Sample records for ivd tissue engineering

  1. Tissue engineering strategies applied in the regeneration of the human intervertebral disk.

    PubMed

    Silva-Correia, Joana; Correia, Sandra I; Oliveira, Joaquim M; Reis, Rui L

    2013-12-01

    Low back pain (LBP) is one of the most common painful conditions that lead to work absenteeism, medical visits, and hospitalization. The majority of cases showing signs of LBP are due to age-related degenerative changes in the intervertebral disk (IVD), which are, in fact, associated with multiple spine pathologies. Traditional and more conservative procedures/clinical approaches only treat the symptoms of disease and not the underlying pathology, thus limiting their long-term efficiency. In the last few years, research and development of new approaches aiming to substitute the nucleus pulposus and annulus fibrosus tissue and stimulate its regeneration has been conducted. Regeneration of the damaged IVD using tissue engineering strategies appears particularly promising in pre-clinical studies. Meanwhile, surgical techniques must be adapted to this new approach in order to be as minimally invasive as possible, reducing recovering time and side effects associated to traditional surgeries. In this review, the current knowledge on IVD, its associated pathologies and current surgical procedures are summarized. Furthermore, it also provides a succinct and up-to-date overview on regenerative medicine research, especially on the newest tissue engineering strategies for IVD regeneration. © 2013.

  2. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration.

    PubMed

    See, Eugene Yong-Shun; Toh, Siew Lok; Goh, James Cho-Hong

    2011-10-01

    The aim of this study was to develop a tissue engineering approach in regenerating the annulus fibrosus (AF) as part of an overall strategy to produce a tissue-engineered intervertebral disc (IVD) replacement. To determine whether a rehabilitative simulation regime on bone marrow–derived mesenchymal stem cell cell-sheet is able to aid the regeneration of the AF. No previous study has used bone marrow–derived mesenchymal stem cell cell-sheets simulated by a rehabilitative regime to regenerate the AF. The approach was to use bone marrow–derived stem cells to form cell-sheets and incorporating them onto silk scaffolds to simulate the native lamellae of the AF. The in vitro experimental model used to study the efficacy of such a system was made up of the tissue engineering AF construct wrapped around a silicone disc to form a simulated IVD-like assembly. The assembly was cultured within a custom-designed bioreactor that provided a compressive mechanical stimulation onto the silicone disc. The silicone nucleus pulposus would bulge radially and compress the simulated AF to mimic the physiological conditions. The simulated IVD-like assembly was compressed using a rehabilitative regime that lasted for 4 weeks at 0.25 Hz, for 15 minutes each day. With the rehabilitative regime, the cell-sheets remained viable but showed a decrease in cell numbers and viability. Gene expression analysis showed significant upregulation of IVD-related genes and there was an increased ratio of collagen type II to collagen type I found within the extracellular matrix. The results suggested that a rehabilitative regime caused extensive remodeling to take place within the simulated IVD-like assembly, producing extracellular matrix similar to that found in the inner AF.

  3. The effects of dynamic loading on the intervertebral disc.

    PubMed

    Chan, Samantha C W; Ferguson, Stephen J; Gantenbein-Ritter, Benjamin

    2011-11-01

    Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.

  4. Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results

    PubMed Central

    Gebhard, Harry; Bowles, Robby; Dyke, Jonathan; Saleh, Tatianna; Doty, Stephen; Bonassar, Lawrence; Härtl, Roger

    2010-01-01

    Study type: Basic science Introduction: Chronic back pain due to degenerative disc disease (DDD) is among the most important medical conditions causing morbidity and significant health care costs. Surgical treatment options include disc replacement or fusion surgery, but are associated with significant short- and long-term risks.1 Biological tissue-engineering of human intervertebral discs (IVD) could offer an important alternative.2 Recent in vitro data from our group have shown successful engineering and growth of ovine intervertebral disc composites with circumferentially aligned collagen fibrils in the annulus fibrosus (AF) (Figure 1).3 Figure 1 Tissue-engineered composite disc a Experimental steps to generate composite tissue-engineered IVDs3 b Example of different AF formulations on collagen alignment in the AF. Second harmonic generation and two-photon excited fluorescence images of seeded collagen gels (for AF) of 1 and 2.5 mg/ml over time. At seeding, cells and collagen were homogenously distributed in the gels. Over time, AF cells elongated and collagen aligned parallel to cells. Less contraction and less alignment is noted after 3 days in the 2.5 mg/mL gel. c Imaging-based creation of a virtual disc model that will serve as template for the engineered disc. Total disc dimensions (AF and NP) were retrieved from micro-computer tomography (CT) (left images), and nucleus pulposus (NP) dimensions alone were retrieved from T2-weighted MRI images (right images). Merging of MRI and micro-CT models revealed a composite disc model (middle image)—Software: Microview, GE Healthcare Inc., Princeton, NJ; and slicOmatic v4.3, TomoVision, Montreal, Canada. d Flow chart describing the process for generating multi-lamellar tissue engineered IVDs. IVDs are produced by allowing cell-seeded collagen layers to contract around a cell-seeded alginate core (NP) over time Objective: The next step is to investigate if biological disc implants survive, integrate, and restore function to the spine in vivo. A model will be developed that allows efficient in vivo testing of tissue-engineered discs of various compositions and characteristics. Methods: Athymic rats were anesthetized and a dorsal approach was chosen to perform a microsurgical discectomy in the rat caudal spine (Fig. 2,Fig. 3). Control group I (n = 6) underwent discectomy only, Control group II (n = 6) underwent discectomy, followed by reimplantation of the autologous disc. Two treatment groups (group III, n = 6, 1 month survival; group IV, n = 6, 6 months survival) received a tissue-engineered composite disc implant. The rodents were followed clinically for signs of infection, pain level and wound healing. X-rays and magnetic resonance imaging (MRI) were assessed postoperatively and up to 6 months after surgery (Fig. 6,Fig. 7). A 7 Tesla MRI (Bruker) was implemented for assessment of the operated level as well as the adjacent disc (hydration). T2-weighted sequences were interpreted by a semiquantitative score (0 = no signal, 1 = weak signal, 2 = strong signal and anatomical features of a normal disc). Histology was performed with staining for proteoglycans (Alcian blue) and collagen (Picrosirius red) (Fig. 4,Fig. 5). Figure 2 Disc replacement surgery a Operative situs with native disc that has been disassociated from both adjacent vertebrae b Native disc (left) and tissue-engineered implant (right) c Implant in situ before wound closureAF: Annulus fi brosus, nP: nucleus pulposus, eP: endplate, M: Muscle, T: Tendon, s: skin, art: artery, GP: Growth plate, B: Bone Figure 3 Disc replacement surgery. Anatomy of the rat caudal disc space a Pircrosirius red stained axial cut of native disc space b Saffranin-O stained sagittal cut of native disc space Figure 4 Histologies of three separate motion segments from three different rats. Animal one = native IVD, Animal two = status after discectomy, Animal three = tissue-engineered implant (1 month) a–c H&E (overall tissue staining for light micrsocopy) d–f Alcian blue (proteoglycans) g–i Picrosirius red (collagen I and II) Figure 5 Histology from one motion segment four months after implantation of a bio-engineered disc construct a Picrosirius red staining (collagen) b Polarized light microscopy showing collagen staining and collagen organization in AF region c Increased Safranin-O staining (proteoglycans) in NP region of the disc implant d Higher magnification of figure 5c: Integration between implanted tissue-engineered total disc replacement and vertebral body bone Figure 6 MRI a Disc space height measurements in flash/T1 sequence (top: implant (714.0 micrometer), bottom: native disc (823.5 micrometer) b T2 sequence, red circle surrounding the implant NP Figure 7 7 Tesla MRI imaging of rat tail IVDs showing axial images (preliminary pilot data) a Diffusion tensor imaging (DTI) on two explanted rat tail discs in Formalin b Higher magnification of a, showing directional alignment of collagen fibers (red and green) when compared to the color ball on top which maps fibers' directional alignment (eg, fibers directing from left to right: red, from top to bottom: blue) c Native IVD in vivo (successful imaging of top and bottom of the IVD (red) d Gradient echo sequence (GE) showing differentiation between NP (light grey) and AF (dark margin) e GE of reimplanted tail IVD at the explantation level f T1Rho sequence demonstrating the NP (grey) within the AF (dark margin), containing the yellow marked region of interest for value acquisition (preliminary data are consistent with values reported in the literature). g T2 image of native IVD in vivo for monitoring of hydration (white: NP) Results: The model allowed reproducible and complete discectomies as well as disc implantation in the rat tail spine without any surgical or postoperative complications. Discectomy resulted in immediate collapse of the disc space. Preliminary results indicate that disc space height was maintained after disc implantation in groups II, III and IV over time. MRI revealed high resolution images of normal intervertebral discs in vivo. Eight out of twelve animals (groups III and IV) showed a positive signal in T2-weighted images after 1 month (grade 0 = 4, grade 1 = 4, grade 2 = 4). Positive staining was seen for collagen as well as proteoglycans at the site of disc implantation after 1 month in each of the six animals with engineered implants (group III). Analysis of group IV showed positive T2 signal in five out of six animals and disc-height preservation in all animals after 6 months. Conclusions: This study demonstrates for the first time that tissue-engineered composite IVDs with circumferentially aligned collagen fibrils survive and integrate with surrounding vertebral bodies when placed in the rat spine for up to 6 months. Tissue-engineered composite IVDs restored function to the rat spine as indicated by maintenance of disc height and vertebral alignment. A significant finding was that maintenance of the composite structure in group III was observed, with increased proteoglycan staining in the nucleus pulposus region (Figure 4d–f). Proteoglycan and collagen matrix as well as disc height preservation and positive T2 signals in MRI are promising parameters and indicate functionality of the implants. PMID:23637671

  5. Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results.

    PubMed

    Gebhard, Harry; Bowles, Robby; Dyke, Jonathan; Saleh, Tatianna; Doty, Stephen; Bonassar, Lawrence; Härtl, Roger

    2010-08-01

     Basic science Introduction:  Chronic back pain due to degenerative disc disease (DDD) is among the most important medical conditions causing morbidity and significant health care costs. Surgical treatment options include disc replacement or fusion surgery, but are associated with significant short- and long-term risks.1 Biological tissue-engineering of human intervertebral discs (IVD) could offer an important alternative.2 Recent in vitro data from our group have shown successful engineering and growth of ovine intervertebral disc composites with circumferentially aligned collagen fibrils in the annulus fibrosus (AF) (Figure 1).3 Figure 1 Tissue-engineered composite disc a Experimental steps to generate composite tissue-engineered IVDs3b Example of different AF formulations on collagen alignment in the AF. Second harmonic generation and two-photon excited fluorescence images of seeded collagen gels (for AF) of 1 and 2.5 mg/ml over time. At seeding, cells and collagen were homogenously distributed in the gels. Over time, AF cells elongated and collagen aligned parallel to cells. Less contraction and less alignment is noted after 3 days in the 2.5 mg/mL gel. c Imaging-based creation of a virtual disc model that will serve as template for the engineered disc. Total disc dimensions (AF and NP) were retrieved from micro-computer tomography (CT) (left images), and nucleus pulposus (NP) dimensions alone were retrieved from T2-weighted MRI images (right images). Merging of MRI and micro-CT models revealed a composite disc model (middle image)-Software: Microview, GE Healthcare Inc., Princeton, NJ; and slicOmatic v4.3, TomoVision, Montreal, Canada. d Flow chart describing the process for generating multi-lamellar tissue engineered IVDs. IVDs are produced by allowing cell-seeded collagen layers to contract around a cell-seeded alginate core (NP) over time Objective:  The next step is to investigate if biological disc implants survive, integrate, and restore function to the spine in vivo. A model will be developed that allows efficient in vivo testing of tissue-engineered discs of various compositions and characteristics.  Athymic rats were anesthetized and a dorsal approach was chosen to perform a microsurgical discectomy in the rat caudal spine (Fig. 2,Fig. 3). Control group I (n = 6) underwent discectomy only, Control group II (n = 6) underwent discectomy, followed by reimplantation of the autologous disc. Two treatment groups (group III, n = 6, 1 month survival; group IV, n = 6, 6 months survival) received a tissue-engineered composite disc implant. The rodents were followed clinically for signs of infection, pain level and wound healing. X-rays and magnetic resonance imaging (MRI) were assessed postoperatively and up to 6 months after surgery (Fig. 6,Fig. 7). A 7 Tesla MRI (Bruker) was implemented for assessment of the operated level as well as the adjacent disc (hydration). T2-weighted sequences were interpreted by a semiquantitative score (0 = no signal, 1 = weak signal, 2 = strong signal and anatomical features of a normal disc). Histology was performed with staining for proteoglycans (Alcian blue) and collagen (Picrosirius red) (Fig. 4,Fig. 5). Figure 2 Disc replacement surgery a Operative situs with native disc that has been disassociated from both adjacent vertebrae b Native disc (left) and tissue-engineered implant (right) c Implant in situ before wound closureAF: Annulus fi brosus, nP: nucleus pulposus, eP: endplate, M: Muscle, T: Tendon, s: skin, art: artery, GP: Growth plate, B: BoneFigure 3 Disc replacement surgery. Anatomy of the rat caudal disc space a Pircrosirius red stained axial cut of native disc space b Saffranin-O stained sagittal cut of native disc spaceFigure 4 Histologies of three separate motion segments from three different rats. Animal one = native IVD, Animal two = status after discectomy, Animal three = tissue-engineered implant (1 month) a-c H&E (overall tissue staining for light micrsocopy) d-f Alcian blue (proteoglycans) g-i Picrosirius red (collagen I and II)Figure 5 Histology from one motion segment four months after implantation of a bio-engineered disc construct a Picrosirius red staining (collagen) b Polarized light microscopy showing collagen staining and collagen organization in AF region c Increased Safranin-O staining (proteoglycans) in NP region of the disc implant d Higher magnification of figure 5c: Integration between implanted tissue-engineered total disc replacement and vertebral body boneFigure 6 MRI a Disc space height measurements in flash/T1 sequence (top: implant (714.0 micrometer), bottom: native disc (823.5 micrometer) b T2 sequence, red circle surrounding the implant NPFigure 7 7 Tesla MRI imaging of rat tail IVDs showing axial images (preliminary pilot data) a Diffusion tensor imaging (DTI) on two explanted rat tail discs in Formalin b Higher magnification of a, showing directional alignment of collagen fibers (red and green) when compared to the color ball on top which maps fibers' directional alignment (eg, fibers directing from left to right: red, from top to bottom: blue) c Native IVD in vivo (successful imaging of top and bottom of the IVD (red) d Gradient echo sequence (GE) showing differentiation between NP (light grey) and AF (dark margin) e GE of reimplanted tail IVD at the explantation level f T1Rho sequence demonstrating the NP (grey) within the AF (dark margin), containing the yellow marked region of interest for value acquisition (preliminary data are consistent with values reported in the literature). g T2 image of native IVD in vivo for monitoring of hydration (white: NP) Results:  The model allowed reproducible and complete discectomies as well as disc implantation in the rat tail spine without any surgical or postoperative complications. Discectomy resulted in immediate collapse of the disc space. Preliminary results indicate that disc space height was maintained after disc implantation in groups II, III and IV over time. MRI revealed high resolution images of normal intervertebral discs in vivo. Eight out of twelve animals (groups III and IV) showed a positive signal in T2-weighted images after 1 month (grade 0 = 4, grade 1 = 4, grade 2 = 4). Positive staining was seen for collagen as well as proteoglycans at the site of disc implantation after 1 month in each of the six animals with engineered implants (group III). Analysis of group IV showed positive T2 signal in five out of six animals and disc-height preservation in all animals after 6 months.  This study demonstrates for the first time that tissue-engineered composite IVDs with circumferentially aligned collagen fibrils survive and integrate with surrounding vertebral bodies when placed in the rat spine for up to 6 months. Tissue-engineered composite IVDs restored function to the rat spine as indicated by maintenance of disc height and vertebral alignment. A significant finding was that maintenance of the composite structure in group III was observed, with increased proteoglycan staining in the nucleus pulposus region (Figure 4d-f). Proteoglycan and collagen matrix as well as disc height preservation and positive T2 signals in MRI are promising parameters and indicate functionality of the implants.

  6. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    PubMed Central

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  7. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications.

    PubMed

    Silva-Correia, J; Oliveira, J M; Caridade, S G; Oliveira, J T; Sousa, R A; Mano, J F; Reis, R L

    2011-06-01

    Intervertebral disc (IVD) degeneration is a challenging clinical problem that urgently demands viable nucleus pulposus (NP) implant materials. The best suited biomaterial for NP regeneration has yet to be identified, but it is believed that biodegradable hydrogel-based materials are promising candidates. In this work, we have developed ionic- and photo-crosslinked methacrylated gellan gum (GG-MA) hydrogels to be used in acellular and cellular tissue-engineering strategies for the regeneration of IVDs. The physicochemical properties of the developed hydrogels were investigated by Fourier-transform infrared spectroscopy, (1) H nuclear magnetic resonance and differential scanning calorimetry. The swelling ability and degradation rate of hydrogels were also analysed in phosphate-buffered saline solution at physiological pH for a period of 30 days. Additionally, the morphology and mechanical properties of the hydrogels were assessed under a scanning electron microscope and dynamic compression, respectively. An in vitro study was carried out to screen possible cytotoxicity of the gellan gum-based hydrogels by culturing rat lung fibroblasts (L929 cells) with hydrogel leachables up to 7 days. The results demonstrated that gellan gum was successfully methacrylated. We observed that the produced GG-MA hydrogels possess improved mechanical properties and lower water uptake ability and degradation rate as compared to gellan gum. This work also revealed that GG-MA hydrogels are non-cytotoxic in vitro, thus being promising biomaterials to be used in IVD tissue-engineering strategies. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels.

    PubMed

    Richardson, Stephen M; Hughes, Nesta; Hunt, John A; Freemont, Anthony J; Hoyland, Judith A

    2008-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain. As current clinical treatments are aimed at restoring biomechanical function and providing symptomatic relief, interest in methods focused on biological repair has increased. Several tissue engineering approaches using different cell types and hydrogels/scaffolds have been proposed. Owing to the unsuitable nature of degenerate cells for tissue engineering attention has focused on the use of mesenchymal stem cells (MSCs). Additionally, while rigid scaffolds have been demonstrated to allow MSC differentiation to the chondrocyte-like cells of the IVD, hydrogels are being increasingly studied as they allow minimally invasive implantation without extensive damage to the IVD. Here, we have studied the temperature-sensitive hydrogel chitosan-glycerophosphate (C/Gp), seeded with human MSCs and cultured for 4 weeks in standard medium. We have analysed the gene and protein expression profile of the MSCs and compared it to that of both nucleus pulposus (NP) cells and articular chondrocytes cultured in C/Gp. Gene expression analysis for chondrocytic-cell marker genes demonstrated differentiation of MSCs to a phenotype which showed similarities to both articular chondrocytes and NP cells. Conventional PCR demonstrated a lack of expression of osteogenic marker genes and the hypertrophic marker gene type X collagen. MSCs also secreted both proteoglycans and collagens in a ratio, which more closely resembled that of NP cells than articular chondrocytes. These results therefore suggest that MSC-seeded C/Gp gels could be used clinically for the regeneration of the degenerate human IVD.

  9. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype

    PubMed Central

    2010-01-01

    Introduction Mesenchymal stem cells (MSCs) offer promise for intervertebral disc (IVD) repair and regeneration because they are easily isolated and expanded, and can differentiate into several mesenchymal tissues. Notochordal (NC) cells contribute to IVD development, incorporate into the nucleus pulposus (NP), and stimulate mature disc cells. However, there have been no studies investigating the effects of NC cells on adult stem cell differentiation. The premise of this study is that IVD regeneration is more similar to IVD development than to IVD maintenance, and we hypothesize that soluble factors from NC cells differentiate MSCs to a phenotype characteristic of nucleus pulposus (NP) cells during development. The eventual clinical goal would be to isolate or chemically/recombinantly produce the active agent to induce the therapeutic effects, and to use it as either an injectable therapy for early intervention on disc disease, or in developing appropriately pre-differentiated MSC cells in a tissue engineered NP construct. Methods Human MSCs from bone marrow were expanded and pelleted to form high-density cultures. MSC pellets were exposed to either control medium (CM), chondrogenic medium (CM with dexamethasone and transforming growth factor, (TGF)-β3) or notochordal cell conditioned medium (NCCM). NCCM was prepared from NC cells maintained in serum free medium for four days. After seven days culture, MSC pellets were analyzed for appearance, biochemical composition (glycosaminoglycans and DNA), and gene expression profile (sox-9, collagen types-II and III, laminin-β1 and TIMP1(tissue inhibitor of metalloproteinases-1)). Results Significantly higher glycosaminoglycan accumulation was seen in NCCM treated pellets than in CM or TGFβ groups. With NCCM treatment, increased gene expression of collagen III, and a trend of increasing expression of laminin-β1 and decreased expression of sox-9 and collagen II relative to the TGFβ group was observed. Conclusions Together, results suggest NCCM stimulates mesenchymal stem cell differentiation toward a potentially NP-like phenotype with some characteristics of the developing IVD. PMID:20565707

  10. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy.

    PubMed

    Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha C W; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle

    2015-01-01

    In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.

  11. Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration.

    PubMed

    Tsaryk, Roman; Silva-Correia, Joana; Oliveira, Joaquim Miguel; Unger, Ronald E; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram; Reis, Rui L; Kirkpatrick, C James

    2017-03-01

    Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan gum-based hydrogels was investigated. Both ionic- (iGG-MA) and photo-crosslinked (phGG-MA) methacrylated gellan gum hydrogels show no cytotoxicity in extraction assays with MSCs and NCs. Furthermore, the materials do not induce pro-inflammatory responses in endothelial cells. Moreover, MSCs and NCs can be encapsulated into the hydrogels and remain viable for at least 2 weeks, although apoptosis is observed in phGG-MA. Importantly, encapsulated MSCs and NCs show signs of in vivo chondrogenesis in a subcutaneous implantation of iGG-MA. Altogether, the data endorse the potential use of modified gellan gum-based hydrogel as a suitable material in NP tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Organ Culture Bioreactors – Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy

    PubMed Central

    Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha CW; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle

    2015-01-01

    In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of “smart” biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments. PMID:25764196

  13. Impaired intervertebral disc development and premature disc degeneration in mice with notochord-specific deletion of CCN2.

    PubMed

    Bedore, Jake; Sha, Wei; McCann, Matthew R; Liu, Shangxi; Leask, Andrew; Séguin, Cheryle A

    2013-10-01

    Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration. Copyright © 2013 by the American College of Rheumatology.

  14. Detrimental effects of discectomy on intervertebral disc biology can be decelerated by growth factor treatment during surgery: a large animal organ culture model.

    PubMed

    Illien-Jünger, Svenja; Lu, Young; Purmessur, Devina; Mayer, Jillian E; Walter, Benjamin A; Roughley, Peter J; Qureshi, Sheeraz A; Hecht, Andrew C; Iatridis, James C

    2014-11-01

    Lumbar discectomies are common surgical interventions that treat radiculopathy by removing herniated and loose intervertebral disc (IVD) tissues. However, remaining IVD tissue can continue to degenerate resulting in long-term clinical problems. Little information is available on the effects of discectomy on IVD biology. Currently, no treatments exist that can suspend or reverse the degeneration of the remaining IVD. To improve the knowledge on how discectomy procedures influence IVD physiology and to assess the potential of growth factor treatment as an augmentation during surgery. To determine effects of discectomy on IVDs with and without transforming growth factor beta 3 (TGFβ3) augmentation using bovine IVD organ culture. This study determined effects of discectomy with and without TGFβ3 injection using 1-, 6-, and 19-day organ culture experiments. Treated IVDs were injected with 0.2 μg TGFβ3 in 20 μL phosphate-buffered saline+bovine serum albumin into several locations of the discectomy site. Cell viability, gene expression, nitric oxide (NO) release, IVD height, aggrecan degradation, and proteoglycan content were determined. Discectomy significantly increased cell death, aggrecan degradation, and NO release in healthy IVDs. Transforming growth factor beta 3 injection treatment prevented or mitigated these effects for the 19-day culture period. Discectomy procedures induced cell death, catabolism, and NO production in healthy IVDs, and we conclude that post-discectomy degeneration is likely to be associated with cell death and matrix degradation. Transforming growth factor beta 3 injection augmented discectomy procedures by acting to protect IVD tissues by maintaining cell viability, limiting matrix degradation, and suppressing NO. We conclude that discectomy procedures can be improved with injectable therapies at the time of surgery although further in vivo and human studies are required. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair.

    PubMed

    McGuire, Rachel; Borem, Ryan; Mercuri, Jeremy

    2017-12-01

    One major limitation of intervertebral disc (IVD) repair is that no ideal biomaterial has been developed that effectively mimics the angle-ply collagen architecture and mechanical properties of the native annulus fibrosus (AF). Furthermore, it would be beneficial to devise a simple, scalable process by which to manufacture a biomimetic biomaterial that could function as a mechanical repair patch to be secured over a large defect in the outer AF that will support AF tissue regeneration. Such a biomaterial would: (1) enable the employment of early-stage interventional strategies to treat IVD degeneration (i.e. nucleus pulposus arthroplasty); (2) prevent IVD re-herniation in patients with large AF defects; and (3) serve as a platform to develop full-thickness AF and whole IVD tissue engineering strategies. Due to the innate collagen fibre alignment and mechanical strength of pericardium, a procedure was developed to assemble multi-laminate angle-ply AF patches derived from decellularized pericardial tissue. Patches were subsequently assessed histologically to confirm angle-ply microarchitecture, and mechanically assessed for biaxial burst strength and tensile properties. Additionally, patch cytocompatibility was evaluated following seeding with bovine AF cells. This study demonstrated the effective removal of porcine cell remnants from the pericardium, and the ability to reliably produce multi-laminate patches with angle-ply architecture using a simple assembly technique. Resultant patches demonstrated their inherent ability to resist biaxial burst pressures reminiscent of intradiscal pressures commonly borne by the AF, and exhibited tensile strength and modulus values reported for native human AF. Furthermore, the biomaterial supported AF cell viability, infiltration and proliferation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability.

    PubMed

    Borem, Ryan; Madeline, Allison; Walters, Joshua; Mayo, Henry; Gill, Sanjitpal; Mercuri, Jeremy

    2017-08-01

    Annulus fibrosus (AF) damage commonly occurs due to intervertebral disc (IVD) degeneration/herniation. The dynamic mechanical role of the AF is essential for proper IVD function and thus it is imperative that biomaterials developed to repair the AF withstand the mechanical rigors of the native tissue. Furthermore, these biomaterials must resist accelerated degradation within the proteolytic environment of degenerate IVDs while supporting integration with host tissue. We have previously reported a novel approach for developing collagen-based, multi-laminate AF repair patches (AFRPs) that mimic the angle-ply architecture and basic tensile properties of the human AF. Herein, we further evaluate AFRPs for their: tensile fatigue and impact burst strength, IVD attachment strength, and contribution to functional spinal unit (FSU) kinematics following IVD repair. Additionally, AFRP resistance to collagenase degradation and cytocompatibility were assessed following chemical crosslinking. In summary, AFRPs demonstrated enhanced durability at high applied stress amplitudes compared to human AF and withstood radially-directed biaxial stresses commonly borne by the native tissue prior to failure/detachment from IVDs. Moreover, FSUs repaired with AFRPs and nucleus pulposus (NP) surrogates had their axial kinematic parameters restored to intact levels. Finally, carbodiimide crosslinked AFRPs resisted accelerated collagenase digestion without detrimentally effecting AFRP tensile properties or cytocompatibility. Taken together, AFRPs demonstrate the mechanical robustness and enzymatic stability required for implantation into the damaged/degenerate IVD while supporting AF cell infiltration and viability. The quality of life for millions of individuals globally is detrimentally impacted by IVD degeneration and herniation. These pathologies often result in the structural demise of IVD tissue, particularly the annulus fibrosus (AF). Biomaterials developed for AF repair have yet to demonstrate the mechanical strength and durability required for utilization in the spine. Herein, we demonstrate the development of an angle-ply AF repair patch (AFRP) that can resist the application of physiologically relevant stresses without failure and which contributes to the restoration of functional spinal unit axial kinematics following repair. Furthermore, we show that this biomaterial can resist accelerated degradation in a simulated degenerate environment and supports AF cell viability. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration.

    PubMed

    Pereira, D R; Silva-Correia, J; Oliveira, J M; Reis, R L

    2013-02-01

    Low back pain is an extremely common illness syndrome that causes patient suffering and disability and requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its fine regulatory system, makes it a challenge to the scientific community. Biomaterials-based therapies are the most interesting solutions to date, whereby tissue engineering and regenerative medicine (TE&RM) strategies are included. By using such strategies, i.e., combining biomaterials, cells, and biomolecules, the ultimate goal of reaching a complete integration between native and neo-tissue can be achieved. Hydrogels are promising materials for restoring IVD, mainly nucleus pulposus (NP). This study presents an overview of the use of hydrogels in acellular and cellular strategies for intervertebral disc regeneration. To better understand IVD and its functioning, this study will focus on several aspects: anatomy, pathophysiology, cellular and biomolecular performance, intrinsic healing processes, and current therapies. In addition, the application of hydrogels as NP substitutes will be addressed due to their similarities to NP mechanical properties and extracellular matrix. These hydrogels can be used in cellular strategies when combined with cells from different sources, or in acellular strategies by performing the functionalization of the hydrogels with biomolecules. In addition, a brief summary of therapies based on simple injection for primary biological repair will be examined. Finally, special emphasis will focus on reviewing original studies reporting on the use of autologous cells and biomolecules such as platelet-rich plasma and their potential clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc.

    PubMed

    Mwale, F; Roughley, P; Antoniou, J

    2004-12-15

    Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio) in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.

  19. Qualitative grading of disc degeneration by magnetic resonance in the lumbar and cervical spine: lack of correlation with histology in surgical cases.

    PubMed

    Davies, B M; Atkinson, R A; Ludwinski, F; Freemont, A J; Hoyland, J A; Gnanalingham, K K

    2016-08-01

    Clinically, magnetic resonance (MR) imaging is the most effective non-invasive tool for assessing IVD degeneration. Histological examination of the IVD provides a more detailed assessment of the pathological changes at a tissue level. However, very few reports have studied the relationship between these techniques. Identifying a relationship may allow more detailed staging of IVD degeneration, of importance in targeting future regenerative therapies. To investigate the relationship between MR and histological grading of IVD degeneration in the cervical and lumbar spine in patients undergoing discectomy. Lumbar (N = 99) and cervical (N = 106) IVD samples were obtained from adult patients undergoing discectomy surgery for symptomatic IVD herniation and graded to ascertain a histological grade of degeneration. The pre-operative MR images from these patients were graded for the degree of IVD (MR grade) and vertebral end-plate degeneration (Modic Changes, MC). The relationship between histological and MR grades of degeneration were studied. In lumbar and cervical IVD the majority of samples (93%) exhibited moderate levels of degeneration (ie MR grades 3-4) on pre-operative MR scans. Histologically, most specimens displayed moderate to severe grades of degeneration in lumbar (99%) and cervical spine (93%). MR grade was weakly correlated with patient age in lumbar and cervical study groups. MR and histological grades of IVD degeneration did not correlate in lumbar or cervical study groups. MC were more common in the lumbar than cervical spine (e.g. 39 versus 20% grade 2 changes; p < 0.05), but failed to correlate with MR or histological grades for degeneration. In this surgical series, the resected IVD tissue displayed moderate to severe degeneration, but there is no correlation between MR and histological grades using a qualitative classification system. There remains a need for a quantitative, non-invasive, pre-clinical measure of IVD degeneration that correlates with histological changes seen in the IVD.

  20. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  1. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing.

    PubMed

    Whatley, Benjamin R; Kuo, Jonathan; Shuai, Cijun; Damon, Brooke J; Wen, Xuejun

    2011-03-01

    A custom-designed three-dimensional additive manufacturing device was developed to fabricate scaffolds for intervertebral disk (IVD) regeneration. This technique integrated a computer with a device capable of 3D movement allowing for precise motion and control over the polymer scaffold resolution. IVD scaffold structures were designed using computer-aided design to resemble the natural IVD structure. Degradable polyurethane (PU) was used as an elastic scaffold construct to mimic the elastic nature of the native IVD tissue and was deposited at a controlled rate using ultra-fine micropipettes connected to a syringe pump. The elastic PU was extruded directly onto a collecting substrate placed on a freezing stage. The three-dimensional movement of the computer-controlled device combined with the freezing stage enabled precise control of polymer deposition using extrusion. The addition of the freezing stage increased the polymer solution viscosity and hardened the polymer solution as it was extruded out of the micropipette tip. This technique created scaffolds with excellent control over macro- and micro-structure to influence cell behavior, specifically for cell adhesion, proliferation, and alignment. Concentric lamellae were printed at a high resolution to mimic the native shape and structure of the IVD. Seeded cells aligned along the concentric lamellae and acquired cell morphology similar to native tissue in the outer portion of the IVD. The fabricated scaffolds exhibited elastic behavior during compressive and shear testing, proving that the scaffolds could support loads with proper fatigue resistance without permanent deformation. Additionally, the mechanical properties of the scaffolds were comparable to those of native IVD tissue.

  2. An Anisotropic Multiphysics Model for Intervertebral Disk

    PubMed Central

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-01-01

    Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402

  3. Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels.

    PubMed

    Silva-Correia, Joana; Gloria, Antonio; Oliveira, Mariana B; Mano, João F; Oliveira, Joaquim M; Ambrosio, Luigi; Reis, Rui L

    2013-12-01

    Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the present study, we investigated the rheological/mechanical properties of both ionic- (iGG-MA) and photo-crosslinked methacrylated gellan gum (phGG-MA) hydrogels. Steady shear analysis, injectability and confined compression stress-relaxation tests were carried out. The injectability of the reactive solutions employed for the preparation of iGG-MA and phGG-MA hydrogels was first studied, then the zero-strain compressive modulus and permeability of the acellular hydrogels were evaluated. In addition, human intervertebral disc (hIVD) cells encapsulated in both iGG-MA and phGG-MA hydrogels were cultured in vitro, and its mechanical properties also investigated under dynamic mechanical analysis at 37°C and pH 7.4. After 21 days of culturing, hIVD cells were alive (Calcein AM) and the E' of ionic-crosslinked hydrogels and photo-crosslinked was higher than that observed for acellular hydrogels. Our study suggests that methacrylated gellan gum hydrogels present promising mechanical and biological performance as hIVD cells were producing extracellular matrix. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  4. Disruption of biomineralization pathways in spinal tissues of a mouse model of diffuse idiopathic skeletal hyperostosis.

    PubMed

    Ii, Hisataka; Warraich, Sumeeta; Tenn, Neil; Quinonez, Diana; Holdsworth, David W; Hammond, James R; Dixon, S Jeffrey; Séguin, Cheryle A

    2016-09-01

    Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Loss of HIF-1α in the notochord results in cell death and complete disappearance of the nucleus pulposus.

    PubMed

    Merceron, Christophe; Mangiavini, Laura; Robling, Alexander; Wilson, Tremika LeShan; Giaccia, Amato J; Shapiro, Irving M; Schipani, Ernestina; Risbud, Makarand V

    2014-01-01

    The intervertebral disc (IVD) is one of the largest avascular organs in vertebrates. The nucleus pulposus (NP), a highly hydrated and proteoglycan-enriched tissue, forms the inner portion of the IVD. The NP is surrounded by a multi-lamellar fibrocartilaginous structure, the annulus fibrosus (AF). This structure is covered superior and inferior side by cartilaginous endplates (CEP). The NP is a unique tissue within the IVD as it results from the differentiation of notochordal cells, whereas, AF and CEP derive from the sclerotome. The hypoxia inducible factor-1α (HIF-1α) is expressed in NP cells but its function in NP development and homeostasis is largely unknown. We thus conditionally deleted HIF-1α in notochordal cells and investigated how loss of this transcription factor impacts NP formation and homeostasis at E15.5, birth, 1 and 4 months of age, respectively. Histological analysis, cell lineage studies, and TUNEL assay were performed. Morphologic changes of the mutant NP cells were identified as early as E15.5, followed, postnatally, by the progressive disappearance and replacement of the NP with a novel tissue that resembles fibrocartilage. Notably, lineage studies and TUNEL assay unequivocally proved that NP cells did not transdifferentiate into chondrocyte-like cells but they rather underwent massive cell death, and were completely replaced by a cell population belonging to a lineage distinct from the notochordal one. Finally, to evaluate the functional consequences of HIF-1α deletion in the NP, biomechanical testing of mutant IVD was performed. Loss of the NP in mutant mice significantly reduced the IVD biomechanical properties by decreasing its ability to absorb mechanical stress. These findings are similar to the changes usually observed during human IVD degeneration. Our study thus demonstrates that HIF-1α is essential for NP development and homeostasis, and it raises the intriguing possibility that this transcription factor could be involved in IVD degeneration in humans.

  6. Experimental method of in-vivo dosimetry without build-up device on the skin for external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Nam, Jiho; Lee, Jayoung; Park, Dahl; Baek, Cheol-Ha; Kim, Wontaek; Ki, Yongkan; Kim, Dongwon

    2015-06-01

    Accurate dose delivery is crucial to the success of modern radiotherapy. To evaluate the dose actually delivered to patients, in-vivo dosimetry (IVD) is generally performed during radiotherapy to measure the entrance doses. In IVD, a build-up device should be placed on top of an in-vivo dosimeter to satisfy the electron equilibrium condition. However, a build-up device made of tissue-equivalent material or metal may perturb dose delivery to a patient, and requires an additional laborious and time-consuming process. We developed a novel IVD method using a look-up table of conversion ratios instead of a build-up device. We validated this method through a monte-carlo simulation and 31 clinical trials. The mean error of clinical IVD is 3.17% (standard deviation: 2.58%), which is comparable to that of conventional IVD methods. Moreover, the required time was greatly reduced so that the efficiency of IVD could be improved for both patients and therapists.

  7. Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.

    PubMed

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James

    2015-07-15

    Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in parallel with the expression of the genes that provide putative mechanisms for multifidus structural remodeling. This provides novel targets for pharmacological and physical interventions. N/A.

  8. Disc cell clusters in pathological human intervertebral discs are associated with increased stress protein immunostaining.

    PubMed

    Sharp, Christopher A; Roberts, Sally; Evans, Helena; Brown, Sharon J

    2009-11-01

    Intervertebral disc (IVD) cells within the annulus fibrosus (AF) and nucleus pulposus (NP) maintain distinct functional extracellular matrices and operate within a potentially noxious and stressful environment. How disc cells respond to stress and whether stress is responsible for triggering degeneration is unknown. Disc cell proliferation and cluster formation are most marked in degenerate IVDs, possibly indicating attempts at matrix repair. In other tissues, stress proteins increase rapidly after stress protecting cell function and, although implicated in degeneration of articular cartilage, have received little attention in degenerative IVD pathologies. We have compared the distribution of stress protein immunolocalization in pathological and control IVDs. Disc tissues were obtained at surgery from 43 patients with degenerative disc disease (DDD) and herniation, and 12 controls at postmortem. Tissues were immunostained with a polyclonal antibody for heat shock factor 1 (HSF-1) and monoclonal antibodies for the heat shock proteins, Hsp27 and Hsp72, using an indirect immunoperoxidase method. Positively stained cells were expressed as a percentage of the total. Cell cluster formation was also assessed. The proportion of cells in clusters was similar in the AF (both 2%) and NP (8 and 9%) of control and DDD samples, whereas in herniated tissues this was increased (AF 12%, NP 14%). Stress antigen staining tended to be more frequent in clustered rather than in single/doublet cells, and this was significant (P < 0.005) in both the AF and NP of herniated discs. Clustered cells, which are most common in herniated discs, may be mounting a protective response to abnormal environmental factors associated with disc degeneration. A better understanding of the stress response in IVD cells may allow its utilization in disc cell therapies.

  9. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony John; Hoyland, Judith Alison

    2007-01-01

    Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc cells to maintain the intervertebral disc (IVD) matrix, thus leading to IVD degeneration. Cells isolated from non-degenerate and degenerate human tissue were assessed for mean telomere length, senescence-associated β-galactosidase (SA-β-gal), and replicative potential. Expression of P16INK4A (increased in cellular senescence) was also investigated in IVD tissue by means of immunohistochemistry. RNA from tissue and cultured cells was used for real-time polymerase chain reaction analysis for matrix metalloproteinase-13, ADAMTS 5 (a disintegrin and metalloprotease with thrombospondin motifs 5), and P16INK4A. Mean telomere length decreased with age in cells from non-degenerate tissue and also decreased with progressive stages of degeneration. In non-degenerate discs, there was an age-related increase in cellular expression of P16INK4A. Cells from degenerate discs (even from young patients) exhibited increased expression of P16INK4A, increased SA-β-gal staining, and a decrease in replicative potential. Importantly, there was a positive correlation between P16INK4A and matrix-degrading enzyme gene expression. Our findings indicate that disc cell senescence occurs in vivo and is accelerated in IVD degeneration. Furthermore, the senescent phenotype is associated with increased catabolism, implicating cellular senescence in the pathogenesis of IVD degeneration. PMID:17498290

  10. The Use af Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    2002-01-01

    The USA LLC Materials & Processes (M&P) Engineering Department had recommended the application and evaluation of Ion Vapor Deposition (IVD) aluminum to SRB Hardware for corrosion protection and elimination of hazardous materials and processes such as cadmium plating. IVD is an environmentally friendly process that has no volatile organic compounds (VOCs), or hazardous waste residues. It lends itself to use with hardware exposed to corrosive seacoast environments as found at Kennedy Space Center (KSC), and Cape Canaveral Air Force Station (CCAFS), Florida. Lifting apparatus initially coated with cadmium plating for corrosion protection; was stripped and successfully re-coated with IVD aluminum after the cadmium plating no longer protected the GSE from corrosion, Since then, and after completion of a significant test program, the first flight application of the IVD Aluminum process on the Drogue Parachute Ratchet Assembly is scheduled for 2002.

  11. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair.

