Iteration and Prototyping in Creating Technical Specifications.
ERIC Educational Resources Information Center
Flynt, John P.
1994-01-01
Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)
Modeling defect trends for iterative development
NASA Technical Reports Server (NTRS)
Powell, J. D.; Spanguolo, J. N.
2003-01-01
The Employment of Defects (EoD) approach to measuring and analyzing defects seeks to identify and capture trends and phenomena that are critical to managing software quality in the iterative software development lifecycle at JPL.
Why and how Mastering an Incremental and Iterative Software Development Process
NASA Astrophysics Data System (ADS)
Dubuc, François; Guichoux, Bernard; Cormery, Patrick; Mescam, Jean Christophe
2004-06-01
One of the key issues regularly mentioned in the current software crisis of the space domain is related to the software development process that must be performed while the system definition is not yet frozen. This is especially true for complex systems like launchers or space vehicles.Several more or less mature solutions are under study by EADS SPACE Transportation and are going to be presented in this paper. The basic principle is to develop the software through an iterative and incremental process instead of the classical waterfall approach, with the following advantages:- It permits systematic management and incorporation of requirements changes over the development cycle with a minimal cost. As far as possible the most dimensioning requirements are analyzed and developed in priority for validating very early the architecture concept without the details.- A software prototype is very quickly available. It improves the communication between system and software teams, as it enables to check very early and efficiently the common understanding of the system requirements.- It allows the software team to complete a whole development cycle very early, and thus to become quickly familiar with the software development environment (methodology, technology, tools...). This is particularly important when the team is new, or when the environment has changed since the previous development. Anyhow, it improves a lot the learning curve of the software team.These advantages seem very attractive, but mastering efficiently an iterative development process is not so easy and induces a lot of difficulties such as:- How to freeze one configuration of the system definition as a development baseline, while most of thesystem requirements are completely and naturally unstable?- How to distinguish stable/unstable and dimensioning/standard requirements?- How to plan the development of each increment?- How to link classical waterfall development milestones with an iterative approach: when should theclassical reviews be performed: Software Specification Review? Preliminary Design Review? CriticalDesign Review? Code Review? Etc...Several solutions envisaged or already deployed by EADS SPACE Transportation will be presented, both from a methodological and technological point of view:- How the MELANIE EADS ST internal methodology improves the concurrent engineering activitiesbetween GNC, software and simulation teams in a very iterative and reactive way.- How the CMM approach can help by better formalizing Requirements Management and Planningprocesses.- How the Automatic Code Generation with "certified" tools (SCADE) can still dramatically shorten thedevelopment cycle.Then the presentation will conclude by showing an evaluation of the cost and planning reduction based on a pilot application by comparing figures on two similar projects: one with the classical waterfall process, the other one with an iterative and incremental approach.
NASA Technical Reports Server (NTRS)
Kincaid, D. R.; Young, D. M.
1984-01-01
Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.
NASA Astrophysics Data System (ADS)
Zhang, M.; Zheng, G. Z.; Zheng, W.; Chen, Z.; Yuan, T.; Yang, C.
2016-04-01
The magnetic confinement nuclear fusion experiments require various real-time control applications like plasma control. ITER has designed the Fast Plant System Controller (FPSC) for this job. ITER provided hardware and software standards and guidelines for building a FPSC. In order to develop various real-time FPSC applications efficiently, a flexible real-time software framework called J-TEXT real-time framework (JRTF) is developed by J-TEXT tokamak team. JRTF allowed developers to implement different functions as independent and reusable modules called Application Blocks (AB). The AB developers only need to focus on implementing the control tasks or the algorithms. The timing, scheduling, data sharing and eventing are handled by the JRTF pipelines. JRTF provides great flexibility on developing ABs. Unit test against ABs can be developed easily and ABs can even be used in non-JRTF applications. JRTF also provides interfaces allowing JRTF applications to be configured and monitored at runtime. JRTF is compatible with ITER standard FPSC hardware and ITER (Control, Data Access and Communication) CODAC Core software. It can be configured and monitored using (Experimental Physics and Industrial Control System) EPICS. Moreover the JRTF can be ported to different platforms and be integrated with supervisory control software other than EPICS. The paper presents the design and implementation of JRTF as well as brief test results.
Evolutionary Software Development (Developpement Evolutionnaire de Logiciels)
2008-08-01
development processes. While this may be true, frequently it is not. MIL-STD-498 was explicitly introduced to encourage iterative development; ISO /IEC... 12207 was carefully worded not to prohibit iterative development. Yet both standards were widely interpreted as requiring waterfall development, as
Evolutionary Software Development (Developpement evolutionnaire de logiciels)
2008-08-01
development processes. While this may be true, frequently it is not. MIL-STD-498 was explicitly introduced to encourage iterative development; ISO /IEC... 12207 was carefully worded not to prohibit iterative development. Yet both standards were widely interpreted as requiring waterfall development, as
Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR).
Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan
2013-11-01
Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables. Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision. Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A. The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of accuracy on reconstruction algorithms, such that volumes quantified from scans of different reconstruction algorithms can be compared. The little difference found between the precision of FBP and iterative reconstructions could be a result of both iterative reconstruction's diminished noise reduction at the edge of the nodules as well as the loss of resolution at high noise levels with iterative reconstruction. The findings do not rule out potential advantage of IR that might be evident in a study that uses a larger number of nodules or repeated scans.
Knowledge Sharing through Pair Programming in Learning Environments: An Empirical Study
ERIC Educational Resources Information Center
Kavitha, R. K.; Ahmed, M. S.
2015-01-01
Agile software development is an iterative and incremental methodology, where solutions evolve from self-organizing, cross-functional teams. Pair programming is a type of agile software development technique where two programmers work together with one computer for developing software. This paper reports the results of the pair programming…
Applying Evolutionary Prototyping In Developing LMIS: A Spatial Web-Based System For Land Management
NASA Astrophysics Data System (ADS)
Agustiono, W.
2018-01-01
Software development project is a difficult task. Especially for software designed to comply with regulations that are constantly being introduced or changed, it is almost impossible to make just one change during the development process. Even if it is possible, nonetheless, the developers may take bulk of works to fix the design to meet specified needs. This iterative work also means that it takes additional time and potentially leads to failing to meet the original schedule and budget. In such inevitable changes, it is essential for developers to carefully consider and use an appropriate method which will help them carry out software project development. This research aims to examine the implementation of a software development method called evolutionary prototyping for developing software for complying regulation. It investigates the development of Land Management Information System (pseudonym), initiated by the Australian government, for use by farmers to meet regulatory demand requested by Soil and Land Conservation Act. By doing so, it sought to provide understanding the efficacy of evolutionary prototyping in helping developers address frequent changing requirements and iterative works but still within schedule. The findings also offer useful practical insights for other developers who seek to build similar regulatory compliance software.
The Knowledge-Based Software Assistant: Beyond CASE
NASA Technical Reports Server (NTRS)
Carozzoni, Joseph A.
1993-01-01
This paper will outline the similarities and differences between two paradigms of software development. Both support the whole software life cycle and provide automation for most of the software development process, but have different approaches. The CASE approach is based on a set of tools linked by a central data repository. This tool-based approach is data driven and views software development as a series of sequential steps, each resulting in a product. The Knowledge-Based Software Assistant (KBSA) approach, a radical departure from existing software development practices, is knowledge driven and centers around a formalized software development process. KBSA views software development as an incremental, iterative, and evolutionary process with development occurring at the specification level.
Addressing the Barriers to Agile Development in DoD
2015-05-01
Acquisition Small, Frequent Releases Iteratively Developed Review Working Software Vice Extensive Docs Responsive to Changes...Distribution Unlimited. Case Number 15-1457’ JCIDS IT Box Model Streamlined requirements process for software >$15M JROC approves IS-ICD...Services (FAR Part 37) Product-based Pay for the time and expertise of an Agile development contractor Contract for a defined software delivery
Developing a Virtual Physics World
ERIC Educational Resources Information Center
Wegener, Margaret; McIntyre, Timothy J.; McGrath, Dominic; Savage, Craig M.; Williamson, Michael
2012-01-01
In this article, the successful implementation of a development cycle for a physics teaching package based on game-like virtual reality software is reported. The cycle involved several iterations of evaluating students' use of the package followed by instructional and software development. The evaluation used a variety of techniques, including…
Agile Development Methods for Space Operations
NASA Technical Reports Server (NTRS)
Trimble, Jay; Webster, Chris
2012-01-01
Main stream industry software development practice has gone from a traditional waterfall process to agile iterative development that allows for fast response to customer inputs and produces higher quality software at lower cost. How can we, the space ops community, adopt state of the art software development practice, achieve greater productivity at lower cost, and maintain safe and effective space flight operations? At NASA Ames, we are developing Mission Control Technologies Software, in collaboration with Johnson Space Center (JSC) and, more recently, the Jet Propulsion Laboratory (JPL).
NASA Astrophysics Data System (ADS)
Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.
2013-02-01
Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.
Cross Sectional Study of Agile Software Development Methods and Project Performance
ERIC Educational Resources Information Center
Lambert, Tracy
2011-01-01
Agile software development methods, characterized by delivering customer value via incremental and iterative time-boxed development processes, have moved into the mainstream of the Information Technology (IT) industry. However, despite a growing body of research which suggests that a predictive manufacturing approach, with big up-front…
Agile methods in biomedical software development: a multi-site experience report.
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-05-30
Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.
Agile methods in biomedical software development: a multi-site experience report
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-01-01
Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914
Model for Simulating a Spiral Software-Development Process
NASA Technical Reports Server (NTRS)
Mizell, Carolyn; Curley, Charles; Nayak, Umanath
2010-01-01
A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code), productivity (number of lines of code per hour), and number of defects per source line of code. The user provides the number of resources, the overall percent of effort that should be allocated to each process step, and the number of desired staff members for each step. The output of PATT includes the size of the product, a measure of effort, a measure of rework effort, the duration of the entire process, and the numbers of injected, detected, and corrected defects as well as a number of other interesting features. In the development of the present model, steps were added to the IEEE 12207 waterfall process, and this model and its implementing software were made to run repeatedly through the sequence of steps, each repetition representing an iteration in a spiral process. Because the IEEE 12207 model is founded on a waterfall paradigm, it enables direct comparison of spiral and waterfall processes. The model can be used throughout a software-development project to analyze the project as more information becomes available. For instance, data from early iterations can be used as inputs to the model, and the model can be used to estimate the time and cost of carrying the project to completion.
The Design and Development of a Web-Interface for the Software Engineering Automation System
2001-09-01
application on the Internet. 14. SUBJECT TERMS Computer Aided Prototyping, Real Time Systems , Java 15. NUMBER OF...difficult. Developing the entire system only to find it does not meet the customer’s needs is a tremendous waste of time. Real - time systems need a...software prototyping is an iterative software development methodology utilized to improve the analysis and design of real - time systems [2]. One
Software for MR image overlay guided needle insertions: the clinical translation process
NASA Astrophysics Data System (ADS)
Ungi, Tamas; U-Thainual, Paweena; Fritz, Jan; Iordachita, Iulian I.; Flammang, Aaron J.; Carrino, John A.; Fichtinger, Gabor
2013-03-01
PURPOSE: Needle guidance software using augmented reality image overlay was translated from the experimental phase to support preclinical and clinical studies. Major functional and structural changes were needed to meet clinical requirements. We present the process applied to fulfill these requirements, and selected features that may be applied in the translational phase of other image-guided surgical navigation systems. METHODS: We used an agile software development process for rapid adaptation to unforeseen clinical requests. The process is based on iterations of operating room test sessions, feedback discussions, and software development sprints. The open-source application framework of 3D Slicer and the NA-MIC kit provided sufficient flexibility and stable software foundations for this work. RESULTS: All requirements were addressed in a process with 19 operating room test iterations. Most features developed in this phase were related to workflow simplification and operator feedback. CONCLUSION: Efficient and affordable modifications were facilitated by an open source application framework and frequent clinical feedback sessions. Results of cadaver experiments show that software requirements were successfully solved after a limited number of operating room tests.
Development of the ITER magnetic diagnostic set and specification.
Vayakis, G; Arshad, S; Delhom, D; Encheva, A; Giacomin, T; Jones, L; Patel, K M; Pérez-Lasala, M; Portales, M; Prieto, D; Sartori, F; Simrock, S; Snipes, J A; Udintsev, V S; Watts, C; Winter, A; Zabeo, L
2012-10-01
ITER magnetic diagnostics are now in their detailed design and R&D phase. They have passed their conceptual design reviews and a working diagnostic specification has been prepared aimed at the ITER project requirements. This paper highlights specific design progress, in particular, for the in-vessel coils, steady state sensors, saddle loops and divertor sensors. Key changes in the measurement specifications, and a working concept of software and electronics are also outlined.
Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, B.
2013-01-01
A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.
An application generator for rapid prototyping of Ada real-time control software
NASA Technical Reports Server (NTRS)
Johnson, Jim; Biglari, Haik; Lehman, Larry
1990-01-01
The need to increase engineering productivity and decrease software life cycle costs in real-time system development establishes a motivation for a method of rapid prototyping. The design by iterative rapid prototyping technique is described. A tool which facilitates such a design methodology for the generation of embedded control software is described.
Developing sustainable software solutions for bioinformatics by the “ Butterfly” paradigm
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2014-01-01
Software design and sustainable software engineering are essential for the long-term development of bioinformatics software. Typical challenges in an academic environment are short-term contracts, island solutions, pragmatic approaches and loose documentation. Upcoming new challenges are big data, complex data sets, software compatibility and rapid changes in data representation. Our approach to cope with these challenges consists of iterative intertwined cycles of development (“ Butterfly” paradigm) for key steps in scientific software engineering. User feedback is valued as well as software planning in a sustainable and interoperable way. Tool usage should be easy and intuitive. A middleware supports a user-friendly Graphical User Interface (GUI) as well as a database/tool development independently. We validated the approach of our own software development and compared the different design paradigms in various software solutions. PMID:25383181
2010-03-01
service consumers, and infrastructure. Techniques from any iterative and incremental software development methodology followed by the organiza- tion... Service -Oriented Architecture Environment (CMU/SEI-2008-TN-008). Software Engineering Institute, Carnegie Mellon University, 2008. http://www.sei.cmu.edu...Integrating Legacy Software into a Service Oriented Architecture.” Proceedings of the 10th European Conference on Software Maintenance (CSMR 2006). Bari
VIMOS Instrument Control Software Design: an Object Oriented Approach
NASA Astrophysics Data System (ADS)
Brau-Nogué, Sylvie; Lucuix, Christian
2002-12-01
The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.
Kushniruk, Andre W; Borycki, Elizabeth M
2015-01-01
The development of more usable and effective healthcare information systems has become a critical issue. In the software industry methodologies such as agile and iterative development processes have emerged to lead to more effective and usable systems. These approaches highlight focusing on user needs and promoting iterative and flexible development practices. Evaluation and testing of iterative agile development cycles is considered an important part of the agile methodology and iterative processes for system design and re-design. However, the issue of how to effectively integrate usability testing methods into rapid and flexible agile design cycles has remained to be fully explored. In this paper we describe our application of an approach known as low-cost rapid usability testing as it has been applied within agile system development in healthcare. The advantages of the integrative approach are described, along with current methodological considerations.
Parallel Worlds: Agile and Waterfall Differences and Similarities
2013-10-01
development model , and it is deliberately shorter than the Agile Overview as most readers are assumed to be from the Traditional World. For a more in...process of DODI 5000 does not forbid the iterative incremental software development model with frequent end-user interaction, it requires heroics on...added). Today, many of the DOD’s large IT programs therefore continue to adopt program structures and software development models closely
Comparing direct and iterative equation solvers in a large structural analysis software system
NASA Technical Reports Server (NTRS)
Poole, E. L.
1991-01-01
Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.
Alternatives for Developing User Documentation for Applications Software
1991-09-01
style that is designed to match adult reading behaviors, using reader-based writing techniques, developing effective graphics , creating reference aids...involves research, analysis, design , and testing. The writer must have a solid understanding of the technical aspects of the document being prepared, good...ABSTRACT The preparation of software documentation is an iterative process that involves research, analysis, design , and testing. The writer must have
ERIC Educational Resources Information Center
Computer Symbolic, Inc., Washington, DC.
A pseudo assembly language, PAL, was developed and specified for use as the lowest level in a general, multilevel programing system for the realization of cost-effective, hardware-independent Naval software. The language was developed as part of the system called FIRMS (Fast Iterative Recursive Macro System) and is sufficiently general to allow…
SLS Flight Software Testing: Using a Modified Agile Software Testing Approach
NASA Technical Reports Server (NTRS)
Bolton, Albanie T.
2016-01-01
NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner. Through agile testing, there has been increased value through individuals and interactions over processes and tools, improved customer collaboration, and improved responsiveness to changes through controlled planning. The presentation will describe agile testing methodology as taken with the SLS FSW Test and Verification team at Marshall Space Flight Center.
ERIC Educational Resources Information Center
Ahrens, Fred; Mistry, Rajendra
2005-01-01
In product engineering there often arise design analysis problems for which a commercial software package is either unavailable or cost prohibitive. Further, these calculations often require successive iterations that can be time intensive when performed by hand, thus development of a software application is indicated. This case relates to the…
Experiences with a generator tool for building clinical application modules.
Kuhn, K A; Lenz, R; Elstner, T; Siegele, H; Moll, R
2003-01-01
To elaborate main system characteristics and relevant deployment experiences for the health information system (HIS) Orbis/OpenMed, which is in widespread use in Germany, Austria, and Switzerland. In a deployment phase of 3 years in a 1.200 bed university hospital, where the system underwent significant improvements, the system's functionality and its software design have been analyzed in detail. We focus on an integrated CASE tool for generating embedded clinical applications and for incremental system evolution. We present a participatory and iterative software engineering process developed for efficient utilization of such a tool. The system's functionality is comparable to other commercial products' functionality; its components are embedded in a vendor-specific application framework, and standard interfaces are being used for connecting subsystems. The integrated generator tool is a remarkable feature; it became a key factor of our project. Tool generated applications are workflow enabled and embedded into the overall data base schema. Rapid prototyping and iterative refinement are supported, so application modules can be adapted to the users' work practice. We consider tools supporting an iterative and participatory software engineering process highly relevant for health information system architects. The potential of a system to continuously evolve and to be effectively adapted to changing needs may be more important than sophisticated but hard-coded HIS functionality. More work will focus on HIS software design and on software engineering. Methods and tools are needed for quick and robust adaptation of systems to health care processes and changing requirements.
The Challenges of Being Agile in DoD
2013-02-01
term “Agile” will serve as an overarching term to represent all forms of iterative development whether Scrum , Lean Software Development, extreme...occur? • How do we know what the development team will deliver at the end of the Sprint? (A basic unit of development in Scrum that lasts for “time
Reducing Design Cycle Time and Cost Through Process Resequencing
NASA Technical Reports Server (NTRS)
Rogers, James L.
2004-01-01
In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle. One method for reducing both time and cost is to develop an understanding of the flow of the design processes and the effects of the iterative subcycles that are found in complex design projects. Once these aspects are understood, the design manager can make decisions that take advantage of decomposition, concurrent engineering, and parallel processing techniques to reduce the total time and the total cost of the design cycle. One software tool that can aid in this decision-making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). The DeMAID software minimizes the feedback couplings that create iterative subcycles, groups processes into iterative subcycles, and decomposes the subcycles into a hierarchical structure. The real benefits of producing the best design in the least time and at a minimum cost are obtained from sequencing the processes in the subcycles.
Automated Scheduling Via Artificial Intelligence
NASA Technical Reports Server (NTRS)
Biefeld, Eric W.; Cooper, Lynne P.
1991-01-01
Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.
Assessing students' performance in software requirements engineering education using scoring rubrics
NASA Astrophysics Data System (ADS)
Mkpojiogu, Emmanuel O. C.; Hussain, Azham
2017-10-01
The study investigates how helpful the use of scoring rubrics is, in the performance assessment of software requirements engineering students and whether its use can lead to students' performance improvement in the development of software requirements artifacts and models. Scoring rubrics were used by two instructors to assess the cognitive performance of a student in the design and development of software requirements artifacts. The study results indicate that the use of scoring rubrics is very helpful in objectively assessing the performance of software requirements or software engineering students. Furthermore, the results revealed that the use of scoring rubrics can also produce a good achievement assessments direction showing whether a student is either improving or not in a repeated or iterative assessment. In a nutshell, its use leads to the performance improvement of students. The results provided some insights for further investigation and will be beneficial to researchers, requirements engineers, system designers, developers and project managers.
Mapping CMMI Level 2 to Scrum Practices: An Experience Report
NASA Astrophysics Data System (ADS)
Diaz, Jessica; Garbajosa, Juan; Calvo-Manzano, Jose A.
CMMI has been adopted advantageously in large companies for improvements in software quality, budget fulfilling, and customer satisfaction. However SPI strategies based on CMMI-DEV require heavy software development processes and large investments in terms of cost and time that medium/small companies do not deal with. The so-called light software development processes, such as Agile Software Development (ASD), deal with these challenges. ASD welcomes changing requirements and stresses the importance of adaptive planning, simplicity and continuous delivery of valuable software by short time-framed iterations. ASD is becoming convenient in a more and more global, and changing software market. It would be greatly useful to be able to introduce agile methods such as Scrum in compliance with CMMI process model. This paper intends to increase the understanding of the relationship between ASD and CMMI-DEV reporting empirical results that confirm theoretical comparisons between ASD practices and CMMI level2.
NASA Astrophysics Data System (ADS)
Pandey, Palak; Kunte, Pravin D.
2016-10-01
This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.
Real time flight simulation methodology
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Cook, G.; Mcvey, E. S.
1977-01-01
Substitutional methods for digitization, input signal-dependent integrator approximations, and digital autopilot design were developed. The software framework of a simulator design package is described. Included are subroutines for iterative designs of simulation models and a rudimentary graphics package.
The SOFIA Mission Control System Software
NASA Astrophysics Data System (ADS)
Heiligman, G. M.; Brock, D. R.; Culp, S. D.; Decker, P. H.; Estrada, J. C.; Graybeal, J. B.; Nichols, D. M.; Paluzzi, P. R.; Sharer, P. J.; Pampell, R. J.; Papke, B. L.; Salovich, R. D.; Schlappe, S. B.; Spriestersbach, K. K.; Webb, G. L.
1999-05-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered with a computerized mission control system (MCS). The MCS communicates with the aircraft's flight management system and coordinates the operations of the telescope assembly, mission-specific subsystems, and the science instruments. The software for the MCS must be reliable and flexible. It must be easily usable by many teams of observers with widely differing needs, and it must support non-intrusive access for education and public outreach. The technology must be appropriate for SOFIA's 20-year lifetime. The MCS software development process is an object-oriented, use case driven approach. The process is iterative: delivery will be phased over four "builds"; each build will be the result of many iterations; and each iteration will include analysis, design, implementation, and test activities. The team is geographically distributed, coordinating its work via Web pages, teleconferences, T.120 remote collaboration, and CVS (for Internet-enabled configuration management). The MCS software architectural design is derived in part from other observatories' experience. Some important features of the MCS are: * distributed computing over several UNIX and VxWorks computers * fast throughput of time-critical data * use of third-party components, such as the Adaptive Communications Environment (ACE) and the Common Object Request Broker Architecture (CORBA) * extensive configurability via stored, editable configuration files * use of several computer languages so developers have "the right tool for the job". C++, Java, scripting languages, Interactive Data Language (from Research Systems, Int'l.), XML, and HTML will all be used in the final deliverables. This paper reports on work in progress, with the final product scheduled for delivery in 2001. This work was performed for Universities Space Research Association for NASA under contract NAS2-97001.
Combining Architecture-Centric Engineering with the Team Software Process
2010-12-01
colleagues from Quarksoft and CIMAT have re- cently reported on their experiences in “Introducing Software Architecture Development Methods into a TSP...Postmortem Lessons, new goals, new requirements, new risk , etc. Business and technical goals Estimates, plans, process, commitment Work products...architecture to mitigate the risks unco- vered by the ATAM. At the end of the iteration, version 1.0 of the architec- ture is available. Implement a second
West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Kumar, Sunil; Swallow, Aaron; Luizza, Matthew; Chignell, Steve
2017-01-01
Among the most pressing concerns of land managers in post-wildfire landscapes are the establishment and spread of invasive species. Land managers need accurate maps of invasive species cover for targeted management post-disturbance that are easily transferable across space and time. In this study, we sought to develop an iterative, replicable methodology based on limited invasive species occurrence data, freely available remotely sensed data, and open source software to predict the distribution of Bromus tectorum (cheatgrass) in a post-wildfire landscape. We developed four species distribution models using eight spectral indices derived from five months of Landsat 8 Operational Land Imager (OLI) data in 2014. These months corresponded to both cheatgrass growing period and time of field data collection in the study area. The four models were improved using an iterative approach in which a threshold for cover was established, and all models had high sensitivity values when tested on an independent dataset. We also quantified the area at highest risk for invasion in future seasons given 2014 distribution, topographic covariates, and seed dispersal limitations. These models demonstrate the effectiveness of using derived multi-date spectral indices as proxies for species occurrence on the landscape, the importance of selecting thresholds for invasive species cover to evaluate ecological risk in species distribution models, and the applicability of Landsat 8 OLI and the Software for Assisted Habitat Modeling for targeted invasive species management.
NASA Astrophysics Data System (ADS)
West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Kumar, Sunil; Swallow, Aaron; Luizza, Matthew W.; Chignell, Stephen M.
2017-07-01
Among the most pressing concerns of land managers in post-wildfire landscapes are the establishment and spread of invasive species. Land managers need accurate maps of invasive species cover for targeted management post-disturbance that are easily transferable across space and time. In this study, we sought to develop an iterative, replicable methodology based on limited invasive species occurrence data, freely available remotely sensed data, and open source software to predict the distribution of Bromus tectorum (cheatgrass) in a post-wildfire landscape. We developed four species distribution models using eight spectral indices derived from five months of Landsat 8 Operational Land Imager (OLI) data in 2014. These months corresponded to both cheatgrass growing period and time of field data collection in the study area. The four models were improved using an iterative approach in which a threshold for cover was established, and all models had high sensitivity values when tested on an independent dataset. We also quantified the area at highest risk for invasion in future seasons given 2014 distribution, topographic covariates, and seed dispersal limitations. These models demonstrate the effectiveness of using derived multi-date spectral indices as proxies for species occurrence on the landscape, the importance of selecting thresholds for invasive species cover to evaluate ecological risk in species distribution models, and the applicability of Landsat 8 OLI and the Software for Assisted Habitat Modeling for targeted invasive species management.
NASA Astrophysics Data System (ADS)
Sanz, D.; Ruiz, M.; Castro, R.; Vega, J.; Afif, M.; Monroe, M.; Simrock, S.; Debelle, T.; Marawar, R.; Glass, B.
2016-04-01
To aid in assessing the functional performance of ITER, Fission Chambers (FC) based on the neutron diagnostic use case deliver timestamped measurements of neutron source strength and fusion power. To demonstrate the Plant System Instrumentation & Control (I&C) required for such a system, ITER Organization (IO) has developed a neutron diagnostics use case that fully complies with guidelines presented in the Plant Control Design Handbook (PCDH). The implementation presented in this paper has been developed on the PXI Express (PXIe) platform using products from the ITER catalog of standard I&C hardware for fast controllers. Using FlexRIO technology, detector signals are acquired at 125 MS/s, while filtering, decimation, and three methods of neutron counting are performed in real-time via the onboard Field Programmable Gate Array (FPGA). Measurement results are reported every 1 ms through Experimental Physics and Industrial Control System (EPICS) Channel Access (CA), with real-time timestamps derived from the ITER Timing Communication Network (TCN) based on IEEE 1588-2008. Furthermore, in accordance with ITER specifications for CODAC Core System (CCS) application development, the software responsible for the management, configuration, and monitoring of system devices has been developed in compliance with a new EPICS module called Nominal Device Support (NDS) and RIO/FlexRIO design methodology.
SCA Waveform Development for Space Telemetry
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.
2004-01-01
The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.
Chung, Jeanhee; Pankey, Evan; Norris, Ryan J
2007-10-11
We describe the application of the Agile method-- a short iteration cycle, user responsive, measurable software development approach-- to the project management of a modular personal health record, iHealthSpace, to be deployed to the patients and providers of a large academic primary care practice.
Redesign and Rehost of the BIG STICK Nuclear Wargame Simulation
1988-12-01
described by Pressman [16]. The 4GT soft- ware development approach consists of four iterative phases: the requirements gathering phase, the design strategy...2. BIG STICK Instructions and Planning Guidance. Air Command and Staff College, Air University, Maxwell AFB AL, 1987. Unpublished Manual. 3. Barry W...Software Engineering Notes, 7:29-32, April 1982. 81 17. Roger S. Pressman . Software Engineering: A Practitioner’s Approach. Mc-Craw-llill Book
Serious Gaming in Medical Education: A Proposed Structured Framework for Game Development.
Olszewski, Aleksandra E; Wolbrink, Traci A
2017-08-01
Serious games are increasingly being used for medical education. However, the design and development of serious games for the education of health professionals is highly variable, and very few articles report the development process used for game development. There are many established processes for software development that can improve and streamline development, and incorporating the best practices from educational pedagogy and software development may enhance teamwork and communication, decrease development costs, and improve the quality of serious games. In this article, we review and summarize the literature for serious game development for medical education, and combining the best practices, we propose a structured three-phase iterative development framework for serious game development.
Knowledge-based assistance in costing the space station DMS
NASA Technical Reports Server (NTRS)
Henson, Troy; Rone, Kyle
1988-01-01
The Software Cost Engineering (SCE) methodology developed over the last two decades at IBM Systems Integration Division (SID) in Houston is utilized to cost the NASA Space Station Data Management System (DMS). An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.
Genetic Constructor: An Online DNA Design Platform.
Bates, Maxwell; Lachoff, Joe; Meech, Duncan; Zulkower, Valentin; Moisy, Anaïs; Luo, Yisha; Tekotte, Hille; Franziska Scheitz, Cornelia Johanna; Khilari, Rupal; Mazzoldi, Florencio; Chandran, Deepak; Groban, Eli
2017-12-15
Genetic Constructor is a cloud Computer Aided Design (CAD) application developed to support synthetic biologists from design intent through DNA fabrication and experiment iteration. The platform allows users to design, manage, and navigate complex DNA constructs and libraries, using a new visual language that focuses on functional parts abstracted from sequence. Features like combinatorial libraries and automated primer design allow the user to separate design from construction by focusing on functional intent, and design constraints aid iterative refinement of designs. A plugin architecture enables contributions from scientists and coders to leverage existing powerful software and connect to DNA foundries. The software is easily accessible and platform agnostic, free for academics, and available in an open-source community edition. Genetic Constructor seeks to democratize DNA design, manufacture, and access to tools and services from the synthetic biology community.
Tang, Terence; Lim, Morgan E; Mansfield, Elizabeth; McLachlan, Alexander; Quan, Sherman D
2018-02-01
User involvement is vital to the success of health information technology implementation. However, involving clinician users effectively and meaningfully in complex healthcare organizations remains challenging. The objective of this paper is to share our real-world experience of applying a variety of user involvement methods in the design and implementation of a clinical communication and collaboration platform aimed at facilitating care of complex hospitalized patients by an interprofessional team of clinicians. We designed and implemented an electronic clinical communication and collaboration platform in a large community teaching hospital. The design team consisted of both technical and healthcare professionals. Agile software development methodology was used to facilitate rapid iterative design and user input. We involved clinician users at all stages of the development lifecycle using a variety of user-centered, user co-design, and participatory design methods. Thirty-six software releases were delivered over 24 months. User involvement has resulted in improvement in user interface design, identification of software defects, creation of new modules that facilitated workflow, and identification of necessary changes to the scope of the project early on. A variety of user involvement methods were complementary and benefited the design and implementation of a complex health IT solution. Combining these methods with agile software development methodology can turn designs into functioning clinical system to support iterative improvement. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
In-class Simulations of the Iterated Prisoner's Dilemma Game.
ERIC Educational Resources Information Center
Bodo, Peter
2002-01-01
Developed a simple computer program for the in-class simulation of the repeated prisoner's dilemma game with student-designed strategies. Describes the basic features of the software. Presents two examples using the program to teach the problems of cooperation among profit-maximizing agents. (JEH)
Finding the Optimal Guidance for Enhancing Anchored Instruction
ERIC Educational Resources Information Center
Zydney, Janet Mannheimer; Bathke, Arne; Hasselbring, Ted S.
2014-01-01
This study investigated the effect of different methods of guidance with anchored instruction on students' mathematical problem-solving performance. The purpose of this research was to iteratively design a learning environment to find the optimal level of guidance. Two iterations of the software were compared. The first iteration used explicit…
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
NASA Astrophysics Data System (ADS)
Huang, Rong; Limburg, Karin; Rohtla, Mehis
2017-05-01
X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.
Validation and Verification of LADEE Models and Software
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2013-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) mission will orbit the moon in order to measure the density, composition and time variability of the lunar dust environment. The ground-side and onboard flight software for the mission is being developed using a Model-Based Software methodology. In this technique, models of the spacecraft and flight software are developed in a graphical dynamics modeling package. Flight Software requirements are prototyped and refined using the simulated models. After the model is shown to work as desired in this simulation framework, C-code software is automatically generated from the models. The generated software is then tested in real time Processor-in-the-Loop and Hardware-in-the-Loop test beds. Travelling Road Show test beds were used for early integration tests with payloads and other subsystems. Traditional techniques for verifying computational sciences models are used to characterize the spacecraft simulation. A lightweight set of formal methods analysis, static analysis, formal inspection and code coverage analyses are utilized to further reduce defects in the onboard flight software artifacts. These techniques are applied early and often in the development process, iteratively increasing the capabilities of the software and the fidelity of the vehicle models and test beds.
Process Correlation Analysis Model for Process Improvement Identification
Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data. PMID:24977170
Process correlation analysis model for process improvement identification.
Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.
AMPHION: Specification-based programming for scientific subroutine libraries
NASA Technical Reports Server (NTRS)
Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Waldinger, Richard; Stickel, Mark
1994-01-01
AMPHION is a knowledge-based software engineering (KBSE) system that guides a user in developing a diagram representing a formal problem specification. It then automatically implements a solution to this specification as a program consisting of calls to subroutines from a library. The diagram provides an intuitive domain oriented notation for creating a specification that also facilitates reuse and modification. AMPHION'S architecture is domain independent. AMPHION is specialized to an application domain by developing a declarative domain theory. Creating a domain theory is an iterative process that currently requires the joint expertise of domain experts and experts in automated formal methods for software development.
Built To Last: Using Iterative Development Models for Sustainable Scientific Software Development
NASA Astrophysics Data System (ADS)
Jasiak, M. E.; Truslove, I.; Savoie, M.
2013-12-01
In scientific research, software development exists fundamentally for the results they create. The core research must take focus. It seems natural to researchers, driven by grant deadlines, that every dollar invested in software development should be used to push the boundaries of problem solving. This system of values is frequently misaligned with those of the software being created in a sustainable fashion; short-term optimizations create longer-term sustainability issues. The National Snow and Ice Data Center (NSIDC) has taken bold cultural steps in using agile and lean development and management methodologies to help its researchers meet critical deadlines, while building in the necessary support structure for the code to live far beyond its original milestones. Agile and lean software development and methodologies including Scrum, Kanban, Continuous Delivery and Test-Driven Development have seen widespread adoption within NSIDC. This focus on development methods is combined with an emphasis on explaining to researchers why these methods produce more desirable results for everyone, as well as promoting developers interacting with researchers. This presentation will describe NSIDC's current scientific software development model, how this addresses the short-term versus sustainability dichotomy, the lessons learned and successes realized by transitioning to this agile and lean-influenced model, and the current challenges faced by the organization.
Integrated prototyping environment for programmable automation
NASA Astrophysics Data System (ADS)
da Costa, Francis; Hwang, Vincent S. S.; Khosla, Pradeep K.; Lumia, Ronald
1992-11-01
We propose a rapid prototyping environment for robotic systems, based on tenets of modularity, reconfigurability and extendibility that may help build robot systems `faster, better, and cheaper.' Given a task specification, (e.g., repair brake assembly), the user browses through a library of building blocks that include both hardware and software components. Software advisors or critics recommend how blocks may be `snapped' together to speedily construct alternative ways to satisfy task requirements. Mechanisms to allow `swapping' competing modules for comparative test and evaluation studies are also included in the prototyping environment. After some iterations, a stable configuration or `wiring diagram' emerges. This customized version of the general prototyping environment still contains all the hooks needed to incorporate future improvements in component technologies and to obviate unplanned obsolescence. The prototyping environment so described is relevant for both interactive robot programming (telerobotics) and iterative robot system development (prototyping).
Zhang, Lanlan; Hub, Martina; Mang, Sarah; Thieke, Christian; Nix, Oliver; Karger, Christian P; Floca, Ralf O
2013-06-01
Radiotherapy is a fast-developing discipline which plays a major role in cancer care. Quantitative analysis of radiotherapy data can improve the success of the treatment and support the prediction of outcome. In this paper, we first identify functional, conceptional and general requirements on a software system for quantitative analysis of radiotherapy. Further we present an overview of existing radiotherapy analysis software tools and check them against the stated requirements. As none of them could meet all of the demands presented herein, we analyzed possible conceptional problems and present software design solutions and recommendations to meet the stated requirements (e.g. algorithmic decoupling via dose iterator pattern; analysis database design). As a proof of concept we developed a software library "RTToolbox" following the presented design principles. The RTToolbox is available as open source library and has already been tested in a larger-scale software system for different use cases. These examples demonstrate the benefit of the presented design principles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
High Performance Computing Software Applications for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.
The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.
Sharing Research Models: Using Software Engineering Practices for Facilitation
Bryant, Stephanie P.; Solano, Eric; Cantor, Susanna; Cooley, Philip C.; Wagener, Diane K.
2011-01-01
Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems’ behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations—such as nonintuitive user interface features and data input specifications—may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices— the iterative software development process, object-oriented methodology, and Unified Modeling Language—and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers. PMID:21687780
A General Water Resources Regulation Software System in China
NASA Astrophysics Data System (ADS)
LEI, X.
2017-12-01
To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.
The Activities of the European Consortium on Nuclear Data Development and Analysis for Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, U., E-mail: ulrich.fischer@kit.edu; Avrigeanu, M.; Avrigeanu, V.
This paper presents an overview of the activities of the European Consortium on Nuclear Data Development and Analysis for Fusion. The Consortium combines available European expertise to provide services for the generation, maintenance, and validation of nuclear data evaluations and data files relevant for ITER, IFMIF and DEMO, as well as codes and software tools required for related nuclear calculations.
IDC Re-Engineering Phase 2 Iteration E2 Use Case Realizations Version 1.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Benjamin R.; Harris, James M.; Burns, John F.
2016-12-01
This document contains 4 use case realizations generated from the model contained in Rational Software Architect. These use case realizations are the current versions of the realizations originally delivered in Elaboration Iteration 2.
Cryogenic instrumentation for ITER magnets
NASA Astrophysics Data System (ADS)
Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.
2017-02-01
Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.
Implementation of a deidentified federated data network for population-based cohort discovery
Abend, Aaron; Mandel, Aaron; Geraghty, Estella; Gabriel, Davera; Wynden, Rob; Kamerick, Michael; Anderson, Kent; Rainwater, Julie; Tarczy-Hornoch, Peter
2011-01-01
Objective The Cross-Institutional Clinical Translational Research project explored a federated query tool and looked at how this tool can facilitate clinical trial cohort discovery by managing access to aggregate patient data located within unaffiliated academic medical centers. Methods The project adapted software from the Informatics for Integrating Biology and the Bedside (i2b2) program to connect three Clinical Translational Research Award sites: University of Washington, Seattle, University of California, Davis, and University of California, San Francisco. The project developed an iterative spiral software development model to support the implementation and coordination of this multisite data resource. Results By standardizing technical infrastructures, policies, and semantics, the project enabled federated querying of deidentified clinical datasets stored in separate institutional environments and identified barriers to engaging users for measuring utility. Discussion The authors discuss the iterative development and evaluation phases of the project and highlight the challenges identified and the lessons learned. Conclusion The common system architecture and translational processes provide high-level (aggregate) deidentified access to a large patient population (>5 million patients), and represent a novel and extensible resource. Enhancing the network for more focused disease areas will require research-driven partnerships represented across all partner sites. PMID:21873473
Implementation of a deidentified federated data network for population-based cohort discovery.
