Sample records for ito substrate modification

  1. High resolution laser patterning of ITO on PET substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.

    2013-03-01

    Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.

  2. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    NASA Astrophysics Data System (ADS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-10-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 × 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density ( Jsc) and 92.7% enhancement in conversion efficiency ( η) over the untreated solar cell are obtained.

  3. ITO Modification for Efficient Inverted Organic Solar Cells.

    PubMed

    Susarova, Diana K; Akkuratov, Alexander V; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Troshin, Pavel A

    2017-10-03

    We demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface. Kelvin probe microscopy measurements revealed a significant decrease in the ITO work function after modification. Organic solar cells based on three different conjugated polymers have demonstrated state of the art performances in inverted device geometry using Mg- or Yb-modified ITO as electron collecting electrode. The simplicity of the proposed approach and the excellent ambient stability of the modified ITO electrodes allows one to expect their wide utilization in research laboratories and electronic industry.

  4. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  5. Flexible OLED fabrication with ITO thin film on polymer substrate

    NASA Astrophysics Data System (ADS)

    Kim, Sung Il; Lee, Kyo Woong; Bhusan Sahu, Bibhuti; Geon Han, Jeon

    2015-09-01

    This paper reports the synthesis of flexible indium tin oxide (ITO) films in a dual pulse magnetron sputtering (DPMS) system at low temperature (<100 °C) deposition condition. This study also presents experimental demonstration of the ITO films for their possible use in the fabrication of organic light emitting diode (OLED) device, and the device performance on the super polycarbonate substrates. The presented data reveals the feasibility of ITO films, with a very low sheet resistance of ∼30 Ω/□ and high transmittance of ∼88% at 550 nm, simply by the magnetron pulse mode operations with increasing pulse frequency from 0 to 50 kHz.

  6. Surface Engineering of ITO Substrates to Improve the Memory Performance of an Asymmetric Conjugated Molecule with a Side Chain.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Xiao, Xin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-09-05

    Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich-like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ-PTZO-CN) was fabricated in an indium tin oxide (ITO)/PTZ-PTZO-CN/Al sandwich-like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ-PTZO-CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    NASA Astrophysics Data System (ADS)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-11-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  8. Influence of Substrate Temperature on Structural, Electrical and Optical Properties of Ito Thin Films Prepared by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    He, Bo; Zhao, Lei; Xu, Jing; Xing, Huaizhong; Xue, Shaolin; Jiang, Meng

    2013-10-01

    In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω•cm, while the carrier concentration and mobility are as high as 3.461 × 1021 atom/cm3 and 19.1 cm2/Vṡs, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.

  9. Electrooptical properties and structural features of amorphous ITO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amosova, L. P., E-mail: l-amosova@mail.ru

    2015-03-15

    Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms.more » At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.« less

  10. Electrochemical growth of CoNi and Pt-CoNi soft magnetic composites on an alkanethiol monolayer-modified ITO substrate.

    PubMed

    Escalera-López, D; Gómez, E; Vallés, E

    2015-07-07

    CoNi and Pt-CoNi magnetic layers on indium-tin oxide (ITO) substrates modified by an alkanethiol self-assembled monolayer (SAM) have been electrochemically obtained as an initial stage to prepare semiconducting layer-SAM-magnetic layer hybrid structures. The best conditions to obtain the maximum compactness of adsorbed layers of dodecanethiol (C12-SH) on ITO substrate have been studied using contact angle, AFM, XPS and electrochemical tests. The electrochemical characterization (electrochemical probe or voltammetric response in blank solutions) is fundamental to ensure the maximum blocking of the substrate. Although the electrodeposition process on the SAM-modified ITO substrate is very slow if the blocking of the surface is significant, non-cracked metallic layers of CoNi, with or without a previously electrodeposited seed-layer of platinum, have been obtained by optimizing the deposition potentials. Initial nucleation is expected to take place at the pinhole defects of the C12-SH SAM, followed by a mushroom-like growth regime through the SAM interface that allows the formation of a continuous metallic layer electrically connected to the ITO surface. Due to the potential of the methodology, the preparation of patterned metallic deposits on ITO substrate using SAMs with different coverage as templates is feasible.

  11. Electrochemical detection of nitrite on poly(pyronin Y)/graphene nanocomposites modified ITO substrate

    NASA Astrophysics Data System (ADS)

    Şinoforoğlu, Mehmet; Dağcı, Kader; Alanyalıoğlu, Murat; Meral, Kadem

    2016-06-01

    The present study reports on an easy preparation of poly(pyronin Y)/graphene (poly(PyY)/graphene) nanocomposites thin films on indium tin oxide coated glass substrates (ITO). The thin films of poly(PyY)/graphene nanocomposites are prepared by a novel method consisting of three steps; (i) preparation of graphene oxide (GO) thin films on ITO by spin-coating method, (ii) self-assembly of PyY molecules from aqueous solution onto the GO thin film, (iii) surface-confined electropolymerization (SCEP) of the adsorbed PyY molecules on the GO thin film. The as-prepared poly(PyY)/graphene nanocomposites thin films are characterized by using electroanalytical and spectroscopic techniques. Afterwards, the graphene-based polymeric dye thin film on ITO is used as an electrode in an electrochemical cell. Its performance is tested for electrochemical detection of nitrite. Under optimized conditions, the electrocatalytical effect of the nanocomposites thin film through electrochemical oxidation of nitrite is better than that of GO coated ITO.

  12. Electrical and optical properties of ITO and ITO/Cr-doped ITO films

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.; Maruccio, G.; Valerini, D.; Catalano, M.; Cola, A.; Manera, M. G.; Lomascolo, M.; Taurino, A.; Rella, R.

    2010-12-01

    In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ˜4×10-4 Ω cm, an energy gap of ˜4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (˜0.4-0.5 nm) and resistivity (up to ˜8×10-4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.

  13. ITO/Au/ITO sandwich structure for near-infrared plasmonics.

    PubMed

    Fang, Xu; Mak, Chee Leung; Dai, Jiyan; Li, Kan; Ye, Hui; Leung, Chi Wah

    2014-09-24

    ITO/Au/ITO trilayers with varying gold spacer layer thicknesses were deposited on glass substrates by pulsed laser deposition. Transmission electron microscopy measurements demonstrated the continuous nature of the Au layer down to 2.4 nm. XRD patterns clearly showed an enhanced crystallinity of the ITO films promoted by the insertion of the gold layer. Compared with a single layer of ITO with a carrier concentration of 7.12 × 10(20) cm(-3), the ITO/Au/ITO structure achieved an effective carrier concentration as high as 3.26 × 10(22) cm(-3). Transmittance and ellipsometry measurements showed that the optical properties of ITO/Au/ITO films were greatly influenced by the thickness of the inserted gold layer. The cross-point wavelength of the trilayer samples was reduced with increasing gold layer thickness. Importantly, the trilayer structure exhibited a reduced loss (compared with plain Au) in the near-infrared region, suggesting its potential for plasmonic applications in the near-infrared range.

  14. In situ diazonium-modified flexible ITO-coated PEN substrates for the deposition of adherent silver-polypyrrole nanocomposite films.

    PubMed

    Samanta, Soumen; Bakas, Idriss; Singh, Ajay; Aswal, Dinesh K; Chehimi, Mohamed M

    2014-08-12

    In this paper, we report a simple and versatile process of electrografting the aryl multilayers onto indium tin oxide (ITO)-coated flexible poly(ethylene naphthalate) (PEN) substrates using a diazonium salt (4-pyrrolylphenyldiazonium) solution, which was generated in situ from a reaction between the 4-(1H-pyrrol-1-yl)aniline precursor and sodium nitrite in an acidic medium. The first aryl layer bonds with the ITO surface through In-O-C and Sn-O-C bonds which facilitate the formation of a uniform aryl multilayer that is ∼8 nm thick. The presence of the aryl multilayer has been confirmed by impedance spectroscopy as well as by electron-transfer blocking measurements. These in situ diazonium-modified ITO-coated PEN substrates may find applications in flexible organic electronics and sensor industries. Here we demonstrate the application of diazonium-modified flexible substrates for the growth of adherent silver/polpyrrole nanocomposite films using surface-confined UV photopolymerization. These nanocomposite films have platelet morphology owing to the template effect of the pyrrole-terminated aryl multilayers. In addition, the films are highly doped (32%). This work opens new areas in the design of flexible ITO-conductive polymer hybrids.

  15. ITO-free white OLEDs on flexible substrates with enhanced light outcoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, Barry

    2017-02-05

    The goal of this research is to further explore and integrate a number of innovative approaches we have developed that can overcome current bottlenecks to realize large-area ITO-free WOLEDs on flexible substrates, with processes and materials that are upscalable and amenable to low-cost production. In doing so, we provide an understanding of various loss mechanisms in OLEDs and how they can be extracted.

  16. Highly ordered, accessible and nanocrystalline mesoporous TiO₂ thin films on transparent conductive substrates.

    PubMed

    Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A

    2012-08-01

    Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.

  17. Structural and optical properties of ITO and Cu doped ITO thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal

    2018-04-01

    (In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.

  18. Flexible diode of polyaniline/ITO heterojunction on PET substrate

    NASA Astrophysics Data System (ADS)

    Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B.

    2017-10-01

    Hybrid organic-inorganic heterojunction between polyaniline and ITO film coated on flexible polyethylene terephthalate (PET) substrate has been prepared through vapor phase polymerization process. Polaron and bipolaron like defect states induced hole transport and exceptional mobility makes polyaniline a noble hole transport layer. Thus a p-n junction has been obtained between the hole transport layer of polyaniline and highly conductive n-type layer of ITO film. The synthesis process was carried out using FeCl3 as polymerizing agent in the oxidative chemical polymerization process. The prepared polyaniline has been found to be crystalline on characterization through X-ray diffraction measurement. X-ray photoelectron spectroscopic measurements were done for compositional analysis of the prepared film. The UV-vis-NIR absorbance spectra obtained for polyaniline shows the characteristics absorbance as observed for highly conductive polyaniline and confirms the occurrence of partially oxidized emeraldine form of polyaniline. The energy band gap of the polyaniline has been obtained as 2.52 eV, by analyzing the optical transmittance spectra. A rectifying behavior has been observed in the electrical J-V plot, which is of great significance in designing polymer based flexible electronic devices.

  19. Optoelectronic properties and interfacial durability of CNT and ITO on boro-silicate glass and PET substrates with nano- and heterostructural aspects

    NASA Astrophysics Data System (ADS)

    Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, Lawrence

    2011-02-01

    Nano- and hetero-structures of carbon nanotube (CNT) and indium tin oxide (ITO) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as sensing and actuator under cyclic loading. Optimized preparing conditions were obtained for multi-functional purpose of the specimen by obtaining the best dispersion and turbidity in the solution. Optical transmittance and electrical properties were investigated for CNT and ITO dipping and spraying coating on boro-silicate glass and polyethylene terephthalate (PET) substrates by electrical resistance measurement under cyclic loading and wettability test. Uniform dip-coating was performed using Wilhelmy plate method due to its simple and convenience. Spraying coating was applied to the specimen additionally. The change in the electrical resistance and optical properties of coated layer were mainly dependent upon the number of dip-coating, the concentration of CNT and ITO solutions, and the surface treatment condition. Electric properties of coating layers were measured using four-point probe method, and surface resistance was calculated using a dual configuration method. Optical transmittance of CNT and ITO coated PET film was also evaluated using UV spectrum. Surface energy and their hydrophilic and hydrophobic properties of CNT and ITO coated substrates were investigated by wettability test via static and dynamic contact angle measurements. As the elapsing time of cyclic loading passed, the stability of surface resistance and thus comparative interfacial adhesion between coated layer and substrates was evaluated to compare the thermodynamic work of adhesion, Wa. As dip-coating number increased, surface resistance of coated CNT decreased, whereas the transmittance decreased step-by-step due to the thicker CNT and ITO networked layer. Nano- and heterostructural effects of CNT and ITO solution on the optical and electrical effects have been studied continuously.

  20. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate.

    PubMed

    Ding, Lijun; Gao, Yan; Di, Junwei

    2016-09-15

    Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    NASA Astrophysics Data System (ADS)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  2. Transport Properties of ZnSe- ITO Hetero Junction

    NASA Astrophysics Data System (ADS)

    Ichibakase, Tsuyoshi

    In this report, ITO(Indium Tin Oxide) was used on the glass substrates as the transparent electrode, and ZnSe layer was prepared by the vacuum deposition on this ITO. Then, the electrical characteristics of this sample were investigated by mans of the electric current transport analysis. The sample that ZnSe was prepared as 3.4 μm in case of ITO-ZnSe sample, has high density level at the junction surface. The ITO-ZnSe junction has two type of diffusion current. However, the ITO-ZnSe sample that ZnSe layer was prepared as 0.1 μm can be assumed as the ohmic contact, and ITO-ZnSe(0.1μm) -CdTe sample shows the avalanche breakdown, and it is considered that the avalanche breakdown occurs in CdTe layer. It is difficult to occur the avalanche breakdown, if ZnSe-CdTe junction has high-density level and CdTe layer has high-density defect. Hence, the ZnSe-CdTe sample that CdTe layer was prepared on ITO-ZnSe(0.1μm) substrate has not high-density level at the junction surface, and the CdTe layer with little lattice imperfection can be prepared. It found that ITO-ZnSe(0.1μm) substrate is available for the II-VI compounds semiconductor device through above analysis result.

  3. Ultraviolet-assisted direct patterning and low-temperature formation of flexible ZrO2 resistive switching arrays on PET/ITO substrates

    NASA Astrophysics Data System (ADS)

    Li, Lingwei; Chen, Yuanqing; Yin, Xiaoru; Song, Yang; Li, Na; Niu, Jinfen; Wu, Huimin; Qu, Wenwen

    2017-12-01

    We demonstrate a low-cost and facile photochemical solution method to prepare the ZrO2 resistive switching arrays as memristive units on flexible PET/ITO substrates. ZrO2 solution sensitive to UV light of 337 nm was synthesized using zirconium n-butyl alcohol as the precursor, and benzoylacetone as the complexing agent. After the dip-coated ZrO2 gel films were irradiated through a mask under the UV lamp (with wavelength of 325-365 nm) at room temperature and rinsed in ethanol, the ZrO2 gel arrays were obtained on PET/ITO substrates. Subsequently, the ZrO2 gel arrays were irradiated by deep UV light of 254 and 185 nm at 150 °C, resulting in the amorphous ZrO2 memristive micro-arrays. The ZrO2 units on flexible PET/ITO substrates exhibited excellent memristive properties. A high ratio of 104 of on-state and off-state resistance was obtained. The resistive switching behavior of the flexible device remained stable after being bent for 103 times. The device showed stable flexibility up to a minimum bending diameter of 1.25 cm.

  4. In/ITO whisker and optoelectronic properties of ITO films deposited by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jung-Hsiung; Yeh, Sung-Wei; Teoh, Lay Gaik

    2012-07-15

    ITO films were deposited on a glass substrate using ion beam sputtering, with oxygen flow rates from 0.5 to 2 sccm. The films consisted of randomly oriented ITO nanoparticles and metallic indium (In) with {l_brace}101{r_brace} facets, following the specific crystallographic relationship of [010]{sub In}//[110]{sub ITO}; (001){sub In}//(001){sub ITO} with habit planes (100){sub In}//(011){sub ITO}, when fabricated using a low oxygen flow rate. Oxygen flow rate in excess of 2.0 sccm results in the growth of amorphous films. The epitaxial In nanoparticles probably act as seeds for the development of curved ITO whiskers as small as 10 nm and extend upmore » to 100 nm in length along the [100] direction, with poorly defined shape, possibly due to the tapering and bending of the whisker to form a tilt boundary about the [011] zone axis of the ITO. The ITO whisker growth was facilitated by the In globular tips in the vapor-liquid-solid growth mechanism. The films prepared using a series of oxygen flow rates showed different chemical-bonding states, electric resistivity and optical transparency; as a result of phase and microstructural changes.« less

  5. Deposition of the low resistive ITO-films by means of reactive magnetron sputtering of the In/Sn target on the cold substrate

    NASA Astrophysics Data System (ADS)

    Zhidik, Y. S.; Troyan, P. E.; Baturina, E. V.; Korzhenko, D. V.; Yurjev, Y. N.

    2016-06-01

    Detailed information on the deposition technology of the low-resistive ITO-films in oxygen-containing media by magnetron reactive sputtering from the In(90%)/Sn(10%) target on the cold substrate is given. Developed technology allows deposition ITO-films with sheet resistance 2-3 Ω/□, transparency higher than 90%. Developed technology is notable for high reproducibility of results and is compatible with production technology of semiconductor devices of optoelectronics.

  6. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  7. Study of Ag/RGO/ITO sandwich structure for resistive switching behavior deposited on plastic substrate

    NASA Astrophysics Data System (ADS)

    Vartak, Rajdeep; Rag, Adarsh; De, Shounak; Bhat, Somashekhara

    2018-05-01

    We report here the use of facile and environmentally benign way synthesized reduced graphene oxide (RGO) for low-voltage non-volatile memory device as charge storing element. The RGO solutions have been synthesized using electrochemical exfoliation of battery electrode. The solution processed based RGO solution is suitable for large area and low-cost processing on plastic substrate. Room-temperature current-voltage characterisation has been carried out in Ag/RGO/ITO PET sandwich configuration to study the type of trap distribution. It is observed that in the low-voltage sweep, ohmic current is the main mechanism of current flow and trap filled/assisted conduction is observed at high-sweep voltage region. The Ag/RGO/ITO PET sandwich structure showed bipolar resistive switching behavior. These mechanisms can be analyzed based on oxygen availability and vacancies in the RGO giving rise to continuous least resistive path (conductive) and high resistance path along the structure. An Ag/RGO/ITO arrangement demonstrates long retention time with low operating voltage, low set/reset voltage, good ON/OFF ratio of 103 (switching transition between lower resistance state and higher resistance state and decent switching performance. The RGO memory showed decent results with an almost negligible degradation in switching properties which can be used for low-voltage and low-cost advanced flexible electronics.

  8. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

    NASA Astrophysics Data System (ADS)

    Richardson, Beau J.; Zhu, Leize; Yu, Qiuming

    2017-04-01

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC’s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  9. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less

  10. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M.

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than themore » geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.« less

  11. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    NASA Astrophysics Data System (ADS)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  12. Better Organic Ternary Memory Performance through Self-Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-11-16

    Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fast anodization fabrication of AAO and barrier perforation process on ITO glass

    NASA Astrophysics Data System (ADS)

    Liu, Sida; Xiong, Zuzhou; Zhu, Changqing; Li, Ma; Zheng, Maojun; Shen, Wenzhong

    2014-04-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.

  14. Fast anodization fabrication of AAO and barrier perforation process on ITO glass.

    PubMed

    Liu, Sida; Xiong, Zuzhou; Zhu, Changqing; Li, Ma; Zheng, Maojun; Shen, Wenzhong

    2014-01-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.

  15. Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Austin D.; Elhadj, S.

    2016-06-24

    The purpose of this experiment was to determine the modulus of elasticity (E) and thermal expansion coefficient (α) of RF sputtered Indium Tin Oxide (ITO) as a function of temperature (T), and to collect ITO film stress data. In order to accomplish that goal, the Toho FLX-2320-S thin film stress measurement machine was used to collect both single stress and stress-temperature data for ITO coated fused silica and sapphire substrates. The stress measurement function of the FLX-2320-S cannot be used to calculate the elastic modulus of the film because the Stoney formula incorporates the elastic modulus of the substrate, rathermore » than of the film itself.« less

  16. Recent advances in the ITO/InP solar cell

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Wanlass, M. W.; Coutts, T. J.

    1991-01-01

    It was demonstrated that Indium Tin Oxide (ITO)/InP solar cells can now be made on as-received p(-) bulk substrates which are of nearly equal quality to those which could previously only be made on epitaxially grown p(-) InP base layers. Although this advancement is due in part to both increases in substrate quality and a better understanding of back contact formation, it appears that the passivation/compensation effects resulting from having H2 in the sputtering gas tends to reduce significantly the performance differences previously observed between these two substrates. It is shown that since high efficiency ITO/InP cells can be made from as-received substrates, and since the type conversion process is not highly spatially dependent, large area ITO/InP cells (4 sq cm) with efficiencies approaching 17 percent (Global) can be made. Furthermore, the measured open circuit voltages (V sub OC) and quantum efficiencies (QEs) from these large cells suggest that, when they are processed using optimum grid designs, the efficiencies will be nearly equal to that of the smaller cells thus far produced. It has been shown, through comparative experiments involving ITO/InP and IO/InP cells, that Sn may not be the major cause of type conversion of the InP surface and thus further implies that the ITO may not be an essential element in this type of device. Specifically, very efficient photovoltaic solar cells were made by sputtering (Sn free) In2O3 showing that type conversion and subsequent junction formation will occur even in the absence of the sputtered SN species. The result suggests that sputter damage may indeed be the important mechanism(s) of type conversion. Finally, an initial study of the stability of the ITO/InP cell done over the course of about one year has indicated that the J(sub SC) (short circuit current) and the fill factor (FF) are measurably stable within experimental certainty.

  17. Structural study of Mg doped cobalt ferrite thin films on ITO coated glass substrate

    NASA Astrophysics Data System (ADS)

    Suthar, Mahesh; Bapna, Komal; Kumar, Kishor; Ahuja, B. L.

    2018-05-01

    We have synthesized thin films of Co1-xMgxFe2O4 (x = 0, 0.4, 0.6, 0.8, 1) on transparent conducting indium tin oxide (ITO) coated glass substrate by pulsed laser deposition method. The structural properties of the grown films were analyzed by the X-ray diffraction and Raman spectroscopy, which suggest the single phase growth of these films. Raman spectra revealed the incorporation of Mg ions into CoFe2O4 lattice and suggest that the Mg ions initially go both to the octahedral and tetrahedral sites upto a certain concentration. For higher concentration, Mg ions prefer to occupy the tetrahedral sites.

  18. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications.

    PubMed

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-09-22

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

  19. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-09-01

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

  20. Fast anodization fabrication of AAO and barrier perforation process on ITO glass

    PubMed Central

    2014-01-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates. PMID:24708829

  1. Poly(aniline) nanowires in sol-gel coated ITO: A pH-responsive substrate for planar supported lipid bilayers

    PubMed Central

    Ge, Chenhao; Orosz, Kristina S.; Armstrong, Neal R.; Saavedra, S. Scott

    2011-01-01

    Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with poly(aniline) (PANI) nanowires grown from an underlying planar indium-tin oxide (ITO) electrode. The upper sol-gel surface is hydrophilic, smooth, and compatible with deposition of a planar supported lipid bilayer (PSLB) formed via vesicle fusion. Conducting tip AFM was used to show that the PANI wires are connected to the ITO, which convert this electrode into a potentiometric pH sensor. The response to changes in the pH of the buffer contacting the PANI nanowire/sol-gel/ITO electrode is blocked by the very low ion permeability of the overlying, fluid PSLB. The feasibility of using this assembly to monitor facilitated proton transport across the PSLB was demonstrated by doping the membrane with lipophilic ionophores that respond to a transmembrane pH gradient, which produced an apparent proton permeability several orders of magnitude greater than values measured for undoped lipid bilayers. PMID:21707069

  2. Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ai, Taotao; Yu, Qi

    2017-02-01

    Boron-doped zinc oxide sheet-spheres were synthesized on PET-ITO flexible substrates using a hydrothermal method at 90 °C for 5 h. The results of X-ray diffraction and X-ray photoelectron spectroscopy indicated that the B atoms were successfully doped into the ZnO lattice, the incorporation of B led to an increase in the lattice constant of ZnO and a change in its internal stress. The growth mechanism of pure ZnO nanorods and B-doped ZnO sheet-spheres was specifically investigated. The as-prepared BZO/PET-ITO heterojunction possessed obvious rectification properties and its positive turn-on voltage was 0.4 V. The carrier transport mechanisms involved three models such as hot carrier tunneling theory, tunneling recombination, and series-resistance effect were explored. The BZO/PET-ITO nanostructures were more effective than pure ZnO to degrade the RY 15, and the degradation rate reached 41.45%. The decomposition process with BZO nanostructure followed first-order reaction kinetics. The photocurrent and electrochemical impedance spectroscopy revealed that the B-doping could promote the separation of photo-generated electron-hole pairs, which was beneficial to enhance the photocatalytic activity. The photocurrent density of B-doped and pure ZnO/PET-ITO were 0.055 mA/cm2 and 0.016 mA/cm2, respectively. The photocatalytic mechanism of the sample was analyzed by the energy band theory.

  3. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications

    PubMed Central

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-01-01

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows. PMID:27653830

  4. Characterization of a new transparent-conducting material of ZnO doped ITO thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. M.

    2005-11-01

    Thin films of indium tin oxide (ITO) doped with zinc oxide have the remarkable properties of being conductive yet still highly transparent in the visible and near-IR spectral ranges. The Electron beam deposi- tion technique is one of the simplest and least expensive ways of preparing. High-quality ITO thin films have been deposited on glass substrates by Electron beam evaporation technique. The effect of doping and substrate deposition temperature was found to have a significant effect on the structure, electrical and optical properties of ZnO doped ITO films. The average optical transmittance has been increased with in- creasing the substrate temperature. The maximum value of transmittance is greater than 84% in the visible region and 85% in the NIR region obtained for film with Zn/ITO = 0.13 at substrate temperature 200 °C. The dielectric constant, average excitation energy for electronic transitions (E o), the dispersion energy (E d), the long wavelength refractive index (n ), average oscillator wave length ( o) and oscillator strength S o for the thin films were determined and presented in this work.

  5. Rectified photocurrent in a planar ITO/graphene/ITO photodetector on SiC by local irradiation of ultraviolet light

    NASA Astrophysics Data System (ADS)

    Yang, Junwei; Guo, Liwei; Huang, Jiao; Mao, Qi; Guo, Yunlong; Jia, Yuping; Peng, Tonghua; Chen, Xiaolong

    2017-10-01

    A rectified photocurrent behaviour is demonstrated in a simple planar structure of ITO-graphene-ITO formed on a SiC substrate when an ultraviolet (UV) light is locally incident on one of the edges between the graphene and ITO electrode. The photocurrent has similar characteristics as those of a vertical structure graphene/semiconductor junction photodiode, but is clearly different from those found in a planar structure metal-graphene-metal device. Furthermore, the device behaves multi-functionally as a photodiode with sensitive UV photodetection capability (responsivity of 11.7 mA W-1 at 0.3 V) and a self-powered UV photodetector (responsivity of 4.4 mA W-1 at zero bias). Both features are operative in a wide dynamic range and with a fast speed of response in about gigahertz. The linear I-V behaviour with laser power at forward bias and cutoff at reverse bias leads to a conceptual photodiode, which is compatible with modern semiconductor planar device architecture. This paves a potential way to realize ultrafast graphene planar photodiodes for monolithic integration of graphene-based devices on the same SiC substrate.

  6. Characteristics of Indium Tin Oxide (ITO) Nanoparticles Recovered by Lift-off Method from TFT-LCD Panel Scraps.

    PubMed

    Choi, Dongchul; Hong, Sung-Jei; Son, Yongkeun

    2014-11-27

    In this study, indium-tin-oxide (ITO) nanoparticles were simply recovered from the thin film transistor-liquid crystal display (TFT-LCD) panel scraps by means of lift-off method. This can be done by dissolving color filter (CF) layer which is located between ITO layer and glass substrate. In this way the ITO layer was easily lifted off the glass substrate of the panel scrap without panel crushing. Over 90% of the ITO on the TFT-LCD panel was recovered by using this method. After separating, the ITO was obtained as particle form and their characteristics were investigated. The recovered product appeared as aggregates of particles less than 100 nm in size. The weight ratio of In/Sn is very close to 91/9. XRD analysis showed that the ITO nanoparticles have well crystallized structures with (222) preferred orientation even after recovery. The method described in this paper could be applied to the industrial recovery business for large size LCD scraps from TV easily without crushing the glass substrate.

  7. Characteristics of Indium Tin Oxide (ITO) Nanoparticles Recovered by Lift-off Method from TFT-LCD Panel Scraps

    PubMed Central

    Choi, Dongchul; Hong, Sung-Jei; Son, Yongkeun

    2014-01-01

    In this study, indium-tin-oxide (ITO) nanoparticles were simply recovered from the thin film transistor-liquid crystal display (TFT-LCD) panel scraps by means of lift-off method. This can be done by dissolving color filter (CF) layer which is located between ITO layer and glass substrate. In this way the ITO layer was easily lifted off the glass substrate of the panel scrap without panel crushing. Over 90% of the ITO on the TFT-LCD panel was recovered by using this method. After separating, the ITO was obtained as particle form and their characteristics were investigated. The recovered product appeared as aggregates of particles less than 100 nm in size. The weight ratio of In/Sn is very close to 91/9. XRD analysis showed that the ITO nanoparticles have well crystallized structures with (222) preferred orientation even after recovery. The method described in this paper could be applied to the industrial recovery business for large size LCD scraps from TV easily without crushing the glass substrate. PMID:28788267

  8. Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo

    2016-03-15

    Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less

  9. Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.

    PubMed

    Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik

    2010-01-01

    We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.

  10. Low temperature and self catalytic growth of ultrafine ITO nanowires by electron beam evaporation method and their optical and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R. Rakesh, E-mail: rakesh.rajaboina@gmail.com; Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066; Rao, K. Narasimha

    2014-04-01

    Highlights: • ITO nanowires were grown by e-beam evaporation method. • ITO nanowires growth done at low substrate temperature of 350 °C. • Nanowires growth was carried out without use of catalyst and reactive oxygen gas. • Nanowires growth proceeds via self catalytic VLS growth. • Grown nanowires have diameter 10–20 nm and length 1–4 μm long. • ITO nanowire films have shown good antireflection property. - Abstract: We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250–400more » °C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (∼10–15 nm) and micron long ITO NWs growth was observed in a temperature window of 300–400 °C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300–400 °C have shown ∼2–6% reflection and ∼70–85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices.« less

  11. Influence of Continuous and Discontinuous Depositions on Properties of Ito Films Prepared by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Aiempanakit, K.; Rakkwamsuk, P.; Dumrongrattana, S.

    Indium tin oxide (ITO) films were deposited on glass substrate without external heating by DC magnetron sputtering with continuous deposition of 800 s (S1) and discontinuous depositions of 400 s × 2 times (S2), 200 s × 4 times (S3) and 100 s × 8 times (S4). The structural, surface morphology, optical transmittance and electrical resistivity of ITO films were measured by X-ray diffraction, atomic force microscope, spectrophotometer and four-point probe, respectively. The deposition process of the S1 condition shows the highest target voltage due to more target poisoning occurrence. The substrate temperature of the S1 condition increases with the saturation curve of the RC charging circuit while other conditions increase and decrease due to deposition steps as DC power turns on and off. Target voltage and substrate temperature of ITO films decrease when changing the deposition conditions from S1 to S2, S3 and S4, respectively. The preferential orientation of ITO films were changed from dominate (222) plane to (400) plane with the increasing number of deposition steps. The ITO film for the S4 condition shows the lowest electrical resistivity of 1.44 × 10-3 Ω·cm with the highest energy gap of 4.09 eV and the highest surface roughness of 3.43 nm. These results were discussed from the point of different oxygen occurring on the surface ITO target between the sputtering processes which affected the properties of ITO films.

  12. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.

    PubMed

    Zhong, Z Y; Jiang, Y D

    2006-10-15

    In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.

  13. Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Kamei, Masayuki; Yagami, Teruyuki; Takaki, Satoru; Shigesato, Yuzo

    1994-05-01

    Heteroepitaxial growth of tin-doped indium oxide (ITO) film was achieved for the first time by using single crystalline yttria stabilized zirconia (YSZ) as substrates. The epitaxial relationship between ITO film and YSZ substrate was ITO[100]∥YSZ[100]. By comparing the electrical properties of this epitaxial ITO film with that of a randomly oriented polycrystalline ITO film grown on a glass substrate, neither the large angle grain boundaries nor the crystalline orientation were revealed to be dominant in determining the carrier mobility in ITO films.

  14. Re-crystallization of ITO films after carbon irradiation

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 1013 to 1 × 1015 ions/cm2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 1013 ions/cm2 fluence of carbon ions. Further increase in ion fluence to 1 × 1014 ions/cm2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  15. On the Mechanism of In Nanoparticle Formation by Exposing ITO Thin Films to Hydrogen Plasmas.

    PubMed

    Fan, Zheng; Maurice, Jean-Luc; Chen, Wanghua; Guilet, Stéphane; Cambril, Edmond; Lafosse, Xavier; Couraud, Laurent; Merghem, Kamel; Yu, Linwei; Bouchoule, Sophie; Roca I Cabarrocas, Pere

    2017-10-31

    We present our systematic work on the in situ generation of In nanoparticles (NPs) from the reduction of ITO thin films by hydrogen (H 2 ) plasma exposure. In contrast to NP deposition from the vapor phase (i.e., evaporation), the ITO surface can be considered to be a solid reservoir of In atoms thanks to H 2 plasma reduction. On one hand, below the In melting temperature, solid In NP formation is governed by the island-growth mode, which is a self-limiting process because the H 2 plasma/ITO interaction will be gradually eliminated by the growing In NPs that cover the ITO surface. On the other hand, we show that above the melting temperature In droplets prefer to grow along the grain boundaries on the ITO surface and dramatic coalescence occurs when the growing NPs connect with each other. This growth-connection-coalescence behavior is even strengthened on In/ITO bilayers, where In particles larger than 10 μm can be formed, which are made of evaporated In atoms and in situ released ones. Thanks to this understanding, we manage to disperse dense evaporated In NPs under H 2 plasma exposure when inserting an ITO layer between them and substrate like c-Si wafer or glass by modifying the substrate surface chemistry. Further studies are needed for more precise control of this self-assembling method. We expect that our findings are not limited to ITO thin films but could be applicable to various metal NPs generation from the corresponding metal oxide thin films.

  16. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo

    2016-12-01

    In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  17. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyo-Joong; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Lee, Hyun Hwi

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of themore » transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.« less

  18. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok; Kim, Han-Ki

    2015-10-01

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  19. Properties of Surface-Modification Layer Generated by Atomic Hydrogen Annealing on Poly(ethylene naphthalate) Substrate

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2008-01-01

    The surface of a poly(ethylene naphthalate) (PEN) substrate was modified by atomic hydrogen annealing (AHA). In this method, a PEN substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. The properties of the surface-modification layer by AHA were evaluated by spectroscopic ellipsometry. It is found that the thickness of the modified layer was 5 nm and that the modification layer has a low refractive index compared with the PEN substrate. The modification layer relates to the reduction reaction of the PEN substrate by AHA.

  20. Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.

    PubMed

    Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June

    2017-10-03

    This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.

  1. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yong Seob; Kim, Eungkwon; Hong, Byungyou

    2013-12-15

    Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{submore » 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.« less

  2. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique.

    PubMed

    Ito, Takashi; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-05-30

    We suggest a novel wet coating process for preparing indium tin oxide (ITO) films from simple solutions containing only metal salts and water via evaporation-driven film deposition during low-speed dip coating. Homogeneous ITO precursor films were deposited on silica glass substrates from the aqueous solutions containing In(NO 3 ) 3 ·3H 2 O and SnCl 4 ·5H 2 O by dip coating at substrate withdrawal speeds of 0.20-0.50 cm min -1 and then crystallized by the heat treatment at 500-800 °C for 10-60 min under N 2 gas flow of 0.5 L min -1 . The ITO films heated at 600 °C for 30 min had a high optical transparency in the visible range and a good electrical conductivity. Multiple-coating ITO films obtained with five-times dip coating exhibited the lowest sheet (ρ S ) and volume (ρ V ) resistivities of 188 Ω sq -1 and 4.23 × 10 -3 Ω cm, respectively.

  3. ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.

    PubMed

    Chen, Chaonan; Wang, Zhewei; Wu, Ke; Chong, Haining; Xu, Zemin; Ye, Hui

    2018-05-02

    Indium tin oxide (ITO)-based sandwich structures with the insertion of ultrathin (<10 nm) titanium nitride (TiN) are investigated as near-infrared (NIR) plasmonic materials. The structural, electrical, and optical properties reveal the improvement of the sandwich structures stemmed from TiN insertion. TiN is a well-established alternative to noble metals such as gold, elevating the electron conductivity of sandwich structures as its thickness increases. Dielectric permittivities of TiN and top ITO layers show TiN-thickness-dependent properties, which lead to moderate and tunable effective permittivities for the sandwiches. The surface plasmon polaritons (SPP) of the ITO-TiN-ITO sandwich at the telecommunication window (1480-1570 nm) are activated by prism coupling using Kretschmann configuration. Compared with pure ITO films or sandwiches with metal insertion, the reflectivity dip for sandwiches with TiN is relatively deeper and wider, indicating the enhanced coupling ability in plasmonic materials for telecommunications. The SPP spatial profile, penetration depth, and degree of confinement, as well as the quality factors, demonstrate the applicability of such sandwiches for NIR plasmonic materials in various devices.