    PubMed

    Erwin, W Mark; Islam, Diana; Eftekarpour, Eftekhar; Inman, Robert D; Karim, Muhammad Zia; Fehlings, Michael G

    2013-02-01

    An in vitro and in vivo evaluation of intervertebral disc (IVD)-derived stem/progenitor cells. To determine the chondrogenic, adipogenic, osteogenic, and neurogenic differentiation capacity of disc-derived stem/progenitor cells in vitro and neurogenic differentiation in vivo. Tissue repair strategies require a source of appropriate cells that could be used to replace dead or damaged cells and tissues such as stem cells. Here we examined the potential use of IVD-derived stem cells in regenerative medicine approaches and neural repair. Nonchondrodystrophic canine IVD nucleus pulposus (NP) cells were used to generate stem/progenitor cells (NP progenitor cells [NPPCs]) and the NPPCs were differentiated in vitro into chondrogenic, adipogenic, and neurogenic lineages and in vivo into the neurogenic lineage. NPPCs were compared with bone marrow-derived mesenchymal (stromal) stem cells in terms of the expression of stemness genes. The expression of the neural crest marker protein 0 and the Brachyury gene were evaluated in NP cells and NPPCs. NPPCs contain stem/progenitor cells and express "stemness" genes such as Sox2, Oct3/4, Nanog, CD133, Nestin, and neural cell adhesion molecule but differ from mesenchymal (stromal) stem cells in the higher expression of the Nanog gene by NPPCs. NPPCs do not express protein 0 or the Brachyury gene both of which are expressed by the totality of IVD NP cells. The percentage of NPPCs within the IVD is 1% of the total as derived by colony-forming assay. NPPCs are capable of differentiating along chondrogenic, adipogenic, and neurogenic lineages in vitro and into oligodendrocyte, neuron, and astroglial specific precursor cells in vivo within the compact myelin-deficient shiverer mouse. We propose that the IVD NP represents a regenerative niche suggesting that the IVD could represent a readily accessible source of precursor cells for neural repair and regeneration.

  12. A comparison between porcine, ovine, and bovine intervertebral disc anatomy and single lamella annulus fibrosus tensile properties.

    PubMed

    Monaco, Lauren A; DeWitte-Orr, Stephanie J; Gregory, Diane E

    2016-02-01

    This project aimed to compare gross anatomical measures and biomechanical properties of single lamellae from the annulus fibrosus of ovine and porcine lumbar vertebrae, and bovine tail vertebrae. The morphology of the vertebrae of these species differ significantly both from each other and from human, yet how these differences alter biomechanical properties is unknown. Geometric parameters measured in this study included: 1) absolute and relative intervertebral (IVD) and vertebral body height and 2) absolute and relative intervertebral disc (IVD) anterior-posterior (AP) and medial-lateral (ML) widths. Single lamella tensile properties included toe-region stress and stretch ratio, stiffness, and tensile strength. As expected, the bovine tail IVD revealed a more circular shape compared with both the ovine and porcine lumbar IVD. The bovine tail also had the largest IVD to vertebral body height ratio (due to having the highest absolute IVD height). Bovine tail lamellae were also found to be strongest and stiffest (in tension) while ovine lumbar lamellae were weakest and most compliant. Histological analysis revealed the greatest proportion of collagen in the bovine corroborating findings of increased strength and stiffness. The observed differences in anatomical shape, connective tissue composition, and tensile properties need to be considered when choosing an appropriate model for IVD research. © 2015 Wiley Periodicals, Inc.

  13. Evaluation of Lumbar Intervertebral Disc Degeneration Using T1ρ and T2 Magnetic Resonance Imaging in a Rabbit Disc Injury Model.

    PubMed

    Ishikawa, Tetsuhiro; Watanabe, Atsuya; Kamoda, Hiroto; Miyagi, Masayuki; Inoue, Gen; Takahashi, Kazuhisa; Ohtori, Seiji

    2018-04-01

    An in vivo histologic and magnetic resonance imaging (MRI) study of lumbar intervertebral disc (IVD) degeneration was conducted. To clarify the sensitivity and efficacy of T1ρ/T2 mapping for IVD degeneration, the correlation between T1ρ/T2 mapping and degenerative grades and histological findings in the lumbar IVD were investigated. The early signs of IVD degeneration are proteoglycan loss, dehydration, and collagen degradation. Recently, several quantitative MRI techniques have been developed; T2 mapping can be used to evaluate hydration and collagen fiber integrity within cartilaginous tissue, and T1ρ mapping can be used to evaluate hydration and proteoglycan content. Using New Zealand White rabbits, annular punctures of the IVD were made 10 times at L2/3, 5 times at L3/4, and one time at L4/5 using an 18-gauge needle (n=6) or a 21-gauge needle (n=6). At 4 and 8 weeks post-surgery, MRI was performed including T1ρ and T2 mapping. The degree of IVD degeneration was macroscopically assessed using the Thompson grading system. All specimens were cut for hematoxylin and eosin, safranin-O, and toluidine blue staining. Disc degeneration became more severe as the number of punctures increased and when the larger needle was used. T1ρ and T2 values were significantly different between grade 1 and grade 3 IVDs, grade 1 and grade 4 IVDs, grade 2 and grade 3 IVDs, and grade 2 and grade 4 IVDs ( p <0.05). There was a significant difference between grade 1 and grade 2 IVDs only in terms of T1ρ values ( p <0.05). T1ρ and T2 quantitative MRI could detect these small differences. Our results suggest that T1ρ and T2 mapping are sensitive to degenerative changes of lumbar IVDs and that T1ρ mapping can be used as a clinical tool to identify early IVD degeneration.

  14. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification.

    PubMed

    Scharf, Brian; Clement, Cristina C; Yodmuang, Supansa; Urbanska, Aleksandra M; Suadicani, Sylvia O; Aphkhazava, David; Thi, Mia M; Perino, Giorgio; Hardin, John A; Cobelli, Neil; Vunjak-Novakovic, Gordana; Santambrogio, Laura

    2013-07-25

    Aging-related oxidative stress has been linked to degenerative modifications in different organs and tissues. Using redox proteomic analysis and illustrative tandem mass spectrometry mapping, we demonstrate oxidative posttranslational modifications in structural proteins of intervertebral discs (IVDs) isolated from aging mice. Increased protein carbonylation was associated with protein fragmentation and aggregation. Complementing these findings, a significant loss of elasticity and increased stiffness was measured in fibrocartilage from aging mice. Studies using circular dichroism and intrinsic tryptophan fluorescence revealed a significant loss of secondary and tertiary structures of purified collagens following oxidation. Collagen unfolding and oxidation promoted both nonenzymatic and enzymatic degradation. Importantly, induction of oxidative modification in healthy fibrocartilage recapitulated the biochemical and biophysical modifications observed in the aging IVD. Together, these results suggest that protein carbonylation, glycation, and lipoxidation could be early events in promoting IVD degenerative changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc: A Finite Element Study

    PubMed Central

    Elmasry, Shady; Asfour, Shihab; de Rivero Vaccari, Juan Pablo; Travascio, Francesco

    2015-01-01

    Tobacco smoking is associated with numerous pathological conditions. Compelling experimental evidence associates smoking to the degeneration of the intervertebral disc (IVD). In particular, it has been shown that nicotine down-regulates both the proliferation rate and glycosaminoglycan (GAG) biosynthesis of disc cells. Moreover, tobacco smoking causes the constriction of the vascular network surrounding the IVD, thus reducing the exchange of nutrients and anabolic agents from the blood vessels to the disc. It has been hypothesized that both nicotine presence in the IVD and the reduced solute exchange are responsible for the degeneration of the disc due to tobacco smoking, but their effects on tissue homeostasis have never been quantified. In this study, a previously presented computational model describing the homeostasis of the IVD was deployed to investigate the effects of impaired solute supply and nicotine-mediated down-regulation of cell proliferation and biosynthetic activity on the health of the disc. We found that the nicotine-mediated down-regulation of cell anabolism mostly affected the GAG concentration at the cartilage endplate, reducing it up to 65% of the value attained in normal physiological conditions. In contrast, the reduction of solutes exchange between blood vessels and disc tissue mostly affected the nucleus pulposus, whose cell density and GAG levels were reduced up to 50% of their normal physiological levels. The effectiveness of quitting smoking on the regeneration of a degenerated IVD was also investigated, and showed to have limited benefit on the health of the disc. A cell-based therapy in conjunction with smoke cessation provided significant improvements in disc health, suggesting that, besides quitting smoking, additional treatments should be implemented in the attempt to recover the health of an IVD degenerated by tobacco smoking. PMID:26301590

  16. Energy metabolism of intervertebral disc under mechanical loading.

    PubMed

    Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles

    2013-11-01

    Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.

  17. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc.

    PubMed

    Antunes, Joana C; Pereira, Catarina Leite; Teixeira, Graciosa Q; Silva, Ricardo V; Caldeira, Joana; Grad, Sibylle; Gonçalves, Raquel M; Barbosa, Mário A

    2017-01-01

    Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.

  18. Intervertebral Disc Cells Produce Interleukins Found in Patients with Back Pain.

    PubMed

    Zhang, Yejia; Chee, Ana; Shi, Peng; Adams, Sherrill L; Markova, Dessislava Z; Anderson, David Greg; Smith, Harvey E; Deng, Youping; Plastaras, Christopher T; An, Howard S

    2016-06-01

    To examine the link between cytokines in intervertebral disc (IVD) tissues and axial back pain. In vitro study with human IVD cells cultured from cadaveric donors and annulus fibrosus (AF) tissues from patients. Cultured nucleus pulposus (NP) and AF cells were stimulated with interleukin (IL)-1β. IL-8 and IL-7 gene expression was analyzed using real-time polymerase chain reaction. IL-8 protein was quantified by enzyme-linked immunosorbent assay. After IL-1β stimulation, IL-8 gene expression increased 26,541 fold in NP cells and 22,429 fold in AF cells, whereas protein released by the NP and AF cells increased 2,389- and 1,784-fold, respectively. IL-7 gene expression increased 3.3-fold in NP cells (P < 0.05).Cytokine profiles in AF tissues collected from patients undergoing surgery for back pain (painful group) or scoliosis (controls) were compared by cytokine array. IL-8 protein in the AF tissues from patients with back pain was 1.81-fold of that in controls. IL-7 and IL-10 in AF tissues from the painful group were 6.87 and 4.63 times greater than the corresponding values in controls, respectively (P < 0.05). Inflammatory mediators found in AF tissues from patients with discogenic back pain are likely produced by IVD cells and may play a key role in back pain.

  19. Biologic canine and human intervertebral disc repair by notochordal cell-derived matrix: from bench towards bedside.

    PubMed

    Bach, Frances C; Tellegen, Anna R; Beukers, Martijn; Miranda-Bedate, Alberto; Teunissen, Michelle; de Jong, Willem A M; de Vries, Stefan A H; Creemers, Laura B; Benz, Karin; Meij, Björn P; Ito, Keita; Tryfonidou, Marianna A

    2018-05-29

    The socioeconomic burden of chronic back pain related to intervertebral disc (IVD) disease is high and current treatments are only symptomatic. Minimally invasive strategies that promote biological IVD repair should address this unmet need. Notochordal cells (NCs) are replaced by chondrocyte-like cells (CLCs) during IVD maturation and degeneration. The regenerative potential of NC-secreted substances on CLCs and mesenchymal stromal cells (MSCs) has already been demonstrated. However, identification of these substances remains elusive. Innovatively, this study exploits the regenerative NC potential by using healthy porcine NC-derived matrix (NCM) and employs the dog as a clinically relevant translational model. NCM increased the glycosaminoglycan and DNA content of human and canine CLC aggregates and facilitated chondrogenic differentiation of canine MSCs in vitro . Based on these results, NCM, MSCs and NCM+MSCs were injected in mildly (spontaneously) and moderately (induced) degenerated canine IVDs in vivo and, after six months of treatment, were analyzed. NCM injected in moderately (induced) degenerated canine IVDs exerted beneficial effects at the macroscopic and MRI level, induced collagen type II-rich extracellular matrix production, improved the disc height, and ameliorated local inflammation. MSCs exerted no (additive) effects. In conclusion, NCM induced in vivo regenerative effects on degenerated canine IVDs. NCM may, comparable to demineralized bone matrix in bone regeneration, serve as 'instructive matrix', by locally releasing growth factors and facilitating tissue repair. Therefore, intradiscal NCM injection could be a promising regenerative treatment for IVD disease, circumventing the cumbersome identification of bioactive NC-secreted substances.

  20. Whole-body vibration of mice induces progressive degeneration of intervertebral discs associated with increased expression of Il-1β and multiple matrix degrading enzymes.

    PubMed

    McCann, Matthew R; Veras, Matthew A; Yeung, Cynthia; Lalli, Gurkeet; Patel, Priya; Leitch, Kristyn M; Holdsworth, David W; Dixon, S Jeffrey; Séguin, Cheryle A

    2017-05-01

    Whole-body vibration (WBV) is a popular fitness trend based on claims of increased muscle mass, weight loss and reduced joint pain. Following its original implementation as a treatment to increase bone mass in patients with osteoporosis, WBV has been incorporated into clinical practice for musculoskeletal disorders, including back pain. However, our recent studies revealed damaging effects of WBV on joint health in a murine model. In this report, we examined potential mechanisms underlying disc degeneration following exposure of mice to WBV. Ten-week-old male mice were exposed to WBV (45 Hz, 0.3 g peak acceleration, 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. Micro-computed tomography (micro-CT), histological, and gene expression analyses were used to assess the effects of WBV on spinal tissues. Exposure of mice to 4 or 8 weeks of WBV did not alter total body composition or induce significant changes in vertebral bone density. On the other hand, WBV-induced intervertebral disc (IVD) degeneration, associated with decreased disc height and degenerative changes in the annulus fibrosus (AF) that did not recover within 4 weeks after cessation of WBV. Gene expression analysis showed that WBV for 8 weeks induced expression of Mmp3, Mmp13, and Adamts5 in IVD tissues, changes preceded by increased expression of Il-1β. Progressive IVD degeneration induced by WBV was associated with increased expression of Il-1β within the IVD that preceded Mmp and Adamts gene induction. Moreover, WBV-induced IVD degeneration is not reversed following cessation of vibration. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. A 10-Gene Classifier for Indeterminate Thyroid Nodules: Development and Multicenter Accuracy Study

    PubMed Central

    González, Hernán E.; Martínez, José R.; Vargas-Salas, Sergio; Solar, Antonieta; Veliz, Loreto; Cruz, Francisco; Arias, Tatiana; Loyola, Soledad; Horvath, Eleonora; Tala, Hernán; Traipe, Eufrosina; Meneses, Manuel; Marín, Luis; Wohllk, Nelson; Diaz, René E.; Véliz, Jesús; Pineda, Pedro; Arroyo, Patricia; Mena, Natalia; Bracamonte, Milagros; Miranda, Giovanna; Bruce, Elsa

    2017-01-01

    Background: In most of the world, diagnostic surgery remains the most frequent approach for indeterminate thyroid cytology. Although several molecular tests are available for testing in centralized commercial laboratories in the United States, there are no available kits for local laboratory testing. The aim of this study was to develop a prototype in vitro diagnostic (IVD) gene classifier for the further characterization of nodules with an indeterminate thyroid cytology. Methods: In a first stage, the expression of 18 genes was determined by quantitative polymerase chain reaction (qPCR) in a broad histopathological spectrum of 114 fresh-tissue biopsies. Expression data were used to train several classifiers by supervised machine learning approaches. Classifiers were tested in an independent set of 139 samples. In a second stage, the best classifier was chosen as a model to develop a multiplexed-qPCR IVD prototype assay, which was tested in a prospective multicenter cohort of fine-needle aspiration biopsies. Results: In tissue biopsies, the best classifier, using only 10 genes, reached an optimal and consistent performance in the ninefold cross-validated testing set (sensitivity 93% and specificity 81%). In the multicenter cohort of fine-needle aspiration biopsy samples, the 10-gene signature, built into a multiplexed-qPCR IVD prototype, showed an area under the curve of 0.97, a positive predictive value of 78%, and a negative predictive value of 98%. By Bayes' theorem, the IVD prototype is expected to achieve a positive predictive value of 64–82% and a negative predictive value of 97–99% in patients with a cancer prevalence range of 20–40%. Conclusions: A new multiplexed-qPCR IVD prototype is reported that accurately classifies thyroid nodules and may provide a future solution suitable for local reference laboratory testing. PMID:28521616

  2. Fibrin-Genipin Adhesive Hydrogel for Annulus Fibrosus Repair: Performance Evaluation with Large Animal Organ Culture, In Situ Biomechanics, and In Vivo Degradation Tests

    PubMed Central

    Likhitpanichkul, M.; Dreischarf, M.; Illien-Junger, S.; Walter, B. A.; Nukaga, T.; Long, R. G; Sakai, D.; Hecht, A. C.; Iatridis, J. C.

    2015-01-01

    Annulus fibrosus (AF) defects from annular tears, herniation, and discectomy procedures are associated with painful conditions and accelerated intervertebral disc (IVD) degeneration. Currently, no effective treatments exist to repair AF damage, restore IVD biomechanics and promote tissue regeneration. An injectable fibrin-genipin adhesive hydrogel (Fib-Gen) was evaluated for its performance repairing large AF defects in a bovine caudal IVD model using ex vivo organ culture and biomechanical testing of motion segments, and for its in vivo longevity and biocompatibility in a rat model by subcutaneous implantation. Fib-Gen sealed AF defects, prevented IVD height loss, and remained well-integrated with native AF tissue following approximately 14,000 cycles of compression in 6-day organ culture experiments. Fib-Gen repair also retained high viability of native AF cells near the repair site, reduced nitric oxide released to the media, and showed evidence of AF cell migration into the gel. Biomechanically, Fib-Gen fully restored compressive stiffness to intact levels validating organ culture findings. However, only partial restoration of tensile and torsional stiffness was obtained, suggesting opportunities to enhance this formulation. Subcutaneous implantation results, when compared with the literature, suggested Fib-Gen exhibited similar biocompatibility behaviour to fibrin alone but degraded much more slowly. We conclude that injectable Fib-Gen successfully sealed large AF defects, promoted functional restoration with improved motion segment biomechanics, and served as a biocompatible adhesive biomaterial that had greatly enhanced in vivo longevity compared to fibrin. Fib-Gen offers promise for AF repairs that may prevent painful conditions and accelerated degeneration of the IVD, and warrants further material development and evaluation. PMID:25036053

  3. Fibrin-genipin adhesive hydrogel for annulus fibrosus repair: performance evaluation with large animal organ culture, in situ biomechanics, and in vivo degradation tests.

    PubMed

    Likhitpanichkul, M; Dreischarf, M; Illien-Junger, S; Walter, B A; Nukaga, T; Long, R G; Sakai, D; Hecht, A C; Iatridis, J C

    2014-07-18

    Annulus fibrosus (AF) defects from annular tears, herniation, and discectomy procedures are associated with painful conditions and accelerated intervertebral disc (IVD) degeneration. Currently, no effective treatments exist to repair AF damage, restore IVD biomechanics and promote tissue regeneration. An injectable fibrin-genipin adhesive hydrogel (Fib-Gen) was evaluated for its performance repairing large AF defects in a bovine caudal IVD model using ex vivo organ culture and biomechanical testing of motion segments, and for its in vivo longevity and biocompatibility in a rat model by subcutaneous implantation. Fib-Gen sealed AF defects, prevented IVD height loss, and remained well-integrated with native AF tissue following approximately 14,000 cycles of compression in 6-day organ culture experiments. Fib-Gen repair also retained high viability of native AF cells near the repair site, reduced nitric oxide released to the media, and showed evidence of AF cell migration into the gel. Biomechanically, Fib-Gen fully restored compressive stiffness to intact levels validating organ culture findings. However, only partial restoration of tensile and torsional stiffness was obtained, suggesting opportunities to enhance this formulation. Subcutaneous implantation results, when compared with the literature, suggested Fib-Gen exhibited similar biocompatibility behaviour to fibrin alone but degraded much more slowly. We conclude that injectable Fib-Gen successfully sealed large AF defects, promoted functional restoration with improved motion segment biomechanics, and served as a biocompatible adhesive biomaterial that had greatly enhanced in vivo longevity compared to fibrin. Fib-Gen offers promise for AF repairs that may prevent painful conditions and accelerated degeneration of the IVD, and warrants further material development and evaluation.

  4. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Annulus Fibrosus Repair Using High-Density Collagen Gel: An In Vivo Ovine Model.

    PubMed

    Pennicooke, Brenton; Hussain, Ibrahim; Berlin, Connor; Sloan, Stephen R; Borde, Brandon; Moriguchi, Yu; Lang, Gernot; Navarro-Ramirez, Rodrigo; Cheetham, Jonathan; Bonassar, Lawrence J; Härtl, Roger

    2018-02-15

    Ovine in vivo study. To perform lateral approach lumbar surgery in an ovine model to administer an injectable riboflavin cross-linked high-density collagen (HDC) gel and to assess its ability to mitigate intervertebral disc (IVD) degeneration after induced annulus fibrosus (AF) injury. Biological-based injectable gels have shown efficacy in restoring biomechanical, radiographic, and histological parameters in IVD-injured animal models. Riboflavin cross-linked HDC gel has previously demonstrated retention of nucleus pulposus (NP) tissue, reduced loss of disc height, and prevention of terminal cellular degenerative changes in rat-tail spines. However, this biological therapy has never been tested in large animal models. Forty lumbar IVDs were accessed from eight sheep via lateral approach surgery. IVDs were randomly assigned to healthy control, injury and HDC treatment, or negative control with injury and no treatment. IVD injury was carried out using a drill-bit through the AF followed by needle puncture of the NP. Sheep were followed for 16 weeks and underwent qualitative/quantitative magnetic resonance imaging, x-ray, and histological analyses of collagen and proteoglycan content. The lateral approach to the ovine lumbar spine to deliver HDC gel proved to be safe and reproducible. IVDs treated with the HDC gel revealed less degenerative changes at the microscopic level based on AF and NP histology. However, mean Pfirrmann grade, T2 relaxation time, NP voxel size, and disc height index were not significantly different between the two injury groups. Injectable HDC gel can be administered safely via lateral approach surgery in an ovine AF injury model. IVDs treated with HDC gel demonstrated less degeneration at the microscopic level though radiographic changes were slight when comparing treated to untreated IVDs. Future studies will need to elucidate the role of injury technique and time frame for follow-up in correlating histological and radiographical outcomes. N /A.

  6. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration.

    PubMed

    Pereira, Diana R; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L; Pandit, Abhay; Biggs, Manus J

    2018-04-01

    Intervertebral disc (IVD) degeneration is associated with both structural damage and aging related degeneration. Annulus fibrosus (AF) defects such as annular tears, herniation and discectomy require novel tissue engineering strategies to functionally repair AF tissue. An ideal construct will repair the AF by providing physical and biological support, facilitating regeneration. The presented strategy herein proposes a gellan gum-based construct reinforced with cellulose nanocrystals (nCell) as a biological self-gelling AF substitute. Nanocomposite hydrogels were fabricated and characterized with respect to hydrogel swelling capacity, degradation rate in vitro and mechanical properties. Rheological evaluation on the nanocomposites demonstrated the GGMA reinforcement with nCell promoted matrix entanglement with higher scaffold stiffness observed upon ionic crosslinking. Compressive mechanical tests demonstrated compressive modulus values close to those of the human AF tissue. Furthermore, cell culture studies with encapsulated bovine AF cells indicated that nanocomposite constructs promoted cell viability and a physiologically relevant cell morphology for up to fourteen days in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Chondroprotective supplementation promotes the mechanical properties of injectable scaffold for human nucleus pulposus tissue engineering.

    PubMed

    Foss, Berit L; Maxwell, Thomas W; Deng, Ying

    2014-01-01

    A result of intervertebral disc (IVD) degeneration, the nucleus pulposus (NP) is no longer able to withstand applied load leading to pain and disability. The objective of this study is to fabricate a tissue-engineered injectable scaffold with chondroprotective supplementation in vitro to improve the mechanical properties of a degenerative NP. Tissue-engineered scaffolds were fabricated using different concentrations of alginate and calcium chloride and mechanically evaluated. Fabrication conditions were based on structural and mechanical resemblance to the native NP. Chondroprotective supplementation, glucosamine (GCSN) and chondroitin sulfate (CS), were added to scaffolds at concentrations of 0:0µg/mL (0:0-S), 125:100µg/mL (125:100-S), 250:200µg/mL (250:200-S), and 500:400µg/mL (500:400-S), GCSN and CS, respectively. Scaffolds were used to fabricate tissue-engineered constructs through encapsulation of human nucleus pulposus cells (HNPCs). The tissue-engineered constructs were collected at days 1, 14, and 28 for biochemical and biomechanical evaluations. Confocal microscopy showed HNPC viability and rounded morphology over the 28 day period. MTT analysis resulted in significant increases in cell proliferation for each group. Collagen type II ELISA quantification and compressive aggregate moduli (HA) showed increasing trends for both 250:200-S and the 500:400-S groups on Day 28 with significantly greater HA compared to 0:0-S group. Glycosaminoglycan and water content decreased for all groups. Results indicate the increased mechanical properties of the 250:200-S and the 500:400-S was due to production of a functional matrix. This study demonstrated potential for a chondroprotective supplemented injectable scaffold to restore biomechanical function of a degenerative disc through the production of a mechanically functional matrix. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric; Wylie, Christopher

    2012-01-01

    Intervertebral discs (IVD) are essential components of the vertebral column. They maintain separation, and provide shock absorbing buffers, between adjacent vertebrae, while also allowing movements between them. Each IVD consists of a central semi-liquid nucleus pulposus (NP) surrounded by a multi-layered fibrocartilagenous annulus fibrosus (AF). Although the IVDs grow and differentiate after birth along with the vertebral column, little is known about the mechanism of this. Understanding the signals that control normal IVD growth and differentiation would also provide potential therapies for degenerative disc disease, which is the major cause of lower back pain and affects a large proportion of the population. In this work, we show that during postnatal growth of the mouse, Sonic hedgehog (Shh) signaling from the NP cells controls many aspects of growth and differentiation of both the NP cells themselves and of the surrounding AF, and that it acts, at least partly, by regulating other signaling pathways in the NP and AF. Recent studies have shown that the NP cells arise from the embryonic notochord, which acts as a major signaling center in the embryo. This work shows that this notochord-derived tissue continues to carry out a major signaling function in the postnatal body and that the IVDs are signaling centers, in addition to their already known functions in the mechanics of vertebral column function.

  9. Integrin – Dependent Mechanotransduction in Mechanically Stimulated Human Annulus Fibrosus Cells: Evidence for an Alternative Mechanotransduction Pathway Operating with Degeneration

    PubMed Central

    Gilbert, Hamish T. J.; Nagra, Navraj S.; Freemont, Anthony J.; Millward-Sadler, Sarah J.; Hoyland, Judith A.

    2013-01-01

    Intervertebral disc (IVD) cells derived from degenerate tissue respond aberrantly to mechanical stimuli, potentially due to altered mechanotransduction pathways. Elucidation of the altered, or alternative, mechanotransduction pathways operating with degeneration could yield novel targets for the treatment of IVD disease. Our aim here was to investigate the involvement of RGD-recognising integrins and associated signalling molecules in the response to cyclic tensile strain (CTS) of human annulus fibrosus (AF) cells derived from non-degenerate and degenerate IVDs. AF cells from non-degenerate and degenerate human IVDs were cyclically strained with and without function blocking RGD – peptides with 10% strain, 1.0 Hz for 20 minutes using a Flexercell® strain device. QRT-PCR and Western blotting were performed to analyse gene expression of type I collagen and ADAMTS -4, and phosphorylation of focal adhesion kinase (FAK), respectively. The response to 1.0 Hz CTS differed between the two groups of AF cells, with decreased ADAMTS -4 gene expression and decreased type I collagen gene expression post load in AF cells derived from non-degenerate and degenerate IVDs, respectively. Pre-treatment of non-degenerate AF cells with RGD peptides prevented the CTS-induced decrease in ADAMTS -4 gene expression, but caused an increase in expression at 24 hours, a response not observed in degenerate AF cells where RGD pre-treatment failed to inhibit the mechano-response. In addition, FAK phosphorylation increased in CTS stimulated AF cells derived from non-degenerate, but not degenerate IVDs, with RGD pre-treatment inhibiting the CTS – dependent increase in phosphorylated FAK. Our findings suggest that RGD -integrins are involved in the 1.0 Hz CTS – induced mechano-response observed in AF cells derived from non-degenerate, but not degenerate IVDs. This data supports our previous work, suggesting an alternative mechanotransduction pathway may be operating in degenerate AF cells. PMID:24039840

  10. Musculoskeletal Modeling of the Lumbar Spine to Explore Functional Interactions between Back Muscle Loads and Intervertebral Disk Multiphysics

    PubMed Central

    Toumanidou, Themis; Noailly, Jérôme

    2015-01-01

    During daily activities, complex biomechanical interactions influence the biophysical regulation of intervertebral disks (IVDs), and transfers of mechanical loads are largely controlled by the stabilizing action of spine muscles. Muscle and other internal forces cannot be easily measured directly in the lumbar spine. Hence, biomechanical models are important tools for the evaluation of the loads in those tissues involved in low-back disorders. Muscle force estimations in most musculoskeletal models mainly rely, however, on inverse calculations and static optimizations that limit the predictive power of the numerical calculations. In order to contribute to the development of predictive systems, we coupled a predictive muscle model with the passive resistance of the spine tissues, in a L3–S1 musculoskeletal finite element model with osmo-poromechanical IVD descriptions. The model included 46 fascicles of the major back muscles that act on the lower spine. The muscle model interacted with activity-related loads imposed to the osteoligamentous structure, as standing position and night rest were simulated through distributed upper body mass and free IVD swelling, respectively. Calculations led to intradiscal pressure values within ranges of values measured in vivo. Disk swelling led to muscle activation and muscle force distributions that seemed particularly appropriate to counterbalance the anterior body mass effect in standing. Our simulations pointed out a likely existence of a functional balance between stretch-induced muscle activation and IVD multiphysics toward improved mechanical stability of the lumbar spine understanding. This balance suggests that proper night rest contributes to mechanically strengthen the spine during day activity. PMID:26301218

  11. Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity.

    PubMed

    Collin, E C; Kilcoyne, M; White, S J; Grad, S; Alini, M; Joshi, L; Pandit, A S

    2016-03-11

    In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity.

  12. A comprehensive training approach for biomedical engineers in biochemistry and in vitro diagnostics technology.

    PubMed

    Spyropoulos, Basile; Tzavaras, Aris

    2007-01-01

    The purpose of this paper is to review 20 years (1987-2007) of experience in training young Biomedical Engineers in Biochemistry and in vitro Diagnostics (IVD) Technology. This encountering has resulted in the gradual formation of a comprehensive training package that includes lectures and laboratory practicals, supported by both, traditional and on-line digital means, such as lecture-notes, slides, videos, demos and equipment simulations. Further, this course is maintained up to date by several research and development activities that offer partially feed back to the course and enrich its contents with custom developed devices, methods and application software. In this paper are presented, first, the structure and the components of this course, and second, the most important custom developed novelties, which have been integrated in the IVD Technology laboratory-practicals.

  13. Genetic and functional studies of the intervertebral disc: a novel murine intervertebral disc model.

    PubMed

    Pelle, Dominic W; Peacock, Jacqueline D; Schmidt, Courtney L; Kampfschulte, Kevin; Scholten, Donald J; Russo, Scott S; Easton, Kenneth J; Steensma, Matthew R

    2014-01-01

    Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration.

  14. Genetic and Functional Studies of the Intervertebral Disc: A Novel Murine Intervertebral Disc Model

    PubMed Central

    Pelle, Dominic W.; Peacock, Jacqueline D.; Schmidt, Courtney L.; Kampfschulte, Kevin; Scholten, Donald J.; Russo, Scott S.; Easton, Kenneth J.; Steensma, Matthew R.

    2014-01-01

    Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration. PMID:25474689

  15. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    PubMed

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  16. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    PubMed

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  17. Link-N: The missing link towards intervertebral disc repair is species-specific

    PubMed Central

    Bach, Frances C.; Laagland, Lisanne T.; Grant, Michael P.; Creemers, Laura B.; Ito, Keita; Meij, Björn P.; Mwale, Fackson

    2017-01-01

    Introduction Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. Materials and methods This study’s objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates’ DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Results Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Conclusions Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans. PMID:29117254

  18. Link-N: The missing link towards intervertebral disc repair is species-specific.

    PubMed

    Bach, Frances C; Laagland, Lisanne T; Grant, Michael P; Creemers, Laura B; Ito, Keita; Meij, Björn P; Mwale, Fackson; Tryfonidou, Marianna A

    2017-01-01

    Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. This study's objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates' DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans.

  19. A Finite Element Model to Simulate Formation of the Inverted-V Deformity

    PubMed Central

    Tjoa, Tjoson; Manuel, Cyrus T.; Leary, Ryan P.; Harb, Rani; Protsenko, Dmitriy E.; Wong, Brian J. F.

    2018-01-01

    IMPORTANCE Computational modeling can be used to mimic the forces acting on the nasal framework that lead to the inverted-V deformity (IVD) after surgery and potentially determine long-range outcomes. OBJECTIVE To demonstrate the use of the finite element method (FEM) to predict the formation of the IVD after separation of the upper lateral cartilages (ULCs) from the nasal septum. DESIGN, SETTING, AND PARTICIPANTS A computer model of a nose was derived from human computed tomographic data. The septum and upper and lower lateral cartilages were designed to fit within the soft-tissue envelope using computer-aided design software. Mechanical properties were obtained from the literature. The 3 simulations created included (1) partial fusion of the ULCs to the septum, (2) separation of the ULCs from the septum, and (3) a fully connected model to serve as a control. Forces caused by wound healing were prescribed at the junction of the disarticulated ULCs and septum. Using FEM software, equilibrium stress and strain were calculated. Displacement of the soft tissue along the nasal dorsum was measured and evaluated for evidence of morphologic change consistent with the IVD. MAIN OUTCOME AND MEASURES Morphologic changes on the computer models in response to each simulation. RESULTS When a posteroinferior force vector was applied along the nasal dorsum, the areas of highest stress were along the medial edge of the ULCs and at the junction of the ULCs and the nasal bones. With full detachment of ULCs and the dorsal septum, the characteristic IVD was observed. Both separation FEMs produced a peak depression of 0.3 mm along the nasal dorsum. CONCLUSIONS AND RELEVANCE The FEM can be used to simulate the long-term structural complications of a surgical maneuver in rhinoplasty, such as the IVD. When applied to other rhinoplasty maneuvers, the use of FEMs may be useful to simulate the long-term outcomes, particularly when long-term clinical results are not available. In the future, use of FEMs may simulate rhinoplasty results beyond simply morphing the outer contours of the nose and allow estimation of potentially long-term clinical outcomes that may not be readily apparent. LEVEL OF EVIDENCE NA. PMID:26720757

  20. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile

    PubMed Central

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2007-01-01

    Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1β, TNFα and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1β gene expression was observed in a greater proportion of IVDs than TNFα (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1β gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFα (250 copies of TNFα/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1β is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the pathogenesis of IVD degeneration, IL-1 may have a more significant role than TNFα, and thus may be a better target for therapeutic intervention. PMID:17688691

  1. Assessment of Intervertebral Disc Degeneration Based on Quantitative MRI Analysis: an in vivo study

    PubMed Central

    Grunert, Peter; Hudson, Katherine D.; Macielak, Michael R.; Aronowitz, Eric; Borde, Brandon H.; Alimi, Marjan; Njoku, Innocent; Ballon, Douglas; Tsiouris, Apostolos John; Bonassar, Lawrence J.; Härtl, Roger

    2015-01-01

    Study design Animal experimental study Objective To evaluate a novel quantitative imaging technique for assessing disc degeneration. Summary of Background Data T2-relaxation time (T2-RT) measurements have been used to quantitatively assess disc degeneration. T2 values correlate with the water content of inter vertebral disc tissue and thereby allow for the indirect measurement of nucleus pulposus (NP) hydration. Methods We developed an algorithm to subtract out MRI voxels not representing NP tissue based on T2-RT values. Filtered NP voxels were used to measure nuclear size by their amount and nuclear hydration by their mean T2-RT. This technique was applied to 24 rat-tail intervertebral discs’ (IVDs), which had been punctured with an 18-gauge needle according to different techniques to induce varying degrees of degeneration. NP voxel count and average T2-RT were used as parameters to assess the degeneration process at 1 and 3 months post puncture. NP voxel counts were evaluated against X-ray disc height measurements and qualitative MRI studies based on the Pfirrmann grading system. Tails were collected for histology to correlate NP voxel counts to histological disc degeneration grades and to NP cross-sectional area measurements. Results NP voxel count measurements showed strong correlations to qualitative MRI analyses (R2=0.79, p<0.0001), histological degeneration grades (R2=0.902, p<0.0001) and histological NP cross-sectional area measurements (R2=0.887, p<0.0001). In contrast to NP voxel counts, the mean T2-RT for each punctured group remained constant between months 1 and 3. The mean T2-RTs for the punctured groups did not show a statistically significant difference from those of healthy IVDs (63.55ms ±5.88ms month 1 and 62.61ms ±5.02ms) at either time point. Conclusion The NP voxel count proved to be a valid parameter to quantitatively assess disc degeneration in a needle puncture model. The mean NP T2-RT does not change significantly in needle-puncture induced degenerated IVDs. IVDs can be segmented into different tissue components according to their innate T2-RT. PMID:24384655

  2. Development of novel IVD assays: a manufacturer's perspective.

    PubMed

    Metcalfe, Thomas A

    2010-01-01

    IVD manufacturers are heavily reliant on novel IVD assays to fuel their growth and drive innovation within the industry. They represent a key part of the IVD industry's value proposition to customers and the healthcare industry in general, driving product differentiation, helping to create demand for new systems and generating incremental revenue. However, the discovery of novel biomarkers and their qualification for a specific clinical purpose is a high risk undertaking and the large, risky investments associated with doing this on a large scale are incompatible with IVD manufacturer's business models. This article describes the sources of novel IVD assays, the processes for discovering and qualifying novel assays and the reliance of IVD manufacturers on collaborations and in-licensing to source new IVD assays for their platforms.

  3. Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc.

    PubMed

    Karajan, N; Otto, D; Oladyshkin, S; Ehlers, W

    2014-10-01

    A possibility to simulate the mechanical behaviour of the human spine is given by modelling the stiffer structures, i.e. the vertebrae, as a discrete multi-body system (MBS), whereas the softer connecting tissue, i.e. the softer intervertebral discs (IVD), is represented in a continuum-mechanical sense using the finite-element method (FEM). From a modelling point of view, the mechanical behaviour of the IVD can be included into the MBS in two different ways. They can either be computed online in a so-called co-simulation of a MBS and a FEM or offline in a pre-computation step, where a representation of the discrete mechanical response of the IVD needs to be defined in terms of the applied degrees of freedom (DOF) of the MBS. For both methods, an appropriate homogenisation step needs to be applied to obtain the discrete mechanical response of the IVD, i.e. the resulting forces and moments. The goal of this paper was to present an efficient method to approximate the mechanical response of an IVD in an offline computation. In a previous paper (Karajan et al. in Biomech Model Mechanobiol 12(3):453-466, 2012), it was proven that a cubic polynomial for the homogenised forces and moments of the FE model is a suitable choice to approximate the purely elastic response as a coupled function of the DOF of the MBS. In this contribution, the polynomial chaos expansion (PCE) is applied to generate these high-dimensional polynomials. Following this, the main challenge is to determine suitable deformation states of the IVD for pre-computation, such that the polynomials can be constructed with high accuracy and low numerical cost. For the sake of a simple verification, the coupling method and the PCE are applied to the same simplified motion segment of the spine as was used in the previous paper, i.e. two cylindrical vertebrae and a cylindrical IVD in between. In a next step, the loading rates are included as variables in the polynomial response functions to account for a more realistic response of the overall viscoelastic intervertebral disc. Herein, an additive split into elastic and inelastic contributions to the homogenised forces and moments is applied.

  4. Intervertebral disc segmentation in MR images with 3D convolutional networks

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2017-02-01

    The vertebral column is a complex anatomical construct, composed of vertebrae and intervertebral discs (IVDs) supported by ligaments and muscles. During life, all components undergo degenerative changes, which may in some cases cause severe, chronic and debilitating low back pain. The main diagnostic challenge is to locate the pain generator, and degenerated IVDs have been identified to act as such. Accurate and robust segmentation of IVDs is therefore a prerequisite for computer-aided diagnosis and quantification of IVD degeneration, and can be also used for computer-assisted planning and simulation in spinal surgery. In this paper, we present a novel fully automated framework for supervised segmentation of IVDs from three-dimensional (3D) magnetic resonance (MR) spine images. By considering global intensity appearance and local shape information, a landmark-based approach is first used for the detection of IVDs in the observed image, which then initializes the segmentation of IVDs by coupling deformable models with convolutional networks (ConvNets). For this purpose, a 3D ConvNet architecture was designed that learns rich high-level appearance representations from a training repository of IVDs, and then generates spatial IVD probability maps that guide deformable models towards IVD boundaries. By applying the proposed framework to 15 3D MR spine images containing 105 IVDs, quantitative comparison of the obtained against reference IVD segmentations yielded an overall mean Dice coefficient of 92.8%, mean symmetric surface distance of 0.4 mm and Hausdorff surface distance of 3.7 mm.

  5. The deformation behavior of the cervical spine segment

    NASA Astrophysics Data System (ADS)

    Kolmakova, T. V.; Rikun, Yu. A.

    2017-09-01

    The paper describes the model of the cervical spine segment (C3-C4) and the calculation results of its deformation behavior at flexion. The segment model was built based on the experimental literature data taking into account the presence of the cortical and cancellous bone tissue of vertebral bodies. Degenerative changes of the intervertebral disk (IVD) were simulated through a reduction of the disc height and an increase of Young's modulus. The construction of the geometric model of the cervical spine segment and the calculations of the stress-strain state were carried out in the ANSYS software complex. The calculation results show that the biggest protrusion of the IVD in bending direction of segment is observed when IVD height is reduced. The disc protrusion is reduced with an increase of Young's modulus. The largest protrusion in the direction of flexion of the segment is the intervertebral disk with height of 4.3 mm and elastic modulus of 2.5 MPa. The results of the study can be useful to specialists in the field of biomechanics, medical materials science and prosthetics.

