, to maximize asset NPV. The method shows that large-scale simulation-based function optimization of several hundred variables is practical and effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Sdran, N.; Najran University, Faculty of Sciences and Arts, Najran; Maiz, F., E-mail: fethimaiz@gmail.com
2016-06-15
The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax{sup 2α} + Bx{sup 2}, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) bymore » a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.« less
X-ray computed tomography using curvelet sparse regularization.
Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias
2015-04-01
Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.
Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian
2016-03-20
We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.
NASA Astrophysics Data System (ADS)
Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.
2017-10-01
This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
A Parallel Fast Sweeping Method for the Eikonal Equation
NASA Astrophysics Data System (ADS)
Baker, B.
2017-12-01
Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.
Recursion Removal as an Instructional Method to Enhance the Understanding of Recursion Tracing
ERIC Educational Resources Information Center
Velázquez-Iturbide, J. Ángel; Castellanos, M. Eugenia; Hijón-Neira, Raquel
2016-01-01
Recursion is one of the most difficult programming topics for students. In this paper, an instructional method is proposed to enhance students' understanding of recursion tracing. The proposal is based on the use of rules to translate linear recursion algorithms into equivalent, iterative ones. The paper has two main contributions: the…
Patch-based iterative conditional geostatistical simulation using graph cuts
NASA Astrophysics Data System (ADS)
Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas
2016-08-01
Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to demonstrate that pattern continuity is preserved.
On the implementation of an accurate and efficient solver for convection-diffusion equations
NASA Astrophysics Data System (ADS)
Wu, Chin-Tien
In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from the finite element solution.
Spectral Reconstruction Based on Svm for Cross Calibration
NASA Astrophysics Data System (ADS)
Gao, H.; Ma, Y.; Liu, W.; He, H.
2017-05-01
Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor's passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.
Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C
2013-08-07
Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More
NASA Technical Reports Server (NTRS)
Kou, Yu; Lin, Shu; Fossorier, Marc
1999-01-01
Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.
Phase retrieval in annulus sector domain by non-iterative methods
NASA Astrophysics Data System (ADS)
Wang, Xiao; Mao, Heng; Zhao, Da-zun
2008-03-01
Phase retrieval could be achieved by solving the intensity transport equation (ITE) under the paraxial approximation. For the case of uniform illumination, Neumann boundary condition is involved and it makes the solving process more complicated. The primary mirror is usually designed segmented in the telescope with large aperture, and the shape of a segmented piece is often like an annulus sector. Accordingly, It is necessary to analyze the phase retrieval in the annulus sector domain. Two non-iterative methods are considered for recovering the phase. The matrix method is based on the decomposition of the solution into a series of orthogonalized polynomials, while the frequency filtering method depends on the inverse computation process of ITE. By the simulation, it is found that both methods can eliminate the effect of Neumann boundary condition, save a lot of computation time and recover the distorted phase well. The wavefront error (WFE) RMS can be less than 0.05 wavelength, even when some noise is added.
Nakajima, Nobuharu
2010-07-20
When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central data due to a beam stop. As an alternative method, I present a noniterative solution in which an interpolation method based on the sampling theorem for the missing data is used for object reconstruction with our previously proposed phase-retrieval method using an aperture-array filter. Computer simulations demonstrate the reconstruction of a complex-amplitude object from a single diffraction pattern with a missing data area, which is generally difficult to treat with the iterative methods because a nonnegativity constraint cannot be used for such an object.
Sparse time-frequency decomposition based on dictionary adaptation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. © 2016 The Author(s).
Convergence Results on Iteration Algorithms to Linear Systems
Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo
2014-01-01
In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dul, F.A.; Arczewski, K.