Anderson, Nicholas; Abend, Aaron; Mandel, Aaron; Geraghty, Estella; Gabriel, Davera; Wynden, Rob; Kamerick, Michael; Anderson, Kent; Rainwater, Julie; Tarczy-Hornoch, Peter
2012-06-01
The Cross-Institutional Clinical Translational Research project explored a federated query tool and looked at how this tool can facilitate clinical trial cohort discovery by managing access to aggregate patient data located within unaffiliated academic medical centers. The project adapted software from the Informatics for Integrating Biology and the Bedside (i2b2) program to connect three Clinical Translational Research Award sites: University of Washington, Seattle, University of California, Davis, and University of California, San Francisco. The project developed an iterative spiral software development model to support the implementation and coordination of this multisite data resource. By standardizing technical infrastructures, policies, and semantics, the project enabled federated querying of deidentified clinical datasets stored in separate institutional environments and identified barriers to engaging users for measuring utility. The authors discuss the iterative development and evaluation phases of the project and highlight the challenges identified and the lessons learned. The common system architecture and translational processes provide high-level (aggregate) deidentified access to a large patient population (>5 million patients), and represent a novel and extensible resource. Enhancing the network for more focused disease areas will require research-driven partnerships represented across all partner sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagar, M; Friesen, S; Mannarino, E
2014-06-01
Purpose: Collision between the gantry and the couch or patient during Radiotherapy is not a common concern for conventional RT (static fields or arc). With the increase in the application of stereotactic planning techniques to the body, collisions have become a greater concern. Non-coplanar beam geometry is desirable in stereotatic treatments in order to achieve sharp gradients and a high conformality. Non-coplanar geometry is less intuitive in the body and often requires an iterative process of planning and dry runs to guarantee deliverability. Methods: Purpose written software was developed in order to predict the likelihood of collision between the headmore » of the gantry and the couch, patient or stereotatic body frame. Using the DICOM plan and structures set, exported by the treatment planning system, this software is able to predict the possibility of a collision. Given the plan's isocenter, treatment geometry and exterior contours, the software is able to determine if a particular beam/arc is clinically deliverable or if collision is imminent. Results: The software was tested on real world treatment plans with untreatable beam geometry. Both static non-coplanar and VMAT plans were tested. Of these, the collision prediction software could identify all as having potentially problematic geometry. Re-plans of the same cases were also tested and validated as deliverable. Conclusion: This software is capable of giving good initial indication of deliverability for treatment plans that utilize complex geometry (SBRT) or have lateral isocenters. This software is not intended to replace the standard pre-treatment QA dry run. The effectiveness is limited to those portions of the patient and immobilization devices that have been included in the simulation CT and contoured in the planning system. It will however aid the planner in reducing the iterations required to create complex treatment geometries necessary to achieve ideal conformality and organ sparing.« less
F-8C adaptive control law refinement and software development
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1981-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.
The Package-Based Development Process in the Flight Dynamics Division
NASA Technical Reports Server (NTRS)
Parra, Amalia; Seaman, Carolyn; Basili, Victor; Kraft, Stephen; Condon, Steven; Burke, Steven; Yakimovich, Daniil
1997-01-01
The Software Engineering Laboratory (SEL) has been operating for more than two decades in the Flight Dynamics Division (FDD) and has adapted to the constant movement of the software development environment. The SEL's Improvement Paradigm shows that process improvement is an iterative process. Understanding, Assessing and Packaging are the three steps that are followed in this cyclical paradigm. As the improvement process cycles back to the first step, after having packaged some experience, the level of understanding will be greater. In the past, products resulting from the packaging step have been large process documents, guidebooks, and training programs. As the technical world moves toward more modularized software, we have made a move toward more modularized software development process documentation, as such the products of the packaging step are becoming smaller and more frequent. In this manner, the QIP takes on a more spiral approach rather than a waterfall. This paper describes the state of the FDD in the area of software development processes, as revealed through the understanding and assessing activities conducted by the COTS study team. The insights presented include: (1) a characterization of a typical FDD Commercial Off the Shelf (COTS) intensive software development life-cycle process, (2) lessons learned through the COTS study interviews, and (3) a description of changes in the SEL due to the changing and accelerating nature of software development in the FDD.
Building an experience factory for maintenance
NASA Technical Reports Server (NTRS)
Valett, Jon D.; Condon, Steven E.; Briand, Lionel; Kim, Yong-Mi; Basili, Victor R.
1994-01-01
This paper reports the preliminary results of a study of the software maintenance process in the Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC). This study is being conducted by the Software Engineering Laboratory (SEL), a research organization sponsored by the Software Engineering Branch of the FDD, which investigates the effectiveness of software engineering technologies when applied to the development of applications software. This software maintenance study began in October 1993 and is being conducted using the Quality Improvement Paradigm (QIP), a process improvement strategy based on three iterative steps: understanding, assessing, and packaging. The preliminary results represent the outcome of the understanding phase, during which SEL researchers characterized the maintenance environment, product, and process. Findings indicate that a combination of quantitative and qualitative analysis is effective for studying the software maintenance process, that additional measures should be collected for maintenance (as opposed to new development), and that characteristics such as effort, error rate, and productivity are best considered on a 'release' basis rather than on a project basis. The research thus far has documented some basic differences between new development and software maintenance. It lays the foundation for further application of the QIP to investigate means of improving the maintenance process and product in the FDD.
Terascale Optimal PDE Simulations (TOPS) Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Professor Olof B. Widlund
2007-07-09
Our work has focused on the development and analysis of domain decomposition algorithms for a variety of problems arising in continuum mechanics modeling. In particular, we have extended and analyzed FETI-DP and BDDC algorithms; these iterative solvers were first introduced and studied by Charbel Farhat and his collaborators, see [11, 45, 12], and by Clark Dohrmann of SANDIA, Albuquerque, see [43, 2, 1], respectively. These two closely related families of methods are of particular interest since they are used more extensively than other iterative substructuring methods to solve very large and difficult problems. Thus, the FETI algorithms are part ofmore » the SALINAS system developed by the SANDIA National Laboratories for very large scale computations, and as already noted, BDDC was first developed by a SANDIA scientist, Dr. Clark Dohrmann. The FETI algorithms are also making inroads in commercial engineering software systems. We also note that the analysis of these algorithms poses very real mathematical challenges. The success in developing this theory has, in several instances, led to significant improvements in the performance of these algorithms. A very desirable feature of these iterative substructuring and other domain decomposition algorithms is that they respect the memory hierarchy of modern parallel and distributed computing systems, which is essential for approaching peak floating point performance. The development of improved methods, together with more powerful computer systems, is making it possible to carry out simulations in three dimensions, with quite high resolution, relatively easily. This work is supported by high quality software systems, such as Argonne's PETSc library, which facilitates code development as well as the access to a variety of parallel and distributed computer systems. The success in finding scalable and robust domain decomposition algorithms for very large number of processors and very large finite element problems is, e.g., illustrated in [24, 25, 26]. This work is based on [29, 31]. Our work over these five and half years has, in our opinion, helped advance the knowledge of domain decomposition methods significantly. We see these methods as providing valuable alternatives to other iterative methods, in particular, those based on multi-grid. In our opinion, our accomplishments also match the goals of the TOPS project quite closely.« less
Hardware for dynamic quantum computing.
Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A
2017-10-01
We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Renke; Jin, Shuangshuang; Chen, Yousu
This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less
Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael
2018-06-01
To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
INFOS: spectrum fitting software for NMR analysis.
Smith, Albert A
2017-02-01
Software for fitting of NMR spectra in MATLAB is presented. Spectra are fitted in the frequency domain, using Fourier transformed lineshapes, which are derived using the experimental acquisition and processing parameters. This yields more accurate fits compared to common fitting methods that use Lorentzian or Gaussian functions. Furthermore, a very time-efficient algorithm for calculating and fitting spectra has been developed. The software also performs initial peak picking, followed by subsequent fitting and refinement of the peak list, by iteratively adding and removing peaks to improve the overall fit. Estimation of error on fitting parameters is performed using a Monte-Carlo approach. Many fitting options allow the software to be flexible enough for a wide array of applications, while still being straightforward to set up with minimal user input.
Agile parallel bioinformatics workflow management using Pwrake.
Mishima, Hiroyuki; Sasaki, Kensaku; Tanaka, Masahiro; Tatebe, Osamu; Yoshiura, Koh-Ichiro
2011-09-08
In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error.Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows. We implemented the Pwrake workflows to process next generation sequencing data using the Genomic Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases, the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions. This approach increased iterative development efficiency. Moreover, we implemented combined workflows to demonstrate modularity of the GATK and Dindel workflows. Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows. Furthermore, readability and maintainability of rakefiles may facilitate sharing workflows among the scientific community. Workflows for GATK and Dindel are available at http://github.com/misshie/Workflows.
Agile parallel bioinformatics workflow management using Pwrake
2011-01-01
Background In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error. Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows. Findings We implemented the Pwrake workflows to process next generation sequencing data using the Genomic Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases, the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions. This approach increased iterative development efficiency. Moreover, we implemented combined workflows to demonstrate modularity of the GATK and Dindel workflows. Conclusions Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows. Furthermore, readability and maintainability of rakefiles may facilitate sharing workflows among the scientific community. Workflows for GATK and Dindel are available at http://github.com/misshie/Workflows. PMID:21899774
Feedback-Driven Dynamic Invariant Discovery
NASA Technical Reports Server (NTRS)
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
NASA Technical Reports Server (NTRS)
Lala, J. H.; Smith, T. B., III
1983-01-01
The software developed for the Fault-Tolerant Multiprocessor (FTMP) is described. The FTMP executive is a timer-interrupt driven dispatcher that schedules iterative tasks which run at 3.125, 12.5, and 25 Hz. Major tasks which run under the executive include system configuration control, flight control, and display. The flight control task includes autopilot and autoland functions for a jet transport aircraft. System Displays include status displays of all hardware elements (processors, memories, I/O ports, buses), failure log displays showing transient and hard faults, and an autopilot display. All software is in a higher order language (AED, an ALGOL derivative). The executive is a fully distributed general purpose executive which automatically balances the load among available processor triads. Provisions for graceful performance degradation under processing overload are an integral part of the scheduling algorithms.
Progress in the Development of a Prototype Reuse Enablement System
NASA Astrophysics Data System (ADS)
Marshall, J. J.; Downs, R. R.; Gilliam, L. J.; Wolfe, R. E.
2008-12-01
An important part of promoting software reuse is to ensure that reusable software assets are readily available to the software developers who want to use them. Through dialogs with the community, the NASA Earth Science Data Systems Software Reuse Working Group has learned that the lack of a centralized, domain- specific software repository or catalog system addressing the needs of the Earth science community is a major barrier to software reuse within the community. The Working Group has proposed the creation of such a reuse enablement system, which would provide capabilities for contributing and obtaining reusable software, to remove this barrier. The Working Group has recommended the development of a Reuse Enablement System to NASA and has performed a trade study to review systems with similar capabilities and to identify potential platforms for the proposed system. This was followed by an architecture study to determine an expeditious and cost-effective solution for this system. A number of software packages and systems were examined through both creating prototypes and examining existing systems that use the same software packages and systems. Based on the results of the architecture study, the Working Group developed a prototype of the proposed system using the recommended software package, through an iterative process of identifying needed capabilities and improving the system to provide those capabilities. Policies for the operation and maintenance of the system are being established for the system, and the identification of system policies also has contributed to the development process. Additionally, a test plan is being developed for formal testing of the prototype, to ensure that it meets all of the requirements previously developed by the Working Group. This poster summarizes the results of our work to date, focusing on the most recent activities.
Experimentation in software engineering
NASA Technical Reports Server (NTRS)
Basili, V. R.; Selby, R. W.; Hutchens, D. H.
1986-01-01
Experimentation in software engineering supports the advancement of the field through an iterative learning process. In this paper, a framework for analyzing most of the experimental work performed in software engineering over the past several years is presented. A variety of experiments in the framework is described and their contribution to the software engineering discipline is discussed. Some useful recommendations for the application of the experimental process in software engineering are included.
Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Alex; Kelley, C. T.; Slattery, Stuart R
ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, withoutmore » significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.« less
Insights into Global Health Practice from the Agile Software Development Movement
Flood, David; Chary, Anita; Austad, Kirsten; Diaz, Anne Kraemer; García, Pablo; Martinez, Boris; Canú, Waleska López; Rohloff, Peter
2016-01-01
Global health practitioners may feel frustration that current models of global health research, delivery, and implementation are overly focused on specific interventions, slow to provide health services in the field, and relatively ill-equipped to adapt to local contexts. Adapting design principles from the agile software development movement, we propose an analogous approach to designing global health programs that emphasizes tight integration between research and implementation, early involvement of ground-level health workers and program beneficiaries, and rapid cycles of iterative program improvement. Using examples from our own fieldwork, we illustrate the potential of ‘agile global health’ and reflect on the limitations, trade-offs, and implications of this approach. PMID:27134081
Insights into Global Health Practice from the Agile Software Development Movement.
Flood, David; Chary, Anita; Austad, Kirsten; Diaz, Anne Kraemer; García, Pablo; Martinez, Boris; Canú, Waleska López; Rohloff, Peter
2016-01-01
Global health practitioners may feel frustration that current models of global health research, delivery, and implementation are overly focused on specific interventions, slow to provide health services in the field, and relatively ill-equipped to adapt to local contexts. Adapting design principles from the agile software development movement, we propose an analogous approach to designing global health programs that emphasizes tight integration between research and implementation, early involvement of ground-level health workers and program beneficiaries, and rapid cycles of iterative program improvement. Using examples from our own fieldwork, we illustrate the potential of 'agile global health' and reflect on the limitations, trade-offs, and implications of this approach.
The integration of the risk management process with the lifecycle of medical device software.
Pecoraro, F; Luzi, D
2014-01-01
The application of software in the Medical Device (MD) domain has become central to the improvement of diagnoses and treatments. The new European regulations that specifically address software as an important component of MD, require complex procedures to make software compliant with safety requirements, introducing thereby new challenges in the qualification and classification of MD software as well as in the performance of risk management activities. Under this perspective, the aim of this paper is to propose an integrated framework that combines the activities to be carried out by the manufacturer to develop safe software within the development lifecycle based on the regulatory requirements reported in US and European regulations as well as in the relevant standards and guidelines. A comparative analysis was carried out to identify the main issues related to the application of the current new regulations. In addition, standards and guidelines recently released to harmonise procedures for the validation of MD software have been used to define the risk management activities to be carried out by the manufacturer during the software development process. This paper highlights the main issues related to the qualification and classification of MD software, providing an analysis of the different regulations applied in Europe and the US. A model that integrates the risk management process within the software development lifecycle has been proposed too. It is based on regulatory requirements and considers software risk analysis as a central input to be managed by the manufacturer already at the initial stages of the software design, in order to prevent MD failures. Relevant changes in the process of MD development have been introduced with the recognition of software being an important component of MDs as stated in regulations and standards. This implies the performance of highly iterative processes that have to integrate the risk management in the framework of software development. It also makes it necessary to involve both medical and software engineering competences to safeguard patient and user safety.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-03-28
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-01-01
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation. PMID:28350358
Iterative categorization (IC): a systematic technique for analysing qualitative data
2016-01-01
Abstract The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. PMID:26806155
ISS Double-Gimbaled CMG Subsystem Simulation Using the Agile Development Method
NASA Technical Reports Server (NTRS)
Inampudi, Ravi
2016-01-01
This paper presents an evolutionary approach in simulating a cluster of 4 Control Moment Gyros (CMG) on the International Space Station (ISS) using a common sense approach (the agile development method) for concurrent mathematical modeling and simulation of the CMG subsystem. This simulation is part of Training systems for the 21st Century simulator which will provide training for crew members, instructors, and flight controllers. The basic idea of how the CMGs on the space station are used for its non-propulsive attitude control is briefly explained to set up the context for simulating a CMG subsystem. Next different reference frames and the detailed equations of motion (EOM) for multiple double-gimbal variable-speed control moment gyroscopes (DGVs) are presented. Fixing some of the terms in the EOM becomes the special case EOM for ISS's double-gimbaled fixed speed CMGs. CMG simulation development using the agile development method is presented in which customer's requirements and solutions evolve through iterative analysis, design, coding, unit testing and acceptance testing. At the end of the iteration a set of features implemented in that iteration are demonstrated to the flight controllers thus creating a short feedback loop and helping in creating adaptive development cycles. The unified modeling language (UML) tool is used in illustrating the user stories, class designs and sequence diagrams. This incremental development approach of mathematical modeling and simulating the CMG subsystem involved the development team and the customer early on, thus improving the quality of the working CMG system in each iteration and helping the team to accurately predict the cost, schedule and delivery of the software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahanani, Nursinta Adi, E-mail: sintaadi@batan.go.id; Natsir, Khairina, E-mail: sintaadi@batan.go.id; Hartini, Entin, E-mail: sintaadi@batan.go.id
Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this softwaremore » 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.« less
The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.
Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin
2007-11-01
This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imazawa, R., E-mail: imazawa.ryota@jaea.go.jp; Kawano, Y.; Ono, T.
The rotating waveplate Stokes polarimeter was developed for ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter. The generalized model of the rotating waveplate Stokes polarimeter and the algorithm suitable for real-time field-programmable gate array (FPGA) processing were proposed. Since the generalized model takes into account each component associated with the rotation of the waveplate, the Stokes parameters can be accurately measured even in unideal condition such as non-uniformity of the waveplate retardation. Experiments using a He-Ne laser showed that the maximum error and the precision of the Stokes parameter were 3.5% and 1.2%, respectively. The rotation speed of waveplate was 20 000more » rpm and time resolution of measuring the Stokes parameter was 3.3 ms. Software emulation showed that the real-time measurement of the Stokes parameter with time resolution of less than 10 ms is possible by using several FPGA boards. Evaluation of measurement capability using a far-infrared laser which ITER poloidal polarimeter will use concluded that measurement error will be reduced by a factor of nine.« less
Imazawa, R; Kawano, Y; Ono, T; Itami, K
2016-01-01
The rotating waveplate Stokes polarimeter was developed for ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter. The generalized model of the rotating waveplate Stokes polarimeter and the algorithm suitable for real-time field-programmable gate array (FPGA) processing were proposed. Since the generalized model takes into account each component associated with the rotation of the waveplate, the Stokes parameters can be accurately measured even in unideal condition such as non-uniformity of the waveplate retardation. Experiments using a He-Ne laser showed that the maximum error and the precision of the Stokes parameter were 3.5% and 1.2%, respectively. The rotation speed of waveplate was 20 000 rpm and time resolution of measuring the Stokes parameter was 3.3 ms. Software emulation showed that the real-time measurement of the Stokes parameter with time resolution of less than 10 ms is possible by using several FPGA boards. Evaluation of measurement capability using a far-infrared laser which ITER poloidal polarimeter will use concluded that measurement error will be reduced by a factor of nine.
Automatic Synthesis of UML Designs from Requirements in an Iterative Process
NASA Technical Reports Server (NTRS)
Schumann, Johann; Whittle, Jon; Clancy, Daniel (Technical Monitor)
2001-01-01
The Unified Modeling Language (UML) is gaining wide popularity for the design of object-oriented systems. UML combines various object-oriented graphical design notations under one common framework. A major factor for the broad acceptance of UML is that it can be conveniently used in a highly iterative, Use Case (or scenario-based) process (although the process is not a part of UML). Here, the (pre-) requirements for the software are specified rather informally as Use Cases and a set of scenarios. A scenario can be seen as an individual trace of a software artifact. Besides first sketches of a class diagram to illustrate the static system breakdown, scenarios are a favorite way of communication with the customer, because scenarios describe concrete interactions between entities and are thus easy to understand. Scenarios with a high level of detail are often expressed as sequence diagrams. Later in the design and implementation stage (elaboration and implementation phases), a design of the system's behavior is often developed as a set of statecharts. From there (and the full-fledged class diagram), actual code development is started. Current commercial UML tools support this phase by providing code generators for class diagrams and statecharts. In practice, it can be observed that the transition from requirements to design to code is a highly iterative process. In this talk, a set of algorithms is presented which perform reasonable synthesis and transformations between different UML notations (sequence diagrams, Object Constraint Language (OCL) constraints, statecharts). More specifically, we will discuss the following transformations: Statechart synthesis, introduction of hierarchy, consistency of modifications, and "design-debugging".
JWST Wavefront Control Toolbox
NASA Technical Reports Server (NTRS)
Shin, Shahram Ron; Aronstein, David L.
2011-01-01
A Matlab-based toolbox has been developed for the wavefront control and optimization of segmented optical surfaces to correct for possible misalignments of James Webb Space Telescope (JWST) using influence functions. The toolbox employs both iterative and non-iterative methods to converge to an optimal solution by minimizing the cost function. The toolbox could be used in either of constrained and unconstrained optimizations. The control process involves 1 to 7 degrees-of-freedom perturbations per segment of primary mirror in addition to the 5 degrees of freedom of secondary mirror. The toolbox consists of a series of Matlab/Simulink functions and modules, developed based on a "wrapper" approach, that handles the interface and data flow between existing commercial optical modeling software packages such as Zemax and Code V. The limitations of the algorithm are dictated by the constraints of the moving parts in the mirrors.
Methods for design and evaluation of integrated hardware-software systems for concurrent computation
NASA Technical Reports Server (NTRS)
Pratt, T. W.
1985-01-01
Research activities and publications are briefly summarized. The major tasks reviewed are: (1) VAX implementation of the PISCES parallel programming environment; (2) Apollo workstation network implementation of the PISCES environment; (3) FLEX implementation of the PISCES environment; (4) sparse matrix iterative solver in PSICES Fortran; (5) image processing application of PISCES; and (6) a formal model of concurrent computation being developed.
X-Ray Phase Imaging for Breast Cancer Detection
2012-09-01
the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging
Bryant, Jamie; Sanson-Fisher, Rob; Tzelepis, Flora; Henskens, Frans; Paul, Christine; Stevenson, William
2014-01-01
Background Effective communication with cancer patients and their families about their disease, treatment options, and possible outcomes may improve psychosocial outcomes. However, traditional approaches to providing information to patients, including verbal information and written booklets, have a number of shortcomings centered on their limited ability to meet patient preferences and literacy levels. New-generation Web-based technologies offer an innovative and pragmatic solution for overcoming these limitations by providing a platform for interactive information seeking, information sharing, and user-centered tailoring. Objective The primary goal of this paper is to discuss the advantages of comprehensive and iterative Web-based technologies for health information provision and propose a four-phase framework for the development of Web-based information tools. Methods The proposed framework draws on our experience of constructing a Web-based information tool for hematological cancer patients and their families. The framework is based on principles for the development and evaluation of complex interventions and draws on the Agile methodology of software programming that emphasizes collaboration and iteration throughout the development process. Results The DoTTI framework provides a model for a comprehensive and iterative approach to the development of Web-based informational tools for patients. The process involves 4 phases of development: (1) Design and development, (2) Testing early iterations, (3) Testing for effectiveness, and (4) Integration and implementation. At each step, stakeholders (including researchers, clinicians, consumers, and programmers) are engaged in consultations to review progress, provide feedback on versions of the Web-based tool, and based on feedback, determine the appropriate next steps in development. Conclusions This 4-phase framework is evidence-informed and consumer-centered and could be applied widely to develop Web-based programs for a diverse range of diseases. PMID:24641991
Smits, Rochelle; Bryant, Jamie; Sanson-Fisher, Rob; Tzelepis, Flora; Henskens, Frans; Paul, Christine; Stevenson, William
2014-03-14
Effective communication with cancer patients and their families about their disease, treatment options, and possible outcomes may improve psychosocial outcomes. However, traditional approaches to providing information to patients, including verbal information and written booklets, have a number of shortcomings centered on their limited ability to meet patient preferences and literacy levels. New-generation Web-based technologies offer an innovative and pragmatic solution for overcoming these limitations by providing a platform for interactive information seeking, information sharing, and user-centered tailoring. The primary goal of this paper is to discuss the advantages of comprehensive and iterative Web-based technologies for health information provision and propose a four-phase framework for the development of Web-based information tools. The proposed framework draws on our experience of constructing a Web-based information tool for hematological cancer patients and their families. The framework is based on principles for the development and evaluation of complex interventions and draws on the Agile methodology of software programming that emphasizes collaboration and iteration throughout the development process. The DoTTI framework provides a model for a comprehensive and iterative approach to the development of Web-based informational tools for patients. The process involves 4 phases of development: (1) Design and development, (2) Testing early iterations, (3) Testing for effectiveness, and (4) Integration and implementation. At each step, stakeholders (including researchers, clinicians, consumers, and programmers) are engaged in consultations to review progress, provide feedback on versions of the Web-based tool, and based on feedback, determine the appropriate next steps in development. This 4-phase framework is evidence-informed and consumer-centered and could be applied widely to develop Web-based programs for a diverse range of diseases.
Implementing partnership-driven clinical federated electronic health record data sharing networks.
Stephens, Kari A; Anderson, Nicholas; Lin, Ching-Ping; Estiri, Hossein
2016-09-01
Building federated data sharing architectures requires supporting a range of data owners, effective and validated semantic alignment between data resources, and consistent focus on end-users. Establishing these resources requires development methodologies that support internal validation of data extraction and translation processes, sustaining meaningful partnerships, and delivering clear and measurable system utility. We describe findings from two federated data sharing case examples that detail critical factors, shared outcomes, and production environment results. Two federated data sharing pilot architectures developed to support network-based research associated with the University of Washington's Institute of Translational Health Sciences provided the basis for the findings. A spiral model for implementation and evaluation was used to structure iterations of development and support knowledge share between the two network development teams, which cross collaborated to support and manage common stages. We found that using a spiral model of software development and multiple cycles of iteration was effective in achieving early network design goals. Both networks required time and resource intensive efforts to establish a trusted environment to create the data sharing architectures. Both networks were challenged by the need for adaptive use cases to define and test utility. An iterative cyclical model of development provided a process for developing trust with data partners and refining the design, and supported measureable success in the development of new federated data sharing architectures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Formal Verification of Mathematical Software. Volume 2
1990-05-01
nplus i 1) (nplus ,j k) iter ZERO f s =s iter (SUCC n) f s = iter n f (f s) PROVE x=(SUCC x)’=’(!x)’ PROVE ’ nplus ZERO n’ = ent PROVE ’ nplus ( SUCO n...PROVE ’niess (SUCC n) (SUCC mn)’ = ’niess n mn’ PROVE ’niess n ( SUCO mn)’ = ’true’, (’nim’=’true’ V/ ’niess n in’=’true’) PROVE ’niess (SUCC n) mn
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.
1990-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.
1992-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
Nomura, Yukihiro; Higaki, Toru; Fujita, Masayo; Miki, Soichiro; Awaya, Yoshikazu; Nakanishi, Toshio; Yoshikawa, Takeharu; Hayashi, Naoto; Awai, Kazuo
2017-02-01
This study aimed to evaluate the effects of iterative reconstruction (IR) algorithms on computer-assisted detection (CAD) software for lung nodules in ultra-low-dose computed tomography (ULD-CT) for lung cancer screening. We selected 85 subjects who underwent both a low-dose CT (LD-CT) scan and an additional ULD-CT scan in our lung cancer screening program for high-risk populations. The LD-CT scans were reconstructed with filtered back projection (FBP; LD-FBP). The ULD-CT scans were reconstructed with FBP (ULD-FBP), adaptive iterative dose reduction 3D (AIDR 3D; ULD-AIDR 3D), and forward projected model-based IR solution (FIRST; ULD-FIRST). CAD software for lung nodules was applied to each image dataset, and the performance of the CAD software was compared among the different IR algorithms. The mean volume CT dose indexes were 3.02 mGy (LD-CT) and 0.30 mGy (ULD-CT). For overall nodules, the sensitivities of CAD software at 3.0 false positives per case were 78.7% (LD-FBP), 9.3% (ULD-FBP), 69.4% (ULD-AIDR 3D), and 77.8% (ULD-FIRST). Statistical analysis showed that the sensitivities of ULD-AIDR 3D and ULD-FIRST were significantly higher than that of ULD-FBP (P < .001). The performance of CAD software in ULD-CT was improved by using IR algorithms. In particular, the performance of CAD in ULD-FIRST was almost equivalent to that in LD-FBP. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
The Ettention software package.
Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp
2016-02-01
We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.
Publishing Platform for Scientific Software - Lessons Learned
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Fritzsch, Bernadette; Reusser, Dominik; Brembs, Björn; Deinzer, Gernot; Loewe, Peter; Fenner, Martin; van Edig, Xenia; Bertelmann, Roland; Pampel, Heinz; Klump, Jens; Wächter, Joachim
2015-04-01
Scientific software has become an indispensable commodity for the production, processing and analysis of empirical data but also for modelling and simulation of complex processes. Software has a significant influence on the quality of research results. For strengthening the recognition of the academic performance of scientific software development, for increasing its visibility and for promoting the reproducibility of research results, concepts for the publication of scientific software have to be developed, tested, evaluated, and then transferred into operations. For this, the publication and citability of scientific software have to fulfil scientific criteria by means of defined processes and the use of persistent identifiers, similar to data publications. The SciForge project is addressing these challenges. Based on interviews a blueprint for a scientific software publishing platform and a systematic implementation plan has been designed. In addition, the potential of journals, software repositories and persistent identifiers have been evaluated to improve the publication and dissemination of reusable software solutions. It is important that procedures for publishing software as well as methods and tools for software engineering are reflected in the architecture of the platform, in order to improve the quality of the software and the results of research. In addition, it is necessary to work continuously on improving specific conditions that promote the adoption and sustainable utilization of scientific software publications. Among others, this would include policies for the development and publication of scientific software in the institutions but also policies for establishing the necessary competencies and skills of scientists and IT personnel. To implement the concepts developed in SciForge a combined bottom-up / top-down approach is considered that will be implemented in parallel in different scientific domains, e.g. in earth sciences, climate research and the life sciences. Based on the developed blueprints a scientific software publishing platform will be iteratively implemented, tested, and evaluated. Thus the platform should be developed continuously on the basis of gained experiences and results. The platform services will be extended one by one corresponding to the requirements of the communities. Thus the implemented platform for the publication of scientific software can be improved and stabilized incrementally as a tool with software, science, publishing, and user oriented features.
Absorbing Software Testing into the Scrum Method
NASA Astrophysics Data System (ADS)
Tuomikoski, Janne; Tervonen, Ilkka
In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.
Design and Development of a User Interface for the Dynamic Model of Software Project Management.
1988-03-01
rectory of the user’s choice for future...the last choice selected. Let us assume for the sake of this tour that the user has selected all eight choices . ESTIMATED ACTUAL PROJECT SIZE DEFINITION...manipulation of varaibles in the * •. TJin~ca model "h ... ser Inter ace for the Dynamica model was designed b in iterative process of prototyping
Virtual patients: practical advice for clinical authors using Labyrinth.
Begg, Michael
2010-09-01
Labyrinth is a tool originally developed in the University of Edinburgh's Learning Technology Section for authoring and delivering branching case scenarios. The scenarios can incorporate game-informed elements such as scoring, randomising, avatars and counters. Labyrinth has grown more popular internationally since a version of the build was made available on the open source network Source Forge. This paper offers help and advice for clinical educators interested in creating cases. Labyrinth is increasingly recognised as a tool offering great potential for delivering cases that promote rich, situated learning opportunities for learners. There are, however, significant challenges to generating such cases, not least of which is the challenge for potential authors in approaching the process of constructing narrative-rich, context-sensitive cases in an unfamiliar authoring environment. This paper offers a brief overview of the principles informing Labyrinth cases (game-informed learning), and offers some practical advice to better prepare educators with little or no prior experience. Labyrinth has continued to grow and develop, from its roots as a research and development environment to one that is optimised for use by non-technical clinical educators. The process becomes increasingly iterative and better informed as the teaching community push the software further. The positive implications of providing practical advice and concept insight to new case authors is that it ideally leads to a broader base of users who will inform future iterations of the software. © Blackwell Publishing Ltd 2010.
New trends in radiology workstation design
NASA Astrophysics Data System (ADS)
Moise, Adrian; Atkins, M. Stella
2002-05-01
In the radiology workstation design, the race for adding more features is now morphing into an iterative user centric design with the focus on ergonomics and usability. The extent of the list of features for the radiology workstation used to be one of the most significant factors for a Picture Archiving and Communication System (PACS) vendor's ability to sell the radiology workstation. Not anymore is now very much the same between the major players in the PACS market. How these features work together distinguishes different radiology workstations. Integration (with the PACS/Radiology Information System (RIS) systems, with the 3D tool, Reporting Tool etc.), usability (user specific preferences, advanced display protocols, smart activation of tools etc.) and efficiency (what is the output a radiologist can generate with the workstation) are now core factors for selecting a workstation. This paper discusses these new trends in radiology workstation design. We demonstrate the importance of the interaction between the PACS vendor (software engineers) and the customer (radiologists) during the radiology workstation design. We focus on iterative aspects of the workstation development, such as the presentation of early prototypes to as many representative users as possible during the software development cycle and present the results of a survey of 8 radiologists on designing a radiology workstation.
An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package
NASA Astrophysics Data System (ADS)
Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.
1989-05-01
The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.
The Earth System Documentation (ES-DOC) Software Process
NASA Astrophysics Data System (ADS)
Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.
2013-12-01
Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.
DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology
Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng
2015-01-01
Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three ‘tier’ design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and ‘debugging’ the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package—accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems. PMID:26423437
Evolution of the phase 2 preparation and observation tools at ESO
NASA Astrophysics Data System (ADS)
Dorigo, D.; Amarand, B.; Bierwirth, T.; Jung, Y.; Santos, P.; Sogni, F.; Vera, I.
2012-09-01
Throughout the course of many years of observations at the VLT, the phase 2 software applications supporting the specification, execution and reporting of observations have been continuously improved and refined. Specifically the introduction of astronomical surveys propelled the creation of new tools to express more sophisticated, longer-term observing strategies often consisting of several hundreds of observations. During the execution phase, such survey programs compete with other service and visitor mode observations and a number of constraints have to be considered. In order to maximize telescope utilization and execute all programs in a fair way, new algorithms have been developed to prioritize observable OBs taking into account both current and future constraints (e.g. OB time constraints, technical telescope time) and suggest the next OB to be executed. As a side effect, a higher degree of observation automation enables operators to run telescopes mostly autonomously with little supervision by a support astronomer. We describe the new tools that have been deployed and the iterative and incremental software development process applied to develop them. We present our key software technologies used so far and discuss potential future evolution both in terms of features as well as software technologies.
Stålberg, Anna; Sandberg, Anette; Söderbäck, Maja; Larsson, Thomas
2016-06-01
During the last decade, interactive technology has entered mainstream society. Its many users also include children, even the youngest ones, who use the technology in different situations for both fun and learning. When designing technology for children, it is crucial to involve children in the process in order to arrive at an age-appropriate end product. In this study we describe the specific iterative process by which an interactive application was developed. This application is intended to facilitate young children's, three-to five years old, participation in healthcare situations. We also describe the specific contributions of the children, who tested the prototypes in a preschool, a primary health care clinic and an outpatient unit at a hospital, during the development process. The iterative phases enabled the children to be involved at different stages of the process and to evaluate modifications and improvements made after each prior iteration. The children contributed their own perspectives (the child's perspective) on the usability, content and graphic design of the application, substantially improving the software and resulting in an age-appropriate product. Copyright © 2016 Elsevier Inc. All rights reserved.
Utility of coupling nonlinear optimization methods with numerical modeling software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.J.
1996-08-05
Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less
Discrete Fourier Transform Analysis in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2009-01-01
Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.
Iterative categorization (IC): a systematic technique for analysing qualitative data.
Neale, Joanne
2016-06-01
The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. © 2016 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.
NASA Technical Reports Server (NTRS)
Lee, Katharine K.; Davis, Thomas J.
1995-01-01
Historically, the development of advanced automation for air traffic control in the United States has excluded the input of the air traffic controller until the need of the development process. In contrast, the development of the Final Approach Spacing Tool (FAST), for the terminal area controller, has incorporated the end-user in early, iterative testing. This paper describes a cooperative between the controller and the developer to create a tool which incorporates the complexity of the air traffic controller's job. This approach to software development has enhanced the usability of FAST and has helped smooth the introduction of FAST into the operational environment.
Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan
2017-12-13
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.
Hu, Xiaopeng; Wang, Fan
2017-01-01
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031
A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes
NASA Astrophysics Data System (ADS)
Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan
2016-07-01
An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.
Donato, David I.
2012-01-01
This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.
Automated ILA design for synchronous sequential circuits
NASA Technical Reports Server (NTRS)
Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.
1991-01-01
An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.
2013-03-01
amounts of time and effort to implement. Future testing with commercial, fault-tolerant synthesis software, under a radiation environment, will yield ...initial viewpoint of the author is to take the flash-based FPGA route. This will yield a simple, reconfigurable circuit while providing the added...structure seen in Figure 30. Each of these full adder blocks were replaced in subsequent iterations to yield proper comparison with this baseline
Design, Fabrication, and Testing of a Hopper Spacecraft Simulator
NASA Astrophysics Data System (ADS)
Mucasey, Evan Phillip Krell
A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.
XSECT: A computer code for generating fuselage cross sections - user's manual
NASA Technical Reports Server (NTRS)
Ames, K. R.
1982-01-01
A computer code, XSECT, has been developed to generate fuselage cross sections from a given area distribution and wing definition. The cross sections are generated to match the wing definition while conforming to the area requirement. An iterative procedure is used to generate each cross section. Fuselage area balancing may be included in this procedure if desired. The code is intended as an aid for engineers who must first design a wing under certain aerodynamic constraints and then design a fuselage for the wing such that the contraints remain satisfied. This report contains the information necessary for accessing and executing the code, which is written in FORTRAN to execute on the Cyber 170 series computers (NOS operating system) and produces graphical output for a Tektronix 4014 CRT. The LRC graphics software is used in combination with the interface between this software and the PLOT 10 software.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Watson, Willie R. (Technical Monitor)
2005-01-01
The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.
Computer-assisted concept mapping: Visual aids for knowledge construction
Mammen, Jennifer R.
2016-01-01
Background Concept mapping is a visual representation of ideas that facilitates critical thinking and is applicable to many areas of nursing education. Computer-Assisted Concept Maps are more flexible and less constrained than traditional paper methods, allowing for analysis and synthesis of complex topics and larger amounts of data. Ability to iteratively revise and collaboratively create computerized maps can contribute to enhanced interpersonal learning. However, there is limited awareness of free software that can support these types of applications. Discussion This educational brief examines affordances and limitations of Computer-Assisted Concept Maps and reviews free software for development of complex, collaborative malleable maps. Free software such as VUE, Xmind, MindMaple, and others can substantially contribute to utility of concept-mapping for nursing education. Conclusions Computerized concept-mapping is an important tool for nursing and is likely to hold greater benefit for students and faculty than traditional pen and paper methods alone. PMID:27351610
Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen
2017-02-01
The SIRT (Simultaneous Iterative Reconstruction Technique) algorithm is commonly used in Electron Tomography to calculate the original volume of the sample from noisy images, but the results provided by this iterative procedure are strongly dependent on the specific implementation of the algorithm, as well as on the number of iterations employed for the reconstruction. In this work, a methodology for selecting the iteration number of the SIRT reconstruction that provides the most accurate segmentation is proposed. The methodology is based on the statistical analysis of the intensity profiles at the edge of the objects in the reconstructed volume. A phantom which resembles a a carbon black aggregate has been created to validate the methodology and the SIRT implementations of two free software packages (TOMOJ and TOMO3D) have been used. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Benjamin R.; Harris, James M.; Burns, John F.
This document contains 4 use case realizations generated from the model contained in Rational Software Architect. These use case realizations are the current versions of the realizations originally delivered in Elaboration Iteration 3.