  4. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.

    PubMed

    Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei

    2018-01-05

    Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

  5. Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOχ/ITO electrochromic devices prepared by using magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tang, Chien-Jen; Ye, Jia-Ming; Yang, Yueh-Ting; He, Ju-Liang

    2016-05-01

    Electrochromic devices (ECDs) have been applied in smart windows to control the transmission of sunlight in green buildings, saving up to 40-50% electricity consumption and ultimately reducing carbon dioxide emissions. However, the high manufacturing costs and difficulty of transportation of conventional massive large area ECDs has limited widespread applications. A unique design replacing the glass substrate commonly used in the ECD windows with inexpensive, light-weight and flexible polymeric substrate materials would accelerate EC adoption allowing them to be supplemented for regular windows without altering window construction. In this study, an ITO/WO3/Nb2O5/NiVOχ/ITO all-solid-state monolithic ECD with an effective area of 24 cm × 18 cm is successfully integrated on a PET substrate by using magnetron sputter deposition. The electrochromic performance and bending durability of the resultant material are also investigated. The experimental results indicate that the ultimate response times for the prepared ECD is 6 s for coloring at an applied voltage of -3 V and 5 s for bleaching at an applied voltage of +3 V, respectively. The optical transmittances for the bleached and colored state at a wavelength of 633 nm are 53% and 11%, respectively. The prepared ECD can sustain over 8000 repeated coloring and bleaching cycles, as well as tolerate a bending radius of curvature of 7.5 cm.

  6. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-01

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO /PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  7. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple.

    PubMed

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-15

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  8. ITOS meteorological satellite system: TIROS M spacecraft (ITOS 1), volume 1

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The ITOS system and mission are described along with the design of the TIROS M spacecraft, and the ITOS ground complex. The command subsystems, and the primary environmental sensor subsystem are discussed.

  9. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer.

    PubMed

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-01-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m 2 /g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  10. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-09-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m2/g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  11. Effect of organic solar cells using various power O2 plasma treatments on the indium tin oxide substrate.

    PubMed

    Ke, Jhong-Ciao; Wang, Yeong-Her; Chen, Kan-Lin; Huang, Chien-Jung

    2016-03-01

    The effect of organic solar cells (OSCs) by using different power O2 plasma treatments on indium tin oxide (ITO) substrate was studied. The power of O2 plasma treatment on ITO substrate was varied from 20W to 80W, and the power conversion efficiency of device was improved from 1.18% to 1.93% at 20W O2 plasma treatment. The function of O2 plasma treatment on ITO substrate was to remove the surface impurity and to improve the work function of ITO, which can reduce the energy offset between the ITO and SubPc layer and depress the leakage current of device, leading to the shunt resistance increased from 897 to 1100Ωcm(2). The surface roughness of ITO decreased from 3.81 to 3.33nm and the work function of ITO increased from 4.75 to 5.2eV after 20W O2 plasma treatment on ITO substrate. As a result, the open circuit voltage and the fill factor were improved from 0.46 to 0.70V and from 0.56 to 0.61, respectively. However, the series resistance of device was dramatically increased as the power of O2 plasma treatment exceeds 40W, leading to the efficiency reduction. The result is attributed to the variation of oxygen vacancies in ITO film after the 60, 80W O2 plasma treatment. As a consequence, the power of O2 plasma treatment on ITO substrate for the OSCs application should be controlled below 40W to avoid affecting the electricity of ITO film. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effects of direct current electric-field using ITO plate on breast cancer cell migration.

    PubMed

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul

    2014-01-01

    Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

  13. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  14. Heterojunction photodetector based on graphene oxide sandwiched between ITO and p-Si

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Tajdidzadeh, M.; Thandavan, T. M. K.

    2018-02-01

    The drop casting method is utilized on indium tin oxide (ITO)-coated glass in order to prepare a sandwiched ITO/graphene oxide (ITO/GO) with silicon dioxide/p-type silicon (SiO2/p-Si) heterojunction photodetector. The partially sandwiched GO layer with SiO2/p-Si substrate exhibits dual characteristics as it showed good sensitivity towards the illumination of infrared (IR) laser at wavelength of 974 nm. Excellent photoconduction is also observed for current-voltage (I-V) characteristics at various laser powers. An external quantum efficiency greater than 1 for a direct current bias voltage of 0 and 3 V reveals significant photoresponsivity of the photodetector at various laser frequency modulation at 1, 5 and 9 Hz. The rise times are found to be 75, 72 and 70 μs for 1, 5 and 9 Hz while high fall times 455, 448 and 426 are measured for the respective frequency modulation. The fabricated ITO/GO-SiO2/p-Si sandwiched heterojunction photodetector can be considered as a good candidate for applications in the IR regions that do not require a high-speed response.

  15. Synthesis and Analysis of MnTiO3 Thin Films on ITO Coated Glass Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Emerick; Sahiner, Mehmet-Alper

    Perovskites like Manganese Titanium Oxide have interesting chemical properties that may be advantageous to the development of p-n junction photovoltaic cells. Due to the limited understanding behind the compound, it is essential to know the characteristics of it when it is deposited in thin film form. The cells were created using pulsed laser deposition method for two separate mediums (first layers after ITO). ZnO was deposited onto ITO glass for the first sample. For the second sample, a layer of pure Molybdenum was deposited onto the ITO glass. The MnTiO3 was then deposited onto both samples. There was a target thickness of 1000 Angstroms, but ellipsometry shows that, for the Mo based sample, that film thickness was around 1500 Angstroms. There were inconclusive results for the ZnO based sample. The concentration of active carriers was measured using a Hall Effect apparatus for the Mo based sample. The XRD analyses were used to confirm the perovskite structure of the films. Measurements for photoelectric conversion efficiency were taken using a Keathley 2602 ScourceMeter indicated low values for efficiency. The structural information that is correlated with the low electrical performance of this sample will be discussed. SHU-NJSGC Summer 2015 Fellowship.

  16. Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals.

    PubMed

    Jagadeeswararao, Metikoti; Pal, Somnath; Nag, Angshuman; Sarma, D D

    2016-03-03

    Sn(4+) -doped In2 O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8 nm, 10 % Sn(4+) ) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3 )3 OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around λ=1950 nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (≈35 mΩ cm(-1) ). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect on the properties of ITO thin films in Gamma environment

    NASA Astrophysics Data System (ADS)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-04-01

    The present study reports the effect of gamma irradiation of varying doses (0-200 kGy) on the physical properties of the indium tin oxide (ITO) thin films. The films were fabricated by thermal evaporation method using indium-tin (InSn) ingots followed by an oxidation in atmosphere at a temperature of 550 °C. X-ray diffraction analysis confirmed the body-centered cubic (BCC) structure corresponds to the ITO thin films, high phase purity and a variation in crystallite size between 30-44 nm. While the optical studies revealed an increase in transmission as well as variation in optical band gap, the electrical studies confirmed n-type semiconductive behavior of the thin films, increase in mobility and a decrease in resistivity from 2.33×10-2 - 9.31×10-4 Ωcm with the increase in gamma dose from 0-200 kGy. The gamma irradiation caused totally electronic excitation and resulted in this modifications. The degenerate electron gas model was considered when attempting to understand the prevalent scattering mechanism in gamma irradiated ITO thin films.

  18. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.

    PubMed

    Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan

    2015-11-01

    We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces.

  19. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki

    2017-02-01

    We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.

  20. Increased efficiency with surface texturing in ITO/InP solar cells

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Fatemi, Navid; Li, Xiaonan; Scheiman, David; Bailey, Sheila

    1992-01-01

    Optimization of an InP solar cell with a V-grooved surface is discussed. Total internal reflection in the coverglass reduces surface reflection and can recover light reflected from the front metallization. Results from the first ITO/InP solar cells on low-angle V-grooved substrates are presented, showing a 5.8 percent increase in current.

  1. Fabrication and Characterization of Flexible Organic Light Emitting Diodes Based on Transparent Flexible Clay Substrates

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Shanmugam; Hayashi, Hiromichi; Ebina, Takeo; Nakamura, Takashi; Nanjo, Hiroshi

    2013-03-01

    In the present work, transparent flexible polymer-doped clay (P-clay) substrates were prepared for flexible organic light emitting diode (OLED) applications. Nanocrystalline indium tin oxide (ITO) thin films were prepared on P-clay substrates by ion-beam sputter deposition method. The structural, optical, and electrical properties of as-prepared ITO/P-clay showed that the as-prepared ITO thin film was amorphous, and the average optical transparency and sheet resistance were around 84% and 56 Ω/square, respectively. The as-prepared ITO/P-clay samples were annealed at 200 and 270 °C for 1 h to improve the optical transparency and electrical conductivity. The average optical transparency was found to be maximum at an annealing temperature of 200 °C. Finally, N,N-bis[(1-naphthyl)-N,N '-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB), tris(8-hydroxyquinoline) aluminum (Alq3) thin films, and aluminum (Al) electrode were prepared on ITO/P-clay substrates by thermal evaporation method. The current density-voltage (J-V) characteristic of Al/NPB/ITO/P-clay showed linear Ohmic behaviour. In contrast, J-V characteristic of Al/Alq3/NPB/ITO/P-clay showed non-linear Schottky behaviour. Finally, a very flexible OLED was successfully fabricated on newly fabricated transparent flexible P-clay substrates. The electroluminescence study showed that the emission intensity of light from the flexible OLED device gradually increased with increasing applied voltage.

  2. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  3. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose.

    PubMed

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol-gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. ITOS/space shuttle study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are reported of a study to explore the potential cost reductions in the operational ITOS weather satellite program as a consequence of shuttle/bug availability for satellite placement and retrieval, and satellite servicing and maintenance. The study program was divided into shuttle impact on equipment and testing costs, and shuttle impact on overall future ITOS operational program costs, and shuttle impact on configuration. It is concluded that savings in recurring spacecraft costs can be realized in the 1978 ITOS program, if a space shuttle is utilized.

  5. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad Hadi; Hassan, Zainuriah; Shuhaimi, Ahmad

    2018-06-01

    This paper reports on the enhancement of optical transmittance and electrical resistivity of indium tin oxide (ITO) transparent conductive oxides (TCO) deposited by radio frequency (RF) sputtering on Si substrate. Post-annealing was conducted on the samples at temperature ranges of 500-700 °C. From X-ray diffraction analysis (XRD), ITO (2 2 2) peak was observed after post-annealing indicating crystallization phase of the films. From UV-vis measurements, the ITO thin film shows highest transmittance of more than 90% at post-annealing temperature of 700 °C as compared to the as-deposited thin films. From atomic force microscope (AFM), the surface roughness becomes smoother after post-annealing as compared to the as-deposited. The lowest electrical resistivity for ITO sample is 6.68 × 10-4 Ω cm after post-annealed at 700 °C that are contributed by high carrier concentration and mobility. The improved structural and surface morphological characteristics helps in increasing the optical transmittance and reducing the electrical resistivity of the ITO thin films.

  6. Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques.

    PubMed

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2017-12-19

    Indium tin oxide (ITO) still remains as the main candidate for high-performance optoelectronic devices, but there is a vital requirement in the development of sol-gel based synthesizing techniques with regards to green environment and higher conductivity. Graphene/ITO transparent bi-film was synthesized by a two-step process: 10 wt. % tin-doped ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO 3 ) 3 .H 2 O and SnCl 4 , without using organic additives, on surface free energy enhanced (from 53.826 to 97.698 mJm -2 ) glass substrate by oxygen plasma treatment, which facilitated void-free continuous ITO film due to high surface wetting. The chemical vapor deposited monolayer graphene was transferred onto the synthesized ITO to enhance its electrical properties and it was capable of reducing sheet resistance over 12% while preserving the bi-film surface smoother. The ITO films contain the In 2 O 3 phase only and exhibit the polycrystalline nature of cubic structure with 14.35 ± 0.5 nm crystallite size. The graphene/ITO bi-film exhibits reproducible optical transparency with 88.66% transmittance at 550 nm wavelength, and electrical conductivity with sheet resistance of 117 Ω/sq which is much lower than that of individual sol-gel derived ITO film.

  7. Microstructure and dielectric properties of cellulose acetate-ZnO/ITO composite films based on water hyacinth

    NASA Astrophysics Data System (ADS)

    Diantoro, M.; Mustikasari, A. A.; Wijayanti, N.; Yogihati, C.; Taufiq, A.

    2017-05-01

    The electrical properties of Cellulose Acetate (CA), especially extracted from water hyacinth, is rarely informed. CA is generally more stable compared to its cellulose. It has a good potential for electronic application with specific modifications such as inducing metal oxide. A combination of intrinsic properties of Zinc Oxide (ZnO) and CA is expected as a great potential for electrical and optical applications. CA-ZnO/ITO composite film was investigated in relation with its structure, dielectric constant, and the effect of light intensity on their dielectric constant. CA-ZnO composite films were prepared with different mass of ZnO i.e. 0; 0,02; 0,04; 0,06 and 0,08 grams. CA-ZnO solution was synthesized via the mixing method with PEG:DMF solvents by using a magnetic hotplate stirrer with the rotation rate of 1500 rpm at 80°C. The CA-ZnO solution was then deposited onto ITO/glass substrate by using spin coating technique. The CA-ZnO/ITO films were annealed at 160°C to remove the remaining solvents. The effects of ZnO composition on the structure (crystallinity and morphology) and dielectric constant properties were investigated by using X-Ray Diffractometer, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and LCR meter. It was shown that cellulose can be isolated from water hyacinth with the yield of 67,72 % by Chesson method and can further be transformed into CA. The X-ray diffraction pattern showed that there are 2 phases formed i.e. CA and ZnO. Furthermore, greater ZnO amount increased the crystallinity of composite films. The CA-ZnO films exhibit porous films with ZnO distributed on the CA surface films. Therefore, ZnO increases the dielectric constant of CA-ZnO composite films.

  8. Effect of substrates on Zinc Oxide thin films fabrication using sol-gel method

    NASA Astrophysics Data System (ADS)

    Kadir, Rosmalini Ab; Taib, Nurmalina Mohd; Ahmad, Wan Rosmaria Wan; Aziz, Anees Abdul; Sabirin Zoolfakar, Ahmad

    2018-03-01

    The properties of ZnO thin films were deposited on three different substrates via dip coating method was investigated. The films were prepared on glass, ITO and p-type silicon. Characterization of the film revealed that the properties of the dip coated ZnO thin films were influenced by the type of substrates. The grains on ITO and glass were ∼10 nm in size while the grains on wafer agglomerate together to form a denser film. Studies of the optical properties using UV-VIS-NIR of the fabricated films demonstrated that glass has the highest transmittance compared to ITO.

  9. The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Raoufi, Davood; Taherniya, Atefeh

    2015-06-01

    In this work, Sn doping In2O3 (ITO) thin films with a thickness of 200 nm were deposited on glass substrates by electron beam evaporation (EBE) method at different substrate temperatures. The crystal structure of these films was studied by X-ray diffraction technique. The sheet resistance was measured by a four-point probe. Van der Pauw method was used to measure carrier density and mobility of ITO films. The optical transmittance spectra were recorded in the wavelength region of 300-800 nm. Scanning electron microscope (SEM) has been used for the surface morphology analysis. The prepared ITO films exhibited body-centered cubic (BCC) structure with preferred orientation of growth along the (2 2 2) crystalline plane. The grain size of the films increases by rising the substrate temperature. Transparency of the films, over the visible light region, is increased with increasing the substrate temperature. It is found that the electrical properties of ITO films are significantly affected by substrate temperature. The electrical resistivity decreases with increasing substrate temperature, whereas the carrier density and mobility are enhanced with an increase in substrate temperature. The evaluated values of energy band gap Eg for ITO films were increase from 3.84 eV to 3.91 eV with increasing the substrate temperatures from 200 °C to 500 °C. The SEM micrographs of the films revealed a homogeneous growth without perceptible cracks with particles which are well covered on the substrate.

  10. Stability of perovskite solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  11. Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode

    NASA Astrophysics Data System (ADS)

    Mageshwari, K.; Han, Sanghoo; Park, Jinsub

    2016-05-01

    In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.

  12. Studies on modification of ZnO sol-gel spin coated on flexible substrate at low temperature: Effect of time exposure

    NASA Astrophysics Data System (ADS)

    Kamardin, Ili Liyana Khairunnisa; Ainuddin, Ainun Rahmahwati

    2017-04-01

    Transparent Conducting Oxide (TCO) Film has been chosen as flexible substrate recently in the application of a device. One of the TCO mostly used is ITO/PET substrates. Through this communication, the effect of time exposure of ZnO thin film by modified sol-gel deposited on flexible substrates was investigated. 0.75 M of NaOH and C6H8O7 were dropped directly into precursor solution right before aging process in order to modified precursor solution environment condition. x-ray diffraction pattern recorded plane (100) and (101) as preferential growth orientation. The (101) plane was selected to calculate the average crystallite. The atomic force microscopy indicated RMS value for NaOH samples increased with time exposure. Meanwhile, for C6H8O7 samples decreased with hot water treatment time exposure.

  13. Fabrication of three-dimensional hybrid nanostructure-embedded ITO and its application as a transparent electrode for high-efficiency solution processable organic photovoltaic devices.

    PubMed

    Kim, Jeong Won; Jeon, Hwan-Jin; Lee, Chang-Lyoul; Ahn, Chi Won

    2017-03-02

    Well-aligned, high-resolution (10 nm), three-dimensional (3D) hybrid nanostructures consisting of patterned cylinders and Au islands were fabricated on ITO substrates using an ion bombardment process and a tilted deposition process. The fabricated 3D hybrid nanostructure-embedded ITO maintained its excellent electrical and optical properties after applying a surface-structuring process. The solution processable organic photovoltaic device (SP-OPV) employing a 3D hybrid nanostructure-embedded ITO as the anode displayed a 10% enhancement in the photovoltaic performance compared to the photovoltaic device prepared using a flat ITO electrode, due to the improved charge collection (extraction and transport) efficiency as well as light absorbance by the photo-active layer.

  14. Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry

    2011-02-01

    The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser

  15. Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates

    NASA Astrophysics Data System (ADS)

    Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2009-12-01

    In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.

  16. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  17. Surface-potential undulation of Alq3 thin films prepared on ITO, Au, and n-Si.

    PubMed

    Ozasa, Kazunari; Ito, Hiromi; Maeda, Mizuo; Hara, Masahiko

    2012-01-01

    The surface potential (SP) morphology on thin films of tris(8-hydroxyquinolinato) aluminum (Alq3) was investigated with Kelvin probe force microscopy. Thin Alq3 films of 100 nm were prepared on ITO/glass substrates, Au/mica substrates, and n-Si substrates. Cloud-like morphologies of the SP undulation with 200-400 nm in lateral size were observed for all three types of the substrates. New larger peaks were observed in the cloud-like morphologies when the surfaces were exposed shortly to a light, while the SP average was reduced monotonically. The nonuniform distribution of charged traps and mobility was deduced from the SP undulation morphology and its photoexposure dependences.

  18. Modification of surface properties of cellulosic substrates by quaternized silicone emulsions.

    PubMed

    Purohit, Parag S; Somasundaran, P

    2014-07-15

    The present work describes the effect of quaternization of silicones as well as the relevant treatment parameter pH on the frictional, morphological and relaxation properties of fabric substrates. Due to their unique surface properties, silicone polymers are extensively used to modify surface properties of various materials, although the effects of functionalization of silicones and relevant process conditions on modification of substrates are not well understood. Specifically we show a considerable reduction in fabric friction, roughness and waviness upon treatment with quaternized silicones. The treatment at acidic pH results in better deposition of silicone polymers onto the fabric as confirmed through streaming potential measurements which show charge reversal of the fabric. Interestingly, Raman spectroscopy studies show the band of C-O ring stretching mode at ∼1095 cm(-1) shift towards higher wavenumber indicating lowering of stress in fibers upon appropriate silicone treatment. Thus along with the morphological and frictional properties being altered, silicone treatment can lead to a reduction in fabric strain. It is concluded that the electrostatic interactions play an initial role in modification of the fiber substrate followed by multilayer deposition of polymer. This multi-technique approach to study fiber properties upon treatment by combining macro to molecular level methods has helped in understanding of new functional coating materials. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Percutaneous ligation of the left atrial appendage results in atrial electrical substrate modification.

    PubMed

    Syed, Faisal F; Rangu, Venu; Bruce, Charles J; Johnson, Susan B; Danielsen, Andrew; Gilles, Emily J; Ladewig, Dorothy J; Mikell, Susan B; Berhow, Steven; Wahnschaffe, Douglas; Suddendorf, Scott H; Asirvatham, Samuel J; Friedman, Paul A

    2015-03-01

    Debulking of electrically active atrial tissue may reduce the mass of fibrillating tissue during atrial fibrillation, eliminate triggers, and promote maintenance of normal sinus rhythm (NSR). We investigated whether left atrial appendage (LAA) ligation results in modification of atrial electrical substrate. Healthy male mongrel dogs (N = 20) underwent percutaneous epicardial LAA ligation. The ligation system grabber recorded LAA local electrograms (EGM) continuously before, during, and after closure. Successful ligation with a preloaded looped suture was confirmed intraprocedurally by LAA Doppler flow cessation on transesophageal echocardiography (TEE) and loss of LAA electrical activity, and after procedure by direct necropsic visualization. P-wave duration on surface electrocardiograms was measured immediately before and after LAA closure. Percent P-wave duration reduction was correlated with preclosure LAA internal dimensions measured by TEE and external dimensions measured on necropsy specimens to investigate associations of LAA geometry with the extent of electrical substrate modification. LAA ligation was successful in all dogs and accompanied by loss of LAA EGM. P-wave duration reduced immediately on ligation (mean 75 ms preligation to 63 ms postligation; mean difference ± standard error, 12 ± 1 ms; P < 0.0001). Percent P-wave reduction was associated with larger LAA longitudinal cross-sectional area (R(2) = 0.263, P = 0.04) and smaller external circumference (R(2) = 0.687, P = 0.04). All dogs were in sinus rhythm. Percutaneous LAA ligation results in its acute electrical isolation and atrial electrical substrate modification, the degree of which is associated with LAA geometry. These electrical changes raise the possibility that LAA ligation may promote NSR by removing LAA substrate and triggers. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Electrical circuit model of ITO/AZO/Ge photodetector.

    PubMed

    Patel, Malkeshkumar; Kim, Joondong

    2017-10-01

    In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO) transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007) (Yun et al., 2016) [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015) [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R-C circuit model using the impedance spectroscopy.

  1. General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.

    2006-09-01

    The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.

  2. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells.

    PubMed

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-03-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young's modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain-subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.

  3. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

    PubMed Central

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-01-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service. PMID:28772609

  4. Study of low resistivity and high work function ITO films prepared by oxygen flow rates and N2O plasma treatment for amorphous/crystalline silicon heterojunction solar cells.

    PubMed

    Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin

    2014-12-01

    Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

  5. Studying the influence of substrate conductivity on the optoelectronic properties of quantum dots langmuir monolayer

    NASA Astrophysics Data System (ADS)

    Al-Alwani, Ammar J.; Chumakov, A. S.; Begletsova, N. N.; Shinkarenko, O. A.; Markin, A. V.; Gorbachev, I. A.; Bratashov, D. N.; Gavrikov, M. V.; Venig, S. B.; Glukhovskoy, E. G.

    2018-04-01

    The formation of CdSe quantum dots (QDs) monolayers was studied by Langmuir Blodgett method. The fluorescence (PL) spectra of QD monolayers were investigated at different substrate type (glass, silicon and ITO glass) and the influence of graphene sheets layer (as a conductive surface) on the QDs properties has also been studied. The optoelectronic properties of QDs can be tuned by deposition of insulating nano-size layers of the liquid crystal between QDs and conductive substrate. The monolayer of QDs transferred on conductive surface (glass with ITO) has lowest intensity of PL spectra due to quenching effect. The PL intensity of QDs could be tuned by using various type of substrates or/and by transformed high conductive layer. Also the photooxidation processes of CdSe QDs monolayer on the solid surface can be controlled by selection of suitable substrate. The current-voltage (I–V) characteristics of QDs thin film on ITO surface was studied using scanning tunneling microscope (STM).

  6. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.

    PubMed

    Yang, Jie; Bao, Chunxiong; Yu, Tao; Hu, Yingfei; Luo, Wenjun; Zhu, Weidong; Fu, Gao; Li, Zhaosheng; Gao, Hao; Li, Faming; Zou, Zhigang

    2015-12-09

    Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method. The J-V curves and IPCE of ITO@α-Fe2O3 core-shell nanowire array electrode showed nearly twice as high performance as those of the α-Fe2O3 on planar Pt-coated silicon wafers (Pt/Si) and on planar ITO substrates, which was considered to be attributed to more efficient hole collection and more loading of α-Fe2O3 nanocrystals in the core-shell structure than planar structure. Electrochemical impedance spectra (EIS) characterization demonstrated a low interface resistance between α-Fe2O3 and ITO nanowire arrays, which benefits from the well contact between the core and shell. The stability test indicated that the prepared ITO@α-Fe2O3 core-shell nanowire array electrode was stable under AM1.5 illumination during the test period of 40,000 s.

  7. ITO-based evolutionary algorithm to solve traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Dong, Wenyong; Sheng, Kang; Yang, Chuanhua; Yi, Yunfei

    2014-03-01

    In this paper, a ITO algorithm inspired by ITO stochastic process is proposed for Traveling Salesmen Problems (TSP), so far, many meta-heuristic methods have been successfully applied to TSP, however, as a member of them, ITO needs further demonstration for TSP. So starting from designing the key operators, which include the move operator, wave operator, etc, the method based on ITO for TSP is presented, and moreover, the ITO algorithm performance under different parameter sets and the maintenance of population diversity information are also studied.

  8. Effect of annealing on structural, optical, and electrical properties of nickel (Ni)/indium tin oxide (ITO) nanostructures prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sobri, M.; Shuhaimi, A.; Hakim, K. M.; Ganesh, V.; Mamat, M. H.; Mazwan, M.; Najwa, S.; Ameera, N.; Yusnizam, Y.; Rusop, M.

    2014-06-01

    Nickel (Ni)/indium tin oxide (ITO) nanostructures were deposited on glass and silicon (1 1 1) substrates by RF magnetron sputtering using nickel and ITO (In-Sn, 90-10%) targets. The post-deposition annealing has been performed for Ni/ITO films in air. The effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. We found the appearance of (6 2 2) peak in addition to (4 0 0) and (2 2 2) major peaks, which indicates an enhancement of the film crystallinity at high temperature annealing of 650 °C. The samples show higher transmittance of more than 90% at 470 nm after annealing which is suitable for blue light emitting diode (LED) application. The optical energy bandgap is shifted from 3.51 to 3.65 eV for the Ni/ITO film after annealing at 650 °C. In addition, increasing the annealing temperature improves the film electrical properties. The resistivity value decreases from 3.77 × 10-5 Ω cm to 1.09 × 10-6 Ω cm upon increasing annealing temperature.

  9. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    PubMed

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.

  10. ITO-MgF2 Film Development for PowerSphere Polymer Surface Protection

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.; Kerslake, Thomas W.; Waters, Deborah L.

    2004-01-01

    Multi-kilogram class microsatellites with a PowerSphere electric power system are attractive for fulfilling a variety of potential NASA missions. However, PowerSphere polymer surfaces must be coated with a film that has suitable electrical sheet resistivity for electrostatic discharge control, be resistant to atomic oxygen attack, be transparent to ultraviolet light for composite structure curing and resist ultraviolet light induced darkening for efficient photovoltaic cell operation. In addition, the film must be tolerant of polymer layer folding associated with launch stowage of PowerSphere inflatable structures. An excellent film material candidate to meet these requirements is co-sputtered, indium oxide (In2O3) - tin oxide (SnO2), known as 'ITO', and magnesium fluoride (MgF2). While basic ITO-MgF2 film properties have been the subject of research over the last decade, further research is required in the areas of film durability for space-inflatable applications and precise film property control for large scale commercial production. In this paper, the authors present film durability results for a folded polymer substrate and film resistance to vacuum UV darkening. The authors discuss methods and results in the area of film sheet resistivity measurement and active control, particularly dual-channel, plasma emission line measurement of ITO and MgF2 plasma sources. ITO-MgF2 film polymer coupon preparation is described as well as film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed microscopically and electrically. Results show that an approx. 500A ITO-18vol% MgF2 film is a promising candidate to protect PowerSphere polymer surfaces for Earth orbit missions. Preliminary data also indicate that in situ film measurement methods are promising for active film resistivity control in future large scale production. Future film research plans are also

  11. ITOS D AND E system design report, volume 1

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The configuration and functions of the ITOS D and E system are described. The system will expand the operational capability of the basic TIROS M/ITOS system. The ITOS D and E mission will utilize the capabilities of the two-stage DSV 3N-6 Delta launch vehicle to place the ITOS D and E spacecraft into a circular, near-polar, sun synchronous orbit at 790 nautical miles altitude. The ITOS D and E will provide the following primary data: (1) visible daytime observations of cloud cover, (2) daytime and nighttime observations of cloud cover as detected from radiance in infrared spectrum, and (3) vertical temperature profile of the atmosphere on a global basis for data processing. In addition, the ITOS D and E system will provide secondary data comprising solar proton density measurements obtained throughout the orbit.

  12. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    PubMed

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  13. Method for Localizing and Differentiating Bacteria within Biofilms Grown on Indium Tin Oxide: Spatial Distribution of Exoelectrogenic Bacteria within Intact ITO Biofilms via FISH

    DTIC Science & Technology

    2017-11-01

    404938, “Microbe-surface Interactions in Biofouling and Corrosion” ERDC/CERL TR-17-42 ii Abstract With a limited supply of fossil fuel, there has been...TR-17-42 iv Figures and Tables Figures Figure 1. DFR system used to rapidly form biofilms on ITO-coated glass substrates; (a) bioreactor with ITO...There is a finite amount of fossil fuel remaining in the world, and at cur- rently predicted rates of consumption, it is estimated that strategic re

  14. Thermally ruggedized ITO transparent electrode films for high power optoelectronics.

    PubMed

    Yoo, Jae-Hyuck; Matthews, Manyalibo; Ramsey, Phil; Barrios, Antonio Correa; Carter, Austin; Lange, Andrew; Bude, Jeff; Elhadj, Selim

    2017-10-16

    We present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. When bulk heating is not the dominant damage process, discrete defect-induced damage limits damage behavior.

  15. Synthesis of ITO Powder by Dry Process and Lifetime Characteristics of the ITO Target Fabricated with its Powder

    NASA Astrophysics Data System (ADS)

    Takahashi, Seiichiro; Itoh, Hironori; Komatsu, Ryuichi

    Lifetime of an indium tin oxide (ITO) target is an important characteristic in the production of liquid crystal displays (LCDs). Increasing the sintering density of the ITO target is assumed to lead to an increased lifetime. So far, it has been clarified that the carbon concentration in In2O3 powder, the raw material of ITO targets, influences remarkably the target lifetime. In this study, with the aim of reducing the concentration of carbon in In2O3 powder, the synthesis of In2O3 powder containing dissolved Sn by a dry process was performed.

  16. High transmittance hetero junctions based on n-ITO/p-CuO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Jaya, T. P.; Pradyumnan, P. P.

    2016-12-01

    Oxide based bilayered n-ITO/p-CuO crystalline diodes were fabricated by plasma vapor deposition using radio frequency magnetron sputtering. The p-n hetero junction diodes were highly transparent in the visible region and exhibits rectifying I-V characteristics. The substrate temperature during fabrication of p-layer CuO was found to have a profound influence on I-V characteristics. The films deposited at substrate temperature of 150 °C and 230 °C exhibited diode ideality factors of (η value) 1.731 and 1.862 respectively. This high ideality factor, combined with an optical transparency of above 70% suggests the potential use of these bi-layers in optoelectronic applications.

  17. Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films

    NASA Astrophysics Data System (ADS)

    Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori

    2007-05-01

    Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.

  18. Dual-scale rough multifunctional superhydrophobic ITO coatings prepared by air annealing of sputtered indium-tin alloy thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Nitant; Sasikala, S.; Mahadik, D. B.; Rao, A. V.; Barshilia, Harish C.

    2012-10-01

    A novel method to fabricate multifunctional indium tin oxide (ITO) coatings is discussed. Superhydrophobic ITO coatings are fabricated by radio frequency balanced magnetron sputter deposition of indium-tin alloy on glass substrates followed by complete oxidation of the samples in air. The chemical nature and structure of the coatings are verified by X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Field emission scanning electron microscopic studies of the coatings display rod-like and blob-like microstructures, together with fractal-like nanostructures infused on top. Microscale roughness of the ITO coatings is measured by three-dimensional profilometry and is found to be in the range of 0.1-3 μm. Thus the presence of micro- and nano- sized structures result in dual-scale roughness. The variation in the contact angle with the deposition time is studied using a contact angle goniometer. High water contact angles (>160°) and low contact angle hysteresis (5°) are obtained at an optimum microscale roughness. The ITO coatings also exhibit other functional properties, such as low sheet resistance and semi-transparent behaviour in the visible region. The loss in the transparency of the ITO coatings is attributed to the presence of higher scale of roughness. The photoluminescence measurements show large photoemission in the visible region. It is expected that further improvements in the multifunctional properties of transparent conducting oxides will open new frontiers in designing novel materials with exotic properties.

  19. Improved optoelectronics properties of ITO-based transparent conductive electrodes with the insertion of Ag/Ni under-layer

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah

    2014-10-01

    ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.

  20. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  1. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  2. Role of substrate in the surface diffusion and kinetic roughening of nanocrystallised nickel electrodeposits

    NASA Astrophysics Data System (ADS)

    Nzoghe-Mendome, L.; Aloufy, A.; Ebothé, J.; El Messiry, M.; Hui, D.

    2009-02-01

    The surface growth and roughening of nano-crystallised Ni electrodeposits prepared at the same conditions have been studied on Cu, Au and ITO substrates. The Ni films obtained are characterised by the same face-centred cubic structure with a texture affected by the substrate chemical nature. Practically, the same small-sized grains of 83 nm mean height depicting a statistical mono-mode feature grow on Cu. A three-modal feature corresponding to the biggest and compact crystallites of 335, 368 and 400 nm mean height is obtained with Au. Two typical modes, respectively, linked to isolated big crystallites of 343 nm mean height and large zones of small grains of 170 nm height, result from the ITO effect. The surface transport properties of Ni ad-atoms on each substrate have been studied from the theoretical approach including the film global roughness measured by AFM. It is shown that the ad-atom diffusion coefficients ( D s) ranged in the interval 10 -10-10 -9 cm 2 s -1 are greatly affected by the non-equilibrium conditions of the film formation. Cu and ITO, respectively, lead to Λ s=11.92 and 14.30 nm, while the higher D s value and diffusion length Λ s=37.32 nm are obtained with Au substrate.

  3. Thermally ruggedized ITO transparent electrode films for high power optoelectronics

    DOE PAGES

    Yoo, Jae-Hyuck; Matthews, Manyalibo; Ramsey, Phil; ...

    2017-10-06

    Here, we present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. Finally, when bulk heating is not the dominant damage process, discrete defect-induced damage limitsmore » damage behavior.« less

  4. Substrate-specific modifications on magnetic iron oxide nanoparticles as an artificial peroxidase for improving sensitivity in glucose detection.

    PubMed

    Liu, Yanping; Yu, Faquan

    2011-04-08

    Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.

  5. High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: the effect of the thermal properties of substrates on the performance of silver films.

    PubMed

    Jiu, Jinting; Sugahara, Tohru; Nogi, Masaya; Araki, Teppei; Suganuma, Katsuaki; Uchida, Hiroshi; Shinozaki, Kenji

    2013-12-07

    Silver nanowire (AgNW) films with a random mesh structure have attracted considerable attention as high-performance flexible transparent electrodes that can replace the expensive and brittle ITO-sputtered films widely used in displays, touch screens, and solar cells. Methods such as heating, pressure treatment, and light treatment are usually used to obtain an optically transparent and electrically conductive film comparable to those of commercial ITO. However, the adhesion between the AgNW film and the substrate is so weak that other overcoatings or extra treatments are necessary. Here, a high-intensity pulsed light (HIPL) sintering technique was developed to rapidly and simply sinter the AgNW film and thus achieve strong adhesion and even high conductivity on these flexible polymer substrates which will be widely applied to the printing of electronic devices. The conductivity of the AgNW film closely depended on the thermal performance of substrates, and the adhesion was determined by the soft state of the substrate surface originating from the glass transition or melting of substrates with light intensity. The rapid sintering technique can be popularized to fabricate new devices on these polymer substrates by considering the thermal properties of the substrate to improve the performance of devices.

  6. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  7. Band offsets in ITO/Ga2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  8. Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance

    PubMed Central

    Seal, Rebecca P.; Shigeri, Yasushi; Eliasof, Scott; Leighton, Barbara H.; Amara, Susan G.