1994-03-01
Although it has been stated that [open quotes]an attempt to solve (very large problems) by subspace iterations seems futile[close quotes], we will show that the statement is not true, especially for extremely large eigenproblems. In this paper a new two-phase subspace iteration/Rayleigh quotient/conjugate gradient method for generalized, large, symmetric eigenproblems Ax = [lambda]Bx is presented. It has the ability of solving extremely large eigenproblems, N = 216,000, for example, and finding a large number of leftmost or rightmost eigenpairs, up to 1000 or more. Multiple eigenpairs, even those with multiplicity 100, can be easily found. The use of the proposedmore » method for solving the big full eigenproblems (N [approximately] 10[sup 3]), as well as for large weakly non-symmetric eigenproblems, have been considered also. The proposed method is fully iterative; thus the factorization of matrices ins avoided. The key idea consists in joining two methods: subspace and Rayleigh quotient iterations. The systems of indefinite and almost singular linear equations (a - [sigma]B)x = By are solved by various iterative conjugate gradient method can be used without danger of breaking down due to its property that may be called [open quotes]self-correction towards the eigenvector,[close quotes] discovered recently by us. The use of various preconditioners (SSOR and IC) has also been considered. The main features of the proposed method have been analyzed in detail. Comparisons with other methods, such as, accelerated subspace iteration, Lanczos, Davidson, TLIME, TRACMN, and SRQMCG, are presented. The results of numerical tests for various physical problems (acoustic, vibrations of structures, quantum chemistry) are presented as well. 40 refs., 12 figs., 2 tabs.« less
Use of direct and iterative solvers for estimation of SNP effects in genome-wide selection
2010-01-01
The aim of this study was to compare iterative and direct solvers for estimation of marker effects in genomic selection. One iterative and two direct methods were used: Gauss-Seidel with Residual Update, Cholesky Decomposition and Gentleman-Givens rotations. For resembling different scenarios with respect to number of markers and of genotyped animals, a simulated data set divided into 25 subsets was used. Number of markers ranged from 1,200 to 5,925 and number of animals ranged from 1,200 to 5,865. Methods were also applied to real data comprising 3081 individuals genotyped for 45181 SNPs. Results from simulated data showed that the iterative solver was substantially faster than direct methods for larger numbers of markers. Use of a direct solver may allow for computing (co)variances of SNP effects. When applied to real data, performance of the iterative method varied substantially, depending on the level of ill-conditioning of the coefficient matrix. From results with real data, Gentleman-Givens rotations would be the method of choice in this particular application as it provided an exact solution within a fairly reasonable time frame (less than two hours). It would indeed be the preferred method whenever computer resources allow its use. PMID:21637627
Ultra-high speed digital micro-mirror device based ptychographic iterative engine method
Sun, Aihui; He, Xiaoliang; Kong, Yan; Cui, Haoyang; Song, Xiaojun; Xue, Liang; Wang, Shouyu; Liu, Cheng
2017-01-01
To reduce the long data acquisition time of the common mechanical scanning based Ptychographic Iterative Engine (PIE) technique, the digital micro-mirror device (DMD) is used to form the fast scanning illumination on the sample. Since the transverse mechanical scanning in the common PIE is replaced by the on/off switching of the micro-mirrors, the data acquisition time can be reduced from more than 15 minutes to less than 20 seconds for recording 12 × 10 diffraction patterns to cover the same field of 147.08 mm2. Furthermore, since the precision of DMD fabricated with the optical lithography is always higher than 10 nm (1 μm for the mechanical translation stage), the time consuming position-error-correction procedure is not required in the iterative reconstruction. These two improvements fundamentally speed up both the data acquisition and the reconstruction procedures in PIE, and relax its requirements on the stability of the imaging system, therefore remarkably improve its applicability for many practices. It is demonstrated experimentally with both USAF resolution target and biological sample that, the spatial resolution of 5.52 μm and the field of view of 147.08 mm2 can be reached with the DMD based PIE method. In a word, by using the DMD to replace the translation stage, we can effectively overcome the main shortcomings of common PIE related to the mechanical scanning, while keeping its advantages on both the high resolution and large field of view. PMID:28717560
Shading correction assisted iterative cone-beam CT reconstruction
NASA Astrophysics Data System (ADS)
Yang, Chunlin; Wu, Pengwei; Gong, Shutao; Wang, Jing; Lyu, Qihui; Tang, Xiangyang; Niu, Tianye
2017-11-01