NASA Astrophysics Data System (ADS)
Aviat, Félix; Lagardère, Louis; Piquemal, Jean-Philip
2017-10-01
In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180-190 (2017)], we proposed the Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in polarizable molecular simulations. The method consists in truncating the conjugate gradient algorithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered "non-iterative." This gives the possibility to derive analytical forces avoiding the usual energy conservation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation of the analytical gradients, which is more complex than that with a usual solver. In this paper, after reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient implementation of the TCG calculation. The complete cost of the approach is then measured as it is tested using a multi-time step scheme and compared to timings using usual iterative approaches. We show that the TCG methods are more efficient than traditional techniques, making it a method of choice for future long molecular dynamics simulations using polarizable force fields where energy conservation matters. We detail the various steps required for the implementation of the complete method by software developers.
Aviat, Félix; Lagardère, Louis; Piquemal, Jean-Philip
2017-10-28
In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180-190 (2017)], we proposed the Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in polarizable molecular simulations. The method consists in truncating the conjugate gradient algorithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered "non-iterative." This gives the possibility to derive analytical forces avoiding the usual energy conservation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation of the analytical gradients, which is more complex than that with a usual solver. In this paper, after reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient implementation of the TCG calculation. The complete cost of the approach is then measured as it is tested using a multi-time step scheme and compared to timings using usual iterative approaches. We show that the TCG methods are more efficient than traditional techniques, making it a method of choice for future long molecular dynamics simulations using polarizable force fields where energy conservation matters. We detail the various steps required for the implementation of the complete method by software developers.
Design and implementation of the mobility assessment tool: software description.
Barnard, Ryan T; Marsh, Anthony P; Rejeski, Walter Jack; Pecorella, Anthony; Ip, Edward H
2013-07-23
In previous work, we described the development of an 81-item video-animated tool for assessing mobility. In response to criticism levied during a pilot study of this tool, we sought to develop a new version built upon a flexible framework for designing and administering the instrument. Rather than constructing a self-contained software application with a hard-coded instrument, we designed an XML schema capable of describing a variety of psychometric instruments. The new version of our video-animated assessment tool was then defined fully within the context of a compliant XML document. Two software applications--one built in Java, the other in Objective-C for the Apple iPad--were then built that could present the instrument described in the XML document and collect participants' responses. Separating the instrument's definition from the software application implementing it allowed for rapid iteration and easy, reliable definition of variations. Defining instruments in a software-independent XML document simplifies the process of defining instruments and variations and allows a single instrument to be deployed on as many platforms as there are software applications capable of interpreting the instrument, thereby broadening the potential target audience for the instrument. Continued work will be done to further specify and refine this type of instrument specification with a focus on spurring adoption by researchers in gerontology and geriatric medicine.
Simulating Humans as Integral Parts of Spacecraft Missions
NASA Technical Reports Server (NTRS)
Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine
2006-01-01
The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.
Design and implementation of the mobility assessment tool: software description
2013-01-01
Background In previous work, we described the development of an 81-item video-animated tool for assessing mobility. In response to criticism levied during a pilot study of this tool, we sought to develop a new version built upon a flexible framework for designing and administering the instrument. Results Rather than constructing a self-contained software application with a hard-coded instrument, we designed an XML schema capable of describing a variety of psychometric instruments. The new version of our video-animated assessment tool was then defined fully within the context of a compliant XML document. Two software applications—one built in Java, the other in Objective-C for the Apple iPad—were then built that could present the instrument described in the XML document and collect participants’ responses. Separating the instrument’s definition from the software application implementing it allowed for rapid iteration and easy, reliable definition of variations. Conclusions Defining instruments in a software-independent XML document simplifies the process of defining instruments and variations and allows a single instrument to be deployed on as many platforms as there are software applications capable of interpreting the instrument, thereby broadening the potential target audience for the instrument. Continued work will be done to further specify and refine this type of instrument specification with a focus on spurring adoption by researchers in gerontology and geriatric medicine. PMID:23879716
GCS component development cycle
NASA Astrophysics Data System (ADS)
Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos; Pi, Marti
2012-09-01
The GTC1 is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). First light was at 13/07/2007 and since them it is in the operation phase. The GTC control system (GCS) is a distributed object & component oriented system based on RT-CORBA8 and it is responsible for the management and operation of the telescope, including its instrumentation. GCS has used the Rational Unified process (RUP9) in its development. RUP is an iterative software development process framework. After analysing (use cases) and designing (UML10) any of GCS subsystems, an initial component description of its interface is obtained and from that information a component specification is written. In order to improve the code productivity, GCS has adopted the code generation to transform this component specification into the skeleton of component classes based on a software framework, called Device Component Framework. Using the GCS development tools, based on javadoc and gcc, in only one step, the component is generated, compiled and deployed to be tested for the first time through our GUI inspector. The main advantages of this approach are the following: It reduces the learning curve of new developers and the development error rate, allows a systematic use of design patterns in the development and software reuse, speeds up the deliverables of the software product and massively increase the timescale, design consistency and design quality, and eliminates the future refactoring process required for the code.
NASA Astrophysics Data System (ADS)
Ozbasaran, Hakan
Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response) link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.
Distributed nuclear medicine applications using World Wide Web and Java technology.
Knoll, P; Höll, K; Mirzaei, S; Koriska, K; Köhn, H
2000-01-01
At present, medical applications applying World Wide Web (WWW) technology are mainly used to view static images and to retrieve some information. The Java platform is a relative new way of computing, especially designed for network computing and distributed applications which enables interactive connection between user and information via the WWW. The Java 2 Software Development Kit (SDK) including Java2D API, Java Remote Method Invocation (RMI) technology, Object Serialization and the Java Advanced Imaging (JAI) extension was used to achieve a robust, platform independent and network centric solution. Medical image processing software based on this technology is presented and adequate performance capability of Java is demonstrated by an iterative reconstruction algorithm for single photon emission computerized tomography (SPECT).
A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience.
Hodge, Victoria; Jessop, Mark; Fletcher, Martyn; Weeks, Michael; Turner, Aaron; Jackson, Tom; Ingram, Colin; Smith, Leslie; Austin, Jim
2016-01-01
The CARMEN Virtual Laboratory (VL) is a cloud-based platform which allows neuroscientists to store, share, develop, execute, reproduce and publicise their work. This paper describes new functionality in the CARMEN VL: an interactive publications repository. This new facility allows users to link data and software to publications. This enables other users to examine data and software associated with the publication and execute the associated software within the VL using the same data as the authors used in the publication. The cloud-based architecture and SaaS (Software as a Service) framework allows vast data sets to be uploaded and analysed using software services. Thus, this new interactive publications facility allows others to build on research results through reuse. This aligns with recent developments by funding agencies, institutions, and publishers with a move to open access research. Open access provides reproducibility and verification of research resources and results. Publications and their associated data and software will be assured of long-term preservation and curation in the repository. Further, analysing research data and the evaluations described in publications frequently requires a number of execution stages many of which are iterative. The VL provides a scientific workflow environment to combine software services into a processing tree. These workflows can also be associated with publications and executed by users. The VL also provides a secure environment where users can decide the access rights for each resource to ensure copyright and privacy restrictions are met.
Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology.
Otto, Thomas D; Sanders, Mandy; Berriman, Matthew; Newbold, Chris
2010-07-15
The accuracy of reference genomes is important for downstream analysis but a low error rate requires expensive manual interrogation of the sequence. Here, we describe a novel algorithm (Iterative Correction of Reference Nucleotides) that iteratively aligns deep coverage of short sequencing reads to correct errors in reference genome sequences and evaluate their accuracy. Using Plasmodium falciparum (81% A + T content) as an extreme example, we show that the algorithm is highly accurate and corrects over 2000 errors in the reference sequence. We give examples of its application to numerous other eukaryotic and prokaryotic genomes and suggest additional applications. The software is available at http://icorn.sourceforge.net
NASA Astrophysics Data System (ADS)
Veerraju, R. P. S. P.; Rao, A. Srinivasa; Murali, G.
2010-10-01
Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior. It improves internal code structure without altering its external functionality by transforming functions and rethinking algorithms. It is an iterative process. Refactoring include reducing scope, replacing complex instructions with simpler or built-in instructions, and combining multiple statements into one statement. By transforming the code with refactoring techniques it will be faster to change, execute, and download. It is an excellent best practice to adopt for programmers wanting to improve their productivity. Refactoring is similar to things like performance optimizations, which are also behavior- preserving transformations. It also helps us find bugs when we are trying to fix a bug in difficult-to-understand code. By cleaning things up, we make it easier to expose the bug. Refactoring improves the quality of application design and implementation. In general, three cases concerning refactoring. Iterative refactoring, Refactoring when is necessary, Not refactor. Mr. Martin Fowler identifies four key reasons to refractor. Refactoring improves the design of software, makes software easier to understand, helps us find bugs and also helps in executing the program faster. There is an additional benefit of refactoring. It changes the way a developer thinks about the implementation when not refactoring. There are the three types of refactorings. 1) Code refactoring: It often referred to simply as refactoring. This is the refactoring of programming source code. 2) Database refactoring: It is a simple change to a database schema that improves its design while retaining both its behavioral and informational semantics. 3) User interface (UI) refactoring: It is a simple change to the UI which retains its semantics. Finally, we conclude the benefits of Refactoring are: Improves the design of software, Makes software easier to understand, Software gets cleaned up and Helps us to find bugs and Helps us to program faster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veerraju, R. P. S. P.; Rao, A. Srinivasa; Murali, G.
2010-10-26
Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior. It improves internal code structure without altering its external functionality by transforming functions and rethinking algorithms. It is an iterative process. Refactoring include reducing scope, replacing complex instructions with simpler or built-in instructions, and combining multiple statements into one statement. By transforming the code with refactoring techniques it will be faster to change, execute, and download. It is an excellent best practice to adopt for programmers wanting to improve their productivity. Refactoring is similar to things like performance optimizations,more » which are also behavior- preserving transformations. It also helps us find bugs when we are trying to fix a bug in difficult-to-understand code. By cleaning things up, we make it easier to expose the bug. Refactoring improves the quality of application design and implementation. In general, three cases concerning refactoring. Iterative refactoring, Refactoring when is necessary, Not refactor.Mr. Martin Fowler identifies four key reasons to refractor. Refactoring improves the design of software, makes software easier to understand, helps us find bugs and also helps in executing the program faster. There is an additional benefit of refactoring. It changes the way a developer thinks about the implementation when not refactoring. There are the three types of refactorings. 1) Code refactoring: It often referred to simply as refactoring. This is the refactoring of programming source code. 2) Database refactoring: It is a simple change to a database schema that improves its design while retaining both its behavioral and informational semantics. 3) User interface (UI) refactoring: It is a simple change to the UI which retains its semantics. Finally, we conclude the benefits of Refactoring are: Improves the design of software, Makes software easier to understand, Software gets cleaned up and Helps us to find bugs and Helps us to program faster.« less
Combining Static Analysis and Model Checking for Software Analysis
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Visser, Willem; Clancy, Daniel (Technical Monitor)
2003-01-01
We present an iterative technique in which model checking and static analysis are combined to verify large software systems. The role of the static analysis is to compute partial order information which the model checker uses to reduce the state space. During exploration, the model checker also computes aliasing information that it gives to the static analyzer which can then refine its analysis. The result of this refined analysis is then fed back to the model checker which updates its partial order reduction. At each step of this iterative process, the static analysis computes optimistic information which results in an unsafe reduction of the state space. However we show that the process converges to a fired point at which time the partial order information is safe and the whole state space is explored.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.; Goodyer, M. J.
1982-01-01
Operation of the Transonic Self-Streamlining Wind Tunnel (TSWT) involved on-line data acquisition with automatic wall adjustment. A tunnel run consisted of streamlining the walls from known starting contours in iterative steps and acquiring model data. Each run performs what is described as a streamlining cycle. The associated software is presented.
ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2013-01-01
This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.
In-situ Testing of the EHT High Gain and Frequency Ultra-Stable Integrators
NASA Astrophysics Data System (ADS)
Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Lotz, Dan
2014-10-01
Eagle Harbor Technologies (EHT) has developed a long-pulse integrator that exceeds the ITER specification for integration error and pulse duration. During the Phase I program, EHT improved the RPPL short-pulse integrators, added a fast digital reset, and demonstrated that the new integrators exceed the ITER integration error and pulse duration requirements. In Phase II, EHT developed Field Programmable Gate Array (FPGA) software that allows for integrator control and real-time signal digitization and processing. In the second year of Phase II, the EHT integrator will be tested at a validation platform experiment (HIT-SI) and tokamak (DIII-D). In the Phase IIB program, EHT will continue development of the EHT integrator to reduce overall cost per channel. EHT will test lower cost components, move to surface mount components, and add an onboard Field Programmable Gate Array and data acquisition to produce a stand-alone system with lower cost per channel and increased the channel density. EHT will test the Phase IIB integrator at a validation platform experiment (HIT-SI) and tokamak (DIII-D). Work supported by the DOE under Contract Number (DE-SC0006281).
Novakovich, Jeanette; Shaw, Steven; Miah, Sophia
2017-02-01
This DIB article includes the course artefacts, instruments, survey data, and descriptive statistics, along with in-depth correlational analysis for the first iteration of a design-based research study on designing curriculum for developing online professional identity and social media practices for a multi-major advanced professional writing course. Raw data was entered into SPSS software. For interpretation and discussion, please see the original article entitled, "Designing curriculum to shape professional social media skills and identity in virtual communities of practice" (J. Novakovich, S. Miah, S. Shaw, 2017) [1].
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei (OA)
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This presentation describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this presentation is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture.
Spaceport Command and Control System Support Software Development
NASA Technical Reports Server (NTRS)
Brunotte, Leonard
2016-01-01
The Spaceport Command and Control System (SCCS) is a project developed and used by NASA at Kennedy Space Center in order to control and monitor the Space Launch System (SLS) at the time of its launch. One integral subteam under SCCS is the one assigned to the development of a data set building application to be used both on the launch pad and in the Launch Control Center (LCC) at the time of launch. This web application was developed in Ruby on Rails, a web framework using the Ruby object-oriented programming language, by a 15 - employee team (approx.). Because this application is such a huge undertaking with many facets and iterations, there were a few areas in which work could be more easily organized and expedited. As an intern working with this team, I was charged with the task of writing web applications that fulfilled this need, creating a virtual and highly customizable whiteboard in order to allow engineers to keep track of build iterations and their status. Additionally, I developed a knowledge capture web application wherein any engineer or contractor within SCCS could ask a question, answer an existing question, or leave a comment on any question or answer, similar to Stack Overflow.
An Introduction to Flight Software Development: FSW Today, FSW 2010
NASA Technical Reports Server (NTRS)
Gouvela, John
2004-01-01
Experience and knowledge gained from ongoing maintenance of Space Shuttle Flight Software and new development projects including Cockpit Avionics Upgrade are applied to projected needs of the National Space Exploration Vision through Spiral 2. Lessons learned from these current activities are applied to create a sustainable, reliable model for development of critical software to support Project Constellation. This presentation introduces the technologies, methodologies, and infrastructure needed to produce and sustain high quality software. It will propose what is needed to support a Vision for Space Exploration that places demands on the innovation and productivity needed to support future space exploration. The technologies in use today within FSW development include tools that provide requirements tracking, integrated change management, modeling and simulation software. Specific challenges that have been met include the introduction and integration of Commercial Off the Shelf (COTS) Real Time Operating System for critical functions. Though technology prediction has proved to be imprecise, Project Constellation requirements will need continued integration of new technology with evolving methodologies and changing project infrastructure. Targets for continued technology investment are integrated health monitoring and management, self healing software, standard payload interfaces, autonomous operation, and improvements in training. Emulation of the target hardware will also allow significant streamlining of development and testing. The methodologies in use today for FSW development are object oriented UML design, iterative development using independent components, as well as rapid prototyping . In addition, Lean Six Sigma and CMMI play a critical role in the quality and efficiency of the workforce processes. Over the next six years, we expect these methodologies to merge with other improvements into a consolidated office culture with all processes being guided by automated office assistants. The infrastructure in use today includes strict software development and configuration management procedures, including strong control of resource management and critical skills coverage. This will evolve to a fully integrated staff organization with efficient and effective communication throughout all levels guided by a Mission-Systems Architecture framework with focus on risk management and attention toward inevitable product obsolescence. This infrastructure of computing equipment, software and processes will itself be subject to technological change and need for management of change and improvement,
2003-06-01
delivery Data Access (1980s) "What were unit sales in New England last March?" Relational databases (RDBMS), Structured Query Language ( SQL ...macros written in Visual Basic for Applications ( VBA ). 32 Iteration Two: Class Diagram Tech OASIS Export ScriptImport Filter Data ProcessingMethod 1...MS Excel * 1 VBA Macro*1 contains sends data to co nt ai ns executes * * 1 1 contains contains Figure 20. Iteration two class diagram The
D'Avolio, Leonard W; Nguyen, Thien M; Goryachev, Sergey; Fiore, Louis D
2011-01-01
Despite at least 40 years of promising empirical performance, very few clinical natural language processing (NLP) or information extraction systems currently contribute to medical science or care. The authors address this gap by reducing the need for custom software and rules development with a graphical user interface-driven, highly generalizable approach to concept-level retrieval. A 'learn by example' approach combines features derived from open-source NLP pipelines with open-source machine learning classifiers to automatically and iteratively evaluate top-performing configurations. The Fourth i2b2/VA Shared Task Challenge's concept extraction task provided the data sets and metrics used to evaluate performance. Top F-measure scores for each of the tasks were medical problems (0.83), treatments (0.82), and tests (0.83). Recall lagged precision in all experiments. Precision was near or above 0.90 in all tasks. Discussion With no customization for the tasks and less than 5 min of end-user time to configure and launch each experiment, the average F-measure was 0.83, one point behind the mean F-measure of the 22 entrants in the competition. Strong precision scores indicate the potential of applying the approach for more specific clinical information extraction tasks. There was not one best configuration, supporting an iterative approach to model creation. Acceptable levels of performance can be achieved using fully automated and generalizable approaches to concept-level information extraction. The described implementation and related documentation is available for download.
Mentrup, Detlef; Jockel, Sascha; Menser, Bernd; Neitzel, Ulrich
2016-06-01
The aim of this work was to experimentally compare the contrast improvement factors (CIFs) of a newly developed software-based scatter correction to the CIFs achieved by an antiscatter grid. To this end, three aluminium discs were placed in the lung, the retrocardial and the abdominal areas of a thorax phantom, and digital radiographs of the phantom were acquired both with and without a stationary grid. The contrast generated by the discs was measured in both images, and the CIFs achieved by grid usage were determined for each disc. Additionally, the non-grid images were processed with a scatter correction software. The contrasts generated by the discs were determined in the scatter-corrected images, and the corresponding CIFs were calculated. The CIFs obtained with the grid and with the software were in good agreement. In conclusion, the experiment demonstrates quantitatively that software-based scatter correction allows restoring the image contrast of a non-grid image in a manner comparable with an antiscatter grid. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of a methodology for classifying software errors
NASA Technical Reports Server (NTRS)
Gerhart, S. L.
1976-01-01
A mathematical formalization of the intuition behind classification of software errors is devised and then extended to a classification discipline: Every classification scheme should have an easily discernible mathematical structure and certain properties of the scheme should be decidable (although whether or not these properties hold is relative to the intended use of the scheme). Classification of errors then becomes an iterative process of generalization from actual errors to terms defining the errors together with adjustment of definitions according to the classification discipline. Alternatively, whenever possible, small scale models may be built to give more substance to the definitions. The classification discipline and the difficulties of definition are illustrated by examples of classification schemes from the literature and a new study of observed errors in published papers of programming methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis C. Smolarski, S.J.
Project Abstract This project was a continuation of work begun under a subcontract issued off of TSI-DOE Grant 1528746, awarded to the University of Illinois Urbana-Champaign. Dr. Anthony Mezzacappa is the Principal Investigator on the Illinois award. A separate award was issued to Santa Clara University to continue the collaboration during the time period May 2003 ? 2004. Smolarski continued to work on preconditioner technology and its interface with various iterative methods. He worked primarily with F. Dough Swesty (SUNY-Stony Brook) in continuing software development started in the 2002-03 academic year. Special attention was paid to the development and testingmore » of difference sparse approximate inverse preconditioners and their use in the solution of linear systems arising from radiation transport equations. The target was a high performance platform on which efficient implementation is a critical component of the overall effort. Smolarski also focused on the integration of the adaptive iterative algorithm, Chebycode, developed by Tom Manteuffel and Steve Ashby and adapted by Ryan Szypowski for parallel platforms, into the radiation transport code being developed at SUNY-Stony Brook.« less
Software Estimates Costs of Testing Rocket Engines
NASA Technical Reports Server (NTRS)
Smith, C. L.
2003-01-01
Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.
Influence of Iterative Reconstruction Algorithms on PET Image Resolution
NASA Astrophysics Data System (ADS)
Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.
2015-09-01
The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.
Apex Reference Manual 3.0 Beta
NASA Technical Reports Server (NTRS)
Freed, Michael A.
2005-01-01
Apex is a toolkit for constructing software that behaves intelligently and responsively in demanding task environments. Reflecting its origin at NASA where Apex continues to be developed, current applications include: a) Providing autonomous mission management and tactical control capabilities for unmanned aerial vehicles including an autonomous surveillance helicopter and a simulation prototype of an unmanned fixed-wing aircraft to be used for wildfire mapping; b) Simulating human air traffic controllers, pilots and astronauts to help predict how people might respond to changes in equipment or procedures; and c) Predicting the precise duration and sequence of routine human behaviors based on a human-computer interaction engineering technique called CPM-GOMS. Among Apex s components are a set of implemented reasoning services, such as those for reactive planning and temporal pattern recognition; a software architecture that embeds and integrates these services and allows additional reasoning elements to be added as extensions; a formal language for specifying agent knowledge; a simulation environment to facilitate prototyping and analysis; and Sherpa, a set of tools for visualizing autonomy logic and runtime behavior. In combination, these are meant to provide a flexible and usable framework for creating, testing, and deploying intelligent agent software. Overall, our goal in developing Apex is to lower economic barriers to developing intelligent software agents. New ideas about how to extend or modify the system are evaluated in terms of their impact in reducing the time, expertise, and inventiveness required to build and maintain applications. For example, potential enhancements to the AI reasoning capabilities in the system are reviewed not only for usefulness and distinctiveness, but also for their impact on the readability and general usability of Apex s behavior representation language (PDL) and on the transparency of resulting behavior. A second central part of our approach is to iteratively refine Apex based on lessons learned from as diverse a set of applications as possible. Many applications have been developed by users outside the core development team including engineers, researchers, and students. Usability is thus a central concern for every aspect of Apex visible to a user, including PDL, Sherpa, the Apex installation process, APIs, and user documentation. Apex users vary in their areas of expertise and in their familiarity with autonomy technology. Focusing on usability, a development philosophy summarized by the project motto "Usable Autonomy," has been important part of enabling diverse users to employ Apex successfully and to provide feedback needed to guide iterative, user-centered refinement.
Computer-Assisted Concept Mapping: Visual Aids for Knowledge Construction.
Mammen, Jennifer R
2016-07-01
Concept mapping is a visual representation of ideas that facilitates critical thinking and is applicable to many areas of nursing education. Computer-assisted concept maps are more flexible and less constrained than traditional paper methods, allowing for analysis and synthesis of complex topics and larger amounts of data. Ability to iteratively revise and collaboratively create computerized maps can contribute to enhanced interpersonal learning. However, there is limited awareness of free software that can support these types of applications. This educational brief examines affordances and limitations of computer-assisted concept maps and reviews free software for development of complex, collaborative malleable maps. Free software, such as VUE, XMind, MindMaple, and others, can substantially contribute to the utility of concept mapping for nursing education. Computerized concept-mapping is an important tool for nursing and is likely to hold greater benefit for students and faculty than traditional pen-and-paper methods alone. [J Nurs Educ. 2016;55(7):403-406.]. Copyright 2016, SLACK Incorporated.
Reverse engineering of integrated circuits
Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.
2003-01-01
Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.
UK Health and Social Care Case Studies: Iterative Technology Development.
Blanchard, Adie; Gilbert, Laura; Dawson, Tom
2017-01-01
As a result of increasing demand in the face of reducing resources, technology has been implemented in many social and health care services to improve service efficiency. This paper outlines the experiences of deploying a 'Software as a Service' application in the UK social and health care sectors. The case studies demonstrate that every implementation is different, and unique to each organisation. Technology design and integration can be facilitated by ongoing engagement and collaboration with all stakeholders, flexible design, and attention to interoperability to suit services and their workflows.
Research on complex 3D tree modeling based on L-system
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.
Social and Personal Factors in Semantic Infusion Projects
NASA Astrophysics Data System (ADS)
West, P.; Fox, P. A.; McGuinness, D. L.
2009-12-01
As part of our semantic data framework activities across multiple, diverse disciplines we required the involvement of domain scientists, computer scientists, software engineers, data managers, and often, social scientists. This involvement from a cross-section of disciplines turns out to be a social exercise as much as it is a technical and methodical activity. Each member of the team is used to different modes of working, expectations, vocabularies, levels of participation, and incentive and reward systems. We will examine how both roles and personal responsibilities play in the development of semantic infusion projects, and how an iterative development cycle can contribute to the successful completion of such a project.
NASA Astrophysics Data System (ADS)
Conforti, Vito; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Fioretti, Valentina; Tacchini, Alessandro; Zoli, Andrea; Malaguti, Giuseppe; Capalbi, Milvia; Catalano, Osvaldo
2014-07-01
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size dual-mirror Telescope. In a second phase the ASTRI project foresees the installation of the first elements of the array at CTA southern site, a mini-array of 7 telescopes. The ASTRI Camera DAQ Software is aimed at the Camera data acquisition, storage and display during Camera development as well as during commissioning and operations on the ASTRI SST-2M telescope prototype that will operate at the INAF observing station located at Serra La Nave on the Mount Etna (Sicily). The Camera DAQ configuration and operations will be sequenced either through local operator commands or through remote commands received from the Instrument Controller System that commands and controls the Camera. The Camera DAQ software will acquire data packets through a direct one-way socket connection with the Camera Back End Electronics. In near real time, the data will be stored in both raw and FITS format. The DAQ Quick Look component will allow the operator to display in near real time the Camera data packets. We are developing the DAQ software adopting the iterative and incremental model in order to maximize the software reuse and to implement a system which is easily adaptable to changes. This contribution presents the Camera DAQ Software architecture with particular emphasis on its potential reuse for the ASTRI/CTA mini-array.
Iterative non-sequential protein structural alignment.
Salem, Saeed; Zaki, Mohammed J; Bystroff, Christopher
2009-06-01
Structural similarity between proteins gives us insights into their evolutionary relationships when there is low sequence similarity. In this paper, we present a novel approach called SNAP for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process consisting of a superposition step and an alignment step, until convergence. We propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of SNAP alignments were assessed by comparing against the manually curated reference alignments in the challenging SISY and RIPC datasets. Moreover, when applied to a dataset of 4410 protein pairs selected from the CATH database, SNAP produced longer alignments with lower rmsd than several state-of-the-art alignment methods. Classification of folds using SNAP alignments was both highly sensitive and highly selective. The SNAP software along with the datasets are available online at http://www.cs.rpi.edu/~zaki/software/SNAP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S; Hoffman, J; McNitt-Gray, M
Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
Model based design introduction: modeling game controllers to microprocessor architectures
NASA Astrophysics Data System (ADS)
Jungwirth, Patrick; Badawy, Abdel-Hameed
2017-04-01
We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.
Data Integration Tool: Permafrost Data Debugging
NASA Astrophysics Data System (ADS)
Wilcox, H.; Schaefer, K. M.; Jafarov, E. E.; Pulsifer, P. L.; Strawhacker, C.; Yarmey, L.; Basak, R.
2017-12-01
We developed a Data Integration Tool (DIT) to significantly speed up the time of manual processing needed to translate inconsistent, scattered historical permafrost data into files ready to ingest directly into the Global Terrestrial Network-Permafrost (GTN-P). The United States National Science Foundation funded this project through the National Snow and Ice Data Center (NSIDC) with the GTN-P to improve permafrost data access and discovery. We leverage this data to support science research and policy decisions. DIT is a workflow manager that divides data preparation and analysis into a series of steps or operations called widgets (https://github.com/PermaData/DIT). Each widget does a specific operation, such as read, multiply by a constant, sort, plot, and write data. DIT allows the user to select and order the widgets as desired to meet their specific needs, incrementally interact with and evolve the widget workflows, and save those workflows for reproducibility. Taking ideas from visual programming found in the art and design domain, debugging and iterative design principles from software engineering, and the scientific data processing and analysis power of Fortran and Python it was written for interactive, iterative data manipulation, quality control, processing, and analysis of inconsistent data in an easily installable application. DIT was used to completely translate one dataset (133 sites) that was successfully added to GTN-P, nearly translate three datasets (270 sites), and is scheduled to translate 10 more datasets ( 1000 sites) from the legacy inactive site data holdings of the Frozen Ground Data Center (FGDC). Iterative development has provided the permafrost and wider scientific community with an extendable tool designed specifically for the iterative process of translating unruly data.
Predicting Numbers of Problems in Development of Software
NASA Technical Reports Server (NTRS)
Simonds, Charles H.
2005-01-01
A method has been formulated to enable prediction of the amount of work that remains to be performed in developing flight software for a spacecraft. The basic concept embodied in the method is that of using an idealized curve (specifically, the Weibull function) to interpolate from (1) the numbers of problems discovered thus far to (2) a goal of discovering no new problems after launch (or six months into the future for software already in use in orbit). The steps of the method can be summarized as follows: 1. Take raw data in the form of problem reports (PRs), including the dates on which they are generated. 2. Remove, from the data collection, PRs that are subsequently withdrawn or to which no response is required. 3. Count the numbers of PRs created in 1-week periods and the running total number of PRs each week. 4. Perform the interpolation by making a least-squares fit of the Weibull function to (a) the cumulative distribution of PRs gathered thus far and (b) the goal of no more PRs after the currently anticipated launch date. The interpolation and the anticipated launch date are subject to iterative re-estimation.
AIRNOISE: A Tool for Preliminary Noise-Abatement Terminal Approach Route Design
NASA Technical Reports Server (NTRS)
Li, Jinhua; Sridhar, Banavar; Xue, Min; Ng, Hok
2016-01-01
Noise from aircraft in the airport vicinity is one of the leading aviation-induced environmental issues. The FAA developed the Integrated Noise Model (INM) and its replacement Aviation Environmental Design Tool (AEDT) software to assess noise impact resulting from all aviation activities. However, a software tool is needed that is simple to use for terminal route modification, quick and reasonably accurate for preliminary noise impact evaluation and flexible to be used for iterative design of optimal noise-abatement terminal routes. In this paper, we extend our previous work on developing a noise-abatement terminal approach route design tool, named AIRNOISE, to satisfy this criterion. First, software efficiency has been significantly increased by over tenfold using the C programming language instead of MATLAB. Moreover, a state-of-the-art high performance GPU-accelerated computing module is implemented that was tested to be hundreds time faster than the C implementation. Secondly, a Graphical User Interface (GUI) was developed allowing users to import current terminal approach routes and modify the routes interactively to design new terminal approach routes. The corresponding noise impacts are then calculated and displayed in the GUI in seconds. Finally, AIRNOISE was applied to Baltimore-Washington International Airport terminal approach route to demonstrate its usage.
SOFTWARE DESIGN FOR REAL-TIME SYSTEMS.
Real-time computer systems and real-time computations are defined for the purposes of this report. The design of software for real - time systems is...discussed, employing the concept that all real - time systems belong to one of two types. The types are classified according to the type of control...program used; namely: Pre-assigned Iterative Cycle and Real-time Queueing. The two types of real - time systems are described in general, with supplemental
Methods for Large-Scale Nonlinear Optimization.
1980-05-01
STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library
The Domain-Specific Software Architecture Program
1992-06-01
Kang, K.C; Cohen, S.C: Jess, J.A; Novak, W.E; Peterson, A.S. Feature- Oriented Domain Analysis ( FODA ) Feasibility Study. (CMU/SEI-90-TR-21, ADA235785...perspective of a con- trols engineer solving a problem using an iterative process of simulation and analysis . The CMU/SEI-92-SR-9 1 I ~math AnalysislP...for schedulability analysis and Markov processes for the determination of reliability. Software architectures are derived from these formal models. ORA
Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems
Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...
2012-01-01
Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less
NASA Technical Reports Server (NTRS)
Harris, J. E.; Blanchard, D. K.
1982-01-01
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini
2018-04-01
Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.
DEM Calibration Approach: design of experiment
NASA Astrophysics Data System (ADS)
Boikov, A. V.; Savelev, R. V.; Payor, V. A.
2018-05-01
The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.
ENVIRONMENTAL QUALITY INFORMATION SYSTEM - EQULS® - ITER
This project consisted of an evaluation of the Environmental Quality Information System (EQuIS) software designed by Earthsoft, Inc. as an environmental data management and analysis platform for monitoring and remediation projects. In consultation with the EQuIS vendor, six pri...
Liu, Yijin; Meirer, Florian; Williams, Phillip A.; Wang, Junyue; Andrews, Joy C.; Pianetta, Piero
2012-01-01
Transmission X-ray microscopy (TXM) has been well recognized as a powerful tool for non-destructive investigation of the three-dimensional inner structure of a sample with spatial resolution down to a few tens of nanometers, especially when combined with synchrotron radiation sources. Recent developments of this technique have presented a need for new tools for both system control and data analysis. Here a software package developed in MATLAB for script command generation and analysis of TXM data is presented. The first toolkit, the script generator, allows automating complex experimental tasks which involve up to several thousand motor movements. The second package was designed to accomplish computationally intense tasks such as data processing of mosaic and mosaic tomography datasets; dual-energy contrast imaging, where data are recorded above and below a specific X-ray absorption edge; and TXM X-ray absorption near-edge structure imaging datasets. Furthermore, analytical and iterative tomography reconstruction algorithms were implemented. The compiled software package is freely available. PMID:22338691
The eSMAF: a software for the assessment and follow-up of functional autonomy in geriatrics
Boissy, Patrick; Brière, Simon; Tousignant, Michel; Rousseau, Eric
2007-01-01
Background Functional status or disability forms the core of most assessment instruments used to identify mix and level of resources and services needed by older adults who possess common characteristics. The Functional Autonomy Measurement System (SMAF) is a 29-item scale measuring functional ability in five different areas. It has been recommended for use for home care, for allocation of chronic beds, for developing care plans in institutional settings and for epidemiological and evaluative studies. The SMAF can also be used with a case-mix classification system (Iso-SMAF) to allocate resources based on patients' functional autonomy characteristics. The objective of this project was to develop a software version of the SMAF to facilitate the evaluation of the functional status of older adults in health services research and to optimize the clinical decision-making process. Results The eSMAF was developed over an 24-month period using a modified waterfall software engineering process. Requirements and functional specifications were determined using focus groups of stakeholders. Different versions of the software were iteratively field-tested in clinical and research environments and software adaptations made accordingly. User documentation and online help were created to assist the deployment of the software. The software is available in French or English versions under a 30-day unregistered demonstration license or a free restricted registered academic license. It can be used locally on a Windows-based PC or over a network to input SMAF data into a database, search and aggregate client data according to clinical and/or administrative criteria, and generate summary or detailed reports of selected data sets for print or export to another database. Conclusion In the last year, the software has been successfully deployed in the clinical workflow of different institutions in research and clinical applications. The software performed relatively well in terms of stability and performance. Barriers to implementation included antiquated computer hardware, low computer literacy and access to IT support. Key factors for the deployment of the software included standardization of the workflow, user training and support. PMID:17298673
Advanced Software for Analysis of High-Speed Rolling-Element Bearings
NASA Technical Reports Server (NTRS)
Poplawski, J. V.; Rumbarger, J. H.; Peters, S. M.; Galatis, H.; Flower, R.
2003-01-01
COBRA-AHS is a package of advanced software for analysis of rigid or flexible shaft systems supported by rolling-element bearings operating at high speeds under complex mechanical and thermal loads. These loads can include centrifugal and thermal loads generated by motions of bearing components. COBRA-AHS offers several improvements over prior commercial bearing-analysis programs: It includes innovative probabilistic fatigue-life-estimating software that provides for computation of three-dimensional stress fields and incorporates stress-based (in contradistinction to prior load-based) mathematical models of fatigue life. It interacts automatically with the ANSYS finite-element code to generate finite-element models for estimating distributions of temperature and temperature-induced changes in dimensions in iterative thermal/dimensional analyses: thus, for example, it can be used to predict changes in clearances and thermal lockup. COBRA-AHS provides an improved graphical user interface that facilitates the iterative cycle of analysis and design by providing analysis results quickly in graphical form, enabling the user to control interactive runs without leaving the program environment, and facilitating transfer of plots and printed results for inclusion in design reports. Additional features include roller-edge stress prediction and influence of shaft and housing distortion on bearing performance.
High-Level Performance Modeling of SAR Systems
NASA Technical Reports Server (NTRS)
Chen, Curtis
2006-01-01
SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.
Telescience - Concepts And Contributions To The Extreme Ultraviolet Explorer Mission
NASA Astrophysics Data System (ADS)
Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.
1987-10-01
A goal of the telescience concept is to allow scientists to use remotely located instruments as they would in their laboratory. Another goal is to increase reliability and scientific return of these instruments. In this paper we discuss the role of transparent software tools in development, integration, and postlaunch environments to achieve hands on access to the instrument. The use of transparent tools helps to reduce the parallel development of capability and to assure that valuable pre-launch experience is not lost in the operations phase. We also discuss the use of simulation as a rapid prototyping technique. Rapid prototyping provides a cost-effective means of using an iterative approach to instrument design. By allowing inexpensive produc-tion of testbeds, scientists can quickly tune the instrument to produce the desired scientific data. Using portions of the Extreme Ultraviolet Explorer (EUVE) system, we examine some of the results of preliminary tests in the use of simulation and tran-sparent tools. Additionally, we discuss our efforts to upgrade our software "EUVE electronics" simulator to emulate a full instrument, and give the pros and cons of the simulation facilities we have developed.
Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.
2016-01-01
Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Ryan; Marger, Bernard L.; Chiu, Ailsa
During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on COTS surveys & exploratory prototyping related to the Object Storage & Distribution (OSD) mechanism, and the processing control software infrastructure. This report summarizes the E2 prototyping work.
Development of a Computer Architecture to Support the Optical Plume Anomaly Detection (OPAD) System
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1996-01-01
The NASA OPAD spectrometer system relies heavily on extensive software which repetitively extracts spectral information from the engine plume and reports the amounts of metals which are present in the plume. The development of this software is at a sufficiently advanced stage where it can be used in actual engine tests to provide valuable data on engine operation and health. This activity will continue and, in addition, the OPAD system is planned to be used in flight aboard space vehicles. The two implementations, test-stand and in-flight, may have some differing requirements. For example, the data stored during a test-stand experiment are much more extensive than in the in-flight case. In both cases though, the majority of the requirements are similar. New data from the spectrograph is generated at a rate of once every 0.5 sec or faster. All processing must be completed within this period of time to maintain real-time performance. Every 0.5 sec, the OPAD system must report the amounts of specific metals within the engine plume, given the spectral data. At present, the software in the OPAD system performs this function by solving the inverse problem. It uses powerful physics-based computational models (the SPECTRA code), which receive amounts of metals as inputs to produce the spectral data that would have been observed, had the same metal amounts been present in the engine plume. During the experiment, for every spectrum that is observed, an initial approximation is performed using neural networks to establish an initial metal composition which approximates as accurately as possible the real one. Then, using optimization techniques, the SPECTRA code is repetitively used to produce a fit to the data, by adjusting the metal input amounts until the produced spectrum matches the observed one to within a given level of tolerance. This iterative solution to the original problem of determining the metal composition in the plume requires a relatively long period of time to execute the software in a modern single-processor workstation, and therefore real-time operation is currently not possible. A different number of iterations may be required to perform spectral data fitting per spectral sample. Yet, the OPAD system must be designed to maintain real-time performance in all cases. Although faster single-processor workstations are available for execution of the fitting and SPECTRA software, this option is unattractive due to the excessive cost associated with very fast workstations and also due to the fact that such hardware is not easily expandable to accommodate future versions of the software which may require more processing power. Initial research has already demonstrated that the OPAD software can take advantage of a parallel computer architecture to achieve the necessary speedup. Current work has improved the software by converting it into a form which is easily parallelizable. Timing experiments have been performed to establish the computational complexity and execution speed of major components of the software. This work provides the foundation of future work which will create a fully parallel version of the software executing in a shared-memory multiprocessor system.