    2001-01-01

    Excitatory amino acid transporters (EAATs) buffer and remove synaptically released l-glutamate and maintain its concentrations below neurotoxic levels. EAATs also mediate a thermodynamically uncoupled substrate-gated anion conductance that may modulate cell excitability. Here, we demonstrate that modification of a cysteine substituted within a C-terminal domain of EAAT1 abolishes transport in both the forward and reverse directions without affecting activation of the anion conductance. EC50s for l-glutamate and sodium are significantly lower after modification, consistent with kinetic models of the transport cycle that link anion channel gating to an early step in substrate translocation. Also, decreasing the pH from 7.5 to 6.5 decreases the EC50 for l-glutamate to activate the anion conductance, without affecting the EC50 for the entire transport cycle. These findings demonstrate for the first time a structural separation of transport and the uncoupled anion flux. Moreover, they shed light on some controversial aspects of the EAAT transport cycle, including the kinetics of proton binding and anion conductance activation. PMID:11752470

  9. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush.

    PubMed

    Chen, Mingsheng; Zhang, Ying; Sky Driver, M; Caruso, Anthony N; Yu, Qingsong; Wang, Yong

    2013-08-01

    The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (∼2mm thick, ∼10mm diameter). The prepared surfaces were treated for 5-45s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38°C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5s plasma treatment of all these substrates. After 30s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  11. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress (σi) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive σi that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of σi is not beneficial to cracking because there is less compensation for the external tension as σi further decreases. Based on these results, the microstructural control is revealed as a more influential factor than σi for improving crack resistance.

  12. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    NASA Astrophysics Data System (ADS)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  13. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnisch, Jennifer Anne

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performancemore » both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.« less

  14. Fabrication of PANI/Ag/AgCl/ITO-PET Flexible Film and Its Crystallinity and Electrical Properties

    NASA Astrophysics Data System (ADS)

    Diantoro, M.; Rohmiani, F.; Mustikasari, A. A.; Sunaryono

    2018-05-01

    Abstrak. PANI as one of the conductive polymers which have been widely using in electronics or storage devices such as a supercapacitor. PANI has recently become an option because of its potential for a broad area of application. Protonation or introduce a dopant can control the electrical properties of PANI. However, researcher facing a disadvantage since PANI also active in acidic conditions. To control the conductivity and the stability in an acidic environment, the researcher has introduced Ag/AgCl to PANI. We report the synthesis and analyses of silver nanoparticles (AgNPs), PANI, and PANI/Ag/AgCl/ITO-PET films. PANI was synthesized by chemical polymerization, while AgNPs were synthesized via a reductive chemical method using NaBH4 as an AgNO3 reductor. The resulting PANI was characterized using FTIR to determine the functional group, while to obtain the purity of the Ag phase was checked by using XRD. The preparation of PANi/Ag/AgCl solution was carried out by mixing method with the variation of the mass of AgNO3. The precipitate was carried out by using ITOPET substrate. PANI/Ag/AgCl/ITO-PET films were characterized by using FTIR, XRD, SEMEDX, and capacitance meters. It has was found that crystallinity increases with the addition of Ag films to PANI/Ag/AgCl/ITO-PET. The crystallinity reached 29.85 %. It was also revealed that the dielectric constant decreased with increasing Ag in PANi/Ag/AgCl/ITO-PET films.

  15. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  16. Surface Modification of Poly(ethylene naphthalate) Substrate and Its Effect on SiNx Film Deposition by Atomic Hydrogen Annealing

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2007-07-01

    The surface modification of a plastic substrate by atomic hydrogen annealing (AHA) was investigated for flexible displays. In this method, the plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. Both surface roughness and contact angle of water droplet on poly(ethylene naphthalate) (PEN) substrates were increased by AHA. The surface of a PEN substrate was reduced by atomic hydrogen without optical transmittance degradation. In addition, the properties of a silicon nitride (SiNx) film deposited on a PEN substrate were changed by AHA, and the adhesion between the SiNx film and the PEN substrate was excellent for application to flexible displays.

  17. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates

    PubMed Central

    Hasan, Md Rezaul; Xie, Ting; Barron, Sara C.; Liu, Guannan; Nguyen, Nhan V.; Motayed, Abhishek; Rao, Mulpuri V.; Debnath, Ratan

    2016-01-01

    A self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either front or back side. Morphology, structural, chemical and optical properties of sputtered NiO and ZnO films were also investigated. PMID:26900532

  18. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    PubMed

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  19. Highly effective carbon sphere counter electrodes based on different substrates for dye-sensitized solar cell.

    PubMed

    Han, Qianji; Wang, Hongrui; Liu, Yali; Yan, Yajing; Wu, Mingxing

    2017-11-15

    A monodisperse carbon sphere with high uniformity, high catalytic activity and conductivity are successfully synthesized. Versatile counter electrodes using this carbon sphere catalyst on different substrates of fluorine-doped tin oxide (FTO) glass, indium-doped tin oxide polyethylenena phthalate (ITO-PEN), and Ti foil are fabricated for dye-sensitized solar cell (DSC). The impacts of substrates on the catalytic activities of the carbon sphere counter electrodes have been also evaluated by electrochemical analysis technologies, such as cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. With cobalt electrolyte, the DSC using carbon sphere counter electrodes based on FTO glass, ITO-PEN, and Ti substrates yield high power conversion efficiency values of 8.57%, 6.66%, and 9.10%, respectively. The catalytic activities of the prepared carbon sphere counter electrodes on different substrates are determined by the apparent activation energy for the cobalt redox couple regeneration on these electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A solution-doped small molecule hole transport layer for efficient ITO-free organic solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bormann, Ludwig; Selzer, Franz; Leo, Karl; Mueller-Meskamp, Lars

    2015-10-01

    Indium-tin-oxide-free (ITO-free) organic solar cells are an important, emerging research field because ITO transparent electrodes are a bottleneck for cheap large area devices on flexible substrates. Among highly conductive PEDOT:PSS and metal grids, percolation networks made of silver nanowires (AgNW) with a diameter in the nanoscale show a huge potential due to easy processing (e.g. spray coating), high aspect ratios and excellent electrical and optical properties like 15 Ohm/sq with a transmission of 83.5 % including the substrate. However, the inherent surface roughness of the AgNW film impedes the implementation as bottom electrode in organic devices, especially fully vacuum deposited ones, where often shunts are obtained. Here, we report about the solution processing of a small molecule hole transport layer (s-HTL) comprising N,N'-((Diphenyl-N,N'-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine (BF-DPB, host material) and the proprietary NDP9 (p-dopant) deposited from tetrahydrofuran (THF) as non-halogenated, "green" solvent. We show, that the doping process already takes place in solution and that conductivities, achieved with this process at high doping efficiencies (4 * 10^-4 S/cm at 10 wt% doping concentration), are comparable to thermal co-evaporation of BF-DPB:NDP9 under high vacuum, which is the proven deposition method for doped small molecule films. Applying this s-HTL to AgNW films leads to well smoothened electrodes, ready for application in organic devices. Vacuum-deposited organic p-i-n solar cells with DCV2-5T-Me(3:3):C60 as active layer show a power conversion efficiency of 4.4% and 3.7% on AgNW electrode with 35nm and 90 nm wire diameter, compared to 4.1% on ITO with the s-HTL.

  1. Chromosome mosaicism in hypomelanosis of Ito.

    PubMed

    Ritter, C L; Steele, M W; Wenger, S L; Cohen, B A

    1990-01-01

    Our finding of chromosome mosaicism with a ring 22 in a retarded black boy with hypomelanosis of Ito prompted a review of this "syndrome." Most patients have a variety of non-dermal defects, particularly those affecting CNS function. Among karyotyped patients, most are chromosome mosaics of one sort or another. Hypomelanosis of Ito turns out to be a causable non-specific phenotype, i.e., a clinical marker for chromosome mosaicism of all different types in individuals with a dark enough skin to show lighter patches. Consequently, cytogenetic evaluation is indicated in all patients with this skin finding.

  2. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    NASA Astrophysics Data System (ADS)

    Wang, Li; Luo, Yu; Feng, Xueming; Pei, Yuechen; Lu, Bingheng; Cheng, Shenggui

    2018-05-01

    In flexible OLEDs (FOLEDs), the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag) anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC) substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP) modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  3. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications.

    PubMed

    Lu, Cheng-Tsung; Huang, Kai-Yao; Su, Min-Gang; Lee, Tzong-Yi; Bretaña, Neil Arvin; Chang, Wen-Chi; Chen, Yi-Ju; Chen, Yu-Ju; Huang, Hsien-Da

    2013-01-01

    Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.nctu.edu.tw/) is updated to integrate experimental PTMs obtained from public resources as well as manually curated MS/MS peptides associated with PTMs from research articles. Version 3.0 of dbPTM aims to be an informative resource for investigating the substrate specificity of PTM sites and functional association of PTMs between substrates and their interacting proteins. In order to investigate the substrate specificity for modification sites, a newly developed statistical method has been applied to identify the significant substrate motifs for each type of PTMs containing sufficient experimental data. According to the data statistics in dbPTM, >60% of PTM sites are located in the functional domains of proteins. It is known that most PTMs can create binding sites for specific protein-interaction domains that work together for cellular function. Thus, this update integrates protein-protein interaction and domain-domain interaction to determine the functional association of PTM sites located in protein-interacting domains. Additionally, the information of structural topologies on transmembrane (TM) proteins is integrated in dbPTM in order to delineate the structural correlation between the reported PTM sites and TM topologies. To facilitate the investigation of PTMs on TM proteins, the PTM substrate sites and the structural topology are graphically represented. Also, literature information related to PTMs, orthologous conservations and substrate motifs of PTMs are also provided in the resource. Finally, this version features an improved web interface to facilitate convenient access to the resource.

  4. Effective Passivation and Tunneling Hybrid a-SiOx(In) Layer in ITO/n-Si Heterojunction Photovoltaic Device.

    PubMed

    Gao, Ming; Wan, Yazhou; Li, Yong; Han, Baichao; Song, Wenlei; Xu, Fei; Zhao, Lei; Ma, Zhongquan

    2017-05-24

    In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO x (In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO x /In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiO x (In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiO x (In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at E v + 4.60 eV in the ternary hybrid a-SiO x (In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (V bi = 0.66 V) and optimally controlled ternary hybrid a-SiO x (In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm 2 , a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device

  5. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.

    PubMed

    Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu

    2014-06-25

    A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.

  6. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode

    NASA Astrophysics Data System (ADS)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2018-03-01

    The combination of graphene with conductive nanoparticles, forming graphene-nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO3) 3 · H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25-35 nm size ITO nanoparticles, containing only the crystallized In2O3 phase. The synthesized ITO nanoparticles-graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1, respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene. [Figure not available: see fulltext.

  7. Effect of Substrates on the Photoelectrochemical Reduction of Water over Cathodically Electrodeposited p-Type Cu2O Thin Films.

    PubMed

    Shyamal, Sanjib; Hajra, Paramita; Mandal, Harahari; Singh, Jitendra Kumar; Satpati, Ashis Kumar; Pande, Surojit; Bhattacharya, Chinmoy

    2015-08-26

    In this study, we demonstrate development of p-Cu2O thin films through cathodic electrodeposition technique at constant current of 0.1 mA/cm(2) on Cu, Al, and indium tin oxide (ITO) substrates from basic CuSO4 solution containing Triton X-100 as the surfactant at 30-35 °C. The optical and morphological characterizations of the semiconductors have been carried out using UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The band gap energy of ∼2.1 eV is recorded, whereas SEM reveals that the surface morphology is covered with Cu2O semiconductors. XRD analyses confirm that with change in substrate, the size of Cu2O "cubic" crystallites decreases from ITO to Al to Cu substrates. Photoelectrochemical characterizations under dark and illuminated conditions have been carried out through linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopic analysis. The photoelectrochemical reduction of water (H2O → H2) in pH 4.9 aqueous solutions over the different substrates vary in the order of Cu > Al > ITO. The highest current of 4.6 mA/cm(2) has been recorded over the Cu substrate even at a low illumination of 35 mW/cm(2), which is significantly higher than the values (2.4 mA/cm(2) on Au coated FTO or 4.07 mA/cm(2) on Cu foil substrate at an illumination of 100 mW/cm(2)) reported in literature.

  8. Metal substrates with nanometer scale surface roughness for flexible electronics

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra < 1 nm) using a surface roughness transfer method without any polishing or planarization process. Ag film (8 inch, Ra = 0.57 nm) and an INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  9. Optimizing ITO for incorporation into multilayer thin film stacks for visible and NIR applications

    NASA Astrophysics Data System (ADS)

    Roschuk, Tyler; Taddeo, David; Levita, Zachary; Morrish, Alan; Brown, Douglas

    2017-05-01

    Indium Tin Oxide, ITO, is the industry standard for transparent conductive coatings. As such, the common metrics for characterizing ITO performance are its transmission and conductivity/resistivity (or sheet resistance). In spite of its recurrent use in a broad range of technological applications, the performance of ITO itself is highly variable, depending on the method of deposition and chamber conditions, and a single well defined set of properties does not exist. This poses particular challenges for the incorporation of ITO in complex optical multilayer stacks while trying to maintain electronic performance. Complicating matters further, ITO suffers increased absorption losses in the NIR - making the ability to incorporate ITO into anti-reflective stacks crucial to optimizing overall optical performance when ITO is used in real world applications. In this work, we discuss the use of ITO in multilayer thin film stacks for applications from the visible to the NIR. In the NIR, we discuss methods to analyze and fine tune the film properties to account for, and minimize, losses due to absorption and to optimize the overall transmission of the multilayer stacks. The ability to obtain high transmission while maintaining good electrical properties, specifically low resistivity, is demonstrated. Trade-offs between transmission and conductivity with variation of process parameters are discussed in light of optimizing the performance of the final optical stack and not just with consideration to the ITO film itself.

  10. Microstructure, ferromagnetic and photoluminescence properties of ITO and Cr doped ITO nanoparticles using solid state reaction

    NASA Astrophysics Data System (ADS)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Rao, G. Venugopal; Krishnamoorthi, C.

    2016-11-01

    Indium-tin-oxide (ITO) (In0.95Sn0.05)2O3 and Cr doped indium-tin-oxide (In0.90Sn0.05Cr0.05)2O3 nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and -2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.

  11. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    DOE PAGES

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; ...

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled usingmore » cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.« less

  12. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    PubMed

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described

  13. NonMarkov Ito Processes with 1- state memory

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2010-08-01

    A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.

  14. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    PubMed

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  15. Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation.

    PubMed

    Zimnik, Susan; Gaestel, Matthias; Niedenthal, Rainer

    2009-03-01

    Post-translational modifications control the physiological activity of the signal transducer and activator of transcription STAT1. While phosphorylation at tyrosine Y701 is a prerequisite for STAT1 dimerization, its SUMOylation represses the transcriptional activity. Recently, we have demonstrated that SUMOylation at lysine K703 inhibits the phosphorylation of nearby localized Y701 of STAT1. Here, we analysed the influence of phosphorylation of Y701 on SUMOylation of K703 in vivo. For that reason, an Ubc9/substrate dimerization-dependent SUMOylation (USDDS) system was developed, which consists of fusions of the SUMOylation substrate and of the SUMO-conjugating enzyme Ubc9 to the chemically activatable heterodimerization domains FKBP and FRB, respectively. When FKBP fusion proteins of STAT1, p53, CRSP9, FOS, CSNK2B, HES1, TCF21 and MYF6 are coexpressed with Ubc9-FRB, treatment of HEK293 cells with the rapamycin-related dimerizer compound AP21967 induces SUMOylation of these proteins in vivo. For STAT1-FKBP and p53-FKBP we show that this SUMOylation takes place at their specific SUMOylation sites in vivo. Using USDDS, we then demonstrate that STAT1 phosphorylation at Y701 induced by interferon-beta treatment inhibits SUMOylation of K703 in vivo. Thus, pY701 and SUMO-K703 of STAT1 represent mutually exclusive modifications, which prevent signal integration at this molecule and probably ensure the existence of differentially modified subpopulations of STAT1 necessary for its regulated nuclear cytoplasmic activation/inactivation cycle.

  16. Electrochemical Synthesis of Bismuth Particles: Tuning Particle Shape through Substrate Type within a Narrow Potential Window

    PubMed Central

    Bilican, Doga; Fornell, Jordina; Sort, Jordi; Pellicer, Eva

    2017-01-01

    Bismuth (Bi) electrodeposition was studied on Si/Ti/Au, FTO-, and ITO-coated glasses from acidic nitrate solutions with and without gluconate within a narrow potential window (ΔE = 80 mV). This potential range was sufficient to observe a change in particle shape, from polyhedrons (including hexagons) to dendrites, the trend being slightly different depending on substrate activity. In all cases, though, the formation of dendrites was favoured as the applied potential was made more negative. Bi particles were more uniformly distributed over the substrate when sodium gluconate was added to the electrolyte. X-ray diffraction analyses of dendrites grown at −0.28 V indicated that they exhibit the rhombohedral phase of Bi and are predominantly oriented along the (003) plane. This orientation is exacerbated at the lowest applied potential (−0.20 V vs. Ag|AgCl) on glass/ITO substrate, for which completed and truncated hexagons are observed from the top view scanning electron microscopy images. PMID:28772402

  17. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Jayaraman

    studies involved making functionalized, thickness-controlled, wettability-controlled multilayers on hydrophobic substrates and the adsorption of carboxylic acid-terminated poly(styrene-b-isoprene) on alumina/silica substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces irreversibly due to hydrophobic interactions. This thin semicrystalline coating is chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker and hydrophobic coatings. The products of the modification reactions allow adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure and wettability control on any hydrophobic surface. Research on adsorption characteristics of carboxylic acid-terminated poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional group present at specific ends. Comparative adsorption studies for carboxylic acid-terminated and hydrogen-terminated block copolymers was carried out on alumina and silica substrates.

  18. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta

    2011-09-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  19. Vacuum-based surface modification of organic and metallic substrates

    NASA Astrophysics Data System (ADS)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous

  20. One-step synthesis of carbon nanosheets converted from a polycyclic compound and their direct use as transparent electrodes of ITO-free organic solar cells.

    PubMed

    Son, Su-Young; Noh, Yong-Jin; Bok, Changsuk; Lee, Sungho; Kim, Byoung Gak; Na, Seok-In; Joh, Han-Ik

    2014-01-21

    Through a catalyst- and transfer-free process, we fabricated indium tin oxide (ITO)-free organic solar cells (OSCs) using a carbon nanosheet (CNS) with properties similar to graphene. The morphological and electrical properties of the CNS derived from a polymer of intrinsic microporosity-1 (PIM-1), which is mainly composed of several aromatic hydrocarbons and cycloalkanes, can be easily controlled by adjusting the polymer concentration. The CNSs, which are prepared by simple spin-coating and heat-treatment on a quartz substrate, are directly used as the electrodes of ITO-free OSCs, showing a high efficiency of approximately 1.922% under 100 mW cm(-2) illumination and air mass 1.5 G conditions. This catalyst- and transfer-free approach is highly desirable for electrodes in organic electronics.

  1. Nanoscale patterning of a self-assembled monolayer by modification of the molecule-substrate bond.

    PubMed

    Shen, Cai; Buck, Manfred

    2014-01-01

    The intercalation of Cu at the interface of a self-assembled monolayer (SAM) and a Au(111)/mica substrate by underpotential deposition (UPD) is studied as a means of high resolution patterning. A SAM of 2-(4'-methylbiphenyl-4-yl)ethanethiol (BP2) prepared in a structural phase that renders the Au substrate completely passive against Cu-UPD, is patterned by modification with the tip of a scanning tunneling microscope. The tip-induced defects act as nucleation sites for Cu-UPD. The lateral diffusion of the metal at the SAM-substrate interface and, thus, the pattern dimensions are controlled by the deposition time. Patterning down to the sub-20 nm range is demonstrated. The difference in strength between the S-Au and S-Cu bond is harnessed to develop the latent Cu-UPD image into a patterned binary SAM. Demonstrated by the exchange of BP2 by adamantanethiol (AdSH) this is accomplished by a sequence of reductive desorption of BP2 in Cu free areas followed by adsorption of AdSH. The appearance of Au adatom islands upon the thiol exchange suggests that the interfacial structures of BP2 and AdSH SAMs are different.

  2. Development of waterborne oil spill sensor based on printed ITO nanocrystals.

    PubMed

    Koo, Jieun; Jung, Jung-Yeul; Lee, Sangtae; Lee, Moonjin; Chang, Jiho

    2015-09-15

    Oil spill accidents occasionally occur in coastal and ocean environments, and cause critical environmental damage, spoiling the marine habitats and ecosystems. To mitigate the damages, the species and amount of spilled oil should be monitored. In this study, we developed a waterborne oil spill sensor using a printed ITO layer. ITO is a compatible material for salty environments such as oceans because ITO is strong against corrosion. The fabricated sensor was tested using three oils, gasoline, lubricant and diesel, and different oil thicknesses of 0, 5, 10, and 15mm. The results showed that the resistance of the sensor clearly increased with the oil thickness and its electrical resistance. For sustainable sensing applications in marine environments, XRD patterns confirmed that the crystal structure of the ITO sensor did not change and FE-SEM images showed that the surface was clearly maintained after tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A three-dimensional metal grid mesh as a practical alternative to ITO

    NASA Astrophysics Data System (ADS)

    Jang, Sungwoo; Jung, Woo-Bin; Kim, Choelgyu; Won, Phillip; Lee, Sang-Gil; Cho, Kyeong Min; Jin, Ming Liang; An, Cheng Jin; Jeon, Hwan-Jin; Ko, Seung Hwan; Kim, Taek-Soo; Jung, Hee-Tae

    2016-07-01

    The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics.The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential

  4. The Study of Simulated Space Radiation Environment Effect on Conductive Properties of ITO Thermal Control Materials

    NASA Astrophysics Data System (ADS)

    Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao

    In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.

  5. Transparent ITO electrode in the polymer network liquid crystal variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Zhang, Xindong; Dong, Wei; Liu, Caixia; Chen, Yinghua; Ruan, Shengping; Zhang, Shuang; Guo, Wenbin; Yang, Dong; Han, Lin; Chen, Weiyou

    2004-05-01

    Indium tin oxide (ITO) films as transparent conductors have caused a great deal of interest due to their prominent electro-optical behavior. This paper describes a study of the properties of ITO thin films that are used for a new type variable optical attenuator using polymer network liquid crystal (PNLC). The mechanism of PNLC optical attenuator operation is that the light from the input fiber is scattered when no voltage is applied, and the light passes through the attenuator when sufficient voltage is applied. So the ITO thin films can provide transparent electrodes for PNLC. They were deposited under various preparation conditions using the radio-frequency (rf) magnetron sputtering technique. Here discuss the results of the structural, electrical and optical properties of the ITO films. The paper presents some experimental results obtained in laboratory.

  6. Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds

    NASA Astrophysics Data System (ADS)

    Irimia, Anamaria; Ioanid, Ghiocel Emil; Zaharescu, Traian; Coroabă, Adina; Doroftei, Florica; Safrany, Agnes; Vasile, Cornelia

    2017-01-01

    The efficiency of the activation of the cellulose/chitin mix substrate by cold plasma or γ-radiation exposure in order to modify it with bioactive compounds was studied. The eugenol or vegetable oils such as grape seed oil and rosehip seed oil have been grafted onto activated substrate. The examination of modified cellulose/chitin mix substrate by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy confirms that the structural and morphological changes took place in both cases. The grafting degrees of the surface layer estimated from XPS data varied from 31.1% to 58.7% for air cold plasma activation and from 9.7% to 22.8% for γ-irradiation treatment. They depend both on bioactive compound used and procedure of substrate activation. Higher grafting degree are obtain by using vegetable oils than in the case of modification with eugenol and the air cold plasma activation seems to be much efficient than γ-irradiation. By grafting the polymeric substrate with bioactive compounds, antimicrobial and antioxidant properties have been conferred. Such materials can be considered promising for food packaging applications and medical textiles and also the applied procedures are environmental friendly ones.

  7. Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet

    2015-03-01

    Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.

  8. THz behavior of indium-tin-oxide films on p-Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. R., E-mail: elliott.brown@wright.edu; Zhang, W-D., E-mail: wzzhang@fastmail.fm; Chen, H.

    2015-08-31

    This paper reports broadband THz free-space transmission measurements and modeling of indium-tin-oxide (ITO) thin films on p-doped Si substrates. Two such samples having ITO thickness of 50 and 100 nm, and DC sheet conductance 260 and 56 Ω/sq, respectively, were characterized between 0.2 and 1.2 THz using a frequency-domain spectrometer. The 50-nm-film sample displayed very flat transmittance over the 1-THz bandwidth, suggesting it is close to the critical THz sheet conductance that suppresses multi-pass interference in the substrate. An accurate transmission-line-based equivalent circuit is developed to explain the effect, and then used to show that the net reflectivity and absorptivity necessarilymore » oscillate with frequency. This has important implications for the use of thin-film metallic coupling layers on THz components and devices, such as detectors and sources. Consistent with previous reported results, the sheet conductance that best fits the THz transmittance data is roughly 50% higher than the DC values for both samples.« less

  9. Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO

    NASA Astrophysics Data System (ADS)

    David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing

    2017-08-01

    Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.

  10. Thickness dependent optical properties of PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films deposited by spray pyrolysis technique on ITO substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Anjna, E-mail: anjna56@gmail.com; Thakur, Priya; Yadav, Kamlesh, E-mail: kamlesh.yadav001@gmail.com

    2016-05-06

    In this paper, poly (ethyl methacrylate) (PEMA) and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films for 2, 3, 4 and 5 minutes have been deposited by spray pyrolysis technique on indium tin oxide (ITO) coated substrate. The effect of thickness of the film on the morphological and optical properties of PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are studied. The morphological and optical properties of pure PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are compared. The field emission scanning electron microscopy (FESEM) shows that as the thickness of film increases, uniformity of films increases. It is found from UV-Visible spectra that themore » energy band gap decreases with increasing the deposition time and refractive index increases with increasing the thickness of the film. The band gap of the nanocomposites is found less than the pure polymer film and opposite trend is observed for refractive index. The optical absorption of PEMA/ZnO nanocomposite films is higher than pure PEMA film. The thickness of the nanocomposite film plays a significant role in the tunability of the optical properties.« less

  11. Improved Detection of Botulinum Neurotoxin Serotype A by Endopep-MS through Peptide Substrate Modification

    PubMed Central

    Wang, Dongxia; Baudys, Jakub; Ye, Yiming; Rees, Jon C.; Barr, John R.; Pirkle, James L.; Kalb, Suzanne R.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to man. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype specific antibodies and detecting the unique and serotype specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity five fold with toxin spiked into buffer solution or different biological matrices. PMID:23017875

  12. Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, You-Lin, E-mail: ylwu@ncnu.edu.tw; Liao, Chun-Wei; Ling, Jing-Jenn

    2014-06-16

    The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates.more » It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.« less

  13. Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.

    PubMed

    Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun

    2012-04-01

    Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.

  14. Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Basu, Rajratan; Lee, Andrew

    2017-10-01

    A monolayer graphene coated glass slide and an indium tin oxide (ITO) coated glass slide with a planar-aligning polyimide layer were placed together to make a planar hybrid liquid crystal (LC) cell. The free-ion concentration in the LC was found to be significantly reduced in the graphene-ITO hybrid cell compared to that in a conventional ITO-ITO cell. The free-ion concentration was suppressed in the hybrid cell due to the graphene-electrode's ion trapping process. The dielectric anisotropy of the LC was found to increase in the hybrid cell, indicating an increase in the nematic order parameter of the LC due to the reduction of ionic impurities.

  15. Multifractal analysis of time series generated by discrete Ito equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele

    2015-06-15

    In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.

  16. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    PubMed Central

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  17. Lump solutions with interaction phenomena in the (2+1)-dimensional Ito equation

    NASA Astrophysics Data System (ADS)

    Zou, Li; Yu, Zong-Bing; Tian, Shou-Fu; Feng, Lian-Li; Li, Jin

    2018-03-01

    In this paper, we consider the (2+1)-dimensional Ito equation, which was introduced by Ito. By considering the Hirota’s bilinear method, and using the positive quadratic function, we obtain some lump solutions of the Ito equation. In order to ensure rational localization and analyticity of these lump solutions, some sufficient and necessary conditions are provided on the parameters that appeared in the solutions. Furthermore, the interaction solutions between lump solutions and the stripe solitons are discussed by combining positive quadratic function with exponential function. Finally, the dynamic properties of these solutions are shown via the way of graphical analysis by selecting appropriate values of the parameters.

  18. Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact

    NASA Astrophysics Data System (ADS)

    Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.

    2018-03-01

    Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.

  19. Optical monitoring of thin film electro-polymerization on surface of ITO-coated lossy-mode resonance sensor

    NASA Astrophysics Data System (ADS)

    Sobaszek, Michał; Dominik, Magdalena; Burnat, Dariusz; Bogdanowicz, Robert; Stranak, Viteszlav; Sezemsky, Petr; Śmietana, Mateusz

    2017-04-01

    This work presents an optical fiber sensors based on lossy-mode resonance (LMR) phenomenon supported by indium tin oxide (ITO) thin overlay for investigation of electro-polymerization effect on ITO's surface. The ITO overlays were deposited on core of polymer-clad silica (PCS) fibers using reactive magnetron sputtering (RMS) method. Since ITO is electrically conductive and electrochemically active it can be used as a working electrode in 3-electrode cyclic voltammetry setup. For fixed potential applied to the electrode current flow decrease with time what corresponds to polymer layer formation on the ITO surface. Since LMR phenomenon depends on optical properties in proximity of the ITO surface, polymer layer formation can be monitored optically in real time. The electrodeposition process has been performed with Isatin which is a strong endogenous neurochemical regulator in humans as it is a metabolic derivative of adrenaline. It was found that optical detection of Isatin is possible in the proposed configuration.

  20. Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering

    NASA Astrophysics Data System (ADS)

    Senol, Abdulkadir; Gulen, Mahir; Yildirim, Gurcan; Ozturk, Ozgur; Varilci, Ahmet; Terzioglu, Cabir; Belenli, Ibrahim

    2013-03-01

    In this study, we investigate the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto Soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In2O3:SnO2, 90:10 wt. %) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 ° C. Resistivity, Hall Effect, X-ray diffractometer (XRD), ultra violet-visible spectrometer (UV-vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. Furthermore, mobility, carrier density and conductivity characteristics of the samples prepared are carried out as function of temperature in the range of 80-300 K at the magnetic field of 0.550 T. The results obtained show that all the properties depend strongly on the annealing temperature and in fact the film annealed at 400 ° C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.

  1. Ultrafast dynamics of photogenerated electrons in CdS nanocluster multilayers assembled on solid substrates: effects of assembly and electrode potential.

    PubMed

    Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei

    2013-07-22

    The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.

    2003-01-01

    This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.

  3. Scattering of Electromagnetic Radiation by ITO Nanoparticles with Various Doping Levels

    NASA Astrophysics Data System (ADS)

    Bugaev, A. S.; Astapenko, V. A.; Manuilovich, E. S.; Sakhno, S. V.; Khramov, E. S.; Yakovets, A. V.

    2018-02-01

    The process of scattering of radiation by indium‒tin oxide (ITO) nanoparticles is theoretically studied at various degrees of doping and for different radii of nanoparticles. Qualitative conclusions are made about the character of the dependence of the scattering cross section on the frequency with variation of the particle size and the percentage content of tin. The prospects of using ITO nanoparticles as an active substance in optical sensors are estimated.

  4. Pulser Laser Deposition of Transparent Conducting Thin Films on Flexible Substrates

    DTIC Science & Technology

    2001-01-19

    8217-diphenyl-4,4’diamine (TPD), 50, and an electron 9 transport/emitting layer (ETL/EML) 20, of tris (8-hydroxyquinolinolato) aluminum (III) ( Alq3 ), 10...nm 0 nm 300 nm Fig.6(a) r—1 20 nm 300 10 nm 0 nm 150 300 nm Fig. 6(b) MgAg 30 Alq3 (70iim) TPD (50nm) 20 10 ITO PET substrate 40

  5. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    PubMed

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.

  6. Investigation of growth parameters influence on self-catalyzed ITO nanowires by high RF-power sputtering.

    PubMed

    Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng

    2018-02-15

    ITO nanowires have been successfully fabricated using a radio-frequency sputtering technique with a high RF-power of 250W. The fabrication of the ITO nanowires has been optimized through the study of oxygen flow rates, temperatures and RF-power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target has been first observed and the mechanism for the difference has been discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method has demonstrated good conductivity (15Ω/sq) and a transmittance of more than 64% at a wavelength longer than 550nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices. © 2018 IOP Publishing Ltd.

  7. Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO 2 buffer layer-coated polymer substrates by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yu, Zhi-nong; Zhao, Jian-jian; Xia, Fan; Lin, Ze-jiang; Zhang, Dong-pu; Leng, Jian; Xue, Wei

    2011-03-01

    The electrical stability of flexible indium tin oxide (ITO) films fabricated on stripe SiO 2 buffer layer-coated polyethylene terephthalate (PET) substrates by magnetron sputtering was investigated by the bending test. The ITO thin films with stripe SiO 2 buffer layer under bending have better electrical stability than those with flat SiO 2 buffer layer and without buffer layer. Especially in inward bending text, the ITO thin films with stripe SiO 2 buffer layer only have a slight resistance change when the bending radius r is not less than 8 mm, while the resistances of the films with flat SiO 2 buffer layer and without buffer layer increase significantly at r = 16 mm with decreasing bending radius. This improvement of electrical stability in bending test is due to the small mismatch factor α in ITO-SiO 2, the enhanced interface adhesion and the balance of residual stress. These results indicate that the stripe SiO 2 buffer layer is suited to enhance the electrical stability of flexible ITO film under bending.

  8. Surface modification of ceramic and metallic alloy substrates by laser raster-scanning

    NASA Astrophysics Data System (ADS)

    Ramos Grez, Jorge Andres

    This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400

  9. High quality nitrogen-doped zinc oxide thin films grown on ITO by sol-gel method

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Purohit, L. P.

    2015-11-01

    Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol-gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm-3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.

  10. [Tree pollen dispersion in Ito City, Shizuoka Prefecture].

    PubMed

    Fujii, Mayumi; Okazaki, Kenji; Makiyama, Kiyoshi; Hisamatsu, Kenichi

    2013-11-01

    The authors investigated the atmospheric tree pollen dispersion in Ito City, Shizuoka Prefecture for 12 years for the purpose of the prophylaxis and treatment of pollinosis. We set up a Durham sampler on the rooftop of the three-story building in Ito City, and counted atmospheric pollen grouping first, Taxodiaceae and Cupressaceae; second, Pinaceae and Podocarpaceae; third, Betulaceae and Ulmaceae; last, Fagaceae. The counts of atmospheric tree pollen on season and the weather from January to June were treated statistically and analyzed on the computer program Microsoft Excel. Each average and SD of total pollen count was, in order, 7079±6503 count/cm(2), 502±146 count/cm(2), 891±480 count/cm(2), 906±481 count/cm(2). The last summer weather correlates to the atmospheric pollen count of Taxodiaceae, Cupressaceae, Betulaceace and Ulmaceae. The atmospheric pollen count of Taxodiaceae and Cupressaceae in spring is influenced by the weather; their atmospheric pollen count is reduced by a heavy rain or a heavy snow out of season. The atmospheric pollen count of Pinaceae, Podocarpaceae and Fagaceae does not relate to the weather. As a result of having examined the relations between the count of the atmospheric pollen and the weather in Ito City, I recognized relations in Taxodiaceae, Cupressaceae, Pinaceae and Podocarpaceae, but there were not the relations of intentionality in Betulaceae, Ulmaceae and Fagaceae.

  11. Improved ITOS attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1971-01-01

    The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.

  12. Fabrication and characterization of photovoltaic cell with novel configuration ITO/n-CuIn3Se5/p-CIS/In

    NASA Astrophysics Data System (ADS)

    Geethu, R.; Jacob, R.; Sreenivasan, P. V.; Shripathi, T.; S, Okram G.; Philip, R. R.

    2015-02-01

    A novel configuration ITO/n-OVC CuIn3Se5/p-CIS/In solar cell has been fabricated by multisource vacuum co-evaporation technique on soda lime glass substrates. The pn junction is formed with ordered vacancy compound as the n counter part for the p type CuInSe2. The structural, compositional, hall coefficient, optical and electrical properties of the p and n layers have been studied respectively by X-ray diffraction, Energy Dispersive Analysis of X rays, optical absorbance and conductivity measurements. Current density-Voltage measurements enabled the determination of efficiency of the device.

  13. Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique

    NASA Astrophysics Data System (ADS)

    Ali, H. M.; Mohamed, H. A.; Mohamed, S. H.