Recent advances in total variation (TV) technology enable accurate CT image reconstruction from highly under-sampled and noisy projection data. The standard iterative reconstruction algorithms, which work well in conventional CT imaging, fail to perform as expected in cone beam CT (CBCT) applications, wherein the non-ideal physics issues, including scatter and beam hardening, are more severe. These physics issues result in large areas of shading artifacts and cause deterioration to the piecewise constant property assumed in reconstructed images. To overcome this obstacle, we incorporate a shading correction scheme into low-dose CBCT reconstruction and propose a clinically acceptable and stable three-dimensional iterative reconstruction method that is referred to as the shading correction assisted iterative reconstruction. In the proposed method, we modify the TV regularization term by adding a shading compensation image to the reconstructed image to compensate for the shading artifacts while leaving the data fidelity term intact. This compensation image is generated empirically, using image segmentation and low-pass filtering, and updated in the iterative process whenever necessary. When the compensation image is determined, the objective function is minimized using the fast iterative shrinkage-thresholding algorithm accelerated on a graphic processing unit. The proposed method is evaluated using CBCT projection data of the Catphan© 600 phantom and two pelvis patients. Compared with the iterative reconstruction without shading correction, the proposed method reduces the overall CT number error from around 200 HU to be around 25 HU and increases the spatial uniformity by a factor of 20 percent, given the same number of sparsely sampled projections. A clinically acceptable and stable iterative reconstruction algorithm for CBCT is proposed in this paper. Differing from the existing algorithms, this algorithm incorporates a shading correction scheme into the low-dose CBCT reconstruction and achieves more stable optimization path and more clinically acceptable reconstructed image. The method proposed by us does not rely on prior information and thus is practically attractive to the applications of low-dose CBCT imaging in the clinic.
Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.
2015-01-01
We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700
NASA Astrophysics Data System (ADS)
Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto
2017-10-01
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
Calibration and Data Analysis of the MC-130 Air Balance
NASA Technical Reports Server (NTRS)
Booth, Dennis; Ulbrich, N.
2012-01-01
Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.
Examining the Characteristics of Student Postings That Are Liked and Linked in a CSCL Environment
ERIC Educational Resources Information Center
Makos, Alexandra; Lee, Kyungmee; Zingaro, Daniel
2015-01-01
This case study is the first iteration of a large-scale design-based research project to improve Pepper, an interactive discussion-based learning environment. In this phase, we designed and implemented two social features to scaffold positive learner interactivity behaviors: a "Like" button and linking tool. A mixed-methods approach was…
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei
2014-06-21
As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.
Application of the perturbation iteration method to boundary layer type problems.
Pakdemirli, Mehmet
2016-01-01
The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.
Spotting the difference in molecular dynamics simulations of biomolecules
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Kono, Hidetoshi
2016-08-01
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frinks, Neal T.
2016-01-01
Several improvements to the mixed-elementUSM3Ddiscretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography
Wang, Kun; Su, Richard; Oraevsky, Alexander A; Anastasio, Mark A
2012-01-01
Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications. PMID:22864062
NASA Astrophysics Data System (ADS)
Prigozhin, Leonid; Sokolovsky, Vladimir
2018-05-01
We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.
Penalized weighted least-squares approach for low-dose x-ray computed tomography
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong
2006-03-01
The noise of low-dose computed tomography (CT) sinogram follows approximately a Gaussian distribution with nonlinear dependence between the sample mean and variance. The noise is statistically uncorrelated among detector bins at any view angle. However the correlation coefficient matrix of data signal indicates a strong signal correlation among neighboring views. Based on above observations, Karhunen-Loeve (KL) transform can be used to de-correlate the signal among the neighboring views. In each KL component, a penalized weighted least-squares (PWLS) objective function can be constructed and optimal sinogram can be estimated by minimizing the objective function, followed by filtered backprojection (FBP) for CT image reconstruction. In this work, we compared the KL-PWLS method with an iterative image reconstruction algorithm, which uses the Gauss-Seidel iterative calculation to minimize the PWLS objective function in image domain. We also compared the KL-PWLS with an iterative sinogram smoothing algorithm, which uses the iterated conditional mode calculation to minimize the PWLS objective function in sinogram space, followed by FBP for image reconstruction. Phantom experiments show a comparable performance of these three PWLS methods in suppressing the noise-induced artifacts and preserving resolution in reconstructed images. Computer simulation concurs with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS noise reduction may have the advantage in computation for low-dose CT imaging, especially for dynamic high-resolution studies.