Traffic Aware Planner for Cockpit-Based Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Henderson, Jeffrey; Wing, David J.; Burke, Kelly A.
2016-01-01
The Traffic Aware Planner (TAP) software application is a cockpit-based advisory tool designed to be hosted on an Electronic Flight Bag and to enable and test the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR). The TASAR concept provides pilots with optimized route changes (including altitude) that reduce fuel burn and/or flight time, avoid interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a route and/or altitude change from Air Traffic Control. Developed using an iterative process, TAP's latest improvements include human-machine interface design upgrades and added functionality based on the results of human-in-the-loop simulation experiments and flight trials. Architectural improvements have been implemented to prepare the system for operational-use trials with partner commercial airlines. Future iterations will enhance coordination with airline dispatch and add functionality to improve the acceptability of TAP-generated route-change requests to pilots, dispatchers, and air traffic controllers.
Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator
NASA Astrophysics Data System (ADS)
Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita
2017-04-01
ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.
Sequentially Executed Model Evaluation Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-20
Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and I/O through the time domain (or other discrete domain), and sample I/O drivers. This is a library framework, and does not, itself, solve any problems or execute any modeling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Has applications in quality monitoring, and was developed as partmore » of the CANARY-EDS software, where real-time water quality data is being analyzed for anomalies.« less
Update on the status of the ITER ECE diagnostic design
NASA Astrophysics Data System (ADS)
Taylor, G.; Austin, M. E.; Basile, A.; Beno, J. H.; Danani, S.; Feder, R.; Houshmandyar, S.; Hubbard, A. E.; Johnson, D. W.; Khodak, A.; Kumar, R.; Kumar, S.; Ouroua, A.; Padasalagi, S. B.; Pandya, H. K. B.; Phillips, P. E.; Rowan, W. L.; Stillerman, J.; Thomas, S.; Udintsev, V. S.; Vayakis, G.; Walsh, M.; Weeks, D.
2017-07-01
Considerable progress has been made on the design of the ITER electron cyclotron emission (ECE) diagnostic over the past two years. Radial and oblique views are still included in the design in order to measure distortions in the electron momentum distribution, but the oblique view has been redirected to reduce stray millimeter radiation from the electron cyclotron heating system. A major challenge has been designing the 1000 K calibration sources and remotely activated mirrors located in the ECE diagnostic shield module (DSM) in the equatorial port plug #09. These critical systems are being modeled and prototypes are being developed. Providing adequate neutron shielding in the DSM while allowing sufficient space for optical components is also a significant challenge. Four 45-meter long low-loss transmission lines transport the 70-1000 GHz ECE from the DSM to the ECE instrumentation room. Prototype transmission lines are being tested, as are the polarization splitter modules that separate O-mode and X-mode polarized ECE. A highly integrated prototype 200-300 GHz radiometer is being tested on the DIII-D tokamak in the USA. Design activities also include integration of ECE signals into the ITER plasma control system and determining the hardware and software architecture needed to control and calibrate the ECE instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Roger T.; Crump, Thomas Vu
The work was created to provide a tool for the purpose of improving the management of tasks associated with Agile projects. Agile projects are typically completed in an iterative manner with many short duration tasks being performed as part of iterations. These iterations are generally referred to as sprints. The objective of this work is to create a single tool that enables sprint teams to manage all of their tasks in multiple sprints and automatically produce all standard sprint performance charts with minimum effort. The format of the printed work is designed to mimic a standard Kanban board. The workmore » is developed as a single Excel file with worksheets capable of managing up to five concurrent sprints and up to one hundred tasks. It also includes a summary worksheet providing performance information from all active sprints. There are many commercial project management systems typically designed with features desired by larger organizations with many resources managing multiple programs and projects. The audience for this work is the small organizations and Agile project teams desiring an inexpensive, simple, user-friendly, task management tool. This work uses standard readily available software, Excel, requiring minimum data entry and automatically creating summary charts and performance data. It is formatted to print out and resemble standard flip charts and provide the visuals associated with this type of work.« less
Tritium permeation model for plasma facing components
NASA Astrophysics Data System (ADS)
Longhurst, G. R.
1992-12-01
This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.
Park, Sophie Elizabeth; Thomas, James
2018-06-07
It can be challenging to decide which evidence synthesis software to choose when doing a systematic review. This article discusses some of the important questions to consider in relation to the chosen method and synthesis approach. Software can support researchers in a range of ways. Here, a range of review conditions and software solutions. For example, facilitating contemporaneous collaboration across time and geographical space; in-built bias assessment tools; and line-by-line coding for qualitative textual analysis. EPPI-Reviewer is a review software for research synthesis managed by the EPPI-centre, UCL Institute of Education. EPPI-Reviewer has text mining automation technologies. Version 5 supports data sharing and re-use across the systematic review community. Open source software will soon be released. EPPI-Centre will continue to offer the software as a cloud-based service. The software is offered via a subscription with a one-month (extendible) trial available and volume discounts for 'site licences'. It is free to use for Cochrane and Campbell reviews. The next EPPI-Reviewer version is being built in collaboration with National Institute for Health and Care Excellence using 'surveillance' of newly published research to support 'living' iterative reviews. This is achieved using a combination of machine learning and traditional information retrieval technologies to identify the type of research each new publication describes and determine its relevance for a particular review, domain or guideline. While the amount of available knowledge and research is constantly increasing, the ways in which software can support the focus and relevance of data identification are also developing fast. Software advances are maximising the opportunities for the production of relevant and timely reviews. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
An Exact Formula for Calculating Inverse Radial Lens Distortions
Drap, Pierre; Lefèvre, Julien
2016-01-01
This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view. PMID:27258288
Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O.
2016-01-01
A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems. PMID:28025566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Hu, Zhen; Guo, Terry N.
This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.
McDonald, James E; Kessler, Marcus M; Hightower, Jeremy L; Henry, Susan D; Deloney, Linda A
2013-12-01
With increasing volumes of complex imaging cases and rising economic pressure on physician staffing, timely reporting will become progressively challenging. Current and planned iterations of PACS and electronic medical record systems do not offer workflow management tools to coordinate delivery of imaging interpretations with the needs of the patient and ordering physician. The adoption of a server-based enterprise collaboration software system by our Division of Nuclear Medicine has significantly improved our efficiency and quality of service.
AAL service development loom--from the idea to a marketable business model.
Kriegel, Johannes; Auinger, Klemens
2015-01-01
The Ambient Assisted Living (AAL) market is still in an early stage of development. Previous approaches of comprehensive AAL services are mostly supply-side driven and focused on hardware and software. Usually this type of AAL solutions does not lead to a sustainable success on the market. Research and development increasingly focuses on demand and customer requirements in addition to the social and legal framework. The question is: How can a systematic performance measurement strategy along a service development process support the market-ready design of a concrete business model for AAL service? Within the EU funded research project DALIA (Assistant for Daily Life Activities at Home) an iterative service development process uses an adapted Osterwalder business model canvas. The application of a performance measurement index (PMI) to support the process has been developed and tested. Development of an iterative service development model using a supporting PMI. The PMI framework is developed throughout the engineering of a virtual assistant (AVATAR) as a modular interface to connect informal carers with necessary and useful services. Future research should seek to ensure that the PMI enables meaningful transparency regarding targeting (e.g. innovative AAL service), design (e.g. functional hybrid AAL service) and implementation (e.g. marketable AAL support services). To this end, a further reference to further testing practices is required. The aim must be to develop a weighted PMI in the context of further research, which supports both the service engineering and the subsequent service management process.
Implementing the Gaia Astrometric Global Iterative Solution (AGIS) in Java
NASA Astrophysics Data System (ADS)
O'Mullane, William; Lammers, Uwe; Lindegren, Lennart; Hernandez, Jose; Hobbs, David
2011-10-01
This paper provides a description of the Java software framework which has been constructed to run the Astrometric Global Iterative Solution for the Gaia mission. This is the mathematical framework to provide the rigid reference frame for Gaia observations from the Gaia data itself. This process makes Gaia a self calibrated, and input catalogue independent, mission. The framework is highly distributed typically running on a cluster of machines with a database back end. All code is written in the Java language. We describe the overall architecture and some of the details of the implementation.
Experiences Supporting the Lunar Reconnaissance Orbiter Camera: the Devops Model
NASA Astrophysics Data System (ADS)
Licht, A.; Estes, N. M.; Bowman-Cisnesros, E.; Hanger, C. D.
2013-12-01
Introduction: The Lunar Reconnaissance Orbiter Camera (LROC) Science Operations Center (SOC) is responsible for instrument targeting, product processing, and archiving [1]. The LROC SOC maintains over 1,000,000 observations with over 300 TB of released data. Processing challenges compound with the acquisition of over 400 Gbits of observations daily creating the need for a robust, efficient, and reliable suite of specialized software. Development Environment: The LROC SOC's software development methodology has evolved over time. Today, the development team operates in close cooperation with the systems administration team in a model known in the IT industry as DevOps. The DevOps model enables a highly productive development environment that facilitates accomplishment of key goals within tight schedules[2]. The LROC SOC DevOps model incorporates industry best practices including prototyping, continuous integration, unit testing, code coverage analysis, version control, and utilizing existing open source software. Scientists and researchers at LROC often prototype algorithms and scripts in a high-level language such as MATLAB or IDL. After the prototype is functionally complete the solution is implemented as production ready software by the developers. Following this process ensures that all controls and requirements set by the LROC SOC DevOps team are met. The LROC SOC also strives to enhance the efficiency of the operations staff by way of weekly presentations and informal mentoring. Many small scripting tasks are assigned to the cognizant operations personnel (end users), allowing for the DevOps team to focus on more complex and mission critical tasks. In addition to leveraging open source software the LROC SOC has also contributed to the open source community by releasing Lunaserv [3]. Findings: The DevOps software model very efficiently provides smooth software releases and maintains team momentum. Scientists prototyping their work has proven to be very efficient as developers do not need to spend time iterating over small changes. Instead, these changes are realized in early prototypes and implemented before the task is seen by developers. The development practices followed by the LROC SOC DevOps team help facilitate a high level of software quality that is necessary for LROC SOC operations. Application to the Scientific Community: There is no replacement for having software developed by professional developers. While it is beneficial for scientists to write software, this activity should be seen as prototyping, which is then made production ready by professional developers. When constructed properly, even a small development team has the ability to increase the rate of software development for a research group while creating more efficient, reliable, and maintainable products. This strategy allows scientists to accomplish more, focusing on teamwork, rather than software development, which may not be their primary focus. 1. Robinson et al. (2010) Space Sci. Rev. 150, 81-124 2. DeGrandis. (2011) Cutter IT Journal. Vol 24, No. 8, 34-39 3. Estes, N.M.; Hanger, C.D.; Licht, A.A.; Bowman-Cisneros, E.; Lunaserv Web Map Service: History, Implementation Details, Development, and Uses, http://adsabs.harvard.edu/abs/2013LPICo1719.2609E.
Implementing Software Safety in the NASA Environment
NASA Technical Reports Server (NTRS)
Wetherholt, Martha S.; Radley, Charles F.
1994-01-01
Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system.
NASA Astrophysics Data System (ADS)
Metzger, Stefan; Durden, David; Sturtevant, Cove; Luo, Hongyan; Pingintha-Durden, Natchaya; Sachs, Torsten; Serafimovich, Andrei; Hartmann, Jörg; Li, Jiahong; Xu, Ke; Desai, Ankur R.
2017-08-01
Large differences in instrumentation, site setup, data format, and operating system stymie the adoption of a universal computational environment for processing and analyzing eddy-covariance (EC) data. This results in limited software applicability and extensibility in addition to often substantial inconsistencies in flux estimates. Addressing these concerns, this paper presents the systematic development of portable, reproducible, and extensible EC software achieved by adopting a development and systems operation (DevOps) approach. This software development model is used for the creation of the eddy4R family of EC code packages in the open-source R language for statistical computing. These packages are community developed, iterated via the Git distributed version control system, and wrapped into a portable and reproducible Docker filesystem that is independent of the underlying host operating system. The HDF5 hierarchical data format then provides a streamlined mechanism for highly compressed and fully self-documented data ingest and output. The usefulness of the DevOps approach was evaluated for three test applications. First, the resultant EC processing software was used to analyze standard flux tower data from the first EC instruments installed at a National Ecological Observatory (NEON) field site. Second, through an aircraft test application, we demonstrate the modular extensibility of eddy4R to analyze EC data from other platforms. Third, an intercomparison with commercial-grade software showed excellent agreement (R2 = 1.0 for CO2 flux). In conjunction with this study, a Docker image containing the first two eddy4R packages and an executable example workflow, as well as first NEON EC data products are released publicly. We conclude by describing the work remaining to arrive at the automated generation of science-grade EC fluxes and benefits to the science community at large. This software development model is applicable beyond EC and more generally builds the capacity to deploy complex algorithms developed by scientists in an efficient and scalable manner. In addition, modularity permits meeting project milestones while retaining extensibility with time.
NASA Technical Reports Server (NTRS)
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves vectorization of the code on uni-processor hardware and enables straightforward parallel-vector processing of element blocks on multi-processor hardware.
NASA Astrophysics Data System (ADS)
Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.
2007-12-01
We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.
Keeping the Bootcamp Fun Alive!
This product is a blog post that outlines a course conducted to build on skills learned in a Software Carpentry Bootcamp co-hosted by AED researcher, Jeff Hollister. The post provides details on the course and some lessons learned that will be implemented in future iterations of...
USDA-ARS?s Scientific Manuscript database
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less
Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro
2012-10-15
There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.
Software use cases to elicit the software requirements analysis within the ASTRI project
NASA Astrophysics Data System (ADS)
Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo
2016-07-01
The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelic, Muhidin; Avramovic, Bozidar; Jiang, Tony
The objective of this project was to demonstrate functionality and performance of a Direct Non-iterative State Estimator (DNSE) integrated with NYPA’s Energy Management System (EMS) and with enhanced Real Time Dynamics Monitoring System (RTDMS) synchrophasor platform from Electric Power Group (EPG). DNSE is designed to overcome a major obstacle to operational use of Synchro-Phasor Management Systems (SPMS) by providing to synchrophasor management systems (SPMS) applications a consistent and a complete synchrophasor data foundation in the same way that a traditional EMS State Estimator (SE) provides to EMS applications. Specifically, DNSE is designed to use synchrophasor measurements collected by a centralmore » PDC, Supervisory Control and Data Acquisition (SCADA) measurements, and Energy Management System (EMS) network model, to obtain the complete state of the utility’s operating model at rates that are close to the synchrophasor data rates. In this way, the system is comprehensive in that it does not only cover the part of the network that is “visible” via synchrophasors, but also the part that is only “visible” through the SCADA measurements. Visualization needs associated with the use of DNSE results are fulfilled through suitably enhanced Real Time Dynamics Monitoring System (RTDMS), with the enhancements implemented by EPG. This project had the following goals in mind: To advance the deployment of commercial grade DNSE software application that relies on synchrophasor and SCADA data ; Apply DNSE at other utilities, to address a generic and fundamental need for “clean” operational data for synchrophasor applications; Provide means for “live” estimated data access by control system operators; Enhance potential for situational awareness through full system operational model coverage; Sub-second execution rate of the Direct Non-iterative State Estimator, eventually at a near-phasor data rate execution speed, i.e. < 0.1 sec. Anticipated benefits from this projects are: Enhanced reliability and improvements in the economic efficiency of bulk power system planning and operations; Providing “clean” data to other synchrophasor applications; Enhancement of situational awareness by providing the full operational model updated at near synchrophasor rate; A production-grade software tool that incorporate synchrophasor and SCADA data; Provides a basis for development of next generation monitoring and control applications, based on both SCADA and PMU data. Quanta Technology (QT) team worked in collaboration with Electric Power Group (EPG) whose team has enhanced its commercial Real Time Dynamics Monitoring System (RTDMS) to accommodate the requirements posed by DNSE application. EPG also provided its ePDC and Model-less Data Conditioning (PDVC) software for integration with DNSE+. QT developed the system requirements for DNSE; developed system architecture and defined interfaces between internal DNSE components. The core DNSE algorithm with all surrounding interfaces was named DNSE+. Since the DNSE development was done in a simulated system environment, QT used its PMU simulator that was enhanced during this project for development and factory acceptance testing (FAT). SCADA data in this stage was simulated by commercial PSS/e software. The output of DNSE are estimates of System states in C37.118-2 format, sent to RTDMS for further processing and display. As the number of these states is large, it was necessary to expand the C37.111-2 standard to accommodate large data sets. This enhancement was implemented in RTDMS. The demonstration of pre-production DNSE technology was done at NYPA using streaming field data from NYPA PMUs and from its RTUs through their SCADA system. NYPA provided ICCP interface as well as Common Information Model (CIM). The relevance of the DNSE+ application is that it provides state estimation of the power system based on hybrid set of data, consisting of both available PMU data and SCADA measurements. As this is a direct, non-iterative method of calculation of the system states, if does not suffer from convergence issues which is potential problem for conventional state estimators. Also, it can take any available PMU measurements, so it does not need to have a high percentage of PMU coverage needed in the case of Linear State Estimator. As the DNSE calculates synchrophasors of the system states (both phase and absolute value) as sub-second rate, this application can provide a basis for development of next generation of applications based both on SCADA and PMU data.« less
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.
2014-08-21
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and representmore » the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.« less
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
NASA Astrophysics Data System (ADS)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.
2014-08-01
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
Thakur, Shalabh; Guttman, David S
2016-06-30
Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .
A Model of Supervisor Decision-Making in the Accommodation of Workers with Low Back Pain.
Williams-Whitt, Kelly; Kristman, Vicki; Shaw, William S; Soklaridis, Sophie; Reguly, Paula
2016-09-01
Purpose To explore supervisors' perspectives and decision-making processes in the accommodation of back injured workers. Methods Twenty-three semi-structured, in-depth interviews were conducted with supervisors from eleven Canadian organizations about their role in providing job accommodations. Supervisors were identified through an on-line survey and interviews were recorded, transcribed and entered into NVivo software. The initial analyses identified common units of meaning, which were used to develop a coding guide. Interviews were coded, and a model of supervisor decision-making was developed based on the themes, categories and connecting ideas identified in the data. Results The decision-making model includes a process element that is described as iterative "trial and error" decision-making. Medical restrictions are compared to job demands, employee abilities and available alternatives. A feasible modification is identified through brainstorming and then implemented by the supervisor. Resources used for brainstorming include information, supervisor experience and autonomy, and organizational supports. The model also incorporates the experience of accommodation as a job demand that causes strain for the supervisor. Accommodation demands affect the supervisor's attitude, brainstorming and monitoring effort, and communication with returning employees. Resources and demands have a combined effect on accommodation decision complexity, which in turn affects the quality of the accommodation option selected. If the employee is unable to complete the tasks or is reinjured during the accommodation, the decision cycle repeats. More frequent iteration through the trial and error process reduces the likelihood of return to work success. Conclusion A series of propositions is developed to illustrate the relationships among categories in the model. The model and propositions show: (a) the iterative, problem solving nature of the RTW process; (b) decision resources necessary for accommodation planning, and (c) the impact accommodation demands may have on supervisors and RTW quality.
Iterated Function Systems in the Classroom
ERIC Educational Resources Information Center
Waiveris, Charles
2007-01-01
The title may appear daunting, but the exercises, which can be presented to students from middle school to graduate school, are not. The exercises center on creating fractal images in the xy-plane with free. easy-to-use software and questions appropriate to the level of the student.
Collaboration between Writers and Graphic Designers in Documentation Projects.
ERIC Educational Resources Information Center
Mirel, Barbara; And Others
1995-01-01
Analyzes collaborations between software manual writers and graphic designers to discover how their processes of collaboration directly affect the form of a finished manual. Identifies three models of collaboration: assembly line (linear drafting), swap meet (iterative drafting and joint problem solving), and symphony (codevelopment in every…
2009-09-01
SAS Statistical Analysis Software SE Systems Engineering SEP Systems Engineering Process SHP Shaft Horsepower SIGINT Signals Intelligence......management occurs (OSD 2002). The Systems Engineering Process (SEP), displayed in Figure 2, is a comprehensive , iterative and recursive problem
Nelson, Scott D; Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R
2016-01-01
Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system.
A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT
NASA Astrophysics Data System (ADS)
Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo
2016-11-01
Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.
The Verification-based Analysis of Reliable Multicast Protocol
NASA Technical Reports Server (NTRS)
Wu, Yunqing
1996-01-01
Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP Multicasting. In this paper, we develop formal models for R.W using existing automatic verification systems, and perform verification-based analysis on the formal RMP specifications. We also use the formal models of RW specifications to generate a test suite for conformance testing of the RMP implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress between the implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation.
Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, A.; Loesser, G.; Zhai, Y.
2015-07-24
We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution ofmore » the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.« less
Improving the Product Documentation Process of a Small Software Company
NASA Astrophysics Data System (ADS)
Valtanen, Anu; Ahonen, Jarmo J.; Savolainen, Paula
Documentation is an important part of the software process, even though it is often neglected in software companies. The eternal question is how much documentation is enough. In this article, we present a practical implementation of lightweight product documentation process resulting from SPI efforts in a small company. Small companies’ financial and human resources are often limited. The documentation process described here, offers a template for creating adequate documentation consuming minimal amount of resources. The key element of the documentation process is an open source web-based bugtracking system that was customized to be used as a documentation tool. The use of the tool enables iterative and well structured documentation. The solution best serves the needs of a small company with off-the-shelf software products and striving for SPI.
SCOS 2: An object oriented software development approach
NASA Technical Reports Server (NTRS)
Symonds, Martin; Lynenskjold, Steen; Mueller, Christian
1994-01-01
The Spacecraft Control and Operations System 2 (SCOS 2), is intended to provide the generic mission control system infrastructure for future ESA missions. It represents a bold step forward in order to take advantage of state-of-the-art technology and current practices in the area of software engineering. Key features include: (1) use of object oriented analysis and design techniques; (2) use of UNIX, C++ and a distributed architecture as the enabling implementation technology; (3) goal of re-use for development, maintenance and mission specific software implementation; and (4) introduction of the concept of a spacecraft control model. This paper touches upon some of the traditional beliefs surrounding Object Oriented development and describes their relevance to SCOS 2. It gives rationale for why particular approaches were adopted and others not, and describes the impact of these decisions. The development approach followed is discussed, highlighting the evolutionary nature of the overall process and the iterative nature of the various tasks carried out. The emphasis of this paper is on the process of the development with the following being covered: (1) the three phases of the SCOS 2 project - prototyping & analysis, design & implementation and configuration / delivery of mission specific systems; (2) the close cooperation and continual interaction with the users during the development; (3) the management approach - the split between client staff, industry and some of the required project management activities; (4) the lifecycle adopted being an enhancement of the ESA PSS-05 standard with SCOS 2 specific activities and approaches defined; and (5) an examination of some of the difficulties encountered and the solutions adopted. Finally, the lessons learned from the SCOS 2 experience are highlighted, identifying those issues to be used as feedback into future developments of this nature. This paper does not intend to describe the finished product and its operation, but focusing on the journey to arrive there, concentrating therefore on the process and not the products of the SCOS 2 software development.
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Virtual environment display for a 3D audio room simulation
NASA Technical Reports Server (NTRS)
Chapin, William L.; Foster, Scott H.
1992-01-01
The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.
Harvest: a web-based biomedical data discovery and reporting application development platform.
Italia, Michael J; Pennington, Jeffrey W; Ruth, Byron; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; Miller, Jeffrey; White, Peter S
2013-01-01
Biomedical researchers share a common challenge of making complex data understandable and accessible. This need is increasingly acute as investigators seek opportunities for discovery amidst an exponential growth in the volume and complexity of laboratory and clinical data. To address this need, we developed Harvest, an open source framework that provides a set of modular components to aid the rapid development and deployment of custom data discovery software applications. Harvest incorporates visual representations of multidimensional data types in an intuitive, web-based interface that promotes a real-time, iterative approach to exploring complex clinical and experimental data. The Harvest architecture capitalizes on standards-based, open source technologies to address multiple functional needs critical to a research and development environment, including domain-specific data modeling, abstraction of complex data models, and a customizable web client.
Origami: An Active Learning Exercise for Scrum Project Management
ERIC Educational Resources Information Center
Sibona, Christopher; Pourreza, Saba; Hill, Stephen
2018-01-01
Scrum is a popular project management model for iterative delivery of software that subscribes to Agile principles. This paper describes an origami active learning exercise to teach the principles of Scrum in management information systems courses. The exercise shows students how Agile methods respond to changes in requirements during project…
Solving Boltzmann and Fokker-Planck Equations Using Sparse Representation
2011-05-31
material science. We have com- puted the electronic structure of 2D quantum dot system, and compared the efficiency with the benchmark software OCTOPUS . For...one self-consistent iteration step with 512 electrons, OCTOPUS costs 1091 sec, and selected inversion costs 9.76 sec. The algorithm exhibits
ERIC Educational Resources Information Center
Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew
2015-01-01
Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…
Solving Rational Expectations Models Using Excel
ERIC Educational Resources Information Center
Strulik, Holger
2004-01-01
Simple problems of discrete-time optimal control can be solved using a standard spreadsheet software. The employed-solution method of backward iteration is intuitively understandable, does not require any programming skills, and is easy to implement so that it is suitable for classroom exercises with rational-expectations models. The author…
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
Goddard high resolution spectrograph science verification and data analysis
NASA Technical Reports Server (NTRS)
1992-01-01
The data analysis performed was to support the Orbital Verification (OV) and Science Verification (SV) of the GHRS was in the areas of the Digicon detector's performance and stability, wavelength calibration, and geomagnetic induced image motion. The results of the analyses are briefly described. Detailed results are given in the form of attachments. Specialized software was developed for the analyses. Calibration files were formatted according to the specifications in a Space Telescope Science report. IRAS images were restored of the Large Magellanic Cloud using a blocked iterative algorithm. The algorithm works with the raw data scans without regridding or interpolating the data on an equally spaced image grid.
Relative Displacement Method for Track-Structure Interaction
Ramos, Óscar Ramón; Pantaleón, Marcos J.
2014-01-01
The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard's specifications. PMID:24634610
Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface
NASA Astrophysics Data System (ADS)
Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai
2016-07-01
A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.
Deductive Evaluation: Formal Code Analysis With Low User Burden
NASA Technical Reports Server (NTRS)
Di Vito, Ben. L
2016-01-01
We describe a framework for symbolically evaluating iterative C code using a deductive approach that automatically discovers and proves program properties. Although verification is not performed, the method can infer detailed program behavior. Software engineering work flows could be enhanced by this type of analysis. Floyd-Hoare verification principles are applied to synthesize loop invariants, using a library of iteration-specific deductive knowledge. When needed, theorem proving is interleaved with evaluation and performed on the fly. Evaluation results take the form of inferred expressions and type constraints for values of program variables. An implementation using PVS (Prototype Verification System) is presented along with results for sample C functions.
Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-01-16
The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners formore » solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the problem of evaluating f(A)v which arises in statistical sampling. 11. As an application to the methods we developed, we tackled the problem of computing the diagonal of the inverse of a matrix. This arises in statistical applications as well as in many applications in physics. We explored probing methods as well as domain-decomposition type methods. 12. A collaboration with researchers from Toulouse, France, considered the important problem of computing the Schur complement in a domain-decomposition approach. 13. We explored new ways of preconditioning linear systems, based on low-rank approximations.« less
PARALLELISATION OF THE MODEL-BASED ITERATIVE RECONSTRUCTION ALGORITHM DIRA.
Örtenberg, A; Magnusson, M; Sandborg, M; Alm Carlsson, G; Malusek, A
2016-06-01
New paradigms for parallel programming have been devised to simplify software development on multi-core processors and many-core graphical processing units (GPU). Despite their obvious benefits, the parallelisation of existing computer programs is not an easy task. In this work, the use of the Open Multiprocessing (OpenMP) and Open Computing Language (OpenCL) frameworks is considered for the parallelisation of the model-based iterative reconstruction algorithm DIRA with the aim to significantly shorten the code's execution time. Selected routines were parallelised using OpenMP and OpenCL libraries; some routines were converted from MATLAB to C and optimised. Parallelisation of the code with the OpenMP was easy and resulted in an overall speedup of 15 on a 16-core computer. Parallelisation with OpenCL was more difficult owing to differences between the central processing unit and GPU architectures. The resulting speedup was substantially lower than the theoretical peak performance of the GPU; the cause was explained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A workflow learning model to improve geovisual analytics utility
Roth, Robert E; MacEachren, Alan M; McCabe, Craig A
2011-01-01
Introduction This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. Objectives The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. Methodology The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. Results/Conclusions In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009. PMID:21983545
A workflow learning model to improve geovisual analytics utility.
Roth, Robert E; Maceachren, Alan M; McCabe, Craig A
2009-01-01
INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. RESULTS/CONCLUSIONS: In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009.
Skonnord, Trygve; Steen, Finn; Skjeie, Holgeir; Fetveit, Arne; Brekke, Mette; Klovning, Atle
2016-11-22
Electronic questionnaires can ease data collection in randomized controlled trials (RCTs) in clinical practice. We found no existing software that could automate the sending of emails to participants enrolled into an RCT at different study participant inclusion time points. Our aim was to develop suitable software to facilitate data collection in an ongoing multicenter RCT of low back pain (the Acuback study). For the Acuback study, we determined that we would need to send a total of 5130 emails to 270 patients recruited at different centers and at 19 different time points. The first version of the software was tested in a pilot study in November 2013 but was unable to deliver multiuser or Web-based access. We resolved these shortcomings in the next version, which we tested on the Web in February 2014. Our new version was able to schedule and send the required emails in the full-scale Acuback trial that started in March 2014. The system architecture evolved through an iterative, inductive process between the project study leader and the software programmer. The program was tested and updated when errors occurred. To evaluate the development of the software, we used a logbook, a research assistant dialogue, and Acuback trial participant queries. We have developed a Web-based app, Survey Email Scheduling and Monitoring in eRCTs (SESAMe), that monitors responses in electronic surveys and sends reminders by emails or text messages (short message service, SMS) to participants. The overall response rate for the 19 surveys in the Acuback study increased from 76.4% (655/857) before we introduced reminders to 93.11% (1149/1234) after the new function (P<.001). Further development will aim at securing encryption and data storage. The SESAMe software facilitates consecutive patient data collection in RCTs and can be used to increase response rates and quality of research, both in general practice and in other clinical trial settings. ©Trygve Skonnord, Finn Steen, Holgeir Skjeie, Arne Fetveit, Mette Brekke, Atle Klovning. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.11.2016.
NASA Astrophysics Data System (ADS)
Babaali, Parisa; Gonzalez, Lidia
2015-07-01
Supporting student success in entry-level mathematics courses at the undergraduate level has and continues to be a challenge. Recently we have seen an increased reliance on technological supports including software to supplement more traditional in-class instruction. In this paper, we explore the effects on student performance of the use of a computer software program to supplement instruction in an entry-level mathematics course at the undergraduate level, specifically, a pre-calculus course. Relying on data from multiple sections of the course over various semesters, we compare student performance in those classes utilizing the software against those in which it was not used. Quantitative analysis of the data then leads us to conclusions about the effectiveness of the software as well as recommendations for future iterations of the course and others like it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Catherine
2015-08-20
Ptychography is an advanced diffraction based imaging technique that can achieve resolution of 5nm and below. It is done by scanning a sample through a beam of focused x-rays using discrete yet overlapping scan steps. Scattering data is collected on a CCD camera, and the phase of the scattered light is reconstructed with sophisticated iterative algorithms. Because the experimental setup is similar, ptychography setups can be created by retrofitting existing STXM beam lines with new hardware. The other challenge comes in the reconstruction of the collected scattering images. Scattering data must be adjusted and packaged with experimental parameters to calibratemore » the reconstruction software. The necessary pre-processing of data prior to reconstruction is unique to each beamline setup, and even the optical alignments used on that particular day. Pre-processing software must be developed to be flexible and efficient in order to allow experiments appropriate control and freedom in the analysis of their hard-won data. This paper will describe the implementation of pre-processing software which successfully connects data collection steps to reconstruction steps, letting the user accomplish accurate and reliable ptychography.« less
Reusable Ada Software for Command and Control Workstation Map Manipulation
1992-06-18
h-.. I.. b 1 .. hm . T.... ~ N -k.L A..-bt ... ~ 4.g -np ft. Figure 15. The Main Display Storyboard (final iteration) are other panels not shown which...Defense, October 1988. 18. Defense Mapping Agency, Products Catalog, Digitizing The Future, 3d ed., Department of Defense, No Date. 183 19. Deitel , H
Defensive Swarm: An Agent Based Modeling Analysis
2017-12-01
INITIAL ALGORITHM (SINGLE- RUN ) TESTING .........................43 1. Patrol Algorithm—Passive...scalability are therefore quite important to modeling in this highly variable domain. One can force the software to run the gamut of options to see...changes in operating constructs or procedures. Additionally, modelers can run thousands of iterations testing the model under different circumstances
The Use of Computer-Assisted Identification of ARIMA Time-Series.
ERIC Educational Resources Information Center
Brown, Roger L.
This study was conducted to determine the effects of using various levels of tutorial statistical software for the tentative identification of nonseasonal ARIMA models, a statistical technique proposed by Box and Jenkins for the interpretation of time-series data. The Box-Jenkins approach is an iterative process encompassing several stages of…
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
The specification-based validation of reliable multicast protocol: Problem Report. M.S. Thesis
NASA Technical Reports Server (NTRS)
Wu, Yunqing
1995-01-01
Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP multicasting. In this report, we develop formal models for RMP using existing automated verification systems, and perform validation on the formal RMP specifications. The validation analysis help identifies some minor specification and design problems. We also use the formal models of RMP to generate a test suite for conformance testing of the implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress of implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation.
The methodology of the gas turbine efficiency calculation
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Job, Marcin; Brzęczek, Mateusz; Nawrat, Krzysztof; Mędrych, Janusz
2016-12-01
In the paper a calculation methodology of isentropic efficiency of a compressor and turbine in a gas turbine installation on the basis of polytropic efficiency characteristics is presented. A gas turbine model is developed into software for power plant simulation. There are shown the calculation algorithms based on iterative model for isentropic efficiency of the compressor and for isentropic efficiency of the turbine based on the turbine inlet temperature. The isentropic efficiency characteristics of the compressor and the turbine are developed by means of the above mentioned algorithms. The gas turbine development for the high compressor ratios was the main driving force for this analysis. The obtained gas turbine electric efficiency characteristics show that an increase of pressure ratio above 50 is not justified due to the slight increase in the efficiency with a significant increase of turbine inlet combustor outlet and temperature.
A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures
2014-01-01
Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in this work are freely available at http://www.cs.ubc.ca/~hjabbari/software.php. PMID:24884954
[Numerical finite element modeling of custom car seat using computer aided design].
Huang, Xuqi; Singare, Sekou
2014-02-01
A good cushion can not only provide the sitter with a high comfort, but also control the distribution of the hip pressure to reduce the incidence of diseases. The purpose of this study is to introduce a computer-aided design (CAD) modeling method of the buttocks-cushion using numerical finite element (FE) simulation to predict the pressure distribution on the buttocks-cushion interface. The buttock and the cushion model geometrics were acquired from a laser scanner, and the CAD software was used to create the solid model. The FE model of a true seated individual was developed using ANSYS software (ANSYS Inc, Canonsburg, PA). The model is divided into two parts, i.e. the cushion model made of foam and the buttock model represented by the pelvis covered with a soft tissue layer. Loading simulations consisted of imposing a vertical force of 520N on the pelvis, corresponding to the weight of the user upper extremity, and then solving iteratively the system.
Ophus, Colin; Rasool, Haider I.; Linck, Martin; ...
2016-11-30
We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ophus, Colin; Rasool, Haider I.; Linck, Martin
We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less
Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.
Arganda-Carreras, Ignacio; Andrey, Philippe
2017-01-01
With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.
NASA Astrophysics Data System (ADS)
Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk
2015-04-01
In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.