    2005-08-01

    Indium tin oxide (ITO) is widely utilized in numerous industrial applications due to its unique combined properties of transparency to visible light and electrical conductivity. ITO films were deposited on glass substrates by an electron beam evaporation technique at room temperature from bulk samples, with different thicknesses. The film with 1500 Å thick was selected to perform annealing in the temperature range of 200 400 °C and annealing for varying times from 15 to 120 min at 400 °C. The X-ray diffraction of the films was analyzed in order to investigate its dependence on thickness, and annealing. Electrical and optical measurements were also carried out. Transmittance, optical energy gap, refractive index, carrier concentration, thermal emissivity and resistivity were investigated. It was found that the as-deposited films with different thicknesses were highly absorbing and have relatively poor electrical properties. The films become opaque with increasing the film thickness. After thermal annealing, the resistance decreases and a simultaneous variation in the optical transmission occurs. A transmittance value of 85.5% in the IR region and 82% in the visible region of the spectrum and a resistivity of 2.8 × 10-4 Ω Cm were obtained at annealing temperature of 400 °C for 120 min.

  14. A Highly Thermostable In₂O₃/ITO Thin Film Thermocouple Prepared via Screen Printing for High Temperature Measurements.

    PubMed

    Liu, Yantao; Ren, Wei; Shi, Peng; Liu, Dan; Zhang, Yijun; Liu, Ming; Ye, Zuo-Guang; Jing, Weixuan; Tian, Bian; Jiang, Zhuangde

    2018-03-23

    An In₂O₃/ITO thin film thermocouple was prepared via screen printing. Glass additives were added to improve the sintering process and to increase the density of the In₂O₃/ITO films. The surface and cross-sectional images indicate that both the grain size and densification of the ITO and In₂O₃ films increased with the increase in annealing time. The thermoelectric voltage of the In₂O₃/ITO thermocouple was 53.5 mV at 1270 °C at the hot junction. The average Seebeck coefficient of the thermocouple was calculated as 44.5 μV/°C. The drift rate of the In₂O₃/ITO thermocouple was 5.44 °C/h at a measuring time of 10 h at 1270 °C.

  15. Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode

    NASA Astrophysics Data System (ADS)

    Abdul Razak, Khairunisak; Neoh, Soo Huan; Ridhuan, N. S.; Mohamad Nor, Noorhashimah

    2016-09-01

    The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium-titanium-oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GOx) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GOx/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1-18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.

  16. Multifractal analysis of visibility graph-based Ito-related connectivity time series.

    PubMed

    Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano

    2016-02-01

    In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.

  17. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  18. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE PAGES

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; ...

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  19. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  20. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  1. Surface Modification of Plastic Substrates Using Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.

  2. Liquid-crystal microlens array with swing and adjusting focus and constructed by dual patterned ITO-electrodes

    NASA Astrophysics Data System (ADS)

    Dai, Wanwan; Xie, Xingwang; Li, Dapeng; Han, Xinjie; Liu, Zhonglun; Wei, Dong; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Under the condition of existing intense turbulence, the object's wavefront may be severely distorted. So, the wavefront sensors based on the traditional microlens array (MLA) with a fixed focal length can not be used to measure the wavefront effectively. In order to obtain a larger measurement range and higher measurement accuracy, we propose a liquid-crystal microlens array (LCMLA) with needed ability of swing focus over the focal plane and further adjusting focal length, which is constructed by a dual patterned ITO electrodes. The main structure of the LCMLA is divided into two layers, which are made of glass substrate with ITO transparent electrodes. The top layer of each liquid-crystal microlens consists of four rectangular electrodes, and the bottom layer is a circular electrode. In common optical measurements performed, the operations are carried out such as adding the same signal voltage over four electrodes of each microlens to adjust the focal length of the lens cell and adding a signal voltage with different RMS amplitude to adjust the focus position on the focal plane. Experiments show that the LCMLA developed by us demonstrate a desired focal length adjustable function and dynamic swing ability, so as to indicate that the method can be used not only to measure wavefront but also correct the wavefront with strong distortion.

  3. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  4. Biofuel cell operating on activated THP-1 cells: A fuel and substrate study.

    PubMed

    Javor, Kristina; Tisserant, Jean-Nicolas; Stemmer, Andreas

    2017-01-15

    It is known that electrochemical energy can be harvested from mammalian cells, more specifically from white blood cells (WBC). This study focuses on an improved biofuel cell operating on phorbol myristate acetate (PMA) activated THP-1 human monocytic cells. Electrochemical investigation showed strong evidence pointing towards hydrogen peroxide being the primary current source, confirming that the current originates from NADPH oxidase activity. Moreover, an adequate substrate for differentiation and activation of THP-1 cells was examined. ITO, gold, platinum and glass were tested and the amount of superoxide anion produced by NADPH oxidase was measured by spectrophotometry through WST-1 reduction at 450nm and used as an indicator of cellular activity and viability. These substrates were subsequently used in a conventional two-compartment biofuel cell where the power density output was recorded. The material showing the highest cell activity compared to the reference cell culture plate and the highest power output was ITO. Under our experimental conditions, a power density of 4.5μW/cm 2 was reached. To the best of our knowledge, this is a threefold higher power output than other leukocyte biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, C. Q.; Thio, Y. S.; Gerhardt, R. A.

    2008-12-01

    A new salt-free approach was developed for fabricating conductive paper by layer-by-layer (LBL) assembly of conductive indium tin oxide (ITO) nanoparticles and polyelectrolytes onto wood fibers. Subsequent to the coating procedure, the fibers were manufactured into conductive paper using traditional paper making methods. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The surface charge intensity of both the ITO nanoparticles and the coated wood fibers were evaluated by measuring the ζ-potential of the nanoparticles and short fibers, respectively. The ITO nanoparticles were found to preferentially aggregate on defects on the fiber surfaces and formed interconnected paths, which led to the formation of conductive percolation paths throughout the whole paper. With ten bilayer coatings, the as-made paper was made DC conductive, and its σdc was measured to be 5.2 × 10-6 S cm-1 in the in-plane (IP) direction, while the conductivity was 1.9 × 10-8 S cm-1 in the through-the-thickness (TT) direction. The percolation phenomena in these LBL-assembled ITO-coated paper fibers was evaluated using scanning electron microscopy (SEM), current atomic force microscopy (I-AFM), and impedance measurements. The AC electrical properties are reported for frequencies ranging from 0.01 Hz to 1 MHz. A clear transition from insulating to conducting behavior is observed in the AC conductivity.

  6. Improvement of Ohmic contacts on Ga 2O 3 through use of ITO-interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, Patrick H.; Yang, Jiancheng; Ren, Fan

    In this work, the use of ITO interlayers between Ga 2O 3 and Ti/Au metallization is shown to produce Ohmic contacts after annealing in the range of 500–600 °C. Without the ITO, similar anneals do not lead to linear current–voltage characteristics. Transmission line measurements were used to extract the specific contact resistance of the Au/Ti/ITO/Ga 2O 3 stacks as a function of annealing temperature. Sheet, specific contact, and transfer resistances all decreased sharply from as-deposited values with annealing. The minimum transfer resistance and specific contact resistance of 0.60 Ω mm and 6.3 × 10 -5 Ω cm 2 were achievedmore » after 600 °C annealing, respectively. Lastly, the conduction band offset between ITO and Ga 2O 3 is 0.32 eV and is consistent with the improved electron transport across the heterointerface.« less

  7. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Seong, Tae-Yeon; Ahn, Kyung-Jun; Chung, Kwun-Bum; Seok, Hae-Jun; Seo, Hyeong-Jin; Kim, Han-Ki

    2018-05-01

    We report the characteristics of Sn-doped In2O3 (ITO) films intended for use as transparent conducting electrodes; the films were prepared via a five-generation, in-line type, cylindrical, rotating magnetron sputtering (CRMS) system as a function of film thickness. By using a rotating cylindrical ITO target with high usage (∼80%), we prepared high conductivity, transparent ITO films on five-generation size glass. The effects of film thickness on the electrical, optical, morphological, and structural properties of CRMS-grown ITO films are investigated in detail to correlate the thickness and performance of ITO films. The preferred orientation changed from the (2 2 2) to the (4 0 0) plane with increasing thickness of ITO is attributed to the stability of the (4 0 0) plane against resputtering during the CRMS process. Based on X-ray diffraction, surface field emission scanning electron microscopy, and cross-sectional transmission electron microscopy, we suggest a possible mechanism to explain the preferred orientation and effects of film thickness on the performance of CRMS-grown ITO films.

  8. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  9. Benefits of Atrial Substrate Modification Guided by Electrogram Similarity and Phase Mapping Techniques to Eliminate Rotors and Focal Sources Versus Conventional Defragmentation in Persistent Atrial Fibrillation.

    PubMed

    Lin, Yenn-Jiang; Lo, Men-Tzung; Chang, Shih-Lin; Lo, Li-Wei; Hu, Yu-Feng; Chao, Tze-Fan; Chung, Fa-Po; Liao, Jo-Nan; Lin, Chin-Yu; Kuo, Huan-Yu; Chang, Yi-Chung; Lin, Chen; Tuan, Ta-Chuan; Vincent Young, Hsu-Wen; Suenari, Kazuyoshi; Dan Do, Van Buu; Raharjo, Suunu Budhi; Huang, Norden E; Chen, Shih-Ann

    2016-11-01

    This prospective study compared the efficacy of atrial substrate modification guided by a nonlinear phase mapping technique with that of conventional substrate ablation. The optimal ablation strategy for persistent atrial fibrillation (AF) was unknown. In phase 1 study, we applied a cellular automation technique to simulate the electrical wave propagation to improve the phase mapping algorithm, involving analysis of high-similarity electrogram regions. In addition, we defined rotors and focal AF sources, using the physical parameters of the divergence and curvature forces. In phase 2 study, we enrolled 68 patients with persistent AF undergoing substrate modification into 2 groups, group-1 (n = 34) underwent similarity index (SI) and phase mapping techniques; group-2 (n = 34) received complex fractionated atrial electrogram ablation with commercially available software. Group-1 received real-time waveform similarity measurements in which a phase mapping algorithm was applied to localize the sources. We evaluated the single-procedure freedom from AF. In group-1, we identified an average of 2.6 ± 0.89 SI regions per chamber. These regions involved rotors and focal sources in 65% and 77% of patients in group-1, respectively. Group-1 patients had shorter ablation procedure times, higher termination rates, and significant reduction in AF recurrence compared to group-2 and a trend toward benefit for all atrial arrhythmias. Multivariate analysis showed that substrate mapping using nonlinear similarity and phase mapping was the independent predictor of freedom from AF recurrence (hazard ratio: 0.26; 95% confidence interval: 0.09 to 0.74; p = 0.01). Our study showed that for persistent AF ablation, a specified substrate modification guided by nonlinear phase mapping could eliminate localized re-entry and non-pulmonary focal sources after pulmonary vein isolation. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Indigenous unit for bending and twisting tests of ultra-thin films on a flexible substrate

    NASA Astrophysics Data System (ADS)

    D'souza, Slavia Deeksha; Hazarika, Pratim; Prakasarao, Ch Surya; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    An indigenous unit is designed to test the stability of thin films deposited on to a flexible substrate by inducing a required number of bending and twisting under specific conditions. The unit is designed using aluminum and automated by sending pulse width modulated signals to servo motors using ATmega328 microcontroller. We have tested the unit by imparting stress on to a commercial ITO film deposited on a PET substrate. After a definite number of bending and twisting cycles, the electrical and surface properties are studied and the results are discussed.

  11. Natural printed silk substrate circuit fabricated via surface modification using one step thermal transfer and reduction graphene oxide

    NASA Astrophysics Data System (ADS)

    Cao, Jiliang; Huang, Zhan; Wang, Chaoxia

    2018-05-01

    Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.

  12. Electron beam irradiated ITO films as highly transparent p-type electrodes for GaN-based LEDs.

    PubMed

    Hong, C H; Wie, S M; Park, M J; Kwak, J S

    2013-08-01

    We have investigated the effect of electron beam irradiation on the electrical and optical properties of ITO film prepared by magnetron sputtering method at room temperature. Electron beam irradiation to the ITO films resulted in a significant decrease in sheet resistance from 1.28 x 10(-3) omega cm to 2.55 x 10(-4) omega cm and in a great increase in optical band gap from 3.72 eV to 4.16 eV, followed by improved crystallization and high transparency of 97.1% at a wavelength of 485 nm. The overall change in electrical, optical and structural properties of ITO films is related to annealing effect and energy transfer of electron by electron beam irradiation. We also fabricated GaN-based light-emitting diodes (LEDs) by using the ITO p-type electrode with/without electron beam irradiation. The results show that the LEDs having ITO p-electrode with electron beam irradiation produced higher output power due to the low absorption of light in the p-type electrode.

  13. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.

  14. Investigation of the influence of growth parameters on self-catalyzed ITO nanowires by high RF-power sputtering

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng

    2018-04-01

    Tin-doped indium oxide (ITO) nanowires are successfully fabricated using a radio frequency (RF) sputtering technique with a high RF power of 250 W. The fabrication of the ITO nanowires is optimized through the study of oxygen flow rates, temperatures and RF power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target is observed and the mechanism for the difference is discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method demonstrated good conductivity (15 Ω sq-1) and a transmittance of more than 64% at a wavelength longer than 550 nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices.

  15. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    PubMed

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  16. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    PubMed Central

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-01-01

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively. PMID:28773801

  17. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  18. Use of double-layer ITO films in reflective contacts for blue and near-UV LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.

    2014-12-15

    The structural and optical properties of multilayer ITO/SiO{sub 2}/Ag composites are studied. In these composites, the ITO (indium-tin oxide) layer is produced by two different methods: electron-beam evaporation and a combined method including electron-beam evaporation and subsequent magnetron sputtering. It is shown that the reflectance of the composite based on the ITO film produced by electron-beam evaporation is substantially lower. This can be attributed to the strong absorption of light at both boundaries of the SiO{sub 2} layer, which results from the complex surface profile of ITO films deposited by electron-beam evaporation. Samples with a film deposited by the combinedmore » method have a reflectance of about 90% at normal light incidence, which, combined with their higher electrical conductivity, makes these samples advantageous for use as reflective contacts to the p-type region of AlInGaN light-emitting diodes of the flip-chip design.« less

  19. Size-controlled InGaN/GaN nanorod LEDs with an ITO/graphene transparent layer

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Phil; Seong, Won-Seok; Min, Jung-Hong; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-jun; Lee, Dong-Seon

    2016-11-01

    We introduce ITO on graphene as a current-spreading layer for separated InGaN/GaN nanorod LEDs for the purpose of passivation-free and high light-extraction efficiency. Transferred graphene on InGaN/GaN nanorods effectively blocks the diffusion of ITO atoms to nanorods, facilitating the production of transparent ITO/graphene contact on parallel-nanorod LEDs, without filling the air gaps, like a bridge structure. The ITO/graphene layer sufficiently spreads current in a lateral direction, resulting in uniform and reliable light emission observed from the whole area of the top surface. Using KOH treatment, we reduce series resistance and reverse leakage current in nanorod LEDs by recovering the plasma-damaged region. We also control the size of the nanorods by varying the KOH treatment time and observe strain relaxation via blueshift in electroluminescence. As a result, bridge-structured LEDs with 8 min of KOH treatment show 15 times higher light-emitting efficiency than with 2 min of KOH treatment.

  20. HYPOMELANOSIS OF ITO: A CASE REPORT

    PubMed Central

    Gupta, Monisha; Gupta, Vinay

    2002-01-01

    A twelve year old female child presented with learning disability. Detailed physical examination revealed anomalies involving the nervous and musculoskeletal system. In addition she had linear and whorled. hypopigmented lesions along the lines of Blaschko distributed over the upper limb, trunk and face on the left side of the body. She fulfilled the diagnostic criteria for Hypomelanosis of Ito, even in the absence of chromosomal studies and advanced histopathological studies. PMID:21206591

  1. KChIP2 genotype dependence of transient outward current (Ito) properties in cardiomyocytes isolated from male and female mice

    PubMed Central

    Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert

    2017-01-01

    The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating. PMID:28141821

  2. KChIP2 genotype dependence of transient outward current (Ito) properties in cardiomyocytes isolated from male and female mice.

    PubMed

    Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert

    2017-01-01

    The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.

  3. Pilot production of 4 sq cm ITO/InP photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Experimental results of a pilot production of 32 4-sq cm indium tin oxide (ITO)InP space solar cells are presented. The discussion includes analysis of the device performance of the best cells produced as well as the performance range of all production cells. The experience gained from the production is discussed, indicating other issues that may be encountered when large-scale productions are initiated. Available data on a 4-sq cm ITO/InP cell that was flown on the UoSAT-5 satellite is reported.

  4. A Highly Thermostable In2O3/ITO Thin Film Thermocouple Prepared via Screen Printing for High Temperature Measurements

    PubMed Central

    Liu, Yantao; Ren, Wei; Shi, Peng; Liu, Dan; Zhang, Yijun; Liu, Ming; Jing, Weixuan; Tian, Bian; Jiang, Zhuangde

    2018-01-01

    An In2O3/ITO thin film thermocouple was prepared via screen printing. Glass additives were added to improve the sintering process and to increase the density of the In2O3/ITO films. The surface and cross-sectional images indicate that both the grain size and densification of the ITO and In2O3 films increased with the increase in annealing time. The thermoelectric voltage of the In2O3/ITO thermocouple was 53.5 mV at 1270 °C at the hot junction. The average Seebeck coefficient of the thermocouple was calculated as 44.5 μV/°C. The drift rate of the In2O3/ITO thermocouple was 5.44 °C/h at a measuring time of 10 h at 1270 °C. PMID:29570680

  5. Technique for forming ITO films with a controlled refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.

    2016-07-15

    A new method for fabricating transparent conducting coatings based on indium-tin oxide (ITO) with a controlled refractive index is proposed. This method implies the successive deposition of material by electron-beam evaporation and magnetron sputtering. Sputtered coatings with different densities (and, correspondingly, different refractive indices) can be obtained by varying the ratio of the mass fractions of material deposited by different methods. As an example, films with effective refractive indices of 1.2, 1.4, and 1.7 in the wavelength range of 440–460 nm are fabricated. Two-layer ITO coatings with controlled refractive indices of the layers are also formed by the proposed method.more » Thus, multilayer transparent conducting coatings with desired optical parameters can be produced.« less

  6. Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires.

    PubMed

    Zhou, Kun; Cheng, Qiang; Song, Jinlin; Lu, Lu; Jia, Zhihao; Li, Junwei

    2018-01-01

    We numerically investigate the broadband perfect infrared absorption by tuning epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances of multilayer indium tin oxide nanowires (ITO NWs). The monolayer ITO NWs array shows intensive absorption at ENZ and ENP wavelengths for p polarization, while only at the ENP wavelength for s polarization. Moreover, the ENP resonances are almost omnidirectional and the ENZ resonances are angularly dependent. Therefore, the absorption bandwidth is broader for p polarization than that for s polarization when polarized waves are incident obliquely. The ENZ resonances can be tuned by altering the doping concentration and volume filling factor of ITO NWs. However, the ENP resonances only can be tuned by changing the doping concentration of ITO NWs, and volume filling factor impacts little on the ENP resonances. Based on the strong absorption properties of each layer at their own ENP and ENZ resonances, the tuned absorption of the bilayer ITO NWs with the different doping concentrations can be broader and stronger. Furthermore, multilayer ITO NWs can achieve broadband perfect absorption by controlling the doping concentration, volume filling factor, and length of the NWs in each layer. This study has the potential to apply to applications requiring efficient absorption and energy conversion.

  7. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    PubMed

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  8. Rapid fabrication of a silicon modification layer on silicon carbide substrate.

    PubMed

    Bai, Yang; Li, Longxiang; Xue, Donglin; Zhang, Xuejun

    2016-08-01

    We develop a kind of magnetorheological (MR) polishing fluid for the fabrication of a silicon modification layer on a silicon carbide substrate based on chemical theory and actual polishing requirements. The effect of abrasive concentration in MR polishing fluid on material removal rate and removal function shape is investigated. We conclude that material removal rate will increase and tends to peak value as the abrasive concentration increases to 0.3 vol. %, and the removal function profile will become steep, which is a disadvantage to surface frequency error removal at the same time. The removal function stability is also studied and the results show that the prepared MR polishing fluid can satisfy actual fabrication requirements. An aspheric reflective mirror of silicon carbide modified by silicon is well polished by combining magnetorheological finishing (MRF) using two types of MR polishing fluid and computer controlled optical surfacing (CCOS) processes. The surface accuracy root mean square (RMS) is improved from 0.087λ(λ=632.8  nm) initially to 0.020λ(λ=632.8  nm) in 5.5 h total and the tool marks resulting from MRF are negligible. The PSD analysis results also shows that the final surface is uniformly polished.

  9. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition

    NASA Astrophysics Data System (ADS)

    Bian, Juncao; Shu, Shiwei; Li, Jianfu; Huang, Chao; Li, Yang Yang; Zhang, Rui-Qin

    2015-04-01

    Direct synthesis of three-dimensional Ag structures on solid substrates for the purposes of producing reproducible and recyclable surface-enhanced Raman scattering (SERS) applications remains challenging. In this work, flower-like Ag structures with concave surfaces (FACS) were successfully electrodeposited onto ITO glass using the double-potentiostatic method. The FACS, with an enhancement factor of the order of 108, exhibited a SERS signal intensity 3.3 times stronger than that measured from Ag nanostructures without concave surfaces. A cleaning procedure involving lengthy immersion of the sample in ethanol and KNO3 was proposed to recycle the substrate and confirmed by using rhodamine 6G, adenine, and 4-aminothiophenol as target molecules. The findings can help to advance the practical applications of Ag nanostructure-based SERS substrates.

  11. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria.

    PubMed

    Barreiros dos Santos, M; Azevedo, S; Agusil, J P; Prieto-Simón, B; Sporer, C; Torrents, E; Juárez, A; Teixeira, V; Samitier, J

    2015-02-01

    Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyclic voltammetry. The immobilization of antibody on the epoxysilane layer was quantified by Optical Waveguide Lightmode Spectroscopy, obtaining a mass variation of 12 ng cm(− 2) (0.08 pmol cm(− 2)). Microcontact printing and fluorescence microscopy were used to demonstrate the specific binding of E. coli O157:H7 to the antibody-patterned surface. We achieved a ratio of 1:500 Salmonella typhimurium/E. coli O157:H7, thus confirming the selectivity of the antibodies and efficiency of the functionalization procedure. Finally, the detection capacity of the ITO-based immunosensor was evaluated by Electrochemical Impedance Spectroscopy. A very low limit of detection was obtained (1 CFU mL(− 1)) over a large linear working range (10–10(6) CFU mL(− 1)). The specificity of the impedimetric immunosensor was also examined. Less than 20% of non-specific bacteria (S. typhimurium and E. coli K12) was observed. Our results reveal the applicability of ITO for the development of highly sensitive and selective impedimetric immunosensors.

  12. Transparent 1T-MoS2 nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Danqin; Zhou, Weiqiang; Zhou, Qianjie; Ye, Guo; Wang, Tongzhou; Wu, Jing; Chang, Yanan; Xu, Jingkun

    2017-09-01

    Two-dimensional MoS2 materials have attracted more and more interest and been applied to the field of energy storage because of its unique physical, optical, electronic and electrochemical properties. However, there are no reports on high-stable transparent MoS2 nanofilms as supercapacitors electrode. Here, we describe a transparent 1T-MoS2 nanofilm electrode with super-long stability anchored on the indium tin oxide (ITO) glass by a simple alternate layer-by-layer (LBL) self-assembly of a highly charged cationic poly(diallyldimethylammonium chloride) (PDDA) and negative single-/few-layer 1T MoS2 nanosheets. The ITO/(PDDA/MoS2)20 electrode shows a transmittance of 51.6% at 550 nm and obviously exhibits excellent transparency by naked eye observation. Ultrasonic damage test validates that the (PDDA/MoS2)20 film with the average thickness about 50 nm is robustly anchored on ITO substrate. Additionally, the electrochemical results indicate that the ITO/(PDDA/MoS2)20 film shows areal capacitance of 1.1 mF cm-2 and volumetric capacitance of 220 F cm-3 at 0.04 mA cm-2, 130.6% retention of the original capacitance value after 5000 cycles. Further experiments indicate that the formation of transparent (PDDA/MoS2) x nanofilm by LBL self-assembly can be extended to other substrates, e.g., slide glass and flexible polyethylene terephthalate (PET). Thus, the easily available (PDDA/MoS2) x nanofilm electrode has great potential for application in transparent and/or flexible optoelectronic and electronics devices.

  13. Application of argon atmospheric cold plasma for indium tin oxide (ITO) based diodes

    NASA Astrophysics Data System (ADS)

    Akbari Nia, S.; Jalili, Y. Seyed; Salar Elahi, A.

    2017-09-01

    Transparent Conductive Oxide (TCO) layers due to transparency, high conductivity and hole injection capability have attracted a lot of attention. One of these layers is Indium Tin Oxide (ITO). ITO due to low resistance, transparency in the visible spectrum and its proper work function is widely used in the manufacture of organic light emitting diodes and solar cells. One way for improving the ITO surface is plasma treatment. In this paper, changes in surface morphology, by applying argon atmospheric pressure cold plasma, was studied through Atomic Force Microscopic (AFM) image analysis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. FTIR analysis showed functional groups were not added or removed, but chemical bond angle and bonds strength on the surface were changed and also AFM images showed that surface roughness was increased. These factors lead to the production of diodes with enhanced Ohmic contact and injection mechanism which are more appropriate in industrial applications.

  14. Effects of argon sputtering and UV-ozone radiation on the physico-chemical surface properties of ITO

    NASA Astrophysics Data System (ADS)

    Che, Hui; El Bouanani, M.

    2018-01-01

    X-ray photoelectron spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) were used to evaluate and determine the effects of 1 KeV Ar+ irradiation (sputtering) on the surface chemical composition and work function of Indium Thin Oxide (ITO). While Ar+ sputtering removes carbon-based surface contaminants, it also modifies the Sn-rich surface of ITO and leads to a reduction of the oxidation state of Sn from Sn4+ to Sn2+. The decrease in the work function of ITO is directly correlated to the decrease of Sn atomic concentration in the Sn-rich top surface layer and the reduction of the oxidation state of surface Sn.

  15. Improvement of sensitive CuO NFs-ITO nonenzymatic glucose sensor based on in situ electrospun fiber.

    PubMed

    Liu, Guangyue; Zheng, Baozhan; Jiang, Yanshu; Cai, Yuqing; Du, Juan; Yuan, Hongyan; Xiao, Dan

    2012-11-15

    CuO nanofibers (NFs), prepared by electrospinning and calcination technologies, have been applied for the fabrication of glucose sensors with high sensitivity and selectivity. Cu(NO(3))(2) and polyvinylpyrrolidone (PVP) composite nanofibers were initially electrospun on the surface of indium tin oxide (ITO) glass, and then the CuO NFs-ITO electrode was formed simply by removing PVP through heat treatment. The structures and morphologies of CuO nanofibers were characterized by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The direct electrocatalytic oxidation of glucose in alkaline medium at CuO NFs-ITO electrode has also been investigated in detail with cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The effects of NaOH concentration, electrospinning time, Cu(NO(3))(2):PVP mass ratios and calcination temperature on the response to glucose were investigated. Under optimized experimental conditions, the CuO NFs-ITO electrode produced high and reproducible sensitivity to glucose of 873 μA mM(-1)cm(-2). Linear responses were obtained over a concentration range from 0.20 μM to 1.3mM with a detection limit of 40 nM (S/N=3). The CuO NFs-ITO electrode also has good selectivity, stability and fast amperometic sensing of glucose, thus it can be used for the future development of non-enzymatic glucose sensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates.

    PubMed

    Wang, Yipei; Ma, Yaoguang; Guo, Xin; Tong, Limin

    2012-08-13

    Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2), silica (SiO2), indium tin oxide (ITO) and titanium dioxide (TiO2), are used as supporting substrates. Basic waveguiding properties, including propagation constants, power distributions, effective mode areas, propagation distances and losses are obtained at the typical plasmonic resonance wavelength of 660 nm. Compared to that of a freestanding nanowire, the mode area of a substrate-supported nanowire could be much smaller while maintaining an acceptable propagation length. For example, the mode area and propagation length of a 100-nm-diameter Ag nanowire with a MgF2 substrate are about 0.004 μm2 and 3.4 μm, respectively. The dependences of waveguiding properties on geometric and material parameters of the nanowire-substrate system are also provided. Our results may provide valuable references for waveguiding dielectric-supported metal nanowires for practical applications.

  17. Picosecond laser fabrication of nanostructures on ITO film surface assisted by pre-deposited Au film

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Jiang, G. D.; Wang, W. J.; Mei, X. S.; Pan, A. F.; Zhai, Z. Y.

    2017-10-01

    With greater optical penetration depth and lower ablation threshold fluence, it is difficult to directly fabricate large scales of laser-induced periodic surface structures (LIPSSs) on indium-tin-oxide (ITO) films. This study proposed an approach to obtain optimized LIPSSs by sputtering an Au thin film on the ITO film surface. The concept behind the proposal is that the upper layer of the thin Au film can cause surface energy aggregation, inducing the initial ripple structures. The ripples deepened and become clear with lower energy due to optical trapping. The effective mechanism of Au film was analyzed and verified by a series of experiments. Linear sweep, parallel to the laser polarization direction, was performed using a Nd:VAN laser system with 10-ps Q-switched pulse, at a central wavelength of 532 nm, with a repetition rate of 1 kHz. The complete and clear features of the nanostructures, obtained with the periods of approximately 320 nm, were observed on ITO films with proper laser fluence and scanning speed. The depth of ripples was varying in the range of 15-65 nm with clear and coherent ITO films. The preferred efficiency of fabricating nanostructures and the excellent results were obtained at a scanning speed of 2.5 mm/s and a fluence of 0.189 J/cm2. In this way, the ablation and shedding of ITO films was successfully avoided. Thus, the proposed technique can be considered to be a promising method for the laser machining of special nonmetal films.

  18. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  19. Laser-induced modification of graphene in the presence of ethanol on a graphene - substrate interface

    NASA Astrophysics Data System (ADS)

    Pivovarov, P. A.; Frolov, V. D.; Zavedeev, E. V.; Konov, V. I.

    2017-12-01

    We have studied the effect that the substitution of an organic substance (ethanol) for water adsorbate on a CVD graphene-SiO2/Si interface has on the laser-induced modification of graphene and graphene structures on the SiO2 film. Scanning probe microscopy has been used to analyse changes in the electronic properties of graphene structures on a hydrophilic substrate in the presence of ethanol and as a result of a laser-induced spatial redistribution of a water-alcohol adsorbate on the interface. It has been demonstrated experimentally that ethanol substitution for water adsorbate leads to an increase in the surface potential of the graphene, which is equivalent to a reduction in its work function with respect to the original level under normal conditions at a relative humidity of air from 30% to 60%. In the laser irradiation zone, we observe an additional increase in surface potential by 30-50 mV. Thus, ethanol makes it possible to tune the laser-induced electronic properties of graphene on a substrate. In addition, it has been shown that the intercalation of ethanol molecules leads to severe temporal instability of the physical properties of graphene structures produced by local laser irradiation. We have demonstrated the possibility of information ‘rewriting’ by low-intensity laser pulses in microregions with a changed surface potential in the presence of ethanol.

  20. Palatization in Japanese Mimetics: Response to Mester and Ito.

    ERIC Educational Resources Information Center

    Schourup, Lawrence; Tamori, Ikuhiro

    1992-01-01

    Mester and Ito's evidence for the phonological theory of Restricted Underspecification (RU) is refuted. Attention is focused on reduplicated forms; and it is concluded that, if there is only a rough and sporadic sound-syllable meaning association with palatization, the argument for RU is untenable. (12 references) (LB)

  1. Ground radiation tests and flight atomic oxygen tests of ITO protective coatings for Galileo Spacecraft

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.

    1986-01-01

    Radiation simulation tests (protons and electrons) were performed along with atomic oxygen flight tests aboard the Shuttle to space qualify the surface protective coatings. The results, which contributed to the selection of indium-tin-oxide (ITO) coated polyester as the material for the thermal blankets of the Galileo Spacecraft, are given here. Two candidate materials, polyester and Fluorglas, were radiation-tested to determine changes at simulated Jovian radiation levels. The polyester exhibited a smaller weight loss (2.8) than the Fluorglas (8.8 percent). Other changes of polyester are given. During low-earth orbit, prior to transit to Jupiter, the thermal blankets would be exposed to atomic oxygen. Samples of uncoated and ITO-coated polyesters were flown on the Shuttle. Qualitative results are given which indicated that the ITO coating protected the underlying polyester.

  2. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE PAGES

    Zhou, Yang; He, Qiming; Zhang, Fan; ...

    2017-08-14

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  3. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yang; He, Qiming; Zhang, Fan

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  4. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Du, H. W.; Yang, J.; Li, Y. H.; Xu, F.; Xu, J.; Ma, Z. Q.

    2015-03-01

    Complete photo-generated minority carrier's quantum tunneling device under AM1.5 illumination is fabricated by depositing tin-doped indium oxide (ITO) on n-type silicon to form a structure of ITO/SiOx/n-Si heterojunction. The work function difference between ITO and n-Si materials essentially acts as the origin of built-in-field. Basing on the measured value of internal potential (Vbi = 0.61 V) and high conversion efficiency (9.27%), we infer that this larger photo-generated holes tunneling occurs when a strong inversion layer at the c-Si surface appears. Also, the mixed electronic states in the ultra-thin intermediate region between ITO and n-Si play a defect-assisted tunneling.

  5. Improvement of kink characteristic of proton-implanted VCSEL with ITO overcoating

    NASA Astrophysics Data System (ADS)

    Lai, Fang-I.; Chang, Ya-Hsien; Laih, Li-Hong; Kuo, Hao-chung; Wang, S. C.

    2004-06-01

    Proton implanted VCSEL has been demonstrated with good reliability and decent modulation speed up to 1.25 Gb/s. However, kinks in current vs light output (L-I) has been always an issue in the gain-guided proton implant VCSEL. The kink related jitter and noise performance made it difficult to meet 2.5 Gb/s (OC-48) requirement. The kinks in L-I curve can be attributed to non-uniform carrier distribution induced non-uniform gain distribution within emission area. In this paper, the effects of a Ti/ITO transparent over-coating on the proton-implanted AlGaAs/GaAs VCSELs (15um diameter aperture) are investigated. The kinks distribution in L-I characteristics from a 2 inch wafer is greatly improved compared to conventional process. These VCSELs exhibit nearly kink-free L-I output performance with threshold currents ~3 mA, and the slope efficiencies ~ 0.25 W/A. The near-field emission patterns suggest the Ti/ITO over-coating facilitates the current spreading and uniform carrier distribution of the top VCSEL contact thus enhancing the laser performance. Finally, we performed high speed modulation measurement. The eye diagram of proton-implanted VCSELs with Ti/ITO transparent over-coating operating at 2.125 Gb/s with 10mA bias and 9dB extinction ratio shows very clean eye with jitter less than 35 ps.

  6. A dual-plate ITO-ITO generator-collector microtrench sensor: surface activation, spatial separation and suppression of irreversible oxygen and ascorbate interference.

    PubMed

    Hasnat, Mohammad A; Gross, Andrew J; Dale, Sara E C; Barnes, Edward O; Compton, Richard G; Marken, Frank

    2014-02-07

    Generator-collector electrode systems are based on two independent working electrodes with overlapping diffusion fields where chemically reversible redox processes (oxidation and reduction) are coupled to give amplified current signals. A generator-collector trench electrode system prepared from two tin-doped indium oxide (ITO) electrodes placed vis-à-vis with a 22 μm inter-electrode gap is employed here as a sensor in aqueous media. The reversible 2-electron anthraquinone-2-sulfonate redox system is demonstrated to give well-defined collector responses even in the presence of oxygen due to the irreversible nature of the oxygen reduction. For the oxidation of dopamine on ITO, novel "Piranha-activation" effects are observed and chemically reversible generator-collector feedback conditions are achieved at pH 7, by selecting a more negative collector potential, again eliminating possible oxygen interference. Finally, dopamine oxidation in the presence of ascorbate is demonstrated with the irreversible oxidation of ascorbate at the "mouth" of the trench electrode and chemically reversible oxidation of dopamine in the trench "interior". This spatial separation of chemically reversible and irreversible processes within and outside the trench is discussed as a potential in situ microscale sensing and separation tool.

  7. Ubiquitin modifications

    PubMed Central

    Swatek, Kirby N; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  8. Direct-write assembly of microperiodic planar and spanning ITO microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Bok Y; Lorang, David J; Duoss, Eric B.

    2010-01-01

    Printed Sn-doped In{sub 2}O{sub 3} (ITO) microelectrodes are fabricated by direct-write assembly of sol–gel inks with varying concentration. This maskless, non-lithographic approach provides a facile route to patterning transparent conductive features in planar arrays and spanning architectures.