  6. The effect of creep on human lumbar intervertebral disk impact mechanics.

    PubMed

    Jamison, David; Marcolongo, Michele S

    2014-03-01

    The intervertebral disk (IVD) is a highly hydrated tissue, with interstitial fluid making up 80% of the wet weight of the nucleus pulposus (NP), and 70% of the annulus fibrosus (AF). It has often been modeled as a biphasic material, consisting of both a solid and fluid phase. The inherent porosity and osmotic potential of the disk causes an efflux of fluid while under constant load, which leads to a continuous displacement phenomenon known as creep. IVD compressive stiffness increases and NP pressure decreases as a result of creep displacement. Though the effects of creep on disk mechanics have been studied extensively, it has been limited to nonimpact loading conditions. The goal of this study is to better understand the influence of creep and fluid loss on IVD impact mechanics. Twenty-four human lumbar disk samples were divided into six groups according to the length of time they underwent creep (tcreep = 0, 3, 6, 9, 12, 15 h) under a constant compressive load of 400 N. At the end of tcreep, each disk was subjected to a sequence of impact loads of varying durations (timp = 80, 160, 320, 400, 600, 800, 1000 ms). Energy dissipation (ΔE), stiffness in the toe (ktoe) and linear (klin) regions, and neutral zone (NZ) were measured. Analyzing correlations with tcreep, there was a positive correlation with ΔE and NZ, along with a negative correlation with ktoe. There was no strong correlation between tcreep and klin. The data suggest that the IVD mechanical response to impact loading conditions is altered by fluid content and may result in a disk that exhibits less clinical stability and transfers more load to the AF. This could have implications for risk of diskogenic pain as a function of time of day or tissue hydration.

  7. Running exercise strengthens the intervertebral disc

    PubMed Central

    Belavý, Daniel L.; Quittner, Matthew J.; Ridgers, Nicola; Ling, Yuan; Connell, David; Rantalainen, Timo

    2017-01-01

    There is currently no evidence that the intervertebral discs (IVDs) can respond positively to exercise in humans. Some authors have argued that IVD metabolism in humans is too slow to respond anabolically to exercise within the human lifespan. Here we show that chronic running exercise in men and women is associated with better IVD composition (hydration and proteoglycan content) and with IVD hypertrophy. Via quantitative assessment of physical activity we further find that accelerations at fast walking and slow running (2 m/s), but not high-impact tasks, lower intensity walking or static positions, correlated to positive IVD characteristics. These findings represent the first evidence in humans that exercise can be beneficial for the IVD and provide support for the notion that specific exercise protocols may improve IVD material properties in the spine. We anticipate that our findings will be a starting point to better define exercise protocols and physical activity profiles for IVD anabolism in humans. PMID:28422125

  8. Are animal models useful for studying human disc disorders/degeneration?

    PubMed Central

    Eisenstein, Stephen M.; Ito, Keita; Little, Christopher; Kettler, A. Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim

    2007-01-01

    Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738

  9. Human disc degeneration is associated with increased MMP 7 expression.

    PubMed

    Le Maitre, C L; Freemont, A J; Hoyland, J A

    2006-01-01

    During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.

  10. 45 CFR 309.150 - What start-up costs are allowable for Tribal IV-D programs carried out under § 309.65(b) of this...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false What start-up costs are allowable for Tribal IV-D... ENFORCEMENT (IV-D) PROGRAM Tribal IV-D Program Funding § 309.150 What start-up costs are allowable for Tribal IV-D programs carried out under § 309.65(b) of this part? Federal funds are available for costs of...

  11. Dynamic pressurization induces transition of notochordal cells to a mature phenotype while retaining production of important patterning ligands from development

    PubMed Central

    2013-01-01

    Introduction Notochordal cells (NCs) pattern aneural and avascular intervertebral discs (IVDs), and their disappearance, is associated with onset of IVD degeneration. This study induced and characterized the maturation of nucleus pulposus (NP) tissue from a gelatinous NC-rich structure to a matrix-rich structure populated by small NP cells using dynamic pressurization in an ex vivo culture model, and also identified soluble factors from NCs with therapeutic potential. Methods Porcine NC-rich NP tissue was cultured and loaded with hydrostatic pressure (0.5 to 2 MPa at 0.1 Hz for 2 hours) either Daily, for 1 Dose, or Control (no pressurization) groups for up to eight days. Cell phenotype and tissue maturation was characterized with measurements of cell viability, cytomorphology, nitric oxide, metabolic activity, matrix composition, gene expression, and proteomics. Results Daily pressurization induced transition of NCs to small NP cells with 73.8%, 44%, and 28% NCs for Control, 1 Dose and Daily groups, respectively (P < 0.0002) and no relevant cell death. Dynamic loading matured NP tissue by significantly increasing metabolic activity and accumulating Safranin-O-stained matrix. Load-induced maturation was also apparent from the significantly decreased glycolytic, cytoskeletal (Vimentin) and stress-inducible (HSP70) proteins assessed with proteomics. Loading increased the production of bioactive proteins Sonic Hedgehog (SHH) and Noggin, and maintained Semaphorin3A (Sema3A). Discussion NP tissue maturation was induced from dynamic hydrostatic pressurization in a controlled ex vivo environment without influence from systemic effects or surrounding structures. NCs transitioned into small nonvacuolated NP cells probably via differentiation as evidenced by high cell viability, lack of nitric oxide and downregulation of stress-inducible and cytoskeletal proteins. SHH, Sema3A, and Noggin, which have patterning and neurovascular-inhibiting properties, were produced in both notochordal and matured porcine NP. Results therefore provide an important piece of evidence suggesting the transition of NCs to small NP cells is a natural part of aging and not the initiation of degeneration. Bioactive candidates identified from young porcine IVDs may be isolated and harnessed for therapies to target discogenic back pain. PMID:24427812

  12. Dynamic pressurization induces transition of notochordal cells to a mature phenotype while retaining production of important patterning ligands from development.

    PubMed

    Purmessur, Devina; Guterl, Clare C; Cho, Samuel K; Cornejo, Marisa C; Lam, Ying W; Ballif, Bryan A; Laudier, James C Iatridis; Iatridis, James C

    2013-01-01

    Notochordal cells (NCs) pattern aneural and avascular intervertebral discs (IVDs), and their disappearance, is associated with onset of IVD degeneration. This study induced and characterized the maturation of nucleus pulposus (NP) tissue from a gelatinous NC-rich structure to a matrix-rich structure populated by small NP cells using dynamic pressurization in an ex vivo culture model, and also identified soluble factors from NCs with therapeutic potential. Porcine NC-rich NP tissue was cultured and loaded with hydrostatic pressure (0.5 to 2 MPa at 0.1 Hz for 2 hours) either Daily, for 1 Dose, or Control (no pressurization) groups for up to eight days. Cell phenotype and tissue maturation was characterized with measurements of cell viability, cytomorphology, nitric oxide, metabolic activity, matrix composition, gene expression, and proteomics. Daily pressurization induced transition of NCs to small NP cells with 73.8%, 44%, and 28% NCs for Control, 1 Dose and Daily groups, respectively (P < 0.0002) and no relevant cell death. Dynamic loading matured NP tissue by significantly increasing metabolic activity and accumulating Safranin-O-stained matrix. Load-induced maturation was also apparent from the significantly decreased glycolytic, cytoskeletal (Vimentin) and stress-inducible (HSP70) proteins assessed with proteomics. Loading increased the production of bioactive proteins Sonic Hedgehog (SHH) and Noggin, and maintained Semaphorin3A (Sema3A). NP tissue maturation was induced from dynamic hydrostatic pressurization in a controlled ex vivo environment without influence from systemic effects or surrounding structures. NCs transitioned into small nonvacuolated NP cells probably via differentiation as evidenced by high cell viability, lack of nitric oxide and downregulation of stress-inducible and cytoskeletal proteins. SHH, Sema3A, and Noggin, which have patterning and neurovascular-inhibiting properties, were produced in both notochordal and matured porcine NP. Results therefore provide an important piece of evidence suggesting the transition of NCs to small NP cells is a natural part of aging and not the initiation of degeneration. Bioactive candidates identified from young porcine IVDs may be isolated and harnessed for therapies to target discogenic back pain.

  13. Clinical characterization of thoracolumbar and lumbar intervertebral disk extrusions in English Cocker Spaniels.

    PubMed

    Cardy, Thomas J A; Tzounos, Caitlin E; Volk, Holger A; De Decker, Steven

    2016-02-15

    To assess the anatomic distribution of thoracolumbar and lumbar intervertebral disk extrusions (IVDEs) in English Cocker Spaniels as compared with findings in Dachshunds and to characterize clinical findings in English Cocker Spaniels with thoracolumbar or lumbar IVDEs affecting various regions of the vertebral column. Retrospective observational study. 81 English Cocker Spaniels and 81 Dachshunds with IVDEs. Signalment, clinical signs, neurologic examination findings, and affected intervertebral disk spaces (IVDSs) were recorded for both breeds. Management methods and outcomes were recorded for English Cocker Spaniels. Lesions were categorized as thoracolumbar (IVDSs T9-10 through L1-2), midlumbar (L2-3 through L4-5), or caudal lumbar (L5-6 through L7-S1). Midlumbar and caudal lumbar IVDEs were significantly more common in English Cocker Spaniels than in Dachshunds. English Cocker Spaniels with caudal lumbar IVDEs had a longer median duration of clinical signs before evaluation and more commonly had unilateral pelvic limb lameness or spinal hyperesthesia as the predominant clinical sign than did those with IVDEs at other sites. Those with caudal lumbar IVDEs less commonly had neurologic deficits and had a higher median neurologic grade (indicating lesser severity), shorter mean postoperative hospitalization time, and faster mean time to ambulation after surgery than those with other sites affected. These variables did not differ between English Cocker Spaniels with thoracolumbar and midlumbar IVDEs. Caudal and midlumbar IVDEs were more common in English Cocker Spaniels than in Dachshunds. English Cocker Spaniels with caudal lumbar IVDE had clinical signs and posttreatment responses that differed from those in dogs with midlumbar or thoracolumbar IVDE.

  14. Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

    PubMed Central

    Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC

    2014-01-01

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441

  15. Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging.

    PubMed

    Recuerda, Maximilien; Périé, Delphine; Gilbert, Guillaume; Beaudoin, Gilles

    2012-10-12

    The treatment planning of spine pathologies requires information on the rigidity and permeability of the intervertebral discs (IVDs). Magnetic resonance imaging (MRI) offers great potential as a sensitive and non-invasive technique for describing the mechanical properties of IVDs. However, the literature reported small correlation coefficients between mechanical properties and MRI parameters. Our hypothesis is that the compressive modulus and the permeability of the IVD can be predicted by a linear combination of MRI parameters. Sixty IVDs were harvested from bovine tails, and randomly separated in four groups (in-situ, digested-6h, digested-18h, digested-24h). Multi-parametric MRI acquisitions were used to quantify the relaxation times T1 and T2, the magnetization transfer ratio MTR, the apparent diffusion coefficient ADC and the fractional anisotropy FA. Unconfined compression, confined compression and direct permeability measurements were performed to quantify the compressive moduli and the hydraulic permeabilities. Differences between groups were evaluated from a one way ANOVA. Multi linear regressions were performed between dependent mechanical properties and independent MRI parameters to verify our hypothesis. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Agglomerative Hierarchical Clustering was performed on the 3 principal components. Multilinear regressions showed that 45 to 80% of the Young's modulus E, the aggregate modulus in absence of deformation HA0, the radial permeability kr and the axial permeability in absence of deformation k0 can be explained by the MRI parameters within both the nucleus pulposus and the annulus pulposus. The principal component analysis reduced our variables to two principal components with a cumulative variability of 52-65%, which increased to 70-82% when considering the third principal component. The dendograms showed a natural division into four clusters for the nucleus pulposus and into three or four clusters for the annulus fibrosus. The compressive moduli and the permeabilities of isolated IVDs can be assessed mostly by MT and diffusion sequences. However, the relationships have to be improved with the inclusion of MRI parameters more sensitive to IVD degeneration. Before the use of this technique to quantify the mechanical properties of IVDs in vivo on patients suffering from various diseases, the relationships have to be defined for each degeneration state of the tissue that mimics the pathology. Our MRI protocol associated to principal component analysis and agglomerative hierarchical clustering are promising tools to classify the degenerated intervertebral discs and further find biomarkers and predictive factors of the evolution of the pathologies.

  16. Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc.

    PubMed

    Teixeira, Graciosa Q; Leite Pereira, Catarina; Castro, Flávia; Ferreira, Joana R; Gomez-Lazaro, Maria; Aguiar, Paulo; Barbosa, Mário A; Neidlinger-Wilke, Cornelia; Goncalves, Raquel M

    2016-09-15

    Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration. Anti-inflammatory nanoparticles (NPs) of Chitosan and Poly-(γ-glutamic acid) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NPs in degenerated IVD was evaluated. For that, Df-NPs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1β. Df-NPs were internalized by IVD cells, down-regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-1β-stimulated IVD punches. Interestingly, at the same time, Df-NPs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NPs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation. Degeneration of the IVD is an age-related progressive process considered to be the major cause of spine disorders. The pro-inflammatory environment and biomechanics of the degenerated IVD is a challenge for regenerative therapies. The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (diclofenac, Df), previously developed by us. This drug delivery system was tested in a pro-inflammatory/degenerative intervertebral disc ex vivo model. The main findings support the success of an anti-inflammatory therapy for degenerated IVD that not only reduces inflammation but also promotes native IVD matrix production. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. 45 CFR 310.15 - What are the safeguards and processes that comprehensive Tribal IV-D agencies must have in place...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... IV-D Systems and Office Automation? 310.15 Section 310.15 Public Welfare Regulations Relating to... AND OFFICE AUTOMATION Requirements for Computerized Tribal IV-D Systems and Office Automation § 310.15... ensure the security and privacy of Computerized Tribal IV-D Systems and Office Automation? (a...

  18. 45 CFR 310.40 - What requirements apply for accessing systems and records for monitoring Computerized Tribal IV-D...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... records for monitoring Computerized Tribal IV-D Systems and Office Automation? 310.40 Section 310.40... COMPUTERIZED TRIBAL IV-D SYSTEMS AND OFFICE AUTOMATION Accountability and Monitoring Procedures for... monitoring Computerized Tribal IV-D Systems and Office Automation? In accordance with Part 95 of this title...

  19. 45 CFR 310.25 - What conditions apply to acquisitions of Computerized Tribal IV-D Systems?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... acquisitions of Computerized Tribal IV-D Systems? (a) APD Approval. A comprehensive Tribal IV-D agency must... include a clause that provides that the comprehensive Tribal IV-D agency will have all ownership rights to... use and to authorize others to use for Federal Government purposes, such software, modifications and...

  20. 45 CFR 310.25 - What conditions apply to acquisitions of Computerized Tribal IV-D Systems?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... acquisitions of Computerized Tribal IV-D Systems? (a) APD Approval. A comprehensive Tribal IV-D agency must... include a clause that provides that the comprehensive Tribal IV-D agency will have all ownership rights to... use and to authorize others to use for Federal Government purposes, such software, modifications and...

  1. 45 CFR 310.25 - What conditions apply to acquisitions of Computerized Tribal IV-D Systems?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... acquisitions of Computerized Tribal IV-D Systems? (a) APD Approval. A comprehensive Tribal IV-D agency must... include a clause that provides that the comprehensive Tribal IV-D agency will have all ownership rights to... use and to authorize others to use for Federal Government purposes, such software, modifications and...

  2. A randomized, controlled, multicenter contraceptive efficacy clinical trial of the intravas device, a nonocclusive surgical male sterilization.

    PubMed

    Lu, Wen-Hong; Liang, Xiao-Wei; Gu, Yi-Qun; Wu, Wei-Xiong; Bo, Li-Wei; Zheng, Tian-Gui; Chen, Zhen-Wen

    2014-01-01

    Because of unavoidable complications of vasectomy, this study was undertaken to assess the efficacy and safety of male sterilization with a nonobstructive intravas device (IVD) implanted into the vas lumen by a mini-surgical method compared with no-scalpel vasectomy (NSV). IVDs were categorized into two types: IVD-B has a tail used for fixing to the vas deferens (fixed wing) whereas IVD-A does not. A multicenter prospective randomized controlled clinical trial was conducted in China. The study was comprised of 1459 male volunteers seeking vasectomy who were randomly assigned to the IVD-A (n = 487), IVD-B (n = 485) or NSV (n = 487) groups and underwent operation. Follow-up included visits at the 3 rd -6 th and 12 th postoperative months. The assessments of the subjects involved regular physical examinations (including general and andrological examinations) and semen analysis. The subjects' partners also underwent monitoring for pregnancy by monthly interviews regarding menstruation and if necessary, urine tests. There were no significant differences in pregnancy rates (0.65% for IVD-A, 0 for IVD-B and 0.21% for NSV) among the three groups (P > 0.05). The cumulative rates of complications at the 12 th postoperative month were zero, 0.9% and 1.7% in the three groups, respectively. In conclusion, IVD male sterilization exhibits a low risk of long-term adverse events and was found to be effective as a male sterilization method, similar to the NSV technique. IVD male sterilization is expected to be a novel contraceptive method.

  3. Moderate-intensity running causes intervertebral disc compression in young adults.

    PubMed

    Kingsley, Michael Ian; D'Silva, Lindsay Antonio; Jennings, Cameron; Humphries, Brendan; Dalbo, Vincent James; Scanlan, Aaron Terrance

    2012-11-01

    Decreased intervertebral disc (IVD) volume can result in diminished load-carrying capacity of the spinal region. Although moderate-intensity running is generally advocated for apparently healthy adults, running causes a loss in stature that is thought to reflect IVD compression. The aim of this investigation was to use magnetic resonance imaging (MRI) to quantify the influence of moderate-intensity treadmill running on IVD height and volume in the thoracic and lumbar regions of the vertebral column. A clinic-based repeated-measures design was used in eight healthy young asymptomatic adults. After preliminary measurements and familiarization (day 1), participants reported to the clinic on two further occasions. MRI scans and stature measurements were completed at baseline (day 2), preexercise (day 3), and after 30 min of moderate-intensity treadmill running (postexercise, day 3). Mean height and volume were derived for all thoracic and lumbar IVDs from digitized MRIs, and stature was determined with a stadiometer. Moderate-intensity running resulted in 6.3% ± 0.9% reduction in mean IVD height and 6.9% ± 1.0% reduction in calculated IVD volume. The day-to-day variation in mean IVD height and volume were 0.6% ± 0.6% and 0.4% ± 0.6%, respectively. This is the first study to quantify the influence of moderate-intensity running on IVD height and volume. Changes in IVD height and volume were observed throughout the thoracic and lumbar vertebral regions. These findings suggest that future studies evaluating the influence of various loading activities and recovery techniques on IVD structure should consider thoracic as well as lumbar regions of the spine.

  4. 45 CFR 310.15 - What are the safeguards and processes that comprehensive Tribal IV-D agencies must have in place...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... comprehensive Tribal IV-D agencies must have in place to ensure the security and privacy of Computerized Tribal... ensure the security and privacy of Computerized Tribal IV-D Systems and Office Automation? (a..., accuracy, completeness, access to, and use of data in the Computerized Tribal IV-D System and Office...

  5. 45 CFR 309.135 - What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false What requirements apply to funding, obligating and... (IV-D) PROGRAM Tribal IV-D Program Funding § 309.135 What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds? (a) Funding period—(1) Ongoing funding. Federal title...

  6. 45 CFR 309.135 - What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 2 2012-10-01 2012-10-01 false What requirements apply to funding, obligating and... (IV-D) PROGRAM Tribal IV-D Program Funding § 309.135 What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds? (a) Funding period—(1) Ongoing funding. Federal title...

  7. 45 CFR 309.135 - What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true What requirements apply to funding, obligating and... (IV-D) PROGRAM Tribal IV-D Program Funding § 309.135 What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds? (a) Funding period—(1) Ongoing funding. Federal title...

  8. 45 CFR 309.135 - What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 2 2013-10-01 2012-10-01 true What requirements apply to funding, obligating and... (IV-D) PROGRAM Tribal IV-D Program Funding § 309.135 What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds? (a) Funding period—(1) Ongoing funding. Federal title...

  9. 45 CFR 309.135 - What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false What requirements apply to funding, obligating and... (IV-D) PROGRAM Tribal IV-D Program Funding § 309.135 What requirements apply to funding, obligating and liquidating Federal title IV-D grant funds? (a) Funding period—(1) Ongoing funding. Federal title...

  10. 45 CFR 309.35 - What are the procedures for review of a Tribal IV-D program application, plan or plan amendment?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-D program application, plan or plan amendment? 309.35 Section 309.35 Public Welfare Regulations... ENFORCEMENT (IV-D) PROGRAM Tribal IV-D Program Application Procedures § 309.35 What are the procedures for review of a Tribal IV-D program application, plan or plan amendment? (a) The Secretary will promptly...

  11. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  12. Developing a computer-controlled simulated digestion system to predict the concentration of metabolizable energy of feedstuffs for rooster.

    PubMed

    Zhao, F; Ren, L Q; Mi, B M; Tan, H Z; Zhao, J T; Li, H; Zhang, H F; Zhang, Z Y

    2014-04-01

    Four experiments were conducted to evaluate the effectiveness of a computer-controlled simulated digestion system (CCSDS) for predicting apparent metabolizable energy (AME) and true metabolizable energy (TME) using in vitro digestible energy (IVDE) content of feeds for roosters. In Exp. 1, the repeatability of the IVDE assay was tested in corn, wheat, rapeseed meal, and cottonseed meal with 3 assays of each sample and each with 5 replicates of the same sample. In Exp. 2, the additivity of IVDE concentration in corn, soybean meal, and cottonseed meal was tested by comparing determined IVDE values of the complete diet with values predicted from measurements on individual ingredients. In Exp. 3, linear models to predict AME and TME based on IVDE were developed with 16 calibration samples. In Exp. 4, the accuracy of prediction models was tested by the differences between predicted and determined values for AME or TME of 6 ingredients and 4 diets. In Exp. 1, the mean CV of IVDE was 0.88% (range = 0.20 to 2.14%) for corn, wheat, rapeseed meal, and cottonseed meal. No difference in IVDE was observed between 3 assays of an ingredient, indicating that the IVDE assay is repeatable under these conditions. In Exp. 2, minimal differences (<21 kcal/kg) were observed between determined and calculated IVDE of 3 complete diets formulated with corn, soybean meal, and cottonseed meal, demonstrating that the IVDE values are additive in a complete diet. In Exp. 3, linear relationships between AME and IVDE and between TME and IVDE were observed in 16 calibration samples: AME = 1.062 × IVDE - 530 (R(2) = 0.97, residual standard deviation [RSD] = 146 kcal/kg, P < 0.001) and TME = 1.050 × IVDE - 16 (R(2) = 0.97, RSD = 148 kcal/kg, P < 0.001). Differences of less than 100 kcal/kg were observed between determined and predicted values in 10 and 9 of the 16 calibration samples for AME and TME, respectively. In Exp. 4, differences of less than 100 kcal/kg between determined and predicted values were observed in 3 and 4 of the 6 ingredient samples for AME and TME, respectively, and all 4 diets showed the differences of less than 25 kcal/kg between determined and predicted AME or TME. Our results indicate that the CCSDS is repeatable and additive. This system accurately predicted AME or TME on 17 of the 26 samples and may be a promising method to predict the energetic values of feed for poultry.

  13. How Long and Low Can You Go? Effect of Conformation on the Risk of Thoracolumbar Intervertebral Disc Extrusion in Domestic Dogs

    PubMed Central

    Packer, Rowena M. A.; Hendricks, Anke; Volk, Holger A.; Shihab, Nadia K.; Burn, Charlotte C.

    2013-01-01

    Intervertebral disc extrusion (IVDE) is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese), where selection for ‘long and low’ morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL) and height at the withers (HW). Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders. PMID:23894518

  14. How long and low can you go? Effect of conformation on the risk of thoracolumbar intervertebral disc extrusion in domestic dogs.

    PubMed

    Packer, Rowena M A; Hendricks, Anke; Volk, Holger A; Shihab, Nadia K; Burn, Charlotte C

    2013-01-01

    Intervertebral disc extrusion (IVDE) is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese), where selection for 'long and low' morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL) and height at the withers (HW). Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders.

  15. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain.

    PubMed

    Makino, Hiroto; Seki, Shoji; Yahara, Yasuhito; Shiozawa, Shunichi; Aikawa, Yukihiko; Motomura, Hiraku; Nogami, Makiko; Watanabe, Kenta; Sainoh, Takeshi; Ito, Hisakatsu; Tsumaki, Noriyuki; Kawaguchi, Yoshiharu; Yamazaki, Mitsuaki; Kimura, Tomoatsu

    2017-12-05

    Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.

  16. Histological and reference system for the analysis of mouse intervertebral disc.

    PubMed

    Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny

    2018-01-01

    A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Safety of laboratory analyzers for infection testing - results of the market surveillance by the BfArM until end 2007

    PubMed Central

    2009-01-01

    The European Directive 98/79/EC on in vitro diagnostic medical devices (IVD) stipulates the marketing and post market surveillance of IVD in the European Economic Area. In cases of issues and field corrective actions, the manufacturers have to inform the responsible Competent Authorities (CA). In Germany, the Federal Institute for Drugs and Medical Devices (BfArM) is the responsible CA for most IVD, with a small subset of IVD for immune hematological and infectiological testing as well as tissue typing as specified in Annex II of the Directive, being within the responsibility of the Paul-Ehrlich-Institute (PEI). In this study, all issues regarding laboratory analyzers for infection testing and their consumables, but not reagents, kits and general culture media, reported to the BfArM between begin 1999 and end of 2007 were analyzed in respect to the sources of report, the underlying product failure and the performed corrective actions. Within the observation period a total of 1471 reports for IVD were received of which 73 related to the IVD for infection testing were included in our study. Reports were predominantly received from manufacturers (56) and competent authorities (15). Affected products were most frequently those for immunological analysis (42) whereas those based on culturing techniques (17) and molecular biological techniques (14) played only minor roles. In all these groups, laboratory analyzers (55) were more frequently affected than their consumables (18). Investigations of the manufacturers were able to identify the underlying root causes of product failures in 62 cases (84.9%). In 2 cases (2.7%) the root cause remained unclear and in 9 cases (12.3%) a product failure was excluded or a user error was the underlying cause. Product failures in laboratory analyzers were most frequently caused by software errors (31) and constructional faults (8) whereas the predominant cause of product failure in consumables were errors in production and quality control (8). Manufacturers issued corrective measures in 66 cases (90.4%) from which 49 and 17 were related to laboratory analyzers and their consumables, respectively. Based on the underlying root causes of product failures these were predominantly customer information (48), recalls (40), software-updates (30) and design changes (9) in the product group of laboratory analyzers as well as customer information (16), recalls (12) and modifications of production and quality management (11) in the group of consumables. The results and experiences obtained since 1999 suggest that the system for post marketing surveillance of IVD is an established tool to ensure product safety, even though the current system can be further enhanced. PMID:20156760

  18. Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2014-01-01

    The deformation between C4 and C6 measured by the US probe was affected by bulging of the IVD and soft tissues during compressive loading as...endplates of the vertebrae and cartilaginous endplate of the discs were added to all segments. Figure 28 Coronal views of the updated C4-T1 FEM (a...the ligaments and soft tissue connections that provide stability to the cervical spine FSUs were added (Figures 30 and 31). For the anterior

  19. Computation models simulating notochordal cell extinction during early ageing of an intervertebral disc.

    PubMed

    Louman-Gardiner, K M; Coombe, D; Hunter, C J

    2011-12-01

    Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.

  20. Molecular signaling in intervertebral disk development.

    PubMed

    DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A

    2005-09-01

    The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.

  1. A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine L; Freemont, Anthony J; Hoyland, Judith A

    2006-01-01

    Conventional therapies for low back pain (LBP) are purely symptomatic and do not target the cause of LBP, which in approximately 40% of cases is caused by degeneration of the intervertebral disc (DIVD). Targeting therapies to inhibit the process of degeneration would be a potentially valuable treatment for LBP. There is increasing evidence for a role for IL-1 in DIVD. A natural inhibitor of IL-1 exists, IL-1Ra, which would be an ideal molecular target for inhibiting IL-1-mediated effects involved in DIVD and LBP. In this study, the feasibility of ex vivo gene transfer of IL-1Ra to the IVD was investigated. Monolayer and alginate cultures of normal and degenerate human intervertebral disc (IVD) cells were infected with an adenoviral vector carrying the IL-1Ra gene (Ad-IL-1Ra) and protein production measured using an enzyme-linked immunosorbent assay. The ability of these infected cells to inhibit the effects of IL-1 was also investigated. In addition, normal and degenerate IVD cells infected with Ad-IL-1Ra were injected into degenerate disc tissue explants and IL-1Ra production in these discs was assessed. This demonstrated that both nucleus pulposus and annulus fibrosus cells infected with Ad-IL-1Ra produced elevated levels of IL-1Ra for prolonged time periods, and these infected cells were resistant to IL-1. When the infected cells were injected into disc explants, IL-1Ra protein expression was increased which was maintained for 2 weeks of investigation. This in vitro study has shown that the use of ex vivo gene transfer to degenerate disc tissue is a feasible therapy for the inhibition of IL-1-mediated events during disc degeneration. PMID:16436110

  2. Isovaleric Acidemia: New Aspects of Genetic and Phenotypic Heterogeneity

    PubMed Central

    Vockley, Jerry; Ensenauer, Regina

    2008-01-01

    Isovaleric acidemia (IVA) is an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD) resulting in the accumulation of derivatives of isovaleryl-CoA. It was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and inter-familial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. IVD is a flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA and transfers electrons to the electron transfer flavoprotein. Human IVD has been purified from tissue and recombinant sources and its biochemical and physical properties have been extensively studied. Molecular analysis of the IVD gene from patients with IVA has allowed characterization of different types of mutations in this gene. One missense mutation, 932C>T (A282V), is particularly common in patients identified through newborn screening with mild metabolite elevations and who have remained asymptomatic to date. This mutation leads to a partially active enzyme with altered catalytic properties; however, its effects on clinical outcome and the necessity of therapy are still unknown. A better understanding of the heterogeneity of this disease and the relevance of genotype/phenotype correlations to clinical management of patients are among the challenges remaining in the study of this disorder in the coming years. PMID:16602101

  3. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc

    PubMed Central

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Introduction Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Methods Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-α), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-α and NGF were assessed along with NGF with substance P. Results MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-α was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. Conclusions MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration. PMID:19695094

  4. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc.

    PubMed

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-alpha), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-alpha and NGF were assessed along with NGF with substance P. MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-alpha was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration.

  5. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc

    PubMed Central

    Purmessur, Devina; Freemont, Anthony J; Hoyland, Judith A

    2008-01-01

    Introduction The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD. Methods Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P. Results Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only. Conclusion Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain. PMID:18727839

  6. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation.

    PubMed

    Stover, Joshua D; Farhang, Niloofar; Berrett, Kristofer C; Gertz, Jason; Lawrence, Brandon; Bowles, Robby D

    2017-09-06

    Back pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy. By exposing DRG neurons to degenerative IVD-conditioned media under both normal and pathological IVD pH levels, we demonstrate that degenerative IVDs trigger interleukin (IL)-6-induced increases in neuron activity to thermal stimuli, which is directly mediated by AKAP and enhanced by acidic pH. Utilizing this novel information on AKAP-mediated increases in nociceptive neuron activity, we developed lentiviral CRISPR epigenome editing vectors that modulate endogenous expression of AKAP150 by targeted promoter histone methylation. When delivered to DRG neurons, these epigenome-modifying vectors abolished degenerative IVD-induced DRG-elevated neuron activity while preserving non-pathologic neuron activity. This work elucidates the potential for CRISPR epigenome editing as a targeted gene-based pain neuromodulation strategy. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Measurement of metabolizable energy in poultry feeds by an in vitro system.

    PubMed

    Valdes, E V; Leeson, S

    1992-09-01

    A two-stage in vitro system (IVDE) for estimating AMEn in poultry feeds was investigated. For 71 diets ranging from 2.2 to 3.4 kcal/g, the average AMEn was 2.889 kcal/g and the mean IVDE value was 3.005 kcal/g. From the 71 diets, 30 (42.2%) showed differences between AMEn and IVDE of less than .100 kcal/g and represented diets across the AMEn range of values. The statistical analysis of the data showed a standard error of the estimate (SEE) of .152 kcal/g for the 71 diets assayed. No clear differences in accuracy of AMEn among the diets, as related to the composition and proportion of ingredients, were observed. Thus, the IVDE method gave different AMEn for diets of similar composition. The application of the IVDE system to selected ingredients showed that the AMEn of corn was underestimated by the method. However the AMEn of roasted, extruded soybeans and oats was estimated accurately by the IVDE method. Other ingredients were greatly overestimated by the in vitro technique (soybean meal, corn gluten meal, and barley). The results of applying the IVDE method for estimating AMEn showed the limitations of this technique with regard to the universality of its application. Although the method was successful in estimating AMEn values of diets and ingredients, for many samples the IVDE technique did not give acceptable results.

  8. Spine Patterning Is Guided by Segmentation of the Notochord Sheath.

    PubMed

    Wopat, Susan; Bagwell, Jennifer; Sumigray, Kaelyn D; Dickson, Amy L; Huitema, Leonie F A; Poss, Kenneth D; Schulte-Merker, Stefan; Bagnat, Michel

    2018-02-20

    The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Extracellular matrix fragmentation in young, healthy cartilaginous tissues.

    PubMed

    Craddock, R J; Hodson, N W; Ozols, M; Shearer, T; Hoyland, J A; Sherratt, M J

    2018-02-09

    Although the composition and structure of cartilaginous tissues is complex, collagen II fibrils and aggrecan are the most abundant assemblies in both articular cartilage (AC) and the nucleus pulposus (NP) of the intervertebral disc (IVD). Whilst structural heterogeneity of intact aggrecan ( containing three globular domains) is well characterised, the extent of aggrecan fragmentation in healthy tissues is poorly defined. Using young, yet skeletally mature (18-30 months), bovine AC and NP tissues, it was shown that, whilst the ultrastructure of intact aggrecan was tissue-dependent, most molecules (AC: 95 %; NP: 99.5 %) were fragmented (lacking one or more globular domains). Fragments were significantly smaller and more structurally heterogeneous in the NP compared with the AC (molecular area; AC: 8543 nm2; NP: 4625 nm2; p < 0.0001). In contrast, fibrillar collagen appeared structurally intact and tissue-invariant. Molecular fragmentation is considered indicative of a pathology; however, these young, skeletally mature tissues were histologically and mechanically (reduced modulus: AC: ≈ 500 kPa; NP: ≈ 80 kPa) comparable to healthy tissues and devoid of notable gelatinase activity (compared with rat dermis). As aggrecan fragmentation was prevalent in neonatal bovine AC (99.5 % fragmented, molecular area: 5137 nm2) as compared with mature AC (95.0 % fragmented, molecular area: 8667 nm2), it was hypothesised that targeted proteolysis might be an adaptive process that modified aggrecan packing (as simulated computationally) and, hence, tissue charge density, mechanical properties and porosity. These observations provided a baseline against which pathological and/or age-related fragmentation of aggrecan could be assessed and suggested that new strategies might be required to engineer constructs that mimic the mechanical properties of native cartilaginous tissues.

  10. Interactive Videodisc in Vocational Education. ERIC Digest No. 105.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    Interactive videodisc (IVD) offers a combination of media with practical applications in vocational education. IVD is superior to videotapes and other media in quality, applicability, and effectiveness. IVD can be used in different settings and for a variety of instructional applications. Although not appropriate for every learning situation, IVD…

  11. 45 CFR 303.7 - Provision of services in intergovernmental IV-D cases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES STANDARDS FOR PROGRAM OPERATIONS § 303.7 Provision of services in intergovernmental IV-D cases. (a) General responsibilities. A State IV-D agency must: (1) Establish and use...

  12. 45 CFR 309.155 - What uses of Tribal IV-D program funds are not allowable?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL CHILD SUPPORT ENFORCEMENT (IV-D) PROGRAM Tribal IV-D Program... used for: (a) Activities related to administering other programs, including those under the Social...

  13. 45 CFR 310.25 - What conditions apply to acquisitions of Computerized Tribal IV-D Systems?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES COMPUTERIZED TRIBAL IV-D SYSTEMS AND OFFICE AUTOMATION... Acquisition Threshold; (c) Software and ownership rights. (1) All procurement and contract instruments must... Computerized Tribal IV-D System software or enhancements thereof and all associated documentation designed...

  14. 3D characterization of morphological changes in the intervertebral disc and endplate during aging: A propagation phase contrast synchrotron micro-tomography study

    PubMed Central

    Cao, Yong; Liao, Shenghui; Zeng, Hao; Ni, Shuangfei; Tintani, Francis; Hao, Yongqiang; Wang, Lei; Wu, Tianding; Lu, Hongbin; Duan, Chunyue; Hu, Jianzhong

    2017-01-01

    A better understanding of functional changes in the intervertebral disc (IVD) and interaction with endplate is essential to elucidate the pathogenesis of IVD degeneration disease (IDDD). To date, the simultaneous depiction of 3D micro-architectural changes of endplate with aging and interaction with IVD remains a technical challenge. We aim to characterize the 3D morphology changes of endplate and IVD during aging using PPCST. The lumbar vertebral level 4/5 IVDs harvested from 15-day-, 4- and 24-month-old mice were initially evaluated by PPCST with histological sections subsequently analyzed to confirm the imaging efficiency. Quantitative assessments of age-related trends after aging, including mean diameter, volume fraction and connectivity of the canals, and endplate porosity and thickness, reached a peak at 4 months and significantly decreased at 24 months. The IVD volume consistently exhibited same trend of variation with the endplate after aging. In this study, PPCST simultaneously provided comprehensive details of 3D morphological changes of the IVD and canal network in the endplate and the interaction after aging. The results suggest that PPCST has the potential to provide a new platform for attaining a deeper insight into the pathogenesis of IDDD, providing potential therapeutic targets. PMID:28266560

  15. Validity and reliability of computerized measurement of lumbar intervertebral disc height and volume from magnetic resonance images.

    PubMed

    Neubert, Ales; Fripp, Jurgen; Engstrom, Craig; Gal, Yaniv; Crozier, Stuart; Kingsley, Michael I C

    2014-11-01

    Magnetic resonance (MR) examinations of morphologic characteristics of intervertebral discs (IVDs) have been used extensively for biomechanical studies and clinical investigations of the lumbar spine. Traditionally, the morphologic measurements have been performed using time- and expertise-intensive manual segmentation techniques not well suited for analyses of large-scale studies.. The purpose of this study is to introduce and validate a semiautomated method for measuring IVD height and mean sagittal area (and volume) from MR images to determine if it can replace the manual assessment and enable analyses of large MR cohorts. This study compares semiautomated and manual measurements and assesses their reliability and agreement using data from repeated MR examinations. Seven healthy asymptomatic males underwent 1.5-T MR examinations of the lumbar spine involving sagittal T2-weighted fast spin-echo images obtained at baseline, pre-exercise, and postexercise conditions. Measures of the mean height and the mean sagittal area of lumbar IVDs (L1-L2 to L4-L5) were compared for two segmentation approaches: a conventional manual method (10-15 minutes to process one IVD) and a specifically developed semiautomated method (requiring only a few mouse clicks to process each subject). Both methods showed strong test-retest reproducibility evaluated on baseline and pre-exercise examinations with strong intraclass correlations for the semiautomated and manual methods for mean IVD height (intraclass correlation coefficient [ICC]=0.99, 0.98) and mean IVD area (ICC=0.98, 0.99), respectively. A bias (average deviation) of 0.38 mm (4.1%, 95% confidence interval 0.18-0.59 mm) was observed between the manual and semiautomated methods for the IVD height, whereas there was no statistically significant difference for the mean IVD area (0.1%±3.5%). The semiautomated and manual methods both detected significant exercise-induced changes in IVD height (0.20 and 0.28 mm) and mean IVD area (5.7 and 8.3 mm(2)), respectively. The presented semiautomated method provides an alternative to time- and expertise-intensive manual procedures for analysis of larger, cross-sectional, interventional, and longitudinal MR studies for morphometric analyses of lumbar IVDs. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Vessel architecture in human knee cartilage in children: an in vivo susceptibility-weighted imaging study at 7 T.

    PubMed

    Kolb, Alexander; Robinson, Simon; Stelzeneder, David; Schreiner, Markus; Chiari, Catharina; Windhager, Reinhard; Trattnig, Siegfried; Bohndorf, Klaus

    2018-02-26

    To evaluate the clinical feasibility of ultrahigh field 7-T SWI to visualize vessels and assess their density in the immature epiphyseal cartilage of human knee joints. 7-T SWI of 12 knees (six healthy volunteers, six patients with osteochondral abnormalities; mean age 10.7 years; 3 female, 9 male) were analysed by two readers, classifying intracartilaginous vessel densities (IVD) in three grades (no vessels, low IVD and high IVD) in defined femoral, tibial and patellar zones. Differences between patients and volunteers, IVDs in different anatomic locations, differences between cartilage overlying osteochondral abnormalities and corresponding normal zones, and differences in age groups were analysed. Interrater reliability showed moderate agreement between the two readers (κ = 0.58, p < 0.001). The comparison of IVDs between patients and volunteers revealed no significant difference (p = 0.706). The difference between zones in the cartilage overlying osteochondral abnormalities to corresponding normal zones showed no significant difference (p = 0.564). IVDs were related to anatomic location, with decreased IVDs in loading areas (p = 0.003). IVD was age dependent, with more vessels present in the younger participants (p = 0.001). The use of SWI in conjunction with ultrahigh field MRI makes the in vivo visualization of vessels in the growing cartilage of humans feasible, providing insights into the role of the vessel network in acquired disturbances. • SWI facilitates in vivo visualization of vessels in the growing human cartilage. • Interrater reliability of the intracartilaginous vessel grading was moderate. • Intracartilaginous vessel densities are dependent on anatomical location and age.