NASA Astrophysics Data System (ADS)
He, Jianbin; Yu, Simin; Cai, Jianping
2016-12-01
Lyapunov exponent is an important index for describing chaotic systems behavior, and the largest Lyapunov exponent can be used to determine whether a system is chaotic or not. For discrete-time dynamical systems, the Lyapunov exponents are calculated by an eigenvalue method. In theory, according to eigenvalue method, the more accurate calculations of Lyapunov exponent can be obtained with the increment of iterations, and the limits also exist. However, due to the finite precision of computer and other reasons, the results will be numeric overflow, unrecognized, or inaccurate, which can be stated as follows: (1) The iterations cannot be too large, otherwise, the simulation result will appear as an error message of NaN or Inf; (2) If the error message of NaN or Inf does not appear, then with the increment of iterations, all Lyapunov exponents will get close to the largest Lyapunov exponent, which leads to inaccurate calculation results; (3) From the viewpoint of numerical calculation, obviously, if the iterations are too small, then the results are also inaccurate. Based on the analysis of Lyapunov-exponent calculation in discrete-time systems, this paper investigates two improved algorithms via QR orthogonal decomposition and SVD orthogonal decomposition approaches so as to solve the above-mentioned problems. Finally, some examples are given to illustrate the feasibility and effectiveness of the improved algorithms.
Maintaining Web-based Bibliographies: A Case Study of Iter, the Bibliography of Renaissance Europe.
ERIC Educational Resources Information Center
Castell, Tracy
1997-01-01
Introduces Iter, a nonprofit research project developed for the World Wide Web and dedicated to increasing access to all published materials pertaining to the Renaissance and, eventually, the Middle Ages. Discusses information management issues related to building and maintaining Iter's first Web-based bibliography, focusing on printed secondary…
Voting strategy for artifact reduction in digital breast tomosynthesis.
Wu, Tao; Moore, Richard H; Kopans, Daniel B
2006-07-01
Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.
Learning Biological Networks via Bootstrapping with Optimized GO-based Gene Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.
2010-08-02
Microarray gene expression data provide a unique information resource for learning biological networks using "reverse engineering" methods. However, there are a variety of cases in which we know which genes are involved in a given pathology of interest, but we do not have enough experimental evidence to support the use of fully-supervised/reverse-engineering learning methods. In this paper, we explore a novel semi-supervised approach in which biological networks are learned from a reference list of genes and a partial set of links for these genes extracted automatically from PubMed abstracts, using a knowledge-driven bootstrapping algorithm. We show how new relevant linksmore » across genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. We describe an application of this approach to the TGFB pathway as a case study and show how the ensuing results prove the feasibility of the approach as an alternate or complementary technique to fully supervised methods.« less
Multiview point clouds denoising based on interference elimination
NASA Astrophysics Data System (ADS)
Hu, Yang; Wu, Qian; Wang, Le; Jiang, Huanyu
2018-03-01
Newly emerging low-cost depth sensors offer huge potentials for three-dimensional (3-D) modeling, but existing high noise restricts these sensors from obtaining accurate results. Thus, we proposed a method for denoising registered multiview point clouds with high noise to solve that problem. The proposed method is aimed at fully using redundant information to eliminate the interferences among point clouds of different views based on an iterative procedure. In each iteration, noisy points are either deleted or moved to their weighted average targets in accordance with two cases. Simulated data and practical data captured by a Kinect v2 sensor were tested in experiments qualitatively and quantitatively. Results showed that the proposed method can effectively reduce noise and recover local features from highly noisy multiview point clouds with good robustness, compared to truncated signed distance function and moving least squares (MLS). Moreover, the resulting low-noise point clouds can be further smoothed by the MLS to achieve improved results. This study provides the feasibility of obtaining fine 3-D models with high-noise devices, especially for depth sensors, such as Kinect.