  9. Investigation of ITO free transparent conducting polymer based electrode

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  10. Investigation of ITO free transparent conducting polymer based electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya

    2016-05-23

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coatedmore » polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.« less

  11. Effect of supersonic spraying impact velocity on opto-electric properties of transparent conducting flexible films consisting of silver nanowire, ITO, and polyimide multilayers

    DOE PAGES

    Kim, Tae-Gun; Lee, Jong-Gun; Park, Chan-Woo; ...

    2017-12-26

    We demonstrate the use of supersonic spraying for the deposition of silver nanowires (AgNWs) on a flexible polyimide (PI) substrate for the formation of transparent and conducting films (TCF) as an alternative to nonflexible ITO (indium tin oxide). The self-fused intersections of the NWs resulted in films with a low sheet resistance (Rs = 31 ..omega../sq) and fairly high transmittance (Tr = 92%) on a glass substrate. The effect of the impact speed of the supersonically sprayed AgNWs on the opto-electric properties of the flexible TCF was evaluated by varying the spray coating conditions. The fabricated films were characterized bymore » X-ray diffraction analysis, atomic force microscopy, ultraviolet-visible spectroscopy, and scanning electron microscopy. Finally, cyclic bending tests were performed on the PI/AgNW films as well as PI/ZnO/indium tin oxide/AgNW films, and the changes in their electrical properties with bending were compared.« less

  12. Effect of supersonic spraying impact velocity on opto-electric properties of transparent conducting flexible films consisting of silver nanowire, ITO, and polyimide multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Gun; Lee, Jong-Gun; Park, Chan-Woo

    We demonstrate the use of supersonic spraying for the deposition of silver nanowires (AgNWs) on a flexible polyimide (PI) substrate for the formation of transparent and conducting films (TCF) as an alternative to nonflexible ITO (indium tin oxide). The self-fused intersections of the NWs resulted in films with a low sheet resistance (Rs = 31 ..omega../sq) and fairly high transmittance (Tr = 92%) on a glass substrate. The effect of the impact speed of the supersonically sprayed AgNWs on the opto-electric properties of the flexible TCF was evaluated by varying the spray coating conditions. The fabricated films were characterized bymore » X-ray diffraction analysis, atomic force microscopy, ultraviolet-visible spectroscopy, and scanning electron microscopy. Finally, cyclic bending tests were performed on the PI/AgNW films as well as PI/ZnO/indium tin oxide/AgNW films, and the changes in their electrical properties with bending were compared.« less

  13. Ridge Minimization of Ablated Morphologies on ITO Thin Films Using Squared Quasi-Flat Top Beam

    PubMed Central

    Jeon, Jin-Woo; Choi, Wonsuk; Shin, Young-Gwan; Ji, Suk-Young

    2018-01-01

    In this study, we explore the improvements in pattern quality that was obtained with a femtosecond laser with quasi-flat top beam profiles at the ablated edge of indium tin oxide (ITO) thin films for the patterning of optoelectronic devices. To ablate the ITO thin films, a femtosecond laser is used that has a wavelength and pulse duration of 1030 nm and 190 fs, respectively. The squared quasi-flat top beam is obtained from a circular Gaussian beam using slits with varying x-y axes. Then, the patterned ITO thin films are measured using both scanning electron and atomic force microscopes. In the case of the Gaussian beam, the ridge height and width are approximately 39 nm and 1.1 μm, respectively, whereas, when the quasi-flat top beam is used, the ridge height and width are approximately 7 nm and 0.25 μm, respectively. PMID:29601515

  14. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, Scott; Bhandari, Abhinav

    2012-12-26

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG's program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG's high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indiummore » Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at

  15. Substrate-Free InGaN/GaN Nanowire Light-Emitting Diodes.

    PubMed

    Neplokh, Vladimir; Messanvi, Agnes; Zhang, Hezhi; Julien, Francois H; Babichev, Andrey; Eymery, Joel; Durand, Christophe; Tchernycheva, Maria

    2015-12-01

    We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.

  16. Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB.

    PubMed

    Panama, Brian K; Korogyi, Adam S; Aschar-Sobbi, Roozbeh; Oh, Yena; Gray, Charles B B; Gang, Hongying; Brown, Joan Heller; Kirshenbaum, Lorrie A; Backx, Peter H

    2016-02-19

    The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  18. Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy.

    PubMed

    Sturm, Amy C; Kline, Crystal F; Glynn, Patric; Johnson, Benjamin L; Curran, Jerry; Kilic, Ahmet; Higgins, Robert S D; Binkley, Philip F; Janssen, Paul M L; Weiss, Raul; Raman, Subha V; Fowler, Steven J; Priori, Silvia G; Hund, Thomas J; Carnes, Cynthia A; Mohler, Peter J

    2015-05-26

    Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Stand-Alone Pulmonary Vein Isolation Versus Pulmonary Vein Isolation With Additional Substrate Modification as Index Ablation Procedures in Patients With Persistent and Long-Standing Persistent Atrial Fibrillation: The Randomized Alster-Lost-AF Trial (Ablation at St. Georg Hospital for Long-Standing Persistent Atrial Fibrillation).

    PubMed

    Fink, Thomas; Schlüter, Michael; Heeger, Christian-Hendrik; Lemes, Christine; Maurer, Tilman; Reissmann, Bruno; Riedl, Johannes; Rottner, Laura; Santoro, Francesco; Schmidt, Boris; Wohlmuth, Peter; Mathew, Shibu; Sohns, Christian; Ouyang, Feifan; Metzner, Andreas; Kuck, Karl-Heinz

    2017-07-01

    Pulmonary vein isolation (PVI) for persistent atrial fibrillation is associated with limited success rates and often requires multiple procedures to maintain stable sinus rhythm. In the prospective and randomized Alster-Lost-AF trial (Ablation at St. Georg Hospital for Long-Standing Persistent Atrial Fibrillation), we sought to assess, in patients with symptomatic persistent or long-standing persistent atrial fibrillation, the outcomes of initial ablative strategies comprising either stand-alone PVI (PVI-only approach) or a stepwise approach of PVI followed by complex fractionated atrial electrogram ablation and linear ablation (Substrate-modification approach). Patients were randomized 1:1 to stand-alone PVI or PVI plus substrate modification. The primary study end point was freedom from recurrence of any atrial tachyarrhythmia, outside a 90-day blanking period, at 12 months. A total of 124 patients were enrolled, with 118 patients included in the analysis (61 in the PVI-only group, 57 in the Substrate-modification group). Atrial tachyarrhythmias recurred in 28 PVI-only group patients and 24 Substrate-modification group patients, for 1-year freedom from tachyarrhythmia recurrence after a single ablation procedure of 54% (95% confidence interval, 43%-68%) in the PVI-only and 57% (95% confidence interval, 46%-72%) in the Substrate-modification group ( P =0.86). Twenty-four patients in the PVI-only group (39%) and 18 in the Substrate-modification group (32%) were without arrhythmia recurrence and off antiarrhythmic drug therapy at the end of the 12-month follow-up. In patients with persistent and long-standing persistent atrial fibrillation, no significant difference was observed in 12-month freedom from atrial tachyarrhythmias between an index ablative approach of stand-alone PVI and a stepwise approach of PVI plus complex fractionated atrial electrogram and linear ablation. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00820625. © 2017 American Heart

  20. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  1. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy

    NASA Astrophysics Data System (ADS)

    Kataria, Devika; Krishnamoorthy, Kothandam; Iyer, S. Sundar Kumar

    2017-08-01

    Tuning metal nanoparticle (MNP) contact angle on the surface it is formed can help maximise the useful optical coupling in photovoltaic films by localized surface plasmon (LSP) resonance—opening up the possibility of building improved photovoltaic cells. In this work experimental demonstration of optical absorption increase in copper phthalocyanine (CuPc) films by tuning silver MNP shape by changing its contact angles with substrate has been reported. Thin films of poly3,4 ethylenedioxythiophene: sodium dodecycl sulphate (PEDOT:SDS) with different surface energies were formed on indium tin oxide (ITO) coated glass by electro-deposition. Silver MNPs thermally evaporated directly on ozonised ITO as well as on the PEDOT:SDS films showed contact angles ranging from 60° to 125°. The CuPc layer was deposited on top of the MNPs. For the samples studied, best optical absorption in the CuPc layer was for a contact angle of 110°.

  2. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography.

    PubMed

    Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S D; Flewitt, Andrew J; Wilkinson, Timothy D

    2016-12-02

    High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm -2 , 1 nAs -1 ) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ∼33 nm with 80 nm spacing; for isolated structures, ∼45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ∼0.25 cm 2 .

  3. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography

    NASA Astrophysics Data System (ADS)

    Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S. D.; Flewitt, Andrew J.; Wilkinson, Timothy D.

    2016-12-01

    High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm-2, 1 nAs-1) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ˜33 nm with 80 nm spacing; for isolated structures, ˜45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ˜0.25 cm2.

  4. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.

    PubMed

    MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R

    2012-11-27

    We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.

  5. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    PubMed

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Structures of ribonucleoprotein particle modification enzymes

    PubMed Central

    Liang, Bo; Li, Hong

    2016-01-01

    Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA–protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo. PMID:21108865

  7. Effects of sea lamprey substrate modification and carcass nutrients on macroinvertebrate assemblages in a small Atlantic coastal stream

    USGS Publications Warehouse

    Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.

    2018-01-01

    Aquatic macroinvertebrates respond to patch dynamics arising from interactions of physical and chemical disturbances across space and time. Anadromous fish, such as sea lamprey, Petromyzon marinus, migrate from the ocean and alter physical and chemical properties of recipient spawning streams. Sea lamprey disturb stream benthos physically through nest construction and spawning, and enrich food webs through nutrient deposition from decomposing carcasses. Sea lamprey spawning nests support greater macroinvertebrate abundance than adjacent reference areas, but concurrent effects of stream bed modification and nutrient supplementation have not been examined sequentially. We added carcasses and cleared substrate experimentally to mimic the physical disturbance and nutrient enrichment associated with lamprey spawning, and characterized effects on macroinvertebrate assemblage structure. We found that areas receiving cleared substrate and carcass nutrients were colonized largely by Simuliidae compared to upstream and downstream control areas that were colonized largely by Hydropsychidae, Philopotamidae, and Chironomidae. Environmental factors such as stream flow likely shape assemblages by physically constraining macroinvertebrate establishment and feeding. Our results indicate potential changes in macroinvertebrate assemblages from the physical and chemical changes to streams brought by spawning populations of sea lamprey.

  8. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, T.E.

    1996-12-03

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.

  9. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, T.E.

    1997-03-04

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, the balance of the ITO being insulative. The device is made by the following general steps: (a) providing a substrate having a conductive ITO coating on at least one surface thereof; (b) rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.

  10. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, Tony E.

    1996-01-01

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.

  11. Method of forming electrical pathways in indium-tin-oxide coatings

    DOEpatents

    Haynes, Tony E.

    1997-01-01

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.

  12. Ohmic contact mechanism for RF superimposed DC sputtered-ITO transparent p-electrodes with a variety of Sn2O3 content for GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop

    2018-02-01

    The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.

  13. Electrochemical study of highly durable cathode with Pt supported on ITO-CNT composite for proton exchange membrane fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sehkyu; Shao, Yuyan; Viswanathan, Vilayanur V.

    2016-10-01

    In this paper, we describe a highly stable cathode containing a Pt catalyst supported on an indium tin oxide (ITO) and carbon nanotube (CNT) composite. The dependence of cathode performance and durability on the ITO content and the diameter of the CNTs were investigated by electrochemical techniques. The cathode with 30 wt% ITO and CNTs with diameters 10–20 nm in the composite offered preferred locations for Pt stabilization and was very resistant to carbon corrosion (i.e., 82.7% ESA retention and 105.7% mass activity retention after an accelerated stress test for 400 h).

  14. Cr/ITO semi-transparent n-type electrode for high-efficiency AlGaN/InGaN-based near ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Hwankyo; Kim, Dae-Hyun; Seong, Tae-Yeon

    2017-11-01

    We investigated the electrical performance of near ultraviolet (NUV) (390 nm) light-emitting diodes (LEDs) fabricated with various semi-transparent Cr/ITO n-type contacts. It was shown that after annealing at 400 °C, Cr/ITO (10 nm/40 nm) contact was ohmic with a specific contact resistance of 9.8 × 10-4 Ωcm2. NUV AlGaN-based LEDs fabricated with different Cr/ITO (6-12 nm/40 nm) electrodes exhibited forward-bias voltages of 3.27-3.30 V at an injection current of 20 mA, which are similar to that of reference LED with Cr/Ni/Au (20 nm/25 nm/200 nm) electrode (3.29 V). The LEDs with the Cr/ITO electrodes gave series resistances of 10.69-11.98 Ω, while the series resistance is 10.84 Ohm for the reference LED. The transmittance of the Cr/ITO samples significantly improved when annealed at 400 °C. The transmittance (25.8-45.2% at 390 nm) of the annealed samples decreased with increasing Cr layer thickness. The LEDs with the Cr/ITO electrodes exhibited higher light output power than reference LED (with Cr/Ni/Au electrode). In particular, the LED with the Cr/ITO (12 nm/40 nm) electrode showed 9.3% higher light output power at 100 mA than reference LED. Based on the X-ray photoemission spectroscopy (XPS) and electrical results, the ohmic formation mechanism is described and discussed.

  15. A self-assembled Ni(cyclam)-BTC network on ITO for an oxygen evolution catalyst in alkaline solution.

    PubMed

    Leem, Yun Jin; Cho, Keumnam; Oh, Kyung Hee; Han, Sung-Hwan; Nam, Ki Min; Chang, Jinho

    2017-03-25

    A self-assembled Ni(cyclam)-BTC film was formed on ITO in an acidic solution. Ni(cyclam)-BTC exhibited an enhanced electro-catalytic property for the oxygen evolution reaction (OER), which was strongly relevant to the Ni(iii)/Ni(iv) redox reaction activated by the potential dynamic process. A possible formation mechanism of Ni(cyclam)-BTC by self-assembly on ITO was also proposed.

  16. Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation.

    PubMed

    Kottkamp, Hans; Berg, Jan; Bender, Roderich; Rieger, Andreas; Schreiber, Doreen

    2016-01-01

    Catheter ablation strategies beyond pulmonary vein isolation (PVI) for treatment of atrial fibrillation (AF) are less well defined. Increasing clinical data indicate that atrial fibrosis is a critical common left atrial (LA) substrate in AF patients (pts). We applied a new substrate modification concept according to the individual fibrotic substrate as estimated from electroanatomic voltage mapping (EAVM) in 41 pts undergoing catheter ablation of AF. First, EAVM during sinus rhythm was done in redo cases of 10 pts with paroxysmal AF despite durable PVI. Confluent low-voltage areas (LVA) were found in all pts and were targeted with circumferential isolation, so-called box isolation of fibrotic areas (BIFA). This strategy led to stable sinus rhythm in 9/10 pts and was transferred prospectively to first procedures of 31 pts with nonparoxysmal AF. In 13 pts (42%), no LVA (<0.5 mV) were identified, and only PVI was performed. In 18 pts (58%), additional BIFA strategies were applied (posterior box in 5, anterior box in 7, posterior plus anterior box in 5, no box in 1 due to diffuse fibrosis). Mean follow-up was 12.5 ± 2.4 months. Single-procedure freedom from AF/atrial tachycardia was achieved in 72.2% of pts and in 83.3% of pts with 1.17 procedures/patient. In approximately 40% of pts with nonparoxysmal AF, no substantial LVA were identified, and PVI alone showed high success rate. In pts with paroxysmal AF despite durable PVI and in approximately 60% of pts with nonparoxysmal AF, individually localized LVA were identified and could be targeted successfully with the BIFA strategy. © 2015 Wiley Periodicals, Inc.

  17. Design and comparative study of vertical LEDs with graphene, ITO and Ni/Au as contact/current spreading layer

    NASA Astrophysics Data System (ADS)

    Singh, Sumitra; Mahala, Pramila; Pal, Suchandan

    2018-01-01

    This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.

  18. Electron beam induced damage in ITO coated Kapton. [Indium Tin Oxide

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    Data for the stability of thin conductive indium tin oxide films on 0.003 inch thick Kapton substrates during exposure of the surface to electron beams are reported. The electron beam energy was 3 keV and the diameter was about 0.8 mm. Thermal effects and surface modifications are considered. For primary current greater than 0.6 microamperes, an obvious dark discoloration with diameter approximately that of the beam was produced. The structure of the discolored region was studied with the scanning electron microscope, and the findings are stated. Surface modifications were explored by AES, obtaining spectra and secondary emission coefficient as a function of time for different beam intensities. In all cases beam exposure results in a decrease of the secondary yield but because of thermal effects this change, as well as composition changes, cannot be directly interpreted in terms of electron beam dosage.

  19. Effect of modification substrate on the microstructure of hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Realpe-Jaramillo, J.; Morales-Morales, J. A.; González-Sánchez, J. A.; Cabanzo, R.; Mejía-Ospino, E.; Rodríguez-Pereira, J.

    2017-01-01

    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.

  20. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase π

    PubMed Central

    Ralat, Luis A.; Colman, Roberta F.

    2003-01-01

    Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase π (GST π): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST π with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST π at pH 7.0 and 25°C as assayed using mBBr as substrate, with a lesser effect on the enzyme’s use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST π with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites. PMID:14573868

  1. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase pi.

    PubMed

    Ralat, Luis A; Colman, Roberta F

    2003-11-01

    Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.

  2. Light-extraction enhancement of GaN-based 395  nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode.

    PubMed

    Xu, Jin; Zhang, Wei; Peng, Meng; Dai, Jiangnan; Chen, Changqing

    2018-06-01

    The distinct ultraviolet (UV) light absorption of indium tin oxide (ITO) limits the performance of GaN-based near-UV light-emitting diodes (LEDs). Herein, we report an Al-doped ITO with enhanced UV transmittance and low sheet resistance as the transparent conductive electrode for GaN-based 395 nm flip-chip near-UV LEDs. The thickness dependence of optical and electrical properties of Al-doped ITO films is investigated. The optimal Al-doped ITO film exhibited a transmittance of 93.2% at 395 nm and an average sheet resistance of 30.1  Ω/sq. Meanwhile, at an injection current of 300 mA, the forward voltage decreased from 3.14 to 3.11 V, and the light output power increased by 13% for the 395 nm near-UV flip-chip LEDs with the optimal Al-doped ITO over those with pure ITO. This Letter provides a simple and repeatable approach to further improve the light extraction efficiency of GaN-based near-UV LEDs.

  3. Surface modification for interaction study with bacteria and preosteoblast cells

    NASA Astrophysics Data System (ADS)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  4. Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells.

    PubMed

    Vaagensmith, Bjorn; Reza, Khan Mamun; Hasan, Md Nazmul; Elbohy, Hytham; Adhikari, Nirmal; Dubey, Ashish; Kantack, Nick; Gaml, Eman; Qiao, Qiquan

    2017-10-18

    Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent electrodes (TEs) offer great potential as a low cost alternative to expensive indium tin oxide (ITO). However, strong acids are typically used for enhancing the conductivity of PEDOT:PSS TEs, which produce processing complexity and environmental issues. This work presents an environmentally friendly acid free approach to enhance the conductivity of PEDOT:PSS using a light oxygen plasma treatment, in addition to solvent blend additives and post treatments. The plasma treatment was found to significantly reduce the sheet resistance of PEDOT:PSS TEs from 85 to as low as 15 Ω sq -1 , which translates to the highest reported conductivity of 5012 S/cm for PEDOT:PSS TEs. The plasma treated PEDOT:PSS TE resulted in an ITO-free perovskite solar cell efficiency of 10.5%, which is the highest reported efficiency for ITO-free perovskite solar cells with a PEDOT:PSS electrode that excludes the use of acid treatments. This research presents the first demonstration of this technology. Moreover, the PEDOT:PSS TEs enabled better charge extraction from the perovskite solar cells and reduced hysteresis in the current density-voltage (J-V) curves.

  5. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  6. Preparation of ITO/SiO{sub x}/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, H. W.; Yang, J.; Li, Y. H.

    2015-03-02

    Complete photo-generated minority carrier's quantum tunneling device under AM1.5 illumination is fabricated by depositing tin-doped indium oxide (ITO) on n-type silicon to form a structure of ITO/SiO{sub x}/n-Si heterojunction. The work function difference between ITO and n-Si materials essentially acts as the origin of built-in-field. Basing on the measured value of internal potential (V{sub bi} = 0.61 V) and high conversion efficiency (9.27%), we infer that this larger photo-generated holes tunneling occurs when a strong inversion layer at the c-Si surface appears. Also, the mixed electronic states in the ultra-thin intermediate region between ITO and n-Si play a defect-assisted tunneling.

  7. Effect of replacement of tin doped indium oxide (ITO) by ZnO: analysis of environmental impact categories

    NASA Astrophysics Data System (ADS)

    Ziemińska-Stolarska, Aleksandra; Barecka, Magda; Zbiciński, Ireneusz

    2017-10-01

    Abundant use of natural resources is doubtlessly one of the greatest challenges of sustainable development. Process alternatives, which enable sustainable manufacturing of valuable products from more accessible resources, are consequently required. One of examples of limited resources is Indium, currently broadly used for tin doped indium oxide (ITO) for production of transparent conductive films (TCO) in electronics industry. Therefore, candidates for Indium replacement, which would offer as good performance as the industrial state-of-the-art technology based on ITO are widely studied. However, the environmental impact of new layers remains unknown. Hence, this paper studies the environmental effect of ITO replacement by zinc oxide (ZnO) by means life cycle assessment (LCA) methodology. The analysis enables to quantify the environmental impact over the entire period of life cycle of products—during manufacturing, use phase and waste generation. The analysis was based on experimental data for deposition process. Further, analysis of different impact categories was performed in order to determine specific environmental effects related to technology change. What results from the analysis, is that ZnO is a robust alternative material for ITO replacement regarding environmental load and energy efficiency of deposition process which is also crucial for sustainable TCO layer production.

  8. Influence of Binders and Solvents on Stability of Ru/RuOx Nanoparticles on ITO Nanocrystals as Li-O2 Battery Cathodes.

    PubMed

    Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm

    2017-02-08

    Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuO x /ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi

    2016-04-01

    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  10. Structural and morphological properties of ITO thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2015-10-01

    Physical properties of transparent and conducting indium tin oxide (ITO) thin films grown by radiofrequency (RF) magnetron sputtering are studied systematically by changing deposition time. The X-ray diffraction (XRD) data indicate polycrystalline thin films with grain orientations predominantly along the (2 2 2) and (4 0 0) directions. From atomic force microscopy (AFM) it is found that by increasing the deposition time, the roughness of the film increases. Scanning electron microscopy (SEM) images show a network of a high-porosity interconnected nanoparticles, which approximately have a pore size ranging between 20 and 30 nm. Optical measurements suggest an average transmission of 80 % for the ITO films. Sheet resistances are investigated using four-point probes, which imply that by increasing the film thickness the resistivities of the films decrease to 2.43 × 10-5 Ω cm.

  11. Conductive Paper by LBL Assembly of PSS and ITO onto Wood Fibers and its Electrical Properties through Impedance Spectroscopy and I-AFM

    NASA Astrophysics Data System (ADS)

    Peng, Chunqing; Thio, Yonathan; Gerhardt, Rosario

    2009-03-01

    Conductive paper has been fabricated by layer-by-layer (LBL) assembly of polyelectrolytes and indium tin oxide (ITO) nanoparticles onto wood fibers, followed by traditional paper making method. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The AC electrical properties, measured for frequencies ranging from 0.01 Hz to 1 MHz, will be reported for the in-plane (IP) and through-the-thickness (TT) directions. With 10 bilayers of PSS/ITO assembly on wood fibers, the conductivity of as-prepared paper was improved by more than six orders of magnitude and reach to 5.2x10-6 S cm-1 in IP direction and 1.9x10-8 S cm-1 in TT direction. The percolation phenomenon of ITO nanoparticles through the handsheet in both directions was observed through current atomic force microscopy (I-AFM). By applying a bias voltage, either on one end of the paper stripes or on one side of the paper handsheet, the current can be detected on the other end of the paper stripes or on the other side of the paper handsheet. PEI can be used to modify the ITO suspension and significantly improve the LBL procedure. The mechanism of PEI modifying ITO colloidal suspension will be discussed.

  12. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.

    PubMed

    Mishra, Satyendra K; Gupta, Banshi D

    2013-05-07

    The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.

  13. Substrate binding ability of chemically inactivated pectinase for the substrate pectic acid.

    PubMed

    Chiba, Y; Kobayashi, M

    1995-07-01

    Pectinase (polygalacturonase) was purified from a commercial pectinase preparation from a mold. Substrate binding of pectinase was measured by centrifugal affinity chromatography using an immobilized substrate, pectic acid. Desorption of pectinase from the affinity matrix with the substrate pectin and pectic acid gave Kd values of 5.3 and 8.5 mg/ml, respectively. Chemical modification of pectinase by 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (EDC) and diethyl pyrocarbonate (DEP) caused a loss of most of the enzyme activity, but the substrate binding ability was not impaired. Thus, the pectinase preparation was digested with lysyl endopeptidase and the resulting peptides were treated with pectic acid-affinity gel. Three peptide fragments, which were recovered from the affinity column and sequenced, were identical to sequences in the second pectinase gene from Aspergillus niger. The first peptide contained 17 amino acids, Asp101-Ser117, and the second and third peptides corresponded to 18 amino acids of Asn152-Asp169. These results indicate that the inactivated pectinase retained substrate binding ability and would function as an acidic polysaccharide recognizing protein.

  14. Demystifying O-GlcNAcylation: hints from peptide substrates.

    PubMed

    Shi, Jie; Ruijtenbeek, Rob; Pieters, Roland J

    2018-03-22

    O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.

  15. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases*

    PubMed Central

    Tinti, Michele; Paoluzi, Serena; Santonico, Elena; Masch, Antonia; Schutkowski, Mike

    2017-01-01

    Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level. PMID:28159843

  16. Enhanced Light Extraction from OLEDs Fabricated on Patterned Plastic Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hippola, Chamika; Kaudal, Rajiv; Manna, Eeshita

    A key scientific and technological challenge in organic light-emitting diodes (OLEDs) is enhancing the light outcoupling factor η out, which is typically <20%. This paper reports experimental and modeling results of a promising approach to strongly increase η out by fabricating OLEDs on novel flexible nanopatterned substrates that result in a >2× enhancement in green phosphorescent OLEDs (PhOLEDs) fabricated on corrugated polycarbonate (PC). The external quantum efficiency (EQE) reaches 50% (meaning ηout ≥50%); it increases 2.6x relative to a glass/ITO device and 2× relative to devices on glass/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) or flat PC/PEDOT:PSS. A significant enhancement is also observed formore » blue PhOLEDs with EQE 1.7× relative to flat PC. The corrugated PC substrates are fabricated efficiently and cost-effectively by direct room-temperature molding. These substrates successfully reduce photon losses due to trapping/waveguiding in the organic+anode layers and possibly substrate, and losses to plasmons at the metal cathode. Focused ion beam gauged the conformality of the OLEDs. Dome-shaped convex nanopatterns with height of ~280–400 nm and pitch ~750–800 nm were found to be optimal. Lastly, substrate design and layer thickness simulations, reported first for patterned devices, agree with the experimental results that present a promising method to mitigate photon loss paths in OLEDs.« less

  17. Enhanced Light Extraction from OLEDs Fabricated on Patterned Plastic Substrates

    DOE PAGES

    Hippola, Chamika; Kaudal, Rajiv; Manna, Eeshita; ...

    2018-02-19

    A key scientific and technological challenge in organic light-emitting diodes (OLEDs) is enhancing the light outcoupling factor η out, which is typically <20%. This paper reports experimental and modeling results of a promising approach to strongly increase η out by fabricating OLEDs on novel flexible nanopatterned substrates that result in a >2× enhancement in green phosphorescent OLEDs (PhOLEDs) fabricated on corrugated polycarbonate (PC). The external quantum efficiency (EQE) reaches 50% (meaning ηout ≥50%); it increases 2.6x relative to a glass/ITO device and 2× relative to devices on glass/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) or flat PC/PEDOT:PSS. A significant enhancement is also observed formore » blue PhOLEDs with EQE 1.7× relative to flat PC. The corrugated PC substrates are fabricated efficiently and cost-effectively by direct room-temperature molding. These substrates successfully reduce photon losses due to trapping/waveguiding in the organic+anode layers and possibly substrate, and losses to plasmons at the metal cathode. Focused ion beam gauged the conformality of the OLEDs. Dome-shaped convex nanopatterns with height of ~280–400 nm and pitch ~750–800 nm were found to be optimal. Lastly, substrate design and layer thickness simulations, reported first for patterned devices, agree with the experimental results that present a promising method to mitigate photon loss paths in OLEDs.« less

  18. A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates

    PubMed Central

    Rasappa, Sozaraj; Ghoshal, Tandra; Borah, Dipu; Senthamaraikannan, Ramsankar; Holmes, Justin D.; Morris, Michael A.

    2015-01-01

    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance. PMID:26290188

  19. A study of fullerene-quantum dot composite structure on substrates with a transparent electrode layer

    NASA Astrophysics Data System (ADS)

    Pavlov, S. I.; Kirilenko, D. A.; Nashchekin, A. V.; Sokolov, R. V.; Konnikov, S. G.

    2015-02-01

    We have studied the structure of films consisting of fullerene clusters and a related fullerene-based composite with incorporated quantum dots. The films were obtained by electrophoretic deposition from solution onto glass substrates with a transparent indium-doped tin oxide (ITO) electrode layer. The average cluster size, as measured by electron microscopy, amounts to 300 nm in pure fullerene films and 800 nm in the composite material. Electron diffraction measurements showed that pure fullerene clusters had an fcc lattice, while the introduction of quantum dots rendered the fullerene matrix predominantly amorphous.

  20. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering.

    PubMed

    Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo

    2012-10-01

    Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Surface morphological, structural, electrical and optical properties of GaN-based light-emitting diodes using submicron-scaled Ag islands and ITO thin films

    NASA Astrophysics Data System (ADS)

    Lee, Young-Woong; Reddy, M. Siva Pratap; Kim, Bo-Myung; Park, Chinho

    2018-07-01

    An ITO-Ag islands complex as a new transparent conducting electrode (TCE) structure (on the 5 nm-thick p-InGaN/90 nm-thick p-GaN) for achieving high-performance and more reliable GaN-based LEDs were fabricated. A normal LED with a conventional ITO TCE was also compared. The surface morphological, structural, electrical and optical properties of fabricated GaN-based light-emitting diodes using a complex electrode of submicron-scaled Ag islands and ITO thin films are explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) and output power-current (L-I) techniques. Surface morphology investigations revealed Ag islands formed uniformly on the p-InGaN/p-GaN surface during rapid thermal annealing at 400 °C for 1 min in N2 ambient. The ohmic properties and overall device-performance of the suggested contact and device structures were superior to those in the conventional ITO contact and normal ITO LED structures. Based on the results of XRD and XPS measurements, the formation of the intermetallic gallide phases (AgGa) is responsible for better performance characteristics of the ITO-Ag islands device. The significant improvements are described in terms of the conducting bridge influence, highly effective micro-mirror effect, and wider photon window via the roughened structure.

  2. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  3. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    PubMed Central

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  4. PDSM, a motif for phosphorylation-dependent SUMO modification

    PubMed Central

    Hietakangas, Ville; Anckar, Julius; Blomster, Henri A.; Fujimoto, Mitsuaki; Palvimo, Jorma J.; Nakai, Akira; Sistonen, Lea

    2006-01-01

    SUMO (small ubiquitin-like modifier) modification regulates many cellular processes, including transcription. Although sumoylation often occurs on specific lysines within the consensus tetrapeptide ΨKxE, other modifications, such as phosphorylation, may regulate the sumoylation of a substrate. We have discovered PDSM (phosphorylation-dependent sumoylation motif), composed of a SUMO consensus site and an adjacent proline-directed phosphorylation site (ΨKxExxSP). The highly conserved motif regulates phosphorylation-dependent sumoylation of multiple substrates, such as heat-shock factors (HSFs), GATA-1, and myocyte enhancer factor 2. In fact, the majority of the PDSM-containing proteins are transcriptional regulators. Within the HSF family, PDSM is conserved between two functionally distinct members, HSF1 and HSF4b, whose transactivation capacities are repressed through the phosphorylation-dependent sumoylation. As the first recurrent sumoylation determinant beyond the consensus tetrapeptide, the PDSM provides a valuable tool in predicting new SUMO substrates. PMID:16371476

  5. Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes

    PubMed Central

    Shah, Sunny S.; Lee, Ji Youn; Verkhoturov, Stanislav; Tuleuova, Nazgul; Schweikert, Emile A.; Ramanculov, Erlan; Revzin, Alexander

    2013-01-01

    This paper describes a novel approach of controlling cell-surface interactions through an electrochemical “switching” of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte–ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (−1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to “switch” chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future, control of the biointerfacial properties afforded by this novel approach may allow the organization of multiple cell types into precise geometric configurations in order to create better in vitro mimics of cellular complexity of the native tissues. PMID:18512875

  6. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Coutts, T. J.

    1988-01-01

    The radiation resistance of ITO/InP cells processed by dc magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistances significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectrosocpy, and determinations of surface conductivity type are used to investigate the configuration of the ITO/InP cells. It is concluded that these latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor.

  7. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Coutts, T. J.

    1988-01-01

    The radiation resistance of ITO/InP cells processed by DC magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistance significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectroscopy, and determinations of surface conductivity types are used to investigate the configuration of the ITO/InP cells. It is concluded that thesee latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor.

  8. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    NASA Astrophysics Data System (ADS)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  9. Performance analysis and comparison of ITO- and FTO-based optically transparent terahertz U-shaped patch antennas

    NASA Astrophysics Data System (ADS)

    Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar

    2015-02-01

    An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.

  10. Laser modification of thermally sprayed coatings

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.

    1987-08-01

    Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.

  11. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wen; Ting, Chi-Feng; Hung, Miao-Ken; Chiou, Chwei-Huann; Liu, Ying-Ling; Liu, Zongwen; Ratinac, Kyle R.; Ringer, Simon P.

    2009-02-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO2 layers onto the ITO or ITO/TiO2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO2 core-shell nanowires or pristine TiO2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  12. Effect of annealing temperature on VO2(M)/ITO film nanomaterials for thermochromic smart windows application and study its contact angle

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Rabia, Mohamed; Ezzat, Sara; Mansour, Naglaa; Saeed, Ebtisam; Sayyah, Said M.

    2018-01-01

    Metastable phase VO2(B) film coated ITO glass was prepared using cyclic potentiometric device utilizing VOSO4 and H2SO4 solution. The optimum conditions for the deposition of the nanostructured VO2(B) film were determined using cathodic peak current density (Ipc) values. Ipc values increase with increasing both VOSO4 and H2SO4 concentrations and then decrease with further increasing the concentrations. Also, monoclinic phase VO2(M)/ITO film was prepared from VO2(B)/ITO film under the effect of annealing temperatures from 550°C to 750°C. Different analyses have been carried out to confirm the chemical, morphological, and crystal structure of the nanostructured VO2(M)/ITO film. From the XRD analysis, the crystallinity increases with the increasing of annealing temperature from 550°C to 750°C. The optical transmittance spectrum was ˜97% for the film annealed at 650°C. Also, the critical thermochromic temperature (Tc) of the optimized film was ˜47.5°C that measured using cooling and heating modes. Finally, the wettability of the VO2(M)/ITO film at different annealing temperature (550°C to 750°C) was studied, in which the contact angle increases from 81 deg to 92 deg with increasing annealing temperatures from 550°C to 750°C, respectively.

  13. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  14. High‐Volume Processed, ITO‐Free Superstrates and Substrates for Roll‐to‐Roll Development of Organic Electronics

    PubMed Central

    Hösel, Markus; Angmo, Dechan; Søndergaard, Roar R.; dos Reis Benatto, Gisele A.; Carlé, Jon E.; Jørgensen, Mikkel

    2014-01-01

    The fabrication of substrates and superstrates prepared by scalable roll‐to‐roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium‐tin‐oxide (ITO) for the flexible carrier materials is described and a description of how roll‐to‐roll processing development led to simplification from an initially complex make‐up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction. PMID:27980893

  15. ITO/gold nanoparticle/RGD peptide composites to enhance electrochemical signals and proliferation of human neural stem cells.

    PubMed

    Kim, Tae-Hyung; El-Said, Waleed Ahmed; An, Jeung Hee; Choi, Jeong-Woo

    2013-04-01

    A cell chip composed of ITO, gold nanoparticles (GNP) and RGD-MAP-C peptide composites was fabricated to enhance the electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The structural characteristics of the fabricated surfaces were confirmed by both scanning electron microscopy and surface-enhanced Raman spectroscopy. HB1.F3 cells were allowed to attach to various composites electrodes in the cell chip and the material-dependent effects on electrochemical signals and cell proliferation were analyzed. The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to be the best material in regards to enhancing the voltammetric signals of HB1.F3 cells when exposed to cyclic voltammetry, as well as for increasing cell proliferation. Differential pulse voltammetry was performed to evaluate the adverse effects of doxorubicin on HB1.F3 cells. In these experiments, negative correlations between cell viability and chemical concentrations were obseved, which were more sensitive than MTT viability assay especially at low concentrations (<0.1 μg/mL). In this basic science study, a cell chip composed of ITO, gold nanoparticles and RGD-MAP-C peptide composites was fabricated to enhance electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to best enhance the voltammetric signals of the studied cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    NASA Astrophysics Data System (ADS)

    Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran

    2014-04-01

    The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.