ROSE::FTTransform - A Source-to-Source Translation Framework for Exascale Fault-Tolerance Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lidman, J; Quinlan, D; Liao, C
2012-03-26
Exascale computing systems will require sufficient resilience to tolerate numerous types of hardware faults while still assuring correct program execution. Such extreme-scale machines are expected to be dominated by processors driven at lower voltages (near the minimum 0.5 volts for current transistors). At these voltage levels, the rate of transient errors increases dramatically due to the sensitivity to transient and geographically localized voltage drops on parts of the processor chip. To achieve power efficiency, these processors are likely to be streamlined and minimal, and thus they cannot be expected to handle transient errors entirely in hardware. Here we present anmore » open, compiler-based framework to automate the armoring of High Performance Computing (HPC) software to protect it from these types of transient processor errors. We develop an open infrastructure to support research work in this area, and we define tools that, in the future, may provide more complete automated and/or semi-automated solutions to support software resiliency on future exascale architectures. Results demonstrate that our approach is feasible, pragmatic in how it can be separated from the software development process, and reasonably efficient (0% to 30% overhead for the Jacobi iteration on common hardware; and 20%, 40%, 26%, and 2% overhead for a randomly selected subset of benchmarks from the Livermore Loops [1]).« less
Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging
NASA Astrophysics Data System (ADS)
Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector
2016-02-01
Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1
Progress in Development of the ITER Plasma Control System Simulation Platform
NASA Astrophysics Data System (ADS)
Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel
2017-10-01
We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
Neubeck, Lis; Coorey, Genevieve; Peiris, David; Mulley, John; Heeley, Emma; Hersch, Fred; Redfern, Julie
2016-12-01
Cardiovascular disease is the leading killer globally and secondary prevention substantially reduces risk. Uptake of, and adherence to, face-to-face preventive programs is often low. Alternative models of care are exploiting the prominence of technology in daily life to facilitate lifestyle behavior change. To inform the development of a web-based application integrated with the primary care electronic health record, we undertook a collaborative user-centered design process to develop a consumer-focused e-health tool for cardiovascular disease risk reduction. A four-phase iterative process involved ten multidisciplinary clinicians and academics (primary care physician, nurses and allied health professionals), two design consultants, one graphic designer, three software developers and fourteen proposed end-users. This 18-month process involved, (1) defining the target audience and needs, (2) pilot testing and refinement, (3) software development including validation and testing the algorithm, (4) user acceptance testing and beta testing. From this process, researchers were able to better understand end-user needs and preferences, thereby improving and enriching the increasingly detailed system designs and prototypes for a mobile responsive web application. We reviewed 14 relevant applications/websites and sixteen observational and interventional studies to derive a set of core components and ideal features for the system. These included the need for interactivity, visual appeal, credible health information, virtual rewards, and emotional and physical support. The features identified as essential were: (i) both mobile and web-enabled 'apps', (ii) an emphasis on medication management, (iii) a strong psychosocial support component. Subsequent workshops (n=6; 2×1.5h) informed the development of functionality and lo-fidelity sketches of application interfaces. These ideas were next tested in consumer focus groups (n=9; 3×1.5h). Specifications for the application were refined from this feedback and a graphic designer iteratively developed the interface. Concurrently, the electronic health record was linked to the consumer portal. A written description of the final algorithms for all decisions and outputs was provided to software programmers. These algorithmic outputs to the app were first validated against those obtained from an independently programmed version in STATA 11. User acceptance testing (n=5, 2×1.0h) and beta testing revealed technical bugs and interface concerns across commonly-used web browsers and smartphones. These were resolved and re-tested until functionality was optimized. End-users of a cardiovascular disease prevention program have complex needs. A user-centered design approach aided the integration of these needs into the concept, specifications, development and refinement of a responsive web application for risk factor reduction and disease prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Baldwin, Krystal L; Kannan, Vaishnavi; Flahaven, Emily L; Parks, Cassandra J; Ott, Jason M; Willett, Duwayne L
2018-01-01
Background Moving to electronic health records (EHRs) confers substantial benefits but risks unintended consequences. Modern EHRs consist of complex software code with extensive local configurability options, which can introduce defects. Defects in clinical decision support (CDS) tools are surprisingly common. Feasible approaches to prevent and detect defects in EHR configuration, including CDS tools, are needed. In complex software systems, use of test–driven development and automated regression testing promotes reliability. Test–driven development encourages modular, testable design and expanding regression test coverage. Automated regression test suites improve software quality, providing a “safety net” for future software modifications. Each automated acceptance test serves multiple purposes, as requirements (prior to build), acceptance testing (on completion of build), regression testing (once live), and “living” design documentation. Rapid-cycle development or “agile” methods are being successfully applied to CDS development. The agile practice of automated test–driven development is not widely adopted, perhaps because most EHR software code is vendor-developed. However, key CDS advisory configuration design decisions and rules stored in the EHR may prove amenable to automated testing as “executable requirements.” Objective We aimed to establish feasibility of acceptance test–driven development of clinical decision support advisories in a commonly used EHR, using an open source automated acceptance testing framework (FitNesse). Methods Acceptance tests were initially constructed as spreadsheet tables to facilitate clinical review. Each table specified one aspect of the CDS advisory’s expected behavior. Table contents were then imported into a test suite in FitNesse, which queried the EHR database to automate testing. Tests and corresponding CDS configuration were migrated together from the development environment to production, with tests becoming part of the production regression test suite. Results We used test–driven development to construct a new CDS tool advising Emergency Department nurses to perform a swallowing assessment prior to administering oral medication to a patient with suspected stroke. Test tables specified desired behavior for (1) applicable clinical settings, (2) triggering action, (3) rule logic, (4) user interface, and (5) system actions in response to user input. Automated test suite results for the “executable requirements” are shown prior to building the CDS alert, during build, and after successful build. Conclusions Automated acceptance test–driven development and continuous regression testing of CDS configuration in a commercial EHR proves feasible with open source software. Automated test–driven development offers one potential contribution to achieving high-reliability EHR configuration. Vetting acceptance tests with clinicians elicits their input on crucial configuration details early during initial CDS design and iteratively during rapid-cycle optimization. PMID:29653922
Basit, Mujeeb A; Baldwin, Krystal L; Kannan, Vaishnavi; Flahaven, Emily L; Parks, Cassandra J; Ott, Jason M; Willett, Duwayne L
2018-04-13
Moving to electronic health records (EHRs) confers substantial benefits but risks unintended consequences. Modern EHRs consist of complex software code with extensive local configurability options, which can introduce defects. Defects in clinical decision support (CDS) tools are surprisingly common. Feasible approaches to prevent and detect defects in EHR configuration, including CDS tools, are needed. In complex software systems, use of test-driven development and automated regression testing promotes reliability. Test-driven development encourages modular, testable design and expanding regression test coverage. Automated regression test suites improve software quality, providing a "safety net" for future software modifications. Each automated acceptance test serves multiple purposes, as requirements (prior to build), acceptance testing (on completion of build), regression testing (once live), and "living" design documentation. Rapid-cycle development or "agile" methods are being successfully applied to CDS development. The agile practice of automated test-driven development is not widely adopted, perhaps because most EHR software code is vendor-developed. However, key CDS advisory configuration design decisions and rules stored in the EHR may prove amenable to automated testing as "executable requirements." We aimed to establish feasibility of acceptance test-driven development of clinical decision support advisories in a commonly used EHR, using an open source automated acceptance testing framework (FitNesse). Acceptance tests were initially constructed as spreadsheet tables to facilitate clinical review. Each table specified one aspect of the CDS advisory's expected behavior. Table contents were then imported into a test suite in FitNesse, which queried the EHR database to automate testing. Tests and corresponding CDS configuration were migrated together from the development environment to production, with tests becoming part of the production regression test suite. We used test-driven development to construct a new CDS tool advising Emergency Department nurses to perform a swallowing assessment prior to administering oral medication to a patient with suspected stroke. Test tables specified desired behavior for (1) applicable clinical settings, (2) triggering action, (3) rule logic, (4) user interface, and (5) system actions in response to user input. Automated test suite results for the "executable requirements" are shown prior to building the CDS alert, during build, and after successful build. Automated acceptance test-driven development and continuous regression testing of CDS configuration in a commercial EHR proves feasible with open source software. Automated test-driven development offers one potential contribution to achieving high-reliability EHR configuration. Vetting acceptance tests with clinicians elicits their input on crucial configuration details early during initial CDS design and iteratively during rapid-cycle optimization. ©Mujeeb A Basit, Krystal L Baldwin, Vaishnavi Kannan, Emily L Flahaven, Cassandra J Parks, Jason M Ott, Duwayne L Willett. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018.
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali
2016-01-01
This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.
Ellis, Heidi J C; Nowling, Ronald J; Vyas, Jay; Martyn, Timothy O; Gryk, Michael R
2011-04-11
The CONNecticut Joint University Research (CONNJUR) team is a group of biochemical and software engineering researchers at multiple institutions. The vision of the team is to develop a comprehensive application that integrates a variety of existing analysis tools with workflow and data management to support the process of protein structure determination using Nuclear Magnetic Resonance (NMR). The use of multiple disparate tools and lack of data management, currently the norm in NMR data processing, provides strong motivation for such an integrated environment. This manuscript briefly describes the domain of NMR as used for protein structure determination and explains the formation of the CONNJUR team and its operation in developing the CONNJUR application. The manuscript also describes the evolution of the CONNJUR application through four prototypes and describes the challenges faced while developing the CONNJUR application and how those challenges were met.
Robot Manipulator Technologies for Planetary Exploration
NASA Technical Reports Server (NTRS)
Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.
1999-01-01
NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.
Functional design to support CDTI/DABS flight experiments
NASA Technical Reports Server (NTRS)
Goka, T.
1982-01-01
The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.
Jongstra, Susan; Beishuizen, Cathrien; Andrieu, Sandrine; Barbera, Mariagnese; van Dorp, Matthijs; van de Groep, Bram; Guillemont, Juliette; Mangialasche, Francesca; van Middelaar, Tessa; Moll van Charante, Eric; Soininen, Hilkka; Kivipelto, Miia; Richard, Edo
2017-02-01
A myriad of Web-based applications on self-management have been developed, but few focus on older people. In the face of global aging, older people form an important target population for cardiovascular prevention. This article describes the full development of an interactive Internet platform for older people, which was designed for the Healthy Ageing Through Internet Counselling in the Elderly (HATICE) study. We provide recommendations to design senior-friendly Web-based applications for a new approach to multicomponent cardiovascular prevention. The development of the platform followed five phases: (1) conceptual framework; (2) platform concept and functional design; (3) platform building (software and content); (4) testing and pilot study; and (5) final product. We performed a meta-analysis, reviewed guidelines for cardiovascular diseases, and consulted end users, experts, and software developers to create the platform concept and content. The software was built in iterative cycles. In the pilot study, 41 people aged ≥65 years used the platform for 8 weeks. Participants used the interactive features of the platform and appreciated the coach support. During all phases adjustments were made to incorporate all improvements from the previous phases. The final platform is a personal, secured, and interactive platform supported by a coach. When carefully designed, an interactive Internet platform is acceptable and feasible for use by older people with basic computer skills. To improve acceptability by older people, we recommend involving the end users in the process of development, to personalize the platform and to combine the application with human support. The interactive HATICE platform will be tested for efficacy in a multinational randomized controlled trial (ISRCTN48151589).
Strehl-constrained iterative blind deconvolution for post-adaptive-optics data
NASA Astrophysics Data System (ADS)
Desiderà, G.; Carbillet, M.
2009-12-01
Aims: We aim to improve blind deconvolution applied to post-adaptive-optics (AO) data by taking into account one of their basic characteristics, resulting from the necessarily partial AO correction: the Strehl ratio. Methods: We apply a Strehl constraint in the framework of iterative blind deconvolution (IBD) of post-AO near-infrared images simulated in a detailed end-to-end manner and considering a case that is as realistic as possible. Results: The results obtained clearly show the advantage of using such a constraint, from the point of view of both performance and stability, especially for poorly AO-corrected data. The proposed algorithm has been implemented in the freely-distributed and CAOS-based Software Package AIRY.
Interaction design challenges and solutions for ALMA operations monitoring and control
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar
2012-09-01
The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.
2017-01-01
Background Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients’ adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. Objective The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype? Methods The telerehabilitation platform was developed using an iterative user-centered design process. In the first phase, a questionnaire followed by a semistructured interview was used to identify the user requirements of both the patients and their physical and occupational therapists, which were then prioritized using a decision matrix. The second phase involved designing the interface of the telerehabilitation platform using design sketches, wireframes, and interface mock-ups to develop a low-fidelity prototype. Heuristic evaluation resulted in a medium-fidelity prototype whose usability was tested in routine care in the final phase, leading to the development of a high-fidelity prototype. Results A total of 7 categories of patient requirements were identified: monitoring, exercise programs, communication, settings, background information, log-in, and general requirements. One additional category emerged for therapists: patient management. Based on these requirements, patient and therapist interfaces for the telerehabilitation platform were developed and redesigned by the software development team in an iterative process, addressing the usability problems that were reported by the users during 4 weeks of field testing in routine care. Conclusions Our findings underline the importance of involving the users and other stakeholders early and continuously in an iterative design process, as well as the need for clear criteria to identify critical user requirements. A decision matrix is presented that incorporates the views of various stakeholders in systematically rating and prioritizing user requirements. The findings and lessons learned might help health care providers, researchers, software designers, and other stakeholders in designing and evaluating new teletreatments, and hopefully increase the likelihood of user acceptance. PMID:28582249
Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains
Bunting, Gregory; Prakash, Arun; Walsh, Timothy; ...
2018-01-26
Exterior acoustic problems occur in a wide range of applications, making the finite element analysis of such problems a common practice in the engineering community. Various methods for truncating infinite exterior domains have been developed, including absorbing boundary conditions, infinite elements, and more recently, perfectly matched layers (PML). PML are gaining popularity due to their generality, ease of implementation, and effectiveness as an absorbing boundary condition. PML formulations have been developed in Cartesian, cylindrical, and spherical geometries, but not ellipsoidal. In addition, the parallel solution of PML formulations with iterative solvers for the solution of the Helmholtz equation, and howmore » this compares with more traditional strategies such as infinite elements, has not been adequately investigated. In this study, we present a parallel, ellipsoidal PML formulation for acoustic Helmholtz problems. To faciliate the meshing process, the ellipsoidal PML layer is generated with an on-the-fly mesh extrusion. Though the complex stretching is defined along ellipsoidal contours, we modify the Jacobian to include an additional mapping back to Cartesian coordinates in the weak formulation of the finite element equations. This allows the equations to be solved in Cartesian coordinates, which is more compatible with existing finite element software, but without the necessity of dealing with corners in the PML formulation. Herein we also compare the conditioning and performance of the PML Helmholtz problem with infinite element approach that is based on high order basis functions. On a set of representative exterior acoustic examples, we show that high order infinite element basis functions lead to an increasing number of Helmholtz solver iterations, whereas for PML the number of iterations remains constant for the same level of accuracy. Finally, this provides an additional advantage of PML over the infinite element approach.« less
Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Gregory; Prakash, Arun; Walsh, Timothy
Exterior acoustic problems occur in a wide range of applications, making the finite element analysis of such problems a common practice in the engineering community. Various methods for truncating infinite exterior domains have been developed, including absorbing boundary conditions, infinite elements, and more recently, perfectly matched layers (PML). PML are gaining popularity due to their generality, ease of implementation, and effectiveness as an absorbing boundary condition. PML formulations have been developed in Cartesian, cylindrical, and spherical geometries, but not ellipsoidal. In addition, the parallel solution of PML formulations with iterative solvers for the solution of the Helmholtz equation, and howmore » this compares with more traditional strategies such as infinite elements, has not been adequately investigated. In this study, we present a parallel, ellipsoidal PML formulation for acoustic Helmholtz problems. To faciliate the meshing process, the ellipsoidal PML layer is generated with an on-the-fly mesh extrusion. Though the complex stretching is defined along ellipsoidal contours, we modify the Jacobian to include an additional mapping back to Cartesian coordinates in the weak formulation of the finite element equations. This allows the equations to be solved in Cartesian coordinates, which is more compatible with existing finite element software, but without the necessity of dealing with corners in the PML formulation. Herein we also compare the conditioning and performance of the PML Helmholtz problem with infinite element approach that is based on high order basis functions. On a set of representative exterior acoustic examples, we show that high order infinite element basis functions lead to an increasing number of Helmholtz solver iterations, whereas for PML the number of iterations remains constant for the same level of accuracy. Finally, this provides an additional advantage of PML over the infinite element approach.« less
Application of a neural network to simulate analysis in an optimization process
NASA Technical Reports Server (NTRS)
Rogers, James L.; Lamarsh, William J., II
1992-01-01
A new experimental software package called NETS/PROSSS aimed at reducing the computing time required to solve a complex design problem is described. The software combines a neural network for simulating the analysis program with an optimization program. The neural network is applied to approximate results of a finite element analysis program to quickly obtain a near-optimal solution. Results of the NETS/PROSSS optimization process can also be used as an initial design in a normal optimization process and make it possible to converge to an optimum solution with significantly fewer iterations.
2014-01-01
Background According to the latest amendment of the Medical Device Directive standalone software qualifies as a medical device when intended by the manufacturer to be used for medical purposes. In this context, the EN 62304 standard is applicable which defines the life-cycle requirements for the development and maintenance of medical device software. A pilot project was launched to acquire skills in implementing this standard in a hospital-based environment (in-house manufacture). Methods The EN 62304 standard outlines minimum requirements for each stage of the software life-cycle, defines the activities and tasks to be performed and scales documentation and testing according to its criticality. The required processes were established for the pre-existent decision-support software FlashDumpComparator (FDC) used during the quality assurance of treatment-relevant beam parameters. As the EN 62304 standard implicates compliance with the EN ISO 14971 standard on the application of risk management to medical devices, a risk analysis was carried out to identify potential hazards and reduce the associated risks to acceptable levels. Results The EN 62304 standard is difficult to implement without proper tools, thus open-source software was selected and integrated into a dedicated development platform. The control measures yielded by the risk analysis were independently implemented and verified, and a script-based test automation was retrofitted to reduce the associated test effort. After all documents facilitating the traceability of the specified requirements to the corresponding tests and of the control measures to the proof of execution were generated, the FDC was released as an accessory to the HIT facility. Conclusions The implementation of the EN 62304 standard was time-consuming, and a learning curve had to be overcome during the first iterations of the associated processes, but many process descriptions and all software tools can be re-utilized in follow-up projects. It has been demonstrated that a standards-compliant development of small and medium-sized medical software can be carried out by a small team with limited resources in a clinical setting. This is of particular relevance as the upcoming revision of the Medical Device Directive is expected to harmonize and tighten the current legal requirements for all European in-house manufacturers. PMID:24655818
Höss, Angelika; Lampe, Christian; Panse, Ralf; Ackermann, Benjamin; Naumann, Jakob; Jäkel, Oliver
2014-03-21
According to the latest amendment of the Medical Device Directive standalone software qualifies as a medical device when intended by the manufacturer to be used for medical purposes. In this context, the EN 62304 standard is applicable which defines the life-cycle requirements for the development and maintenance of medical device software. A pilot project was launched to acquire skills in implementing this standard in a hospital-based environment (in-house manufacture). The EN 62304 standard outlines minimum requirements for each stage of the software life-cycle, defines the activities and tasks to be performed and scales documentation and testing according to its criticality. The required processes were established for the pre-existent decision-support software FlashDumpComparator (FDC) used during the quality assurance of treatment-relevant beam parameters. As the EN 62304 standard implicates compliance with the EN ISO 14971 standard on the application of risk management to medical devices, a risk analysis was carried out to identify potential hazards and reduce the associated risks to acceptable levels. The EN 62304 standard is difficult to implement without proper tools, thus open-source software was selected and integrated into a dedicated development platform. The control measures yielded by the risk analysis were independently implemented and verified, and a script-based test automation was retrofitted to reduce the associated test effort. After all documents facilitating the traceability of the specified requirements to the corresponding tests and of the control measures to the proof of execution were generated, the FDC was released as an accessory to the HIT facility. The implementation of the EN 62304 standard was time-consuming, and a learning curve had to be overcome during the first iterations of the associated processes, but many process descriptions and all software tools can be re-utilized in follow-up projects. It has been demonstrated that a standards-compliant development of small and medium-sized medical software can be carried out by a small team with limited resources in a clinical setting. This is of particular relevance as the upcoming revision of the Medical Device Directive is expected to harmonize and tighten the current legal requirements for all European in-house manufacturers.
Stability and periodicity in the Sitnikov three-body problem when primaries are oblate spheroids
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Garain, D. N.; Hassan, M. R.
2015-05-01
This paper deals with the effect of oblateness of the primaries of equal masses on the series solutions of the Sitnikov problem of three bodies. Effects of oblateness have also been shown on the stability of libration points and Poincare surface of section. Here series solutions have been developed with the help of iteration process of Green's function and by the Lindstedt-Poincare method. Following Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) we have checked the stability of the equilibrium points in the Sitnikov problem. Periodicity and quasi-periodicity have been examined by drawing the Poincare surfaces of section using the mathematical software.
Web-Based Collaborative Publications System: R&Tserve
NASA Technical Reports Server (NTRS)
Abrams, Steve
1997-01-01
R&Tserve is a publications system based on 'commercial, off-the-shelf' (COTS) software that provides a persistent, collaborative workspace for authors and editors to support the entire publication development process from initial submission, through iterative editing in a hierarchical approval structure, and on to 'publication' on the WWW. It requires no specific knowledge of the WWW (beyond basic use) or HyperText Markup Language (HTML). Graphics and URLs are automatically supported. The system includes a transaction archive, a comments utility, help functionality, automated graphics conversion, automated table generation, and an email-based notification system. It may be configured and administered via the WWW and can support publications ranging from single page documents to multiple-volume 'tomes'.
Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane
NASA Astrophysics Data System (ADS)
Smoczek, J.; Szpytko, J.; Hyla, P.
2014-07-01
The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.
Improving Real World Performance of Vision Aided Navigation in a Flight Environment
2016-09-15
Introduction . . . . . . . 63 4.2 Wide Area Search Extent . . . . . . . . . . . . . . . . . 64 4.3 Large-Scale Image Navigation Histogram Filter ...65 4.3.1 Location Model . . . . . . . . . . . . . . . . . . 66 4.3.2 Measurement Model . . . . . . . . . . . . . . . 66 4.3.3 Histogram Filter ...Iteration of Histogram Filter . . . . . . . . . . . 70 4.4 Implementation and Flight Test Campaign . . . . . . . . 71 4.4.1 Software Implementation
Using Mendeley to Support Collaborative Learning in the Classroom
ERIC Educational Resources Information Center
Khwaja, Tehmina; Eddy, Pamela L.
2015-01-01
The purpose of this study was to explore the use of Mendeley, a free online reference management and academic networking software, as a collaborative tool in the college classroom. Students in two iterations of a Graduate class used Mendeley to collaborate on a policy research project over the course of a semester. The project involved…
Design Features of a Friendly Software Environment for Novice Programmers. Technical Report No. 3.
ERIC Educational Resources Information Center
Eisenstadt, Marc
This paper describes the results of a 6-year period of design, implementation, testing, and iterative redesign of a programming language, user aids, and curriculum materials for use by psychology students learning how to write simple computer programs. The SOLO language, which was the resulting product, is primarily a simple, database…
NASA Technical Reports Server (NTRS)
Grasso, Christopher; Page, Dennis; O'Reilly, Taifun; Fteichert, Ralph; Lock, Patricia; Lin, Imin; Naviaux, Keith; Sisino, John
2005-01-01
Virtual Machine Language (VML) is a mission-independent, reusable software system for programming for spacecraft operations. Features of VML include a rich set of data types, named functions, parameters, IF and WHILE control structures, polymorphism, and on-the-fly creation of spacecraft commands from calculated values. Spacecraft functions can be abstracted into named blocks that reside in files aboard the spacecraft. These named blocks accept parameters and execute in a repeatable fashion. The sizes of uplink products are minimized by the ability to call blocks that implement most of the command steps. This block approach also enables some autonomous operations aboard the spacecraft, such as aerobraking, telemetry conditional monitoring, and anomaly response, without developing autonomous flight software. Operators on the ground write blocks and command sequences in a concise, high-level, human-readable programming language (also called VML ). A compiler translates the human-readable blocks and command sequences into binary files (the operations products). The flight portion of VML interprets the uplinked binary files. The ground subsystem of VML also includes an interactive sequence- execution tool hosted on workstations, which runs sequences at several thousand times real-time speed, affords debugging, and generates reports. This tool enables iterative development of blocks and sequences within times of the order of seconds.
Low-level rf control of Spallation Neutron Source: System and characterization
NASA Astrophysics Data System (ADS)
Ma, Hengjie; Champion, Mark; Crofford, Mark; Kasemir, Kay-Uwe; Piller, Maurice; Doolittle, Lawrence; Ratti, Alex
2006-03-01
The low-level rf control system currently commissioned throughout the Spallation Neutron Source (SNS) LINAC evolved from three design iterations over 1 yr intensive research and development. Its digital hardware implementation is efficient, and has succeeded in achieving a minimum latency of less than 150 ns which is the key for accomplishing an all-digital feedback control for the full bandwidth. The control bandwidth is analyzed in frequency domain and characterized by testing its transient response. The hardware implementation also includes the provision of a time-shared input channel for a superior phase differential measurement between the cavity field and the reference. A companion cosimulation system for the digital hardware was developed to ensure a reliable long-term supportability. A large effort has also been made in the operation software development for the practical issues such as the process automations, cavity filling, beam loading compensation, and the cavity mechanical resonance suppression.
Note: A simple image processing based fiducial auto-alignment method for sample registration.
Robertson, Wesley D; Porto, Lucas R; Ip, Candice J X; Nantel, Megan K T; Tellkamp, Friedjof; Lu, Yinfei; Miller, R J Dwayne
2015-08-01
A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.
Adapting Rational Unified Process (RUP) approach in designing a secure e-Tendering model
NASA Astrophysics Data System (ADS)
Mohd, Haslina; Robie, Muhammad Afdhal Muhammad; Baharom, Fauziah; Darus, Norida Muhd; Saip, Mohamed Ali; Yasin, Azman
2016-08-01
e-Tendering is an electronic processing of the tender document via internet and allow tenderer to publish, communicate, access, receive and submit all tender related information and documentation via internet. This study aims to design the e-Tendering system using Rational Unified Process approach. RUP provides a disciplined approach on how to assign tasks and responsibilities within the software development process. RUP has four phases that can assist researchers to adjust the requirements of various projects with different scope, problem and the size of projects. RUP is characterized as a use case driven, architecture centered, iterative and incremental process model. However the scope of this study only focusing on Inception and Elaboration phases as step to develop the model and perform only three of nine workflows (business modeling, requirements, analysis and design). RUP has a strong focus on documents and the activities in the inception and elaboration phases mainly concern the creation of diagrams and writing of textual descriptions. The UML notation and the software program, Star UML are used to support the design of e-Tendering. The e-Tendering design based on the RUP approach can contribute to e-Tendering developers and researchers in e-Tendering domain. In addition, this study also shows that the RUP is one of the best system development methodology that can be used as one of the research methodology in Software Engineering domain related to secured design of any observed application. This methodology has been tested in various studies in certain domains, such as in Simulation-based Decision Support, Security Requirement Engineering, Business Modeling and Secure System Requirement, and so forth. As a conclusion, these studies showed that the RUP one of a good research methodology that can be adapted in any Software Engineering (SE) research domain that required a few artifacts to be generated such as use case modeling, misuse case modeling, activity diagram, and initial class diagram from a list of requirements as identified earlier by the SE researchers
Enabling devices, empowering people: the design and evaluation of Trackball EdgeWrite.
Wobbrock, Jacob O; Myers, Brad A
2008-01-01
To describe the research and development that led to Trackball EdgeWrite, a gestural text entry method that improves desktop input for some people with motor impairments. To compare the character-level version of this technique with a new word-level version. Further, to compare the technique with competitor techniques that use on-screen keyboards. A rapid and iterative design-and-test approach was used to generate working prototypes and elicit quantitative and qualitative feedback from a veteran trackball user. In addition, theoretical modelling based on the Steering law was used to compare competing designs. One result is a refined software artifact, Trackball EdgeWrite, which represents the outcome of this investigation. A theoretical result shows the speed benefit of word-level stroking compared to character-level stroking, which resulted in a 45.0% improvement. Empirical results of a trackball user with a spinal cord injury indicate a peak performance of 8.25 wpm with the character-level version of Trackball EdgeWrite and 12.09 wpm with the word-level version, a 46.5% improvement. Log file analysis of extended real-world text entry shows stroke savings of 43.9% with the word-level version. Both versions of Trackball EdgeWrite were better than on-screen keyboards, particularly regarding user preferences. Follow-up correspondence shows that the veteran trackball user with a spinal cord injury still uses Trackball EdgeWrite on a daily basis 2 years after his initial exposure to the software. Trackball EdgeWrite is a successful new method for desktop text entry and may have further implications for able-bodied users of mobile technologies. Theoretical modelling is useful in combination with empirical testing to explore design alternatives. Single-user lab and field studies can be useful for driving a rapid iterative cycle of innovation and development.
Implementation of a Wavefront-Sensing Algorithm
NASA Technical Reports Server (NTRS)
Smith, Jeffrey S.; Dean, Bruce; Aronstein, David
2013-01-01
A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.
A model of supervisor decision-making in the accommodation of workers with low back pain
Williams-Whitt, Kelly; Kristman, Vicki; Shaw, William S.; Soklaridis, Sophie; Reguly, Paula
2016-01-01
PURPOSE To explore supervisors’ perspectives and decision-making processes in the accommodation of back injured workers. METHODS Twenty-three semi-structured, in-depth interviews were conducted with supervisors from eleven Canadian organizations about their role in providing job accommodations. Supervisors were identified through an on-line survey and interviews were recorded, transcribed and entered into NVivo software. The initial analyses identified common units of meaning, which were used to develop a coding guide. Interviews were coded, and a model of supervisor decision-making was developed based on the themes, categories and connecting ideas identified in the data. RESULTS The decision-making model includes a process element that is described as iterative “trial and error” decision-making. Medical restrictions are compared to job demands, employee abilities and available alternatives. A feasible modification is identified through brainstorming and then implemented by the supervisor. Resources used for brainstorming include information, supervisor experience and autonomy, and organizational supports. The model also incorporates the experience of accommodation as a job demand that causes strain for the supervisor. Accommodation demands affect the supervisor’s attitude, brainstorming and monitoring effort and communication with returning employees. Resources and demands have a combined effect on accommodation decision complexity, which in turn affects the quality of the accommodation option selected. If the employee is unable to complete the tasks or is reinjured during the accommodation, the decision cycle repeats. More frequent iteration through the trial and error process reduces the likelihood of return to work success. CONCLUSIONS A series of propositions is developed to illustrate the relationships among categories in the model. The model and propositions show: a) the iterative, problem solving nature of the RTW process; b) decision resources necessary for accommodation planning, and c) the impact accommodation demands may have on supervisors and RTW quality. PMID:26811170
Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok
2018-06-01
For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.
Feature Based Retention Time Alignment for Improved HDX MS Analysis
NASA Astrophysics Data System (ADS)
Venable, John D.; Scuba, William; Brock, Ansgar
2013-04-01
An algorithm for retention time alignment of mass shifted hydrogen-deuterium exchange (HDX) data based on an iterative distance minimization procedure is described. The algorithm performs pairwise comparisons in an iterative fashion between a list of features from a reference file and a file to be time aligned to calculate a retention time mapping function. Features are characterized by their charge, retention time and mass of the monoisotopic peak. The algorithm is able to align datasets with mass shifted features, which is a prerequisite for aligning hydrogen-deuterium exchange mass spectrometry datasets. Confidence assignments from the fully automated processing of a commercial HDX software package are shown to benefit significantly from retention time alignment prior to extraction of deuterium incorporation values.
Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry.
Bedggood, Phillip; Metha, Andrew
2010-01-01
Recently many software-based approaches have been suggested for improving the range and accuracy of Hartmann-Shack aberrometry. We compare the performance of four representative algorithms, with a focus on aberrometry for the human eye. Algorithms vary in complexity from the simplistic traditional approach to iterative spline extrapolation based on prior spot measurements. Range is assessed for a variety of aberration types in isolation using computer modeling, and also for complex wavefront shapes using a real adaptive optics system. The effects of common sources of error for ocular wavefront sensing are explored. The results show that the simplest possible iterative algorithm produces comparable range and robustness compared to the more complicated algorithms, while keeping processing time minimal to afford real-time analysis.
Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry
NASA Astrophysics Data System (ADS)
Bedggood, Phillip; Metha, Andrew
2010-11-01
Recently many software-based approaches have been suggested for improving the range and accuracy of Hartmann-Shack aberrometry. We compare the performance of four representative algorithms, with a focus on aberrometry for the human eye. Algorithms vary in complexity from the simplistic traditional approach to iterative spline extrapolation based on prior spot measurements. Range is assessed for a variety of aberration types in isolation using computer modeling, and also for complex wavefront shapes using a real adaptive optics system. The effects of common sources of error for ocular wavefront sensing are explored. The results show that the simplest possible iterative algorithm produces comparable range and robustness compared to the more complicated algorithms, while keeping processing time minimal to afford real-time analysis.
Applying heuristic evaluation to improve the usability of a telemedicine system.
Tang, Zhihua; Johnson, Todd R; Tindall, R Douglas; Zhang, Jiajie
2006-02-01
The development of a telemedicine system should not only take advantage of technological advances but also pay close attention to users and the human issues involved. In this paper we examine the utility of heuristic evaluation in improving the usability of a digital emergency medical services (EMS) system equipped on an ambulance. The digital EMS system used advanced communication technologies to help remotely located trauma specialists gain access to patient data in real-time and direct life-saving measures in a timely fashion. To improve its usability, three experts inspected prototypes of the system according to 14 software usability heuristics. The analyses revealed information on the prevalence, severity, and nature of heuristic violations in the user interface design. The results were subsequently utilized to guide the iterative software design process. A comparison between two consecutive prototypes showed that the second design had only half as many usability violations as the first prototype and had considerable improvement in a number of usability heuristic categories. The validity of heuristic evaluation was examined in an ethnographic study of paramedics using a prototype of the system in their work environment. Users' task performances partially verified heuristic evaluation results. However, they also revealed problems that were not identified in heuristic evaluation but only became prominent during field observation. In conclusion, we argue that usability should be given high priority in the development of a telemedicine system, and that heuristic evaluation can be an effective and efficient way to identify usability problems in the early stage of software development.
Hysteretic Models Considering Axial-Shear-Flexure Interaction
NASA Astrophysics Data System (ADS)
Ceresa, Paola; Negrisoli, Giorgio
2017-10-01
Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.
Katzman, Braden; Tang, Doris; Santella, Anthony; Bao, Zhirong
2018-04-04
AceTree, a software application first released in 2006, facilitates exploration, curation and editing of tracked C. elegans nuclei in 4-dimensional (4D) fluorescence microscopy datasets. Since its initial release, AceTree has been continuously used to interact with, edit and interpret C. elegans lineage data. In its 11 year lifetime, AceTree has been periodically updated to meet the technical and research demands of its community of users. This paper presents the newest iteration of AceTree which contains extensive updates, demonstrates the new applicability of AceTree in other developmental contexts, and presents its evolutionary software development paradigm as a viable model for maintaining scientific software. Large scale updates have been made to the user interface for an improved user experience. Tools have been grouped according to functionality and obsolete methods have been removed. Internal requirements have been changed that enable greater flexibility of use both in C. elegans contexts and in other model organisms. Additionally, the original 3-dimensional (3D) viewing window has been completely reimplemented. The new window provides a new suite of tools for data exploration. By responding to technical advancements and research demands, AceTree has remained a useful tool for scientific research for over a decade. The updates made to the codebase have extended AceTree's applicability beyond its initial use in C. elegans and enabled its usage with other model organisms. The evolution of AceTree demonstrates a viable model for maintaining scientific software over long periods of time.
Moussa, Ahmed; Loye, Nathalie; Charlin, Bernard; Audétat, Marie-Claude
2016-01-01
Background Helping trainees develop appropriate clinical reasoning abilities is a challenging goal in an environment where clinical situations are marked by high levels of complexity and unpredictability. The benefit of simulation-based education to assess clinical reasoning skills has rarely been reported. More specifically, it is unclear if clinical reasoning is better acquired if the instructor's input occurs entirely after or is integrated during the scenario. Based on educational principles of the dual-process theory of clinical reasoning, a new simulation approach called simulation with iterative discussions (SID) is introduced. The instructor interrupts the flow of the scenario at three key moments of the reasoning process (data gathering, integration, and confirmation). After each stop, the scenario is continued where it was interrupted. Finally, a brief general debriefing ends the session. System-1 process of clinical reasoning is assessed by verbalization during management of the case, and System-2 during the iterative discussions without providing feedback. Objective The aim of this study is to evaluate the effectiveness of Simulation with Iterative Discussions versus the classical approach of simulation in developing reasoning skills of General Pediatrics and Neonatal-Perinatal Medicine residents. Methods This will be a prospective exploratory, randomized study conducted at Sainte-Justine hospital in Montreal, Qc, between January and March 2016. All post-graduate year (PGY) 1 to 6 residents will be invited to complete one SID or classical simulation 30 minutes audio video-recorded complex high-fidelity simulations covering a similar neonatology topic. Pre- and post-simulation questionnaires will be completed and a semistructured interview will be conducted after each simulation. Data analyses will use SPSS and NVivo softwares. Results This study is in its preliminary stages and the results are expected to be made available by April, 2016. Conclusions This will be the first study to explore a new simulation approach designed to enhance clinical reasoning. By assessing more closely reasoning processes throughout a simulation session, we believe that Simulation with Iterative Discussions will be an interesting and more effective approach for students. The findings of the study will benefit medical educators, education programs, and medical students. PMID:26888076
A methodology for image quality evaluation of advanced CT systems.
Wilson, Joshua M; Christianson, Olav I; Richard, Samuel; Samei, Ehsan
2013-03-01
This work involved the development of a phantom-based method to quantify the performance of tube current modulation and iterative reconstruction in modern computed tomography (CT) systems. The quantification included resolution, HU accuracy, noise, and noise texture accounting for the impact of contrast, prescribed dose, reconstruction algorithm, and body size. A 42-cm-long, 22.5-kg polyethylene phantom was designed to model four body sizes. Each size was represented by a uniform section, for the measurement of the noise-power spectrum (NPS), and a feature section containing various rods, for the measurement of HU and the task-based modulation transfer function (TTF). The phantom was scanned on a clinical CT system (GE, 750HD) using a range of tube current modulation settings (NI levels) and reconstruction methods (FBP and ASIR30). An image quality analysis program was developed to process the phantom data to calculate the targeted image quality metrics as a function of contrast, prescribed dose, and body size. The phantom fabrication closely followed the design specifications. In terms of tube current modulation, the tube current and resulting image noise varied as a function of phantom size as expected based on the manufacturer specification: From the 16- to 37-cm section, the HU contrast for each rod was inversely related to phantom size, and noise was relatively constant (<5% change). With iterative reconstruction, the TTF exhibited a contrast dependency with better performance for higher contrast objects. At low noise levels, TTFs of iterative reconstruction were better than those of FBP, but at higher noise, that superiority was not maintained at all contrast levels. Relative to FBP, the NPS of iterative reconstruction exhibited an ~30% decrease in magnitude and a 0.1 mm(-1) shift in the peak frequency. Phantom and image quality analysis software were created for assessing CT image quality over a range of contrasts, doses, and body sizes. The testing platform enabled robust NPS, TTF, HU, and pixel noise measurements as a function of body size capable of characterizing the performance of reconstruction algorithms and tube current modulation techniques.
Pennaforte, Thomas; Moussa, Ahmed; Loye, Nathalie; Charlin, Bernard; Audétat, Marie-Claude
2016-02-17
Helping trainees develop appropriate clinical reasoning abilities is a challenging goal in an environment where clinical situations are marked by high levels of complexity and unpredictability. The benefit of simulation-based education to assess clinical reasoning skills has rarely been reported. More specifically, it is unclear if clinical reasoning is better acquired if the instructor's input occurs entirely after or is integrated during the scenario. Based on educational principles of the dual-process theory of clinical reasoning, a new simulation approach called simulation with iterative discussions (SID) is introduced. The instructor interrupts the flow of the scenario at three key moments of the reasoning process (data gathering, integration, and confirmation). After each stop, the scenario is continued where it was interrupted. Finally, a brief general debriefing ends the session. System-1 process of clinical reasoning is assessed by verbalization during management of the case, and System-2 during the iterative discussions without providing feedback. The aim of this study is to evaluate the effectiveness of Simulation with Iterative Discussions versus the classical approach of simulation in developing reasoning skills of General Pediatrics and Neonatal-Perinatal Medicine residents. This will be a prospective exploratory, randomized study conducted at Sainte-Justine hospital in Montreal, Qc, between January and March 2016. All post-graduate year (PGY) 1 to 6 residents will be invited to complete one SID or classical simulation 30 minutes audio video-recorded complex high-fidelity simulations covering a similar neonatology topic. Pre- and post-simulation questionnaires will be completed and a semistructured interview will be conducted after each simulation. Data analyses will use SPSS and NVivo softwares. This study is in its preliminary stages and the results are expected to be made available by April, 2016. This will be the first study to explore a new simulation approach designed to enhance clinical reasoning. By assessing more closely reasoning processes throughout a simulation session, we believe that Simulation with Iterative Discussions will be an interesting and more effective approach for students. The findings of the study will benefit medical educators, education programs, and medical students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmi, T.; Matsui, K.; Koizumi, N.
2014-01-27
The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricatedmore » using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.« less
Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.
Wei, Qinglai; Lewis, Frank L; Sun, Qiuye; Yan, Pengfei; Song, Ruizhuo
2017-05-01
In this paper, a novel discrete-time deterministic Q -learning algorithm is developed. In each iteration of the developed Q -learning algorithm, the iterative Q function is updated for all the state and control spaces, instead of updating for a single state and a single control in traditional Q -learning algorithm. A new convergence criterion is established to guarantee that the iterative Q function converges to the optimum, where the convergence criterion of the learning rates for traditional Q -learning algorithms is simplified. During the convergence analysis, the upper and lower bounds of the iterative Q function are analyzed to obtain the convergence criterion, instead of analyzing the iterative Q function itself. For convenience of analysis, the convergence properties for undiscounted case of the deterministic Q -learning algorithm are first developed. Then, considering the discounted factor, the convergence criterion for the discounted case is established. Neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of the deterministic Q -learning algorithm. Finally, simulation results and comparisons are given to illustrate the performance of the developed algorithm.
Developing Conceptual Understanding and Procedural Skill in Mathematics: An Iterative Process.
ERIC Educational Resources Information Center
Rittle-Johnson, Bethany; Siegler, Robert S.; Alibali, Martha Wagner
2001-01-01
Proposes that conceptual and procedural knowledge develop in an iterative fashion and improved problem representation is one mechanism underlying the relations between them. Two experiments were conducted with 5th and 6th grade students learning about decimal fractions. Results indicate conceptual and procedural knowledge do develop, iteratively,…
Noise tolerant illumination optimization applied to display devices
NASA Astrophysics Data System (ADS)
Cassarly, William J.; Irving, Bruce
2005-02-01
Display devices have historically been designed through an iterative process using numerous hardware prototypes. This process is effective but the number of iterations is limited by the time and cost to make the prototypes. In recent years, virtual prototyping using illumination software modeling tools has replaced many of the hardware prototypes. Typically, the designer specifies the design parameters, builds the software model, predicts the performance using a Monte Carlo simulation, and uses the performance results to repeat this process until an acceptable design is obtained. What is highly desired, and now possible, is to use illumination optimization to automate the design process. Illumination optimization provides the ability to explore a wider range of design options while also providing improved performance. Since Monte Carlo simulations are often used to calculate the system performance but those predictions have statistical uncertainty, the use of noise tolerant optimization algorithms is important. The use of noise tolerant illumination optimization is demonstrated by considering display device designs that extract light using 2D paint patterns as well as 3D textured surfaces. A hybrid optimization approach that combines a mesh feedback optimization with a classical optimizer is demonstrated. Displays with LED sources and cold cathode fluorescent lamps are considered.
Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*
NASA Astrophysics Data System (ADS)
Shimomura, Y.
1994-05-01
The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.
NASA Astrophysics Data System (ADS)
Schumacher, Florian; Friederich, Wolfgang
Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth's interior remains of high interest in Earth sciences. Here, we give a description from a user's and programmer's perspective of the highly modular, flexible and extendable software package ASKI-Analysis of Sensitivity and Kernel Inversion-recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski).
NASA Astrophysics Data System (ADS)
1990-09-01
The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.
AZTEC. Parallel Iterative method Software for Solving Linear Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.; Shadid, J.; Tuminaro, R.
1995-07-01
AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less
Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1995-01-01
A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.
NASA Astrophysics Data System (ADS)
Braun, N.; Hauth, T.; Pulvermacher, C.; Ritter, M.
2017-10-01
Today’s analyses for high-energy physics (HEP) experiments involve processing a large amount of data with highly specialized algorithms. The contemporary workflow from recorded data to final results is based on the execution of small scripts - often written in Python or ROOT macros which call complex compiled algorithms in the background - to perform fitting procedures and generate plots. During recent years interactive programming environments, such as Jupyter, became popular. Jupyter allows to develop Python-based applications, so-called notebooks, which bundle code, documentation and results, e.g. plots. Advantages over classical script-based approaches is the feature to recompute only parts of the analysis code, which allows for fast and iterative development, and a web-based user frontend, which can be hosted centrally and only requires a browser on the user side. In our novel approach, Python and Jupyter are tightly integrated into the Belle II Analysis Software Framework (basf2), currently being developed for the Belle II experiment in Japan. This allows to develop code in Jupyter notebooks for every aspect of the event simulation, reconstruction and analysis chain. These interactive notebooks can be hosted as a centralized web service via jupyterhub with docker and used by all scientists of the Belle II Collaboration. Because of its generality and encapsulation, the setup can easily be scaled to large installations.
A free interactive matching program
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.-F. Ostiguy
1999-04-16
For physicists and engineers involved in the design and analysis of beamlines (transfer lines or insertions) the lattice function matching problem is central and can be time-consuming because it involves constrained nonlinear optimization. For such problems convergence can be difficult to obtain in general without expert human intervention. Over the years, powerful codes have been developed to assist beamline designers. The canonical example is MAD (Methodical Accelerator Design) developed at CERN by Christophe Iselin. MAD, through a specialized command language, allows one to solve a wide variety of problems, including matching problems. Although in principle, the MAD command interpreter canmore » be run interactively, in practice the solution of a matching problem involves a sequence of independent trial runs. Unfortunately, but perhaps not surprisingly, there still exists relatively few tools exploiting the resources offered by modern environments to assist lattice designer with this routine and repetitive task. In this paper, we describe a fully interactive lattice matching program, written in C++ and assembled using freely available software components. An important feature of the code is that the evolution of the lattice functions during the nonlinear iterative process can be graphically monitored in real time; the user can dynamically interrupt the iterations at will to introduce new variables, freeze existing ones into their current state and/or modify constraints. The program runs under both UNIX and Windows NT.« less
Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A
Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structuresmore » are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.« less
NASA Astrophysics Data System (ADS)
Resita Arum, Sari; A, Suparmi; C, Cari
2016-01-01
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).
3D reconstruction and spatial auralization of the "Painted Dolmen" of Antelas
NASA Astrophysics Data System (ADS)
Dias, Paulo; Campos, Guilherme; Santos, Vítor; Casaleiro, Ricardo; Seco, Ricardo; Sousa Santos, Beatriz
2008-02-01
This paper presents preliminary results on the development of a 3D audiovisual model of the Anta Pintada (painted dolmen) of Antelas, a Neolithic chamber tomb located in Oliveira de Frades and listed as Portuguese national monument. The final aim of the project is to create a highly accurate Virtual Reality (VR) model of this unique archaeological site, capable of providing not only visual but also acoustic immersion based on its actual geometry and physical properties. The project started in May 2006 with in situ data acquisition. The 3D geometry of the chamber was captured using a Laser Range Finder. In order to combine the different scans into a complete 3D visual model, reconstruction software based on the Iterative Closest Point (ICP) algorithm was developed using the Visualization Toolkit (VTK). This software computes the boundaries of the room on a 3D uniform grid and populates its interior with "free-space nodes", through an iterative algorithm operating like a torchlight illuminating a dark room. The envelope of the resulting set of "free-space nodes" is used to generate a 3D iso-surface approximating the interior shape of the chamber. Each polygon of this surface is then assigned the acoustic absorption coefficient of the corresponding boundary material. A 3D audiovisual model operating in real-time was developed for a VR Environment comprising head-mounted display (HMD) I-glasses SVGAPro, an orientation sensor (tracker) InterTrax 2 with 3 Degrees Of Freedom (3DOF) and stereo headphones. The auralisation software is based on a geometric model. This constitutes a first approach, since geometric acoustics have well-known limitations in rooms with irregular surfaces. The immediate advantage lies in their inherent computational efficiency, which allows real-time operation. The program computes the early reflections forming the initial part of the chamber's impulse response (IR), which carry the most significant cues for source localisation. These early reflections are processed through Head Related Transfer Functions (HRTF) updated in real-time according to the orientation of the user's head, so that sound waves appear to come from the correct location in space, in agreement with the visual scene. The late-reverberation tail of the IR is generated by an algorithm designed to match the reverberation time of the chamber, calculated from the actual acoustic absorption coefficients of its surfaces. The sound output to the headphones is obtained by convolving the IR with anechoic recordings of the virtual audio source.
Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B.
2016-01-01
Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5′→3′, 3′ →5′ or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically. Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm PMID:27515825
Mishuris, Rebecca Grochow; Yoder, Jordan; Wilson, Dan; Mann, Devin
2016-07-11
Health information is increasingly being digitally stored and exchanged. The public is regularly collecting and storing health-related data on their own electronic devices and in the cloud. Diabetes prevention is an increasingly important preventive health measure, and diet and exercise are key components of this. Patients are turning to online programs to help them lose weight. Despite primary care physicians being important in patients' weight loss success, there is no exchange of information between the primary care provider (PCP) and these online weight loss programs. There is an emerging opportunity to integrate this data directly into the electronic health record (EHR), but little is known about what information to share or how to share it most effectively. This study aims to characterize the preferences of providers concerning the integration of externally generated lifestyle modification data into a primary care EHR workflow. We performed a qualitative study using two rounds of semi-structured interviews with primary care providers. We used an iterative design process involving primary care providers, health information technology software developers and health services researchers to develop the interface. Using grounded-theory thematic analysis 4 themes emerged from the interviews: 1) barriers to establishing healthy lifestyles, 2) features of a lifestyle modification program, 3) reporting of outcomes to the primary care provider, and 4) integration with primary care. These themes guided the rapid-cycle agile design process of an interface of data from an online diabetes prevention program into the primary care EHR workflow. The integration of external health-related data into the EHR must be embedded into the provider workflow in order to be useful to the provider and beneficial for the patient. Accomplishing this requires evaluation of that clinical workflow during software design. The development of this novel interface used rapid cycle iterative design, early involvement by providers, and usability testing methodology. This provides a framework for how to integrate external data into provider workflow in efficient and effective ways. There is now the potential to realize the importance of having this data available in the clinical setting for patient engagement and health outcomes.
Dufendach, Kevin R; Koch, Sabine; Unertl, Kim M; Lehmann, Christoph U
2017-10-26
Early involvement of stakeholders in the design of medical software is particularly important due to the need to incorporate complex knowledge and actions associated with clinical work. Standard user-centered design methods include focus groups and participatory design sessions with individual stakeholders, which generally limit user involvement to a small number of individuals due to the significant time investments from designers and end users. The goal of this project was to reduce the effort for end users to participate in co-design of a software user interface by developing an interactive web-based crowdsourcing platform. In a randomized trial, we compared a new web-based crowdsourcing platform to standard participatory design sessions. We developed an interactive, modular platform that allows responsive remote customization and design feedback on a visual user interface based on user preferences. The responsive canvas is a dynamic HTML template that responds in real time to user preference selections. Upon completion, the design team can view the user's interface creations through an administrator portal and download the structured selections through a REDCap interface. We have created a software platform that allows users to customize a user interface and see the results of that customization in real time, receiving immediate feedback on the impact of their design choices. Neonatal clinicians used the new platform to successfully design and customize a neonatal handoff tool. They received no specific instruction and yet were able to use the software easily and reported high usability. VandAID, a new web-based crowdsourcing platform, can involve multiple users in user-centered design simultaneously and provides means of obtaining design feedback remotely. The software can provide design feedback at any stage in the design process, but it will be of greatest utility for specifying user requirements and evaluating iterative designs with multiple options.
Using a web-based survey tool to undertake a Delphi study: application for nurse education research.
Gill, Fenella J; Leslie, Gavin D; Grech, Carol; Latour, Jos M
2013-11-01
The Internet is increasingly being used as a data collection medium to access research participants. This paper reports on the experience and value of using web-survey software to conduct an eDelphi study to develop Australian critical care course graduate practice standards. The eDelphi technique used involved the iterative process of administering three rounds of surveys to a national expert panel. The survey was developed online using SurveyMonkey. Panel members responded to statements using one rating scale for round one and two scales for rounds two and three. Text boxes for panel comments were provided. For each round, the SurveyMonkey's email tool was used to distribute an individualized email invitation containing the survey web link. The distribution of panel responses, individual responses and a summary of comments were emailed to panel members. Stacked bar charts representing the distribution of responses were generated using the SurveyMonkey software. Panel response rates remained greater than 85% over all rounds. An online survey provided numerous advantages over traditional survey approaches including high quality data collection, ease and speed of survey administration, direct communication with the panel and rapid collation of feedback allowing data collection to be undertaken in 12 weeks. Only minor challenges were experienced using the technology. Ethical issues, specific to using the Internet to conduct research and external hosting of web-based software, lacked formal guidance. High response rates and an increased level of data quality were achieved in this study using web-survey software and the process was efficient and user-friendly. However, when considering online survey software, it is important to match the research design with the computer capabilities of participants and recognize that ethical review guidelines and processes have not yet kept pace with online research practices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Update on Integrated Optical Design Analyzer
NASA Technical Reports Server (NTRS)
Moore, James D., Jr.; Troy, Ed
2003-01-01
Updated information on the Integrated Optical Design Analyzer (IODA) computer program has become available. IODA was described in Software for Multidisciplinary Concurrent Optical Design (MFS-31452), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 8a. To recapitulate: IODA facilitates multidisciplinary concurrent engineering of highly precise optical instruments. The architecture of IODA was developed by reviewing design processes and software in an effort to automate design procedures. IODA significantly reduces design iteration cycle time and eliminates many potential sources of error. IODA integrates the modeling efforts of a team of experts in different disciplines (e.g., optics, structural analysis, and heat transfer) working at different locations and provides seamless fusion of data among thermal, structural, and optical models used to design an instrument. IODA is compatible with data files generated by the NASTRAN structural-analysis program and the Code V (Registered Trademark) optical-analysis program, and can be used to couple analyses performed by these two programs. IODA supports multiple-load-case analysis for quickly accomplishing trade studies. IODA can also model the transient response of an instrument under the influence of dynamic loads and disturbances.
United States Research and Development effort on ITER magnet tasks
Martovetsky, Nicolai N.; Reierson, Wayne T.
2011-01-22
This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.
Rothgangel, Andreas; Braun, Susy; Smeets, Rob; Beurskens, Anna
2017-02-15
Phantom limb pain is a frequent and persistent problem following amputation. Achieving sustainable favorable effects on phantom limb pain requires therapeutic interventions such as mirror therapy that target maladaptive neuroplastic changes in the central nervous system. Unfortunately, patients' adherence to unsupervised exercises is generally poor and there is a need for effective strategies such as telerehabilitation to support long-term self-management of patients with phantom limb pain. The main aim of this study was to describe the user-centered approach that guided the design and development of a telerehabilitation platform for patients with phantom limb pain. We addressed 3 research questions: (1) Which requirements are defined by patients and therapists for the content and functions of a telerehabilitation platform and how can these requirements be prioritized to develop a first prototype of the platform? (2) How can the user interface of the telerehabilitation platform be designed so as to match the predefined critical user requirements and how can this interface be translated into a medium-fidelity prototype of the platform? (3) How do patients with phantom limb pain and their treating therapists judge the usability of the medium-fidelity prototype of the telerehabilitation platform in routine care and how can the platform be redesigned based on their feedback to achieve a high-fidelity prototype? The telerehabilitation platform was developed using an iterative user-centered design process. In the first phase, a questionnaire followed by a semistructured interview was used to identify the user requirements of both the patients and their physical and occupational therapists, which were then prioritized using a decision matrix. The second phase involved designing the interface of the telerehabilitation platform using design sketches, wireframes, and interface mock-ups to develop a low-fidelity prototype. Heuristic evaluation resulted in a medium-fidelity prototype whose usability was tested in routine care in the final phase, leading to the development of a high-fidelity prototype. A total of 7 categories of patient requirements were identified: monitoring, exercise programs, communication, settings, background information, log-in, and general requirements. One additional category emerged for therapists: patient management. Based on these requirements, patient and therapist interfaces for the telerehabilitation platform were developed and redesigned by the software development team in an iterative process, addressing the usability problems that were reported by the users during 4 weeks of field testing in routine care. Our findings underline the importance of involving the users and other stakeholders early and continuously in an iterative design process, as well as the need for clear criteria to identify critical user requirements. A decision matrix is presented that incorporates the views of various stakeholders in systematically rating and prioritizing user requirements. The findings and lessons learned might help health care providers, researchers, software designers, and other stakeholders in designing and evaluating new teletreatments, and hopefully increase the likelihood of user acceptance. ©Andreas Rothgangel, Susy Braun, Rob Smeets, Anna Beurskens. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 15.02.2017.
The Iterative Design Process in Research and Development: A Work Experience Paper
NASA Technical Reports Server (NTRS)
Sullivan, George F. III
2013-01-01
The iterative design process is one of many strategies used in new product development. Top-down development strategies, like waterfall development, place a heavy emphasis on planning and simulation. The iterative process, on the other hand, is better suited to the management of small to medium scale projects. Over the past four months, I have worked with engineers at Johnson Space Center on a multitude of electronics projects. By describing the work I have done these last few months, analyzing the factors that have driven design decisions, and examining the testing and verification process, I will demonstrate that iterative design is the obvious choice for research and development projects.
NASA Astrophysics Data System (ADS)
Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo
This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.
Improved Ant Algorithms for Software Testing Cases Generation
Yang, Shunkun; Xu, Jiaqi
2014-01-01
Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391
Deployment Optimization for Embedded Flight Avionics Systems
2011-11-01
the iterations, the best solution(s) that evolved out from the group is output as the result. Although metaheuristic algorithms are powerful, they...that other design constraints are met—ScatterD uses metaheuristic algorithms to seed the bin-packing algorithm . In particular, metaheuristic ... metaheuristic algorithms to search the design space—and then using bin-packing to allocate software tasks to processors—ScatterD can generate
BeeSign: Designing to Support Mediated Group Inquiry of Complex Science by Early Elementary Students
ERIC Educational Resources Information Center
Danish, Joshua A.; Peppler, Kylie; Phelps, David
2010-01-01
All too often, designers assume that complex science and cycles of inquiry are beyond the capabilities of young children (5-8 years old). However, with carefully designed mediators, we argue that such concepts are well within their grasp. In this paper we describe two design iterations of the BeeSign simulation software that was designed to help…
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1986-01-01
Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.
Current State of Agile User-Centered Design: A Survey
NASA Astrophysics Data System (ADS)
Hussain, Zahid; Slany, Wolfgang; Holzinger, Andreas
Agile software development methods are quite popular nowadays and are being adopted at an increasing rate in the industry every year. However, these methods are still lacking usability awareness in their development lifecycle, and the integration of usability/User-Centered Design (UCD) into agile methods is not adequately addressed. This paper presents the preliminary results of a recently conducted online survey regarding the current state of the integration of agile methods and usability/UCD. A world wide response of 92 practitioners was received. The results show that the majority of practitioners perceive that the integration of agile methods with usability/UCD has added value to their adopted processes and to their teams; has resulted in the improvement of usability and quality of the product developed; and has increased the satisfaction of the end-users of the product developed. The top most used HCI techniques are low-fidelity prototyping, conceptual designs, observational studies of users, usability expert evaluations, field studies, personas, rapid iterative testing, and laboratory usability testing.
Neural network approach to proximity effect corrections in electron-beam lithography
NASA Astrophysics Data System (ADS)
Frye, Robert C.; Cummings, Kevin D.; Rietman, Edward A.
1990-05-01
The proximity effect, caused by electron beam backscattering during resist exposure, is an important concern in writing submicron features. It can be compensated by appropriate local changes in the incident beam dose, but computation of the optimal correction usually requires a prohibitively long time. We present an example of such a computation on a small test pattern, which we performed by an iterative method. We then used this solution as a training set for an adaptive neural network. After training, the network computed the same correction as the iterative method, but in a much shorter time. Correcting the image with a software based neural network resulted in a decrease in the computation time by a factor of 30, and a hardware based network enhanced the computation speed by more than a factor of 1000. Both methods had an acceptably small error of 0.5% compared to the results of the iterative computation. Additionally, we verified that the neural network correctly generalized the solution of the problem to include patterns not contained in its training set.
A Hardware-Accelerated Quantum Monte Carlo framework (HAQMC) for N-body systems
NASA Astrophysics Data System (ADS)
Gothandaraman, Akila; Peterson, Gregory D.; Warren, G. Lee; Hinde, Robert J.; Harrison, Robert J.
2009-12-01
Interest in the study of structural and energetic properties of highly quantum clusters, such as inert gas clusters has motivated the development of a hardware-accelerated framework for Quantum Monte Carlo simulations. In the Quantum Monte Carlo method, the properties of a system of atoms, such as the ground-state energies, are averaged over a number of iterations. Our framework is aimed at accelerating the computations in each iteration of the QMC application by offloading the calculation of properties, namely energy and trial wave function, onto reconfigurable hardware. This gives a user the capability to run simulations for a large number of iterations, thereby reducing the statistical uncertainty in the properties, and for larger clusters. This framework is designed to run on the Cray XD1 high performance reconfigurable computing platform, which exploits the coarse-grained parallelism of the processor along with the fine-grained parallelism of the reconfigurable computing devices available in the form of field-programmable gate arrays. In this paper, we illustrate the functioning of the framework, which can be used to calculate the energies for a model cluster of helium atoms. In addition, we present the capabilities of the framework that allow the user to vary the chemical identities of the simulated atoms. Program summaryProgram title: Hardware Accelerated Quantum Monte Carlo (HAQMC) Catalogue identifier: AEEP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 691 537 No. of bytes in distributed program, including test data, etc.: 5 031 226 Distribution format: tar.gz Programming language: C/C++ for the QMC application, VHDL and Xilinx 8.1 ISE/EDK tools for FPGA design and development Computer: Cray XD1 consisting of a dual-core, dualprocessor AMD Opteron 2.2 GHz with a Xilinx Virtex-4 (V4LX160) or Xilinx Virtex-II Pro (XC2VP50) FPGA per node. We use the compute node with the Xilinx Virtex-4 FPGA Operating system: Red Hat Enterprise Linux OS Has the code been vectorised or parallelized?: Yes Classification: 6.1 Nature of problem: Quantum Monte Carlo is a practical method to solve the Schrödinger equation for large many-body systems and obtain the ground-state properties of such systems. This method involves the sampling of a number of configurations of atoms and averaging the properties of the configurations over a number of iterations. We are interested in applying the QMC method to obtain the energy and other properties of highly quantum clusters, such as inert gas clusters. Solution method: The proposed framework provides a combined hardware-software approach, in which the QMC simulation is performed on the host processor, with the computationally intensive functions such as energy and trial wave function computations mapped onto the field-programmable gate array (FPGA) logic device attached as a co-processor to the host processor. We perform the QMC simulation for a number of iterations as in the case of our original software QMC approach, to reduce the statistical uncertainty of the results. However, our proposed HAQMC framework accelerates each iteration of the simulation, by significantly reducing the time taken to calculate the ground-state properties of the configurations of atoms, thereby accelerating the overall QMC simulation. We provide a generic interpolation framework that can be extended to study a variety of pure and doped atomic clusters, irrespective of the chemical identities of the atoms. For the FPGA implementation of the properties, we use a two-region approach for accurately computing the properties over the entire domain, employ deep pipelines and fixed-point for all our calculations guaranteeing the accuracy required for our simulation.
2011-01-01
Background Laboratory Information Management Systems (LIMS) are an increasingly important part of modern laboratory infrastructure. As typically very sophisticated software products, LIMS often require considerable resources to select, deploy and maintain. Larger organisations may have access to specialist IT support to assist with requirements elicitation and software customisation, however smaller groups will often have limited IT support to perform the kind of iterative development that can resolve the difficulties that biologists often have when specifying requirements. Translational medicine aims to accelerate the process of treatment discovery by bringing together multiple disciplines to discover new approaches to treating disease, or novel applications of existing treatments. The diverse set of disciplines and complexity of processing procedures involved, especially with the use of high throughput technologies, bring difficulties in customizing a generic LIMS to provide a single system for managing sample related data within a translational medicine research setting, especially where limited IT support is available. Results We have designed and developed a LIMS, BonsaiLIMS, around a very simple data model that can be easily implemented using a variety of technologies, and can be easily extended as specific requirements dictate. A reference implementation using Oracle 11 g database and the Python framework, Django is presented. Conclusions By focusing on a minimal feature set and a modular design we have been able to deploy the BonsaiLIMS system very quickly. The benefits to our institute have been the avoidance of the prolonged implementation timescales, budget overruns, scope creep, off-specifications and user fatigue issues that typify many enterprise software implementations. The transition away from using local, uncontrolled records in spreadsheet and paper formats to a centrally held, secured and backed-up database brings the immediate benefits of improved data visibility, audit and overall data quality. The open-source availability of this software allows others to rapidly implement a LIMS which in itself might sufficiently address user requirements. In situations where this software does not meet requirements, it can serve to elicit more accurate specifications from end-users for a more heavyweight LIMS by acting as a demonstrable prototype. PMID:21569484
Bath, Timothy G; Bozdag, Selcuk; Afzal, Vackar; Crowther, Daniel
2011-05-13
Laboratory Information Management Systems (LIMS) are an increasingly important part of modern laboratory infrastructure. As typically very sophisticated software products, LIMS often require considerable resources to select, deploy and maintain. Larger organisations may have access to specialist IT support to assist with requirements elicitation and software customisation, however smaller groups will often have limited IT support to perform the kind of iterative development that can resolve the difficulties that biologists often have when specifying requirements. Translational medicine aims to accelerate the process of treatment discovery by bringing together multiple disciplines to discover new approaches to treating disease, or novel applications of existing treatments. The diverse set of disciplines and complexity of processing procedures involved, especially with the use of high throughput technologies, bring difficulties in customizing a generic LIMS to provide a single system for managing sample related data within a translational medicine research setting, especially where limited IT support is available. We have designed and developed a LIMS, BonsaiLIMS, around a very simple data model that can be easily implemented using a variety of technologies, and can be easily extended as specific requirements dictate. A reference implementation using Oracle 11 g database and the Python framework, Django is presented. By focusing on a minimal feature set and a modular design we have been able to deploy the BonsaiLIMS system very quickly. The benefits to our institute have been the avoidance of the prolonged implementation timescales, budget overruns, scope creep, off-specifications and user fatigue issues that typify many enterprise software implementations. The transition away from using local, uncontrolled records in spreadsheet and paper formats to a centrally held, secured and backed-up database brings the immediate benefits of improved data visibility, audit and overall data quality. The open-source availability of this software allows others to rapidly implement a LIMS which in itself might sufficiently address user requirements. In situations where this software does not meet requirements, it can serve to elicit more accurate specifications from end-users for a more heavyweight LIMS by acting as a demonstrable prototype.
A composite computational model of liver glucose homeostasis. I. Building the composite model.
Hetherington, J; Sumner, T; Seymour, R M; Li, L; Rey, M Varela; Yamaji, S; Saffrey, P; Margoninski, O; Bogle, I D L; Finkelstein, A; Warner, A
2012-04-07
A computational model of the glucagon/insulin-driven liver glucohomeostasis function, focusing on the buffering of glucose into glycogen, has been developed. The model exemplifies an 'engineering' approach to modelling in systems biology, and was produced by linking together seven component models of separate aspects of the physiology. The component models use a variety of modelling paradigms and degrees of simplification. Model parameters were determined by an iterative hybrid of fitting to high-scale physiological data, and determination from small-scale in vitro experiments or molecular biological techniques. The component models were not originally designed for inclusion within such a composite model, but were integrated, with modification, using our published modelling software and computational frameworks. This approach facilitates the development of large and complex composite models, although, inevitably, some compromises must be made when composing the individual models. Composite models of this form have not previously been demonstrated.
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Johnson, Michael; Litton, Charles D.; Lam, Nicholas L.; Pennise, David; Smith, Kirk R.
2017-01-01
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them. PMID:28812989
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Hill, L Drew; Johnson, Michael; Litton, Charles D; Lam, Nicholas L; Pennise, David; Smith, Kirk R
2017-08-16
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley-in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions-has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO₂-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.
Usability engineering: domain analysis activities for augmented-reality systems
NASA Astrophysics Data System (ADS)
Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.
2002-05-01
This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.
A Generalized Method for Automatic Downhand and Wirefeed Control of a Welding Robot and Positioner
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Cook, George E.
1988-01-01
A generalized method for controlling a six degree-of-freedom (DOF) robot and a two DOF positioner used for arc welding operations is described. The welding path is defined in the part reference frame, and robot/positioner joint angles of the equivalent eight DOF serial linkage are determined via an iterative solution. Three algorithms are presented: the first solution controls motion of the eight DOF mechanism such that proper torch motion is achieved while minimizing the sum-of-squares of joint displacements; the second algorithm adds two constraint equations to achieve torch control while maintaining part orientation so that welding occurs in the downhand position; and the third algorithm adds the ability to control the proper orientation of a wire feed mechanism used in gas tungsten arc (GTA) welding operations. A verification of these algorithms is given using ROBOSIM, a NASA developed computer graphic simulation software package design for robot systems development.
Xu, Q; Yang, D; Tan, J; Anastasio, M
2012-06-01
To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment localization. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi
Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitra, Neepa
The first US-based summer school and workshop on Time-Dependent Density Functional Theory (TDDFT) was held July 11-21, 2017 in Telluride, CO. This grant provided funding to enable 33 students to attend the school, specifically with lodging and registration fee reductions. TDDFT is increasingly used in computational molecular and materials science to calculate electronic-excitation spectra and dynamics in a wide variety of applications, including photocatalysis, photo-controlled bond dissociation, and light-induced charge transfer. Software development in this community targets multiple software packages, many of which are open source, such as octopus, NWchem and Qb@ll, which are the ones our school focused on.more » The goal of this first iteration was to create a home for a national community of scholars, including users and developers, with a deep understanding of TDDFT, its capabilities, limitations, and high-performance computing context. We used this opportunity to explore interest in such an event in the future and based on overwhelmingly positive feedback from students and teachers, we intend to hold a similar school+workshop every two years in the US, in order to maintain the high level of interest that we witnessed and the enthusiasm amongst participants.« less
Czabke, A; Loeschke, J; Lueth, T C
2011-01-01
In this contribution a new centralized platform for telemedicine is presented. It combines functions for measuring of vital signs, ADL and behavioral patterns and is especially designed for home care scenarios and the use by elderly people who are not familiar with the use of a PC. Unlike many other approaches we did not use a modified standard PC but developed a new dedicated hardware platform. It comes with various interfaces to communicate with different medical home care systems. We implemented a modular software architecture, which allows managing multiple user accounts with different personal settings. Every account can be adapted individually to the user. Every medical device that can be connected to the platform has its own software module, in which data is analyzed, displayed, stored to an internal database or transmitted to a server. Though the user is not bothered with technical issues such as setting up a connection to the internet, he keeps control on his data because he decides if and when data is transferred to a web server. The device was developed in an iterative process and evaluated in focus groups by n = 31 subjects (average age: 67 years) under the supervision of a psychogerontologist. All findings obtained from those sessions were directly incorporated in the presented work.
NASA Astrophysics Data System (ADS)
Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.
2014-12-01
The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.
Photogrammetric 3d Building Reconstruction from Thermal Images
NASA Astrophysics Data System (ADS)
Maset, E.; Fusiello, A.; Crosilla, F.; Toldo, R.; Zorzetto, D.
2017-08-01
This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR) images. We show that a commercial Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle (UAV) and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP) algorithm to create a model that combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process can be carried out entirely by the aforesaid software in a simple and efficient way.
Verification of Java Programs using Symbolic Execution and Invariant Generation
NASA Technical Reports Server (NTRS)
Pasareanu, Corina; Visser, Willem
2004-01-01
Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.
Flight data processing with the F-8 adaptive algorithm
NASA Technical Reports Server (NTRS)
Hartmann, G.; Stein, G.; Petersen, K.
1977-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described
Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.
Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua
2018-02-01
Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.
Newell, John D; Fuld, Matthew K; Allmendinger, Thomas; Sieren, Jered P; Chan, Kung-Sik; Guo, Junfeng; Hoffman, Eric A
2015-01-01
The purpose of this study was to evaluate the impact of ultralow radiation dose single-energy computed tomographic (CT) acquisitions with Sn prefiltration and third-generation iterative reconstruction on density-based quantitative measures of growing interest in phenotyping pulmonary disease. The effects of both decreasing dose and different body habitus on the accuracy of the mean CT attenuation measurements and the level of image noise (SD) were evaluated using the COPDGene 2 test object, containing 8 different materials of interest ranging from air to acrylic and including various density foams. A third-generation dual-source multidetector CT scanner (Siemens SOMATOM FORCE; Siemens Healthcare AG, Erlangen, Germany) running advanced modeled iterative reconstruction (ADMIRE) software (Siemens Healthcare AG) was used.We used normal and very large body habitus rings at dose levels varying from 1.5 to 0.15 mGy using a spectral-shaped (0.6-mm Sn) tube output of 100 kV(p). Three CT scans were obtained at each dose level using both rings. Regions of interest for each material in the test object scans were automatically extracted. The Hounsfield unit values of each material using weighted filtered back projection (WFBP) at 1.5 mGy was used as the reference value to evaluate shifts in CT attenuation at lower dose levels using either WFBP or ADMIRE. Statistical analysis included basic statistics, Welch t tests, multivariable covariant model using the F test to assess the significance of the explanatory (independent) variables on the response (dependent) variable, and CT mean attenuation, in the multivariable covariant model including reconstruction method. Multivariable regression analysis of the mean CT attenuation values showed a significant difference with decreasing dose between ADMIRE and WFBP. The ADMIRE has reduced noise and more stable CT attenuation compared with WFBP. There was a strong effect on the mean CT attenuation values of the scanned materials for ring size (P < 0.0001) and dose level (P < 0.0001). The number of voxels in the region of interest for the particular material studied did not demonstrate a significant effect (P > 0.05). The SD was lower with ADMIRE compared with WFBP at all dose levels and ring sizes (P < 0.05). The third-generation dual-source CT scanners using third-generation iterative reconstruction methods can acquire accurate quantitative CT images with acceptable image noise at very low-dose levels (0.15 mGy). This opens up new diagnostic and research opportunities in CT phenotyping of the lung for developing new treatments and increased understanding of pulmonary disease.
Mission of ITER and Challenges for the Young
NASA Astrophysics Data System (ADS)
Ikeda, Kaname
2009-02-01
It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time. The partners in the Project—the ITER Parties—are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER. Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER. The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.
Mission of ITER and Challenges for the Young
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Kaname
2009-02-19
It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time.The partners in the Project--the ITER Parties--are the European Union, Japan, the People'smore » Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER.Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER.The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.« less
Rotman Lens Sidewall Design and Optimization with Hybrid Hardware/Software Based Programming
2015-01-09
conventional MoM and stored in memory. The components of Zfar are computed as needed through a fast matrix vector multiplication ( MVM ), which...V vector. Iterative methods, e.g. BiCGSTAB, are employed for solving the linear equation. The matrix-vector multiplications ( MVMs ), which dominate...most of the computation in the solving phase, consists of calculating near and far MVMs . The far MVM comprises aggregation, translation, and
Multidisciplinary Thermal Analysis of Hot Aerospace Structures
2010-05-02
Seidel iteration. Such a strategy simplifies explicit/implicit treatment , subcycling, load balancing, software modularity, and replacements as better... Stefan -Boltzmann constant , E is the emissivity of the surface, f is the form factor from the surface to the reference surface, Br is the temperature of...Stokes equations using Gauss- Seidel line Relaxation, Computers and Fluids, 17, pp.l35-150, 1989. [22] Hung C.M. and MacCormack R.W., Numerical
Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.
Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less
Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell
Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.; ...
2017-07-26
Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, D.A.
1995-12-31
Under the Acid Rain Program, by statute and regulation, affected utility units are allocated annual allowances. Each allowance permits a unit to emit one ton of SO{sub 2} during or after a specified year. At year end, utilities must hold allowances equal to or greater than the cumulative SO{sub 2} emissions throughout the year from their affected units. The program has been developing, on a staged basis, two major computer-based information systems: the Allowance Tracking System (ATS) for tracking creation, transfer, and ultimate use of allowances; and the Emissions Tracking System (ETS) for transmission, receipt, processing, and inventory of continuousmore » emissions monitoring (CEM) data. The systems collectively form a logical Acid Rain Data System (ARDS). ARDS will be the largest information system ever used to operate and evaluate an environmental program. The paper describes the progressive software engineering approach the Acid Rain Program has been using to develop ARDS. Iterative software version releases, keyed to critical program deadlines, add the functionality required to support specific statutory and regulatory provisions. Each software release also incorporates continual improvements for efficiency, user-friendliness, and lower life-cycle costs. The program is migrating the independent ATS and ETS systems into a logically coordinated True-Up processing model, to support the end-of-year reconciliation for balancing allowance holdings against annual emissions and compliance plans for Phase 1 affected utility units. The paper provides specific examples and data to illustrate exciting applications of today`s information technology in ARDS.« less
Stember, Joseph N; Deng, Fang-Ming; Taneja, Samir S; Rosenkrantz, Andrew B
2014-08-01
To present results of a pilot study to develop software that identifies regions suspicious for prostate transition zone (TZ) tumor, free of user input. Eight patients with TZ tumors were used to develop the model by training a Naïve Bayes classifier to detect tumors based on selection of most accurate predictors among various signal and textural features on T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) maps. Features tested as inputs were: average signal, signal standard deviation, energy, contrast, correlation, homogeneity and entropy (all defined on T2WI); and average ADC. A forward selection scheme was used on the remaining 20% of training set supervoxels to identify important inputs. The trained model was tested on a different set of ten patients, half with TZ tumors. In training cases, the software tiled the TZ with 4 × 4-voxel "supervoxels," 80% of which were used to train the classifier. Each of 100 iterations selected T2WI energy and average ADC, which therefore were deemed the optimal model input. The two-feature model was applied blindly to the separate set of test patients, again without operator input of suspicious foci. The software correctly predicted presence or absence of TZ tumor in all test patients. Furthermore, locations of predicted tumors corresponded spatially with locations of biopsies that had confirmed their presence. Preliminary findings suggest that this tool has potential to accurately predict TZ tumor presence and location, without operator input. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y.
2016-06-01
Measurement and control of the plasma in real-time are critical for advanced Tokamak operation. It requires high speed real-time data acquisition and processing. ITER has designed the Fast Plant System Controllers (FPSC) for these purposes. At J-TEXT Tokamak, a real-time data acquisition and processing framework has been designed and implemented using standard ITER FPSC technologies. The main hardware components of this framework are an Industrial Personal Computer (IPC) with a real-time system and FlexRIO devices based on FPGA. With FlexRIO devices, data can be processed by FPGA in real-time before they are passed to the CPU. The software elements are based on a real-time framework which runs under Red Hat Enterprise Linux MRG-R and uses Experimental Physics and Industrial Control System (EPICS) for monitoring and configuring. That makes the framework accord with ITER FPSC standard technology. With this framework, any kind of data acquisition and processing FlexRIO FPGA program can be configured with a FPSC. An application using the framework has been implemented for the polarimeter-interferometer diagnostic system on J-TEXT. The application is able to extract phase-shift information from the intermediate frequency signal produced by the polarimeter-interferometer diagnostic system and calculate plasma density profile in real-time. Different algorithms implementations on the FlexRIO FPGA are compared in the paper.
Evolution of International Space Station Program Safety Review Processes and Tools
NASA Technical Reports Server (NTRS)
Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.
2013-01-01
The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on the new ISS hazard system utilized focused user research and iterative design methods employed by the Human Computer Interaction Group at NASA Ames Research Center. Particularly, the approach emphasized the reduction of workload associated with document and data management activities so more resources can be allocated to the operational use of data in problem solving, safety analysis, and recurrence control. The methods and techniques used to understand existing processes and systems, to recognize opportunities for improvement, and to design and review improvements are described with the intent that similar techniques can be employed elsewhere in safety operations. A second goal of this paper is to provide and overview of the web-based data system implemented by ISS. The software selected for the ISS hazard systemMission Assurance System (MAS)is a NASA-customized vairant of the open source software project Bugzilla. The origin and history of MAS as a NASA software project and the rationale for (and advantages of) using open-source software are documented elsewhere (Green, et al., 2009).
Farinango, Charic D; Benavides, Juan S; Cerón, Jesús D; López, Diego M; Álvarez, Rosa E
2018-01-01
Previous studies have demonstrated the effectiveness of information and communication technologies to support healthy lifestyle interventions. In particular, personal health record systems (PHR-Ss) empower self-care, essential to support lifestyle changes. Approaches such as the user-centered design (UCD), which is already a standard within the software industry (ISO 9241-210:2010), provide specifications and guidelines to guarantee user acceptance and quality of eHealth systems. However, no single PHR-S for metabolic syndrome (MS) developed following the recommendations of the ISO 9241-210:2010 specification has been found in the literature. The aim of this study was to describe the development of a PHR-S for the management of MS according to the principles and recommendations of the ISO 9241-210 standard. The proposed PHR-S was developed using a formal software development process which, in addition to the traditional activities of any software process, included the principles and recommendations of the ISO 9241-210 standard. To gather user information, a survey sample of 1,187 individuals, eight interviews, and a focus group with seven people were performed. Throughout five iterations, three prototypes were built. Potential users of each system evaluated each prototype. The quality attributes of efficiency, effectiveness, and user satisfaction were assessed using metrics defined in the ISO/IEC 25022 standard. The following results were obtained: 1) a technology profile from 1,187 individuals at risk for MS from the city of Popayan, Colombia, identifying that 75.2% of the people use the Internet and 51% had a smartphone; 2) a PHR-S to manage MS developed (the PHR-S has the following five main functionalities: record the five MS risk factors, share these measures with health care professionals, and three educational modules on nutrition, stress management, and a physical activity); and 3) usability tests on each prototype obtaining the following results: 100% effectiveness, 100% efficiency, and 84.2 points in the system usability scale. The software development methodology used was based on the ISO 9241-210 standard, which allowed the development team to maintain a focus on user's needs and requirements throughout the project, which resulted in an increased satisfaction and acceptance of the system. Additionally, the establishment of a multidisciplinary team allowed the application of considerations not only from the disciplines of software engineering and health sciences but also from other disciplines such as graphical design and media communication. Finally, usability testing allowed the observation of flaws in the designs, which helped to improve the solution.