  17. 45 CFR 310.5 - What options are available for Computerized Tribal IV-D Systems and office automation?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to conduct automated data processing and recordkeeping activities through Office Automation... IV-D Systems and office automation? 310.5 Section 310.5 Public Welfare Regulations Relating to Public... AUTOMATION Requirements for Computerized Tribal IV-D Systems and Office Automation § 310.5 What options are...

  18. 45 CFR 309.170 - What statistical and narrative reporting requirements apply to Tribal IV-D programs?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false What statistical and narrative reporting... (IV-D) PROGRAM Statistical and Narrative Reporting Requirements § 309.170 What statistical and... organizations must submit the following information and statistics for Tribal IV-D program activity and caseload...

  19. 45 CFR 309.170 - What statistical and narrative reporting requirements apply to Tribal IV-D programs?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false What statistical and narrative reporting... (IV-D) PROGRAM Statistical and Narrative Reporting Requirements § 309.170 What statistical and... organizations must submit the following information and statistics for Tribal IV-D program activity and caseload...

  20. Conditioned Medium Derived from Notochordal Cell-Rich Nucleus Pulposus Tissue Stimulates Matrix Production by Canine Nucleus Pulposus Cells and Bone Marrow-Derived Stromal Cells

    PubMed Central

    de Vries, Stefan A.H.; Potier, Esther; van Doeselaar, Marina; Meij, Björn P.; Tryfonidou, Marianna A.

    2015-01-01

    Objectives: Conditioned medium derived from notochordal cell-rich nucleus pulposus tissue (NCCM) was previously shown to have a stimulatory effect on bone marrow stromal cells (BMSCs) and nucleus pulposus cells (NPCs) individually, in mixed species in vitro cell models. The objective of the current study was to assess the stimulatory effect of NCCM on NPCs in a homologous canine in vitro model and to investigate whether combined stimulation with NCCM and addition of BMSCs provides a synergistic stimulatory effect. Methods: BMSCs and NPCs were harvested from chondrodystrophic dogs with confirmed early intervertebral disc (IVD) degeneration. NCCM was produced from NP tissue of nonchondrodystrophic dogs with healthy IVDs. BMSCs or NPCs alone (3×106 cells/mL) and NPCs+BMSCs (6×106 cells/mL; mixed 1:1) were cultured for 4 weeks in 1.2% alginate beads under base medium (BM), NCCM, or with addition of 10 ng/mL transforming growth factor-β1 (TGF-β1) as a positive control. Beads were assessed for glycosaminoglycan (GAG) and DNA contents by biochemical assays, GAG deposition by Alcian blue staining, and gene expression (aggrecan, versican, collagen 1 and 2, SOX9, A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and matrix metalloproteinase 13 [MMP13]) with real-time quantitative RT-PCR. Results: NCCM increased NPC proliferation, proteoglycan production, and expression of genes associated with a healthy NP-like phenotype. BMSCs also showed increased proteoglycan production under NCCM, but these effects were not observed at the gene level. Combined stimulation of NPCs with NCCM and coculturing with BMSCs did not result in increased proteoglycan content compared to stimulation with NCCM alone. Discussion: NCCM stimulates matrix production by both NPCs and BMSCs and directs NPCs toward a healthier phenotype. NCCM is therefore promising for IVD regeneration and identification of the bioactive components will be helpful to further develop this approach. In the current study, no synergistic effect of adding BMSCs was observed. PMID:25370929

  1. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  2. "If I Were Nick": Men's Responses to an Interactive Video Drama Series to Support Smoking Cessation.

    PubMed

    Bottorff, Joan L; Sarbit, Gayl; Oliffe, John L; Kelly, Mary T; Lohan, Maria; Stolp, Sean; Sharp, Paul

    2015-08-10

    Men continue to smoke in greater numbers than women; however, few interventions have been developed and tested to support men's cessation. Men tend to rely on quitting strategies associated with stereotypical manliness, such as willpower, stoicism, and independence, but they may lack the self-efficacy skills required to sustain a quit. In this paper, we describe the development of and reception to an interactive video drama (IVD) series, composed of 7 brief scenarios, to support and strengthen men's smoking cessation efforts. The value of IVD in health promotion is predicated on the evidence that viewers engage with the material when they are presented characters with whom they can personally identify. The video dramatizes the challenges unfolding in the life of the main character, Nick, on the first day of his quit and models the skills necessary to embark upon a sustainable quit. The objective was to describe men's responses to the If I were Nick IVD series as part of a study of QuitNow Men, an innovative smoking cessation website designed for men. Specific objectives were to explore the resonance of the main character of the IVD series with end-users and explore men's perceptions of the effectiveness of the IVD series for supporting their quit self-management. Seven brief IVD scenarios were developed, filmed with a professional actor, and uploaded to a new online smoking cessation website, QuitNow Men. A sample of 117 men who smoked were recruited into the study and provided baseline data prior to access to the QuitNow Men website for a 6-month period. During this time, 47 men chose to view the IVDs. Their responses to questions about the IVDs were collected in online surveys at 3-month and 6-month time points and analyzed using descriptive statistics. The majority of participants indicated they related to the main character, Nick. Participants who "strongly agreed" they could relate to Nick perceived significantly higher levels of support from the IVDs than the "neutral" and "disagree" groups (P<.001, d=2.0, P<.001, d=3.1). The "agree" and "neutral" groups were significantly higher on rated support from the videos than the "disagree" (P<.001, d=2.2, P=.01, d=1.5). Participants' perception of the main character was independent of participant age, education attainment, or previous quit attempts. The findings suggest that IVD interventions may be an important addition to men's smoking cessation programs. Given that the use of IVD scenarios in health promotion is in its infancy, the positive outcomes from this study signal the potential for IVD and warrant ongoing evaluation in smoking cessation and, more generally, men's health promotion.

  3. Prevalence of Age-Related Changes in Ovine Lumbar Intervertebral Discs during Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Nisolle, Jean-François; Bihin, Benoît; Kirschvink, Nathalie; Neveu, Fabienne; Clegg, Peter; Dugdale, Alexandra; Wang, Xiaoqing; Vandeweerd, Jean-Michel

    2016-01-01

    Ovine models are used to study intervertebral disc (IVD) degeneration. The objective of the current study was to assess the naturally occurring age-related changes of the IVD that can be diagnosed by CT and MRI in the lumbar spine of sheep. We used CT and T2-weighted MR images to score the IVD (L6S1 to L1L2) in 41 sheep (age, 6 mo to 11 y) that were euthanized for reasons not related to musculoskeletal disease. T2 mapping and measurement of T2 time of L6S1 to L2L3 were performed in 22 of the sheep. Degenerative changes manifested as early as 2 y of age and occurred at every IVD level. Discs were more severely damaged in older sheep. The age effect of the L6S1 IVD was larger than the average age effect for the other IVD. The current study provides evidence that lesions similar to those encountered in humans can be identified by CT and MRI in lumbar spine of sheep. Ideally, research animals should be assessed at the initiation of preclinical trials to determine the extent of prevalent degenerative changes. The ovine lumbosacral disc seems particularly prone to degeneration and might be a favorable anatomic site for studying IVD degeneration. PMID:27538861

  4. 45 CFR 310.20 - What are the conditions for funding the installation, operation, maintenance and enhancement of...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... installation, operation, maintenance and enhancement of Computerized Tribal IV-D Systems and Office Automation... HEALTH AND HUMAN SERVICES COMPUTERIZED TRIBAL IV-D SYSTEMS AND OFFICE AUTOMATION Funding for Computerized Tribal IV-D Systems and Office Automation § 310.20 What are the conditions for funding the installation...

  5. 45 CFR 310.35 - Under what circumstances would emergency FFP be available for Computerized Tribal IV-D Systems?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Under what circumstances would emergency FFP be... AND OFFICE AUTOMATION Funding for Computerized Tribal IV-D Systems and Office Automation § 310.35 Under what circumstances would emergency FFP be available for Computerized Tribal IV-D Systems? (a...

  6. In vivo dosimetry in UK external beam radiotherapy: current and future usage.

    PubMed

    MacDougall, Niall D; Graveling, Michael; Hansen, Vibeke N; Brownsword, Kevin; Morgan, Andrew

    2017-04-01

    Towards Safer Radiotherapy recommended that radiotherapy (RT) centres should have protocols in place for in vivo dosimetry (IVD) monitoring at the beginning of patient treatment courses (Donaldson S. Towards safer radiotherapy. R Coll Radiol 2008). This report determines IVD implementation in the UK in 2014, the methods used and makes recommendations on future use. Evidence from peer-reviewed journals was used in conjunction with the first survey of UK RT centre IVD practice since the publication of Towards Safer Radiotherapy. In March 2014, profession-specific questionnaires were sent to radiographer, clinical oncologist and physics staff groups in each of the 66 UK RT centres. Response rates from each group were 74%, 45% and 74%, respectively. 73% of RT centres indicated that they performed IVD. Diodes are the most popular IVD device. Thermoluminescent dosimeter (TLD) is still in use in a number of centres but not as a sole modality, being used in conjunction with diodes and/or electronic portal imaging device (EPID). The use of EPID dosimetry is increasing and is considered of most potential value for both geometric and dosimetric verification. Owing to technological advances, such as electronic data transfer, independent monitor unit checking and daily image-guided radiotherapy, the overall risk of adverse treatment events in RT has been substantially reduced. However, the use of IVD may prevent a serious radiation incident. Point dose IVD is not considered suited to the requirements of verifying advanced RT techniques, leaving EPID dosimetry as the current modality likely to be developed as a future standard. Advances in knowledge: An updated perspective on UK IVD use and provision of professional guidelines for future implementation.

  7. In vivo dosimetry in UK external beam radiotherapy: current and future usage

    PubMed Central

    Graveling, Michael; Hansen, Vibeke N; Brownsword, Kevin; Morgan, Andrew

    2017-01-01

    Objective: Towards Safer Radiotherapy recommended that radiotherapy (RT) centres should have protocols in place for in vivo dosimetry (IVD) monitoring at the beginning of patient treatment courses (Donaldson S. Towards safer radiotherapy. R Coll Radiol 2008). This report determines IVD implementation in the UK in 2014, the methods used and makes recommendations on future use. Methods: Evidence from peer-reviewed journals was used in conjunction with the first survey of UK RT centre IVD practice since the publication of Towards Safer Radiotherapy. In March 2014, profession-specific questionnaires were sent to radiographer, clinical oncologist and physics staff groups in each of the 66 UK RT centres. Results: Response rates from each group were 74%, 45% and 74%, respectively. 73% of RT centres indicated that they performed IVD. Diodes are the most popular IVD device. Thermoluminescent dosimeter (TLD) is still in use in a number of centres but not as a sole modality, being used in conjunction with diodes and/or electronic portal imaging device (EPID). The use of EPID dosimetry is increasing and is considered of most potential value for both geometric and dosimetric verification. Conclusion: Owing to technological advances, such as electronic data transfer, independent monitor unit checking and daily image-guided radiotherapy, the overall risk of adverse treatment events in RT has been substantially reduced. However, the use of IVD may prevent a serious radiation incident. Point dose IVD is not considered suited to the requirements of verifying advanced RT techniques, leaving EPID dosimetry as the current modality likely to be developed as a future standard. Advances in knowledge: An updated perspective on UK IVD use and provision of professional guidelines for future implementation. PMID:28205452

  8. Differentiation of Mouse Induced Pluripotent Stem Cells (iPSCs) into Nucleus Pulposus-Like Cells In Vitro

    PubMed Central

    Chen, Jun; Lee, Esther J.; Jing, Liufang; Christoforou, Nicolas; Leong, Kam W.; Setton, Lori A.

    2013-01-01

    A large percentage of the population may be expected to experience painful symptoms or disability associated with intervertebral disc (IVD) degeneration – a condition characterized by diminished integrity of tissue components. Great interest exists in the use of autologous or allogeneic cells delivered to the degenerated IVD to promote matrix regeneration. Induced pluripotent stem cells (iPSCs), derived from a patient’s own somatic cells, have demonstrated their capacity to differentiate into various cell types although their potential to differentiate into an IVD cell has not yet been demonstrated. The overall objective of this study was to assess the possibility of generating iPSC-derived nucleus pulposus (NP) cells in a mouse model, a cell population that is entirely derived from notochord. This study employed magnetic activated cell sorting (MACS) to isolate a CD24+ iPSC subpopulation. Notochordal cell-related gene expression was analyzed in this CD24+ cell fraction via real time RT-PCR. CD24+ iPSCs were then cultured in a laminin-rich culture system for up to 28 days, and the mouse NP phenotype was assessed by immunostaining. This study also focused on producing a more conducive environment for NP differentiation of mouse iPSCs with addition of low oxygen tension and notochordal cell conditioned medium (NCCM) to the culture platform. iPSCs were evaluated for an ability to adopt an NP-like phenotype through a combination of immunostaining and biochemical assays. Results demonstrated that a CD24+ fraction of mouse iPSCs could be retrieved and differentiated into a population that could synthesize matrix components similar to that in native NP. Likewise, the addition of a hypoxic environment and NCCM induced a similar phenotypic result. In conclusion, this study suggests that mouse iPSCs have the potential to differentiate into NP-like cells and suggests the possibility that they may be used as a novel cell source for cellular therapy in the IVD. PMID:24086564

  9. Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration

    NASA Astrophysics Data System (ADS)

    Horne, Devante; Jones, Peter; Salgaonkar, Vasant; Adams, Matt; Ozilgen, B. Arda; Zahos, Peter; Tang, Xinyan; Liebenberg, Ellen; Coughlin, Dezba; Lotz, Jeffrey; Diederich, Chris

    2017-02-01

    Discogenic back pain presents a major public health issue, with current therapeutic interventions limited to short-term symptom relief without providing regenerative remedies for diseased intervertebral discs (IVD). Many of these interventions are invasive and can diminish the biomechanical integrity of the IVDs. Low intensity pulsed ultrasound (LIPUS) is a potential treatment option that is both non-invasive and regenerative. LIPUS has been shown to be a clinically effective method for the enhancement of wound and fracture healing. Recent in vitro studies have shown that LIPUS stimulation induces an upregulation functional matrix proteins and downregulation of inflammatory factors in cultured IVD cells. However, we do not know the effects of LIPUS on an in vivo model for intervertebral disc degeneration. The objective of this study was to show technical feasibility of building a LIPUS system that can target the rat tail IVD and apply this setup to a model for acute IVD degeneration. A LIPUS exposimetry system was built using a 1.0 MHz planar transducer and custom housing. Ex vivo intensity measurements demonstrated LIPUS delivery to the center of the rat tail IVD. Using an established stab-incision model for disc degeneration, LIPUS was applied for 20 minutes daily for five days. For rats that displayed a significant injury response, LIPUS treatment caused significant upregulation of Collagen II and downregulation of Tumor Necrosis Factor - α gene expression. Our preliminary studies indicate technical feasibility of targeted delivery of ultrasound to a rat tail IVD for studies of LIPUS biological effects.

  10. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  11. “If I Were Nick”: Men’s Responses to an Interactive Video Drama Series to Support Smoking Cessation

    PubMed Central

    2015-01-01

    Background Men continue to smoke in greater numbers than women; however, few interventions have been developed and tested to support men’s cessation. Men tend to rely on quitting strategies associated with stereotypical manliness, such as willpower, stoicism, and independence, but they may lack the self-efficacy skills required to sustain a quit. In this paper, we describe the development of and reception to an interactive video drama (IVD) series, composed of 7 brief scenarios, to support and strengthen men’s smoking cessation efforts. The value of IVD in health promotion is predicated on the evidence that viewers engage with the material when they are presented characters with whom they can personally identify. The video dramatizes the challenges unfolding in the life of the main character, Nick, on the first day of his quit and models the skills necessary to embark upon a sustainable quit. Objective The objective was to describe men’s responses to the If I were Nick IVD series as part of a study of QuitNow Men, an innovative smoking cessation website designed for men. Specific objectives were to explore the resonance of the main character of the IVD series with end-users and explore men’s perceptions of the effectiveness of the IVD series for supporting their quit self-management. Methods Seven brief IVD scenarios were developed, filmed with a professional actor, and uploaded to a new online smoking cessation website, QuitNow Men. A sample of 117 men who smoked were recruited into the study and provided baseline data prior to access to the QuitNow Men website for a 6-month period. During this time, 47 men chose to view the IVDs. Their responses to questions about the IVDs were collected in online surveys at 3-month and 6-month time points and analyzed using descriptive statistics. Results The majority of participants indicated they related to the main character, Nick. Participants who “strongly agreed” they could relate to Nick perceived significantly higher levels of support from the IVDs than the “neutral” and “disagree” groups (P<.001, d=2.0, P<.001, d=3.1). The “agree” and “neutral” groups were significantly higher on rated support from the videos than the “disagree” (P<.001, d=2.2, P=.01, d=1.5). Participants’ perception of the main character was independent of participant age, education attainment, or previous quit attempts. Conclusions The findings suggest that IVD interventions may be an important addition to men’s smoking cessation programs. Given that the use of IVD scenarios in health promotion is in its infancy, the positive outcomes from this study signal the potential for IVD and warrant ongoing evaluation in smoking cessation and, more generally, men’s health promotion. PMID:26265410

  12. Rectal diazepam solution is as good as rectal administration of intravenous diazepam in the first-aid cessation of seizures in children with intractable epilepsy.

    PubMed

    Chiang, Lin-Mei; Wang, Huei-Shyong; Shen, Hsin-Hsien; Deng, Shin-Tang; Tseng, Chi-Hao; Chen, Yu-In; Chou, Ming-Liang; Hung, Po-Cheng; Lin, Kuang-Lin

    2011-02-01

    Acute seizures are readily recognizable episodes requiring urgent treatment. This study was conducted to compare the efficacy and safety of suppository use of rectal diazepam solution [Stesolid rectal tube (SRT), Alpharma, Inc., Lierskogen, Norway] with those of intravenous diazepam (IVD), Li Ta Pharma Co, Ltd., Taichung, Taiwan for control of acute seizures in children with intractable epilepsy. Subjects were patients, aged 1-18 years, with intractable epilepsy under at least three kinds of antiepileptic treatments. Caregivers were trained to rectally administer SRT or IVD (dosage varying from 0.2 to 0.5mg per kilogram of body weight) and to monitor respiration condition, seizure severity, and adverse drug effects. Among the 24 subjects, 9 males and 15 females, treated for a period of 3 months, the ages ranged from 2 to 18 years, with a mean of 9.1 years. Seizure types were generalized tonic and/or clonic. Seizure frequency varied from once per week to 20 times per day. Twenty-one (87.5%) of them had mental retardation and/or developmental delay, and 103 of the 127 (81.1%) IVD administrations and 90 of the 103 (87.3%) SRT administrations resulted in rapid cessation of seizures within 10 minutes. Each first dose failed to control seizures in 24 and 13 episodes, respectively. A second dose of IVD achieved cessation of seizure in 21 of the 24 episodes and a second dose of SRT in 12 of the 13 episodes within another 10 minutes. Four episodes (3 with rectal IVD and 1 with SRT) of prolonged seizure beyond 20 minutes needed IVD injection at our emergency room. Sedation occurred in 17% of patients, which was attributed to IVD in 8% and SRT in 9% of patients. No respiratory depression was attributable to IVD or SRT. There was no significant statistical difference in efficacy and safety between these two forms of diazepam. Rectal diazepam solution, administered by capable caregivers, is as effective and safe as rectal administration of IVD for children with intractable epilepsy. Copyright © 2011. Published by Elsevier B.V.

  13. TGFβ and BMP Dependent Cell Fate Changes Due to Loss of Filamin B Produces Disc Degeneration and Progressive Vertebral Fusions

    PubMed Central

    Zieba, Jennifer; Forlenza, Kimberly Nicole; Khatra, Jagteshwar Singh; Sarukhanov, Anna; Duran, Ivan; Rigueur, Diana; Lyons, Karen M.; Cohn, Daniel H.; Merrill, Amy E.; Krakow, Deborah

    2016-01-01

    Spondylocarpotarsal synostosis (SCT) is an autosomal recessive disorder characterized by progressive vertebral fusions and caused by loss of function mutations in Filamin B (FLNB). FLNB acts as a signaling scaffold by linking the actin cytoskleteon to signal transduction systems, yet the disease mechanisms for SCT remain unclear. Employing a Flnb knockout mouse, we found morphologic and molecular evidence that the intervertebral discs (IVDs) of Flnb–/–mice undergo rapid and progressive degeneration during postnatal development as a result of abnormal cell fate changes in the IVD, particularly the annulus fibrosus (AF). In Flnb–/–mice, the AF cells lose their typical fibroblast-like characteristics and acquire the molecular and phenotypic signature of hypertrophic chondrocytes. This change is characterized by hallmarks of endochondral-like ossification including alterations in collagen matrix, expression of Collagen X, increased apoptosis, and inappropriate ossification of the disc tissue. We show that conversion of the AF cells into chondrocytes is coincident with upregulated TGFβ signaling via Smad2/3 and BMP induced p38 signaling as well as sustained activation of canonical and noncanonical target genes p21 and Ctgf. These findings indicate that FLNB is involved in attenuation of TGFβ/BMP signaling and influences AF cell fate. Furthermore, we demonstrate that the IVD disruptions in Flnb–/–mice resemble aging degenerative discs and reveal new insights into the molecular causes of vertebral fusions and disc degeneration. PMID:27019229

  14. The Use of Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    2003-01-01

    This viewgraph representation provides an overview of the use of ion vapor deposited aluminum (IVD) for use in the Space Shuttle Solid Rocket Booster (SRB). Topics considered include: schematics of ion vapor deposition system, production of ion vapor deposition system, IVD vs. cadmium coated drogue ratchets, corrosion exposure facilities and tests, seawater immersion facilities and tests and continued research and development issues.

  15. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.

    PubMed

    Groth, Kevin M; Granata, Kevin P

    2008-06-01

    Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.

  16. Setup in a clinical workflow and impact on radiotherapy routine of an in vivo dosimetry procedure with an electronic portal imaging device

    PubMed Central

    Piermattei, Angelo; Kang, Shengwei; Xiao, Mingyong; Tang, Bin; Liao, Xiongfei; Xin, Xin; Grusio, Mattia

    2018-01-01

    High conformal techniques such as intensity-modulated radiation therapy and volumetric-modulated arc therapy are widely used in overloaded radiotherapy departments. In vivo dosimetric screening is essential in this environment to avoid important dosimetric errors. This work examines the feasibility of introducing in vivo dosimetry (IVD) checks in a radiotherapy routine. The causes of dosimetric disagreements between delivered and planned treatments were identified and corrected during the course of treatment. The efficiency of the corrections performed and the added workload needed for the entire procedure were evaluated. The IVD procedure was based on an electronic portal imaging device. A total of 3682 IVD tests were performed for 147 patients who underwent head and neck, abdomen, pelvis, breast, and thorax radiotherapy treatments. Two types of indices were evaluated and used to determine if the IVD tests were within tolerance levels: the ratio R between the reconstructed and planned isocentre doses and a transit dosimetry based on the γ-analysis of the electronic portal images. The causes of test outside tolerance level were investigated and corrected and IVD test was repeated during subsequent fraction. The time needed for each step of the IVD procedure was registered. Pelvis, abdomen, and head and neck treatments had 10% of tests out of tolerance whereas breast and thorax treatments accounted for up to 25%. The patient setup was the main cause of 90% of the IVD tests out of tolerance and the remaining 10% was due to patient morphological changes. An average time of 42 min per day was sufficient to monitor a daily workload of 60 patients in treatment. This work shows that IVD performed with an electronic portal imaging device is feasible in an overloaded department and enables the timely realignment of the treatment quality indices in order to achieve a patient’s final treatment compliant with the one prescribed. PMID:29432473

  17. Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo.

    PubMed

    Takahashi, Yu; Yasuhiko, Yukuto; Takahashi, Jun; Takada, Shinji; Johnson, Randy L; Saga, Yumiko; Kanno, Jun

    2013-08-15

    The vertebrae are derived from the sclerotome of somites. Formation of the vertebral body involves a process called resegmentation, by which the caudal half of a sclerotome is combined with the rostral half of the next sclerotome. To elucidate the relationship between resegmentation and rostro-caudal patterning of somite, we used the Uncx4.1-LacZ transgene to characterize the resegmentation process. Our observations suggested that in the thoracic and lumbar vertebrae, the Uncx4.1-expressing caudal sclerotome gave rise to the intervertebral disc (IVD) and rostral portion of the vertebral body (VB). In the cervical vertebrae, the Uncx4.1-expressing caudal sclerotome appeared to contribute to the IVD and both caudal and rostral ends of the VB. This finding suggests that the rostro-caudal gene expression boundary does not necessarily coincide with the resegmentation boundary. This conclusion was supported by analyses of Mesp2 KO and Ripply1/2 double KO embryos lacking rostral and caudal properties, respectively. Resegmentation was not observed in Mesp2 KO embryos, but both the IVD and whole VB were formed from the caudalized sclerotome. Expression analysis of IVD marker genes including Pax1 in the wild-type, Mesp2 KO, and Ripply1/2 DKO embryos also supported the idea that a metameric pattern of IVD/VB is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somite. However, in the lumbar region, IVD differentiation appeared to be stimulated by the caudal property and suppressed by the rostral property. Therefore, we propose that rostro-caudal patterning of somites is not a prerequisite for metameric patterning of the IVD and VB, but instead required to stimulate IVD differentiation in the caudal half of the sclerotome. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Improved display of cervical intervertebral discs on water (iodine) images: incidental findings from single-source dual-energy CT angiography of head and neck arteries.

    PubMed

    Wu, Qingxia; Shi, Dapeng; Cheng, Tianming; Liu, Hongming; Hu, Niuniu; Chang, Xiaowan; Guo, Ying; Wang, Meiyun

    2018-06-19

    To (a) assess the diagnostic performance of material decomposition (MD) water (iodine) images for the evaluation of cervical intervertebral discs (IVDs) in patients who underwent dual-energy head and neck CT angiography (HNCTA) compared with 70-keV images and (b) to explore the correlation of water concentration with the T2 relaxation time of IVDs. Twenty-four consecutive patients who underwent dual-energy HNCTA and cervical spine MRI were studied. The diagnostic performance of water (iodine), 70-keV and MR images for IVD bulge and herniation was assessed. A subjective image score for each image set was recorded. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of IVDs to the cervical spinal cord were compared between water (iodine) and 70-keV images. Disc water concentration as measured on water (iodine) images was correlated with T2 relaxation time. IVD evaluations for bulge and herniation did not differ significantly among the three image sets (pairwise comparisons; all p > 0.05). SNR and CNR were significantly improved on water (iodine) images compared with those on 70-keV images (p < 0.001). Although water (iodine) images showed higher image quality scores when evaluating IVDs compared with 70-keV images, the difference is not significant (all adjusted p > 0.05). IVD water concentration exhibited no correlation with relative T2 relaxation time (all p > 0.05). Water (iodine) images facilitated analysis of cervical IVDs by providing higher SNR and CNR compared with 70-keV images. The disc water concentration measured on water (iodine) images exhibited no correlation with relative T2 relaxation time. • There was no significant difference in cervical IVD evaluations for bulge and herniation among water (iodine) images, 70-keV images and MR images. • Water (iodine) images provided higher objective and subjective image quality than 70-keV images, though the difference of subjective evaluation was not statistically significant. • The disc water concentration exhibited no correlation with relative T2 relaxation time, which reflects the inferiority of the water (iodine) images in evaluating disc water content compared with T2 maps.

  19. Kinetic and Spectral Properties of Isovaleryl-CoA Dehydrogenase and Interaction with Ligands

    PubMed Central

    Mohsen, Al-Walid A.; Vockley, Jerry

    2014-01-01

    Isovaleryl-CoA dehydrogenase (IVD) catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA and the transfer of electrons to the electron transfer flavoprotein (ETF). Recombinant human IVD purifies with bound CoA-persulfide. A modified purification protocol was developed to isolate IVD without bound CoA-persulfide and to protect the protein thiols from oxidation. The CoA-persulfide-free IVD specific activity was 112.5 µmol porcine ETF•min−1•mg−1, which was ~20-fold higher than that of its CoA-persulfide bound form. The Km and catalytic efficiency (kcat/Km) for isovaleryl-CoA were 1.0 µM and 4.3 × 106•M−1•sec−1 per monomer, respectively, and its Km for ETF was 2.0 µM. Anaerobic titration of isovaleryl-CoA into an IVD solution resulted in a stable blue complex with increased absorbance at 310 nm, decreased absorbance at 373 and 447 nm, and the appearance of the charge transfer complex band at 584 nm. The apparent dissociation constant (KD app) determined spectrally for isovaleryl-CoA was 0.54 µM. Isovaleryl-CoA, acetoacetyl-CoA, methylenecyclopropylacetyl-CoA, and ETF induced CD spectral changes at the 250–500 nm region while isobutyryl-CoA did not, suggesting conformational changes occur at the flavin ring that are ligand specific. Replacement of the IVD Trp166 with a Phe did not block IVD interaction with ETF, indicating that its indole ring is not essential for electron transfer to ETF. A twelve amino acid synthetic peptide that matches the sequence of the ETF docking peptide competitively inhibited the enzyme reaction when ETF was used as the electron acceptor with a Ki of 1.5 mM. PMID:25450250

  20. Assessment of the knowledge of graphical symbols labelled on malaria rapid diagnostic tests in four international settings.

    PubMed

    Hermans, Veerle; Monzote, Lianet; Van den Sande, Björn; Mukadi, Pierre; Sopheak, Thai; Gillet, Philippe; Jacobs, Jan

    2011-11-02

    Graphical symbols on in vitro diagnostics (IVD symbols) replace the need for text in different languages and are used on malaria rapid diagnostic tests (RDTs) marketed worldwide. The present study assessed the comprehension of IVD symbols labelled on malaria RDT kits among laboratory staff in four different countries. Participants (n = 293) in Belgium (n = 96), the Democratic Republic of the Congo (DRC, n = 87), Cambodia (n = 59) and Cuba (n = 51) were presented with an anonymous questionnaire with IVD symbols extracted from ISO 15223 and EN 980 presented as stand-alone symbols (n = 18) and in context (affixed on RDT packages, n = 16). Responses were open-ended and scored for correctness by local professionals. Presented as stand-alone, three and five IVD symbols were correctly scored for comprehension by 67% and 50% of participants; when contextually presented, five and seven symbols reached the 67% and 50% correct score respectively. 'Batch code' scored best (correctly scored by 71.3% of participants when presented as stand-alone), 'Authorized representative in the European Community' scored worst (1.4% correct). Another six IVD symbols were scored correctly by less than 10% of participants: 'Do not reuse', 'In vitro diagnostic medical device', 'Sufficient for', 'Date of manufacture', 'Authorised representative in EC', and 'Do not use if package is damaged'. Participants in Belgium and Cuba both scored six symbols above the 67% criterion, participants from DRC and Cambodia scored only two and one symbols above this criterion. Low correct scores were observed for safety-related IVD symbols, such as for 'Biological Risk' (42.7%) and 'Do not reuse' (10.9%). Comprehension of IVD symbols on RDTs among laboratory staff in four international settings was unsatisfactory. Administrative and outreach procedures should be undertaken to assure their acquaintance by end-users.

  1. Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography.

    PubMed

    Vergari, Claudio; Dubois, Guillaume; Vialle, Raphael; Gennisson, Jean-Luc; Tanter, Mickael; Dubousset, Jean; Rouch, Philippe; Skalli, Wafa

    2016-04-01

    Intervertebral disc (IVD) is key to spine biomechanics, and it is often involved in the cascade leading to spinal deformities such as idiopathic scoliosis, especially during the growth spurt. Recent progress in elastography techniques allows access to non-invasive measurement of cervical IVD in adults; the aim of this study was to determine the feasibility and reliability of shear wave elastography in healthy children lumbar IVD. Elastography measurements were performed in 31 healthy children (6-17 years old), in the annulus fibrosus and in the transverse plane of L5-S1 or L4-L5 IVD. Reliability was determined by three experienced operators repeating measurements. Average shear wave speed in IVD was 2.9 ± 0.5 m/s; no significant correlations were observed with sex, age or body morphology. Intra-operator repeatability was 5.0 % while inter-operator reproducibility was 6.2 %. Intraclass correlation coefficient was higher than 0.9 for each operator. Feasibility and reliability of IVD shear wave elastography were demonstrated. The measurement protocol is compatible with clinical routine and the results show the method's potential to give an insight into spine deformity progression and early detection. • Intervertebral disc mechanical properties are key to spine biomechanics • Feasibility of shear wave elastography in children lumbar disc was assessed • Measurement was fast and reliable • Elastography could represent a novel biomarker for spine pathologies.

  2. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    PubMed

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  3. Cadmium (Tank) Electroplating Alternative

    DTIC Science & Technology

    2011-08-01

    ASTM F519 HE: 75% NFS 200 hrs HRE : 45% NFS 150 hrs Threshold limit greater than /equal to LHE Cd (AMS 2417G) ASETS Defense Focused Workshop (2011...Test Specimens  Reporting Sustained/Threshold load (%NFS), Time to failure. HRE Testing Cd Zn-Ni IVD Al LHE Cd Re-Embrittlement Test Fluids:  DI...Hydrogen Embrittlement/ HRE ASTM F519 A5, Type 1.a.1 Brush Plating ASETS Defense Focused Workshop (2011) Luzmarie G. Santiago Materials Engineer Naval Air

  4. [Analysis of the results of total cervical disc arthroplasty using a M6-C prosthesis: a multicenter study].

    PubMed

    Byval'tsev, V A; Kalinin, A A; Stepanov, I A; Pestryakov, Yu Ya; Shepelev, V V

    Cervical spondylosis and intervertebral disc (IVD) degeneration are the most common cause for compression of the spinal cord and/or its roots. Total IVD arthroplasty, as a modern alternative to surgical treatment of IVD degeneration, is gaining popularity in many neurosurgical clinics around the world. Aim - the study aim was to conduct a multicenter analysis of cervical spine arthroplasty with an IVD prosthesis M6-C ('Spinal Kinetics', USA). The study included 112 patients (77 males and 35 females). All patients underwent single-level discectomy with implantation of the artificial IVD prosthesis M6-C. The follow-up period was up to 36 months. Dynamic assessment of the prosthesis was based on clinical parameters (pain intensity in the cervical spine and upper extremities (visual analog scale - VAS); quality of life (Neck Disability Index - NDI)); and subjective satisfaction with the results of surgical treatment (Macnab scale) and instrumental data (range of motion in the operated spinal motion segment, degree of heterotopic ossification (McAfee-Suchomel classification), and time course of degenerative changes in the adjacent segments).

  5. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system.

    PubMed

    Chon, Brian H; Lee, Esther J; Jing, Liufang; Setton, Lori A; Chen, Jun

    2013-10-02

    Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) - originating from the Wharton's jelly - remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. However, no studies have demonstrated that MSCs can regenerate matrix with unique characteristics matching that of immature nucleus pulposus (NP) tissues of the IVD. In our prior work, immature NP cells were found to express specific laminin isoforms and laminin-binding receptors that may serve as phenotypic markers for evaluating MSC differentiation to NP-like cells. The goal of this study is to evaluate these markers and matrix synthesis for HUCMSCs cultured in a laminin-rich pseudo-three-dimensional culture system. HUCMSCs were seeded on top of Transwell inserts pre-coated with Matrigel™, which contained mainly laminin-111. Cells were cultured under hypoxia environment with three differentiation conditions: NP differentiation media (containing 2.5% Matrigel™ solution to provide for a pseudo-three-dimensional laminin culture system) with no serum, or the same media supplemented with either insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1). Cell clustering behavior, matrix production and the expression of NP-specific laminin and laminin-receptors were evaluated at days 1, 7, 13 and 21 of culture. Data show that a pseudo-three-dimensional culture condition (laminin-1 rich) promoted HUCMSC differentiation under no serum conditions. Starting at day 1, HUCMSCs demonstrated a cell clustering morphology similar to that of immature NP cells in situ and that observed for primary immature NP cells within the similar laminin-rich culture system (prior study). Differentiated HUCMSCs under all conditions were found to contain glycosaminoglycan, expressed extracellular matrix proteins of collagen II and laminin α5, and laminin receptors (integrin α3 and β4 subunits). However, neither growth factor treatment generated distinct differences in NP-like phenotype for HUCMSC as compared with no-serum conditions. HUCMSCs have the potential to differentiate into cells sharing features with immature NP cells in a laminin-rich culture environment and may be useful for IVD cellular therapy.

  6. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.

    PubMed

    Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K

    2014-06-01

    Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.

  7. Quality Control of Next-generation Sequencing-based In vitro Diagnostic Test for Onco-relevant Mutations Using Multiplex Reference Materials in Plasma.

    PubMed

    Liu, Donglai; Zhou, Haiwei; Shi, Dawei; Shen, Shu; Tian, Yabin; Wang, Lin; Lou, Jiatao; Cong, Rong; Lu, Juan; Zhang, Henghui; Zhao, Meiru; Zhu, Shida; Cao, Zhisheng; Jin, Ruilin; Wang, Yin; Zhang, Xiaoni; Yang, Guohua; Wang, Youchun; Zhang, Chuntao

    2018-01-01

    Background: Widespread clinical implementation of next-generation sequencing (NGS)-based cancer in vitro diagnostic tests (IVDs) highlighted the urgency to establish reference materials which could provide full control of the process from nucleic acid extraction to test report generation. The formalin-fixed, paraffin-embedded (FFPE) tissue and blood plasma containing circulating tumor deoxyribonucleic acid (ctDNA) were mostly used for clinically detecting onco-relevant mutations. Methods: We respectively developed multiplex FFPE and plasma reference materials covering three clinically onco-relevant mutations within the epidermal growth factor receptor ( EGFR ) gene at serial allelic frequencies. All reference materials were quantified and validated via droplet digital polymerase chain reaction (ddPCR), and then were distributed to eight domestic manufacturers for the collaborative evaluation of the performance of several domestic NGS-based cancer IVDs covering four major NGS platforms (NextSeq, HiSeq, Ion Proton and BGISEQ). Results: All expected mutations except one at extremely low allelic frequencies were detected, despite some differences in coefficient of variation (CV) which increased with the decrease of allelic frequency (CVs ranging from 18% to 106%). It was worth noting that the CV value seemed to correlate with a particular mutation as well. The repeatability of determination of different mutations was L858R>T790M>19del. Conclusions: The results indicated our reference materials would be pivotal for quality control of NGS-based cancer IVDs and would guide the further development of reference materials covering more onco-relevant mutations.

  8. The role of transient receptor potential channels in joint diseases.

    PubMed

    Krupkova, O; Zvick, J; Wuertz-Kozak, K

    2017-10-10

    Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  9. Parallel Unsteady Overset Mesh Methodology for a Multi-Solver Paradigm with Adaptive Cartesian Grids

    DTIC Science & Technology

    2008-08-21

    Engineer, U.S. Army Research Laboratory ., Matthew.W.Floros@nasa.gov, AIAA Member ‡Senior Research Scientist, Scaled Numerical Physics LLC., awissink...IV.E and IV.D). Good linear scalability was observed for all three cases up to 12 processors. Beyond that the scalability drops off depending on grid...Research Laboratory for the usage of SUGGAR module and Yikloon Lee at NAVAIR for the usage of the NAVAIR-IHC code. 13 of 22 American Institute of

  10. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    NASA Astrophysics Data System (ADS)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  11. Audio-frequency analysis of inductive voltage dividers based on structural models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramov, S.; Oldham, N.M.; Koffman, A.D.

    1994-12-31

    A Binary Inductive Voltage Divider (BIVD) is compared with a Decade Inductive Voltage Divider (DIVD) in an automatic IVD bridge. New detection and injection circuitry was designed and used to evaluate the IVDs with either the input or output tied to ground potential. In the audio frequency range the DIVD and BIVD error patterns are characterized for both in-phase and quadrature components. Differences between results obtained using a new error decomposition scheme based on structural modeling, and measurements using conventional IVD standards are reported.

  12. Evaluation of Water Content in Lumbar Intervertebral Discs and Facet Joints Before and After Physiological Loading Using T2 Mapping MRI.

    PubMed

    Yamabe, Daisuke; Murakami, Hideki; Chokan, Kou; Endo, Hirooki; Oikawa, Ryosuke; Sawamura, Shoitsu; Doita, Minoru

    2017-12-15

    T2 mapping was used to quantify the water content of lumbar spine intervertebral discs (IVDs) and facet joints before and after physiological loading. The aim of this study was to clarify the interaction between lumbar spine IVD and facet joints as load-bearing structures by measuring the water content of their matrix after physiological loading using T2 mapping magnetic resonance imaging (MRI). To date, few reports have functionally evaluated lumbar spine IVD and facet joints, and their interaction in vivo. T2 mapping may help detect changes in the water content of IVD and articular cartilage of facet joints before and after physiological loading, thereby enabling the evaluation of changes in interacted water retention between IVD and facet joints. Twenty asymptomatic volunteers (10 female and 10 male volunteers; mean age, 19.3 years; age range, 19-20 years) underwent MRI before and after physiological loading such as lumbar flexion, extension, and rotation. Each IVD from L1/2 to L5/S1 was sliced at center of the disc space, and the T2 value was measured at the nucleus pulposus (NP), anterior annulus fibrosus (AF), posterior AF, and bilateral facet joints. In the NP, T2 values significantly decreased after exercise at every lumbar spinal level. In the anterior AF, there were no significant differences in T2 values at any level. In the posterior AF, T2 values significantly increased only at L4/5. In the bilateral facet joints, T2 values significantly decreased after exercise at every level. There was a significant decrease in the water content of facet joints and the NP at every lumbar spinal level after dynamic loading by physical lumbar exercise. These changes appear to play an important and interactional role in the maintenance of the interstitial matrix in the IVD NP and cartilage in the facet joint. 3.