  17. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  18. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  19. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Sueoka, S.; Harafuji, K.

    2017-06-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.

  20. Ion beam modification of structural and optical properties of GeO2 thin films deposited at various substrate temperatures using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rathore, Mahendra Singh; Vinod, Arun; Angalakurthi, Rambabu; Pathak, A. P.; Singh, Fouran; Thatikonda, Santhosh Kumar; Nelamarri, Srinivasa Rao

    2017-11-01

    High energy heavy ion irradiation-induced modification of high quality crystalline GeO2 thin films grown at different substrate temperatures ranging from 100 to 500 °C using pulsed laser deposition has been investigated. The pristine films were irradiated with 100 MeV Ag7+ ions at fixed fluence of 1 × 1013 ions/cm2. These pristine and irradiated films have been characterized using X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared and photoluminescence spectroscopy. The XRD and Raman results of pristine films confirm the formation of hexagonal structure of GeO2 films, whereas the irradiation eliminates all the peaks except major GeO2 peak of (101) plane. It is evident from the XRD results that crystallite size changes with substrate temperature and SHI irradiation. The surface morphology of films was studied by AFM. The functional group of pristine and irradiated films was investigated by IR transmission spectra. Pristine films exhibited strong photoluminescence around 342 and 470 nm due to oxygen defects and a red shift in the PL bands is observed after irradiation. Possible mechanism of tuning structural and optical properties of pristine as well as irradiated GeO2 films with substrate temperature and ion beam irradiation has been reported in detail.

  1. The ITO-capped WO3 nanowires biosensor based on field-effect transistor in label-free protein sensing

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen

    2017-05-01

    The fabrication of ITO-capped WO3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was `label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO3 nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics.

  2. Nanoscale platinum printing on insulating substrates.

    PubMed

    O'Connell, C D; Higgins, M J; Sullivan, R P; Jamali, S S; Moulton, S E; Wallace, G G

    2013-12-20

    The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).

  3. Surface Modification of Nanocellulose Substrates

    NASA Astrophysics Data System (ADS)

    Zoppe, Justin Orazio

    Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo

  4. Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.

    PubMed

    Zou, Ye; Mao, Hongying; Meng, Qing; Zhu, Daoben

    2016-02-28

    Using in situ ultraviolet photoelectron spectroscopy, the electronic structure evolutions at the interface between pentacene and fullerene (C60), a classical organic donor-acceptor heterostructure in organic electronic devices, on indium-tin oxide (ITO) and MoO3 modified ITO substrates have been investigated. The insertion of a thin layer MoO3 has a significant impact on the interfacial energy level alignment of pentacene-C60 heterostructure. For the deposition of C60 on pentacene, the energy difference between the highest occupied molecular orbital of donor and the lowest unoccupied molecular orbital of acceptor (HOMO(D)-LUMO(A)) offset of C60/pentacene heterostructure increased from 0.86 eV to 1.54 eV after the insertion of a thin layer MoO3 on ITO. In the inverted heterostructrure where pentacene was deposited on C60, the HOMO(D)-LUMO(A) offset of pentacene/C60 heterostructure increased from 1.32 to 2.20 eV after MoO3 modification on ITO. The significant difference of HOMO(D)-LUMO(A) offset shows the feasibility to optimize organic electronic device performance through interfacial engineering approaches, such as the insertion of a thin layer high work function MoO3 films.

  5. Numerical and experimental investigation of GaN-based flip-chip light-emitting diodes with highly reflective Ag/TiW and ITO/DBR Ohmic contacts.

    PubMed

    Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Liu, Yingce; Liu, Mengling; Liu, Zongyuan; Gui, Chengqun; Liu, Sheng

    2017-10-30

    We demonstrate two types of GaN-based flip-chip light-emitting diodes (FCLEDs) with highly reflective Ag/TiW and indium-tin oxide (ITO)/distributed Bragg reflector (DBR) p-type Ohmic contacts. We show that a direct Ohmic contact to p-GaN layer using pure Ag is obtained when annealed at 600°C in N 2 ambient. A TiW diffusion barrier layer covered onto Ag is used to suppress the agglomeration of Ag and thus maintain high reflectance of Ag during high temperature annealing process. We develop a strip-shaped SiO 2 current blocking layer beneath the ITO/DBR to alleviate current crowding occurring in FCLED with ITO/DBR. Owing to negligibly small spreading resistance of Ag, however, our combined numerical and experimental results show that the FCLED with Ag/TiW has a more favorable current spreading uniformity in comparison to the FCLED with ITO/DBR. As a result, the light output power of FCLED with Ag/TiW is 7.5% higher than that of FCLED with ITO/DBR at 350 mA. The maximum output power of the FCLED with Ag/TiW obtained at 305.6 A/cm 2 is 29.3% larger than that of the FCLED with ITO/DBR obtained at 278.9 A/cm 2 . The improvement appears to be due to the enhanced current spreading and higher optical reflectance provided by the Ag/TiW.

  6. The rational parameterization theorem for multisite post-translational modification systems.

    PubMed

    Thomson, Matthew; Gunawardena, Jeremy

    2009-12-21

    Post-translational modification of proteins plays a central role in cellular regulation but its study has been hampered by the exponential increase in substrate modification forms ("modforms") with increasing numbers of sites. We consider here biochemical networks arising from post-translational modification under mass-action kinetics, allowing for multiple substrates, having different types of modification (phosphorylation, methylation, acetylation, etc.) on multiple sites, acted upon by multiple forward and reverse enzymes (in total number L), using general enzymatic mechanisms. These assumptions are substantially more general than in previous studies. We show that the steady-state modform concentrations constitute an algebraic variety that can be parameterized by rational functions of the L free enzyme concentrations, with coefficients which are rational functions of the rate constants. The parameterization allows steady states to be calculated by solving L algebraic equations, a dramatic reduction compared to simulating an exponentially large number of differential equations. This complexity collapse enables analysis in contexts that were previously intractable and leads to biological predictions that we review. Our results lay a foundation for the systems biology of post-translational modification and suggest deeper connections between biochemical networks and algebraic geometry.

  7. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation.

    PubMed

    Greenwood, John; Phan, Thanh Hai; Fujita, Yasuhiko; Li, Zhi; Ivasenko, Oleksandr; Vanderlinden, Willem; Van Gorp, Hans; Frederickx, Wout; Lu, Gang; Tahara, Kazukuni; Tobe, Yoshito; Uji-I, Hiroshi; Mertens, Stijn F L; De Feyter, Steven

    2015-05-26

    We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.

  8. Organic light emitting diode with surface modification layer

    DOEpatents

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  9. Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Mahapatra, Santosh K.; Pal, Chandana; Sharma, Ashwani K.; Ray, Asim K.

    2018-05-01

    Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications.

  10. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  11. Morphologies of femtosecond laser ablation of ITO thin films using gaussian or quasi-flat top beams for OLED repair

    NASA Astrophysics Data System (ADS)

    Kim, Hoon-Young; Choi, Won-Suk; Ji, Suk-Young; Shin, Young-Gwan; Jeon, Jin-Woo; Ahn, Sanghoon; Cho, Sung-Hak

    2018-02-01

    This study compares the ablation morphologies obtained with a femtosecond laser of both Gaussian and quasi-flat top beam profiles when applied to indium tin oxide (ITO) thin films for the purpose of OLED repair. A femtosecond laser system with a wavelength of 1030 nm and pulse duration of 190 fs is used to pattern an ITO thin film. The laser fluence is optimized for patterning at 1.38 J/cm2. The patterned ITO thin film is then evaluated through both optical microscope and atomic force microscope. Ablations with a square quasi-flat top beam are demonstrated using slits with varying x- y axes. With the Gaussian beam, the pattern width of the ablated area is shown to range from 9.17 to 9.99 μm when the number of irradiation pulse increases from one to six. In contrast, when slit control is used to obtain a quasi-flat top beam, the ablated pattern width remains constant at 10 μm, despite the increase in the number of pulse. The improved surface roughness is correlated with the quasi-flat top beam through measured Ra values. Furthermore, when using the Gaussian beam, the minimum resolution of the controllable ablation depth on the ITO thin film is found to be 60 nm. In contrast, when the quasi-flat top beam is used, the minimum ablation depth decreases to 40 nm.

  12. Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided nanotextured substrate.

    PubMed

    Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua

    2014-07-09

    High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.

  13. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    NASA Astrophysics Data System (ADS)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  14. Substrate Control in Stereoselective Lanthionine Biosynthesis

    PubMed Central

    Tang, Weixin; Jiménez-Osés, Gonzalo; Houk, K. N.; van der Donk, Wilfred A.

    2014-01-01

    Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example where the substrate controls the stereoselectivity of an enzyme-catalyzed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by cysteine attack on dehydrated Ser and Thr residues. We demonstrate that several lanthionine synthetases catalyze highly selective anti additions in which the substrate (and not the enzyme) determines whether the addition occurs from the Re or Si face. A single point mutation in the peptide substrate completely inverted the stereochemical outcome of the enzymatic modification. Quantum mechanical calculations reproduced the experimentally observed selectivity and suggest that conformational restraints imposed by the amino acid sequence on the transition states determine the face selectivity of the Michael-type cyclization. PMID:25515891

  15. Mechanisms responsible for the trophic effect of beta-adrenoceptors on the I(to) current density in type 1 diabetic rat cardiomyocytes.

    PubMed

    Setién, Raúl; Alday, Aintzane; Diaz-Asensio, Cristina; Urrutia, Janire; Gallego, Mónica; Casis, Oscar

    2013-01-01

    In diabetic ventricular myocytes, transient outward potassium current (Ito) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on Ito since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (βAR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the βAR agonist isoproterenol recovers Ito amplitude to normal values. Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. Ito current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. Stimulation of βAR activates first a Gαs protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the Gαi protein. This leads to the activation of the βAR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. β2AR stimulation activates a Gαs and Gαi protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart. Copyright © 2012 S. Karger AG, Basel.

  16. Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors.

    PubMed

    Banerjee, Arghya Narayan; Anitha, V C; Joo, Sang W

    2017-10-16

    Ti substrate surface is modified into two-dimensional (2D) TiO 2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO 2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO 2 . Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO 2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO 2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm -2 ) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.

  17. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  18. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  19. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    NASA Astrophysics Data System (ADS)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  20. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases.

    PubMed

    O'Connor, Hazel F; Huibregtse, Jon M

    2017-09-01

    Protein ubiquitylation is an important post-translational modification, regulating aspects of virtually every biochemical pathway in eukaryotic cells. Hundreds of enzymes participate in the conjugation and deconjugation of ubiquitin, as well as the recognition, signaling functions, and degradation of ubiquitylated proteins. Regulation of ubiquitylation is most commonly at the level of recognition of substrates by E3 ubiquitin ligases. Characterization of the network of E3-substrate relationships is a major goal and challenge in the field, as this expected to yield fundamental biological insights and opportunities for drug development. There has been remarkable success in identifying substrates for some E3 ligases, in many instances using the standard protein-protein interaction techniques (e.g., two-hybrid screens and co-immunoprecipitations paired with mass spectrometry). However, some E3s have remained refractory to characterization, while others have simply not yet been studied due to the sheer number and diversity of E3s. This review will discuss the range of tools and techniques that can be used for substrate profiling of E3 ligases.

  1. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation

    PubMed Central

    Preston, G. Michael; Brodsky, Jeffrey L.

    2017-01-01

    The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. PMID:28159894

  2. 32 CFR 728.44 - Members of security assistance training programs, foreign military sales, and their ITO...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., except bona fide emergency situations which might threaten the life or health of an individual. Generally... patient is an ITO authorized dependent), grade or rate, country of origin, diagnosis, type of elective...

  3. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  4. Selective Inactivation of Functional RNAs by Ribozyme-Catalyzed Covalent Modification.

    PubMed

    Poudyal, Raghav R; Benslimane, Malak; Lokugamage, Melissa P; Callaway, Mackenzie K; Staller, Seth; Burke, Donald H

    2017-03-17

    The diverse functions of RNA provide numerous opportunities for programming biological circuits. We describe a new strategy that uses ribozyme K28min to covalently tag a specific nucleobase within an RNA or DNA target strand to regulate and selectively inactivate those nucleic acids. K28min variants with appropriately reprogrammed internal guide sequences efficiently tagged multiple sites from an mRNA and from aptamer and ribozyme targets. Upon covalent modification by the corresponding K28min variant, an ATP-binding aptamer lost all affinity for ATP, and the fluorogenic Mango aptamer lost its ability to activate fluorescence of its dye ligand. Modifying a hammerhead ribozyme near the catalytic core led to loss of almost all of its substrate-cleaving activity, but modifying the same hammerhead ribozyme within a tertiary stabilizing element that reduces magnesium dependence only impaired substrate cleavage at low magnesium concentration. Thus, ribozyme-mediated covalent modification can be used both to selectively inactivate and to fine-tune the activities of targeted functional RNAs, analogous to the effects of post-translational modifications of proteins. Ribozyme-catalyzed covalent modification could therefore be developed to regulate nucleic acids components of synthetic and natural circuits.

  5. The role of ITO resistivity on current spreading and leakage in InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Genç, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2017-11-01

    The effect of a transparent ITO current spreading layer on electrical and light output properties of blue InGaN/GaN light emitting diodes (LEDs) is discussed. When finite conductivity of ITO is taken into account, unlike in previous models, the topology of LED die and contacts are shown to significantly affect current spreading and light output characteristics in top emitting devices. We propose an approach for calculating the current transfer length describing current spreading. We show that an inter-digitated electrode configuration with distance between the contact pad and the edge of p-n junction equal to transfer length in the current spreading ITO layer allows one to increase the optical area of LED chip, as compared to the physical area of the die, light output power, and therefore, the LED efficiency for a given current density. A detailed study of unpassivated LEDs also shows that current transfer lengths longer than the distance between the contact pad and the edge of p-n junction leads to increasing surface leakage that can only be remedied with proper passivation.

  6. THE DISPERSION OF HERBACEOUS PLANT POLLEN IN ITO CITY, SHIZUOKA.

    PubMed

    Fujii, Mayumi; Makiyama, Kiyoshi; Okazaki, Kenji; Hisamatsu, Kenichi

    2016-08-01

    Airborne pollen was examined in Ito City, Shizuoka for the purpose of treatment and prophylaxis pollen allergies because the patients with pollen allergy to herbaceous plants have recently increased. Setting up a Durham's sampler, we measured airborne pollen identified and classified: Poaceae, Polygonaceae, Amaranthaceae, Urticaceae, Cannabaceae, Ambrosia and Artemisia indica.We studied whether each airborne pollen count has something to do with weather condition (2004-2015). Average total airborne Poaceae pollen count and standard deviation from January to June was 19.4±5.5 cells/cm(2), average total airborne Polygonaceae pollen count and standard deviation from April to September was 11.6±13.4 cells/cm(2). Airborne Poaceae, Amaranthaceae, Cannabaceae, Uriticaceae. Ambrosia and Artamisia indica pollen count from July to Deccember in order: 34.0±15.5 cells/cm(2), 1.3±1.1 cells/cm(2), 8.7±6.4cells/cm(2), 4.9±6.4 cells/cm(2), 10.5±7.8 cells/cm(2), and 13.6±16.3 cells/cm(2).Cannabaceae admitted that its airborne pollen count has negative correlation to the rainfall.Artemisia indica admitted that its airborne pollen count has negative correlation to the average temperature. Herbaceous plants pollen doesn't cause allergies because it is much less than tree pollen in ItoCity.It is thought that the diversity of the plants keep the people from having a serious allergy to pollen with awarm weather in this area.

  7. Key advances in the chemical modification of nanocelluloses.

    PubMed

    Habibi, Youssef

    2014-03-07

    Nanocelluloses, including nanocrystalline cellulose, nanofibrillated cellulose and bacterial cellulose nanofibers, have become fascinating building blocks for the design of new biomaterials. Derived from the must abundant and renewable biopolymer, they are drawing a tremendous level of attention, which certainly will continue to grow in the future driven by the sustainability trend. This growing interest is related to their unsurpassed quintessential physical and chemical properties. Yet, owing to their hydrophilic nature, their utilization is restricted to applications involving hydrophilic or polar media, which limits their exploitation. With the presence of a large number of chemical functionalities within their structure, these building blocks provide a unique platform for significant surface modification through various chemistries. These chemical modifications are prerequisite, sometimes unavoidable, to adapt the interfacial properties of nanocellulose substrates or adjust their hydrophilic-hydrophobic balance. Therefore, various chemistries have been developed aiming to surface-modify these nano-sized substrates in order to confer to them specific properties, extending therefore their use to highly sophisticated applications. This review collocates current knowledge in the research and development of nanocelluloses and emphasizes more particularly on the chemical modification routes developed so far for their functionalization.

  8. Formation of (111) orientation-controlled ferroelectric orthorhombic HfO{sub 2} thin films from solid phase via annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mimura, Takanori; Katayama, Kiliha; Shimizu, Takao

    2016-08-01

    0.07YO{sub 1.5}-0.93HfO{sub 2} (YHO7) films were prepared on various substrates by pulse laser deposition at room temperature and subsequent heat treatment to enable a solid phase reaction. (111)-oriented 10 wt. % Sn-doped In{sub 2}O{sub 3}(ITO)//(111) yttria-stabilized zirconia, (111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrates, and (111)ITO/(111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrates were employed for film growth. In this study, X-ray diffraction measurements including θ–2θ measurements, reciprocal space mappings, and pole figure measurements were used to study the films. The film on (111)ITO//(111)yttria-stabilized zirconia was an (111)-orientated epitaxial film with ferroelectric orthorhombic phase; the film on (111)ITO/(111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si was an (111)-oriented uniaxial textured film with ferroelectricmore » orthorhombic phase; and no preferred orientation was observed for the film on the (111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrate, which does not contain ITO. Polarization–hysteresis measurements confirmed that the films on ITO covered substrates had saturated ferroelectric hysteresis loops. A remanent polarization (P{sub r}) of 9.6 and 10.8 μC/cm{sup 2} and coercive fields (E{sub c}) of 1.9 and 2.0 MV/cm were obtained for the (111)-oriented epitaxial and uniaxial textured YHO7 films, respectively. These results demonstrate that the (111)-oriented ITO bottom electrodes play a key role in controlling the orientation and ferroelectricity of the phase formation of the solid films deposited at room temperature.« less

  9. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor.

  10. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current–voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung’s method and Norde’s technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I–V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  11. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.

    PubMed

    Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook

    2013-10-23

    We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.

  12. Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing

    NASA Astrophysics Data System (ADS)

    Seaton, D. D.; Krishnan, J.

    2012-08-01

    Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme-substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme-substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein-protein interactions are important in determining the signalling properties of enzymatic signalling pathways.

  13. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation.

    PubMed

    Preston, G Michael; Brodsky, Jeffrey L

    2017-02-15

    The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules

    NASA Astrophysics Data System (ADS)

    Rigoni, F.; Drera, G.; Pagliara, S.; Perghem, E.; Pintossi, C.; Goldoni, A.; Sangaletti, L.

    2017-01-01

    The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO2 chemisorption.

  15. Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules.

    PubMed

    Rigoni, F; Drera, G; Pagliara, S; Perghem, E; Pintossi, C; Goldoni, A; Sangaletti, L

    2017-01-20

    The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO 2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO 2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO 2 chemisorption.

  16. Consequences of Anode Interfacial Layer Deletion. HCl-Treated ITO in P3HT:PCBM-Based Bulk-Heterojunction Organic Photovoltaic Devices

    DTIC Science & Technology

    2010-01-01

    followed by centrifugation. P3HT53was purchased from RiekeMetals, Inc., andwas further purified by sequential Soxhlet extractions with methanol and...19.8 nA (σ=31.1 nA, Figure 2c), and scanning under the same conditions on HCl-treated ITO yields Imean=9.11 nA (σ=12.5 nA, Figure 2d). As seen...0.01:1.0, and the respective combination ofHCl treatment and 10minUVOalso yields 0.23( 0.01:1.0, remarkably similar to an ITO surface treated with RIE

  17. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  18. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  19. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    NASA Astrophysics Data System (ADS)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  20. Flexible, transparent and high-power triboelectric generator with asymmetric graphene/ITO electrodes.

    PubMed

    Song, Xinbo; Chen, Yuanfu; Li, Pingjian; Liu, Jingbo; Qi, Fei; Zheng, Binjie; Zhou, Jinhao; Hao, Xin; Zhang, Wanli

    2016-07-29

    The reported flexible and transparent triboelectric generator (FTTG) can only output ultralow power density (∼2 μW cm(-2)), which has seriously hindered its further development and application. The low power density of FTTG is mainly limited by the transparent material and the electrode structure. Herein, for the first time, a FTTG with a superior power density of 60.7 μW cm(-2) has been fabricated by designing asymmetric electrodes where graphene and indium tin oxide (ITO) act as top and bottom electrodes respectively. Moreover, the performance of FTTG with graphene/ITO (G/I) asymmetric electrodes (GI-FTTG) almost remains unchanged even after 700 cycles, indicating excellent mechanical stability. The excellent performance of GI-FTTG can be attributed to the suitable materials and unique asymmetric electrode structure: the extraordinary flexibility of the graphene top electrode ensures the GI-FTTG excellent mechanical robustness and stability even after longer cycles, and the bottom electrode with very low sheet resistance guarantees lower internal resistance and higher production rate of induction charges to obtain higher output power density. It shows that light-emitting diodes (LED) can be easily powered by GI-FTTG, which demonstrates that the GI-FTTG is very promising for harvesting electrical energy from human activities by using flexible and transparent devices.

  1. Method and apparatus for laser/plasma chemical processing of substrates

    DOEpatents

    Gee, J.M.; Hargis, P.J. Jr.

    1984-07-21

    A process for the modification of substrate surfaces is described, wherein etching or deposition at a surface occurs only in the presence of both reactive species and a directed beam of coherent light.

  2. Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver. Up-regulation during in vitro activation and in hepatic tissue repair.

    PubMed

    Knittel, T; Aurisch, S; Neubauer, K; Eichhorst, S; Ramadori, G

    1996-08-01

    Ito cells (lipocytes, stellate cells) are regarded as the principle matrix-producing cell of the liver and have been shown recently to express glial fibrillary acidic protein, an intermediate filament typically found in glia cells of the nervous system. The present study examines 1) whether Ito cells of rat liver express central nervous system typical adhesion molecules, namely, neural cell adhesion molecule (N-CAM), in a cell-type-specific manner and 2) whether N-CAM expression is affected by activation of Ito cells in vitro and during rat liver injury in vivo. As assessed by reverse transcriptase polymerase chain reaction, Northern blotting, Western blotting, and immunocytochemistry of freshly isolated and cultivated hepatic cells, N-CAM expression was restricted to Ito cells and was absent in hepatocytes, Kupffer cells, and sinusoidal endothelial cells. Ito cells expressed predominantly N-CAM-coding transcripts of 6.1 and 4.8 kb in size and 140-kd isoforms of the N-CAM protein, which was localized on the cell surface membrane of Ito cells. In parallel to glial fibrillary acidic protein down-regulation and smooth muscle alpha-actin up-regulation, N-CAM expression was increased during in vitro transformation of Ito cells from resting to activated (myofibroblast-like) cells and by the fibrogenic mediator transforming growth factor-beta 1. By immunohistochemistry, N-CAM was detected in normal rat liver in the portal field as densely packed material and in a spot as well as fiber-like pattern probably representing nerve structures. However, after liver injury, N-CAM expression became detectable in mesenchymal cells within and around the necrotic area and within fibrotic septae. In serially cut tissue sections, N-CAM-positive cells were predominantly co-distributed with smooth muscle alpha-actin-positive cells rather than glial fibrillary acidic protein-positive cells, especially in fibrotic livers. The experimental results illustrate that N-CAM positivity in the

  3. Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Fralick, Gustave (Technical Monitor)

    2003-01-01

    Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.

  4. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  5. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +}more » ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.« less

  6. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods

    NASA Astrophysics Data System (ADS)

    Etminanfar, M. R.; Khalil-Allafi, J.

    2016-02-01

    In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.

  7. Modification of electrochemically deposited apatite using supercritical water.

    PubMed

    Ban, S; Hasegawa, J

    2001-12-01

    Supercritical water was used as a modification method of electrochemically deposited apatite on pure titanium. The apatites were coated on a commercially pure titanium plate using a hydrothermal-electrochemical method. A constant direct current at 12.5 mA/cm2 was loaded for 1 hr at 25, 60, 100, 150 and 200 degrees C in an electrolyte containing calcium and phosphate ions. The deposited apatite on the titanium substrate was stored in supercritical water at 450 degrees C under 45 MPa for 8 hr. With this treatment, the crystallinity of the apatites increased, sharp edges of the deposited apatites were rounded off, and the bonding strength of the titanium substrate to the deposited apatites significantly increased. On the other hand, weight loss in 0.01 N HCl decreased and the weight gain rate in a simulated body fluid also decreased with this treatment. It is suggested that the modification using supercritical water improved the mechanical strength of the deposited apatite, but worsened its bioactivity.

  8. Effect of content silver and heat treatment temperature on morphological, optical, and electrical properties of ITO films by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Mirzaee, Majid; Dolati, Abolghasem

    2014-09-01

    Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3 with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO matrix covered with silver oxide shell, resulting in high quality nanocomposite thin films. The embedment of polyvinylpyrrolidone inhibited the growth of silver nanoparticles and ITO annealed at 350 °C. Delafossite structure of tin-doped AgInO2 was found at higher annealing temperatures. XRD analysis and FESEM micrographs showed that the optimum temperature to prevent the formation of AgInO2 is 350 °C. The embedment of silver particles (5-10 nm) from reduction of silver ion in ITO thin films improved the electrical conductivity and optical transmittance of ITO nanolayers. The lowest stable sheet resistance of 1,952 Ω/Sq for a 321 nm thick and an average optical transmittance of 91.8 % in the visible region with a band gap of 3.43 eV were achieved for silver-doping content of 0.04 M.

  9. PLMD: An updated data resource of protein lysine modifications.

    PubMed

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  10. Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Maruyama, Eri; Jia, Junjun; Machinaga, Hironobu; Shigesato, Yuzo

    2017-04-01

    High-quality transparent conductive oxide (TCO) films, Sn-doped In2O3 (ITO) and In2O3-ZnO (IZO), were successfully deposited on either synthetic silica or polyethylene terephthalate (PET) substrates in the “transition region” by reactive dc magnetron sputtering using In-Zn and In-Sn alloy targets, respectively, with a specially designed plasma emission feedback system. The composition, crystallinity, surface morphology, and electrical and optical properties of the films were analyzed. All of the IZO films were amorphous, whereas the ITO films were polycrystalline over a wide range of deposition conditions. The minimum resistivities of the IZO and ITO films deposited on the heated PET substrates at 150 °C were 3.3 × 10-4 and 5.4 × 10-4 Ω·cm, respectively. By applying rf bias to unheated PET substrates, ITO films with a resistivity of 4.4 × 10-4 Ω·cm were deposited at a dc self-bias voltage of -60 V.

  11. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    PubMed

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  12. Overcoming substrate limitations for improved production of ethylene in E. coli.

    PubMed

    Lynch, Sean; Eckert, Carrie; Yu, Jianping; Gill, Ryan; Maness, Pin-Ching

    2016-01-01

    Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbial hosts. In the presence of O2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Therefore, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging. We systematically explored the effects of media composition (rich versus defined), gene copy number, and the addition of exogenous substrates and other metabolites on the formation of ethylene in Escherichia coli expressing EFE. Guided by these results, we tested a number of genetic modifications predicted to improve substrate supply and ethylene production, including knockout of competing pathways and overexpression of key enzymes. Several such modifications led to higher AKG levels and higher ethylene productivity, with the best performing strain more than doubling ethylene productivity (from 81 ± 3 to 188 ± 13 nmol/OD600/mL). Both EFE activity and substrate supply can be limiting factors in ethylene production. Targeted modifications in central carbon metabolism, such as overexpression of isocitrate dehydrogenase, and deletion of glutamate synthase or the

  13. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  14. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    PubMed Central

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  15. Understanding the Role of O-GlcNAc Modifications in Plant Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Neil, E.

    2011-06-16

    This project has contributed towards understanding the role of O-GlcNAc (O-linked N-acetylglucosamine) transferases (OGTs) in plants. Through analyses of single and double mutants, we have investigated the unique and overlapping functions of SECRET AGENT (SEC) and SPINDLY (SPY), the arabidopsis OGTs. This work showed that SEC functions as negative regulators of the long-day flowering pathway. SEC also has a positive role in regulation of rosette. An E. coli co-expression system that allows potential substrates to be co-expressed with and O-GlcNAc modified by SEC was developed. We showed that SEC is a bona fide OGT that modifies itself with single O-linkedmore » GlcNAc(s). Using this system, we tested a number of proteins that were hypothesized to be substrates of SEC and identified a number of substrates include GIGANTEA (GI), a component of the long day flowering pathway. The hypothesis that O-GlcNAc modification controls GI activity was tested by first mapping where E. coli-expressed SEC modifies GI and then assessing the activity of a non-modifiable mutant form of GI. The activity of the mutant form of GI was indistinguishable from that of wild type suggesting that either O-GlcNAc does not regulate GI activity or that additional modification sites exist on GI. In collaboration with Dr. Juan Antonio Garcia at Universidad Autónoma de Madrid the role of O-GlcNAc modification of the plum pox virus coat protein (PPV-CP) was investigated. SEC was shown to O-GlcNAc modify PPV-CP and the modification was shown to facilitate the infection process. E. coli-expressed SEC was shown to modify the same PPV-CP sites that are modified in plants. SEC has a large protein interaction domain called the TPR domain that has been hypothesized to have a role in determining the substrate specificity of the enzyme and/or to regulate its activity. A mutational analysis of the TPR domain did not find evidence for a role in substrate specificity but did obtain evidence that the domain

  16. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate

    DOEpatents

    Mazur, Eric [Concord, MA; Shen, Mengyan [Arlington, MA

    2008-10-28

    The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  17. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate

    DOEpatents

    Mazur, Eric; Shen, Mengyan

    2015-09-15

    The present invention generally provides semiconductor substrates having submicronsized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  18. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate

    DOEpatents

    Mazur, Eric , Shen; Mengyan, [Belmont, MA

    2011-02-08

    The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  19. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate

    DOEpatents

    Mazur, Eric; Shen, Mengyan

    2013-12-03

    The present invention generally provides a semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  20. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the rangemore » of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.« less

  1. High-Performance Flexible Single-Crystalline Silicon Nanomembrane Thin-Film Transistors with High- k Nb2O5-Bi2O3-MgO Ceramics as Gate Dielectric on a Plastic Substrate.

    PubMed

    Qin, Guoxuan; Zhang, Yibo; Lan, Kuibo; Li, Lingxia; Ma, Jianguo; Yu, Shihui

    2018-04-18

    A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb 2 O 5 -Bi 2 O 3 -MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 10 4 , and the threshold voltage is ∼1.3 V, with over 200 cm 2 /(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.

  2. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate.

    PubMed

    Abdollahi Nejand, B; Nazari, P; Gharibzadeh, S; Ahmadi, V; Moshaii, A

    2017-01-05

    Here, a low-cost perovskite solar cell using CuI and ZnO as the respective inorganic hole and electron transport layers is introduced. Copper foil is chosen as a cheap and low-weight conductive substrate which has a similar work function to ITO. Besides, copper foil is an interesting copper atom source for the growth of the upper cuprous iodide layer on copper foil. A spray coating of a transparent silver nanowire electrode is used as a top contact. The prepared device shows a maximum power conversion efficiency of 12.80% and long-term durability providing an environmentally and market friendly perovskite solar cell.

  3. One-step femtosecond laser welding and internal machining of three glass substrates

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  4. The electrodeposition of multilayers on a polymeric substrate in Flexible Organic Light Emitting Diode (OLED)

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Tartari, Simone; Cunha, Idaulo Jose

    2016-09-01

    The development of Organic Light Emitting Diode (OLED), using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly(3,4-ethylenedioxythiophene), PEDOT, Poly(p-phenylenevinylene), PPV, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis), Optical Parameters (OP) and Scanning Electron Microscopy (SEM). In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the PET/ITO/PEDOT/PPV/PANI-X1/Al layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED), has indicated that the OLED has higher irradiance. After 1200 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  5. Applications of Cu{sub 2}O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Wei; Sun, Fengqiang, E-mail: fqsun@scnu.edu.cn; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University

    2013-11-15

    Graphical abstract: - Highlights: • Photocatalytic activity of Cu{sub 2}O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H{sub 2}O{sub 2}. • H{sub 2}O{sub 2} amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu{sub 2}O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO{sub 4} solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could bemore » randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H{sub 2}O{sub 2} under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu{sub 2}O microcrystals. Effects of electrodeposition time and H{sub 2}O{sub 2} amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions.« less

  6. In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 11-{2-[2-(2-Methoxyethoxy)ethoxy]ethoxy}undecylphosphonic Acid Self-assembled Monolayer Film by Electrochemical Slab Optical Waveguide Spectroscopy.

    PubMed

    Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji

    2017-01-01

    To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.

  7. Curcumin/turmeric solubilized in sodium hydroxide inhibits HNE protein modification--an in vitro study.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2007-03-21

    Free radical mediated lipid peroxidation has been implicated in multiple diseases. A major oxidation by-product of this deleterious process is 4-hydroxy-2-nonenal (HNE). HNE is cytotoxic, mutagenic and genotoxic and is involved in disease pathogenesis. Curcumin, a non-steroidal anti-inflammatory agent (occurring as the yellow pigment found in the rhizomes of the perennial herb Curcuma longa known as turmeric), has emerged as the newest "nutraceutical" agent that has been shown to be efficacious against colon cancer and other disorders, including correcting cystic fibrosis defects. Since curcumin has been reported to have anti-oxidant properties we hypothesized that it will inhibit HNE-modification of a protein substrate. Using an ELISA that employed HNE-modification of solid phase antigen following immobilization, we found that the curcumin solubilized in dilute alkali (5mM sodium hydroxide, pH 11) inhibited HNE-protein modification by 65%. Turmeric also inhibited HNE-protein modification similarly (65%) but at a much lower alkali level (130muM sodium hydroxide, pH 7.6). Alkali by itself (5mM sodium hydroxide, pH 11) was found to enhance HNE modification by as much as 267%. Curcumin/turmeric has to inhibit this alkali enhanced HNE-modification prior to inhibiting the normal HNE protein modification induced by HNE. Thus, inhibition of HNE-modification could be a mechanism by which curcumin exerts its antioxidant effects. The pH at which the inhibition of HNE modification of substrate was observed was close to the physiological pH, making this formulation of curcumin potentially useful practically.

  8. Very High Output Thermoelectric Devices Based on ITO Nanocomposites

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave; Gregory, Otto J.

    2009-01-01

    A material having useful thermoelectric properties was synthesized by combining indium-tin-oxide (ITO) with a NiCoCrAlY alloy/alumina cermet. This material had a very large Seebeck coefficient with electromotive-force-versustemperature behavior that is considered to be excellent with respect to utility in thermocouples and other thermoelectric devices. When deposited in thin-film form, ceramic thermocouples offer advantages over precious-metal (based, variously, on platinum or rhodium) thermocouples that are typically used in gas turbines. Ceramic thermocouples exhibit high melting temperatures, chemical stability at high temperatures, and little or no electromigration. Oxide ceramics also resist oxidation better than metal thermocouples, cost substantially less than precious-metal thermocouples, and, unlike precious-metal thermocouples, do not exert catalytic effects.

  9. Illuminating structure and acyl donor sites of a physiological transglutaminase substrate from Streptomyces mobaraensis.

    PubMed

    Juettner, Norbert E; Schmelz, Stefan; Bogen, Jan P; Happel, Dominic; Fessner, Wolf-Dieter; Pfeifer, Felicitas; Fuchsbauer, Hans-Lothar; Scrima, Andrea

    2018-05-01

    Transglutaminase from Streptomyces mobaraensis (MTG) has become a powerful tool to covalently and highly specifically link functional amines to glutamine donor sites of therapeutic proteins. However, details regarding the mechanism of substrate recognition and interaction of the enzyme with proteinaceous substrates still remain mostly elusive. We have determined the crystal structure of the Streptomyces papain inhibitory protein (SPI p ), a substrate of MTG, to study the influence of various substrate amino acids on positioning glutamine to the active site of MTG. SPI p exhibits a rigid, thermo-resistant double-psi-beta-barrel fold that is stabilized by two cysteine bridges. Incorporation of biotin cadaverine identified Gln-6 as the only amine acceptor site on SPI p accessible for MTG. Substitution of Lys-7 demonstrated that small and hydrophobic residues in close proximity to Gln-6 favor MTG-mediated modification and are likely to facilitate introduction of the substrate into the front vestibule of MTG. Moreover, exchange of various surface residues of SPI p for arginine and glutamate/aspartate outside the glutamine donor region influences the efficiency of modification by MTG. These results suggest the occurrence of charged contact areas between MTG and the acyl donor substrates beyond the front vestibule, and pave the way for protein engineering approaches to improve the properties of artificial MTG-substrates used in biomedical applications. © 2018 The Protein Society.