Parallel approach for bioinspired algorithms
NASA Astrophysics Data System (ADS)
Zaporozhets, Dmitry; Zaruba, Daria; Kulieva, Nina
2018-05-01
In the paper, a probabilistic parallel approach based on the population heuristic, such as a genetic algorithm, is suggested. The authors proposed using a multithreading approach at the micro level at which new alternative solutions are generated. On each iteration, several threads that independently used the same population to generate new solutions can be started. After the work of all threads, a selection operator combines obtained results in the new population. To confirm the effectiveness of the suggested approach, the authors have developed software on the basis of which experimental computations can be carried out. The authors have considered a classic optimization problem – finding a Hamiltonian cycle in a graph. Experiments show that due to the parallel approach at the micro level, increment of running speed can be obtained on graphs with 250 and more vertices.
Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis
LI, HUAMIN; LINDERMAN, GEORGE C.; SZLAM, ARTHUR; STANTON, KELLY P.; KLUGER, YUVAL; TYGERT, MARK
2017-01-01
Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks’ MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces). PMID:28983138
Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system
NASA Astrophysics Data System (ADS)
Kampmann, R.; Sinzinger, S.
2014-12-01
In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.
An adaptive, object oriented strategy for base calling in DNA sequence analysis.
Giddings, M C; Brumley, R L; Haker, M; Smith, L M
1993-01-01
An algorithm has been developed for the determination of nucleotide sequence from data produced in fluorescence-based automated DNA sequencing instruments employing the four-color strategy. This algorithm takes advantage of object oriented programming techniques for modularity and extensibility. The algorithm is adaptive in that data sets from a wide variety of instruments and sequencing conditions can be used with good results. Confidence values are provided on the base calls as an estimate of accuracy. The algorithm iteratively employs confidence determinations from several different modules, each of which examines a different feature of the data for accurate peak identification. Modules within this system can be added or removed for increased performance or for application to a different task. In comparisons with commercial software, the algorithm performed well. Images PMID:8233787
e-Learning Application for Machine Maintenance Process using Iterative Method in XYZ Company
NASA Astrophysics Data System (ADS)
Nurunisa, Suaidah; Kurniawati, Amelia; Pramuditya Soesanto, Rayinda; Yunan Kurnia Septo Hediyanto, Umar
2016-02-01
XYZ Company is a company based on manufacturing part for airplane, one of the machine that is categorized as key facility in the company is Millac 5H6P. As a key facility, the machines should be assured to work well and in peak condition, therefore, maintenance process is needed periodically. From the data gathering, it is known that there are lack of competency from the maintenance staff to maintain different type of machine which is not assigned by the supervisor, this indicate that knowledge which possessed by maintenance staff are uneven. The purpose of this research is to create knowledge-based e-learning application as a realization from externalization process in knowledge transfer process to maintain the machine. The application feature are adjusted for maintenance purpose using e-learning framework for maintenance process, the content of the application support multimedia for learning purpose. QFD is used in this research to understand the needs from user. The application is built using moodle with iterative method for software development cycle and UML Diagram. The result from this research is e-learning application as sharing knowledge media for maintenance staff in the company. From the test, it is known that the application make maintenance staff easy to understand the competencies.
Improved electron probe microanalysis of trace elements in quartz
Donovan, John J.; Lowers, Heather; Rusk, Brian G.
2011-01-01
Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.
To Boldly Go Where No Man has Gone Before: Seeking Gaia's Astrometric Solution with AGIS
NASA Astrophysics Data System (ADS)
Lammers, U.; Lindegren, L.; O'Mullane, W.; Hobbs, D.
2009-09-01
Gaia is ESA's ambitious space astrometry mission with a foreseen launch date in late 2011. Its main objective is to perform a stellar census of the 1,000 million brightest objects in our galaxy (completeness to V=20 mag) from which an astrometric catalog of micro-arcsec (μas) level accuracy will be constructed. A key element in this endeavor is the Astrometric Global Iterative Solution (AGIS) - the mathematical and numerical framework for combining the ≈80 available observations per star obtained during Gaia's 5 yr lifetime into a single global astrometic solution. AGIS consists of four main algorithmic cores which improve the source astrometic parameters, satellite attitude, calibration, and global parameters in a block-iterative manner. We present and discuss this basic scheme, the algorithms themselves and the overarching system architecture. The latter is a data-driven distributed processing framework designed to achieve an overall system performance that is not I/O limited. AGIS is being developed as a pure Java system by a small number of geographically distributed European groups. We present some of the software engineering aspects of the project and show used methodologies and tools. Finally we will briefly discuss how AGIS is embedded into the overall Gaia data processing architecture.
Fuchs, Tobias A; Fiechter, Michael; Gebhard, Cathérine; Stehli, Julia; Ghadri, Jelena R; Kazakauskaite, Egle; Herzog, Bernhard A; Husmann, Lars; Gaemperli, Oliver; Kaufmann, Philipp A
2013-03-01
To assess the impact of adaptive statistical iterative reconstruction (ASIR) on coronary plaque volume and composition analysis as well as on stenosis quantification in high definition coronary computed tomography angiography (CCTA). We included 50 plaques in 29 consecutive patients who were referred for the assessment of known or suspected coronary artery disease (CAD) with contrast-enhanced CCTA on a 64-slice high definition CT scanner (Discovery HD 750, GE Healthcare). CCTA scans were reconstructed with standard filtered back projection (FBP) with no ASIR (0 %) or with increasing contributions of ASIR, i.e. 20, 40, 60, 80 and 100 % (no FBP). Plaque analysis (volume, components and stenosis degree) was performed using a previously validated automated software. Mean values for minimal diameter and minimal area as well as degree of stenosis did not change significantly using different ASIR reconstructions. There was virtually no impact of reconstruction algorithms on mean plaque volume or plaque composition (e.g. soft, intermediate and calcified component). However, with increasing ASIR contribution, the percentage of plaque volume component between 401 and 500 HU decreased significantly (p < 0.05). Modern image reconstruction algorithms such as ASIR, which has been developed for noise reduction in latest high resolution CCTA scans, can be used reliably without interfering with the plaque analysis and stenosis severity assessment.
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
Kiefer, Patrick; Schmitt, Uwe; Vorholt, Julia A
2013-04-01
The Python-based, open-source eMZed framework was developed for mass spectrometry (MS) users to create tailored workflows for liquid chromatography (LC)/MS data analysis. The goal was to establish a unique framework with comprehensive basic functionalities that are easy to apply and allow for the extension and modification of the framework in a straightforward manner. eMZed supports the iterative development and prototyping of individual evaluation strategies by providing a computing environment and tools for inspecting and modifying underlying LC/MS data. The framework specifically addresses non-expert programmers, as it requires only basic knowledge of Python and relies largely on existing successful open-source software, e.g. OpenMS. The framework eMZed and its documentation are freely available at http://emzed.biol.ethz.ch/. eMZed is published under the GPL 3.0 license, and an online discussion group is available at https://groups.google.com/group/emzed-users. Supplementary data are available at Bioinformatics online.
RF control at SSCL — an object oriented design approach
NASA Astrophysics Data System (ADS)
Dohan, D. A.; Osberg, E.; Biggs, R.; Bossom, J.; Chillara, K.; Richter, R.; Wade, D.
1994-12-01
The Superconducting Super Collider (SSC) in Texas, the construction of which was stopped in 1994, would have represented a major challenge in accelerator research and development. This paper addresses the issues encountered in the parallel design and construction of the control systems for the RF equipment for the five accelerators comprising the SSC. An extensive analysis of the components of the RF control systems has been undertaken, based upon the Schlaer-Mellor object-oriented analysis and design (OOA/OOD) methodology. The RF subsystem components such as amplifiers, tubes, power supplies, PID loops, etc. were analyzed to produce OOA information, behavior and process models. Using these models, OOD was iteratively applied to develop a generic RF control system design. This paper describes the results of this analysis and the development of 'bridges' between the analysis objects, and the EPICS-based software and underlying VME-based hardware architectures. The application of this approach to several of the SSCL RF control systems is discussed.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.
Software Comparison for Renewable Energy Deployment in a Distribution Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objective of this report is to evaluate different software options for performing robust distributed generation (DG) power system modeling. The features and capabilities of four simulation tools, OpenDSS, GridLAB-D, CYMDIST, and PowerWorld Simulator, are compared to analyze their effectiveness in analyzing distribution networks with DG. OpenDSS and GridLAB-D, two open source software, have the capability to simulate networks with fluctuating data values. These packages allow the running of a simulation each time instant by iterating only the main script file. CYMDIST, a commercial software, allows for time-series simulation to study variations on network controls. PowerWorld Simulator, another commercialmore » tool, has a batch mode simulation function through the 'Time Step Simulation' tool, which obtains solutions for a list of specified time points. PowerWorld Simulator is intended for analysis of transmission-level systems, while the other three are designed for distribution systems. CYMDIST and PowerWorld Simulator feature easy-to-use graphical user interfaces (GUIs). OpenDSS and GridLAB-D, on the other hand, are based on command-line programs, which increase the time necessary to become familiar with the software packages.« less
Interacting domain-specific languages with biological problem solving environments
NASA Astrophysics Data System (ADS)
Cickovski, Trevor M.
Iteratively developing a biological model and verifying results with lab observations has become standard practice in computational biology. This process is currently facilitated by biological Problem Solving Environments (PSEs), multi-tiered and modular software frameworks which traditionally consist of two layers: a computational layer written in a high level language using design patterns, and a user interface layer which hides its details. Although PSEs have proven effective, they still enforce some communication overhead between biologists refining their models through repeated comparison with experimental observations in vitro or in vivo, and programmers actually implementing model extensions and modifications within the computational layer. I illustrate the use of biological Domain-Specific Languages (DSLs) as a middle-level PSE tier to ameliorate this problem by providing experimentalists with the ability to iteratively test and develop their models using a higher degree of expressive power compared to a graphical interface, while saving the requirement of general purpose programming knowledge. I develop two radically different biological DSLs: XML-based BIOLOGO will model biological morphogenesis using a cell-centered stochastic cellular automaton and translate into C++ modules for an object-oriented PSE C OMPUCELL3D, and MDLab will provide a set of high-level Python libraries for running molecular dynamics simulations, using wrapped functionality from the C++ PSE PROTOMOL. I describe each language in detail, including its its roles within the larger PSE and its expressibility in terms of representable phenomena, and a discussion of observations from users of the languages. Moreover I will use these studies to draw general conclusions about biological DSL development, including dependencies upon the goals of the corresponding PSE, strategies, and tradeoffs.
NASA Technical Reports Server (NTRS)
Ables, Brett
2014-01-01
Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.
Data and Workflow Management Challenges in Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Lei, W.; Ruan, Y.; Smith, J. A.; Modrak, R. T.; Orsvuran, R.; Krischer, L.; Chen, Y.; Balasubramanian, V.; Hill, J.; Turilli, M.; Bozdag, E.; Lefebvre, M. P.; Jha, S.; Tromp, J.
2017-12-01
It is crucial to take the complete physics of wave propagation into account in seismic tomography to further improve the resolution of tomographic images. The adjoint method is an efficient way of incorporating 3D wave simulations in seismic tomography. However, global adjoint tomography is computationally expensive, requiring thousands of wavefield simulations and massive data processing. Through our collaboration with the Oak Ridge National Laboratory (ORNL) computing group and an allocation on Titan, ORNL's GPU-accelerated supercomputer, we are now performing our global inversions by assimilating waveform data from over 1,000 earthquakes. The first challenge we encountered is dealing with the sheer amount of seismic data. Data processing based on conventional data formats and processing tools (such as SAC), which are not designed for parallel systems, becomes our major bottleneck. To facilitate the data processing procedures, we designed the Adaptive Seismic Data Format (ASDF) and developed a set of Python-based processing tools to replace legacy FORTRAN-based software. These tools greatly enhance reproducibility and accountability while taking full advantage of highly parallel system and showing superior scaling on modern computational platforms. The second challenge is that the data processing workflow contains more than 10 sub-procedures, making it delicate to handle and prone to human mistakes. To reduce human intervention as much as possible, we are developing a framework specifically designed for seismic inversion based on the state-of-the art workflow management research, specifically the Ensemble Toolkit (EnTK), in collaboration with the RADICAL team from Rutgers University. Using the initial developments of the EnTK, we are able to utilize the full computing power of the data processing cluster RHEA at ORNL while keeping human interaction to a minimum and greatly reducing the data processing time. Thanks to all the improvements, we are now able to perform iterations fast enough on more than a 1,000 earthquakes dataset. Starting from model GLAD-M15 (Bozdag et al., 2016), an elastic 3D model with a transversely isotropic upper mantle, we have successfully performed 5 iterations. Our goal is to finish 10 iterations, i.e., generating GLAD M25* by the end of this year.
Interactive computer graphics system for structural sizing and analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.
1975-01-01
A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.
Software Testing for Evolutionary Iterative Rapid Prototyping
1990-12-01
kept later hours than I did. Amidst the hustle and bustle, their prayers and help around the house were a great ast.. Finally, if anything shows the...possible meanings. A basic dictionary definition describes prototyping as "an original type , form, or instance that serves as a modfe] on which later...on program size. Asset instruments 49 the subject procedure and produces a graph of the structure for the type of data flow testing conducted. It
Transportable Maps Software. Volume I.
1982-07-01
being collected at the beginning or end of the routine. This allows the interaction to be followed sequentially through its steps by anyone reading the...flow is either simple sequential , simple conditional (the equivalent of ’if-then-else’), simple iteration (’DO-loop’), or the non-linear recursion...input raster images to be in the form of sequential binary files with a SEGMENTED record type. The advantage of this form is that large logical records
From Amorphous to Defined: Balancing the Risks of Spiral Development
2007-04-30
630 675 720 765 810 855 900 Time (Week) Work started and active PhIt [Requirements,Iter1] : JavelinCalibration work packages1 1 1 Work started and...active PhIt [Technology,Iter1] : JavelinCalibration work packages2 2 2 Work started and active PhIt [Design,Iter1] : JavelinCalibration work packages3 3 3 3...Work started and active PhIt [Manufacturing,Iter1] : JavelinCalibration work packages4 4 Work started and active PhIt [Use,Iter1] : JavelinCalibration
Benefits of an automated GLP final report preparation software solution.
Elvebak, Larry E
2011-07-01
The final product of analytical laboratories performing US FDA-regulated (or GLP) method validation and bioanalysis studies is the final report. Although there are commercial-off-the-shelf (COTS) software/instrument systems available to laboratory managers to automate and manage almost every aspect of the instrumental and sample-handling processes of GLP studies, there are few software systems available to fully manage the GLP final report preparation process. This lack of appropriate COTS tools results in the implementation of rather Byzantine and manual processes to cobble together all the information needed to generate a GLP final report. The manual nature of these processes results in the need for several iterative quality control and quality assurance events to ensure data accuracy and report formatting. The industry is in need of a COTS solution that gives laboratory managers and study directors the ability to manage as many portions as possible of the GLP final report writing process and the ability to generate a GLP final report with the click of a button. This article describes the COTS software features needed to give laboratory managers and study directors such a solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Geveci, Berk
The FY18Q1 milestone of the ECP/VTK-m project includes the implementation of a multiblock data set, the completion of a gradients filtering operation, and the release of version 1.1 of the VTK-m software. With the completion of this milestone, the new multiblock data set allows us to iteratively schedule algorithms on composite data structures such as assemblies or hierarchies like AMR. The new gradient algorithms approximate derivatives of fields in 3D structures with finite differences. Finally, the release of VTK-m version 1.1 tags a stable release of the software that can more easily be incorporated into external projects.
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen
1992-01-01
A proven 3-D multiple-block elliptic grid generator, designed to run in 'batch mode' on a supercomputer, is improved by the creation of a modern graphical user interface (GUI) running on a workstation. The two parts are connected in real time by a network. The resultant system offers a significant speedup in the process of preparing and formatting input data and the ability to watch the grid solution converge by replotting the grid at each iteration step. The result is a reduction in user time and CPU time required to generate the grid and an enhanced understanding of the elliptic solution process. This software system, called GRAPEVINE, is described, and certain observations are made concerning the creation of such software.
NASA Astrophysics Data System (ADS)
Li, Zhengguang; Lai, Siu-Kai; Wu, Baisheng
2018-07-01
Determining eigenvector derivatives is a challenging task due to the singularity of the coefficient matrices of the governing equations, especially for those structural dynamic systems with repeated eigenvalues. An effective strategy is proposed to construct a non-singular coefficient matrix, which can be directly used to obtain the eigenvector derivatives with distinct and repeated eigenvalues. This approach also has an advantage that only requires eigenvalues and eigenvectors of interest, without solving the particular solutions of eigenvector derivatives. The Symmetric Quasi-Minimal Residual (SQMR) method is then adopted to solve the governing equations, only the existing factored (shifted) stiffness matrix from an iterative eigensolution such as the subspace iteration method or the Lanczos algorithm is utilized. The present method can deal with both cases of simple and repeated eigenvalues in a unified manner. Three numerical examples are given to illustrate the accuracy and validity of the proposed algorithm. Highly accurate approximations to the eigenvector derivatives are obtained within a few iteration steps, making a significant reduction of the computational effort. This method can be incorporated into a coupled eigensolver/derivative software module. In particular, it is applicable for finite element models with large sparse matrices.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.
2009-12-01
A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.
Computer-Based Tools for Evaluating Graphical User Interfaces
NASA Technical Reports Server (NTRS)
Moore, Loretta A.
1997-01-01
The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.
Computer Synthesis Approaches of Hyperboloid Gear Drives with Linear Contact
NASA Astrophysics Data System (ADS)
Abadjiev, Valentin; Kawasaki, Haruhisa
2014-09-01
The computer design has improved forming different type software for scientific researches in the field of gearing theory as well as performing an adequate scientific support of the gear drives manufacture. Here are attached computer programs that are based on mathematical models as a result of scientific researches. The modern gear transmissions require the construction of new mathematical approaches to their geometric, technological and strength analysis. The process of optimization, synthesis and design is based on adequate iteration procedures to find out an optimal solution by varying definite parameters. The study is dedicated to accepted methodology in the creation of soft- ware for the synthesis of a class high reduction hyperboloid gears - Spiroid and Helicon ones (Spiroid and Helicon are trademarks registered by the Illinois Tool Works, Chicago, Ill). The developed basic computer products belong to software, based on original mathematical models. They are based on the two mathematical models for the synthesis: "upon a pitch contact point" and "upon a mesh region". Computer programs are worked out on the basis of the described mathematical models, and the relations between them are shown. The application of the shown approaches to the synthesis of commented gear drives is illustrated.
Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise.
Militello, Laura G; Saleem, Jason J; Borders, Morgan R; Sushereba, Christen E; Haverkamp, Donald; Wolf, Steven P; Doebbeling, Bradley N
2016-03-01
Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration's EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability.
Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise
Militello, Laura G.; Saleem, Jason J.; Borders, Morgan R.; Sushereba, Christen E.; Haverkamp, Donald; Wolf, Steven P.; Doebbeling, Bradley N.
2016-01-01
Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration’s EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability. PMID:26973441
Software Would Largely Automate Design of Kalman Filter
NASA Technical Reports Server (NTRS)
Chuang, Jason C. H.; Negast, William J.
2005-01-01
Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.
Integrated Software for Analyzing Designs of Launch Vehicles
NASA Technical Reports Server (NTRS)
Philips, Alan D.
2003-01-01
Launch Vehicle Analysis Tool (LVA) is a computer program for preliminary design structural analysis of launch vehicles. Before LVA was developed, in order to analyze the structure of a launch vehicle, it was necessary to estimate its weight, feed this estimate into a program to obtain pre-launch and flight loads, then feed these loads into structural and thermal analysis programs to obtain a second weight estimate. If the first and second weight estimates differed, it was necessary to reiterate these analyses until the solution converged. This process generally took six to twelve person-months of effort. LVA incorporates text to structural layout converter, configuration drawing, mass properties generation, pre-launch and flight loads analysis, loads output plotting, direct solution structural analysis, and thermal analysis subprograms. These subprograms are integrated in LVA so that solutions can be iterated automatically. LVA incorporates expert-system software that makes fundamental design decisions without intervention by the user. It also includes unique algorithms based on extensive research. The total integration of analysis modules drastically reduces the need for interaction with the user. A typical solution can be obtained in 30 to 60 minutes. Subsequent runs can be done in less than two minutes.
Open control/display system for a telerobotics work station
NASA Technical Reports Server (NTRS)
Keslowitz, Saul
1987-01-01
A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.
Status of the 1 MeV Accelerator Design for ITER NBI
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.
2011-09-01
The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.
Final Report on ITER Task Agreement 81-08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard L. Moore
As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of themore » ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.« less
Solution of Cubic Equations by Iteration Methods on a Pocket Calculator
ERIC Educational Resources Information Center
Bamdad, Farzad
2004-01-01
A method to provide students a vision of how they can write iteration programs on an inexpensive programmable pocket calculator, without requiring a PC or a graphing calculator is developed. Two iteration methods are used, successive-approximations and bisection methods.
PREFACE: Progress in the ITER Physics Basis
NASA Astrophysics Data System (ADS)
Ikeda, K.
2007-06-01
I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were fundamental to its completion. I am pleased to witness the extensive collaborations, the excellent working relationships and the free exchange of views that have been developed among scientists working on magnetic fusion, and I would particularly like to acknowledge the importance which they assign to ITER in their research. This close collaboration and the spirit of free discussion will be essential to the success of ITER. Finally, the PIPB identifies issues which remain in the projection of burning plasma performance to the ITER scale and in the control of burning plasmas. Continued R&D is therefore called for to reduce the uncertainties associated with these issues and to ensure the efficient operation and exploitation of ITER. It is important that the international fusion community maintains a high level of collaboration in the future to address these issues and to prepare the physics basis for ITER operation. ITPA Coordination Committee R. Stambaugh (Chair of ITPA CC, General Atomics, USA) D.J. Campbell (Previous Chair of ITPA CC, European Fusion Development Agreement—Close Support Unit, ITER Organization) M. Shimada (Co-Chair of ITPA CC, ITER Organization) R. Aymar (ITER International Team, CERN) V. Chuyanov (ITER Organization) J.H. Han (Korea Basic Science Institute, Korea) Y. Huo (Zengzhou University, China) Y.S. Hwang (Seoul National University, Korea) N. Ivanov (Kurchatov Institute, Russia) Y. Kamada (Japan Atomic Energy Agency, Naka, Japan) P.K. Kaw (Institute for Plasma Research, India) S. Konovalov (Kurchatov Institute, Russia) M. Kwon (National Fusion Research Center, Korea) J. Li (Academy of Science, Institute of Plasma Physics, China) S. Mirnov (TRINITI, Russia) Y. Nakamura (National Institute for Fusion Studies, Japan) H. Ninomiya (Japan Atomic Energy Agency, Naka, Japan) E. Oktay (Department of Energy, USA) J. Pamela (European Fusion Development Agreement—Close Support Unit) C. Pan (Southwestern Institute of Physics, China) F. Romanelli (Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Italy and European Fusion Development Agreement—Close Support Unit) N. Sauthoff (Princeton Plasma Physics Laboratory, USA and Oak Ridge National Laboratories, USA) Y. Saxena (Institute for Plasma Research, India) Y. Shimomura (ITER Organization) R. Singh (Institute for Plasma Research, India) S. Takamura (Nagoya University, Japan) K. Toi (National Institute for Fusion Studies, Japan) M. Wakatani (Kyoto University, Japan (deceased)) H. Zohm (Max-Planck-Institut für Plasmaphysik, Garching, Germany)
2014-01-01
Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness. PMID:25431584
Development of a near-infrared spectroscopy instrument for applications in urology.
Macnab, Andrew J; Stothers, Lynn
2008-10-01
Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.
Plasma Physics Network Newsletter, no. 5
NASA Astrophysics Data System (ADS)
1992-08-01
The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.
Hamed, Kaveh Akbari; Gregg, Robert D
2016-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059
Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability
NASA Astrophysics Data System (ADS)
Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar
2017-07-01
The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.
Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho
2014-01-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299
Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho
2014-11-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.
3-D Analysis of Flanged Joints Through Various Preload Methods Using ANSYS
NASA Astrophysics Data System (ADS)
Murugan, Jeyaraj Paul; Kurian, Thomas; Jayaprakash, Janardhan; Sreedharapanickar, Somanath
2015-10-01
Flanged joints are being employed in aerospace solid rocket motor hardware for the integration of various systems or subsystems. Hence, the design of flanged joints is very important in ensuring the integrity of motor while functioning. As these joints are subjected to higher loads due to internal pressure acting inside the motor chamber, an appropriate preload is required to be applied in this joint before subjecting it to the external load. Preload, also known as clamp load, is applied on the fastener and helps to hold the mating flanges together. Generally preload is simulated as a thermal load and the exact preload is obtained through number of iterations. Infact, more iterations are required when considering the material nonlinearity of the bolt. This way of simulation will take more computational time for generating the required preload. Now a days most commercial software packages use pretension elements for simulating the preload. This element does not require iterations for inducing the preload and it can be solved with single iteration. This approach takes less computational time and thus one can study the characteristics of the joint easily by varying the preload. When the structure contains more number of joints with different sizes of fasteners, pretension elements can be used compared to thermal load approach for simulating each size of fastener. This paper covers the details of analyses carried out simulating the preload through various options viz., preload through thermal, initial state command and pretension element etc. using ANSYS finite element package.
The ITER bolometer diagnostic: Status and plansa)
NASA Astrophysics Data System (ADS)
Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.
2008-10-01
A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.
Petascale Computing for Ground-Based Solar Physics with the DKIST Data Center
NASA Astrophysics Data System (ADS)
Berukoff, Steven J.; Hays, Tony; Reardon, Kevin P.; Spiess, DJ; Watson, Fraser; Wiant, Scott
2016-05-01
When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 3 PB per year, and produce 107-109 metadata elements.The DKIST Data Center is being designed to store, curate, and process this flood of information, while providing association of science data and metadata to its acquisition and processing provenance. The Data Center will produce quality-controlled calibrated data sets, and make them available freely and openly through modern search interfaces and APIs. Documented software and algorithms will also be made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. We discuss our iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and how software and hardware support, intelligently deployed, will enable high-caliber solar physics research and community growth for the DKIST's 40-year lifespan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, Michael Allen
2004-07-01
The Trilinos{trademark} Project is an effort to facilitate the design, development, integration and ongoing support of mathematical software libraries. AztecOO{trademark} is a package within Trilinos that enables the use of the Aztec solver library [19] with Epetra{trademark} [13] objects. AztecOO provides access to Aztec preconditioners and solvers by implementing the Aztec 'matrix-free' interface using Epetra. While Aztec is written in C and procedure-oriented, AztecOO is written in C++ and is object-oriented. In addition to providing access to Aztec capabilities, AztecOO also provides some signficant new functionality. In particular it provides an extensible status testing capability that allows expression of sophisticatedmore » stopping criteria as is needed in production use of iterative solvers. AztecOO also provides mechanisms for using Ifpack [2], ML [20] and AztecOO itself as preconditioners.« less
Simulation in a dynamic prototyping environment: Petri nets or rules?
NASA Technical Reports Server (NTRS)
Moore, Loretta A.; Price, Shannon W.; Hale, Joseph P.
1994-01-01
An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.
Simulation in a dynamic prototyping environment: Petri nets or rules?
NASA Technical Reports Server (NTRS)
Moore, Loretta A.; Price, Shannon; Hale, Joseph P.
1994-01-01
An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.
3D molecular models of whole HIV-1 virions generated with cellPACK
Goodsell, David S.; Autin, Ludovic; Forli, Stefano; Sanner, Michel F.; Olson, Arthur J.
2014-01-01
As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology. PMID:25253262
NASA Technical Reports Server (NTRS)
Pike, Cody J.
2015-01-01
A project within SwampWorks is building a test stand to hold regolith to study how dust is ejected when exposed to the hot exhaust plume of a rocket engine. The test stand needs to be analyzed, finalized, and fabrication drawings generated to move forward. Modifications of the test stand assembly were made with Creo 2 modeling software. Structural analysis calculations were developed by hand to confirm if the structure will hold the expected loads while optimizing support positions. These calculations when iterated through MatLab demonstrated the optimized position of the vertical support to be 98'' from the far end of the stand. All remaining deflections were shown to be under the 0.6'' requirement and internal stresses to meet NASA Ground Support Equipment (GSE) Safety Standards. Though at the time of writing, fabrication drawings have yet to be generated, but are expected shortly after.
Model Selection for Monitoring CO2 Plume during Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-12-31
The model selection method developed as part of this project mainly includes four steps: (1) assessing the connectivity/dynamic characteristics of a large prior ensemble of models, (2) model clustering using multidimensional scaling coupled with k-mean clustering, (3) model selection using the Bayes' rule in the reduced model space, (4) model expansion using iterative resampling of the posterior models. The fourth step expresses one of the advantages of the method: it provides a built-in means of quantifying the uncertainty in predictions made with the selected models. In our application to plume monitoring, by expanding the posterior space of models, the finalmore » ensemble of representations of geological model can be used to assess the uncertainty in predicting the future displacement of the CO2 plume. The software implementation of this approach is attached here.« less
Generic mission planning concepts for space astronomy missions
NASA Technical Reports Server (NTRS)
Guffin, O. T.; Onken, J. F.
1993-01-01
The past two decades have seen the rapid development of space astronomy, both manned and unmanned, and the concurrent proliferation of the operational concepts and software that have been produced to support each individual project. Having been involved in four of these missions since the '70's and three yet to fly in the present decade, the authors believe it is time to step back and evaluate this body of experience from a macro-systems point of view to determine the potential for generic mission planning concepts that could be applied to future missions. This paper presents an organized evaluation of astronomy mission planning functions, functional flows, iteration cycles, replanning activities, and the requirements that drive individual concepts to specific solutions. The conclusions drawn from this exercise are then used to propose a generic concept that could support multiple missions.
Iterating between lessons on concepts and procedures can improve mathematics knowledge.
Rittle-Johnson, Bethany; Koedinger, Kenneth
2009-09-01
Knowledge of concepts and procedures seems to develop in an iterative fashion, with increases in one type of knowledge leading to increases in the other type of knowledge. This suggests that iterating between lessons on concepts and procedures may improve learning. The purpose of the current study was to evaluate the instructional benefits of an iterative lesson sequence compared to a concepts-before-procedures sequence for students learning decimal place-value concepts and arithmetic procedures. In two classroom experiments, sixth-grade students from two schools participated (N=77 and 26). Students completed six decimal lessons on an intelligent-tutoring systems. In the iterative condition, lessons cycled between concept and procedure lessons. In the concepts-first condition, all concept lessons were presented before introducing the procedure lessons. In both experiments, students in the iterative condition gained more knowledge of arithmetic procedures, including ability to transfer the procedures to problems with novel features. Knowledge of concepts was fairly comparable across conditions. Finally, pre-test knowledge of one type predicted gains in knowledge of the other type across experiments. An iterative sequencing of lessons seems to facilitate learning and transfer, particularly of mathematical procedures. The findings support an iterative perspective for the development of knowledge of concepts and procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litaudon, X; Bernard, J. M.; Colas, L.
2013-01-01
To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Toremore » Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.« less
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1985-01-01
Synopses are given for NASA supported work in computer science at the University of Virginia. Some areas of research include: error seeding as a testing method; knowledge representation for engineering design; analysis of faults in a multi-version software experiment; implementation of a parallel programming environment; two computer graphics systems for visualization of pressure distribution and convective density particles; task decomposition for multiple robot arms; vectorized incomplete conjugate gradient; and iterative methods for solving linear equations on the Flex/32.
Some User's Insights Into ADIFOR 2.0D
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.
2002-01-01
Some insights are given which were gained by one user through experience with the use of the ADIFOR 2.0D software for automatic differentiation of Fortran code. These insights are generally in the area of the user interface with the generated derivative code - particularly the actual form of the interface and the use of derivative objects, including "seed" matrices. Some remarks are given as to how to iterate application of ADIFOR in order to generate second derivative code.
Hose, D R; Lawford, P V; Narracott, A J; Penrose, J M T; Jones, I P
2003-01-01
Fluid-solid interaction is a primary feature of cardiovascular flows. There is increasing interest in the numerical solution of these systems as the extensive computational resource required for such studies becomes available. One form of coupling is an external weak coupling of separate solid and fluid mechanics codes. Information about the stress tensor and displacement vector at the wetted boundary is passed between the codes, and an iterative scheme is employed to move towards convergence of these parameters at each time step. This approach has the attraction that separate codes with the most extensive functionality for each of the separate phases can be selected, which might be important in the context of the complex rheology and contact mechanics that often feature in cardiovascular systems. Penrose and Staples describe a weak coupling of CFX for computational fluid mechanics to ANSYS for solid mechanics, based on a simple Jacobi iteration scheme. It is important to validate the coupled numerical solutions. An extensive analytical study of flow in elastic-walled tubes was carried out by Womersley in the late 1950s. This paper describes the performance of the coupling software for the straight elastic-walled tube, and compares the results with Womersley's analytical solutions. It also presents preliminary results demonstrating the application of the coupled software in the context of a stented vessel.
An accelerated subspace iteration for eigenvector derivatives
NASA Technical Reports Server (NTRS)
Ting, Tienko
1991-01-01
An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.
Application of Gaia Analysis Software AGIS to Nano-JASMINE
NASA Astrophysics Data System (ADS)
Yamada, Y.; Lammers, U.; Gouda, N.
2011-07-01
The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). Nano-JASMINE is an ultra small (35 kg) satellite for astrometry observations in Japan and Gaia is ESA's large (over 1000 kg) next-generation astrometry mission. The accuracy of Nano-JASMINE is about 3 mas, comparable to the Hipparcos mission, Gaia's predecessor some 20 years ago. It is challenging that such a small satellite can perform real scientific observations. The collaboration for sharing software started in 2007. In addition to similar design and operating principles of the two missions, this is possible thanks to the encapsulation of all Gaia-specific aspects of AGIS in a Parameter Database. Nano-JASMINE will be the test bench for the Gaia AGIS software. We present this idea in detail and the necessary practical steps to make AGIS work with Nano-JASMINE data. We also show the key mission parameters, goals, and status of the data reduction for the Nano-JASMINE.
Kawamoto, Kensaku; Martin, Cary J; Williams, Kip; Tu, Ming-Chieh; Park, Charlton G; Hunter, Cheri; Staes, Catherine J; Bray, Bruce E; Deshmukh, Vikrant G; Holbrook, Reid A; Morris, Scott J; Fedderson, Matthew B; Sletta, Amy; Turnbull, James; Mulvihill, Sean J; Crabtree, Gordon L; Entwistle, David E; McKenna, Quinn L; Strong, Michael B; Pendleton, Robert C; Lee, Vivian S
2015-01-01
Objective To develop expeditiously a pragmatic, modular, and extensible software framework for understanding and improving healthcare value (costs relative to outcomes). Materials and methods In 2012, a multidisciplinary team was assembled by the leadership of the University of Utah Health Sciences Center and charged with rapidly developing a pragmatic and actionable analytics framework for understanding and enhancing healthcare value. Based on an analysis of relevant prior work, a value analytics framework known as Value Driven Outcomes (VDO) was developed using an agile methodology. Evaluation consisted of measurement against project objectives, including implementation timeliness, system performance, completeness, accuracy, extensibility, adoption, satisfaction, and the ability to support value improvement. Results A modular, extensible framework was developed to allocate clinical care costs to individual patient encounters. For example, labor costs in a hospital unit are allocated to patients based on the hours they spent in the unit; actual medication acquisition costs are allocated to patients based on utilization; and radiology costs are allocated based on the minutes required for study performance. Relevant process and outcome measures are also available. A visualization layer facilitates the identification of value improvement opportunities, such as high-volume, high-cost case types with high variability in costs across providers. Initial implementation was completed within 6 months, and all project objectives were fulfilled. The framework has been improved iteratively and is now a foundational tool for delivering high-value care. Conclusions The framework described can be expeditiously implemented to provide a pragmatic, modular, and extensible approach to understanding and improving healthcare value. PMID:25324556
Handheld emissions detector (HED): overview and development
NASA Astrophysics Data System (ADS)
Valentino, George J.; Schimmel, David
2009-05-01
Nova Engineering, Cincinnati OH, a division of L-3 Communications (L-3 Nova), under the sponsorship of Program Manager Soldier Warrior (PM-SWAR), Fort Belvoir, VA, has developed a Soldier portable, light-weight, hand-held, geolocation sensor and processing system called the Handheld Emissions Detector (HED). The HED is a broadband custom receiver and processor that allows the user to easily sense, direction find, and locate a broad range of emitters in the user's surrounding area. Now in its second design iteration, the HED incorporates a set of COTS components that are complemented with L-3 Nova custom RF, power, digital, and mechanical components, plus custom embedded and application software. The HED user interfaces are designed to provide complex information in a readily-understandable form, thereby providing actionable results for operators. This paper provides, where possible, the top-level characteristics of the HED as well as the rationale behind its design philosophy along with its applications in both DOD and Commercial markets.
NASA Astrophysics Data System (ADS)
Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.
1981-02-01
Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.
NASA Astrophysics Data System (ADS)
Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.
2016-05-01
Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.
Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1
NASA Astrophysics Data System (ADS)
Carbillet, Marcel; La Camera, Andrea; Deguignet, Jérémy; Prato, Marco; Bertero, Mario; Aristidi, Éric; Boccacci, Patrizia
2014-08-01
We first briefly present the last version of the Software Package AIRY, version 6.1, a CAOS-based tool which includes various deconvolution methods, accelerations, regularizations, super-resolution, boundary effects reduction, point-spread function extraction/extrapolation, stopping rules, and constraints in the case of iterative blind deconvolution (IBD). Then, we focus on a new formulation of our Strehl-constrained IBD, here quantitatively compared to the original formulation for simulated near-infrared data of an 8-m class telescope equipped with adaptive optics (AO), showing their equivalence. Next, we extend the application of the original method to the visible domain with simulated data of an AO-equipped 1.5-m telescope, testing also the robustness of the method with respect to the Strehl ratio estimation.
Cost-effective computational method for radiation heat transfer in semi-crystalline polymers
NASA Astrophysics Data System (ADS)
Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice
2018-05-01
This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.
A communication-avoiding, hybrid-parallel, rank-revealing orthogonalization method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoemmen, Mark
2010-11-01
Orthogonalization consumes much of the run time of many iterative methods for solving sparse linear systems and eigenvalue problems. Commonly used algorithms, such as variants of Gram-Schmidt or Householder QR, have performance dominated by communication. Here, 'communication' includes both data movement between the CPU and memory, and messages between processors in parallel. Our Tall Skinny QR (TSQR) family of algorithms requires asymptotically fewer messages between processors and data movement between CPU and memory than typical orthogonalization methods, yet achieves the same accuracy as Householder QR factorization. Furthermore, in block orthogonalizations, TSQR is faster and more accurate than existing approaches formore » orthogonalizing the vectors within each block ('normalization'). TSQR's rank-revealing capability also makes it useful for detecting deflation in block iterative methods, for which existing approaches sacrifice performance, accuracy, or both. We have implemented a version of TSQR that exploits both distributed-memory and shared-memory parallelism, and supports real and complex arithmetic. Our implementation is optimized for the case of orthogonalizing a small number (5-20) of very long vectors. The shared-memory parallel component uses Intel's Threading Building Blocks, though its modular design supports other shared-memory programming models as well, including computation on the GPU. Our implementation achieves speedups of 2 times or more over competing orthogonalizations. It is available now in the development branch of the Trilinos software package, and will be included in the 10.8 release.« less
Farinango, Charic D; Benavides, Juan S; Cerón, Jesús D; López, Diego M; Álvarez, Rosa E
2018-01-01
Background Previous studies have demonstrated the effectiveness of information and communication technologies to support healthy lifestyle interventions. In particular, personal health record systems (PHR-Ss) empower self-care, essential to support lifestyle changes. Approaches such as the user-centered design (UCD), which is already a standard within the software industry (ISO 9241-210:2010), provide specifications and guidelines to guarantee user acceptance and quality of eHealth systems. However, no single PHR-S for metabolic syndrome (MS) developed following the recommendations of the ISO 9241-210:2010 specification has been found in the literature. Objective The aim of this study was to describe the development of a PHR-S for the management of MS according to the principles and recommendations of the ISO 9241-210 standard. Methods The proposed PHR-S was developed using a formal software development process which, in addition to the traditional activities of any software process, included the principles and recommendations of the ISO 9241-210 standard. To gather user information, a survey sample of 1,187 individuals, eight interviews, and a focus group with seven people were performed. Throughout five iterations, three prototypes were built. Potential users of each system evaluated each prototype. The quality attributes of efficiency, effectiveness, and user satisfaction were assessed using metrics defined in the ISO/IEC 25022 standard. Results The following results were obtained: 1) a technology profile from 1,187 individuals at risk for MS from the city of Popayan, Colombia, identifying that 75.2% of the people use the Internet and 51% had a smartphone; 2) a PHR-S to manage MS developed (the PHR-S has the following five main functionalities: record the five MS risk factors, share these measures with health care professionals, and three educational modules on nutrition, stress management, and a physical activity); and 3) usability tests on each prototype obtaining the following results: 100% effectiveness, 100% efficiency, and 84.2 points in the system usability scale. Conclusion The software development methodology used was based on the ISO 9241-210 standard, which allowed the development team to maintain a focus on user’s needs and requirements throughout the project, which resulted in an increased satisfaction and acceptance of the system. Additionally, the establishment of a multidisciplinary team allowed the application of considerations not only from the disciplines of software engineering and health sciences but also from other disciplines such as graphical design and media communication. Finally, usability testing allowed the observation of flaws in the designs, which helped to improve the solution. PMID:29386903
The application of contraction theory to an iterative formulation of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Brand, J. C.; Kauffman, J. F.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
NASA Technical Reports Server (NTRS)
Brand, J. C.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
NASA Astrophysics Data System (ADS)
Evans, T. E.