  13. SU-E-T-484: In Vivo Dosimetry Tolerances in External Beam Fast Neutron Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Gopan, O

    Purpose: Optical stimulated luminescence (OSL) dosimetry with Landauer Al2O3:C nanodots was developed at our institution as a passive in vivo dosimetry (IVD) system for patients treated with fast neutron therapy. The purpose of this study was to establish clinically relevant tolerance limits for detecting treatment errors requiring further investigation. Methods: Tolerance levels were estimated by conducting a series of IVD expected dose calculations for square field sizes ranging between 2.8 and 28.8 cm. For each field size evaluated, doses were calculated for open and internal wedged fields with angles of 30°, 45°, or 60°. Theoretical errors were computed for variationsmore » of incorrect beam configurations. Dose errors, defined as the percent difference from the expected dose calculation, were measured with groups of three nanodots placed in a 30 x 30 cm solid water phantom, at beam isocenter (150 cm SAD, 1.7 cm Dmax). The tolerances were applied to IVD patient measurements. Results: The overall accuracy of the nanodot measurements is 2–3% for open fields. Measurement errors agreed with calculated errors to within 3%. Theoretical estimates of dosimetric errors showed that IVD measurements with OSL nanodots will detect the absence of an internal wedge or a wrong wedge angle. Incorrect nanodot placement on a wedged field is more likely to be caught if the offset is in the direction of the “toe” of the wedge where the dose difference in percentage is about 12%. Errors caused by an incorrect flattening filter size produced a 2% measurement error that is not detectable by IVD measurement alone. Conclusion: IVD with nanodots will detect treatment errors associated with the incorrect implementation of the internal wedge. The results of this study will streamline the physicists’ investigations in determining the root cause of an IVD reading that is out of normally accepted tolerances.« less

  14. Superovulation, in vitro fertilization (IVF) and in vitro development (IVD) protocols for inbred BALB/cJ mice in comparison with outbred NMRI mice.

    PubMed

    Golkar-Narenji, Afsaneh; Gourabi, Hamid; Eimani, Hussein; Barekati, Zeinab; Akhlaghi, Aliasghar

    2012-10-01

    To study assisted reproductive technology (ART) protocols including superovulation, in vitro fertilization (IVF) and in vitro development (IVD) for BALB/cJ mice in comparison with a common ART protocol for NMRI mice. Adult NMRI and BALB/cJ mice were superovulated using a 48 h G-interval. In order to find a more suitable G-interval for the BALB/cJ strain, G-intervals including 44, 46 and 50 h were also examined. Superovulation rates were recorded in all groups. IVF rate of BALB/c oocytes in T6 and mHTF media were compared. IVD rates of BALB/cJ zygotes in mHTF, T6 and G1V 5 /G2V 5 media were compared. In addition, IVF and IVD rates of BALB/cJ and NMRI oocytes were compared in T6 medium during IVF-IVD procedures. In BALB/cJ mice the highest superovulation rates were observed with 44-46 h G-intervals. However, with a 48 h G-interval, superovulation rates were significantly lower in BALB/cJ compared to NMRI mice ( p < 0.05). mHTF medium significantly increased in vitro fertilization of BALB/cJ oocytes compared to T6 medium ( p < 0.05). Fertilization rate of NMRI oocytes was significantly higher than BALB/cJ oocytes in T6 medium ( p < 0.05). The BALB/cJ embryo IVD was significantly higher in G1/G2 medium compared to mHTF and T6 media ( p < 0.01). Superovulation with 48 h G-interval and using T6 during all in vitro procedures produces embryos more efficiently for NMRI mice than for BALB/cJ mice. For BALB/cJ mice, a protocol including superovulation with a 44-46 h G-interval, using mHTF during IVF and G1V 5 /G2V 5 medium during IVD, may improve in vitro embryo production.

  15. Kinetic and spectral properties of isovaleryl-CoA dehydrogenase and interaction with ligands.

    PubMed

    Mohsen, Al-Walid A; Vockley, Jerry

    2015-01-01

    Isovaleryl-CoA dehydrogenase (IVD) catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA and the transfer of electrons to the electron transfer flavoprotein (ETF). Recombinant human IVD purifies with bound CoA-persulfide. A modified purification protocol was developed to isolate IVD without bound CoA-persulfide and to protect the protein thiols from oxidation. The CoA-persulfide-free IVD specific activity was 112.5 μmol porcine ETF min(-)(1) mg(-)(1), which was ∼20-fold higher than that of its CoA-persulfide bound form. The Km and catalytic efficiency (kcat/Km) for isovaleryl-CoA were 1.0 μM and 4.3 × 10(6) M(-1) s(-1) per monomer, respectively, and its Km for ETF was 2.0 μM. Anaerobic titration of isovaleryl-CoA into an IVD solution resulted in a stable blue complex with increased absorbance at 310 nm, decreased absorbance at 373 and 447 nm, and the appearance of the charge transfer complex band at 584 nm. The apparent dissociation constant (KDapp) determined spectrally for isovaleryl-CoA was 0.54 μM. Isovaleryl-CoA, acetoacetyl-CoA, methylenecyclopropyl-acetyl-CoA, and ETF induced CD spectral changes at the 250-500 nm region while isobutyryl-CoA did not, suggesting conformational changes occur at the flavin ring that are ligand specific. Replacement of the IVD Trp166 with a Phe did not block IVD interaction with ETF, indicating that its indole ring is not essential for electron transfer to ETF. A twelve amino acid synthetic peptide that matches the sequence of the ETF docking peptide competitively inhibited the enzyme reaction when ETF was used as the electron acceptor with a Ki of 1.5 mM. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  16. APOC3 Loss-of-Function Mutations, Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Cardiovascular Risk: Mediation- and Meta-Analyses of 137 895 Individuals.

    PubMed

    Wulff, Anders B; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2018-03-01

    Loss-of-function mutations in APOC3 associate with low remnant cholesterol levels and low risk of ischemic vascular disease (IVD). Because some studies show an additional association with low levels of low-density lipoprotein cholesterol (LDL-C), low LDL-C may explain the low risk of IVD in APOC3 loss-of-function heterozygotes. We tested to what extent the low risk of IVD in APOC3 loss-of-function heterozygotes is mediated by low plasma remnant cholesterol and LDL-C. In APOC3 loss-of-function heterozygotes versus noncarriers, we first determined remnant cholesterol and LDL-C levels in meta-analyses of 137 895 individuals. Second, we determined whether the association with LDL-C was masked by lipid-lowering therapy. Finally, using mediation analysis, we determined the fraction of the low risk of IVD and ischemic heart disease mediated by remnant cholesterol and LDL-C. In meta-analyses, remnant cholesterol was 43% lower (95% confidence interval, 40%-47%), and LDL-C was 4% lower (1%-6%) in loss-of-function heterozygotes (n=776) versus noncarriers. In the general population, LDL-C was 3% lower in loss-of-function heterozygotes versus noncarriers, 4% lower when correcting for lipid-lowering therapy, and 3% lower in untreated individuals ( P values, 0.06-0.008). Remnant cholesterol mediated 37% of the observed 41% lower risk of IVD and 54% of the observed 36% lower risk of ischemic heart disease; corresponding values mediated by LDL-C were 1% and 2%. The low risk of IVD observed in APOC3 loss-of-function heterozygotes is mainly mediated by the associated low remnant cholesterol and not by low LDL-C. Furthermore, the contribution of LDL-C to IVD risk was not masked by lipid-lowering therapy. This suggests APOC3 and remnant cholesterol as important new targets for reducing cardiovascular risk. © 2018 American Heart Association, Inc.

  17. Assessment of the knowledge of graphical symbols labelled on malaria rapid diagnostic tests in four international settings

    PubMed Central

    2011-01-01

    Background Graphical symbols on in vitro diagnostics (IVD symbols) replace the need for text in different languages and are used on malaria rapid diagnostic tests (RDTs) marketed worldwide. The present study assessed the comprehension of IVD symbols labelled on malaria RDT kits among laboratory staff in four different countries. Methods Participants (n = 293) in Belgium (n = 96), the Democratic Republic of the Congo (DRC, n = 87), Cambodia (n = 59) and Cuba (n = 51) were presented with an anonymous questionnaire with IVD symbols extracted from ISO 15223 and EN 980 presented as stand-alone symbols (n = 18) and in context (affixed on RDT packages, n = 16). Responses were open-ended and scored for correctness by local professionals. Results Presented as stand-alone, three and five IVD symbols were correctly scored for comprehension by 67% and 50% of participants; when contextually presented, five and seven symbols reached the 67% and 50% correct score respectively. 'Batch code' scored best (correctly scored by 71.3% of participants when presented as stand-alone), 'Authorized representative in the European Community' scored worst (1.4% correct). Another six IVD symbols were scored correctly by less than 10% of participants: 'Do not reuse', 'In vitro diagnostic medical device', 'Sufficient for', 'Date of manufacture', 'Authorised representative in EC', and 'Do not use if package is damaged'. Participants in Belgium and Cuba both scored six symbols above the 67% criterion, participants from DRC and Cambodia scored only two and one symbols above this criterion. Low correct scores were observed for safety-related IVD symbols, such as for 'Biological Risk' (42.7%) and 'Do not reuse' (10.9%). Conclusion Comprehension of IVD symbols on RDTs among laboratory staff in four international settings was unsatisfactory. Administrative and outreach procedures should be undertaken to assure their acquaintance by end-users. PMID:22047089

  18. 45 CFR 308.1 - Self-assessment implementation methodology.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... selects statistically valid samples of cases from the IV-D program universe of cases; and (3) The State establishes a procedure for the design of samples and assures that no portions of the IV-D case universe are...

  19. 45 CFR 308.1 - Self-assessment implementation methodology.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... selects statistically valid samples of cases from the IV-D program universe of cases; and (3) The State establishes a procedure for the design of samples and assures that no portions of the IV-D case universe are...

  20. 45 CFR 308.1 - Self-assessment implementation methodology.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... selects statistically valid samples of cases from the IV-D program universe of cases; and (3) The State establishes a procedure for the design of samples and assures that no portions of the IV-D case universe are...

  1. 45 CFR 308.1 - Self-assessment implementation methodology.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... selects statistically valid samples of cases from the IV-D program universe of cases; and (3) The State establishes a procedure for the design of samples and assures that no portions of the IV-D case universe are...

  2. 45 CFR 308.1 - Self-assessment implementation methodology.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... selects statistically valid samples of cases from the IV-D program universe of cases; and (3) The State establishes a procedure for the design of samples and assures that no portions of the IV-D case universe are...

  3. Field safety notices released by manufacturers in cases of failure of products for infection testing: analysis of cases reported to the BfArM between 2005 and 2007

    PubMed Central

    2010-01-01

    The European Directive 98/79/EC for in vitro diagnostic medical devices (IVD) regulates marketing and post marketing surveillance of IVD in the European Economic Area. Manufacturers have to inform the responsible Competent Authorities (CA) about incidents and field safety corrective actions (FSCA) related to IVD. In Germany, the Federal Institute for Drugs and Medical Devices (BfArM) is the responsible CA for most IVD, only few IVD as specified in Annex II of the Directive are under the responsibility of the Paul Ehrlich Institute (PEI). In case of a FSCA manufacturers have to inform customers by means of a Field Safety Notice (FSN) which should be sent to BfArM prior to release and is published on the BfArM home-page. Between beginning of 2005 and end of 2007 the BfArM received a total of 1025 reports regarding IVD. From these, 38 related to tests, reagents, calibrators, and control materials for infection testing, 13 related to analysers and general consumables (n = 8 and n = 5, respectively) based on culture techniques, and 7 related to analysers and general consumables (n = 5 and n = 2, respectively) based on molecular biological methods. FSCA were performed in Germany in 32 (84.2%) of all notifications related to tests reagents, calibrators, and control materials as well as in 13 (100%) and 7 (100%) of notifications related to analysers and consumables based on culture techniques and molecular biological methods, respectively. A number of relevant deficiencies regarding the quality of the FSN were separately demonstrated for FSN in German and English language. In brief, manufacturers often sent their FSN to the BfArM with delay. Additionally, a subset of FSN provided insufficient information on the product related risks or the measures to be performed by the customer to mitigate product related risks. Furthermore, customer confirmation forms often were missing in the FSN sent to the BfArM. Our data suggest that for IVD for infection testing FSCA and FSN are frequently performed. For better vigilance performance, manufacturers could shorten the time until release and improve the contents of FSN to ensure the safety of IVD in cases of product related corrective actions. PMID:21147647

  4. Field safety notices released by manufacturers in cases of failure of products for infection testing: analysis of cases reported to the BfArM between 2005 and 2007.

    PubMed

    Siekmeier, R; Lisson, K; Wetzel, D

    2010-11-04

    The European Directive 98/79/EC for in vitro diagnostic medical devices (IVD) regulates marketing and post marketing surveillance of IVD in the European Economic Area. Manufacturers have to inform the responsible Competent Authorities (CA) about incidents and field safety corrective actions (FSCA) related to IVD. In Germany, the Federal Institute for Drugs and Medical Devices (BfArM) is the responsible CA for most IVD, only few IVD as specified in Annex II of the Directive are under the responsibility of the Paul Ehrlich Institute (PEI). In case of a FSCA manufacturers have to inform customers by means of a Field Safety Notice (FSN) which should be sent to BfArM prior to release and is published on the BfArM homepage. Between beginning of 2005 and end of 2007 the BfArM received a total of 1025 reports regarding IVD. From these, 38 related to tests, reagents, calibrators, and control materials for infection testing, 13 related to analysers and general consumables (n = 8 and n = 5, respectively) based on culture techniques, and 7 related to analysers and general consumables (n = 5 and n = 2, respectively) based on molecular biological methods. FSCA were performed in Germany in 32 (84.2%) of all notifications related to tests reagents, calibrators, and control materials as well as in 13 (100%) and 7 (100%) of notifications related to analysers and consumables based on culture techniques and molecular biological methods, respectively. A number of relevant deficiencies regarding the quality of the FSN were separately demonstrated for FSN in German and English language. In brief, manufacturers often sent their FSN to the BfArM with delay. Additionally, a subset of FSN provided insufficient information on the product related risks or the measures to be performed by the customer to mitigate product related risks. Furthermore, customer confirmation forms often were missing in the FSN sent to the BfArM. Our data suggest that for IVD for infection testing FSCA and FSN are frequently performed. For better vigilance performance, manufacturers could shorten the time until release and improve the contents of FSN to ensure the safety of IVD in cases of product related corrective actions.

  5. In vitro and biomechanical screening of polyethylene glycol and poly(trimethylene carbonate) block copolymers for annulus fibrosus repair.

    PubMed

    Long, Rose G; Rotman, Stijn G; Hom, Warren W; Assael, Dylan J; Illien-Jünger, Svenja; Grijpma, Dirk W; Iatridis, James C

    2018-02-01

    Herniated intervertebral discs (IVDs) are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, as discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene carbonate (TMC) and hexamethylene diisocyanate (HDI) end-groups were formulated as AF sealants as the HDI form covalent bonds with native AF tissue. TMC adhesives were evaluated and optimized using the design criteria: stable size, strong adherence to AF tissue, high cytocompatibility, restoration of IVD biomechanics to intact levels following in situ repair, and low extrusion risk. TMC adhesives had high adhesion strength as assessed with a pushout test (150 kPa), and low degradation rates over 3 weeks in vitro. Both TMC adhesives had shear moduli (220 and 490 kPa) similar to, but somewhat higher than, AF tissue. The adhesive with three TMC moieties per branch (TMC3) was selected for additional in situ testing because it best matched AF shear properties. TMC3 restored torsional stiffness, torsional hysteresis area and axial range of motion to intact states. However, in a failure test of compressive deformation under fixed 5 ° flexion, some herniation risk was observed with failure strength of 5.9 MPa compared with 13.5 MPa for intact samples; TMC3 herniated under cyclic organ culture testing. These TMC adhesives performed well during in vitro and in situ testing, but additional optimization to enhance failure strength is required to further this material to advanced screening tests, such as long-term degradation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Are proteomic technologies ready for IVDs

    USDA-ARS?s Scientific Manuscript database

    During the last decade as a result of the unparalleled advancements in mass spectrometry-based methods in protein analysis, biomarker research has escalated to new heights in the academic, government and industrial research laboratories. Translation of biomarker research to in vitro diagnostics (IVD...

  7. Evaluation and comparison of 3D intervertebral disc localization and segmentation methods for 3D T2 MR data: A grand challenge.

    PubMed

    Zheng, Guoyan; Chu, Chengwen; Belavý, Daniel L; Ibragimov, Bulat; Korez, Robert; Vrtovec, Tomaž; Hutt, Hugo; Everson, Richard; Meakin, Judith; Andrade, Isabel Lŏpez; Glocker, Ben; Chen, Hao; Dou, Qi; Heng, Pheng-Ann; Wang, Chunliang; Forsberg, Daniel; Neubert, Aleš; Fripp, Jurgen; Urschler, Martin; Stern, Darko; Wimmer, Maria; Novikov, Alexey A; Cheng, Hui; Armbrecht, Gabriele; Felsenberg, Dieter; Li, Shuo

    2017-01-01

    The evaluation of changes in Intervertebral Discs (IVDs) with 3D Magnetic Resonance (MR) Imaging (MRI) can be of interest for many clinical applications. This paper presents the evaluation of both IVD localization and IVD segmentation methods submitted to the Automatic 3D MRI IVD Localization and Segmentation challenge, held at the 2015 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2015) with an on-site competition. With the construction of a manually annotated reference data set composed of 25 3D T2-weighted MR images acquired from two different studies and the establishment of a standard validation framework, quantitative evaluation was performed to compare the results of methods submitted to the challenge. Experimental results show that overall the best localization method achieves a mean localization distance of 0.8 mm and the best segmentation method achieves a mean Dice of 91.8%, a mean average absolute distance of 1.1 mm and a mean Hausdorff distance of 4.3 mm, respectively. The strengths and drawbacks of each method are discussed, which provides insights into the performance of different IVD localization and segmentation methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse.

    PubMed

    Winkler, Tamara; Mahoney, Eric J; Sinner, Debora; Wylie, Christopher C; Dahia, Chitra Lekha

    2014-01-01

    Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease.

  9. ISSLS PRIZE IN BASIC SCIENCE 2018: Growth differentiation factor-6 attenuated pro-inflammatory molecular changes in the rabbit anular-puncture model and degenerated disc-induced pain generation in the rat xenograft radiculopathy model.

    PubMed

    Miyazaki, Shingo; Diwan, Ashish D; Kato, Kenji; Cheng, Kevin; Bae, Won C; Sun, Yang; Yamada, Junichi; Muehleman, Carol; Lenz, Mary E; Inoue, Nozomu; Sah, Robert L; Kawakami, Mamoru; Masuda, Koichi

    2018-04-01

    To elucidate the effects of growth differentiation factor-6 (GDF6) on: (i) gene expression of inflammatory/pain-related molecules and structural integrity in the rabbit intervertebral disc (IVD) degeneration model, and (ii) sensory dysfunction and changes in pain-marker expression in dorsal nerve ganglia (DRGs) in the rat xenograft radiculopathy model. Forty-six adolescent rabbits received anular-puncture in two non-consecutive lumbar IVDs. Four weeks later, phosphate-buffered saline (PBS) or GDF6 (1, 10 or 100 µg) was injected into the nucleus pulposus (NP) of punctured discs and followed for 4 weeks for gene expression analysis and 12 weeks for structural analyses. For pain assessment, eight rabbits were sacrificed at 4 weeks post-injection and NP tissues of injected discs were transplanted onto L5 DRGs of 16 nude rats to examine mechanical allodynia. The rat DRGs were analyzed immunohistochemically. In GDF6-treated rabbit NPs, gene expressions of interleukin-6, tumor necrosis factor-α, vascular endothelial growth factor, prostaglandin-endoperoxide synthase 2, and nerve growth factor were significantly lower than those in the PBS group. GDF6 injections resulted in partial restoration of disc height and improvement of MRI disc degeneration grades with statistical significance in rabbit structural analyses. Allodynia induced by xenograft transplantation of rabbit degenerated NPs onto rat DRGs was significantly reduced by GDF6 injection. Staining intensities for ionized calcium-binding adaptor molecule-1 and calcitonin gene-related peptide in rat DRGs of the GDF6 group were significantly lower than those of the PBS group. GDF6 injection may change the pathological status of degenerative discs and attenuate degenerated IVD-induced pain.

  10. An investigation of the feasibility of interactive videodisc as a training mode for VDOT.

    DOT National Transportation Integrated Search

    1991-01-01

    This report addressed the potential application of interactive videodisc (IVD) technology in the Virginia Department of Transportation (VDOT). The research revealed that IVD is a growing force as a training vehicle in several industries and instituti...

  11. Digital Audio: A Sound Design Element.

    ERIC Educational Resources Information Center

    Barron, Ann; Varnadoe, Susan

    1992-01-01

    Discussion of incorporating audio into videodiscs for multimedia educational applications highlights a project developed for the Navy that used digital audio in an interactive video delivery system (IVDS) for training sonar operators. Storage constraints with videodiscs are explained, design requirements for the IVDS are described, and production…

  12. Perception of parents as demonstrating the inherent merit of their values: relations with self-congruence and subjective well-being.

    PubMed

    Yu, Shi; Assor, Avi; Liu, Xiangping

    2015-02-01

    This study focuses on the parenting practice of inherent value demonstration (IVD), involving parents' tendency to express their values in behaviours and appear satisfied and vital while doing so. Data from Chinese college students (n = 89) confirmed the hypothesis that offspring's perception of their parents as engaged in IVD predicts offspring's subjective well-being (SWB) through sense of self-congruence. Importantly, these relations emerged also when controlling for fundamental autonomy-supportive (FAS) parenting practices such as taking children's perspective, minimising control and allowing choice. These findings are consistent with the view that parents concerned with their children's sense of autonomy may do well to engage in IVD in addition to more fundamental autonomy-supportive practices. Future research may examine the role of IVD in promoting authentic values that serve as an internal compass that guides children to act in ways that feel self-congruent. © 2014 International Union of Psychological Science.

  13. 75 FR 38611 - Child Support Enforcement Program; Intergovernmental Child Support

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...This rule revises Federal requirements for establishing and enforcing intergovernmental support obligations in Child Support Enforcement (IV-D) program cases receiving services under title IV-D of the Social Security Act (the Act). This final rule revises previous interstate requirements to apply to case processing in all intergovernmental cases; requires the responding State IV-D agency to pay the cost of genetic testing; clarifies responsibility for determining in which State tribunal a controlling order determination is made where multiple support orders exist; recognizes and incorporates electronic communication advancements; and makes conforming changes to the Federal substantial compliance audit and State self-assessment requirements.

  14. Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-TNFα drug.

    PubMed

    Likhitpanichkul, Morakot; Kim, Yesul; Torre, Olivia M; See, Eugene; Kazezian, Zepur; Pandit, Abhay; Hecht, Andrew C; Iatridis, James C

    2015-09-01

    Intervertebral discs (IVDs) are attractive targets for local drug delivery because they are avascular structures with limited transport. Painful IVDs are in a chronic inflammatory state. Although anti-inflammatories show poor performance in clinical trials, their efficacy treating IVD cells suggests that sustained, local drug delivery directly to painful IVDs may be beneficial. The purpose of this study was to determine if genipin cross-linked fibrin (FibGen) with collagen Type I hollow spheres (CHS) can serve as a drug-delivery carrier for infliximab, the anti-tumor necrosis factor α (TNFα) drug. Infliximab was chosen as a model drug because of the known role of TNFα in increasing downstream production of several pro-inflammatory cytokines and pain mediators. Genipin cross-linked fibrin was used as drug carrier because it is adhesive, injectable, and slowly degrading hydrogel with the potential to seal annulus fibrosus (AF) defects. CHS allow simple and nondamaging drug loading and could act as a drug reservoir to improve sustained delivery. This is a study of biomaterials and human AF cell culture to determine drug release kinetics and efficacy. Infliximab was delivered at low and high concentrations using FibGen with and without CHS. Gels were analyzed for structure, drug release kinetics, and efficacy treating human AF cells after release. Fibrin showed rapid infliximab drug release but degraded quickly. CHS alone showed a sustained release profile, but the small spheres may not remain in a degenerated IVD with fissures. Genipin cross-linked fibrin showed steady and low levels of infliximab release that was increased when loaded with higher drug concentrations. Infliximab was bound in CHS when delivered within FibGen and was only released after enzymatic degradation. The infliximab released over 20 days retained its bioactivity as confirmed by the sustained reduction of interleukin (IL)-1β, IL-6, IL-8, and TNFα concentrations produced by AF cells. Direct mixing of infliximab into FibGen was the simplest drug-loading protocol capable of sustained release. Results show feasibility of using drug-loaded FibGen for delivery of infliximab and, in the context with the literature, show potential to seal AF defects and partially restore IVD biomechanics. Future investigations are required to determine if drug-loaded FibGen can effectively deliver drugs, seal AF defects, and promote IVD repair or prevent further IVD degeneration in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. In vivo dosimetry in external beam radiotherapy.

    PubMed

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20∕20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  16. Beam related response of in vivo diode detectors for external radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baci, Syrja, E-mail: sbarci2013@gmail.com; Telhaj, Ervis; Malkaj, Partizan

    2016-03-25

    In Vivo Dosimetry (IVD) is a set of methods used in cancer treatment clinics to determine the real dose of radiation absorbed by target volume in a patient’s body. IVD has been widely implemented in radiotherapy treatment centers and is now recommended part of Quality Assurance program by many International health and radiation organizations. Because of cost and lack of specialized personnel, IVD has not been practiced as yet, in Albanian radiotherapy clinics. At Hygeia Hospital Tirana, patients are irradiated with high energy photons generated by Elekta Synergy Accelerators. We have recently started experimenting with the purpose of establishing anmore » IVD practice at this hospital. The first set of experiments was aimed at calibration of diodes that are going to be used for IVD. PMMA, phantoms by PTW were used to calibrate p – type Si, semiconductor diode dosimeters, made by PTW Freiburg for entrance dose. Response of the detectors is affected by energy of the beam, accumulated radiation dose, dose rate, temperature, angle against the beam axis, etc. Here we present the work done for calculating calibration factor and correction factors of source to surface distance, field size, and beam incidence for the entrance dose for both 6 MV photon beam and 18 MV photon beam. Dependence of dosimeter response was found to be more pronounced with source to surface distance as compared to other variables investigated.« less

  17. 45 CFR 310.0 - What does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMPUTERIZED TRIBAL IV-D SYSTEMS AND OFFICE AUTOMATION General Provisions § 310.0 What does this part cover... and Office Automation including: (a) The automated systems options for comprehensive Tribal IV-D... and Office Automation in § 310.15 of this part; (d) The conditions for funding the installation...

  18. Multimedia Football Viewing: Embedded Rules, Practice, and Video Context in IVD Procedural Learning.

    ERIC Educational Resources Information Center

    Kim, Eunsoon; Young, Michael F.

    This study investigated the effects of interactive video (IVD) instruction with embedded rules (production system rules) and practice with feedback on learners' academic achievement and perceived self efficacy in the domain of procedural knowledge for watching professional football. Subjects were 71 female volunteers from undergraduate education…

  19. 76 FR 20356 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Submission for OMB Review; Comment Request Title: State Plan for Child Support under IV-D of the Social Security Act. OMB No.: 0970-0017. Description: The Office of Child Support Enforcement has approved a IV-D State...

  20. 45 CFR 309.01 - What does this part cover?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT... CHILD SUPPORT ENFORCEMENT (IV-D) PROGRAM Tribal IV-D Program: General Provisions § 309.01 What does this... Social Security Act. Section 455(f) of the Act authorizes direct grants to Indian Tribes and Tribal...

  1. 77 FR 7591 - Request for Notification From Consumer Organizations Interested in Participating in the Selection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    .... Assurance--Knowledgeable in clinical practice, research specialization, or professional work that has a significant focus on mammography. Certain Panels of the Medical Devices Advisory Committee Clinical Chemistry... chemistry and toxicology in vitro diagnostic devices (IVDs); clinical use of related IVDs in laboratories...

  2. Senecavirus A: overview of experimental studies

    USDA-ARS?s Scientific Manuscript database

    Introduction Senecavirus A (SVA) is a picornavirus in the same family as Foot and Mouth Disease virus (FMDV) and swine vesicular disease virus (SVDV). SVA has been associated with rare cases of idiopathic vesicular disease (IVD) in the past. A "mini-epidemic" of IVD in US finisher and sow farms beg...

  3. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus

    PubMed Central

    2014-01-01

    Introduction Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Methods Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. Results A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)–negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Conclusions Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease. PMID:24972717

  4. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus.

    PubMed

    van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Rodrigues-Pinto, Ricardo; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Welting, Tim J M; Voncken, Jan Willem

    2014-06-27

    Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)-negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease.

  5. 45 CFR 305.64 - Audit procedures and State comments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Audit procedures and State comments. (a) Prior to the start of the actual audit, Federal auditors will hold an audit entrance conference with the IV-D agency. At that conference, the auditors will explain... fieldwork, Federal auditors will afford the State IV-D agency an opportunity for an audit exit conference at...

  6. Demonstration of Senecavirus A protective immunity in a pig model

    USDA-ARS?s Scientific Manuscript database

    Although idiopathic vesicular disease (IVD) is rarely diagnosed in US swine, in 2015 there were over 100 cases identified throughout the country. Frequently, Senecavirus A (SVA) has been associated with IVD and is presumed to be the etiologic agent. In recent studies we have shown SVA to induce a v...

  7. 45 CFR 305.61 - Penalty for failure to meet IV-D requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH AND HUMAN SERVICES PROGRAM PERFORMANCE MEASURES, STANDARDS, FINANCIAL INCENTIVES, AND PENALTIES § 305.61 Penalty for failure to meet IV-D requirements. (a) A State will be subject to a financial... order establishment and current collections performance measures as set forth in § 305.40 of this part...

  8. 45 CFR 302.80 - Medical support enforcement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true Medical support enforcement. 302.80 Section 302.80... PLAN REQUIREMENTS § 302.80 Medical support enforcement. (a) The State plan may provide that the IV-D agency will secure and enforce medical support obligations under a cooperative agreement between the IV-D...

  9. Vesicular disease in 9-week-old pigs experimentally infected with Senecavirus A

    USDA-ARS?s Scientific Manuscript database

    Introduction: Senecavirus A (SVA), a picornavirus, has been infrequently associated with cases of idiopathic vesicular disease (IVD) in pigs in the US and Canada since 1988. In 2014 and 2015 there was surge of IVD cases in Brazil and US, respectively. SVA was identified in serum, vesicular fluid, an...

  10. 45 CFR 302.80 - Medical support enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Medical support enforcement. 302.80 Section 302.80... PLAN REQUIREMENTS § 302.80 Medical support enforcement. (a) The State plan may provide that the IV-D agency will secure and enforce medical support obligations under a cooperative agreement between the IV-D...

  11. 45 CFR 305.64 - Audit procedures and State comments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Audit procedures and State comments. (a) Prior to the start of the actual audit, Federal auditors will hold an audit entrance conference with the IV-D agency. At that conference, the auditors will explain... fieldwork, Federal auditors will afford the State IV-D agency an opportunity for an audit exit conference at...

  12. 45 CFR 302.20 - Separation of cash handling and accounting functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Separation of cash handling and accounting... accounting functions. The State plan shall provide that the following requirements and criteria to separate the cash handling and accounting functions are in effect. (a) IV-D responsibility. The IV-D agency...

  13. Comparison of Saramis 4.12 and IVD 3.0 Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Mycobacteria from Solid and Liquid Culture Media

    PubMed Central

    Leyer, Caroline; Gregorowicz, Guillaume; Mougari, Faiza; Raskine, Laurent; Cambau, Emmanuelle

    2017-01-01

    ABSTRACT During the last decade, many investigators have studied matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for identification of mycobacteria. Diverse and contradictory results indicated that optimal level for routine testing has not been reached yet. This work aimed to assess Vitek MS through two distinct versions, Saramis v4.12 RUO and the IVD v3.0, under conditions close to routine laboratory practice. Overall, 111 mycobacterial isolates were subjected to protein extraction and same spectra were matched against both databases. The IVD v3.0 database proved to be superior to Saramis v4.12 and its identification rates remarkably increased, from 67% to 94% for isolates grown on Middlebrook 7H10 solid medium and from 62% to 91% for isolates grown on mycobacterial growth indicator tube (MGIT) liquid medium. With this new version, IVD v3.0, MALDI-TOF MS might be integrated into routine clinical diagnostics, although molecular techniques remain mandatory in some cases. PMID:28424252

  14. Foxa1 and Foxa2 are required for formation of the intervertebral discs.

    PubMed

    Maier, Jennifer A; Lo, YinTing; Harfe, Brian D

    2013-01-01

    The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreER(T2)), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1(-/-);Foxa2(c/c);ShhcreER(T2) double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord.

  15. Foxa1 and Foxa2 Are Required for Formation of the Intervertebral Discs

    PubMed Central

    Maier, Jennifer A.; Lo, YinTing; Harfe, Brian D.

    2013-01-01

    The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreERT2), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1−/−;Foxa2c/c;ShhcreERT2 double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord. PMID:23383217

  16. Plasma vitamin D and osteo-cartilaginous markers in Italian males affected by intervertebral disc degeneration: Focus on seasonal and pathological trend of type II collagen degradation.

    PubMed

    Brayda-Bruno, Marco; Viganò, Marco; Cauci, Sabina; Vitale, Jacopo A; de Girolamo, Laura; De Luca, Paola; Lombardi, Giovanni; Banfi, Giuseppe; Colombini, Alessandra

    2017-08-01

    To evaluate plasma vitamin D and cross-linked C-telopeptides of type I (CTx-I) and type II (CTx-II) collagen concentrations in males with lumbar intervertebral disc degeneration (IVD) compared to healthy controls. Improved knowledge might suggest to optimize the vitamin D status of IVD patients and contribute to clarify mechanisms of cartilage degradation. 79 Italian males with lumbar IVD assessed by Magnetic Resonance Imaging (MRI) and 79 age, sex and BMI-matched healthy controls were enrolled. Plasma 25hydroxyvitamin D (25(OH)D), CTx-I and CTx-II were measured by immunoassays. Circannual seasonality, correlation between biomarkers concentrations and clinical variables were assessed. Overall subjects 25(OH)D and CTx-II showed month rhythmicity with acrophase in August/September and October/November, and nadir in February/March and April/May, respectively. An inverse correlation between 25(OH)D and CTx-I, and a direct correlation between CTx-II and CTx-I were observed. IVD patients, particularly with osteochondrosis, showed higher CTx-II than healthy controls. Month of sampling may affect plasma 25(OH)D and CTx-II concentrations. The correlation between CTx-I and CTx-II suggests an interplay between the osteo-cartilaginous endplate and the fibro-cartilaginous disc. The results of this study highlighted that osteochondrosis associates with increased cartilaginous catabolism. Vitamin D supplementation seems more necessary in winter for lumbar IVD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Back pain in space and post-flight spine injury: Mechanisms and countermeasure development

    NASA Astrophysics Data System (ADS)

    Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.

    2013-05-01

    During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical, metabolic, and kinematic spinal changes in the lumbar spine may aid further development of countermeasures to prevent lumbar back pain in microgravity and reduce the incidence of HNPs post-flight.

  18. The change in the diffusion of water in normal and degenerative lumbar intervertebral discs following joint mobilization compared to prone lying.

    PubMed

    Beattie, Paul F; Donley, Jonathan W; Arnot, Cathy F; Miller, Ronald

    2009-01-01

    Prospective, repeated measures obtained under treatment and control conditions. The purposes of this study were to provide preliminary evidence regarding the immediate change in the diffusion of water in the nuclear region of normal and degenerative lumbar intervertebral discs (IVDs) following a single session of lumbar joint mobilization, and to compare these findings to the immediate change in the diffusion of water following a 10-minute session of prone lying. There is conflicting evidence regarding the effectiveness and efficacy of lumbar joint mobilization. Increased knowledge of the physiologic effects of lumbar joint mobilization can lead to refinement of its clinical application. A total of 24 people (15 males and 9 females), ranging in age from 22 to 58 years, participated in this study. All subjects had a history of activity-limiting low back pain. Diffusion-weighted magnetic resonance images (DW-MRIs) were obtained immediately before and after a 10-minute session of lumbar joint mobilization. At least 1 month later, a second session was performed in which DW-MRIs were obtained immediately before and after a 10-minute session of prone lying. Following lumbar joint mobilization, a significant increase (P = .002) in the mean values for diffusion of water was observed within degenerative IVDs at L5-S1 (22.2% increase; effect size, 0.97). Degenerative IVDs at L1-2 to L4-5 and normal IVDs at L1-2 to L5-S1 did not demonstrate a change in diffusion following joint mobilization. Prone lying was not associated with a change in diffusion for normal or degenerative IVDs. The stimulus provided by lumbar joint mobilization may influence the diffusion of water in degenerative IVDs at L5-S1; however, these are preliminary findings and the relationship of these findings to pain and function needs further investigation.

  19. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison

    2005-01-01

    In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475

  20. Correlation study between facet joint cartilage and intervertebral discs in early lumbar vertebral degeneration using T2, T2* and T1ρ mapping

    PubMed Central

    Zhang, Yi; Hu, Jianzhong; Duan, Chunyue; Hu, Ping; Lu, Hongbin; Peng, Xianjing

    2017-01-01

    Recent advancements in magnetic resonance imaging have allowed for the early detection of biochemical changes in intervertebral discs and articular cartilage. Here, we assessed the feasibility of axial T2, T2* and T1ρ mapping of the lumbar facet joints (LFJs) to determine correlations between cartilage and intervertebral discs (IVDs) in early lumbar vertebral degeneration. We recruited 22 volunteers and examined 202 LFJs and 101 IVDs with morphological (sagittal and axial FSE T2-weighted imaging) and axial biochemical (T2, T2* and T1ρ mapping) sequences using a 3.0T MRI scanner. IVDs were graded using the Pfirrmann system. Mapping values of LFJs were recorded according to the degeneration grades of IVDs at the same level. The feasibility of T2, T2* and T1ρ in IVDs and LFJs were analyzed by comparing these mapping values across subjects with different rates of degeneration using Kruskal-Wallis tests. A Pearson’s correlation analysis was used to compare T2, T2* and T1ρ values of discs and LFJs. We found excellent reproducibility in the T2, T2* and T1ρ values for the nucleus pulposus (NP), anterior and posterior annulus fibrosus (PAF), and LFJ cartilage (intraclass correlation coefficients 0.806–0.955). T2, T2* and T1ρ mapping (all P<0.01) had good Pfirrmann grade performances in the NP with IVD degeneration. LFJ T2* values were significantly different between grades I and IV (PL = 0.032, PR = 0.026), as were T1ρ values between grades II and III (PL = 0.002, PR = 0.006) and grades III and IV (PL = 0.006, PR = 0.001). Correlations were moderately negative for T1ρ values between LFJ cartilage and NP (rL = −0.574, rR = −0.551), and between LFJ cartilage and PAF (rL = −0.551, rR = −0.499). T1ρ values of LFJ cartilage was weakly correlated with T2 (r = 0.007) and T2* (r = −0.158) values. Overall, we show that axial T1ρ effectively assesses early LFJ cartilage degeneration. Using T1ρ analysis, we propose a link between LFJ degeneration and IVD NP or PAF changes. PMID:28570641

  1. Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model.

    PubMed

    Willems, Nicole; Yang, Hsiao-Yin; Langelaan, Marloes L P; Tellegen, Anna R; Grinwis, Guy C M; Kranenburg, Hendrik-Jan C; Riemers, Frank M; Plomp, Saskia G M; Craenmehr, Eric G M; Dhert, Wouter J A; Papen-Botterhuis, Nicole E; Meij, Björn P; Creemers, Laura B; Tryfonidou, Marianna A

    2015-08-20

    Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose-response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant maximal inhibition (approximately 35 %) of PGE2 levels in the mildly degenerated canine IVDs. In conclusion, this study showed biocompatibility and safe intradiscal application of an MgFe LDH-pNIPAAM hydrogel. Controlled release of CXB resulted in only limited inhibition of PGE2 in this model with mild IVD degeneration, and further studies should concentrate on application of controlled release from this type of hydrogel in animal models with more severe IVD degeneration.

  2. Mechanical behavior of the human lumbar intervertebral disc with polymeric hydrogel nucleus implant: An experimental and finite element study

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet Bhaskar

    The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and hence were less effective compared to underheight implants. This research successfully proved the feasibility of PVA/PVP polymeric hydrogel as a replacement for degenerated nucleus. This approach may reduce the abnormal stresses on the annulus and thus, prevent/postpone the degeneration of the annulus. A validated FEM can be used as a design tool for optimization of hydrogel nucleus implants design and related feasibility studies.

  3. 45 CFR 309.80 - What safeguarding procedures must a Tribe or Tribal organization include in a Tribal IV-D plan?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL CHILD SUPPORT... Tribal IV-D agency and that are designed to protect the privacy rights of the parties, including: (1...

  4. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  5. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  6. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  7. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  8. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  9. 75 FR 36425 - Guidance for Industry and Food and Drug Administration Staff; In Vitro Diagnostic Studies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ..., International, and Consumer Assistance, Center for Devices and Radiological Health (CDRH), Food and Drug...-addressed adhesive label to assist that office in processing your request, or fax your request to CDRH at... IVD studies. CDRH and CBER both have regulatory oversight of IVD devices. Information in this guidance...

  10. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP.

    PubMed

    Dortet, Laurent; Tandé, Didier; de Briel, Dominique; Bernabeu, Sandrine; Lasserre, Camille; Gregorowicz, Guillaume; Jousset, Agnès B; Naas, Thierry

    2018-06-11

    There is an urgent need for accurate and fast diagnostic tests to identify carbapenemase-producing bacteria. Here, we have evaluated three MALDI-TOF-based techniques to detect carbapenemase-producing Enterobacteriaceae (CPE) from cultured colonies. The performance of three MALDI-TOF-based techniques, including the commercialized MBT STAR®-Carba IVD Kit (Bruker Daltonics) and two in-house protocols performed on the Microflex LT Biotyper (Bruker Daltonics) and the VITEK® MS Plus (bioMérieux), were compared with those of the RAPIDEC® CARBA NP (bioMérieux). A collection of 175 isolates including 120 carbapenemase producers and 55 non-carbapenemase producers was tested. Samples were tested blind in the three participating centres. The repeatability of the MBT STAR®-Carba IVD Kit was also evaluated. The three MALDI-TOF techniques possess sensitivities ranging from 95% to 100% and specificities from 98.2% to 100% compared with 99.2% and 100%, respectively, for the RAPIDEC® CARBA NP. The MBT STAR®-Carba IVD Kit gave highly reproducible results and is the only technique able to provide a concomitant identification of the bacterial isolate. The three MALDI-TOF techniques possess a fast turnaround time (less than 1.5 h). Overall, MALDI-TOF is a reliable technique for the rapid detection of CPE from cultured colonies. MBT STAR®-Carba IVD Kit, the only commercially available assay, could easily be implemented in a clinical microbiology laboratory if it is already equipped with a Microflex LT Biotyper mass spectrometer.