  10. Enhancement of low pressure cold sprayed copper coating adhesion by laser texturing on aluminum substrates

    NASA Astrophysics Data System (ADS)

    Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile

    2017-02-01

    Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.

  11. Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study†

    PubMed Central

    Peng, Dungeng; Satterlee, James D.; Ma, Li-Hua; Dallas, Jerry L.; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.

    2011-01-01

    Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which secures host iron, shares many properties with mammalian HOs, but also exhibits some key differences. The crystal structure appears more compact and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D 1H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~102 increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed. PMID:21870860

  12. Surface modification of titanium nitride film by a picosecond Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gakovic, B.; Trtica, M.; Batani, D.; Desai, T.; Panjan, P.; Vasiljevic-Radovic, D.

    2007-06-01

    The interaction of a picosecond Nd:YAG laser (wavelength 532 nm, pulse duration 40 ps) with a polycrystalline titanium nitride (TiN) film was studied. The TiN thin film was deposited by physical vapour deposition on a silicon substrate. The titanium nitride/silicon system was modified with an energy fluence from 0.2 to 5.9 J cm-2. Multi-pulse irradiation was performed in air by a focused laser beam. Surface modifications were analysed after 1 100 successive laser pulses. Depending on the laser pulse energy and pulse count, the following phenomena were observed: (i) increased surface roughness, (ii) titanium nitride film cracking, (iii) silicon substrate modification, (iv) film exfoliation and (v) laser-induced periodical surface structures on nano- (NPSS) and micro-dimensions (MPSS).

  13. A sensitive electrochemiluminescent biosensor based on AuNP-functionalized ITO for a label-free immunoassay of C-peptide.

    PubMed

    Liu, Xiang; Fang, Chen; Yan, Jilin; Li, Huiling; Tu, Yifeng

    2018-05-23

    The C-peptide is a co-product of pancreatic β-cells during insulin secretion; its content in body fluid is closely related to diabetes. This paper reports an immune-sensing strategy for a simple and effective assay of C-peptide based on label-free electrochemiluminescent (ECL) signaling, with high sensitivity and specificity. The basal electrode was constructed of an indium tin oxide (ITO) glass as a conductive substrate, which was decorated by Au nanoparticles (AuNPs) with hydrolysed (3-aminopropyl)trimethoxysilane as the linker. The characteristics of the fabricated electrode were investigated by electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. After immobilizing the C-peptide antibody, which takes great advantage of AuNPs' binding capacity, this immunosensor can quantify C-peptide using luminol as the ECL probe. By measuring ECL inhibition, calibration can be established to report the C-peptide concentration between 0.05 ng mL -1 and 100 ng mL -1 with a detection limit of 0.0142 ng mL -1 . As a proof of concept, the proposed strategy is a promising and versatile platform for the clinical diagnosis, classification, and research of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Lump and lump-soliton solutions to the (2+1) -dimensional Ito equation

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Yun; Ma, Wen-Xiu; Qin, Zhenyun

    2017-06-01

    Based on the Hirota bilinear form of the (2+1) -dimensional Ito equation, one class of lump solutions and two classes of interaction solutions between lumps and line solitons are generated through analysis and symbolic computations with Maple. Analyticity is naturally guaranteed for the presented lump and interaction solutions, and the interaction solutions reduce to lumps (or line solitons) while the hyperbolic-cosine (or the quadratic function) disappears. Three-dimensional plots and contour plots are made for two specific examples of the resulting interaction solutions.

  15. Comparative study between chemical and atmospheric pressure plasma jet cleaning on glass substrate

    NASA Astrophysics Data System (ADS)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Fhong, Soon Chin; Sahdan, Mohd Zainizan; Nayan, Nafarizal

    2017-01-01

    The atmospheric pressure plasma jet with low frequency and argon as working gas is presented in this paper to demonstrate its application for glass substrate clean and modification. The glass substrate clean by atmospheric pressure plasma jet is an efficient method to replace other substrate clean method. A comparative analysis is done in this paper between substrate cleaned by chemical and plasma treatment methods. Water contact angle reading is taken for a different method of substrate clean and period of treatment. Under the plasma treatment, the sample shows low surface adhesion due to having the surface property of super hydrophilic surface 7.26°. This comparative analysis is necessary in the industrial application for cost production due to sufficient time and method of substrate clean.

  16. Enhanced etching of tin-doped indium oxide due to surface modification by hydrogen ion injection

    NASA Astrophysics Data System (ADS)

    Li, Hu; Karahashi, Kazuhiro; Friederich, Pascal; Fink, Karin; Fukasawa, Masanaga; Hirata, Akiko; Nagahata, Kazunori; Tatsumi, Tetsuya; Wenzel, Wolfgang; Hamaguchi, Satoshi

    2018-06-01

    It is known that the etching yield (i.e., sputtering yield) of tin-doped indium oxide (ITO) by hydrocarbon ions (CH x +) is higher than its corresponding physical sputtering yield [H. Li et al., J. Vac. Sci. Technol. A 33, 060606 (2015)]. In this study, the effects of hydrogen in the incident hydrocarbon ion beam on the etching yield of ITO have been examined experimentally and theoretically with the use of a mass-selected ion beam system and by first-principles quantum mechanical (QM) simulation. As in the case of ZnO [H. Li et al., J. Vac. Sci. Technol. A 35, 05C303 (2017)], mass-selected ion beam experiments have shown that the physical sputtering yield of ITO by chemically inert Ne ions increases after a pretreatment of the ITO film by energetic hydrogen ion injection. First-principles QM simulation of the interaction of In2O3 with hydrogen atoms shows that hydrogen atoms embedded in In2O3 readily form hydroxyl (OH) groups and weaken or break In–O bonds around the hydrogen atoms, making the In2O3 film less resistant to physical sputtering. This is consistent with experimental observation of the enhanced etching yields of ITO by CH x + ions, considering the fact that hydrogen atoms of the incident CH x + ions are embedded into ITO during the etching process.

  17. Method to protect charge recombination in the back-contact dye-sensitized solar cell.

    PubMed

    Yoo, Beomjin; Kim, Kang-Jin; Lee, Doh-Kwon; Kim, Kyungkon; Ko, Min Jae; Kim, Yong Hyun; Kim, Won Mok; Park, Nam-Gyu

    2010-09-13

    We prepared a back-contact dye-sensitized solar cell and investigated effect of the sputter deposited thin TiO₂ film on the back-contact ITO electrode on photovoltaic property. The nanocrystalline TiO₂ layer with thickness of about 11 μm formed on a plain glass substrate in the back-contact structure showed higher optical transmittance than that formed on an ITO-coated glass substrate, which led to an improved photocurrent density by about 6.3%. However, photovoltage was found to decrease from 817 mV to 773 mV. The photovoltage recovered after deposition of a 35 nm-thick thin TiO₂ film on the surface of the back-contact ITO electrode. Little difference in time constant for electron transport was found for the back-contact ITO electrodes with and without the sputter deposited thin TiO₂ film. Whereas, time constant for charge recombination increased after introduction of the thin TiO₂ film, indicating that such a thin TiO₂ film protected back electron transfer, associated with the recovery of photovoltage. As the result of the improved photocurrent density without deterioration of photovoltage, the back-contact dye-sensitized solar cell exhibited 13.6% higher efficiency than the ITO-coated glass substrate-based dye-sensitized solar cell.

  18. Laser direct patterning of indium tin oxide for defining a channel of thin film transistor.

    PubMed

    Wang, Jian-Xun; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2013-11-01

    In this work, using a Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser, a direct patterning of indium tin oxide (ITO) channel was realized on glass substrates and the results were compared and analyzed in terms of the effect of repetition rate, scanning speed on etching characteristics. The results showed that the laser conditions of 40 kHz repetition rate with a scanning speed of 500 mm/s were appropriate for the channeling of ITO electrodes. The length of laser-patterned channel was maintained at about 55 microm. However, residual spikes (about 50 nm in height) of ITO were found to be formed at the edges of the laser ablated area and a few ITO residues remained on the glass substrate after laser scanning. By dipping the laser-ablated ITO film in ITO diluted etchant (ITO etchant/DI water: 1/10) at 50 degrees C for 3 min, the spikes and residual ITO were effectively removed. At last, using the laser direct patterning, a bottom-source-drain indium gallium zinc oxide thin film transistor (IGZO-TFT) was fabricated. It is successfully demonstrated that the laser direct patterning can be utilized instead of photolithography to simplify the fabrication process of TFT channel, resulting in the increase of productivity and reduction of cost.

  19. Questing and the application for silicon based ternary compound within ultra-thin layer of SIS intermediate region

    NASA Astrophysics Data System (ADS)

    Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan

    2016-12-01

    A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.

  20. 77 FR 28872 - Notice of FERC Staff Attendance at the SPP-ITO Louisville Gas & Electric/Kentucky Utilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of FERC Staff Attendance at the SPP-ITO Louisville Gas & Electric/Kentucky Utilities Stakeholder Meeting The Federal Energy Regulatory Commission hereby gives notice that members of its staff may attend the meeting noted below. Their attendance...

  1. Microprocessing of ITO and a-Si thin films using ns laser sources

    NASA Astrophysics Data System (ADS)

    Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Gandía, J. J.; Urbina, L.; Cárabe, J.

    2005-06-01

    Selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using transparent conductive oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. Excimer (KrF, λ = 248 nm) and DPSS lasers (λ = 355 and λ = 1064 nm) with nanosecond pulse duration have been used for material patterning. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques have been applied for the characterization of the ablated grooves. Additionally, process parametric windows have been determined in order to assess this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well-defined ablation grooves having thicknesses in the order of 10 µm both in ITO and in a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  2. Optimization of the parameters of ITO-CdTe photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Adib, N.; Simashkevich, A. V.; Sherban, D. A.

    The effect of the surface state density at the interface and of the static charge in the intermediate oxide layer on the photoelectric parameters of solar cells based on ITO-nCdTe semiconductor-insulator-semiconductor structures is calculated theoretically. It is shown that,under AMI conditions, the conversion efficiency of such cells can be as high as 12 percent (short-circuit current, 23 mA/sq cm; open-circuit voltage, 0.65 V; fill factor, 0.8), provided that the surface states are acceptors and the oxide is negatively charged. It is concluded that surface states and the dielectric layer charge have a positive effect on the efficiency of solar cells of this type.

  3. Improved performance of flexible amorphous silicon solar cells with silver nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Y. R.; Li, Z. Q.; Chen, X. H.; Liu, C.; Ye, X. J.; Wang, Z. B.; Sun, Z.; Huang, S. M.

    2012-12-01

    A novel hybrid electrode structure using Ag nanowires (NWs) to create surface plasmons to enhance light trapping is designed and applied on the front surface of hydrogenated amorphous silicon (a-Si:H) solar cells on steel substrates, targeting broad-band absorption enhancements. Ag NWs were synthesized using a soft and self-seeding process. The produced Ag NWs were deposited on indium tin oxide (ITO) glass substrates or the ITO layers of the as-prepared flexible a-Si:H solar cells to form Ag NW-ITO hybrid electrodes. The Ag NW-ITO hybrid electrodes were optimized to achieve maximum optical enhancement using surface plasmons and obtain good electrical contacts in cells. Finite-element electromagnetic simulations confirmed that the presence of the Ag NWs resulted in increased electromagnetic fields within the a-Si:H layer. Compared to the cell with conventional ITO electrode, the measured quantum efficiency of the best performing a-Si:H cell shows an obvious enhancement in the wavelength range from 330 nm to 600 nm. The cell based on the optimized Ag NW-ITO demonstrates an increase about 4% in short-circuit current density and over 6% in power conversion efficiency under AM 1.5 illumination.

  4. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    NASA Astrophysics Data System (ADS)

    Šály, V.; Perný, M.; Janíček, F.; Huran, J.; Mikolášek, M.; Packa, J.

    2017-04-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements.

  5. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    NASA Astrophysics Data System (ADS)

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; Diroll, Benjamin T.; Ketterson, John B.; Chang, Robert P. H.

    2016-09-01

    Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.

  6. Base Release and Modification in Solid-Phase DNA Exposed to Low-Energy Electrons.

    PubMed

    Choofong, Surakarn; Cloutier, Pierre; Sanche, Léon; Wagner, J Richard

    2016-11-01

    Ionization generates a large number of secondary low-energy electrons (LEEs) with a most probable energy of approximately 10 eV, which can break DNA bonds by dissociative electron attachment (DEA) and lead to DNA damage. In this study, we investigated radiation damage to dry DNA induced by X rays (1.5 keV) alone on a glass substrate or X rays combined with extra LEEs (average energy of 5.8 eV) emitted from a tantalum (Ta) substrate under an atmosphere of N 2 and standard ambient conditions of temperature and pressure. The targets included calf-thymus DNA and double-stranded synthetic oligonucleotides. We developed analytical methods to measure the release of non-modified DNA bases from DNA and the formation of several base modifications by LC-MS/MS with isotopic dilution for precise quantification. The results show that the yield of non-modified bases as well as base modifications increase by 20-30% when DNA is deposited on a Ta substrate compared to that on a glass substrate. The order of base release (Gua > Ade > Thy ∼ Cyt) agrees well with several theoretical studies indicating that Gua is the most susceptible site toward sugar-phosphate cleavage. The formation of DNA damage by LEEs is explained by DEA leading to the release of non-modified bases involving the initial cleavage of N1-C1', C3'-O3' or C5'-O5' bonds. The yield of base modifications was lower than the release of non-modified bases. The main LEE-induced base modifications include 5,6-dihydrothymine (5,6-dHT), 5,6-dihydrouracil (5-dHU), 5-hydroxymethyluracil (5-HmU) and 5-formyluracil (5-ForU). The formation of base modifications by LEEs can be explained by DEA and cleavage of the C-H bond of the methyl group of Thy (giving 5-HmU and 5-ForU) and by secondary reactions of H atoms and hydride anions that are generated by primary LEE reactions followed by subsequent reaction with Cyt and Thy (giving 5,6-dHU and 5,6-dHT).

  7. World maps of predicted electron intensities for the ITOS-A/NOAA-1 spacecraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1972-01-01

    Maps of electron fluxes 10,000, 1 million, and 10 million particles/sq cm/sec are presented for an ITOS-A/NOAA-1 circular orbit, inclination of 79 deg, and altitude of 1463 km. The uncertainty in the flux values is about a factor of 3, and the error in contour plotting may be plus or minus 2 deg in latitude and plus or minus 3 deg in longitude. The fractional lifetime spent within the different intensity regions is graphed.

  8. Flexible inverted polymer solar cells fabricated in air at low temperatures

    NASA Astrophysics Data System (ADS)

    Kuwabara, Takayuki; Wang, Xiaofan; Kusumi, Takuji; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2016-08-01

    A series of modified indium tin oxide (ITO) materials, including sol-gel zinc-oxide-coated ITO (ITO/ZnO), ZnO nanoparticle-coated ITO (ITO/ZnO-NP), 1,4-bis(3-aminopropyl)piperazine (BAP)-modified ITO, and polyethylenimine ethoxylated (PEIE)-modified ITO, were used for electron-collection electrodes in inverted polymer solar cells (PSCs). The modified ITO electrodes were prepared in air at temperatures below 100 °C, using various ITO films on flexible poly(ethylene terephthalate) substrates (PET-ITO) with sheet resistances ranging from 12 to 60 Ω sq-1. The PET-ITO (12 Ω sq-1)/ZnO-NP PSC exhibited an improved power conversion efficiency (PCE) (2.93%), and this PCE was ˜90% of that observed for a cell using glass-ITO/ZnO-NP (sheet resistance = 10 Ω sq-1 PCE = 3.28%). Additionally, we fabricated a flexible inverted ZnO-NP PSC using an indene-C60 bisadduct (ICBA) as the acceptor material in place of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and obtained a PCE of 4.18%.

  9. Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction

    PubMed Central

    Mao, Li-Min; Guo, Ming-Lei; Jin, Dao-Zhong; Fibuch, Eugene E.; Choe, Eun Sang; Wang, John Q.

    2011-01-01

    Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction. PMID:21441996

  10. Silane surface modification for improved bioadhesion of esophageal stents

    NASA Astrophysics Data System (ADS)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  11. Silane surface modification for improved bioadhesion of esophageal stents

    PubMed Central

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-01-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability. PMID:25663731

  12. Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bae, Tae-Sung; Park, Yeon Hyun; Kim, Dong Ho; Lee, Sunghun; Min, Guanghui; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum

    2014-05-01

    A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area

  13. Ferroelectric HfZrOx-based MoS2 negative capacitance transistor with ITO capping layers for steep-slope device application

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Jiang, Shu-Ye; Zhang, Min; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei

    2018-03-01

    A negative capacitance field-effect transistor (NCFET) built with hafnium-based oxide is one of the most promising candidates for low power-density devices due to the extremely steep subthreshold swing (SS) and high on-state current induced by incorporating the ferroelectric material in the gate stack. Here, we demonstrated a two-dimensional (2D) back-gate NCFET with the integration of ferroelectric HfZrOx in the gate stack and few-layer MoS2 as the channel. Instead of using the conventional TiN capping metal to form ferroelectricity in HfZrOx, the NCFET was fabricated on a thickness-optimized Al2O3/indium tin oxide (ITO)/HfZrOx/ITO/SiO2/Si stack, in which the two ITO layers sandwiching the HfZrOx film acted as the control back gate and ferroelectric gate, respectively. The thickness of each layer in the stack was engineered for distinguishable optical identification of the exfoliated 2D flakes on the surface. The NCFET exhibited small off-state current and steep switching behavior with minimum SS as low as 47 mV/dec. Such a steep-slope transistor is compatible with the standard CMOS fabrication process and is very attractive for 2D logic and sensor applications and future energy-efficient nanoelectronic devices with scaling power supply.

  14. Scalable cell alignment on optical media substrates.

    PubMed

    Anene-Nzelu, Chukwuemeka G; Choudhury, Deepak; Li, Huipeng; Fraiszudeen, Azmall; Peh, Kah-Yim; Toh, Yi-Chin; Ng, Sum Huan; Leo, Hwa Liang; Yu, Hanry

    2013-07-01

    Cell alignment by underlying topographical cues has been shown to affect important biological processes such as differentiation and functional maturation in vitro. However, the routine use of cell culture substrates with micro- or nano-topographies, such as grooves, is currently hampered by the high cost and specialized facilities required to produce these substrates. Here we present cost-effective commercially available optical media as substrates for aligning cells in culture. These optical media, including CD-R, DVD-R and optical grating, allow different cell types to attach and grow well on them. The physical dimension of the grooves in these optical media allowed cells to be aligned in confluent cell culture with maximal cell-cell interaction and these cell alignment affect the morphology and differentiation of cardiac (H9C2), skeletal muscle (C2C12) and neuronal (PC12) cell lines. The optical media is amenable to various chemical modifications with fibronectin, laminin and gelatin for culturing different cell types. These low-cost commercially available optical media can serve as scalable substrates for research or drug safety screening applications in industry scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces.

  16. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates.

    PubMed

    Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E

    2017-12-01

    Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.

  17. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  18. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  19. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    PubMed

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  20. Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation.

    PubMed

    Sun, Ke; Shen, Shaohua; Cheung, Justin S; Pang, Xiaolu; Park, Namseok; Zhou, Jigang; Hu, Yongfeng; Sun, Zhelin; Noh, Sun Young; Riley, Conor T; Yu, Paul K L; Jin, Sungho; Wang, Deli

    2014-03-14

    We report an ultrathin NiOx catalyzed Si np(+) junction photoanode for a stable and efficient solar driven oxygen evolution reaction (OER) in water. A stable semi-transparent ITO/Au/ITO hole conducting oxide layer, sandwiched between the OER catalyst and the Si photoanode, is used to protect the Si from corrosion in an alkaline working environment, enhance the hole transportation, and provide a pre-activation contact to the NiOx catalyst. The NiOx catalyzed Si photoanode generates a photocurrent of 1.98 mA cm(-2) at the equilibrium water oxidation potential (EOER = 0.415 V vs. NHE in 1 M NaOH solution). A thermodynamic solar-to-oxygen conversion efficiency (SOCE) of 0.07% under 0.51-sun illumination is observed. The successful development of a low cost, highly efficient, and stable photoelectrochemical electrode based on earth abundant elements is essential for the realization of a large-scale practical solar fuel conversion.

  1. Solution NMR study of environmental effects on substrate seating in human heme oxygenase: influence of polypeptide truncation, substrate modification and axial ligand.

    PubMed

    Zhu, Wenfeng; Li, Yiming; Wang, Jinling; Ortiz de Montellano, Paul R; La Mar, Gerd N

    2006-01-01

    Solution proton NMR has been used here to show that, as either the high-spin ferric, protohemin (PH) substrate complex at neutral pH, or the low-spin ferric, cyanide-inhibited PH substrate complex, the active site electronic and molecular structure of the 233- and 265-residue recombinant constructs of human heme oxygenase-1, hHO, are essentially indistinguishable. It is shown, moreover, that the equilibrium PH orientational isomerism about the alpha,gamma-meso axis is 1:1 in the water-ligated, resting-state complex, but changes to a 4:1 equilibrium ratio as the cyanide-inhibited complex, with the minor species in solution corresponding to the only one found in crystals. The introduction of significant PH orientational preference in the cyanide over the aquo complex is rationalized by the crystallographic observation for the same H2O and CN ligated complexes of rat heme oxygenase (rHO), where the steric tilt of the Fe-CN unit resulted in a approximately 1 A transition of PH into the hydrophobic interior, and stronger interaction of the vinyls with the HO matrix [M. Sugishima, H. Sakamoto, M. Noguchi, K. Fukugama, Biochemistry 42 (2003) 9898-9905]. 1H NMR spectra of the cyanide-inhibited PH complex are the most used, and most useful, for determining the distribution of orientational isomerism for PH in complexes of HO. Hence, it is imperative that the time-course of the spectra after sample preparation be considered in order to reach conclusions that relate isomeric seating of the heme with variable isomeric biliverdin products. The natural orientational isomerism of PH leads to spectral congestion that has prompted the use of a synthetic, twofold symmetric substrate, 2,4-dimethyldeuterohemin, DMDH. While the hyperfine shift pattern for non-ligated residues are very similar and are consistent with largely conserved molecular structure with the alternate substrates, the steric tilt of the Fe-CN vector towards the protein interior, as determined by the orientation of

  2. Reduction of I(Ca,L) and I(to1) density in hypertrophied right ventricular cells by simulated high altitude in adult rats.

    PubMed

    Chouabe, C; Espinosa, L; Megas, P; Chakir, A; Rougier, O; Freminet, A; Bonvallet, R

    1997-01-01

    The present paper describes the effect of a simulated hypobaric condition (at the altitude of 4500 m) on morphological characteristics and on some ionic currents in ventricular cells of adult rats. According to current data, chronic high-altitude exposure led to mild right ventricular hypertrophy. Increase in right ventricular weight appeared to be due wholly or partly to an enlargement of myocytes. The whole-cell patch-clamp technique was used and this confirmed, by cell capacitance measurement, that chronic high-altitude exposure induced an increase in the size of the right ventricular cells. Hypertrophied cells showed prolongation of action potential (AP). Four ionic currents, playing a role along with many others in the precise balance of inward and outward currents that control the duration of cardiac AP, were investigated. We report a significant decrease in the transient outward (I(to1)) and in the L-type calcium current (I(Ca,L)) densities while there was no significant difference in the delayed rectifier current (I(K)) or in the inward rectifier current (I(K1)) densities in hypertrophied right ventricular cells compared to control cells. At a given potential the decrease in I(to 1) density was relatively more important than the decrease in I(Ca,L) density. In both cell types, all the currents displayed the same voltage dependence. The inactivation kinetics of I(to 1) and I(Ca,L) or the steady-state activation and inactivation relationships were not significantly modified by chronic high-altitude exposure. We conclude that chronic high-altitude exposure induced true right ventricular myocyte hypertrophy and that the decrease in I(to 1) density might account for the lengthened action potential, or have a partial effect.

  3. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect

    NASA Astrophysics Data System (ADS)

    Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming

    2017-09-01

    We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.

  4. Polycrystalline PLZT/ITO Ceramic Electro-Optic Phase Gratings: Electro- Optically Reconfigurable Diffractive Devices for Free-Space and In-Wafer Interconnects

    DTIC Science & Technology

    1994-09-01

    free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect

  5. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens

    NASA Astrophysics Data System (ADS)

    Madaria, Anuj R.; Kumar, Akshay; Zhou, Chongwu

    2011-06-01

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σDC/σOp, for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, ΦTE. Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.

  6. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface

    NASA Astrophysics Data System (ADS)

    Dhar, Sukanta; Mandal, Sourav; Mitra, Suchismita; Ghosh, Hemanta; Mukherjee, Sampad; Banerjee, Chandan; Saha, Hiranmoy; Barua, A. K.

    2017-12-01

    The advantages of the amorphous silicon (a-Si)/crystalline silicon (c-Si) hetero junction technology are low temperature (<200 °C) processing and fewer process steps to fabricate the device. In this work, we used indium tin oxide (ITO) nanoparticles embedded in amorphous silicon material at the rear side of the crystalline wafer. The nanoparticles were embedded in silicon to have higher scattering efficiency, as has been established by simulation studies. It has been shown that significant photocurrent enhancements (32.8 mA cm-2 to 35.1 mA cm-2) are achieved because of high scattering and coupling efficiency of the embedded nanoparticles into the silicon device, leading to an increase in efficiency from 13.74% to 15.22%. In addition, we have observed a small increase in open circuit voltage. This may be due to the surface passivation during the ITO nanoparticle formation with hydrogen plasma treatment. We also support our experimental results by simulation, with the help of a commercial finite-difference time-domain (FDTD) software solution.

  7. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    DOE PAGES

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...

    2016-09-29

    Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide dynamic tuning of their electromagnetic response, which is potentially useful for all-optical information processing. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favorable spectral tunability and beam-steering capability. We semi-quantitatively model the permittivity change, whose large amplitude stems from a significant electron redistribution under intraband pumping due to the low electron concentration. Further, we observe a transient response in themore » microsecond regime associated with the slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Finally, our results demonstrate that all-optical control of the visible spectrum can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.« less

  8. ITOS to EDGE "Bridge" Software for Morpheus Lunar/Martian Vehicle

    NASA Technical Reports Server (NTRS)

    Hirsh, Robert; Fuchs, Jordan

    2012-01-01

    My project Involved Improving upon existing software and writing new software for the Project Morpheus Team. Specifically, I created and updated Integrated Test and Operations Systems (ITOS) user Interfaces for on-board Interaction with the vehicle during archive playback as well as live streaming data. These Interfaces are an integral part of the testing and operations for the Morpheus vehicle providing any and all information from the vehicle to evaluate instruments and insure coherence and control of the vehicle during Morpheus missions. I also created a "bridge" program for Interfacing "live" telemetry data with the Engineering DOUG Graphics Engine (EDGE) software for a graphical (standalone or VR dome) view of live Morpheus nights or archive replays, providing graphical representation of vehicle night and movement during subsequent tests and in real missions.

  9. Periodically structured Si pillars for high-performing heterojunction photodetectors

    NASA Astrophysics Data System (ADS)

    Melvin David Kumar, M.; Yun, Ju-Hyung; Kim, Joondong

    2015-03-01

    A periodical array of silicon (Si) micro pillar structures was fabricated on Si substrates using PR etching process. Indium tin oxide (ITO) layer of 80 nm thickness was deposited over patterned Si substrates so as to make ITO/n-Si heterojunction devices. The influences of width and period of pillars on the optical and electrical properties of prepared devices were investigated. The surface morphology of the Si substrates revealed the uniform array of pillar structures. The 5/10 (width/period) Si pillar pattern reduced the optical reflectance to 6.5% from 17% which is of 5/7 pillar pattern. The current rectifying ratio was found higher for the device in which the pillars are situated in optimum periods. At both visible (600 nm) and near infrared (900 nm) range of wavelengths, the 5/7 and 5/10 pillar patterned device exhibited the better photoresponses which are suitable for making advanced photodetectors. This highly transmittance and photoresponsive pillar patterned Si substrates with an ITO layer would be a promising device for various photoelectric applications.

  10. Orienting Periodic Organic-Inorganic Nanoscale Domains Through One-Step Electrodeposition

    PubMed Central

    Herman, David J.; Goldberger, Joshua E.; Chao, Stephen; Martin, Daniel T.; Stupp, Samuel I

    2011-01-01

    One of the challenges in the synthesis of hybrid materials with nanoscale structure is to precisely control morphology across length scales. Using a one-step electrodeposition process on indium tin oxide (ITO) substrates followed by annealing, we report here the preparation of materials with preferentially oriented lamellar domains of electron donor surfactants and the semiconductor ZnO. We found that either increasing the concentration of surfactant or the water to dimethyl sulfoxide ratio of solutions used resulted in the suppression of bloom-like morphologies and enhanced the density of periodic domains on ITO substrates. Furthermore, by modifying the surface of the ITO substrate with the conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), we were able to alter the orientation of these electrodeposited lamellar domains to be perpendicular to the substrate. The long-range orientation achieved was characterized by 2D grazing incidence small angle X-ray scattering. This high degree of orientation in electronically active hybrids with alternating nanoscale p-type and n-type domains is of potential interest in photovoltaics or thermoelectric materials. PMID:21142087

  11. High Performance Reduction of H2O2 with an Electron Transport Decaheme Cytochrome on a Porous ITO Electrode

    PubMed Central

    2017-01-01

    The decaheme cytochrome MtrC from Shewanella oneidensis MR-1 immobilized on an ITO electrode displays unprecedented H2O2 reduction activity. Although MtrC showed lower peroxidase activity in solution compared to horseradish peroxidase, the ten heme cofactors enable excellent electronic communication and a superior activity on the electrode surface. A hierarchical ITO electrode enabled optimal immobilization of MtrC and a high current density of 1 mA cm–2 at 0.4 V vs SHE could be obtained at pH 6.5 (Eonset = 0.72 V). UV–visible and Resonance Raman spectroelectrochemical studies suggest the formation of a high valent iron-oxo species as the catalytic intermediate. Our findings demonstrate the potential of multiheme cytochromes to catalyze technologically relevant reactions and establish MtrC as a new benchmark in biotechnological H2O2 reduction with scope for applications in fuel cells and biosensors. PMID:28221032

  12. Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells

    DTIC Science & Technology

    2011-04-01

    glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels, interface passivation, p...NiO films grown on glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels...carrier transport characteristics. II. EXPERIMENTAL SECTION Substrate Preparation. ITO-coated glass (11 Ω/0) was pur- chased from Delta Technologies

  13. Electronic Structure of C60/Zinc Phthalocyanine/V₂O₅ Interfaces Studied Using Photoemission Spectroscopy for Organic Photovoltaic Applications.

    PubMed

    Lim, Chang Jin; Park, Min Gyu; Kim, Min Su; Han, Jeong Hwa; Cho, Soohaeng; Cho, Mann-Ho; Yi, Yeonjin; Lee, Hyunbok; Cho, Sang Wan

    2018-02-18

    The interfacial electronic structures of a bilayer of fullerene (C 60 ) and zinc phthalocyanine (ZnPc) grown on vanadium pentoxide (V₂O₅) thin films deposited using radio frequency sputtering under various conditions were studied using X-ray and ultraviolet photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the ZnPc layer and the lowest unoccupied molecular orbital (LUMO) level of the C 60 layer was determined and compared with that grown on an indium tin oxide (ITO) substrate. The energy difference of a heterojunction on all V₂O₅ was found to be 1.3~1.4 eV, while that on ITO was 1.1 eV. This difference could be due to the higher binding energy of the HOMO of ZnPc on V₂O₅ than that on ITO regardless of work functions of the substrates. We also determined the complete energy level diagrams of C 60 /ZnPc on V₂O₅ and ITO.

  14. Quantitative framework for ordered degradation of APC/C substrates.

    PubMed

    Lu, Dan; Girard, Juliet R; Li, Weihan; Mizrak, Arda; Morgan, David O

    2015-11-16

    During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis. We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20). Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/C(Cdc20) can alter the timing of degradation onset relative to APC/C(Cdc20) activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/C(Cdc20), their relative enzyme affinities and rates of catalysis influence the partitioning of APC/C(Cdc20) among substrates, resulting in substrate competition. Depending on how APC/C(Cdc20) is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/C(Cdc20) substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. The degradation timing of APC/C(Cdc20) substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/C(Cdc20) interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.

  15. Influence of sputtering power on the optical properties of ITO thin films

    NASA Astrophysics Data System (ADS)

    K, Aijo John; Kumar, Vineetha V.; M, Deepak; T, Manju

    2014-10-01

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  16. Identification of Carboxypeptidase Substrates by C-Terminal COFRADIC.

    PubMed

    Tanco, Sebastian; Aviles, Francesc Xavier; Gevaert, Kris; Lorenzo, Julia; Van Damme, Petra

    2017-01-01

    We here present a detailed procedure for studying protein C-termini and their posttranslational modifications by C-terminal COFRADIC. In fact, this procedure can enrich for both C-terminal and N-terminal peptides through a combination of a strong cation exchange fractionation step at low pH, which removes the majority of nonterminal peptides in whole-proteome digests, while the actual COFRADIC step segregates C-terminal peptides from N-terminal peptides. When used in a differential mode, C-terminal COFRADIC allows for the identification of neo-C-termini generated by the action of proteases, which in turn leads to the identification of protease substrates. More specifically, this technology can be applied to determine the natural substrate repertoire of carboxypeptidases on a proteome-wide scale.

  17. Long-lasting antifog plasma modification of transparent plastics.

    PubMed

    Di Mundo, Rosa; d'Agostino, Riccardo; Palumbo, Fabio

    2014-10-08

    Antifog surfaces are necessary for any application requiring optical efficiency of transparent materials. Surface modification methods aimed toward increasing solid surface energy, even when supposed to be permanent, in fact result in a nondurable effect due to the instability in air of highly hydrophilic surfaces. We propose the strategy of combining a hydrophilic chemistry with a nanotextured topography, to tailor a long-lasting antifog modification on commercial transparent plastics. In particular, we investigated a two-step process consisting of self-masked plasma etching followed by plasma deposition of a silicon-based film. We show that the deposition of the silicon-based coatings on the flat (pristine) substrates allows a continuous variation of wettability from hydrophobic to superhydrophilic, due to a continuous reduction of carbon-containing groups, as assessed by Fourier transform infrared and X-ray photoelectron spectroscopies. By depositing these different coatings on previously nanotextured substrates, the surface wettability behavior is changed consistently, as well as the condensation phenomenon in terms of microdroplets/liquid film appearance. This variation is correlated with advancing and receding water contact angle features of the surfaces. More importantly, in the case of the superhydrophilic coating, though its surface energy decreases with time, when a nanotextured surface underlies it, the wetting behavior is maintained durably superhydrophilic, thus durably antifog.

  18. Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods

    NASA Astrophysics Data System (ADS)

    Xia, N.; Gerhardt, R. A.

    2016-11-01

    Solution-based fabrication methods can greatly reduce the cost and broaden the applications of transparent conducting oxides films, such as indium tin oxide (ITO) films. In this paper, we report on ITO films fabricated by spin coating methods on glass substrates with two different ITO sources: (1) a commercial ITO nanopowder water dispersion and (2) a sol-gel ITO solution. A simple and fast air annealing process was used to treat as-coated ITO films on a controlled temperature hot plate. Thermogravimetric analysis and x-ray diffraction showed that highly crystalline ITO films were formed after the annealing steps. The final ITO films had a good combination of optical properties and electrical properties, especially for films made from five layers of sol-gel ITO (92.66% transmittance and 8.7 × 10-3 Ω cm resistivity). The surface morphology and conducting network on the ITO films were characterized by non-contact and current atomic force microscopy. It was found that conducting paths were only partially connected for the nanoparticle ITO dispersion films, whereas the sol-gel ITO films had a more uniformly distributed conducting network on the surface. We also used the sol-gel ITO films to fabricate a simple liquid crystal display (LCD) device to demonstrate the excellent properties of our films.

  19. Theoretical analysis of optical properties of dielectric coatings dependence on substrate subsurface defects

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu

    2006-03-01

    A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.

  20. Stress assisted selective ablation of ITO thin film by picosecond laser

    NASA Astrophysics Data System (ADS)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  1. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  2. Intense deep-blue electroluminescence from ITO/Y₂O₃/Ag structure.