2013-07-01
Large edge-localized mode (ELM) control techniques must be developed to help ensure the success of burning and ignited fusion plasma devices such as tokamaks and stellarators. In full performance ITER tokamak discharges, with QDT = 10, the energy released by a single ELM could reach ˜30 MJ which is expected to result in an energy density of 10-15 MJ/m2on the divertor targets. This will exceed the estimated divertor ablation limit by a factor of 20-30. A worldwide research program is underway to develop various types of ELM control techniques in preparation for ITER H-mode plasma operations. An overview of the ELM control techniques currently being developed is discussed along with the requirements for applying these techniques to plasmas in ITER. Particular emphasis is given to the primary approaches, pellet pacing and resonant magnetic perturbation fields, currently being considered for ITER.
A study on a pedicle-screw-based reduction method for artificially reduced artifacts
NASA Astrophysics Data System (ADS)
Kim, Hyun-Ju; Lee, Hae-Kag; Cho, Jae-Hwan
2017-09-01
The purpose of this study is a quantitative analysis of the degree of the reduction of the artifacts that are induced by pedicle screws through the application of the recently developed iterative metallic artifact reduction (I MAR) software. Screw-type implants that are composed of 4.5 g/cm3 titanium (Ti) with an approximate average computed tomography (CT) value of 6500 Hounsfield units (HUs) that are used for the treatment of spinal diseases were placed in paraffin, a tissueequivalent material, and then dried. After the insertion, the scanning conditions were fixed as 120 kVp and 250 mA using multidetector computed tomography (MDCT) (Enlarge, Siemens, Germany). The slice thickness and the increment were set at the fields of view (FOVs) of 3 mm and 120 mm, respectively; the pitch is 0.8; the rotation time is 1 s; and the I MAR software was applied to the raw data of the acquired images to compare the CT-value changes of the posterior images. When the I MAR software was applied to animal vertebrae, it was possible to reduce the 65.7% image loss of the black-hole-effect image through the application of the I MAR software. When the I MAR image loss (%) was compared with the white-streak-effect image, the high-intensity image type with the white-streak effect could be reduced by 91.34% through the application of the I MAR software. In conclusion, a metal artifact that is due to a high-density material can be reduced more effectively when the I MAR algorithm is applied compared with that from the application of the conventional MAR algorithm. The I MAR can provide information on the various tissues that form around the artifact and the reduced metal structures, which can be helpful for radiologists and clinicians in their determination of an accurate diagnosis.
Development of two color laser diagnostics for the ITER poloidal polarimeter.
Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S
2010-10-01
Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.
Numerical simulation of an elastic structure behavior under transient fluid flow excitation
NASA Astrophysics Data System (ADS)
Afanasyeva, Irina N.; Lantsova, Irina Yu.
2017-01-01
This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.
Generalized Preconditioned Locally Harmonic Residual Eigensolver (GPLHR) v0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
VECHARYNSKI, EUGENE; YANG, CHAO
The software contains a MATLAB implementation of the Generalized Preconditioned Locally Harmonic Residual (GPLHR) method for solving standard and generalized non-Hermitian eigenproblems. The method is particularly useful for computing a subset of eigenvalues, and their eigen- or Schur vectors, closest to a given shift. The proposed method is based on block iterations and can take advantage of a preconditioner if it is available. It does not need to perform exact shift-and-invert transformation. Standard and generalized eigenproblems are handled in a unified framework.
Maintaining Web-based Bibliographies: A Case Study of Iter, the Bibliography of Renaissance Europe.
ERIC Educational Resources Information Center
Castell, Tracy
1997-01-01
Introduces Iter, a nonprofit research project developed for the World Wide Web and dedicated to increasing access to all published materials pertaining to the Renaissance and, eventually, the Middle Ages. Discusses information management issues related to building and maintaining Iter's first Web-based bibliography, focusing on printed secondary…
Indian Test Facility (INTF) and its updates
NASA Astrophysics Data System (ADS)
Bandyopadhyay, M.; Chakraborty, A.; Rotti, C.; Joshi, J.; Patel, H.; Yadav, A.; Shah, S.; Tyagi, H.; Parmar, D.; Sudhir, Dass; Gahlaut, A.; Bansal, G.; Soni, J.; Pandya, K.; Pandey, R.; Yadav, R.; Nagaraju, M. V.; Mahesh, V.; Pillai, S.; Sharma, D.; Singh, D.; Bhuyan, M.; Mistry, H.; Parmar, K.; Patel, M.; Patel, K.; Prajapati, B.; Shishangiya, H.; Vishnudev, M.; Bhagora, J.
2017-04-01
To characterize ITER Diagnostic Neutral Beam (DNB) system with full specification and to support IPR’s negative ion beam based neutral beam injector (NBI) system development program, a R&D facility, named INTF is under commissioning phase. Implementation of a successful DNB at ITER requires several challenges need to be overcome. These issues are related to the negative ion production, its neutralization and corresponding neutral beam transport over the path lengths of ∼ 20.67 m to reach ITER plasma. DNB is a procurement package for INDIA, as an in-kind contribution to ITER. Since ITER is considered as a nuclear facility, minimum diagnostic systems, linked with safe operation of the machine are planned to be incorporated in it and so there is difficulty to characterize DNB after onsite commissioning. Therefore, the delivery of DNB to ITER will be benefited if DNB is operated and characterized prior to onsite commissioning. INTF has been envisaged to be operational with the large size ion source activities in the similar timeline, as with the SPIDER (RFX, Padova) facility. This paper describes some of the development updates of the facility.
Autonomous system for Web-based microarray image analysis.
Bozinov, Daniel
2003-12-01
Software-based feature extraction from DNA microarray images still requires human intervention on various levels. Manual adjustment of grid and metagrid parameters, precise alignment of superimposed grid templates and gene spots, or simply identification of large-scale artifacts have to be performed beforehand to reliably analyze DNA signals and correctly quantify their expression values. Ideally, a Web-based system with input solely confined to a single microarray image and a data table as output containing measurements for all gene spots would directly transform raw image data into abstracted gene expression tables. Sophisticated algorithms with advanced procedures for iterative correction function can overcome imminent challenges in image processing. Herein is introduced an integrated software system with a Java-based interface on the client side that allows for decentralized access and furthermore enables the scientist to instantly employ the most updated software version at any given time. This software tool is extended from PixClust as used in Extractiff incorporated with Java Web Start deployment technology. Ultimately, this setup is destined for high-throughput pipelines in genome-wide medical diagnostics labs or microarray core facilities aimed at providing fully automated service to its users.
Usability-driven evolution of a space instrument
NASA Astrophysics Data System (ADS)
McCalden, Alec
2012-09-01
The use of resources in the cradle-to-grave timeline of a space instrument might be significantly improved by considering the concept of usability from the start of the mission. The methodology proposed here includes giving early priority in a programme to the iterative development of a simulator that models instrument operation, and allowing this to evolve ahead of the actual instrument specification and fabrication. The advantages include reduction of risk in software development by shifting much of it to earlier in a programme than is typical, plus a test programme that uses and thereby proves the same support systems that may be used for flight. A new development flow for an instrument is suggested, showing how the system engineering phases used by the space agencies could be reworked in line with these ideas. This methodology is also likely to contribute to a better understanding between the various disciplines involved in the creation of a new instrument. The result should better capture the science needs, implement them more accurately with less wasted effort, and more fully allow the best ideas from all team members to be considered.
Medical Data Architecture Project Status
NASA Technical Reports Server (NTRS)
Krihak, M.; Middour, C.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.
2017-01-01
The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current International Space Station (ISS) medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable an increasingly autonomous crew than the current ISS paradigm. The MDA will develop capabilities that support automated data collection, and the necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. To attain this goal, the first year of the MDA project focused on reducing technical risk, developing documentation and instituting iterative development processes that established the basis for the first version of MDA software (or Test Bed 1). Test Bed 1 is based on a nominal operations scenario authored by the ExMC Element Scientist. This narrative was decomposed into a Concept of Operations that formed the basis for Test Bed 1 requirements. These requirements were successfully vetted through the MDA Test Bed 1 System Requirements Review, which permitted the MDA project to begin software code development and component integration. This paper highlights the MDA objectives, development processes, and accomplishments, and identifies the fiscal year 2017 milestones and deliverables in the upcoming year.
Jiang, Z; Dou, Z; Song, W L; Xu, J; Wu, Z Y
2017-11-10
Objective: To compare results of different methods: in organizing HIV viral load (VL) data with missing values mechanism. Methods We used software SPSS 17.0 to simulate complete and missing data with different missing value mechanism from HIV viral loading data collected from MSM in 16 cities in China in 2013. Maximum Likelihood Methods Using the Expectation and Maximization Algorithm (EM), regressive method, mean imputation, delete method, and Markov Chain Monte Carlo (MCMC) were used to supplement missing data respectively. The results: of different methods were compared according to distribution characteristics, accuracy and precision. Results HIV VL data could not be transferred into a normal distribution. All the methods showed good results in iterating data which is Missing Completely at Random Mechanism (MCAR). For the other types of missing data, regressive and MCMC methods were used to keep the main characteristic of the original data. The means of iterating database with different methods were all close to the original one. The EM, regressive method, mean imputation, and delete method under-estimate VL while MCMC overestimates it. Conclusion: MCMC can be used as the main imputation method for HIV virus loading missing data. The iterated data can be used as a reference for mean HIV VL estimation among the investigated population.
NASA Technical Reports Server (NTRS)
Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.
2014-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.
SUMMARY REPORT-FY2006 ITER WORK ACCOMPLISHED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martovetsky, N N
2006-04-11
Six parties (EU, Japan, Russia, US, Korea, China) will build ITER. The US proposed to deliver at least 4 out of 7 modules of the Central Solenoid. Phillip Michael (MIT) and I were tasked by DoE to assist ITER in development of the ITER CS and other magnet systems. We work to help Magnets and Structure division headed by Neil Mitchell. During this visit I worked on the selected items of the CS design and carried out other small tasks, like PF temperature margin assessment.
Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.
Baseline Architecture of ITER Control System
NASA Astrophysics Data System (ADS)
Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.
2011-08-01
The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.
Transport synthetic acceleration with opposing reflecting boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less
Scientific and technical challenges on the road towards fusion electricity
NASA Astrophysics Data System (ADS)
Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.
2017-10-01
The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.
Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
Multivariable frequency domain identification via 2-norm minimization
NASA Technical Reports Server (NTRS)
Bayard, David S.
1992-01-01
The author develops a computational approach to multivariable frequency domain identification, based on 2-norm minimization. In particular, a Gauss-Newton (GN) iteration is developed to minimize the 2-norm of the error between frequency domain data and a matrix fraction transfer function estimate. To improve the global performance of the optimization algorithm, the GN iteration is initialized using the solution to a particular sequentially reweighted least squares problem, denoted as the SK iteration. The least squares problems which arise from both the SK and GN iterations are shown to involve sparse matrices with identical block structure. A sparse matrix QR factorization method is developed to exploit the special block structure, and to efficiently compute the least squares solution. A numerical example involving the identification of a multiple-input multiple-output (MIMO) plant having 286 unknown parameters is given to illustrate the effectiveness of the algorithm.
All-digital GPS receiver mechanization
NASA Astrophysics Data System (ADS)
Ould, P. C.; van Wechel, R. J.
The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.
Gaze and Feet as Additional Input Modalities for Interacting with Geospatial Interfaces
NASA Astrophysics Data System (ADS)
Çöltekin, A.; Hempel, J.; Brychtova, A.; Giannopoulos, I.; Stellmach, S.; Dachselt, R.
2016-06-01
Geographic Information Systems (GIS) are complex software environments and we often work with multiple tasks and multiple displays when we work with GIS. However, user input is still limited to mouse and keyboard in most workplace settings. In this project, we demonstrate how the use of gaze and feet as additional input modalities can overcome time-consuming and annoying mode switches between frequently performed tasks. In an iterative design process, we developed gaze- and foot-based methods for zooming and panning of map visualizations. We first collected appropriate gestures in a preliminary user study with a small group of experts, and designed two interaction concepts based on their input. After the implementation, we evaluated the two concepts comparatively in another user study to identify strengths and shortcomings in both. We found that continuous foot input combined with implicit gaze input is promising for supportive tasks.
Study on constant-step stress accelerated life tests in white organic light-emitting diodes.
Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X
2014-11-01
In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.
A simulation model for wind energy storage systems. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Warren, A. W.; Edsinger, R. W.; Chan, Y. K.
1977-01-01
A comprehensive computer program for the modeling of wind energy and storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) was developed. The level of detail of Simulation Model for Wind Energy Storage (SIMWEST) is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind source storage application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/O, the integration of systems dynamics, and the iteration for conveyance of variables. SIMWEST program, as described, runs on the UNIVAC 1100 series computers.
APPROACHES TO GEOMETRIC DATA ANALYSIS ON BIG AREA ADDITIVELY MANUFACTURED (BAAM) PARTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreifus, Gregory D; Ally, Nadya R; Post, Brian K
The promise of additive manufacturing is that a user can design and print complex geometries that are very difficult, if not impossible, to machine. The capabilities of 3D printing are restricted by a number of factors, including properties of the build material, time constraints, and geometric design restrictions. In this paper, a thorough accounting and study of the geometric restrictions that exist in the current iteration of additive manufacturing (AM) fused deposition modeling (FDM) technologies are discussed. Offline and online methodologies for collecting data sets for qualitative analysis of large scale AM, in particular Oak Ridge National Laboratory s (ORNL)more » big area additive manufacturing (BAAM) system, are summarized. In doing so, a survey of tools for designers and software developers is provided. In particular, strategies in which geometric data can be used as training sets for smarter AM technologies in the future are explained as well.« less
Automated three-dimensional quantification of myocardial perfusion and brain SPECT.
Slomka, P J; Radau, P; Hurwitz, G A; Dey, D
2001-01-01
To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.
Design and realization of adaptive optical principle system without wavefront sensing
NASA Astrophysics Data System (ADS)
Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.
2018-02-01
In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.
Tyson, Adam L.; Hilton, Stephen T.; Andreae, Laura C.
2015-01-01
The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056
NASA Astrophysics Data System (ADS)
Hurley, Margaret M.; Sellers, Michael S.
2013-05-01
As software and methodology develop, key aspects of molecular interactions such as detailed energetics and flexibility are continuously better represented in docking simulations. In the latest iteration of the XPairIt API and Docking Protocol, we perform a blind dock of a peptide into the cleavage site of the Anthrax lethal factor (LF) metalloprotein. Molecular structures are prepared from RCSB:1JKY and we demonstrate a reasonably accurate docked peptide through analysis of protein motion and, using NCI Plot, visualize and characterize the forces leading to binding. We compare our docked structure to the 1JKY crystal structure and the more recent 1PWV structure, and discuss both captured and overlooked interactions. Our results offer a more detailed look at secondary contact and show that both van der Waals and electrostatic interactions from peptide residues further from the enzyme's catalytic site are significant.
Iterating between Lessons on Concepts and Procedures Can Improve Mathematics Knowledge
ERIC Educational Resources Information Center
Rittle-Johnson, Bethany; Koedinger, Kenneth
2009-01-01
Background: Knowledge of concepts and procedures seems to develop in an iterative fashion, with increases in one type of knowledge leading to increases in the other type of knowledge. This suggests that iterating between lessons on concepts and procedures may improve learning. Aims: The purpose of the current study was to evaluate the…
An iterative method for the Helmholtz equation
NASA Technical Reports Server (NTRS)
Bayliss, A.; Goldstein, C. I.; Turkel, E.
1983-01-01
An iterative algorithm for the solution of the Helmholtz equation is developed. The algorithm is based on a preconditioned conjugate gradient iteration for the normal equations. The preconditioning is based on an SSOR sweep for the discrete Laplacian. Numerical results are presented for a wide variety of problems of physical interest and demonstrate the effectiveness of the algorithm.
Regularization and computational methods for precise solution of perturbed orbit transfer problems
NASA Astrophysics Data System (ADS)
Woollands, Robyn Michele
The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these individual algorithms. Following this discussion, the combined parallel algorithm, known as the unified Lambert tool, is presented and an explanation is given as to how it automatically selects which of the three perturbed solvers to compute the perturbed solution for a particular orbit transfer. The unified Lambert tool may be used to determine a single orbit transfer or for generating of an extremal field map. A case study is presented for a mission that is required to rendezvous with two pieces of orbit debris (spent rocket boosters). The unified Lambert tool software developed in this dissertation is already being utilized by several industrial partners and we are confident that it will play a significant role in practical applications, including solution of Lambert problems that arise in the current applications focused on enhanced space situational awareness.
Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain
2017-01-01
Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993
Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A
2017-05-01
The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingyuan; He, Zhili; Zhou, Jizhong
2005-10-30
The oligonucleotide specificity for microarray hybridizationcan be predicted by its sequence identity to non-targets, continuousstretch to non-targets, and/or binding free energy to non-targets. Mostcurrently available programs only use one or two of these criteria, whichmay choose 'false' specific oligonucleotides or miss 'true' optimalprobes in a considerable proportion. We have developed a software tool,called CommOligo using new algorithms and all three criteria forselection of optimal oligonucleotide probes. A series of filters,including sequence identity, free energy, continuous stretch, GC content,self-annealing, distance to the 3'-untranslated region (3'-UTR) andmelting temperature (Tm), are used to check each possibleoligonucleotide. A sequence identity is calculated based onmore » gapped globalalignments. A traversal algorithm is used to generate alignments for freeenergy calculation. The optimal Tm interval is determined based on probecandidates that have passed all other filters. Final probes are pickedusing a combination of user-configurable piece-wise linear functions andan iterative process. The thresholds for identity, stretch and freeenergy filters are automatically determined from experimental data by anaccessory software tool, CommOligo_PE (CommOligo Parameter Estimator).The program was used to design probes for both whole-genome and highlyhomologous sequence data. CommOligo and CommOligo_PE are freely availableto academic users upon request.« less
Hardware Timestamping for an Image Acquisition System Based on FlexRIO and IEEE 1588 v2 Standard
NASA Astrophysics Data System (ADS)
Esquembri, S.; Sanz, D.; Barrera, E.; Ruiz, M.; Bustos, A.; Vega, J.; Castro, R.
2016-02-01
Current fusion devices usually implement distributed acquisition systems for the multiple diagnostics of their experiments. However, each diagnostic is composed by hundreds or even thousands of signals, including images from the vessel interior. These signals and images must be correctly timestamped, because all the information will be analyzed to identify plasma behavior using temporal correlations. For acquisition devices without synchronization mechanisms the timestamp is given by another device with timing capabilities when signaled by the first device. Later, each data should be related with its timestamp, usually via software. This critical action is unfeasible for software applications when sampling rates are high. In order to solve this problem this paper presents the implementation of an image acquisition system with real-time hardware timestamping mechanism. This is synchronized with a master clock using the IEEE 1588 v2 Precision Time Protocol (PTP). Synchronization, image acquisition and processing, and timestamping mechanisms are implemented using Field Programmable Gate Array (FPGA) and a timing card -PTP v2 synchronized. The system has been validated using a camera simulator streaming videos from fusion databases. The developed architecture is fully compatible with ITER Fast Controllers and has been integrated with EPICS to control and monitor the whole system.
NASA Astrophysics Data System (ADS)
Li, Husheng; Betz, Sharon M.; Poor, H. Vincent
2007-05-01
This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.
Scott, David J.; Winzor, Donald J.
2009-01-01
Abstract We have examined in detail analytical solutions of expressions for sedimentation equilibrium in the analytical ultracentrifuge to describe self-association under nonideal conditions. We find that those containing the radial dependence of total solute concentration that incorporate the Adams-Fujita assumption for composition-dependence of activity coefficients reveal potential shortcomings for characterizing such systems. Similar deficiencies are shown in the use of the NONLIN software incorporating the same assumption about the interrelationship between activity coefficients for monomer and polymer species. These difficulties can be overcome by iterative analyses incorporating expressions for the composition-dependence of activity coefficients predicted by excluded volume considerations. A recommendation is therefore made for the replacement of current software packages by programs that incorporate rigorous statistical-mechanical allowance for thermodynamic nonideality in sedimentation equilibrium distributions reflecting solute self-association. PMID:19651047
The initial design of LAPAN's IR micro bolometer using mission analysis process
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.
2016-11-01
As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process
Artificial neural network in breast lesions from fine-needle aspiration cytology smear.
Subbaiah, R M; Dey, Pranab; Nijhawan, Raje
2014-03-01
Artificial neural networks (ANNs) are applied in engineering and certain medical fields. ANN has immense potential and is rarely been used in breast lesions. In this present study, we attempted to build up a complete robust back propagation ANN model based on cytomorphological data, morphometric data, nuclear densitometric data, and gray level co-occurrence matrix (GLCM) of ductal carcinoma and fibroadenomas of breast cases diagnosed on fine-needle aspiration cytology (FNAC). We selected 52 cases of fibroadenomas and 60 cases of infiltrating ductal carcinoma of breast diagnosed on FNAC by two cytologists. Essential cytological data was quantitated by two independent cytologists (SRM, PD). With the help of Image J software, nuclear morphomeric, densitometric, and GLCM features were measured in all the cases on hematoxylin and eosin-stained smears. With the available data, an ANN model was built up with the help of Neurointelligence software. The network was designed as 41-20-1 (41 input nodes, 20 hidden nodes, 1 output node). The network was trained by the online back propagation algorithm and 500 iterations were done. Learning was adjusted after every iteration. ANN model correctly identified all cases of fibroadenomas and infiltrating carcinomas in the test set. This is one of the first successful composite ANN models of breast carcinomas. This basic model can be used to diagnose the gray zone area of the breast lesions on FNAC. We assume that this model may have far-reaching implications in future. Copyright © 2013 Wiley Periodicals, Inc.
EDITORIAL: ECRH physics and technology in ITER
NASA Astrophysics Data System (ADS)
Luce, T. C.
2008-05-01
It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter: EC wave physics and applications, M. Thumm: Source and transmission line development, and S. Cirant: ITER specific system designs). These summaries are included in this issue to give a more complete view of the technical meeting. Finally, it is appropriate to mention the future of this meeting series. With the ratification of the ITER agreement and the formation of the ITER International Organization, it was recognized that meetings conducted by outside agencies with an exclusive focus on ITER would be somewhat unusual. However, the participants at this meeting felt that the gathering of international experts with diverse specialities within EC wave physics and technology to focus on using EC waves in future fusion devices like ITER was extremely valuable. It was therefore recommended that this series of meetings continue, but with the broader focus on the application of EC waves to steady-state and burning plasma experiments including demonstration power plants. As the papers in this special issue show, the EC community is already taking seriously the challenges of applying EC waves to fusion devices with high neutron fluence and continuous operation at high reliability.
Lee, Seung Yup; Skolnick, Jeffrey
2007-07-01
To improve the accuracy of TASSER models especially in the limit where threading provided template alignments are of poor quality, we have developed the TASSER(iter) algorithm which uses the templates and contact restraints from TASSER generated models for iterative structure refinement. We apply TASSER(iter) to a large benchmark set of 2,773 nonhomologous single domain proteins that are < or = 200 in length and that cover the PDB at the level of 35% pairwise sequence identity. Overall, TASSER(iter) models have a smaller global average RMSD of 5.48 A compared to 5.81 A RMSD of the original TASSER models. Classifying the targets by the level of prediction difficulty (where Easy targets have a good template with a corresponding good threading alignment, Medium targets have a good template but a poor alignment, and Hard targets have an incorrectly identified template), TASSER(iter) (TASSER) models have an average RMSD of 4.15 A (4.35 A) for the Easy set and 9.05 A (9.52 A) for the Hard set. The largest reduction of average RMSD is for the Medium set where the TASSER(iter) models have an average global RMSD of 5.67 A compared to 6.72 A of the TASSER models. Seventy percent of the Medium set TASSER(iter) models have a smaller RMSD than the TASSER models, while 63% of the Easy and 60% of the Hard TASSER models are improved by TASSER(iter). For the foldable cases, where the targets have a RMSD to the native <6.5 A, TASSER(iter) shows obvious improvement over TASSER models: For the Medium set, it improves the success rate from 57.0 to 67.2%, followed by the Hard targets where the success rate improves from 32.0 to 34.8%, with the smallest improvement in the Easy targets from 82.6 to 84.0%. These results suggest that TASSER(iter) can provide more reliable predictions for targets of Medium difficulty, a range that had resisted improvement in the quality of protein structure predictions. 2007 Wiley-Liss, Inc.
Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.
Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo
2018-04-01
In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.
Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System
NASA Astrophysics Data System (ADS)
Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team
2015-11-01
The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.
Wang, Liya; Uilecan, Ioan Vlad; Assadi, Amir H; Kozmik, Christine A; Spalding, Edgar P
2009-04-01
Analysis of time series of images can quantify plant growth and development, including the effects of genetic mutations (phenotypes) that give information about gene function. Here is demonstrated a software application named HYPOTrace that automatically extracts growth and shape information from electronic gray-scale images of Arabidopsis (Arabidopsis thaliana) seedlings. Key to the method is the iterative application of adaptive local principal components analysis to extract a set of ordered midline points (medial axis) from images of the seedling hypocotyl. Pixel intensity is weighted to avoid the medial axis being diverted by the cotyledons in areas where the two come in contact. An intensity feature useful for terminating the midline at the hypocotyl apex was isolated in each image by subtracting the baseline with a robust local regression algorithm. Applying the algorithm to time series of images of Arabidopsis seedlings responding to light resulted in automatic quantification of hypocotyl growth rate, apical hook opening, and phototropic bending with high spatiotemporal resolution. These functions are demonstrated here on wild-type, cryptochrome1, and phototropin1 seedlings for the purpose of showing that HYPOTrace generated expected results and to show how much richer the machine-vision description is compared to methods more typical in plant biology. HYPOTrace is expected to benefit seedling development research, particularly in the photomorphogenesis field, by replacing many tedious, error-prone manual measurements with a precise, largely automated computational tool.
ITER ECE Diagnostic: Design Progress of IN-DA and the diagnostic role for Physics
NASA Astrophysics Data System (ADS)
Pandya, H. K. B.; Kumar, Ravinder; Danani, S.; Shrishail, P.; Thomas, Sajal; Kumar, Vinay; Taylor, G.; Khodak, A.; Rowan, W. L.; Houshmandyar, S.; Udintsev, V. S.; Casal, N.; Walsh, M. J.
2017-04-01
The ECE Diagnostic system in ITER will be used for measuring the electron temperature profile evolution, electron temperature fluctuations, the runaway electron spectrum, and the radiated power in the electron cyclotron frequency range (70-1000 GHz), These measurements will be used for advanced real time plasma control (e.g. steering the electron cyclotron heating beams), and physics studies. The scope of the Indian Domestic Agency (IN-DA) is to design and develop the polarizer splitter units; the broadband (70 to 1000 GHz) transmission lines; a high temperature calibration source in the Diagnostics Hall; two Michelson Interferometers (70 to 1000 GHz) and a 122-230 GHz radiometer. The remainder of the ITER ECE diagnostic system is the responsibility of the US domestic agency and the ITER Organization (IO). The design needs to conform to the ITER Organization’s strict requirements for reliability, availability, maintainability and inspect-ability. Progress in the design and development of various subsystems and components considering various engineering challenges and solutions will be discussed in this paper. This paper will also highlight how various ECE measurements can enhance understanding of plasma physics in ITER.
Too Little Too Soon? Modeling the Risks of Spiral Development
2007-04-30
270 315 360 405 450 495 540 585 630 675 720 765 810 855 900 Time (Week) Work started and active PhIt [Requirements,Iter1] : JavelinCalibration work...packages1 1 1 Work started and active PhIt [Technology,Iter1] : JavelinCalibration work packages2 2 2 Work started and active PhIt [Design,Iter1...JavelinCalibration work packages3 3 3 3 Work started and active PhIt [Manufacturing,Iter1] : JavelinCalibration work packages4 4 Work started and active PhIt
Kawamoto, Kensaku; Martin, Cary J; Williams, Kip; Tu, Ming-Chieh; Park, Charlton G; Hunter, Cheri; Staes, Catherine J; Bray, Bruce E; Deshmukh, Vikrant G; Holbrook, Reid A; Morris, Scott J; Fedderson, Matthew B; Sletta, Amy; Turnbull, James; Mulvihill, Sean J; Crabtree, Gordon L; Entwistle, David E; McKenna, Quinn L; Strong, Michael B; Pendleton, Robert C; Lee, Vivian S
2015-01-01
To develop expeditiously a pragmatic, modular, and extensible software framework for understanding and improving healthcare value (costs relative to outcomes). In 2012, a multidisciplinary team was assembled by the leadership of the University of Utah Health Sciences Center and charged with rapidly developing a pragmatic and actionable analytics framework for understanding and enhancing healthcare value. Based on an analysis of relevant prior work, a value analytics framework known as Value Driven Outcomes (VDO) was developed using an agile methodology. Evaluation consisted of measurement against project objectives, including implementation timeliness, system performance, completeness, accuracy, extensibility, adoption, satisfaction, and the ability to support value improvement. A modular, extensible framework was developed to allocate clinical care costs to individual patient encounters. For example, labor costs in a hospital unit are allocated to patients based on the hours they spent in the unit; actual medication acquisition costs are allocated to patients based on utilization; and radiology costs are allocated based on the minutes required for study performance. Relevant process and outcome measures are also available. A visualization layer facilitates the identification of value improvement opportunities, such as high-volume, high-cost case types with high variability in costs across providers. Initial implementation was completed within 6 months, and all project objectives were fulfilled. The framework has been improved iteratively and is now a foundational tool for delivering high-value care. The framework described can be expeditiously implemented to provide a pragmatic, modular, and extensible approach to understanding and improving healthcare value. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-linear Image Restoration.
Skariah, Deepak G; Arigovindan, Muthuvel
2017-06-19
We develop a novel optimization algorithm, which we call Nested Non-Linear Conjugate Gradient algorithm (NNCG), for image restoration based on quadratic data fitting and smooth non-quadratic regularization. The algorithm is constructed as a nesting of two conjugate gradient (CG) iterations. The outer iteration is constructed as a preconditioned non-linear CG algorithm; the preconditioning is performed by the inner CG iteration that is linear. The inner CG iteration, which performs preconditioning for outer CG iteration, itself is accelerated by an another FFT based non-iterative preconditioner. We prove that the method converges to a stationary point for both convex and non-convex regularization functionals. We demonstrate experimentally that proposed method outperforms the well-known majorization-minimization method used for convex regularization, and a non-convex inertial-proximal method for non-convex regularization functional.
Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.
2001-01-01
An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number
Kinetic turbulence simulations at extreme scale on leadership-class systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bei; Ethier, Stephane; Tang, William
2013-01-01
Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCFmore » and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan
USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons frommore » escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.« less
NASA Astrophysics Data System (ADS)
Santoli, Salvatore
1994-01-01
The mechanistic interpretation of the communication process between cognitive hierarchical systems as an iterated pair of convolutions between the incoming discrete time series signals and the chaotic dynamics (CD) at the nm-scale of the perception (energy) wetware level, with the consequent feeding of the resulting collective properties to the CD software (symbolic) level, shows that the category of quality, largely present in Galilean quantitative-minded science, is to be increasingly made into quantity for finding optimum common codes for communication between different intelligent beings. The problem is similar to that solved by biological evolution, of communication between the conscious logic brain and the underlying unfelt ultimate extra-logical processes, as well as to the problem of the mind-body or the structure-function dichotomies. Perspective cybernated nanotechnological and/or nanobiological interfaces, and time evolution of the 'contact language' (the iterated dialogic process) as a self-organising system might improve human-alien understanding.
High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair.
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K
2018-01-01
Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed.
High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.
2018-01-01
Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed. PMID:29706894
Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie
2003-01-01
A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.
How economic contexts shape calculations of yield in biodiversity offsetting.
Carver, L; Sullivan, S
2017-10-01
We examined and analyzed methods used to create numerical equivalence between sites affected by development and proposed conservation offset sites. Application of biodiversity offsetting metrics in development impact and mitigation assessments is thought to standardize biodiversity conservation outcomes, sometimes termed yield by those conducting these calculations. The youth of biodiversity offsetting in application, however, means little is known about how biodiversity valuations and offset contracts between development and offset sites are agreed on in practice or about long-term conservation outcomes. We examined how sites were made commensurable and how biodiversity gains or yields were calculated and negotiated for a specific offset contract in a government-led pilot study of biodiversity offsets in England. Over 24 months, we conducted participant observations of various stages in the negotiation of offset contracts through repeated visits to 3 (anonymized) biodiversity offset contract sites. We conducted 50 semistructured interviews of stakeholders in regional and local government, the private sector, and civil society. We used a qualitative data analysis software program (DEDOOSE) to textually analyze interview transcriptions. We also compared successive iterations of biodiversity-offsetting calculation spreadsheets and planning documents. A particular focus was the different iterations of a specific biodiversity impact assessment in which the biodiversity offsetting metric developed by the U.K.'s Department for Environment, Food and Rural Affairs was used. We highlight 3 main findings. First, biodiversity offsetting metrics were amended in creative ways as users adapted inputs to metric calculations to balance and negotiate conflicting requirements. Second, the practice of making different habitats equivalent to each other through the application of biodiversity offsetting metrics resulted in commensuration outcomes that may not provide projected conservation gains. Third, the pressure of creating value for money diminished projected conservation yields. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Iteratively Developing an mHealth HIV Prevention Program for Sexual Minority Adolescent Men
Prescott, Tonya L.; Philips, Gregory L.; Bull, Sheana S.; Parsons, Jeffrey T.; Mustanski, Brian
2015-01-01
Five activities were implemented between November 2012 and June 2014 to develop an mHealth HIV prevention program for adolescent gay, bisexual, and queer men (AGBM): (1) focus groups to gather acceptability of the program components; (2) ongoing development of content; (3) Content Advisory Teams to confirm the tone, flow, and understandability of program content; (4) an internal team test to alpha test software functionality; and (5) a beta test to test the protocol and intervention messages. Findings suggest that AGBM preferred positive and friendly content that at the same time, did not try to sound like a peer. They deemed the number of daily text messages (i.e., 8–15 per day) to be acceptable. The Text Buddy component was well received but youth needed concrete direction about appropriate discussion topics. AGBM determined the self-safety assessment also was acceptable. Its feasible implementation in the beta test suggests that AGBM can actively self-determine their potential danger when participating in sexual health programs. Partnering with the target population in intervention development is critical to ensure that a salient final product and feasible protocol are created. PMID:26238038
NASA Astrophysics Data System (ADS)
Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G. C.
2014-03-01
We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.
Smelter, Andrey; Rouchka, Eric C; Moseley, Hunter N B
2017-08-01
Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the algorithms, we developed a peak list simulator within our nmrstarlib package that generates user-defined assigned peak lists from a given BMRB entry or database of entries. In addition, over 100,000 simulated peak lists with one or two sources of variance were generated to evaluate the performance and robustness of these new registration analysis and peak grouping algorithms.
Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak
NASA Astrophysics Data System (ADS)
Petrov, S. Ya.; Afanasyev, V. I.; Melnik, A. D.; Mironov, M. I.; Navolotsky, A. S.; Nesenevich, V. G.; Petrov, M. P.; Chernyshev, F. V.; Kedrov, I. V.; Kuzmin, E. G.; Lyublin, B. V.; Kozlovski, S. S.; Mokeev, A. N.
2017-12-01
The control of the deuterium-tritium (DT) fuel isotopic ratio has to ensure the best performance of the ITER thermonuclear fusion reactor. The diagnostic system described in this paper allows the measurement of this ratio analyzing the hydrogen isotope fluxes (performing neutral particle analysis (NPA)). The development and supply of the NPA diagnostics for ITER was delegated to the Russian Federation. The diagnostics is being developed at the Ioffe Institute. The system consists of two analyzers, viz., LENPA (Low Energy Neutral Particle Analyzer) with 10-200 keV energy range and HENPA (High Energy Neutral Particle Analyzer) with 0.1-4.0MeV energy range. Simultaneous operation of both analyzers in different energy ranges enables researchers to measure the DT fuel ratio both in the central burning plasma (thermonuclear burn zone) and at the edge as well. When developing the diagnostic complex, it was necessary to account for the impact of several factors: high levels of neutron and gamma radiation, the direct vacuum connection to the ITER vessel, implying high tritium containment, strict requirements on reliability of all units and mechanisms, and the limited space available for accommodation of the diagnostic hardware at the ITER tokamak. The paper describes the design of the diagnostic complex and the engineering solutions that make it possible to conduct measurements under tokamak reactor conditions. The proposed engineering solutions provide a safe—with respect to thermal and mechanical loads—common vacuum channel for hydrogen isotope atoms to pass to the analyzers; ensure efficient shielding of the analyzers from the ITER stray magnetic field (up to 1 kG); provide the remote control of the NPA diagnostic complex, in particular, connection/disconnection of the NPA vacuum beamline from the ITER vessel; meet the ITER radiation safety requirements; and ensure measurements of the fuel isotopic ratio under high levels of neutron and gamma radiation.
Global moment tensor computation at GFZ Potsdam
NASA Astrophysics Data System (ADS)
Saul, J.; Becker, J.; Hanka, W.
2011-12-01
As part of its earthquake information service, GFZ Potsdam has started to provide seismic moment tensor solutions for significant earthquakes world-wide. The software used to compute the moment tensors is a GFZ-Potsdam in-house development, which uses the framework of the software SeisComP 3 (Hanka et al., 2010). SeisComP 3 (SC3) is a software package for seismological data acquisition, archival, quality control and analysis. SC3 is developed by GFZ Potsdam with significant contributions from its user community. The moment tensor inversion technique uses a combination of several wave types, time windows and frequency bands depending on magnitude and station distance. Wave types include body, surface and mantle waves as well as the so-called 'W-Phase' (Kanamori and Rivera, 2008). The inversion is currently performed in the time domain only. An iterative centroid search can be performed independently both horizontally and in depth. Moment tensors are currently computed in a semi-automatic fashion. This involves inversions that are performed automatically in near-real time, followed by analyst review prior to publication. The automatic results are quite often good enough to be published without further improvements, sometimes in less than 30 minutes from origin time. In those cases where a manual interaction is still required, the automatic inversion usually does a good job at pre-selecting those traces that are the most relevant for the inversion, keeping the work required for the analyst at a minimum. Our published moment tensors are generally in good agreement with those published by the Global Centroid-Moment-Tensor (GCMT) project for earthquakes above a magnitude of about Mw 5. Additionally we provide solutions for smaller earthquakes above about Mw 4 in Europe, which are normally not analyzed by the GCMT project. We find that for earthquakes above Mw 6, the most robust automatic inversions can usually be obtained using the W-Phase time window. The GFZ earthquake bulletin is located at http://geofon.gfz-potsdam.de/eqinfo For more information on the SeisComP 3 software visit http://www.seiscomp3.org