  11. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression.

    PubMed

    Silva, P; Crozier, S; Veidt, M; Pearcy, M J

    2005-07-01

    A hydrogel intervertebral disc (IVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n=4) on different samples (N=2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological IVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs.

  12. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2009-03-01

    Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD). The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate. These differentiate and grow during the first 9 weeks of age in the mouse. Identification of the major signaling pathways active during and after the growth and differentiation period will allow functional analysis using mouse genetics and identify targets for therapy for individual components of the disc. Antibodies specific for individual cell signaling pathways were used on cryostat sections of IVD at different postnatal ages to identify which components of the IVD were responding to major classes of intercellular signal, including sonic hedgehog, Wnt, TGFbeta, FGF, and BMPs. We present a spatial/temporal map of these signaling pathways during growth, differentiation, and aging of the disc. During growth and differentiation of the disc, its different components respond at different times to different intercellular signaling ligands. Most of these are dramatically downregulated at the end of disc growth.

  13. Comparison of Saramis 4.12 and IVD 3.0 Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacteria from Solid and Liquid Culture Media.

    PubMed

    Leyer, Caroline; Gregorowicz, Guillaume; Mougari, Faiza; Raskine, Laurent; Cambau, Emmanuelle; de Briel, Dominique

    2017-07-01

    During the last decade, many investigators have studied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification of mycobacteria. Diverse and contradictory results indicated that optimal level for routine testing has not been reached yet. This work aimed to assess Vitek MS through two distinct versions, Saramis v4.12 RUO and the IVD v3.0, under conditions close to routine laboratory practice. Overall, 111 mycobacterial isolates were subjected to protein extraction and same spectra were matched against both databases. The IVD v3.0 database proved to be superior to Saramis v4.12 and its identification rates remarkably increased, from 67% to 94% for isolates grown on Middlebrook 7H10 solid medium and from 62% to 91% for isolates grown on mycobacterial growth indicator tube (MGIT) liquid medium. With this new version, IVD v3.0, MALDI-TOF MS might be integrated into routine clinical diagnostics, although molecular techniques remain mandatory in some cases. Copyright © 2017 American Society for Microbiology.

  14. Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events.

    PubMed

    Zhang, Ying; Xiong, Chi; Kudelko, Mateusz; Li, Yan; Wang, Cheng; Wong, Yuk Lun; Tam, Vivian; Rai, Muhammad Farooq; Cheverud, James; Lawson, Heather A; Sandell, Linda; Chan, Wilson C W; Cheah, Kathryn S E; Sham, Pak C; Chan, Danny

    2018-04-09

    Intervertebral disc degeneration (IDD) causes back pain and sciatica, affecting quality of life and resulting in high economic/social burden. The etiology of IDD is not well understood. Along with aging and environmental factors, genetic factors also influence the onset, progression and severity of IDD. Genetic studies of risk factors for IDD using human cohorts are limited by small sample size and low statistical power. Animal models amenable to genetic and functional studies of IDD provide desirable alternatives. Despite differences in size and cellular content as compared to human intervertebral discs (IVDs), the mouse is a powerful model for genetics and assessment of cellular changes relevant to human biology. Here, we provide evidence for early onset disc degeneration in SM/J relative to LG/J mice with poor and good tissue healing capacity respectively. In the first few months of life, LG/J mice maintain a relatively constant pool of notochordal-like cells in the nucleus pulposus (NP) of the IVD. In contrast, chondrogenic events are observed in SM/J mice beginning as early as one-week-old, with progressive fibrotic changes. Further, the extracellular matrix changes in the NP are consistent with IVD degeneration. Leveraging on the genomic data of two parental and two recombinant inbred lines, we assessed the genetic contribution to the NP changes and identified processes linked to the regulation of ion transport systems. Significantly, "transport" system is also in the top three gene ontology (GO) terms from a comparative proteomic analysis of the mouse NP. These findings support the potential of the SM/J, LG/J and their recombinant inbred lines for future genetic and biological analysis in mice and validation of candidate genes and biological relevance in human cohort studies. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD008784. Copyright © 2017. Published by Elsevier B.V.

  15. Lactoferricin Enhances BMP7-Stimulated Anabolic Pathways in Intervertebral Disc Cells

    PubMed Central

    Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wijnen, Andre J.; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong

    2013-01-01

    Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral (IVD) matrix and cell homeostasis. Similarly, lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc (IVD) matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin (BMP receptor antagonist) and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. PMID:23644135

  16. Anisotropic Multishell Analytical Modeling of an Intervertebral Disk Subjected to Axial Compression.

    PubMed

    Demers, Sébastien; Nadeau, Sylvie; Bouzid, Abdel-Hakim

    2016-04-01

    Studies on intervertebral disk (IVD) response to various loads and postures are essential to understand disk's mechanical functions and to suggest preventive and corrective actions in the workplace. The experimental and finite-element (FE) approaches are well-suited for these studies, but validating their findings is difficult, partly due to the lack of alternative methods. Analytical modeling could allow methodological triangulation and help validation of FE models. This paper presents an analytical method based on thin-shell, beam-on-elastic-foundation and composite materials theories to evaluate the stresses in the anulus fibrosus (AF) of an axisymmetric disk composed of multiple thin lamellae. Large deformations of the soft tissues are accounted for using an iterative method and the anisotropic material properties are derived from a published biaxial experiment. The results are compared to those obtained by FE modeling. The results demonstrate the capability of the analytical model to evaluate the stresses at any location of the simplified AF. It also demonstrates that anisotropy reduces stresses in the lamellae. This novel model is a preliminary step in developing valuable analytical models of IVDs, and represents a distinctive groundwork that is able to sustain future refinements. This paper suggests important features that may be included to improve model realism.

  17. Mobile diagnostics: next-generation technologies for in vitro diagnostics.

    PubMed

    Shin, Joonchul; Chakravarty, Sudesna; Choi, Wooseok; Lee, Kyungyeon; Han, Dongsik; Hwang, Hyundoo; Choi, Jaekyu; Jung, Hyo-Il

    2018-03-26

    The emergence of a wide range of applications of smartphones along with advances in 'liquid biopsy' has significantly propelled medical research particularly in the field of in vitro diagnostics (IVD). Herein, we have presented a detailed analysis of IVD, its associated critical concerns and probable solutions. It also demonstrates the transition in terms of analytes from minimally invasive (blood) to non-invasive (urine, saliva and sweat) and depicts how the different features of a smartphone can be integrated for specific diagnostic purposes. This review basically highlights recent advances in the applications of smartphone-based biosensors in IVD taking into account the following factors: accuracy and portability; quantitative and qualitative analysis; and centralization and decentralization tests. Furthermore, the critical concerns and future direction of diagnostics based on smartphones are also discussed.

  18. An HF coaxial bridge for measuring impedance ratios up to 1 MHz

    NASA Astrophysics Data System (ADS)

    Kucera, J.; Sedlacek, R.; Bohacek, J.

    2012-08-01

    A four-terminal pair coaxial ac bridge developed for calibrating both resistance and capacitance ratios and working in the frequency range from 100 kHz up to 1 MHz is described. A reference inductive voltage divider (IVD) makes it possible to calibrate ratios 1:1 and 10:1 with uncertainty of a few parts in 105. The IVD is calibrated by means of a series-parallel capacitance device (SPCD). Use of the same ac bridge with minimal changes for calibrating the SPCD, IVD and unknown impedances simplifies the whole calibration process. The bridge balance conditions are fulfilled with simple capacitance and resistance decades and by injecting voltage supplied from the auxiliary direct digital synthesizer. Bridge performance was checked on the basis of resistance ratio measurements and also capacitance ratio measurements.

  19. Market surveillance of in vitro diagnostics by the BfArM until end 2010: how safe are products for tumor diagnostics?

    PubMed

    Siekmeier, R; Wetzel, D

    2013-01-01

    The European Directive 98/79/EC on in vitro diagnostic medical devices (IVD) regulates the marketing and post market surveillance of IVD in the European Economic Area. In cases of incidents and field corrective actions the manufacturers have to inform the responsible Competent Authorities (CA). In Germany, the Federal Institute for Drugs and Medical Devices (BfArM) is the responsible CA for most IVD. In this study all notifications regarding IVD (tests, calibrators, kits, and control materials, except laboratory analyzers) for tumor diagnostics received by the BfArM between begin 1999 until end of 2010 were analyzed. All notifications were analyzed in respect to the type of product, the source of notification, the underlying product defects and the corrective actions performed. In the observation period, a total of 2,851 notifications were received of which 84 were related to IVD for tumor diagnostics included in this study (clinical chemistry - 63, histology - 6, molecular biology - 3, rapid tests - 12). Reports were received from manufacturers (68 cases), CA (8 cases), users (4 cases) and other sources (4 cases). In the group of IVD based on clinical chemistry means, the affected products were mostly those for the measurement of prostate specific antigen (PSA, 14 cases), human chorion gonadotropine (13 cases), carcino embryonic antigen (6 cases), CA 19-9 (6 cases), α(1)-fetoprotein (6 cases) and CA 125 (5 cases), whereas in test strips 9 out of the 12 notifications were related to PSA. Investigations of the manufacturers were able to identify the underlying root causes of product failures in 66 cases (78.6%). In 10 cases (11.9%) the root cause remained unclear and in 6 cases and 2 cases (7.1% and 2.4%) a product failure was excluded or a user error was the underlying cause. Most common root causes of product failures were material defects (24 cases) and manufacturing errors (15 cases). Corrective actions were performed by the manufacturers in 64 cases (76.2%) and were predominantly (multiple entries possible) customer information (62 cases, mandatory in case of a recall), recalls (45 cases), modifications in production or quality management (45 cases) and design changes (14 cases). The obtained results suggest that the system for post marketing surveillance of IVD is an established tool to enhance product safety and provides valuable information on product specific problems serving for improvement of product safety.

  20. 45 CFR 309.35 - What are the procedures for review of a Tribal IV-D program application, plan or plan amendment?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) The effective date of a plan or plan amendment may not be earlier than the first day of the fiscal... program application, plan or plan amendment? 309.35 Section 309.35 Public Welfare Regulations Relating to... of a Tribal IV-D program application, plan or plan amendment? (a) The Secretary will promptly review...

  1. 45 CFR 310.30 - Under what circumstances would FFP be suspended or disallowed in the costs of Computerized Tribal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Under what circumstances would FFP be suspended or... SYSTEMS AND OFFICE AUTOMATION Funding for Computerized Tribal IV-D Systems and Office Automation § 310.30 Under what circumstances would FFP be suspended or disallowed in the costs of Computerized Tribal IV-D...

  2. 45 CFR 309.130 - How will Tribal IV-D programs be funded and what forms are required?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-D Program Funding § 309.130 How will Tribal IV-D programs be funded and what forms are required? (a... grants of less than $1 million per 12-month funding period will receive a single annual award. Tribes and Tribal organizations eligible for grants of $1 million or more per 12-month funding period will receive...

  3. 45 CFR 309.130 - How will Tribal IV-D programs be funded and what forms are required?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-D Program Funding § 309.130 How will Tribal IV-D programs be funded and what forms are required? (a... grants of less than $1 million per 12-month funding period will receive a single annual award. Tribes and Tribal organizations eligible for grants of $1 million or more per 12-month funding period will receive...

  4. 45 CFR 309.130 - How will Tribal IV-D programs be funded and what forms are required?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-D Program Funding § 309.130 How will Tribal IV-D programs be funded and what forms are required? (a... grants of less than $1 million per 12-month funding period will receive a single annual award. Tribes and Tribal organizations eligible for grants of $1 million or more per 12-month funding period will receive...

  5. 45 CFR 309.130 - How will Tribal IV-D programs be funded and what forms are required?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-D Program Funding § 309.130 How will Tribal IV-D programs be funded and what forms are required? (a... grants of less than $1 million per 12-month funding period will receive a single annual award. Tribes and Tribal organizations eligible for grants of $1 million or more per 12-month funding period will receive...

  6. 45 CFR 309.130 - How will Tribal IV-D programs be funded and what forms are required?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-D Program Funding § 309.130 How will Tribal IV-D programs be funded and what forms are required? (a... grants of less than $1 million per 12-month funding period will receive a single annual award. Tribes and Tribal organizations eligible for grants of $1 million or more per 12-month funding period will receive...

  7. 45 CFR 309.75 - What administrative and management procedures must a Tribe or Tribal organization include in a...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... application fee must be uniformly applied by the Tribe or Tribal organization and must be: (i) A flat amount... a Tribe or Tribal organization include in a Tribal IV-D plan? 309.75 Section 309.75 Public Welfare... procedures must a Tribe or Tribal organization include in a Tribal IV-D plan? A Tribe or Tribal organization...

  8. Effect of Load Carriage on Lumbar Spine Kinematics

    DTIC Science & Technology

    2013-01-01

    reference frame and lordosis was reduced during all tasks with load. Superior levels became more lordotic, whereas inferior levels became more... lordosis , and IVD compressibility have been measured in both young 17 and adult 13 populations using upright MRI. However, these data cannot be...the kinematic behavior of the overall lumbar spine and func- tional spinal units. We hypothesized that IVD compression and lumbar lordosis increased

  9. Quantitative evaluation of lumbar intervertebral disc degeneration by axial T2* mapping.

    PubMed

    Huang, Leitao; Liu, Yuan; Ding, Yi; Wu, Xia; Zhang, Ning; Lai, Qi; Zeng, Xianjun; Wan, Zongmiao; Dai, Min; Zhang, Bin

    2017-12-01

    To quantitatively evaluate the clinical value and demonstrate the potential benefits of biochemical axial T2* mapping-based grading of early stages of degenerative disc disease (DDD) using 3.0-T magnetic resonance imaging (MRI) in a clinical setting.Fifty patients with low back pain and 20 healthy volunteers (control) underwent standard MRI protocols including axial T2* mapping. All the intervertebral discs (IVDs) were classified morphologically. Lumbar IVDs were graded using Pfirrmann score (I to IV). The T2* values of the anterior annulus fibrosus (AF), posterior AF, and nucleus pulposus (NP) of each lumbar IVD were measured. The differences between groups were analyzed regarding specific T2* pattern at different regions of interest.The T2* values of the NP and posterior AF in the patient group were significantly lower than those in the control group (P < .01). The T2* value of the anterior AF was not significantly different between the patients and the controls (P > .05). The mean T2*values of the lumbar IVD in the patient group were significantly lower, especially the posterior AF, followed by the NP, and finally, the anterior AF. In the anterior AF, comparison of grade I with grade III and grade I with grade IV showed statistically significant differences (P = .07 and P = .08, respectively). Similarly, in the NP, comparison of grade I with grade III, grade I with grade IV, grade II with grade III, and grade II with grade IV showed statistically significant differences (P < .001). In the posterior AF, comparison of grade II with grade IV showed a statistically significant difference (P = .032). T2 values decreased linearly with increasing degeneration based on the Pfirrmann scoring system (ρ < -0.5, P < .001).Changes in the T2* value can signify early degenerative IVD diseases. Hence, T2* mapping can be used as a diagnostic tool for quantitative assessment of IVD degeneration. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  10. Quantitative evaluation of lumbar intervertebral disc degeneration by axial T2∗ mapping

    PubMed Central

    Huang, Leitao; Liu, Yuan; Ding, Yi; Wu, Xia; Zhang, Ning; Lai, Qi; Zeng, Xianjun; Wan, Zongmiao; Dai, Min; Zhang, Bin

    2017-01-01

    Abstract To quantitatively evaluate the clinical value and demonstrate the potential benefits of biochemical axial T2∗ mapping-based grading of early stages of degenerative disc disease (DDD) using 3.0-T magnetic resonance imaging (MRI) in a clinical setting. Fifty patients with low back pain and 20 healthy volunteers (control) underwent standard MRI protocols including axial T2∗ mapping. All the intervertebral discs (IVDs) were classified morphologically. Lumbar IVDs were graded using Pfirrmann score (I to IV). The T2∗ values of the anterior annulus fibrosus (AF), posterior AF, and nucleus pulposus (NP) of each lumbar IVD were measured. The differences between groups were analyzed regarding specific T2∗ pattern at different regions of interest. The T2∗ values of the NP and posterior AF in the patient group were significantly lower than those in the control group (P < .01). The T2∗ value of the anterior AF was not significantly different between the patients and the controls (P > .05). The mean T2∗values of the lumbar IVD in the patient group were significantly lower, especially the posterior AF, followed by the NP, and finally, the anterior AF. In the anterior AF, comparison of grade I with grade III and grade I with grade IV showed statistically significant differences (P = .07 and P = .08, respectively). Similarly, in the NP, comparison of grade I with grade III, grade I with grade IV, grade II with grade III, and grade II with grade IV showed statistically significant differences (P < .001). In the posterior AF, comparison of grade II with grade IV showed a statistically significant difference (P = .032). T2∗ values decreased linearly with increasing degeneration based on the Pfirrmann scoring system (ρ < −0.5, P < .001). Changes in the T2∗ value can signify early degenerative IVD diseases. Hence, T2∗ mapping can be used as a diagnostic tool for quantitative assessment of IVD degeneration. PMID:29390547

  11. Bone Marrow Stem Cells in Response to Intervertebral Disc-Like Matrix Acidity and Oxygen Concentration: Implications for Cell-based Regenerative Therapy.

    PubMed

    Naqvi, Syeda M; Buckley, Conor T

    2016-05-01

    In vitro culture of porcine bone marrow stem cells (BMSCs) in varying pH microenvironments in a three-dimensional hydrogel system. To characterize the response of BMSCs to varying pH environments (blood [pH 7.4], healthy intervertebral disc (IVD) (pH 7.1), mildly degenerated IVD (pH 6.8), and severely degenerated IVD (pH 6.5) in three-dimensional culture under normoxic (20%) and hypoxic (5%) conditions. The IVD is an avascular organ relying on diffusion of essential nutrients through the cartilaginous endplates (CEPs) thereby creating a challenging microenvironment. Within a degenerated IVD, oxygen and glucose concentrations decrease further (<5% oxygen, <5 mmol/L glucose) and matrix acidity (

  12. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Cripton, Peter A.

    2008-08-01

    We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm2, respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics.

  13. Quantitative Chemical Exchange Saturation Transfer MRI of Intervertebral Disc in a Porcine Model

    PubMed Central

    Zhou, Zhengwei; Bez, Maxim; Tawackoli, Wafa; Giaconi, Joseph; Sheyn, Dmitriy; de Mel, Sandra; Maya, Marcel M.; Pressman, Barry D.; Gazit, Zulma; Pelled, Gadi; Gazit, Dan; Li, Debiao

    2017-01-01

    Purpose Previous studies have associated low pH in interver-tebral discs (IVDs) with discogenic back pain. The purpose of this study was to determine whether quantitative CEST (qCEST) MRI can be used to detect pH changes in IVDs in vivo. Methods The exchange rate ksw between glycosaminoglycan (GAG) protons and water protons was determined from qCEST analysis. Its dependence on pH value was investigated in GAG phantoms with varying pH and concentrations. The relationship between ksw and pH was studied further in vivo in a porcine model on a 3T MR scanner and validated using a pH meter. Sodium lactate was injected into the IVDs to induce various pH values within the discs ranging from 5 to 7. Results Phantom and animal results revealed that ksw measured using qCEST MRI is highly correlated with pH level. In the animal studies, the relationship can be described as ksw =9.2 × 106 × 10−pH + 196.9, R2 = 0.7883. Conclusion The exchange rate between GAG and water protons determined from qCEST MRI is closely correlated with pH value. This technique has the potential to noninvasively measure pH in the IVDs of patients with discogenic pain. PMID:27670140

  14. Cherenkov imaging for Total Skin Electron Therapy (TSET)

    NASA Astrophysics Data System (ADS)

    Xie, Yunhe; Petroccia, Heather; Maity, Amit; Miao, Tianshun; Zhu, Yihua; Bruza, Petr; Pogue, Brian W.; Andreozzi, Jacqueline M.; Plastaras, John P.; Dong, Lei; Zhu, Timothy C.

    2018-03-01

    Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to evaluate the dose uniformity on the surface of the patient in real-time. Each patient was also monitored during TSET via in-vivo detectors (IVD) in nine locations. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  15. Review of the results of the in vivo dosimetry during total skin electron beam therapy

    PubMed Central

    Guidi, Gabriele; Gottardi, Giovanni; Ceroni, Paola; Costi, Tiziana

    2013-01-01

    This work reviews results of in vivo dosimetry (IVD) for total skin electron beam (TSEB) therapy, focusing on new methods, data emerged within 2012. All quoted data are based on a careful review of the literature reporting IVD results for patients treated by means of TSEB therapy. Many of the reviewed papers refer mainly to now old studies and/or old guidelines and recommendations (by IAEA, AAPM and EORTC), because (due to intrinsic rareness of TSEB-treated pathologies) only a limited number of works and reports with a large set of numerical data and proper statistical analysis is up-to-day available in scientific literature. Nonetheless, a general summary of the results obtained by the now numerous IVD techniques available is reported; innovative devices and methods, together with areas of possible further and possibly multicenter investigations for TSEB therapies are highlighted. PMID:24936333

  16. 3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Eltes, Peter E.; Del Rio, Luis; Lazary, Aron; Frangi, Alejandro F.

    2014-12-01

    Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy. The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.

  17. MRI signal distribution within the intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis.

    PubMed

    Gervais, Julien; Périé, Delphine; Parent, Stefan; Labelle, Hubert; Aubin, Carl-Eric

    2012-12-03

    Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal pathology and on its severity. Therefore, this study aims to develop the AMRSID (analysis of MR signal intensity distribution) method to analyze the 3D distribution of the MR signal intensity within the IVD and to evaluate their sensitivity to scoliosis and spondylolisthesis and their severities. This study was realized on 79 adolescents who underwent a MRI acquisition (sagittal T2-weighted images) before their orthopedic or surgical treatment. Five groups were considered: low severity scoliosis (Cobb angle ≤50°), high severity scoliosis (Cobb angles >50°), low severity spondylolisthesis (Meyerding grades I and II), high severity spondylolisthesis (Meyerding grades III, IV and V) and control. The distribution of the MRI signal intensity within the IVD was analyzed using the descriptive statistics of histograms normalized by either cerebrospinal fluid or bone signal intensity, weighted centers and volume ratios. Differences between pathology and severity groups were assessed using one- and two-way ANOVAs. There were significant (p < 0.05) variations of indices between scoliosis, spondylolithesis and control groups and between low and high severity groups. The cerebrospinal fluid normalization was able to detect differences between healthy and pathologic IVDs whereas the bone normalization, which reflects both bone and IVD health, detected more differences between the severities of these pathologies. This study proves for the first time that changes in the intervertebral disc, non visible to the naked eye on sagittal T2-weighted MR images of the spine, can be detected from specific indices describing the distribution of the MR signal intensity. Moreover, these indices are able to discriminate between scoliosis and spondylolisthesis and their severities, and provide essential information on the composition and structure of the discs whatever the pathology considered. The AMRSID method may have the potential to complement the current diagnostic tools available in clinics to improve the diagnostic with earlier biomarkers, the prognosis of evolution and the treatment options of scoliosis and spondylolisthesis.

  18. Biological intervertebral disc replacement: an in vivo model and comparison of two surgical techniques to approach the rat caudal disc

    PubMed Central

    Gebhard, Harry; James, Andrew R.; Bowles, Robby D.; Dyke, Jonathan P.; Saleh, Tatianna; Doty, Stephen P.; Bonassar, Lawrence J.; Härtl, Roger

    2011-01-01

    Study design: Prospective randomized animal study. Objective: To determine a surgical technique for reproducible and functional intervertebral disc replacement in an orthotopic animal model. Methods: The caudal 3/4 intervertebral disc (IVD) of the rat tail was approached by two surgical techniques: blunt dissection, stripping and retracting (Technique 1) or incising and repairing (Technique 2) the dorsal longitudinal tendons. The intervertebral disc was dissected and removed, and then either discarded or reinserted. Outcome measures were perioperative complications, spontaneous tail movement, 7T MRI (T1- and T2-sequences for measurement of disc space height (DSH) and disc hydration). Microcomputed tomographic imaging (micro CT) was additionally performed postmortem. Results: No vascular injuries occurred and no systemic or local infections were observed over the course of 1 month. Tail movements were maintained. With tendon retraction (Technique 1) gross loss of DSH occurred with both discectomy and reinsertion. Tendon division (Technique 2) maintained DSH with IVD reinsertion but not without. The DSH was demonstrated on MRI measurement. A new scoring system to assess IVD appearances was described. Conclusions: The rat tail model, with a tendon dividing surgical technique, can function as an orthotopic animal model for IVD research. Mechanical stimulation is maintained by preserved tail movements. 7T MRI is a feasible modality for longitudinal monitoring for the rat caudal disc. PMID:22956934

  19. Comparative and quantitative proteomic analysis of normal and degenerated human annulus fibrosus cells.

    PubMed

    Ye, Dongping; Liang, Weiguo; Dai, Libing; Zhou, Longqiang; Yao, Yicun; Zhong, Xin; Chen, Honghui; Xu, Jiake

    2015-05-01

    Degeneration of the intervertebral disc (IVD) is a major chronic medical condition associated with back pain. To better understand the pathogenesis of IVD degeneration, we performed comparative and quantitative proteomic analyses of normal and degenerated human annulus fibrosus (AF) cells and identified proteins that are differentially expressed between them. Annulus fibrosus cells were isolated and cultured from patients with lumbar disc herniation (the experimental group, degenerated AF cells) and scoliosis patients who underwent orthopaedic surgery (the control group, normal AF cells). Comparative proteomic analyses of normal and degenerated cultured AF cells were carried out using 2-D electrophoresis, mass spectrometric analyses, and database searching. Quantitative analyses of silver-stained 2-D electrophoresis gels of normal and degenerated cultured AF cells identified 10 protein spots that showed the most altered differential expression levels between the two groups. Among these, three proteins were decreased, including heat shock cognate 71-kDa protein, glucose-6-phosphate 1-dehydrogenase, and protocadherin-23, whereas seven proteins were increased, including guanine nucleotide-binding protein G(i) subunit α-2, superoxide dismutase, transmembrane protein 51, adenosine receptor A3, 26S protease regulatory subunit 8, lipid phosphate phosphatase-related protein, and fatty acyl-crotonic acid reductase 1. These differentially expressed proteins might be involved in the pathophysiological process of IVD degeneration and have potential values as biomarkers of the degeneration of IVD. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Yan, Feng; Chong, Beng H; Diwan, Ashish D

    2016-04-01

    Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Lumbar Spine Paraspinal Muscle and Intervertebral Disc Height Changes in Astronauts After Long-Duration Spaceflight on the International Space Station.

    PubMed

    Chang, Douglas G; Healey, Robert M; Snyder, Alexander J; Sayson, Jojo V; Macias, Brandon R; Coughlin, Dezba G; Bailey, Jeannie F; Parazynski, Scott E; Lotz, Jeffrey C; Hargens, Alan R

    2016-12-15

    Prospective case series. Evaluate lumbar paraspinal muscle (PSM) cross-sectional area and intervertebral disc (IVD) height changes induced by a 6-month space mission on the International Space Station. The long-term objective of this project is to promote spine health and prevent spinal injury during space missions and here on Earth. National Aeronautics and Space Administration (NASA) crewmembers have a 4.3 times higher risk of herniated IVDs, compared with the general and military aviator populations. The highest risk occurs during the first year after a mission. Microgravity exposure during long-duration spaceflights results in approximately 5 cm lengthening of body height, spinal pain, and skeletal deconditioning. How the PSMs and IVDs respond during spaceflight is not well described. Six NASA crewmembers were imaged supine with a 3 Tesla magnetic resonance imaging. Imaging was conducted preflight, immediately postflight, and then 33 to 67 days after landing. Functional cross-sectional area (FCSA) measurements of the PSMs were performed at the L3-4 level. FCSA was measured by grayscale thresholding within the posterior lumbar extensors to isolate lean muscle on T2-weighted scans. IVD heights were measured at the anterior, middle, and posterior sections of all lumbar levels. Repeated measures analysis of variance was used to determine significance at P < 0.05, followed by post-hoc testing. Paraspinal lean muscle mass, as indicated by the FCSA, decreased from 86% of the total PSM cross-sectional area down to 72%, immediately after the mission. Recovery of 68% of the postflight loss occurred during the next 6 weeks, still leaving a significantly lower lean muscle fractional content compared with preflight values. In contrast, lumbar IVD heights were not appreciably different at any time point. The data reveal lumbar spine PSM atrophy after long-duration spaceflight. Some FCSA recovery was seen with 46 days postflight in a terrestrial environment, but it remained incomplete compared with preflight levels. 4.

  2. Comparison of Intravitreal Bevacizumab and Intravitreal Diclofenac in the Treatment of Diabetic Macular Edema: a 6-month Follow-up

    PubMed Central

    FAGHIHI, Hooshang; YAHYAPOUR, Hanif; MAHMOUDZADEH, Raziyeh; FAGHIHI, Shahin

    2017-01-01

    The aim of this study was to compare the effect of intravitreal diclofenac, a non-steroidal anti-inflammatory drug (NSAID), with that of bevacizumab, a well-known anti-vascular endothelial growth factor (VEGF) drug, in the treatment of diabetic macular edema (DME). Diclofenac was chosen in this study because it has both features of NSAIDs and corticosteroids by inhibiting the cyclooxygenase (COX) and lipoxygenase pathways, respectively. In this non-randomized comparative interventional case series, 64 eyes from 32 patients with bilateral naïve DME were selected and every eye was randomly assigned to intravitreal injection of bevacizumab (IVB) or diclofenac (IVD). After exclusion of some patients because of short follow-up duration or less than two intravitreal injections, finally, 52 eyes from 26 patients were analyzed. Of those, 26 eyes received 500 µg/0.1 mL IVD and 26 eyes received 1.25 mg IVB. After 6 months of follow-up, the results indicated that visual acuity was significantly improved from 0.50 ± 0.13 in IVB and 0.52 ± 0.12 LogMAR in IVD at baseline to 0.2 ± 0.1 and 0.29 ± 0.07, respectively. Central macular thickness (CMT) and macular volume were measured based on spectral-domain optical coherence tomography (OCT) at month 1, 3, and 6. Both groups showed a significant reduction in CMT and macular volume from baseline but there was no significant difference between the IVB and IVD groups. Interestingly, IVD, but not IVB, decreased intraocular pressure (IOP), which is a desirable effect. There was no serious complication due to injections. This study sheds light into the long-term effects of NSAIDs and may support the idea that inflammation suppression by NSAIDs may have the same results as anti-VEGF administration. PMID:29392145

  3. Comparison of Intravitreal Bevacizumab and Intravitreal Diclofenac in the Treatment of Diabetic Macular Edema: a 6-month Follow-up.

    PubMed

    Faghihi, Hooshang; Yahyapour, Hanif; Mahmoudzadeh, Raziyeh; Faghihi, Shahin

    2017-01-01

    The aim of this study was to compare the effect of intravitreal diclofenac, a non-steroidal anti-inflammatory drug (NSAID), with that of bevacizumab, a well-known anti-vascular endothelial growth factor (VEGF) drug, in the treatment of diabetic macular edema (DME). Diclofenac was chosen in this study because it has both features of NSAIDs and corticosteroids by inhibiting the cyclooxygenase (COX) and lipoxygenase pathways, respectively. In this non-randomized comparative interventional case series, 64 eyes from 32 patients with bilateral naïve DME were selected and every eye was randomly assigned to intravitreal injection of bevacizumab (IVB) or diclofenac (IVD). After exclusion of some patients because of short follow-up duration or less than two intravitreal injections, finally, 52 eyes from 26 patients were analyzed. Of those, 26 eyes received 500 µg/0.1 mL IVD and 26 eyes received 1.25 mg IVB. After 6 months of follow-up, the results indicated that visual acuity was significantly improved from 0.50 ± 0.13 in IVB and 0.52 ± 0.12 LogMAR in IVD at baseline to 0.2 ± 0.1 and 0.29 ± 0.07, respectively. Central macular thickness (CMT) and macular volume were measured based on spectral-domain optical coherence tomography (OCT) at month 1, 3, and 6. Both groups showed a significant reduction in CMT and macular volume from baseline but there was no significant difference between the IVB and IVD groups. Interestingly, IVD, but not IVB, decreased intraocular pressure (IOP), which is a desirable effect. There was no serious complication due to injections. This study sheds light into the long-term effects of NSAIDs and may support the idea that inflammation suppression by NSAIDs may have the same results as anti-VEGF administration.

  4. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc.

    PubMed

    Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A

    2005-12-01

    Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic approach. Copyright 2005 Pathological Society of Great Britain and Ireland.

  5. 75 FR 8508 - Computerized Tribal IV-D Systems and Office Automation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...This rule enables Tribes and Tribal organizations currently operating comprehensive Tribal Child Support Enforcement programs under Title IV-D of the Social Security Act (the Act) to apply for and receive direct Federal funding for the costs of automated data processing. This rule addresses the Secretary's commitment to provide instructions and guidance to Tribes and Tribal organizations on requirements for applying for, and upon approval, securing Federal Financial Participation (FFP) in the costs of installing, operating, maintaining, and enhancing automated data processing systems.

  6. Development of gellan gum-based microparticles/hydrogel matrices for application in the intervertebral disc regeneration.

    PubMed

    Pereira, Diana Ribeiro; Silva-Correia, Joana; Caridade, Sofia Glória; Oliveira, Joao T; Sousa, Rui A; Salgado, Antonio J; Oliveira, Joaquim M; Mano, João F; Sousa, Nuno; Reis, Rui L

    2011-10-01

    Low back pain is one of the most reported medical conditions associated to intervertebral disc (IVD) degeneration. Nucleus pulposus (NP) is often regarded as the structure where IVD degeneration begins. Gellan gum (GG)-based hydrogels for acellular and cellular tissue engineering strategies have been developed for finding applications as NP substitutes. The innovative strategy is based on the reinforcement of the hydrogel matrix with biocompatible and biodegradable GG microparticles (MPs), which are expected to improve the mechanical properties, while allowing to tailor its degradation rate. In this study, several GG MP/hydrogel disc formulations were prepared by means of mixing high acyl GG (0.75% (w/v)) and low acyl GG (2% (w/v)) GG aqueous solutions at different ratios, namely, 75%:25% (v/v), 50%:50% (v/v), and 25%:75% (v/v), respectively. The GG MP size was measured using a stereo microscope, and their dispersion within the hydrogel matrix was evaluated by means of staining the MPs with Toluidine Blue-O. The developed GG MPs/hydrogel discs were physicochemically characterized by Fourier-transform infrared spectroscopy and (1)H-nuclear magnetic resonance spectroscopy. The swelling behavior and degradation rate were assessed by immersion in a phosphate buffer saline for 14 days. The morphology and mechanical behavior were investigated by scanning electron microscopy and dynamic mechanical analysis, respectively. The mechanical properties of the hydrogel disc were improved by mixing the gels with the MPs. In addition, the possible cytotoxicity of the leachables released by MPs/hydrogel discs was screened in vitro, using a mouse lung fibroblast cell line (L929 cells). To investigate the encapsulation efficacy of L929 cells into the GG MPs/hydrogel discs, cells were stained with DAPI blue/Texas Red-Phalloidin and observed by confocal microscopy, after 24, 48, and 72 h of culturing. A cell viability assay was also performed using Calcein AM staining. The cell culture studies demonstrated that MPs/hydrogel discs are noncytotoxic over L929 cells. It was also demonstrated that L929 cells can be successfully encapsulated into the GG MPs of different formulations, remaining viable after 72 h of culturing. This study showed that GG hydrogel matrices reinforced with cell-loaded MPs could be a candidate strategy for NP regeneration. © Mary Ann Liebert, Inc.

  7. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  8. Histomorphometric comparative study of blood vessels and their pattern in follicular cyst, odontogenic keratocyst, and ameloblastoma.

    PubMed

    Seifi, Safora; Feizi, Farideh; Khafri, Thoraya; Aram, Mehrdad

    2013-03-01

    The present study aimed at assessment and histomorphometric analysis of intratumoral and peritumoral (cystic) blood vessels in odontogenic lesions and their pattern on their clinical behavior by immunohistochemistry and morphometry. In a descriptive and analytical cross-sectional study, 45 paraffin blocks of ameloblastoma, odontogenic keratocyst, and follicular cyst were selected and stained immunohistochemically for CD34. In each slide, images of 3 microscopic fields with the highest microvessel density in intratumoral and peritumoral (cystic) areas were captured at 40× magnification with attached camera system. Inner vascular diameter (IVD) and outer vascular diameter (OVD), cross-sectional area (CSA), and the wall thickness (WT) of the vessels were measured with Motic Plus 2 software. The vascular pattern in odontogenic lesions was analyzed. Outer vascular diameter, IVD, and CSA of the vessels in peritumoral (cystic) areas were greater in ameloblastoma than keratocyst (P = 0.001) and follicular cyst (P < 0.001). However, WT of the blood vessels did not show any significant statistical difference among the 3 odontogenic lesions (P = 0.05). The differences in OVD, IVD (P = 0.8), CSA (P = 0.6), and WT (P = 0.4) of the blood vessels in intratumoral (cystic) areas were not statistically significant. The blood vessel pattern was circumferential in ameloblastoma, and it was directional in keratocyst and follicular cyst. Morphometric specifications of blood vessels (IVD, OVD, CSA) and their pattern in peritumoral (cystic) areas may influence the aggressive clinical behavior of ameloblastoma in comparison with keratocyst and follicular cyst.

  9. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc.

    PubMed

    Kim, Jae-Sung; Ellman, Michael B; An, Howard S; Yan, Dongyao; van Wijnen, Andre J; Murphy, Gillian; Hoskin, David W; Im, Hee-Jeong

    2012-04-01

    Lactoferricin (LfcinB) antagonizes biological effects mediated by angiogenic and catabolic growth factors, in addition to pro-inflammatory cytokines and chemokines in human endothelial cells and tumor cells. However, the effect of LfcinB on intervertebral disc (IVD) cell metabolism has not yet been investigated. Using bovine nucleus pulposus (NP) cells, we analyzed the effect of LfcinB on proteoglycan (PG) accumulation, PG synthesis, and anabolic gene expression. We assessed expression of genes for matrix-degrading enzymes such as matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family), as well as their endogenous inhibitors, tissue inhibitor of metalloproteases (TIMPs). In order to understand the specific molecular mechanisms by which LfcinB exerts its biological effects, we investigated intracellular signaling pathways in NP cells. LfcinB increased PG accumulation mainly via PG synthesis in a dose-dependent manner. Simultaneously, LfcinB dose-dependently downregulated catabolic enzymes. LfcinB's anti-catabolic effects were further demonstrated by a dose-dependent increase in multiple TIMP family members. Our results demonstrate that ERK and/or p38 mitogen-activated protein kinase pathways are the key signaling cascades that exert the biological effects of LfcinB in NP cells, regulating transcription of aggrecan, SOX-9, TIMP-1, TIMP-2, TIMP-3, and iNOS. Our results suggest that LfcinB has anabolic and potent anti-catabolic biological effects on bovine IVD cells that may have considerable promise in the treatment of disc degeneration in the future. Copyright © 2011 Wiley Periodicals, Inc.

  10. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    PubMed

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the International Space Station

    PubMed Central

    Chang, DG; Healey, RM; Snyder, AJ; Sayson, JV; Macias, BR; Coughlin, DG; Bailey, JF; Parazynski, SE; Lotz, JC; Hargens, AR

    2017-01-01

    Study Design Prospective case series Objective Evaluate lumbar paraspinal muscle (PSM) cross-sectional area and intervertebral disc (IVD) height changes induced by a 6-month space mission on the International Space Station (ISS). The long-term objective of this project is to promote spine health and prevent spinal injury during space missions as well as here on Earth. Summary of Background NASA crewmembers have a 4.3 times higher risk of herniated IVDs, compared to the general and military aviator populations. The highest risk occurs during the first year after a mission. Microgravity exposure during long-duration spaceflights results in ~5cm lengthening of body height, spinal pain, and skeletal deconditioning. How the PSMs and IVDs respond during spaceflight is not well described. Methods Six NASA crewmembers were imaged supine with a 3T MRI. Imaging was conducted pre-flight, immediately post-flight and then 33 to 67 days after landing. Functional cross-sectional area (FCSA) measurements of the PSMs were performed at the L3-4 level. FCSA was measured by grayscale thresholding within the posterior lumbar extensors to isolate lean muscle on T2-weighted scans. IVD heights were measured at the anterior, middle and posterior sections of all lumbar levels. Repeated measures ANOVA was used to determine significance at p<0.05, followed by post-hoc testing. Results Paraspinal lean muscle mass, as indicated by the FCSA, decreased from 86% of the total PSM cross-sectional area down to 72%, immediately after the mission. Recovery of 68% of the post-flight loss occurred over the next 6 weeks, still leaving a significantly lower lean muscle fractional content compared to pre-flight values. In contrast, lumbar IVD heights were not appreciably different at any time point. Conclusions The data reveal lumbar spine PSM atrophy after long-duration spaceflight. Some FCSA recovery was seen with 46 days post-flight in a terrestrial environment, but it remained incomplete compared to pre-flight levels. PMID:27779600

  12. In vivo bioavailability and in vitro bioaccessibility of perfluorooctanoic acid (PFOA) in food matrices: correlation analysis and method development.