    PubMed

    Yin, Xue; Wang, Shenwei; Li, Ling; Mu, Guangyao; Tang, Ying; Duan, Wubiao; Yi, Lixin

    2015-07-13

    ITO/Y₂O₃/Ag devices were fabricated using Y₂O₃ films as insulator. Four intense and sharp lines with half-peak width of 4 nm were observed for the 293.78 nm InI, 316.10 nm InI, 444.82 nm InII and 403.07 nm InIII transitions. Luminescence mechanism was illustrated by cross-section of the devices based on the analysis of surface morphology. Under the action of strong electric field, the loss of K-shell electrons led to the occurrence of characteristic radiation of indium ions. In addition, the device with turn-on voltage of 10V demonstrates typical I-V diode characteristics. Moreover, Y₂O₃/In₂O₃ multiple films as the insulation layer instead of single Y₂O₃ films was found to improve the device performance with excellent CIE (x, y) coordinates (0.16, 0.03).

  3. Substrate- and isoform-specific proteome stability in normal and stressed cardiac mitochondria.

    PubMed

    Lau, Edward; Wang, Ding; Zhang, Jun; Yu, Hongxiu; Lam, Maggie P Y; Liang, Xiangbo; Zong, Nobel; Kim, Tae-Young; Ping, Peipei

    2012-04-27

    Mitochondrial protein homeostasis is an essential component of the functions and oxidative stress responses of the heart. To determine the specificity and efficiency of proteome turnover of the cardiac mitochondria by endogenous and exogenous proteolytic mechanisms. Proteolytic degradation of the murine cardiac mitochondria was assessed by 2-dimensional differential gel electrophoresis and liquid chromatography-tandem mass spectrometry. Mitochondrial proteases demonstrated a substrate preference for basic protein variants, which indicates a possible recognition mechanism based on protein modifications. Endogenous mitochondrial proteases and the cytosolic 20S proteasome exhibited different substrate specificities. The cardiac mitochondrial proteome contains low amounts of proteases and is remarkably stable in isolation. Oxidative damage lowers the proteolytic capacity of cardiac mitochondria and reduces substrate availability for mitochondrial proteases. The 20S proteasome preferentially degrades specific substrates in the mitochondria and may contribute to cardiac mitochondrial proteostasis.

  4. Improved Optical Transmittance and Crystal Characteristics of ZnS:TbOF Thin Film on Bi4Ti3O12/Indium Tin Oxide/Glass Substrate by Using a SiO2 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Chia, Wei‑Kuo; Yokoyama, Meiso; Yang, Cheng‑Fu; Chiang, Wang‑Ta; Chen, Ying‑Chung

    2006-07-01

    Bi4Ti3O12 thin films are deposited on indium tin oxide (ITO)/glass substrates using RF magnetron sputtering technology and are annealed at 675 °C in a rapid thermal annealing furnace in an oxygen atmosphere. The resulting films have high optical transmittances and good crystalline characteristics. ZnS:TbOF films are then deposited on the Bi4Ti3O12 films, causing the originally highly transparent specimens to blacken and to resemble a glass surface coated with carbon powder. The optical transmittance of the specimen is less than 15% under the visible wavelength range, and neither a crystalline phase nor a distinct ZnS grain structure is evident in X-ray diffractometer (XRD) and scanning electronic microscope (SEM). Secondary ion mass spectrometer (SIMS) analysis reveals the occurrence of interdiffusion between the ZnS and Bi4Ti3O12 layers. This suggests that one or more unknown chemical reactions take place among the elements Bi, S, and O at the interface during the deposition of ZnS:TbOF film on a Bi4Ti3O12/ITO/glass substrate. These reactions cause the visible transmittance of the specimens to deteriorate dramatically. To prevent interdiffusion, a silicon dioxide (SiO2) buffer layer 100 nm thick was grown on the Bi4Ti3O12/ITO/glass substrate using plasma-enhanced chemical vapor deposition (PECVD), then the ZnS:TbOF film was grown on the SiO2 buffer layer. The transmittance of the resulting specimen is enhanced approximately 8-fold in the visible region. XRD patterns reveal the ZnS(111)-oriented phase is dominant. Furthermore, dense, crack-free ZnS:TbOF grains are observed by SEM. The results imply that the SiO2 buffer layer sandwiched between the ZnS:TbOF and Bi4Ti3O2 layers effectively separates the two layers. Therefore, interdiffusion and chemical reactions are prevented at the interface of the two layers, and the crystalline characteristics of the ZnS:TbOF layer and the optical transmittance of the specimen are improved as a result. Finally, the dielectric

  5. The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology.

    PubMed

    Shariati, Mohsen

    2018-05-15

    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10µM. The detection limit of the DNA biosensor was about 1fM. The time of the hybridization process for defined single strand was 90min. The switching ratio of the biosensor between "on" and "off" state was ~ 1.1 × 10 5 . For sensing the specificity of the biosensor, non-complementary, mismatch and complementary DNA oligonucleotide sequences were clearly discriminated. The HBV biosensor confirmed the highly satisfied specificity for differentiating complementary sequences from non-complementary and the mismatch oligonucleotides. The response time of the DNA sensor was 37s with a high reproducibility. The stability and repeatability of the DNA biosensor showed that the peak current of the biosensor retained 98% and 96% of its initial response for measurements after three and five weeks, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs

    PubMed Central

    Gayatri, Sitaram; Cowles, Martis W.; Vemulapalli, Vidyasiri; Cheng, Donghang; Sun, Zu-Wen; Bedford, Mark T.

    2016-01-01

    Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes – PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies. PMID:27338245

  7. Existence and numerical simulation of periodic traveling wave solutions to the Casimir equation for the Ito system

    NASA Astrophysics Data System (ADS)

    Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.

    2015-10-01

    We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.

  8. Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles.

    PubMed

    Chauhan, Nidhi; Narang, Jagriti; Jain, Utkarsh

    2015-03-21

    Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 °C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 μM. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.

  9. The effects of viscoelastic polymer substrates on adult stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Chang, Chungchueh; Fields, Adam; Ramek, Alex; Jurukovski, Vladimir; Simon, Marcia; Rafailovich, Miriam

    2009-03-01

    Dental Pulp Stem Cells (DPSCs) are known to differentiate in either bone, dentine, or nerve tissue by different environment signals. In this study, we have determined whether differentiation could only through modification of the substrate mechanics. Atomic Force Microscopy (AFM) on Shear Modulation Force Microscopy (SMFM) mode indicated that the spun-cast polybutadiene (PB) thin films could be used to provide different stiffness substrates by changing the thicknesses of thin films. DPSCs were then plated on these substrates and cultured in standard media. After 28 days incubation, Lasar Scanning Confocal Microscopy (LSCM) with mercury lamp indicated that the crystals were observed only on hard surfaces. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX analysis) indicated that the crystals are calcium phosphates. The Glancing Incidence Diffraction (GID) was also used to determine the structure of crystals. These results indicate that DPSCs could be differentiated into osteoblasts by mechanical stimuli from substrate mechanics.

  10. Hypomelanosis of Ito. Case report with involvement of the central nervous system and review of the literature.

    PubMed

    Rosemberg, S; Arita, F N; Campos, C; Alonso, F

    1984-02-01

    A case of hypomelanosis of Ito in a ten-year-old black boy with mental retardation, epilepsy and abnormalities of the white matter of the cerebral hemispheres revealed by a computerized tomography is presented. This is the 41st reported case on this disease, a number of which have shown neurological signs. A review of the literature with emphasis on the neurological manifestations is performed.

  11. Self-catalyzed carbon plasma-assisted growth of tin-doped indium oxide nanostructures by the sputtering method

    NASA Astrophysics Data System (ADS)

    Setti, Grazielle O.; de Jesus, Dosil P.; Joanni, Ednan

    2016-10-01

    In this work a new strategy for growth of nanostructured indium tin oxide (ITO) by RF sputtering is presented. ITO is deposited in the presence of a carbon plasma which reacts with the free oxygen atoms during the deposition, forming species like CO x . These species are removed from the chamber by the pumping system, and one-dimensional ITO nanostructures are formed without the need for a seed layer. Different values of substrate temperature and power applied to the gun containing the carbon target were investigated, resulting in different nanostructure morphologies. The samples containing a higher density of nanowires were covered with gold and evaluated as surface-enhanced Raman scattering substrates for detection of dye solutions. The concept might be applied to other oxides, providing a simple method for unidimensional nanostructural synthesis.

  12. Hypomelanosis of Ito presenting with pediatric orthopedic issues: a case report.

    PubMed

    Trägårdh, Malene; Thomsen, Christine Rohr; Thorninger, Rikke; Møller-Madsen, Bjarne

    2014-05-19

    Hypomelanosis of Ito was originally described as a purely cutaneous disease. Extracutaneous manifestations were described later, forming a neurocutaneous syndrome including skeletal, muscular, ocular and central nervous system symptoms.Hypomelanosis of Ito is characterized by a depigmentation along the lines of Blaschko on the trunk and extremities in certain patterns.The aim of this article was to report another case and give an overview of the related orthopedic symptoms that have been previously described. It was also our wish to contribute with recommendations for consideration with regard to bandages on eczematous rashes, especially on clubfeet. A one-and-a-half-month-old boy of Caucasian background born with talipes equinovarus, or clubfoot, on his right foot presented with an eczematous rash after surgical correction and plaster bandaging. It is the appearance of hypopigmentation, either alone or in combination with a congenital malformation, particularly central nervous system or musculoskeletal anomalies, which should form the basis of a presumptive diagnosis. This should then lead to further investigations and should always include skin biopsies and a test for chromosomal mosaicism.We report the case of a boy with a clinical picture consisting of a depigmented skin pattern, mental retardation, pes cavus, talipes equinovarus, clinodactyly, eczema, inverted cilia of the eye, strabismus, reduced hearing, ventral hernia, glomerulonephritis, missing testicles, leg length discrepancy with scoliosis, back pain and a syrinx.It is perhaps impossible to make any conclusions about extracutaneous symptoms. However, some symptoms such as retardation, cramps and seizures, delayed development and hypotonia cannot be ignored.Because of the possibility of creating an undesirable and long postoperative period with complications, it is very important to have this diagnosis in mind when deciding to do surgery or not if there are signs of dermatological problems before

  13. Characteristics of Laminating Transparent Conductive Films Aimed at Nursing Indium Ingredient

    NASA Astrophysics Data System (ADS)

    Ikuta, Kimihiro; Aoki, Takanori; Suzuki, Akio; Matsushita, Tatsuhiko; Okuda, Masahiro

    By irradiating ArF excimer laser (λ=193 nm) with energies density 0.8 ∼ 1.4 J/cm2 on the targets of ITO and AZO (Al-doped zinc oxide) by turns, the laminated transparent conducting films composed of ITO (50 nm)/AZO (250 nm) with a total films thickness of 300 nm were fabricated at substrate temperature of 220°C. At laser energy density of 1.2 J/cm2, a sheet resistance of 6.12 Ω/_??_ was obtained under conditions of oxygen pressure of 0.5 Pa for ITO. In addition, electrical characteristics of the laminated transparent conducting composed of ITO/AZO was equal to or more than that of ITO (300 nm). As a result, about 80 percent consumption of ITO was reduced at its maximum. After having examined environmental load, the sheet resistance of the laminated ITO/AZO transparent conductive oxide films did not change and therefore, the durability to the environmental conditions was maintained.

  14. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    NASA Astrophysics Data System (ADS)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  15. Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology

    PubMed Central

    Wells, Lance

    2016-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620

  16. The active site of O-GlcNAc transferase imposes constraints on substrate sequence

    PubMed Central

    Rafie, Karim; Blair, David E.; Borodkin, Vladimir S.; Albarbarawi, Osama; van Aalten, Daan M. F.

    2016-01-01

    O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoa. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay on a library of peptides. The sites of O-GlcNAc modification were mapped by ETD-mass spectrometry, and found to correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with human OGT suggest that a combination of size and conformational restriction defines sequence specificity in the −3 to +2 subsites. This work reveals that while the N-terminal TPR repeats of hOGT may play a role in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a significant contribution to O-GlcNAc site specificity. PMID:26237509

  17. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices.

    PubMed

    Ke, Shanming; Chen, Chang; Fu, Nianqing; Zhou, Hua; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao

    2016-10-26

    Sn-doped In 2 O 3 (ITO) electrodes were deposited on transparent and flexible muscovite mica. The use of mica substrate makes a high-temperature annealing process (up to 500 °C) possible. ITO/mica retains its low electric resistivity even after continuous bending of 1000 times on account of the unique layered structure of mica. When used as a transparent flexible heater, ITO/mica shows an extremely fast ramping (<15 s) up to a high temperature of over 438 °C. When used as a transparent electrode, ITO/mica permits a high-temperature annealing (450 °C) approach to fabricate flexible perovskite solar cells (PSCs) with high efficiency.

  18. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui; Liao, Liang-Sheng

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO2 film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  19. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    PubMed

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  20. Surface modification of medical implant materials with hydrophilic polymers for enhanced biocompatibility and delivery of therapeutic agents

    NASA Astrophysics Data System (ADS)

    Urbaniak, Daniel J.

    2004-11-01

    In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens

  1. A concise way to estimate the average density of interface states in an ITO-SiOx/n-Si heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B. C.; Gao, M.; Wan, Y. Z.; Yang, J.; Du, H. W.; Ma, Z. Q.

    2017-09-01

    On the basis of a photon-assisted high frequency capacitance-voltage (C-V) method (1 MHz C-V), an effective approach is developed to evaluate the average interface state density (Dit) of an ITO-SiOx/n-Si heterojunction structure. Tin-doped indium oxide (ITO) films with different thicknesses were directly deposited on (100) n-type crystalline silicon by magnetron sputtering to fabricate semiconductor-insulator-semiconductor (SIS) hetero-interface regions where an ultra-thin SiOx passivation layer was naturally created. The morphology of the SiOx layer was confirmed by X-ray photoelectron spectroscopy depth profiling and transmission electron microscope analysis. The thinness of this SiOx layer was the main reason for the SIS interface state density being more difficult to detect than that of a typical metal-oxide-semiconductor structure. A light was used for photon injection while measuring the C-V of the device, thus enabling the photon-assisted C-V measurement of the Dit. By quantifying decreases of the light-induced-voltage as a variation of the capacitance caused by parasitic charge at interface states the passivation quality within the interface of ITO-SiOx/n-Si could be reasonably evaluated. The average interface state density of these SIS devices was measured as 1.2-1.7 × 1011 eV-1 cm-2 and declined as the passivation layer was made thicker. The lifetime of the minority carriers, dark leakage current, and the other photovoltaic parameters of the devices were also used to determine the passivation.

  2. Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters

    PubMed Central

    Cheng, Mary Hongying; Torres-Salazar, Delany; Gonzalez-Suarez, Aneysis D; Amara, Susan G; Bahar, Ivet

    2017-01-01

    Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiology and glutamate uptake assays, we identified a chloride-channeling conformer, iChS, transiently accessible as EAAT1 reconfigures from substrate/ion-loaded into a substrate-releasing conformer. Opening of the anion permeation path in this iChS is controlled by the elevator-like movement of the substrate-binding core, along with its wall that simultaneously lines the anion permeation path (global); and repacking of a cluster of hydrophobic residues near the extracellular vestibule (local). Moreover, our results demonstrate that stabilization of iChS by chemical modifications favors anion channeling at the expense of substrate transport, suggesting a mutually exclusive regulation mediated by the movement of the flexible wall lining the two regions. DOI: http://dx.doi.org/10.7554/eLife.25850.001 PMID:28569666

  3. Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam

    2015-12-01

    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.

  4. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr

    2014-09-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITOmore » multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.« less

  5. Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern.

    PubMed

    Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Choi, Jeong-Woo

    2018-05-20

    We fabricated a microRNA biosensor using the combination of surface enhanced Raman spectroscopy (SERS) and electrochemical (EC) techniques. For the first time, the weaknesses of each techniques for microRNA detection was compensated by the other ones to give rise to the specific and wide-range detection of miR-155. A single stranded 3' methylene blue (MB) and 5' thiol-modified RNA (MB-ssRNA-SH) was designed to detect the target miR-155 and immobilized onto the gold nanoparticle-modified ITO (ITO/GNP). Upon the invasion of target strand, the double-stranded RNA transformed rapidly to an upright structure resulting in a notable decrease in SERS and redox signals of the MB. For the first time, by combination of SERS and EC techniques in a single platform we extended the dynamic range of both techniques from 10 pM to 450 nM (SERS: 10 pM-5 nM and EC: 5 nM-450 nM). As well, the SERS technique improved the detection limit of the EC method from 100 pM to 100 fM, while the EC method covered single-mismatch detection which was the SERS deficiency. The fabricated single-step biosensor possessing a good capability of miRNA detection in human serum, could be employed throughout the broad ranges of biomedical and bioelectronics applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Development of an amperometric sulfite biosensor based on SO(x)/PBNPs/PPY modified ITO electrode.

    PubMed

    Rawal, Rachna; Pundir, C S

    2012-11-01

    A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20 mV s⁻¹ in 0.1M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and minimum detection limit were 0.5-1000 μM and 0.12 μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4 °C. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. AlN/ITO-Based Hybrid Electrodes with Conducting Filaments: Their Application to Ultraviolet Light-Emitting Diodes.

    PubMed

    Kim, Kyeong Heon; Lee, Tae Ho; Kim, Tae Geun

    2017-07-19

    A hybrid-type transparent conductive electrode (H-TCE) structure comprising an AlN rod array with conducting filaments (CFs) and indium tin oxide (ITO) films is proposed to improve both current injection and distribution as well as optical transmittance in the UV region. These CFs, generated in UV-transparent AlN rod areas using an electric field, can be used as conducting paths for carrier injection from a metal to a semiconductor such as p-(Al)GaN, which allows perfect Ohmic behavior with high transmittance (>95% at 365 nm) to be obtained. In addition, conduction across AlN rods and Ohmic conduction mechanisms are investigated by analyzing AlN rods and AlN rod/p-AlGaN film interfaces. We apply these H-TCEs to three near-UV light-emitting diodes (LEDs) (385 nm LEDs with p-GaN and p-AlGaN terminated surfaces and 365 nm LED with p-AlGaN terminated surface). We confirm that the light power outputs increase by 66%, 79%, and 103%, whereas the forward voltages reduce by 5.6%, 10.2%, and 8.6% for 385 nm p-GaN terminated, 385 nm p-AlGaN terminated, and 365 nm p-AlGaN terminated LEDs with H-TCEs, respectively, compared to LEDs with reference ITOs.

  8. Optimization of Semitransparent Anode Electrode for Flexible Green and Red Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-03-01

    In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.

  9. Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase.

    PubMed

    Carro, Juan; Martínez-Júlvez, Marta; Medina, Milagros; Martínez, Angel T; Ferreira, Patricia

    2017-11-01

    The temperature dependence of hydride transfer from the substrate to the N5 of the FAD cofactor during the reductive half-reaction of Pleurotus eryngii aryl-alcohol oxidase (AAO) is assessed here. Kinetic isotope effects on both the pre-steady state reduction of the enzyme and its steady-state kinetics, with differently deuterated substrates, suggest an environmentally-coupled quantum-mechanical tunnelling process. Moreover, those kinetic data, along with the crystallographic structure of the enzyme in complex with a substrate analogue, indicate that AAO shows a pre-organized active site that would only require the approaching of the hydride donor and acceptor for the tunnelled transfer to take place. Modification of the enzyme's active-site architecture by replacement of Tyr92, a residue establishing hydrophobic interactions with the substrate analogue in the crystal structure, in the Y92F, Y92L and Y92W variants resulted in different temperature dependence patterns that indicated a role of this residue in modulating the transfer reaction.

  10. Performance analysis of flexible DSSC with binder addition

    NASA Astrophysics Data System (ADS)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur

    2016-04-01

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  11. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    PubMed

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  13. Synthesis of iron composites on nano-pore substrates: identification and its application to removal of cyanide.

    PubMed

    Do, Si-Hyun; Jo, Young-Hoon; Park, Ho-Dong; Kong, Sung-Ho

    2012-11-01

    Two types of nano-pore substrates, waste-reclaimed (WR) and soil mineral (SM) with the relatively low density, were modified by the reaction with irons (i.e. Fe(II):Fe(III)=1:2) and the applicability of the modified substrates (i.e. Fe-WR and Fe-SM) on cyanide removal was investigated. Modification (i.e. Fe immobilization on substrate) decreased the BET surface area and PZC of the original substrates while it increased the pore diameter and the cation exchange capacity (CEC) of them. XRD analysis identified that maghemite (γ-Fe(2)O(3)) and iron silicate composite ((Mg, Fe)SiO(3)) existed on Fe-WR, while clinoferrosilite (FeSiO(3)) was identified on Fe-SM. Cyanide adsorption showed that WR adsorbed cyanide more favorably than SM. The adsorption ability of both original substrates was enhanced by the modification, which increased the negative charges of the surfaces. Without the pH adjustment, cyanide was removed as much as 97% by the only application of Fe-WR, but the undesirable transfer to hydrogen cyanide was possible because the pH was dropped to around 7.5. With a constant pH of 12, only 54% of cyanide was adsorbed on Fe-WR. On the other hand, the pH was kept as 12 without adjustment in Fe-WR/H(2)O(2) system and cyanide was effectively removed by not only adsorption but also the catalytic oxidation. The observed first-order rate constant (k(obs)) for cyanide removal were 0.49 (± 0.081) h(-1). Moreover, the more cyanate production with the modified substrates indicated the iron composites, especially maghemite, on substrates had the catalytic property to increase the reactivity of H(2)O(2). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe.

    PubMed

    Bogdanowicz, Robert; Niedziałkowski, Paweł; Sobaszek, Michał; Burnat, Dariusz; Białobrzeska, Wioleta; Cebula, Zofia; Sezemsky, Petr; Koba, Marcin; Stranak, Vitezslav; Ossowski, Tadeusz; Śmietana, Mateusz

    2018-04-27

    In this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. ITO tuned in optical properties and thickness allows for achieving a lossy-mode resonance (LMR) phenomenon and it can be simultaneously applied as an electrode in an electrochemical setup. The ITO-LMR electrode allows for optical monitoring of changes occurring at the electrode during electrochemical processing. The studies have shown that the ITO-LMR sensor’s spectral response strongly depends on electrochemical modification of its surface by ketoprofen. The effect can be applied for real-time detection of ketoprofen. The obtained sensitivities reached over 1400 nm/M (nm·mg −1 ·L) and 16,400 a.u./M (a.u.·mg −1 ·L) for resonance wavelength and transmission shifts, respectively. The proposed method is a valuable alternative for the analysis of ketoprofen within the concentration range of 0.25⁻250 μg mL −1 , and allows for its determination at therapeutic and toxic levels. The proposed novel sensing approach provides a promising strategy for both optical and electrochemical detection of electrochemical modifications of ITO or its surface by various compounds.

  15. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.

    PubMed

    Leighton, Laura J; Bredy, Timothy W

    2018-06-07

    Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.

  16. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma

    NASA Astrophysics Data System (ADS)

    Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming

    2016-11-01

    Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes--including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH--in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.

  17. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma

    PubMed Central

    Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming

    2016-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes—including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH—in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media. PMID:27834380

  18. Light-Emitting GaAs Nanowires on a Flexible Substrate.

    PubMed

    Valente, João; Godde, Tillmann; Zhang, Yunyan; Mowbray, David J; Liu, Huiyun

    2018-06-18

    Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.

  19. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.

    PubMed

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu

    2011-01-04

    Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.

  20. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure.

    PubMed

    Yang, Chan-Shan; Chang, Chia-Hua; Lin, Mao-Hsiang; Yu, Peichen; Wada, Osamu; Pan, Ci-Ling

    2012-07-02

    Indium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model. The electrical properties of ITO GRIN structures are analyzed and fitted well with Drude-Smith model in the 0.2~2.0 THz band. Our results indicate that the ITO nanowhiskers and its bottom layer atop the substrate exhibit longer carrier scattering times than ITO thin films. This signifies that ITO nanowhiskers have an excellent crystallinity with large grain size, consistent with X-ray data. Besides, we show a strong backscattering effect and fully carrier localization in the ITO nanowhiskers.

  1. In situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater

    NASA Astrophysics Data System (ADS)

    Xue, Yuxi; Zhao, Jin; Qiu, Ri; Zheng, Jiyong; Lin, Cunguo; Ma, Bojiang; Wang, Peng

    2015-12-01

    In situ electrochemical chlorination is a promising way to prohibit the biofouling on glass used for optical devices in seawater. To make this approach practical, a conductive glass should have low overpotential to generate Cl2, so that the electrical energy consumption, a critical issue for field application, will be low. Moreover, a long sustainability should also be taken into consideration from the application perspective. Following these criteria, we propose Pt/ITO surface to electrochemically generate Cl2, which immunizes biofouling for glass substrate. In this report, firstly, Pt nanoparticle/ITO is prepared via an electrodeposition approach. Secondly, electrocatalysis capability of Pt/ITO is elucidated, which shows the catalysis for Cl2 generation from NaCl solution and seawater has been sparked with Pt on the surface. Also, Pt/ITO is more sustainable and efficient than the bare ITO in natural seawater. Thirdly, the antifouling property is evaluated taking diatom as the target organism. Electrochemical chlorination on Pt/ITO can efficiently prevent the glass from fouling.

  2. Newer approach of using alternatives to (Indium doped) metal electrodes, dyes and electrolytes in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Patni, Neha; Sharma, Pranjal; Pillai, Shibu G.

    2018-04-01

    This work demonstrates the PV study of dye sensitised solar cells by fabricating the (PV) cell using the ITO, FTO and AZO glass substrate. Dyes used for the fabrication were extracted from beetroot and spinach and a cocktail dye by mixing both of the dyes was also prepared. Similarly the three dufferent electrolytes used were iodide-triiodide couple, polyaniline and mixture of polyaniline and iodide couple. Mixed dye and mixed electrolyte has emerged as the highest efficient cell. The electrical characterisation shows that the highest power conversion efficiency of 1.86% was achieved by FTO substrate, followed by efficiency of 1.83% by AZO substrate and efficiency of 1.63% with ITO substrate using mixed dye and mixed electrolyte approach. This justifies that FTO and AZO shows better efficiency and hence proposed to be used as an alternative to indium free system.

  3. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed

  4. Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.

    PubMed

    Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei

    2016-09-28

    The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

  5. Identification of Salmonella Typhimurium deubiquitinase SseL substrates by immunoaffinity enrichment and quantitative proteomic analysis

    DOE PAGES

    Nakayasu, Ernesto S.; Sydor, Michael A.; Brown, Roslyn N.; ...

    2015-07-06

    Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification and global quantitative proteomic analysis. As model system to identify substrates, we used a virulence-related deubiquitinase secreted by Salmonella enterica serovar Typhimurium into the host cells, SseL. By using this approach two SseL substrates were identified in RAW 264.7 murine macrophage-like cell line, S100A6 and het-erogeneous nuclear ribonuclear protein K, inmore » addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. Finally, this method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.« less

  6. Identification of Salmonella Typhimurium deubiquitinase SseL substrates by immunoaffinity enrichment and quantitative proteomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Sydor, Michael A.; Brown, Roslyn N.

    Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification and global quantitative proteomic analysis. As model system to identify substrates, we used a virulence-related deubiquitinase secreted by Salmonella enterica serovar Typhimurium into the host cells, SseL. By using this approach two SseL substrates were identified in RAW 264.7 murine macrophage-like cell line, S100A6 and het-erogeneous nuclear ribonuclear protein K, inmore » addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. Finally, this method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.« less

  7. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    PubMed

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  8. Substrate- and interface-mediated photocrystallization in a-Se films and multi-layers

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Tallman, R. E.; Weinstein, B. A.; Abbaszadeh, S.; Karim, K. S.; Reznik, A.

    2012-02-01

    Photocrystallization in a-Se films and layered a-Se structures is studied by Raman scattering as a function of temperature for photon energies near or slightly below the band gap. The samples are ˜16.5 μm thick films of a-Se grown i) directly on glass, ii) on indium tin oxide (ITO) coated glass, iii) on glass that is spin coated with 800nm polymide, and iv) on a Capton sheet. A low As-concentration (< 0.2 %) is present in several of the a-Se films. We compare the results on these samples to prior findings on a-Se HARP targets, and on a polymer-encapsulated a-Se film [1]. We observe strong evidence that the interface between the a-Se film and the underlying substrate and/or multi-layers plays an important role in the onset time and growth rate of photocrystallized Se domains. In some samples a discontinuous increase in the onset time with increasing temperature occurs near the glass transition (˜310K), and there is a surprising ``dead zone'' of no crystallization in this region. Other samples merely show a minimum in the onset time at similar temperatures, but no discontinuity and no region where crystallization is absent. Soft intermediate layers appear to increase stability against crystallization in an overlying a-Se film. The competing effects of substrate shear strain and thermal driving forces on the photocrystallization process are considered to account for these findings. [4pt] [1] R.E. Tallman et. al. J. Non-crystalline Sols. 354, 4577-81 (2008)

  9. Partially reduced graphene oxide-gold nanorods composite based bioelectrode of improved sensing performance.

    PubMed

    Nirala, Narsingh R; Abraham, Shiju; Kumar, Vinod; Pandey, Shobhit A; Yadav, Umakant; Srivastava, Monika; Srivastava, S K; Singh, Vidya Nand; Kayastha, Arvind M; Srivastava, Anchal; Saxena, Preeti S

    2015-11-01

    The present work proposes partially reduced graphene oxide-gold nanorods supported by chitosan (CH-prGO-AuNRs) as a potential bioelectrode material for enhanced glucose sensing. Developed on ITO substrate by immobilizing glucose oxidase on CH-prGO-AuNRs composite, these CH-prGO-AuNRs/ITO bioelectrodes demonstrate high sensitivity of 3.2 µA/(mg/dL)/cm(2) and linear range of 25-200 mg/dL with an ability to detect as low as 14.5 mg/dL. Further, these CH-prGO-AuNRs/ITO based electrodes attest synergistiacally enhanced sensing properties when compared to simple graphene oxide based CH-GO/ITO electrode. This is evident from one order higher electron transfer rate constant (Ks) value in case of CH-prGO-AuNRs modified electrode (12.4×10(-2) cm/s), in contrast to CH-GO/ITO electrode (6×10(-3) cm/s). Additionally, very low Km value [15.4 mg/dL(0.85 mM)] ensures better binding affinity of enzyme to substrate which is desirable for good biosensor stability and resistance to environmental interferences. Hence, with better loading capacity, kinetics and stability, the proposed CH-prGO-AuNRs composite shows tremendous potential to detect several bio-analytes in the coming future. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nanoscale Surface Modification of Polycrystalline Tin Sulphide Films during Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Zimin, S. P.; Gorlachev, E. S.; Dubov, G. A.; Amirov, I. I.; Naumov, V. V.; Gremenok, V. F.; Ivanov, V. A.; Seidi, H. G.

    2013-05-01

    In this paper, we present a comparative research of the nanoscale modification of the surface morphology of polycrystalline SnS films on glass substrates with two different preferred growth orientations processed in inductively coupled argon plasma. We report a new effect of polycrystalline SnS film surface smoothing during plasma treatment, which can be advantageous for the fabrication of multilayer solar cell devices with SnS absorption layers.

  11. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  12. Fabrication of High-Performance Polymer Bulk-Heterojunction Solar Cells by Interfacial Modifications I

    DTIC Science & Technology

    2009-04-30

    P3HT:PCBM based polymer BHJ solar cells with configurations of ITO glass /PEDOT:PSS/P3HT:PCBM/PEGDE(0~6nm)/Al(100nm) and ITO glass /PEDOT:PSS/P3HT:PCBM...4% for inverted PV cells was reported using cesium carbonate (Cs2CO3) as ECL and vanadium oxide ( V2O5 ) as the hole collecting layer (HCL)9. However... glass Petri dish. The active film thickness was about 200 nm ±10 nm. SPDPA was dissolved in ethanol with 1 wt%. 10 nm of SPDPA was spin-coated onto the

  13. Multi-Functional, Micro Electromechanical Silicon Carbide Accelerometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2004-01-01

    A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiS wafer may be also etched.

  14. Multi-functional micro electromechanical devices and method of bulk manufacturing same

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2004-01-01

    A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiC wafer may be also be etched.

  15. Modifications in small nuclear RNAs and their roles in spliceosome assembly and function.

    PubMed

    Bohnsack, Markus T; Sloan, Katherine E

    2018-06-01

    Modifications in cellular RNAs have emerged as key regulators of all aspects of gene expression, including pre-mRNA splicing. During spliceosome assembly and function, the small nuclear RNAs (snRNAs) form numerous dynamic RNA-RNA and RNA-protein interactions, which are required for spliceosome assembly, correct positioning of the spliceosome on substrate pre-mRNAs and catalysis. The human snRNAs contain several base methylations as well as a myriad of pseudouridines and 2'-O-methylated nucleotides, which are largely introduced by small Cajal body-specific-RNPs. Modified nucleotides typically cluster in functionally important regions of the snRNAs, suggesting that their presence could optimise the interactions of snRNAs with each other or with pre-mRNAs, or may affect the binding of spliceosomal proteins. snRNA modifications appear to play important roles in snRNP biogenesis and spliceosome assembly, and have also been proposed to influence the efficiency and fidelity of pre-mRNAs splicing. Interestingly, alterations in the modification status of snRNAs have recently been observed in different cellular conditions, implying that some snRNA modifications are dynamic and raising the possibility that these modifications may fine-tune the spliceosome for particular functions. Here, we review the current knowledge on the snRNA modification machinery and discuss the timing, functions and dynamics of modifications in snRNAs.

  16. Detecting the impact of bank and channel modification on invertebrate communities in Mediterranean temporary streams (Sardinia, SW Italy).

    PubMed

    Buffagni, Andrea; Tenchini, Roberta; Cazzola, Marcello; Erba, Stefania; Balestrini, Raffaella; Belfiore, Carlo; Pagnotta, Romano

    2016-09-15

    We hypothesized that reach-scale, bank and channel modification would impact benthic communities in temporary rivers of Sardinia, when pollution and water abstraction are not relevant. A range of variables were considered, which include both artificial structures/alterations and natural features observed in a stream reach. Multivariate regression trees (MRT) were used to assess the effects of the explanatory variables on invertebrate assemblages and five groups, characterized by different habitat modification and/or features, were recognized. Four node variables determined the splits in the MRT analysis: channel reinforcement, tree-related bank and channel habitats, channel modification and bank modification. Continuity of trees in the river corridor diverged among MRT groups and significant differences among groups include presence of alders, extent of channel shading and substrate diversity. Also, the percentage of in-stream organic substrates, in particular CPOM/Xylal, showed highly significant differences among groups. For practical applications, thresholds for the extent of channel reinforcement (40%) and modification (10%) and for bank alteration (≈30%) were provided, that can be used to guide the implementation of restoration measures. In moderately altered river reaches, a significant extent of tree-related habitats (≈5%) can noticeably mitigate the effects of morphological alteration on aquatic invertebrates. The outcomes highlight the importance of riparian zone management as an opportune, achievable prospect in the restoration of Mediterranean temporary streams. The impact of bank and channel modification on ecological status (sensu WFD) was investigated and the tested benthic metrics, especially those based on abundance data, showed legible differences among MRT groups. Finally, bank and channel modification appears to be a potential threat for the conservation of a few Sardo-Corsican endemic species. The introduction of management criteria that

  17. White organic light-emitting diodes with 4 nm metal electrode

    NASA Astrophysics Data System (ADS)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  18. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  19. Method for nanoscale spatial registration of scanning probes with substrates and surfaces

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor)

    2010-01-01

    Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.

  20. IZO deposited by PLD on flexible substrate for organic heterostructures

    NASA Astrophysics Data System (ADS)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G.

    2017-05-01

    In:ZnO (IZO) thin films were deposited on flexible plastic substrates by pulsed laser deposition (PLD) method. The obtained layers present adequate optical and electrical properties competitive with those based on indium tin oxide (ITO). The figure of merit (9 × 10-3 Ω-1) calculated for IZO layers demonstrates that high quality coatings can be prepared by this deposition technique. A thermal annealing (150 °C for 1 h) or an oxygen plasma etching (6 mbar for 10 min.) were applied to the IZO layers to evaluate the influence of these treatments on the properties of the transparent coatings. Using vacuum evaporation, organic heterostructures based on cooper phthalocyanine (CuPc) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) were deposited on the untreated and treated IZO layers. The optical and electrical properties of the heterostructures were investigated by UV-Vis, FTIR and current-voltage ( I- V) measurements. For the heterostructure fabricated on IZO treated in oxygen plasma, an improvement in the current value with at least one order of magnitude was evidenced in the I- V characteristics recorded in dark conditions. Also, an increase in the current value for the heterostructure deposited on untreated IZO layer can be achieved by adding an organic layer such as tris-8-hydroxyquinoline aluminium (Alq3).