    PubMed

    Li, Kan; Li, Chao; Yu, Nan-Yang; Juhasz, Albert L; Cui, Xin-Yi; Ma, Lena Q

    2015-01-06

    Food is a major source of human exposure to perfluorooctanoic acid (PFOA), however, PFOA bioavailability in food has not been studied. An in vivo mouse model and three in vitro methods (unified BARGE method, UBM; physiologically based extraction test, PBET; and in vitro digestion method, IVD) were used to determine the relative bioavailability and bioaccessibility of PFOA in the presence of 17 foods. PFOA was mixed with foods of different nutritional compositions and fed to mice over a 7-d period. PFOA relative bioavailability was determined by comparing PFOA accumulation in the liver following PFOA exposure via food to that in water. PFOA bioavailability relative to water ranged from 4.30 ± 0.80 to 69.0 ± 11.9% and was negatively correlated with lipid content (r = 0.76). This was possibly due to competitive sorption of free fatty acids with PFOA onto transporters on intestine epithelial cells. Besides, cations in the gastrointestinal tract, such as Ca(2+) and Mg(2+), are capable of complexing PFOA and partitioning to the lipid phase. On the other hand, when assessed using in vitro assays, PFOA bioaccessibility varied with methods, being 8.7-73% (UBM), 9.8-99% (PBET), and 21-114% (IVD). PFOA bioaccessibility was negatively correlated with lipid content when assessed using UBM (r = 0.82); however, a poor correlation with food composition was observed for PBET and IVD (r = 0.01-0.50). When in vivo and in vitro data were compared, a strong correlation was observed for UBM (r = 0.79), but poor relationships were observed for PBET and IVD (r = 0.11-0.22). This was probably because the higher lipolysis ability and presence of Ca(2+) and Mg(2+) in the gastrointestinal fluid of UBM resulted in a lower potential to form stable micelles compared to PBET and IVD. These results indicated that PFOA relative bioavailability was mainly affected by lipid content in foods, and UBM has the potential to determine PFOA bioaccessibility in food samples.

  13. Continuous in vitro evolution of a ribozyme ligase: a model experiment for the evolution of a biomolecule.

    PubMed

    Ledbetter, Michael P; Hwang, Tony W; Stovall, Gwendolyn M; Ellington, Andrew D

    2013-01-01

    Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. In vitro directed evolution (IVDE) frequently serves as a model system for the study of Darwinian evolution but produces noticeable phenotypic shifts in a matter of hours. An IVDE demonstration lab would serve to both directly demonstrate how Darwinian selection can act on a pool of variants and introduce students to an essential method of modern molecular biology. To produce an IVDE demonstration lab, continuous IVDE of a T500 ribozyme ligase population has been paired with a fluorescent strand displacement reporter system to visualize the selection of improved catalytic function. A ribozyme population is taken through rounds of isothermal amplification dependent on the self-ligation of a T7 promoter. As the population is selectively enriched with better ligase activity, the strand displacement system allows for the monitoring of the population's ligation rate. The strand displacement reporter system permits the detection of ligated ribozyme. Once ligated with the T7 promoter, the 5' end of the ribozyme displaces paired fluorophore-quencher oligonucleotides, in turn, generating visible signal upon UV light excitation. As the ligation rate of the population increases, due to the selection for faster ligating species, the fluorescent signal develops more rapidly. The pairing of the continuous isothermal system with the fluorescent reporting scheme allows any user, provided with minimal materials, to model the continuous directed evolution of a biomolecule. Copyright © 2013 Wiley-Liss, Inc.

  14. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure.

    PubMed

    Le Maitre, Christine Lyn; Frain, Jennie; Fotheringham, Andrew P; Freemont, Anthony J; Hoyland, Judith Alison

    2008-01-01

    The intervertebral disc (IVD) is one of the body's most important load-bearing structures with the major mechanical force experienced in the nucleus pulposus (NP) being hydrostatic pressure (HP). Physiological levels of HP have an anabolic effect on IVD matrix metabolism in cells derived from non-degenerate animal and herniated IVD while excessive HP has a catabolic effect. However, no studies have investigated the response of non-degenerate and degenerate human disc cells derived from non-herniated discs to HP. Here we investigate the effect of physiological HP on such cells using a novel loading rig. Human IVD cells (both NP and AF) cultured in alginate were subjected to dynamic HP (0.8-1.7 MPa 0.5 Hz) for 2 h. Cell viability was assessed, RNA extracted and qRT-PCR for 18 s, c-fos, Sox-9, collagen type II, aggrecan and MMP-3 performed. Cell viability was unaffected by the loading regime. In non-degenerate NP cells, HP increased c-fos, aggrecan, Sox-9 and collagen type II (significantly so in the case of c-fos and aggrecan), but not MMP-3 gene expression. In contrast, application of HP to AF or degenerate NP cells had no effect on target gene expression. Our data shows that cells obtained from the healthy NP respond to dynamic HP by up-regulating genes indicative of healthy matrix homeostasis. However, responses differed in degenerate NP cells suggesting that an altered mechanotransduction pathway may be operational.

  15. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs

    PubMed Central

    Sivan, Sarit Sara; Tsitron, Eve; Wachtel, Ellen; Roughley, Peter; Sakkee, Nico; van der Ham, Frits; Degroot, Jeroen; Maroudas, Alice

    2006-01-01

    During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1–A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol·(g of protein)−1·year−1. Using previously reported protein turnover rate constants (kT) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (kF) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009–13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81±0.25 compared with 3.71±0.26 μmol of pentosidine·(mol of lysine)−1·year−1 respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year−1 compared with 0.134 year−1 for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective kF values of 1.81±0.25 and 3.18±0.37 μmol of pentosidine·(mol of lysine)−1·year−1. We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage. Correlation of pentosidine accumulation with protein half-life in both normal and degenerate discs further supports this finding. PMID:16787390

  16. Randomized control trial follow-up: Online program and waiting period for unmarried parents in Title IV-D Court.

    PubMed

    Rudd, Brittany N; Poladian, Ani R; Holtzworth-Munroe, Amy; Applegate, Amy G; D'Onofrio, Brian M

    2017-04-01

    Despite a lack of research on parent programs for separating unmarried parents, many judicial officers mandate participation. Rudd, Holtzworth-Munroe, Reyome, Applegate, and D'Onofrio (2015) conducted the only randomized controlled trial of any online parent program for separating parents, ProudToParent.org (PTP), and related court processes (e.g., having a waiting period between the establishment of paternity and the court hearing regarding child related issues vs. having the hearing the same day). They recruited a unique sample of 182 cases in a Title IV-D Court (i.e., a court for primarily low income parents) (Authorization of Appropriations, 42 U.S.C. § 651, 2013), in which paternity was previously contested but subsequently established via court-ordered genetic testing. Unexpectedly, cases assigned to PTP and a waiting period were the least likely to reach agreement at their court hearing. In the current study, we extend these results to examine the impact of the study conditions on relitigation in the year following the court hearing; only 11.2% of cases filed a motion, and 7.8% had a hearing. The group that was least likely to reach full initial agreement (i.e., assigned to PTP and the waiting period) were the most likely to relitigate. Further, controlling for study conditions, reaching a full agreement in the Title IV-D court decreased the odds of having a court hearing in the following year. Reaching agreements on the specific issues involved in such cases (e.g., custody, child support) reduced the likelihood of both motions and hearings in the year after the Title IV-D hearings. The implications of these findings are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Lumbar intervertebral disc allograft transplantation: long-term mobility and impact on the adjacent segments.

    PubMed

    Huang, Yong-Can; Xiao, Jun; Lu, William W; Leung, Victor Y L; Hu, Yong; Luk, Keith D K

    2017-03-01

    Fresh-frozen intervertebral disc (IVD) allograft transplantation has been successfully performed in the human cervical spine. Whether this non-fusion technology could truly decrease adjacent segment disease is still unknown. This study evaluated the long-term mobility of the IVD-transplanted segment and the impact on the adjacent spinal segments in a goat model. Twelve goats were used. IVD allograft transplantation was performed at lumbar L4/L5 in 5 goats; the other 7 goats were used as the untreated control (5) and for the supply of allografts (2). Post-operation lateral radiographs of the lumbar spine in the neutral, full-flexion and full-extension positions were taken at 1, 3, 6, 9 and 12 months. Disc height (DH) of the allograft and the adjacent levels was calculated and range of motion (ROM) was measured using the Cobb's method. The anatomy of the adjacent discs was observed histologically. DH of the transplanted segment was decreased significantly after 3 months but no further reduction was recorded until the final follow-up. No obvious alteration was seen in the ROM of the transplanted segment at different time points with the ROM at 12 months being comparable to that of the untreated control. The DH and ROM in the adjacent segments were well maintained during the whole observation period. At post-operative 12 months, the ROM of the adjacent levels was similar to that of the untreated control and the anatomical morphology was well preserved. Lumbar IVD allograft transplantation in goats could restore the segmental mobility and did not negatively affect the adjacent segments after 12 months.

  18. Intradiscal application of a PCLA-PEG-PCLA hydrogel loaded with celecoxib for the treatment of back pain in canines: What's in it for humans?

    PubMed

    Tellegen, Anna R; Willems, Nicole; Beukers, Martijn; Grinwis, Guy C M; Plomp, Saskia G M; Bos, Clemens; van Dijk, Maarten; de Leeuw, Mike; Creemers, Laura B; Tryfonidou, Marianna A; Meij, Björn P

    2018-03-01

    Chronic low back pain is a common clinical problem in both the human and canine population. Current pharmaceutical treatment often consists of oral anti-inflammatory drugs to alleviate pain. Novel treatments for degenerative disc disease focus on local application of sustained released drug formulations. The aim of this study was to determine safety and feasibility of intradiscal application of a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-bpoly(ε-caprolactone-co-lactide) PCLA-PEG-PCLA hydrogel releasing celecoxib, a COX-2 inhibitor. Biocompatibility was evaluated after subcutaneous injection in mice, and safety of intradiscal injection of the hydrogel was evaluated in experimental dogs with early spontaneous intervertebral disc (IVD) degeneration. COX-2 expression was increased in IVD samples surgically obtained from canine patients, indicating a role of COX-2 in clinical IVD disease. Ten client-owned dogs with chronic low back pain related to IVD degeneration received an intradiscal injection with the celecoxib-loaded hydrogel. None of the dogs showed adverse reactions after intradiscal injection. The hydrogel did not influence magnetic resonance imaging signal at long-term follow-up. Clinical improvement was achieved by reduction of back pain in 9 of 10 dogs, as was shown by clinical examination and owner questionnaires. In 3 of 10 dogs, back pain recurred after 3 months. This study showed the safety and effectiveness of intradiscal injections in vivo with a thermoresponsive PCLA-PEG-PCLA hydrogel loaded with celecoxib. In this set-up, the dog can be used as a model for the development of novel treatment modalities in both canine and human patients with chronic low back pain. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    PubMed

    Chen, Jonathan H K; Ho, Pak-Leung; Kwan, Grace S W; She, Kevin K K; Siu, Gilman K H; Cheng, Vincent C C; Yuen, Kwok-Yung; Yam, Wing-Cheong

    2013-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and fungi was recently introduced in microbiology laboratories. This technology could greatly improve the clinical management of patients and guidance for chemotherapy. In this study, we used a commercial MALDI Sepsityper extraction method to evaluate the performance of two commercial MALDI-TOF MS systems, the Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for direct bacterial identification in positive blood cultures. In 181 monomicrobial cultures, both systems generated genus to species level identifications for >90% of the specimens (Biotyper, 177/181 [97.8%]; Vitek MS IVD, 167/181 [92.3%]). Overall, the Biotyper system generated significantly more accurate identifications than the Vitek MS IVD system (P = 0.016; 177 versus 167 out of 181 specimens). The Biotyper system identified the minority species among polymicrobial blood cultures. We also compared the performance of an in-house extraction method with that of the Sepsityper on both MALDI-TOF MS systems. The in-house method generated more correct identifications at the genus level than the Sepsityper (96.7% versus 93.5%) on the Biotyper system, whereas the two methods exhibited the same performance level (88.0% versus 88.0%) on the Vitek MS IVD system. Our study confirmed the practical advantages of MALDI-TOF MS, and our in-house extraction method reduced the reagent cost to $1 per specimen, with a shorter turnaround time of 3 h, which is highly cost-effective for a diagnostic microbiology service.

  20. Poster — Thur Eve — 25: Sensitivity to inhomogeneities for an in-vivo EPID dosimetry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peca, Stefano; Brown, Derek; Department of Physics and Astronomy, University of Calgary, Calgary, AB

    2014-08-15

    Introduction: The electronic portal imaging device (EPID) has the potential to be used for in vivo dosimetry during radiotherapy as an additional dose delivery check. We recently proposed a simple method of using the EPID for 2D-IVD based on correlation ratios. In this work we have investigated the sensitivity of our EPID-IVD to inhomogeneities. Methods: We used slab phantoms that simulate water, bone, and lung, arranged in various geometries. To simulate body contours non-orthogonal to the field, we used a water wedge. CT data of these phantoms was imported into MATLAB, in conjunction with EPID images acquired during irradiation, tomore » calculate dose inside the phantom in isocenter plane. Each phantom was irradiated using a linear accelerator while images were acquired with the EPID (cine mode). Comparisons between EPID-calculated and TPS dose maps were: pixel-by-pixel dose difference, and 3%,3mm gamma evaluation. Results: In the homogeneous case, CAX dose difference was <1%, and 3%,3mm gamma analysis yielded 99% of points with gamma<1. For the inhomogeneous phantoms, agreement decreased with increasing inhomogeneity reaching up to 10% CAX dose difference with 10cm of lung. Results from the water wedge phantom suggest that the EPID-calculated dose can account for surface irregularities of approximately ±3cm. Conclusions: The EPID-based IVD investigated has limitations in the presence of large inhomogeneities. Nonetheless, CAX doses never differed by >15% from the TPS. This suggests that this EPID-IVD is capable of detecting gross dose delivery errors even in the presence of inhomogeneities, supporting its utility as an additional patient safety device.« less

  1. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo.

    PubMed

    Chou, A I; Akintoye, S O; Nicoll, S B

    2009-10-01

    Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP) with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the extracellular matrix (ECM) assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to ionically crosslinked alginate constructs. Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine NP cells were encapsulated in alginate hydrogels by ionic crosslinking using CaCl(2) or through photo-crosslinking upon exposure to long-wave UV light in the presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous pouch model. In vivo samples were analyzed for gene expression, ECM localization and accumulation, and equilibrium mechanical properties. Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-crosslinked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels remained intact over the duration of the study and the equilibrium Young's modulus increased from 1.24+/-0.09 kPa to 4.31+/-1.39 kPa, indicating the formation of functional matrix with properties comparable to those of the native NP. These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement.

  2. Intradiscal injection of simvastatin results in radiologic, histologic, and genetic evidence of disc regeneration in a rat model of degenerative disc disease

    PubMed Central

    Than, Khoi D.; Rahman, Shayan U.; Wang, Lin; Khan, Adam; Kyere, Kwaku A.; Than, Tracey T.; Miyata, Yoshinari; Park, Yoon-Shin; La Marca, Frank; Kim, Hyungjin M.; Zhang, Huina; Park, Paul; Lin, Chia-Ying

    2014-01-01

    BACKGROUND CONTEXT A large percentage of back pain can be attributed to degeneration of the intervertebral disc (IVD). Bone morphogenetic protein-2 (BMP-2) is known to play an important role in chondrogenesis of the IVD. Simvastatin is known to up-regulate expression of BMP-2. Thus, we hypothesized that intradiscal injection of simvastatin in a rat model of degenerative disc disease (DDD) would result in retardation of DDD. PURPOSE To develop a novel conservative treatment for DDD and related discogenic back pain. STUDY DESIGN/SETTING Laboratory investigation. METHODS Disc injury was induced in 272 rats via 21-gauge needle puncture. After 6 weeks, injured discs were treated with simvastatin in a saline or hydrogel carrier. Rats were sacrificed at predetermined time points. Outcome measures assessed were radiologic, histologic, and genetic. Radiologically, the MRI index (number of pixels multiplied by corresponding image densities) was determined. Histologically, disc spaces were read by 3 blinded scorers employing a previously described histological grading scale. Genetically, nuclei pulposi were harvested and polymerase chain reaction was run to determine relative levels of aggrecan, collagen type II, and BMP-2 gene expression. This project was supported by Grant No. R01 AR056649 from NIAMS/NIH. There are no other financial conflicts of interest to report. RESULTS Radiologically, discs treated with 5 mg/mL simvastatin in hydrogel or saline demonstrated MRI indices that were normal through 8 weeks post-treatment, although this was more sustained when delivered in hydrogel. Histologically, discs treated with 5 mg/mL simvastatin in hydrogel demonstrated improved grades in comparison to discs treated at higher doses. Genetically, discs treated with 5 mg/mL of simvastatin in hydrogel demonstrated higher gene expression of aggrecan and collagen type II than control. CONCLUSIONS Degenerate discs treated with 5 mg/mL simvastatin in a hydrogel carrier demonstrated radiographic and histologic features resembling normal, non-injured IVDs. In addition, gene expression of aggrecan and collagen type II (important constituents of the IVD extracellular matrix) was up-regulated in treated discs. Injection of simvastatin into degenerate IVDs may result in retardation of disc degeneration and represents a promising investigational therapy for conservative treatment of DDD. PMID:24291703

  3. In vivo dosimetry with optically stimulated luminescent dosimeters for conformal and intensity-modulated radiation therapy: A 2-year multicenter cohort study.

    PubMed

    Riegel, Adam C; Chen, Yu; Kapur, Ajay; Apicello, Laura; Kuruvilla, Abraham; Rea, Anthony J; Jamshidi, Abolghassem; Potters, Louis

    Optically stimulated luminescent dosimeters (OSLDs) are utilized for in vivo dosimetry (IVD) of modern radiation therapy techniques such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Dosimetric precision achieved with conventional techniques may not be attainable. In this work, we measured accuracy and precision for a large sample of clinical OSLD-based IVD measurements. Weekly IVD measurements were collected from 4 linear accelerators for 2 years and were expressed as percent differences from planned doses. After outlier analysis, 10,224 measurements were grouped in the following way: overall, modality (photons, electrons), treatment technique (3-dimensional [3D] conformal, field-in-field intensity modulation, inverse-planned IMRT, and VMAT), placement location (gantry angle, cardinality, and central axis positioning), and anatomical site (prostate, breast, head and neck, pelvis, lung, rectum and anus, brain, abdomen, esophagus, and bladder). Distributions were modeled via a Gaussian function. Fitting was performed with least squares, and goodness-of-fit was assessed with the coefficient of determination. Model means (μ) and standard deviations (σ) were calculated. Sample means and variances were compared for statistical significance by analysis of variance and the Levene tests (α = 0.05). Overall, μ ± σ was 0.3 ± 10.3%. Precision for electron measurements (6.9%) was significantly better than for photons (10.5%). Precision varied significantly among treatment techniques (P < .0001) with field-in-field lowest (σ = 7.2%) and IMRT and VMAT highest (σ = 11.9% and 13.4%, respectively). Treatment site models with goodness-of-fit greater than 0.90 (6 of 10) yielded accuracy within ±3%, except for head and neck (μ = -3.7%). Precision varied with treatment site (range, 7.3%-13.0%), with breast and head and neck yielding the best and worst precision, respectively. Placement on the central axis of cardinal gantry angles yielded more precise results (σ = 8.5%) compared with other locations (range, 10.5%-11.4%). Accuracy of ±3% was achievable. Precision ranged from 6.9% to 13.4% depending on modality, technique, and treatment site. Simple, standardized locations may improve IVD precision. These findings may aid development of patient-specific tolerances for OSLD-based IVD. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  4. Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling

    PubMed Central

    Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.

    2014-01-01

    Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130

  5. Evaluation of VITEK mass spectrometry (MS), a matrix-assisted laser desorption ionization time-of-flight MS system for identification of anaerobic bacteria.

    PubMed

    Lee, Wonmok; Kim, Myungsook; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Yunsop

    2015-01-01

    By conventional methods, the identification of anaerobic bacteria is more time consuming and requires more expertise than the identification of aerobic bacteria. Although the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems are relatively less studied, they have been reported to be a promising method for the identification of anaerobes. We evaluated the performance of the VITEK MS in vitro diagnostic (IVD; 1.1 database; bioMérieux, France) in the identification of anaerobes. We used 274 anaerobic bacteria isolated from various clinical specimens. The results for the identification of the bacteria by VITEK MS were compared to those obtained by phenotypic methods and 16S rRNA gene sequencing. Among the 249 isolates included in the IVD database, the VITEK MS correctly identified 209 (83.9%) isolates to the species level and an additional 18 (7.2%) at the genus level. In particular, the VITEK MS correctly identified clinically relevant and frequently isolated anaerobic bacteria to the species level. The remaining 22 isolates (8.8%) were either not identified or misidentified. The VITEK MS could not identify the 25 isolates absent from the IVD database to the species level. The VITEK MS showed reliable identifications for clinically relevant anaerobic bacteria.

  6. Managing Disruptive Behavior by Patients and Physicians: A Responsibility of the Dialysis Facility Medical Director.

    PubMed

    Jones, Edward R; Goldman, Richard S

    2015-08-07

    The Centers for Medicare & Medicaid Services' Conditions for Coverage make the medical director of an ESRD facility responsible for all aspects of care, including high-quality health care delivery (e.g., safe, effective, timely, efficient, and patient centered). Because of the high-pressure environment of the dialysis facility, conflicts are common. Conflict frequently occurs when aberrant behaviors disrupt the dialysis facility. Patients, family members, friends, and, less commonly appreciated, nephrology clinicians (i.e., nephrologists and advanced care practitioners) may manifest disruptive behavior. Disruptive behavior in the dialysis facility impairs the ability to deliver high-quality care. Furthermore, disruptive behavior is the leading cause for involuntary discharge (IVD) or involuntary transfer (IVT) of a patient from a facility. IVD usually results in loss of continuity of care, increased emergency department visits, and increased unscheduled, acute dialysis treatments. A sufficient number of IVDs and IVTs also trigger an extensive review of the facility by the regional ESRD Networks, exposing the facility to possible Medicare-imposed sanctions. Medical directors must be equipped to recognize and correct disruptive behavior. Nephrology-based literature and tools exist to help dialysis facility medical directors successfully address and resolve disruptive behavior before medical directors must involuntarily discharge a patient or terminate an attending clinician. Copyright © 2015 by the American Society of Nephrology.

  7. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis.

    PubMed

    Yee, A; Lam, M P Y; Tam, V; Chan, W C W; Chu, I K; Cheah, K S E; Cheung, K M C; Chan, D

    2016-03-01

    Intervertebral disc degeneration (IDD) can lead to symptomatic conditions including sciatica and back pain. The purpose of this study is to understand the extracellular matrix (ECM) changes in disc biology through comparative proteomic analysis of degenerated and non-degenerated human intervertebral disc (IVD) tissues of different ages. Seven non-degenerated (11-46 years of age) and seven degenerated (16-53 years of age) annulus fibrosus (AF) and nucleus pulposus (NP) samples were used. Proteins were extracted using guanidine hydrochloride, separated from large proteoglycans (PGs) by caesium chloride (CsCl) density gradient ultracentrifugation, and identified using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). For quantitative comparison, proteins were labeled with iTRAQ reagents. Collagen fibrils in the NP were assessed using scanning electron microscopy (SEM). In the AF, quantitative analysis revealed increased levels of HTRA1, COMP and CILP in degeneration when compared with samples from older individuals. Fibronectin showed increment with age and degeneration. In the NP, more CILP and CILP2 were present in degenerated samples of younger individuals. Reduced protein solubility was observed in degenerated and older non-degenerated samples correlated with an accumulation of type I collagen in the insoluble fibers. Characterization of collagen fibrils in the NP revealed smaller mean fibril diameters and decreased porosity in the degenerated samples. Our study identified distinct matrix changes associated with aging and degeneration in the intervertebral discs (IVDs). The nature of the ECM changes, together with observed decreased in solubility and changes in fibril diameter is consistent with a fibrotic-like environment. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Lactoferricin mediates Anti-Inflammatory and Anti-Catabolic Effects via Inhibition of IL-1 and LPS Activity in the Intervertebral Disc†

    PubMed Central

    Kim, Jae-Sung; Ellman, Michael B.; Yan, Dongyao; An, Howard S.; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Zabo, Gabriella; Hoskin, David W.; Buechter, D.D.; Van Wijnen, Andre J.; Im, Hee-Jeong

    2013-01-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. PMID:23460134

  9. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc.

    PubMed

    Kim, Jae-Sung; Ellman, Michael B; Yan, Dongyao; An, Howard S; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Szabo, Gabriella; Hoskin, David W; Buechter, Doug D; Van Wijnen, Andre J; Im, Hee-Jeong

    2013-09-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. Copyright © 2013 Wiley Periodicals, Inc.

  10. In vivo effects of bupivacaine and gadobutrol on the intervertebral disc following discoblock and discography: a histological analysis.

    PubMed

    Strube, Patrick; Pfitzner, Berit M; Streitparth, Florian; Hartwig, Tony; Putzier, Michael

    2017-01-01

    The aim of the present study was to histologically compare chondrotoxicity in surgically harvested intervertebral discs (IVDs) of patients following discoblock, discography, or no preoperative intervention. Thirty patients (IVD degeneration Modic ≥ 2°, Pfirrmann 3° or 4°) at L4/5 or L5/S1 who were planned for anterior lumbar interbody fusion were randomly assigned to three groups (open MRI: group DG - discography with gadobutrol; group DB - discoblock with bupivacaine at 4 weeks prior to surgery; group C - no intervention). The intervertebral discs were histologically evaluated and compared using ANOVA and Bonferroni tests for cell count, apoptosis, and proliferation. A reduced cell count (groups DG vs. DB vs. C: 14.9 ± 7.1, 9.2 ± 3.8, and 16.6 ± 5.2 cells/mm 2 , respectively; p ANOVA  = 0.016), increased apoptosis (groups DG vs. DB vs. C: 34.9 ± 10.2, 47.4 ± 16.3, 32.6 ± 12.2 %, respectively; p ANOVA  = 0.039) and increased cell proliferation (post hoc pDB vs. DG or C p < 0.001; for 3-7 cell monoclonal cell nests: groups DG vs. DB vs. C: 2.4 ± 1, 3.9 ± 1, 2.2 ± 1.1, respectively; p intervention x nest size  = 0.006) were found in the IVDs of patients in group DB. This in vivo study suggests that chondrotoxic effects occur in IVD cells after the intradiscal injection of bupivacaine but not after gadobutrol administration. • Local bupivacaine administration to intervertebral discs leads to cell toxicity and proliferation. • Gadobutrol demonstrated no significant effect on cell count, apoptosis, or cell proliferation. • In vivo cytotoxicity was demonstrated histologically in humans for the first time. • Addition/administration of bupivacaine during discographies must be judged critically.

  11. Rating health and stability of engineering structures via classification indexes of InSAR Persistent Scatterers

    NASA Astrophysics Data System (ADS)

    Pratesi, Fabio; Tapete, Deodato; Terenzi, Gloria; Del Ventisette, Chiara; Moretti, Sandro

    2015-08-01

    We propose a novel set of indexes to classify the information content of Persistent Scatterers (PS) and rate the health of engineering structures at urban to local scale. PS are automatically sampled and grouped via 'control areas' coinciding with the building and its surrounding environment. Density over the 'control areas' and velocity of PS are converted respectively into: Completeness of Information Index (Ici) that reflects the PS coverage grade; and Conservation Criticality Indexes (Icc) which rate the health condition of the monument separately for the object and surrounding control areas. The deformation pattern over the structure is classified as isolated (i) or diffused (d) based on the Velocity Distribution Index (Ivd). Both Ici and Icc are rated from A to E classes using a colour-coded system that intentionally emulates an energy-efficiency scale, to encourage the exploitation of PS by stakeholders and end-users in the practise of engineering surveying. Workability and reliability of the classification indexes are demonstrated over the urban heritage of Florence, Italy, using well established ERS-1/2 (1992-2000) descending, ENVISAT (2003-2010) ascending and descending PS datasets. The indexes are designed in perspective of handling outputs from InSAR processing of higher-resolution time series.

  12. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration.

    PubMed

    Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin

    2017-05-12

    Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track.  In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.

  13. Changes in digestibility and cell-wall constituents of some agricultural by-products due to gamma irradiation and urea treatments

    NASA Astrophysics Data System (ADS)

    Al-Masri, M. R.; Guenther, K. D.

    1999-07-01

    The effects of different doses of gamma irradiation (0, 100, 150, 200 kGy) or different concentrations of urea (0, 2, 3 and 5 g urea/100 g DM) on in-vitro organic matter digestibility (IVOMD), digestible energy (IVDE), gross energy (GE) and cell-wall constituents: neutral-detergent fibre, acid-detergent fibre and acid-detergent lignin, have been evaluated in wheat straw, cotton seed shell, peanut shell, soybean shell, extracted olive cake and extracted unpeeled sunflower seeds. The results indicated that gamma irradiation or urea treatments increased the digestible energy values significantly ( P<0.05) and these were attributed to the increases IVOMD and decreases cell-wall constituents of treated samples. The experimental agricultural by-products do not respond to the treatments in the same amount in increasing the IVOMD. There was no significant effect of irradiation and urea treatments on GE. Combined treatments had slightly less effect in increasing IVDE as the addition of both effects. The treatment of 200 kGy and 5% urea resulted in a larger increase in the digestible energy and a better effect by reducing the concentration of the cell-wall constituents even more than what occurred using a single treatment. However, the combination of irradiation with urea treatments could reduce the applied irradiation doses for increasing the IVDE in some studied agricultural by-products.

  14. [Biology and mechanobiology of the intervertebral disc].

    PubMed

    González Martínez, Emilio; García-Cosamalón, José; Cosamalón-Gan, Iván; Esteban Blanco, Marta; García-Suarez, Olivia; Vega, José A

    The intervertebral disc (IVD) is noted for its low cell content, and being the largest avascular structure of human body. The low amount of cells in the disc have to adapt to an anaerobic metabolism with low oxygen pressure and acidic pH. Apart from surviving in an adverse microenvironment, they are exposed to a high level of mechanical stress. The biological adaptation of cells to acidosis and hyperosmolarity conditions are regulated by mechanoproteins, which are responsible for converting a mechanical signal into a cellular response, thus modifying its gene expression. Mechanobiology helps us to better understand the pathophysiology of IVD and its potential biological repair. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. 45 CFR 302.13 - Plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... amended whenever necessary to reflect new or revised Federal statutes or regulations, or material change in any phase of State law, organization, policy of IV-D agency operation. (b) Federal financial...

  16. 45 CFR 302.13 - Plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... amended whenever necessary to reflect new or revised Federal statutes or regulations, or material change in any phase of State law, organization, policy of IV-D agency operation. (b) Federal financial...

  17. 45 CFR 302.13 - Plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... amended whenever necessary to reflect new or revised Federal statutes or regulations, or material change in any phase of State law, organization, policy of IV-D agency operation. (b) Federal financial...

  18. 45 CFR 302.13 - Plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... amended whenever necessary to reflect new or revised Federal statutes or regulations, or material change in any phase of State law, organization, policy of IV-D agency operation. (b) Federal financial...

  19. 45 CFR 302.39 - Standards for program operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND... provide that the IV-D agency will comply with the standards for program operation and the organizational...

  20. The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study.

    PubMed

    Li, S; Jia, X; Duance, V C; Blain, E J

    2011-06-20

    It is still relatively unclear how intervertebral disc (IVD) cells sense a mechanical stimulus and convert this signal into a biochemical response. Previous studies demonstrated that the cytoskeletal elements are mechano-responsive in many cell types and may contribute to mechano-signalling pathways. The objective of this study was to determine the response of cells from the outer annulus fibrosus (OAF) to physiological levels of cyclic tensile strain; further, cells from the nucleus pulposus (NP) were also subjected to an identical loading regime to compare biological responses across the IVD populations. We determined whether the organisation and expression of the major cytoskeletal elements and their associated accessory proteins are responsive to mechanical stimulation in these cells, and whether these changes correlated with either a catabolic or anabolic phenotype. OAF and NP cells from immature bovine IVD were seeded onto Flexcell® type I collagen coated plates. Cells were subjected to cyclic tensile strain (10 %, 1 Hz) for 60 minutes. Post-loading, cells were processed for immunofluorescence microscopy, RNA extracted for quantitative PCR and protein extracted for Western blotting analysis. F-actin reorganisation was evident in OAF and NP cells subjected to tensile strain; strain induced β-actin at the transcriptional and translational level in OAF cells. β-tubulin mRNA and protein synthesis increased in strained OAF cells, but vimentin expression was significantly inhibited. Cytoskeletal element organisation and expression were less responsive to strain in NP cells. Tensile strain increased type I collagen and differentially regulated extracellular matrix (ECM)-degrading enzymes' mRNA levels in OAF cells. Strain induced type II collagen transcription in NP cells, but had no effect on the transcription of any other genes analysed. Tensile strain induces different mechano-responses in the organisation and/or expression of cytoskeletal elements and on markers of IVD metabolism. Differential mechano-regulation of anabolic and catabolic ECM components in the OAF and NP populations reflects their respective mechanical environments in situ.

  1. Clinical and analytical evaluation of the new Aptima Mycoplasma genitalium assay, with data on M. genitalium prevalence and antimicrobial resistance in M. genitalium in Denmark, Norway and Sweden in 2016.

    PubMed

    Unemo, M; Salado-Rasmussen, K; Hansen, M; Olsen, A O; Falk, M; Golparian, D; Aasterød, M; Ringlander, J; Nilsson, C Stezckó; Sundqvist, M; Schønning, K; Moi, H; Westh, H; Jensen, J S

    2018-05-01

    Mycoplasma genitalium (MG) causes urethritis and cervicitis, potentially causing reproductive complications. Resistance in MG to first-line (azithromycin) and second-line (moxifloxacin) treatment has increased. We examined the clinical and analytical performance of the new Conformité Européene (CE)/in vitro diagnostics (IVD) Aptima Mycoplasma genitalium assay (CE/IVD AMG; Hologic); the prevalence of MG, Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG); and MG resistance to azithromycin and moxifloxacin in Denmark, Norway and Sweden in 2016. From February 2016 to February 2017, urogenital and extragenital (only in Denmark) specimens from consecutive attendees at three sexually transmitted disease clinics were tested with the CE/IVD AMG, the research-use-only MG Alt TMA-1 assay (Hologic), Aptima Combo 2 (CT/NG) assay and a laboratory-developed TaqMan real-time mgpB quantitative real-time PCR (qPCR). Resistance-associated mutations were determined by sequencing. Strains of MG and other mycoplasma species in different concentrations were also tested. In total 5269 patients were included. The prevalence of MG was 7.2% (382/5269; 4.9-9.8% in the countries). The sensitivity of the CE/IVD AMG, MG Alt TMA-1 and mgpB qPCR ranged 99.13-100%, 99.13-100% and 73.24-81.60%, respectively, in the countries. The specificity ranged 99.57-99.96%, 100% and 99.69-100%, respectively. The prevalence of resistance-associated mutations for azithromycin and moxifloxacin was 41.4% (120/290; 17.7-56.6%) and 6.6% (18/274; 4.1-10.2%), respectively. Multidrug resistance was found in all countries (2.7%; 1.1-4.2%). Both transcription-mediated amplification (TMA)-based MG assays had a highly superior sensitivity compared to the mgpB qPCR. The prevalence of MG and azithromycin resistance was high. Validated and quality-assured molecular tests for MG, routine resistance testing of MG-positive samples and antimicrobial resistance surveillance are crucial. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia.

    PubMed

    Juneja, Subhash C; Vonica, Alin; Zeiss, Caroline; Lezon-Geyda, Kimberly; Yatsula, Bogdan; Sell, David R; Monnier, Vincent M; Lin, Sharon; Ardito, Thomas; Eyre, David; Reynolds, David; Yao, Zhenqiang; Awad, Hani A; Yu, Hongbo; Wilson, Michael; Honnons, Sylvie; Boyce, Brendan F; Xing, Lianping; Zhang, Yi; Perkins, Archibald S

    2014-03-01

    Recent studies have indicated a role for a MECOM allele in susceptibility to osteoporotic fractures in humans. We have generated a mutation in Mecom in mouse (termed ME(m1)) via lacZ knock-in into the upstream transcription start site for the gene, resulting in disruption of Mds1 and Mds1-Evi1 transcripts, but not of Evi1 transcripts. We demonstrate that ME(m1/m1) mice have severe kyphoscoliosis that is reminiscent of human congenital or primary kyphoscoliosis. ME(m1/m1) mice appear normal at birth, but by 2weeks, they exhibit a slight lumbar lordosis and narrowed intervertebral space. This progresses to severe lordosis with disc collapse and synostosis, together with kyphoscoliosis. Bone formation and strength testing show that ME(m1/m1) mice have normal bone formation and composition but are osteopenic. While endochondral bone development is normal, it is markedly dysplastic in its organization. Electron micrographs of the 1week postnatal intervertebral discs reveals marked disarray of collagen fibers, consistent with an inherent weakness in the non-osseous connective tissue associated with the spine. These findings indicate that lack of ME leads to a complex defect in both osseous and non-osseous musculoskeletal tissues, including a marked vertebral osteopenia, degeneration of the IVD, and disarray of connective tissues, which is likely due to an inherent inability to establish and/or maintain components of these tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. 45 CFR 302.13 - Plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... effective in the State, whichever is later. (Approved by the Office of Management and Budget under control... in any phase of State law, organization, policy of IV-D agency operation. (b) Federal financial...

  4. 45 CFR 303.0 - Scope and applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND... prescribes: (a) The minimum organizational and staffing requirements the State IV-D agency must meet in...

  5. 45 CFR 303.3 - Location of noncustodial parents in IV-D cases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., unemployment insurance, income taxation, driver's licenses, vehicle registration, and criminal records and... location, whichever occurs sooner. Quarterly attempts may be limited to automated sources, but must include...

  6. 45 CFR 303.3 - Location of noncustodial parents in IV-D cases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., unemployment insurance, income taxation, driver's licenses, vehicle registration, and criminal records and... location, whichever occurs sooner. Quarterly attempts may be limited to automated sources, but must include...

  7. 45 CFR 303.3 - Location of noncustodial parents in IV-D cases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., unemployment insurance, income taxation, driver's licenses, vehicle registration, and criminal records and... location, whichever occurs sooner. Quarterly attempts may be limited to automated sources, but must include...

  8. 45 CFR 303.3 - Location of noncustodial parents in IV-D cases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., unemployment insurance, income taxation, driver's licenses, vehicle registration, and criminal records and... location, whichever occurs sooner. Quarterly attempts may be limited to automated sources, but must include...

  9. 42 CFR 433.136 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the organizational unit in the State that has the responsibility for administering or supervising the administration of a State plan for child support enforcement under title IV-D of the Act. [49 FR 8984, Feb. 11...

  10. Detection of low back pain using pH level-dependent imaging of the intervertebral disc using the ratio of R1ρ dispersion and -OH chemical exchange saturation transfer (RROC).

    PubMed

    Liu, Qi; Tawackoli, Wafa; Pelled, Gadi; Fan, Zhaoyang; Jin, Ning; Natsuaki, Yutaka; Bi, Xiaoming; Gart, Avrom; Bae, Hyun; Gazit, Dan; Li, Debiao

    2015-03-01

    Low pH is associated with intervertebral disc (IVD)-generated low back pain (LBP). The purpose of this work was to develop an in vivo pH level-dependent magnetic resonance imaging (MRI) method for detecting discogenic LBP, without using exogenous contrast agents. The ratio of R1ρ dispersion and chemical exchange saturation transfer (CEST) (RROC) was used for pH-level dependent imaging of the IVD while eliminating the effect of labile proton concentration. The technique was validated by numerical simulations and studies on phantoms and ex vivo porcine spines. Four male (ages 42.8 ± 18.3) and two female patients (ages 55.5 ± 2.1) with LBP and scheduled for discography were examined with the method on a 3.0 Tesla MR scanner. RROC measurements were compared with discography outcomes using paired t-test. Simulation and phantom results indicated RROC is a concentration independent and pH level-dependent technique. Porcine spine study results found higher RROC value was related to lower pH level. Painful discs based on discography had significant higher RROC values than those with negative diagnosis (P < 0.05). RROC imaging is a promising pH level dependent MRI technique that has the potential to be a noninvasive imaging tool to detect painful IVDs in vivo. © 2014 Wiley Periodicals, Inc.

  11. Reliability of macroscopic grading of intervertebral disk degeneration in dogs by use of the Thompson system and comparison with low-field magnetic resonance imaging findings.

    PubMed

    Bergknut, Niklas; Grinwis, Guy; Pickee, Emile; Auriemma, Edoardo; Lagerstedt, Anne-Sofie; Hagman, Ragnvi; Hazewinkel, Herman A W; Meij, Björn P

    2011-07-01

    To evaluate the reliability of the Thompson system for use in grading the gross pathological changes of intervertebral disk (IVD) degeneration in dogs and to investigate the agreement between gross pathological findings and low-field (0.2-T) magnetic resonance imaging (MRI) findings. Vertebral columns from cadavers of 19 dogs of various ages, breeds, and origins. 182 intervertebral segments were collected from 19 canine cadavers. Sagittal T2-weighted MRI of the T11 through S1 portion of the vertebral column was performed within 24 hours after the dogs were euthanized. The vertebral columns were subsequently divided in the midsagittal plane, and high-resolution photographs were obtained of each intervertebral segment (end plate-disk-end plate). The MRI images and photographs were graded separately in a blinded manner by 4 observers who used both Pfirrmann and Thompson grading criteria. The interobserver agreement for Thompson scores ranged from 0.76 to 0.88, and the intraobserver agreement ranged from 0.88 to 0.94 (Cohen weighted κ analysis). Agreement between scores for the Pfirrmann and Thompson grading criteria was κ = 0.70. Grading of IVD degeneration in dogs by use of the Thompson system resulted in high interobserver and intraobserver agreement, and scores for the Thompson system had substantial agreement with low-field MRI findings graded by use of the Pfirrmann system. This suggested that low-field MRI can be used to diagnose IVD degeneration in dogs.

  12. Emergence of community-acquired methicillin-resistant Staphylococcus aureus in an Iranian referral paediatric hospital.

    PubMed

    Mamishi, S; Mahmoudi, S; Bahador, A; Matini, H; Movahedi, Z; Sadeghi, R H; Pourakbari, B

    2015-01-01

    The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals has been changed in recent years due to the arrival of community-associated MRSA (CA-MRSA) strains into healthcare settings. The aim of this study is to investigate the distribution of staphylococcal cassette chromosome mec (SCCmec) type V as well as SCCmec IV subtypes, which have been associated with community-acquired infection among healthcare-associated MRSA (HA-MRSA) isolates. Antimicrobial susceptibility, SCCmec type, spa type and the presence of Panton-Valentine leukocidin (PVL) genes were determined for all HA-MRSA isolates in an Iranian referral hospital. In this study of 48 HA-MRSA isolates, 13 (27%), three (6.2%), five (10.4%) and one (2%) belonged to SCCmec subtypes IVa, IVb, IVc and IVd, respectively. Only two isolates (4.2%) belonged to SCCmec types V Notably, one isolate was found to harbour concurrent SCCmec subtypes IVb and IVd. MRSA containing SCCmec subtype IVb, IVc and IVd as well as type V isolates were all susceptible to chloramphenicol, clindamycin and rifampicin, while the sensitivity to these antibiotics was lower among MRSA containing SCCmec subtype IVa. The most frequently observed spa ttype was t037, accounting for 88% (22/25). Three other spa type was t002, t1816 and t4478. Large reservoirs of MRSA containing type IV subtypes and type V now exist in patients in this Iranian hospital. Therefore, effective infection control management in order to control the spread of CA-MRSA is highly recommended.

  13. Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebral disc degeneration in vitro.

    PubMed

    Hwang, Min Ho; Shin, Jae Hee; Kim, Kyoung Soo; Yoo, Chang Min; Jo, Ga Eun; Kim, Joo Han; Choi, Hyuk

    2015-01-01

    Intervertebral disc degeneration (IVD) is one of the important causes of low back pain and is associated with inflammation induced by interaction between macrophages and the human annulus fibrosus (AF) cells. Low-level light therapy (LLLT) has been widely known to regulate inflammatory reaction. However, the effect of LLLT on macrophage-mediated inflammation in the AF cells has not been studied till date. The aim of this study is to mimic the inflammatory microenvironment and to investigate the anti-inflammatory effect of LLLT at a range of wavelengths (405, 532 and 650 nm) on the AF treated with macrophage-like THP-1 cells conditioned medium (MCM) containing proinflammatory cytokines and chemokines (interleukin-1beta, tumor necrosis factor-alpha, interleukin-6 and 8). We observed that AF cells exposed to MCM secrete significantly higher concentrations of IL-6, IL-8, IL-1β and TNF-α. LLLT markedly inhibited secretion of IL-6 at 405 nm in a time-dependent manner. Level of IL-8 was significantly decreased at all wavelengths in a time-dependent manner. We showed that MCM can induce the inflammatory microenvironment in AF cells and LLLT selectively suppressed IL-6 and 8 levels. The results indicate that LLLT is a potential method of IVD treatment and provide insights into further investigation of its anti-inflammation effect on IVD. © 2015 The American Society of Photobiology.

  14. Transarticular facet screw stabilization and dorsal laminectomy in 26 dogs with degenerative lumbosacral stenosis with instability.

    PubMed

    Hankin, Elyshia J; Jerram, Richard M; Walker, Alexander M; King, Michael D; Warman, Christopher G A

    2012-07-01

    To describe outcome after transarticular facet screw stabilization and dorsal laminectomy for treatment of dynamic degenerative lumbosacral stenosis (DLS) in 26 dogs. Retrospective case series. Dogs (n = 26) with dynamic DLS. Medical records (2004-2009) of dogs treated with transarticular facet screw stabilization and dorsal laminectomy were reviewed. Dogs (n = 26) were available for immediate postoperative follow-up, 21 dogs at 6 weeks, and 15 at greater than 6 months. Dogs were evaluated by radiographic assessment and owner questionnaire. Lumbosacral (LS) intervertebral disc (IVD) spaces were measured on pre and postoperative 6-week and 6-month radiographs. In 23 dogs, improvement in clinical signs occurred within 7 days of surgery. Overall postsurgical complication rate directly related to the surgical procedure was 15.4%. LS IVD space measurements taken immediately postoperatively, at 6 weeks, and ≥ 6 months were all significantly increased compared with preoperative measurements. All working dogs (4) returned to full work within 14 months. Most owners (85%) reported their dog was ambulating normally at 6 months with no perceptible lameness during normal activity. All owners perceived their dog's ability to walk, run, and jump after surgery to be improved. Transarticular facet screw stabilization and dorsal laminectomy maintains distraction of the LS IVD space for medium-to-large breed dogs with dynamic DLS with a high degree of owner satisfaction, and is comparable to other reported surgical techniques for DLS. © Copyright 2012 by The American College of Veterinary Surgeons.

  15. Tissue engineering: state of the art in oral rehabilitation

    PubMed Central

    SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.

    2009-01-01

    SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277

  16. Tissue engineering: state of the art in oral rehabilitation.

    PubMed

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  17. 45 CFR 310.10 - What are the functional requirements for the Model Tribal IV-D System?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Number; and (E) Participant Identification Number; (ii) Delinquency and enforcement activities; (iii... operations and to assess program performance through the audit of financial and statistical data maintained...

  18. 26 CFR 48.4191-2 - Taxable medical device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfIVD/Search.cfm. (B) Devices that are... and listing database, available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfrl/rl.cfm. (D...

  19. 45 CFR 301.0 - Scope and applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... This part deals with the administration of title IV-D of the Social Security Act by the Federal... under the approved plan; review and audit of State and local expenditures; and reconsideration of...

  20. Tissue engineering on the nanoscale: lessons from the heart.

    PubMed

    Fleischer, Sharon; Dvir, Tal

    2013-08-01

    Recognizing the limitations of biomaterials for engineering complex tissues and the desire for closer recapitulation of the natural matrix have led tissue engineers to seek new technologies for fabricating 3-dimensional (3D) cellular microenvironments. In this review, through examples from cardiac tissue engineering, we describe the nanoscale hallmarks of the extracellular matrix that tissue engineers strive to mimic. Furthermore, we discuss the use of inorganic nanoparticles and nanodevices for improving and monitoring the performance of engineered tissues. Finally, we offer our opinion on the main challenges and prospects of applying nanotechnology in tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mineralization Induction of Gingival Fibroblasts and Construction of a Sandwich Tissue-Engineered Complex for Repairing Periodontal Defects

    PubMed Central

    Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng

    2018-01-01

    Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454

  2. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  3. Design Approaches to Myocardial and Vascular Tissue Engineering.

    PubMed

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  4. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  5. Lactoferricin enhances BMP7-stimulated anabolic pathways in intervertebral disc cells.

    PubMed

    Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wjnen, Andre J; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong

    2013-07-25

    Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral disc (IVD) matrix and cell homeostasis. Similarly, Lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the gene expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of Noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of Noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tissue engineering for clinical applications.

    PubMed

    Bhatia, Sujata K

    2010-12-01

    Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 45 CFR 309.20 - Who submits a Tribal IV-D program application and where?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Applications must be submitted to the Office of Child Support Enforcement, Attention: Tribal Child Support Enforcement Program, 370 L'Enfant Promenade, SW., Washington, DC 20447, with a copy to the appropriate...

  8. 45 CFR 309.20 - Who submits a Tribal IV-D program application and where?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Applications must be submitted to the Office of Child Support Enforcement, Attention: Tribal Child Support Enforcement Program, 370 L'Enfant Promenade, SW., Washington, DC 20447, with a copy to the appropriate...

  9. 45 CFR 310.10 - What are the functional requirements for the Model Tribal IV-D System?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Tribal financial management and expenditure information; (d) Distribute current support and arrearage..., process and monitor accounts receivable on all amounts owed, collected, and distributed with regard to: (1...

  10. 45 CFR 310.10 - What are the functional requirements for the Model Tribal IV-D System?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Tribal financial management and expenditure information; (d) Distribute current support and arrearage..., process and monitor accounts receivable on all amounts owed, collected, and distributed with regard to: (1...

  11. 45 CFR 310.10 - What are the functional requirements for the Model Tribal IV-D System?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Tribal financial management and expenditure information; (d) Distribute current support and arrearage..., process and monitor accounts receivable on all amounts owed, collected, and distributed with regard to: (1...

  12. 76 FR 72951 - Guidance for Industry and Food and Drug Administration Staff; Establishing the Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... recommendations for studies to establish the performance characteristics of in vitro diagnostic devices (IVDs... issuing this guidance to provide industry and Agency staff with recommendations for studies to establish...

  13. 45 CFR 310.10 - What are the functional requirements for the Model Tribal IV-D System?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plan, including: (1) Identifying information such as Social Security numbers, names, dates of birth... operations and to assess program performance through the audit of financial and statistical data maintained...

  14. [Companion diagnostics "POTELIGEO TEST IHC/FCM" used with "POTELIGEO" (mogamulizumab) for adult T-cell leukemia-lymphoma (ATL) treatment].

    PubMed

    Goami, Takeshi

    2014-05-01

    Personalized medicine offers the best treatment for individual patients, it is important for an IVD manufacturer to develop companion diagnostics in parallel with the development of new drugs through close cooperation with drug companies, and supply diagnostics companies with new drugs for physicians and patients. We received approval for a premarket approval application (PMA) for two in vitro diagnostic ("IVD") reagents, POTELIGEO TEST IHC and POTELIGEO TEST FCM ("POTELIGEO TEST"), in March 2012, and subsequently launched POTELIGEO TEST in May 2012. POTELIGEO TEST is a companion diagnostic used with POTELIGEO for which Kyowa Hakko Kirin has a new drug application (NDA) that was approved in March 2012, and is designed to help physicians identify appropriate subpopulations of adult T-cell leukemia-lymphoma(ATL) patients who are most likely to respond to POTELIGEO 20 mg (mogamulizumab) Injection ("POTELIGEO").

  15. An Overview of Recent Patents on Musculoskeletal Interface Tissue Engineering

    PubMed Central

    Rao, Rohit T.; Browe, Daniel P.; Lowe, Christopher J.; Freeman, Joseph W.

    2018-01-01

    Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues e.g. between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose. PMID:26577344

  16. The Expanding World of Tissue Engineering: The Building Blocks and New Applications of Tissue Engineered Constructs

    PubMed Central

    Zorlutuna, Pinar; Vrana, Nihal Engin; Khademhosseini, Ali

    2013-01-01

    The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications. PMID:23268388

  17. Introduction to tissue engineering and application for cartilage engineering.

    PubMed

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  18. Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application

    PubMed Central

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N.

    2017-01-01

    Study Design. Comparative study using robotic replication of spinal manipulative therapy (SMT) vertebral kinematics together with serial dissection. Objective. The aim of this study was to quantify loads created in cadaveric spinal tissues arising from three different forms of SMT application. Summary of Background Data. There exist many distinct methods by which to apply SMT. It is not known presently whether different forms of SMT application have different effects on spinal tissues. Should the method of SMT application modulate spinal tissue loading, quantifying this relation may help explain the varied outcomes of SMT in terms of effect and safety. Methods. SMT was applied to the third lumbar vertebra in 12 porcine cadavers using three SMT techniques: a clinical device that applies forces through a hand-held instrument (INST), a manual technique of applying SMT clinically (MAN) and a research device that applies parameters of manual SMT through a servo-controlled linear actuator motor (SERVO). The resulting kinematics from each SMT application were tracked optically via indwelling bone pins. The L3/L4 segment was then removed, mounted in a parallel robot and the resulting kinematics from SMT replayed for each SMT application technique. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. Results. In terms of load magnitude, SMT application with MAN and SERVO created greater forces than INST in all conditions (P < 0.05). Additionally, MAN and SERVO created comparable posterior forces in the intact specimen, but MAN created greater posterior forces on IVD structures compared to SERVO (P < 0.05). Conclusion. Specific methods of SMT application create unique vertebral loading characteristics, which may help explain the varied outcomes of SMT in terms of effect and safety. Level of Evidence: N/A PMID:28146021

  19. Tissue engineering therapy for cardiovascular disease.

    PubMed

    Nugent, Helen M; Edelman, Elazer R

    2003-05-30

    The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.

  20. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies. PMID:17518671

  1. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  2. 2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, José Maria; Lazary, Aron; Frangi, Alejandro F.

    2014-03-01

    Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI ± 2 standard deviation was 91:7% ±5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

  3. Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology.

    PubMed

    Cao, Li; Guilak, Farshid; Setton, Lori A

    2011-02-01

    Nucleus pulposus (NP) cells of the intervertebral disk (IVD) have unique morphological characteristics and biologic responses to mechanical stimuli that may regulate maintenance and health of the IVD. NP cells reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties may significantly influence cell and extracellular matrix mechanics. In this study, a computational model was developed to predict the stress-strain, fluid pressure and flow fields for cells and their surrounding PCM in the NP using three-dimensional (3D) finite element models based on the in situ morphology of cell-PCM regions of the mature rat NP, measured using confocal microscopy. Three-dimensional geometries of the extracellular matrix and representative cell-matrix units were used to construct 3D finite element models of the structures as isotropic and biphasic materials. In response to compressive strain of the extracellular matrix, NP cells and PCM regions were predicted to experience volumetric strains that were 1.9-3.7 and 1.4-2.1 times greater than the extracellular matrix, respectively. Volumetric and deviatoric strain concentrations were generally found at the cell/PCM interface, while von Mises stress concentrations were associated with the PCM/extracellular matrix interface. Cell-matrix units containing greater cell numbers were associated with higher peak cell strains and lower rates of fluid pressurization upon loading. These studies provide new model predictions for micromechanics of NP cells that can contribute to an understanding of mechanotransduction in the IVD and its changes with aging and degeneration.

  4. Spinal Health during Unloading and Reloading Associated with Spaceflight

    PubMed Central

    Green, David A.; Scott, Jonathan P. R.

    2018-01-01

    Spinal elongation and back pain are recognized effects of exposure to microgravity, however, spinal health has received relatively little attention. This changed with the report of an increased risk of post-flight intervertebral disc (IVD) herniation and subsequent identification of spinal pathophysiology in some astronauts post-flight. Ground-based analogs, particularly bed rest, suggest that a loss of spinal curvature and IVD swelling may be factors contributing to unloading-induced spinal elongation. In flight, trunk muscle atrophy, in particular multifidus, may precipitate lumbar curvature loss and reduced spinal stability, but in-flight (ultrasound) and pre- and post-flight (MRI) imaging have yet to detect significant IVD changes. Current International Space Station missions involve short periods of moderate-to-high spinal (axial) loading during running and resistance exercise, superimposed upon a background of prolonged unloading (microgravity). Axial loading acting on a dysfunctional spine, weakened by anatomical changes and local muscle atrophy, might increase the risk of damage/injury. Alternatively, regular loading may be beneficial. Spinal pathology has been identified in-flight, but there are few contemporary reports of in-flight back injury and no recent studies of post-flight back injury incidence. Accurate routine in-flight stature measurements, in- and post-flight imaging, and tracking of pain and injury (herniation) for at least 2 years post-flight is thus warranted. These should be complemented by ground-based studies, in particular hyper buoyancy floatation (HBF) a novel analog of spinal unloading, in order to elucidate the mechanisms and risk of spinal injury, and to evaluate countermeasures for exploration where injury could be mission critical. PMID:29403389

  5. Glomeruloid Microvascular Proliferation, Desmoplasia, and High Proliferative Index as Potential Indicators of High Grade Canine Choroid Plexus Tumors.

    PubMed

    Muscatello, Luisa Vera; Avallone, Giancarlo; Serra, Fabienne; Seuberlich, Torsten; Mandara, Maria Teresa; Sisó, Silvia; Brunetti, Barbara; Oevermann, Anna

    2018-05-01

    Choroid plexus tumors (CPT) are intraventricular neoplasms accounting for 10% of all primary central nervous system tumors in dogs. They are frequently classified according to the human WHO classification into choroid plexus papilloma (CPP, grade I), atypical CPP (aCPP, grade II), and choroid plexus carcinoma (CPC, grade III). Histological features observed in canine CPT such as increased vascular density (IVD) and glomeruloid microvascular proliferation (GMVP) are not part of the WHO classification. This multi-centric study aimed to investigate tumor-associated vascular hyperplasia in dogs by determining the prevalence of GMVP and IVD in 52 canine CPT and their association with tumor grade. In addition, the expression of angiogenic factors was assessed by immunohistochemistry in 25 tumors to investigate the pathogenesis of tumor-associated vascular hyperplasia. Based on the classical histological hallmarks, this study of 52 CPT identified 22 (42%) CPP (grade I) and 30 of (58%) CPC (grade III). GMVP was more prevalent in CPC (13/30; 43%) than CPP (1/22; 4%), whereas IVD occurred to a similar extent in CPP and CPC. Desmoplasia was more common in CPC (19/30; 63%) than CPP (2/22; 9%), and similarly, the proliferative index (PI) of neoplastic epithelium was significantly higher in CPC (5.14%) than CPP (0.94%). The majority of CPT expressed platelet-derived growth factor (PDGF), PDGFRα, PDGFRβ, and vascular endothelial growth factor (VEGF) irrespective of tumor grade or tumor-associated vascular hyperplasia. These results suggest that tumor-associated GMVP, desmoplasia, and PI may serve as histological indicators of malignancy in CPT.

  6. Spinal Health during Unloading and Reloading Associated with Spaceflight.

    PubMed

    Green, David A; Scott, Jonathan P R

    2017-01-01

    Spinal elongation and back pain are recognized effects of exposure to microgravity, however, spinal health has received relatively little attention. This changed with the report of an increased risk of post-flight intervertebral disc (IVD) herniation and subsequent identification of spinal pathophysiology in some astronauts post-flight. Ground-based analogs, particularly bed rest, suggest that a loss of spinal curvature and IVD swelling may be factors contributing to unloading-induced spinal elongation. In flight, trunk muscle atrophy, in particular multifidus , may precipitate lumbar curvature loss and reduced spinal stability, but in-flight (ultrasound) and pre- and post-flight (MRI) imaging have yet to detect significant IVD changes. Current International Space Station missions involve short periods of moderate-to-high spinal (axial) loading during running and resistance exercise, superimposed upon a background of prolonged unloading (microgravity). Axial loading acting on a dysfunctional spine, weakened by anatomical changes and local muscle atrophy, might increase the risk of damage/injury. Alternatively, regular loading may be beneficial. Spinal pathology has been identified in-flight, but there are few contemporary reports of in-flight back injury and no recent studies of post-flight back injury incidence. Accurate routine in-flight stature measurements, in- and post-flight imaging, and tracking of pain and injury (herniation) for at least 2 years post-flight is thus warranted. These should be complemented by ground-based studies, in particular hyper buoyancy floatation (HBF) a novel analog of spinal unloading, in order to elucidate the mechanisms and risk of spinal injury, and to evaluate countermeasures for exploration where injury could be mission critical.

  7. Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method.

    PubMed

    Gómez, Fátima Somovilla; Lorza, Rubén Lostado; Bobadilla, Marina Corral; García, Rubén Escribano

    2017-09-21

    The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3-L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the kinematic behavior that was obtained with the optimized parameters and that obtained from the literature demonstrated that the proposed method is a powerful tool with which to adjust healthy IVD FE models when there are many parameters, stiffnesses, and bulges to which the models must adjust.

  8. Estrus resynchronization in ewes with unknown pregnancy status.

    PubMed

    Miranda, Vladinis O; Oliveira, Fernando C; Dias, Jenniffer H; Vargas Júnior, Sergio F; Goularte, Karina L; Sá Filho, Manoel F; Sá Filho, Ocilon G de; Baldassarre, Hernan; Vieira, Arnaldo D; Lucia, Thomaz; Gasperin, Bernardo G

    2018-01-15

    Although fixed-time artificial insemination (FTAI) protocols are available for sheep, estrus resynchronization has not been previously reported. The objectives of this study were to evaluate the effect of estrus resynchronization with exogenous progestogen on endogenous progesterone levels and to compare pregnancy rates after two consecutive estrus synchronizations in ewes. In Experiment 1, ewes (n = 20) received an intravaginal device (IVD) containing 60 mg medroxyprogesterone acetate (MPA) for 10 days. At the IVD withdrawal (D0), ewes received 250 IU eCG and were allocated into two treatments: either no further treatment (Control; n = 10) or estrus resynchronization (Resynch; n = 10) from D12 to D19. Serum progesterone (P4) levels did not differ at D12 and D19 (P > 0.05), but were greater at D15 for the Control compared with the Resynch group (P < 0.05). In experiment 2, ewes (n = 250) were submitted to a first synchronization protocol followed by estrus detection and either artificial insemination (AI) or natural mating (NM). Subsequently, ewes were divided into two groups: Control (n = 104): which received no further treatment and were bred by NM; and Resynch (n = 146): which were submitted to a second synchronization starting on D14 (first IVD withdrawal = D0) and to NM after second IVD withdrawal (D20). Cumulative pregnancy rates did not differ between the Control (67.3%, 70/104) and Resynch (62.3%, 91/146) groups. In a third experiment, ewes (n = 83) were bred by two consecutive FTAI within a 20-day interval. Pregnancy rates after the first (30.1%, 25/83) and the second FTAI (36.2%, 21/58) did not differ (P > 0.05). In conclusion, although exogenous progestogen supplementation reduced circulating levels of P4, pregnancy maintenance was unaffected. Estrus resynchronization in ewes is feasible, resulting in similar fertility after the first and the second services. The use of resynchronization coupled with artificial insemination using semen from genetically superior rams may potentially accelerate genetic improvement in sheep herds by allowing a higher differential selection compared with natural breeding. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method

    PubMed Central

    Somovilla Gómez, Fátima

    2017-01-01

    The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3–L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the kinematic behavior that was obtained with the optimized parameters and that obtained from the literature demonstrated that the proposed method is a powerful tool with which to adjust healthy IVD FE models when there are many parameters, stiffnesses, and bulges to which the models must adjust. PMID:28934161

  10. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  11. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts.

    PubMed

    Fleischer, Sharon; Feiner, Ron; Dvir, Tal

    2017-04-01

    The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.

  12. Emergence of Scaffold-free Approaches for Tissue Engineering Musculoskeletal Cartilages

    PubMed Central

    DuRaine, Grayson D.; Brown, Wendy E.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages –for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc – are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well. PMID:25331099

  13. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  14. Advances in bionanomaterials for bone tissue engineering.

    PubMed

    Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit

    2013-01-01

    Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.

  15. Biomechanics and mechanobiology in functional tissue engineering.

    PubMed

    Guilak, Farshid; Butler, David L; Goldstein, Steven A; Baaijens, Frank P T

    2014-06-27

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of "functional tissue engineering" has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ultrasound Technologies for the Spatial Patterning of Cells and Extracellular Matrix Proteins and the Vascularization of Engineered Tissue

    NASA Astrophysics Data System (ADS)

    Garvin, Kelley A.

    Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.

  17. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  18. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs.

    PubMed

    Atala, Anthony

    2003-10-01

    Tissue engineering efforts are currently being undertaken for every type of tissue and organ within the urinary system. Most of the effort expended to engineer genitourinary tissues has occurred within the last decade. Tissue engineering techniques require a cell culture facility designed for human application. Personnel who have mastered the techniques of cell harvest, culture, and expansion as well as polymer design are essential for the successful application of this technology. Various engineered genitourinary tissues are at different stages of development, with some already being used clinically, a few in preclinical trials, and some in the discovery stage. Recent progress suggests that engineered urologic tissues may have an expanded clinical applicability in the future.

  19. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues.

    PubMed

    Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane

    2015-08-01

    The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.

  20. Cardiovascular tissue engineering: where we come from and where are we now?

    PubMed

    Smit, Francis E; Dohmen, Pascal M

    2015-01-27

    Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.

  1. Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium

    PubMed Central

    Treskes, Philipp; Cowan, Douglas B.; Stamm, Christof; Rubach, Martin; Adelmann, Roland; Wittwer, Thorsten; Wahlers, Thorsten

    2015-01-01

    Objective The effect of mechanical preconditioning on skeletal myoblasts in engineered tissue constructs was investigated to resolve issues associated with conduction block between skeletal myoblast cells and cardiomyocytes. Methods Murine skeletal myoblasts were used to generate engineered tissue constructs with or without application of mechanical strain. After in vitro myotube formation, engineered tissue constructs were co-cultured for 6 days with viable embryonic heart slices. With the use of sharp electrodes, electrical coupling between engineered tissue constructs and embryonic heart slices was assessed in the presence or absence of pharmacologic agents. Results The isolation and expansion procedure for skeletal myoblasts resulted in high yields of homogeneously desmin-positive (97.1% ± 0.1%) cells. Mechanical strain was exerted on myotubes within engineered tissue constructs during gelation of the matrix, generating preconditioned engineered tissue constructs. Electrical coupling between preconditioned engineered tissue constructs and embryonic heart slices was observed; however, no coupling was apparent when engineered tissue constructs were not subjected to mechanical strain. Coupling of cells from engineered tissue constructs to cells in embryonic heart slices showed slower conduction velocities than myocardial cells with the embryonic heart slices (preconditioned engineered tissue constructs vs embryonic heart slices: 0.04 ± 0.02 ms vs 0.10 ± 0.05 ms, P = .011), lower stimulation frequencies (preconditioned engineered tissue constructs vs maximum embryonic heart slices: 4.82 ± 1.42 Hz vs 10.58 ± 1.56 Hz; P = .0009), and higher sensitivities to the gap junction inhibitor (preconditioned engineered tissue constructs vs embryonic heart slices: 0.22 ± 0.07 mmol/L vs 0.93 ± 0.15 mmol/L; P = .0004). Conclusions We have generated skeletal myoblast–based transplantable grafts that electrically couple to myocardium. PMID:22980065

  2. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  3. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    PubMed

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Biomechanics and mechanobiology in functional tissue engineering

    PubMed Central

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  5. 40 CFR 80.141 - Interim detergent gasoline program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...

  6. 40 CFR 80.141 - Interim detergent gasoline program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...

  7. 40 CFR 80.141 - Interim detergent gasoline program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...

  8. 40 CFR 80.141 - Interim detergent gasoline program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... considered acceptable for demonstration of IVD control performance. Examples of acceptable test procedures... carburetor deposits. Examples of acceptable test procedures for demonstration of carburetor deposit control... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives sold...

  9. In vivo tissue engineering of musculoskeletal tissues.

    PubMed

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    PubMed

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  11. Towards organ printing: engineering an intra-organ branched vascular tree.

    PubMed

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2010-03-01

    Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.

  12. Piezoelectric polymers as biomaterials for tissue engineering applications.

    PubMed

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Engineering Orthopedic Tissue Interfaces

    PubMed Central

    Yang, Peter J.

    2009-01-01

    While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges—to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage–bone, ligament–bone, meniscus–bone, and muscle–tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces. PMID:19231983

  14. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    PubMed

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  15. Injectable hydrogels for cartilage and bone tissue engineering

    PubMed Central

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  16. Tissue engineering of urinary bladder - current state of art and future perspectives.

    PubMed

    Adamowicz, Jan; Kowalczyk, Tomasz; Drewa, Tomasz

    2013-01-01

    Tissue engineering and biomaterials science currently offer the technology needed to replace the urinary tract wall. This review addresses current achievements and barriers for the regeneration of the urinary blad- der based on tissue engineering methods. Medline was search for urinary bladder tissue engineering regenerative medicine and stem cells. Numerous studies to develop a substitute for the native urinary bladder wall us- ing the tissue engineering approach are ongoing. Stem cells combined with biomaterials open new treatment methods, including even de novo urinary bladder construction. However, there are still many issues before advances in tissue engineering can be introduced for clinical application. Before tissue engineering techniques could be recognize as effective and safe for patients, more research stud- ies performed on large animal models and with long follow-up are needed to carry on in the future.

  17. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.

  18. The Application of Tissue Engineering Procedures to Repair the Larynx

    ERIC Educational Resources Information Center

    Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.

    2006-01-01

    The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…

  19. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.

    PubMed

    Dilley, Rodney J; Morrison, Wayne A

    2014-11-01

    Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering

    PubMed Central

    Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali

    2010-01-01

    Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414

  1. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.

    PubMed

    Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza

    2011-11-01

    Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.

  2. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.

    PubMed

    Singh, Milind; Berkland, Cory; Detamore, Michael S

    2008-12-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches.

  3. 75 FR 68610 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Proposed Information Collection Activity; Comment Request Proposed Projects: Title: State Plan Child Support Coll & Estab Paternity Title IV-D, OCSE-100. OMB No.: 0970-0017. Description: The Office of Child Support...

  4. 78 FR 32258 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Proposed... Levy (FAST Levy). OMB No.: New Collection. Description: State IV-D child support enforcement agencies... institutions. To assist states in fulfilling this statutory requirement the federal Office of Child Support...

  5. Interactive Videodisc at California State University, Fullerton.

    ERIC Educational Resources Information Center

    Reisman, S.

    In January 1987, California State University, Fullerton (CSUF), began to explore the potential of interactive videodisk (IVD) technology on its campus. The challenge of introducing an individualized instructional technology into a cost conscious and conventional teaching environment was formidable, considering the traditional orientation of…

  6. Breast tissue engineering.

    PubMed

    Patrick, Charles W

    2004-01-01

    Tissue engineering has the potential to redefine rehabilitation for the breast cancer patient by providing a translatable strategy that restores the postmastectomy breast mound while concomitantly obviating limitations realized with contemporary reconstructive surgery procedures. The engineering design goal is to provide a sufficient volume of viable fat tissue based on a patient's own cells such that deficits in breast volume can be abrogated. To be sure, adipose tissue engineering is in its infancy, but tremendous strides have been made. Numerous studies attest to the feasibility of adipose tissue engineering. The field is now poised to challenge barriers to clinical translation that are germane to most tissue engineering applications, namely scale-up, large animal model development, and vascularization. The innovative and rapid progress of adipose engineering to date, as well as opportunities for its future growth, is presented.

  7. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage

    NASA Astrophysics Data System (ADS)

    Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  8. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  9. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.

    PubMed

    Ardeshirylajimi, Abdolreza

    2017-10-01

    Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Cell-Based Strategies for Meniscus Tissue Engineering

    PubMed Central

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  11. Combining platelet-rich plasma and tissue-engineered skin in the treatment of large skin wound.

    PubMed

    Han, Tong; Wang, Hao; Zhang, Ya Qin

    2012-03-01

    The objective of the study was to observe the effects of tissue-engineered skin in combination with platelet-rich plasma (PRP) and other preparations on the repair of large skin wound on nude mice.We first prepared PRP from venous blood by density-gradient centrifugation. Large skin wounds were created surgically on the dorsal part of nude mice. The wounds were then treated with either artificial skin, tissue-engineered skin, tissue-engineered skin combined with basic fibroblast growth factor, tissue-engineered skin combined with epidermal growth factor, or tissue-engineered skin combined with PRP. Tissue specimens were collected at different time intervals after surgery. Hematoxylin-eosin and periodic acid-Schiff staining and immunohistochemistry were performed to assess the rate of wound healing.Macroscopic observations, hematoxylin-eosin/periodic acid-Schiff staining, and immunohistochemistry revealed that the wounds treated with tissue-engineered skin in combination with PRP showed the most satisfactory wound recovery, among the 5 groups.

  12. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    PubMed

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Construction Strategy and Progress of Whole Intervertebral Disc Tissue Engineering.

    PubMed

    Yang, Qiang; Xu, Hai-wei; Hurday, Sookesh; Xu, Bao-shan

    2016-02-01

    Degenerative disc disease (DDD) is the major cause of low back pain, which usually leads to work absenteeism, medical visits and hospitalization. Because the current conservative procedures and surgical approaches to treatment of DDD only aim to relieve the symptoms of disease but not to regenerate the diseased disc, their long-term efficiency is limited. With the rapid developments in medical science, tissue engineering techniques have progressed markedly in recent years, providing a novel regenerative strategy for managing intervertebral disc disease. However, there are as yet no ideal methods for constructing tissue-engineered intervertebral discs. This paper reviews published reports pertaining to intervertebral disc tissue engineering and summarizes data concerning the seed cells and scaffold materials for tissue-engineered intervertebral discs, construction of tissue-engineered whole intervertebral discs, relevant animal experiments and effects of mechanics on the construction of tissue-engineered intervertebral disc and outlines the existing problems and future directions. Although the perfect regenerative strategy for treating DDD has not yet been developed, great progress has been achieved in the construction of tissue-engineered intervertebral discs. It is believed that ongoing research on intervertebral disc tissue engineering will result in revolutionary progress in the treatment of DDD. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  14. Vital roles of stem cells and biomaterials in skin tissue engineering

    PubMed Central

    Mohd Hilmi, Abu Bakar; Halim, Ahmad Sukari

    2015-01-01

    Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future. Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initiate cell cultures in vitro, grow them on scaffolds in situ and transplant the composite into a recipient in vivo. From the beginning, scaffolds have been necessary in tissue engineering applications. Regardless, the latest technology has redirected established approaches by omitting scaffolds. Currently, scientists from diverse research institutes are engineering skin without scaffolds. Due to their advantageous properties, stem cells have robustly transformed the tissue engineering field as part of an engineered bilayered skin substitute that will later be discussed in detail. Additionally, utilizing biomaterials or skin replacement products in skin tissue engineering as strategy to successfully direct cell proliferation and differentiation as well as to optimize the safety of handling during grafting is beneficial. This approach has also led to the cells’ application in developing the novel skin substitute that will be briefly explained in this review. PMID:25815126

  15. Vital roles of stem cells and biomaterials in skin tissue engineering.

    PubMed

    Mohd Hilmi, Abu Bakar; Halim, Ahmad Sukari

    2015-03-26

    Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future. Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initiate cell cultures in vitro, grow them on scaffolds in situ and transplant the composite into a recipient in vivo. From the beginning, scaffolds have been necessary in tissue engineering applications. Regardless, the latest technology has redirected established approaches by omitting scaffolds. Currently, scientists from diverse research institutes are engineering skin without scaffolds. Due to their advantageous properties, stem cells have robustly transformed the tissue engineering field as part of an engineered bilayered skin substitute that will later be discussed in detail. Additionally, utilizing biomaterials or skin replacement products in skin tissue engineering as strategy to successfully direct cell proliferation and differentiation as well as to optimize the safety of handling during grafting is beneficial. This approach has also led to the cells' application in developing the novel skin substitute that will be briefly explained in this review.

  16. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    PubMed

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  17. Co-culture systems-based strategies for articular cartilage tissue engineering.

    PubMed

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  18. Nanofibers and their applications in tissue engineering

    PubMed Central

    Vasita, Rajesh; Katti, Dhirendra S

    2006-01-01

    Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259

  19. Recent development on computer aided tissue engineering--a review.

    PubMed

    Sun, Wei; Lal, Pallavi

    2002-02-01

    The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.

  20. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure

    PubMed Central

    Finosh, G.T.; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed. PMID:23507781

  1. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: new developments and challenges.

    PubMed

    Finosh, G T; Jayabalan, Muthu

    2012-01-01

    Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed.

  2. Trueness verification of actual creatinine assays in the European market demonstrates a disappointing variability that needs substantial improvement. An international study in the framework of the EC4 creatinine standardization working group.

    PubMed

    Delanghe, Joris R; Cobbaert, Christa; Galteau, Marie-Madeleine; Harmoinen, Aimo; Jansen, Rob; Kruse, Rolf; Laitinen, Päivi; Thienpont, Linda M; Wuyts, Birgitte; Weykamp, Cas; Panteghini, Mauro

    2008-01-01

    The European In Vitro Diagnostics (IVD) directive requires traceability to reference methods and materials of analytes. It is a task of the profession to verify the trueness of results and IVD compatibility. The results of a trueness verification study by the European Communities Confederation of Clinical Chemistry (EC4) working group on creatinine standardization are described, in which 189 European laboratories analyzed serum creatinine in a commutable serum-based material, using analytical systems from seven companies. Values were targeted using isotope dilution gas chromatography/mass spectrometry. Results were tested on their compliance to a set of three criteria: trueness, i.e., no significant bias relative to the target value, between-laboratory variation and within-laboratory variation relative to the maximum allowable error. For the lower and intermediate level, values differed significantly from the target value in the Jaffe and the dry chemistry methods. At the high level, dry chemistry yielded higher results. Between-laboratory coefficients of variation ranged from 4.37% to 8.74%. Total error budget was mainly consumed by the bias. Non-compensated Jaffe methods largely exceeded the total error budget. Best results were obtained for the enzymatic method. The dry chemistry method consumed a large part of its error budget due to calibration bias. Despite the European IVD directive and the growing needs for creatinine standardization, an unacceptable inter-laboratory variation was observed, which was mainly due to calibration differences. The calibration variation has major clinical consequences, in particular in pediatrics, where reference ranges for serum and plasma creatinine are low, and in the estimation of glomerular filtration rate.

  3. Adding value to daily chest X-rays in the ICU through education, restricted daily orders and indication-based prompting.

    PubMed

    Keveson, Benjamin; Clouser, Ryan D; Hamlin, Mark P; Stevens, Pamela; Stinnett-Donnelly, Justin M; Allen, Gilman B

    2017-01-01

    Chest X-rays (CXRs) are traditionally obtained daily in all patients on invasive mechanical ventilation (IMV) in the intensive care unit (ICU). We sought to reduce overutilisation of CXRs obtained in the ICU, using a multifaceted intervention to eliminate automated daily studies. We first educated ICU staff about the low diagnostic yield of automated daily CXRs, then removed the 'daily' option from the electronic health records-based ordering system, and added a query (CXR indicated or not indicated) to the ICU daily rounding checklist to prompt a CXR order when clinically warranted. We built a report from billing codes, focusing on all CXRs obtained on IMV census days in the medical (MICU) and surgical (SICU) ICUs, excluding the day of admission and days that a procedure warranting CXR was performed. This generated the number of CXRs obtained every 1000 'included' ventilator days (IVDs), the latter defined as not having an 'absolute' clinical indication for CXR. The average monthly number of CXRs on an IVD decreased from 919±90 (95% CI 877 to 963) to 330±87 (95% CI 295 to 354) per 1000 IVDs in the MICU, and from 995±69 (95% CI 947 to 1055) to 649±133 (95% CI 593 to 697) in the SICU. This yielded an estimated 1830 to 2066 CXRs avoided over 2 years and an estimated annual savings of $191 600 to $224 200. There was no increase in reported adverse events. ICUs can safely transition to a higher value strategy of indication-based chest imaging by educating staff, eliminating the 'daily' order option and adding a simplified prompt to avoid missing clinically indicated CXRs.

  4. Expression and characterization of constitutive heat shock protein 70.1 (HSPA-1A) gene in in vitro produced and in vivo-derived buffalo (Bubalus bubalis) embryos.

    PubMed

    Sharma, G T; Nath, A; Prasad, S; Singhal, S; Singh, N; Gade, N E; Dubey, P K; Saikumar, G

    2012-12-01

    Cells are blessed with a group of stress protector molecules known as heat shock proteins (HSPs), amongst them HSP70, encoded by HSPA-1A gene, is most abundant and highly conserved protein. Variety of stresses hampers the developmental competence of embryos under in vivo and in vitro conditions. Present work was designed to study the quantitative expression of HSPA-1A mRNA in immature oocytes (IMO), matured oocytes (MO), in vitro produced (IVP) and in vivo-derived (IVD) buffalo embryos to assess the level of stress to which embryos are exposed under in vivo and in vitro culture conditions. Further, HSPA-1A gene sequence was analysed to determine its homology with other mammalian sequences. The mRNA expression analysis was carried out on 72 oocytes (40 IMO; 32 MO), 76 IVP and 55 IVD buffalo embryos. Expression of HSPA-1A was found in oocytes and throughout the developmental stages of embryos examined irrespective of the embryo source; however, higher (p < 0.05) expression was observed in 8-16 cell, morula and blastocyst stages of IVP embryos as compared to IVD embryos. Phylogenetic analysis of bubaline HSPA-1A revealed that it shares 91-98% identity with other mammalian sequences. It can be concluded that higher level of HSPA-1A mRNA in IVP embryos in comparison with in vivo-derived embryos is an indicator of cellular stress in IVP system. This study suggests need for further optimization of in vitro culture system in which HSPA-1A gene could be used as a stress biomarker during pre-implantation development. © 2012 Blackwell Verlag GmbH.

  5. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science. © 2016 Wiley Periodicals, Inc.

  6. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  7. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  8. Towards organ printing: engineering an intra-organ branched vascular tree

    PubMed Central

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2013-01-01

    Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061

  9. Transplantation of Tissue-Engineered Cartilage in an Animal Model (Xenograft and Autograft): Construct Validation.

    PubMed

    Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi

    2015-01-01

    Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.

  10. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    PubMed

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  11. Tissue engineering in urethral reconstruction—an update

    PubMed Central

    Mangera, Altaf; Chapple, Christopher R

    2013-01-01

    The field of tissue engineering is rapidly progressing. Much work has gone into developing a tissue engineered urethral graft. Current grafts, when long, can create initial donor site morbidity. In this article, we evaluate the progress made in finding a tissue engineered substitute for the human urethra. Researchers have investigated cell-free and cell-seeded grafts. We discuss different approaches to developing these grafts and review their reported successes in human studies. With further work, tissue engineered grafts may facilitate the management of lengthy urethral strictures requiring oral mucosa substitution urethroplasty. PMID:23042444

  12. 45 CFR 303.100 - Procedures for income withholding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND... employer, whether the noncustodial parent has access to health insurance coverage at reasonable cost and, if so, the health insurance policy information. (b) Immediate withholding on IV-D cases. (1) In the...

  13. 45 CFR 302.39 - Standards for program operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 302.39 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND... provide that the IV-D agency will comply with the standards for program operation and the organizational...

  14. Adipose and mammary epithelial tissue engineering.

    PubMed

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  15. Adipose and mammary epithelial tissue engineering

    PubMed Central

    Zhu, Wenting; Nelson, Celeste M.

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872

  16. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    PubMed Central

    Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174

  17. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  18. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  19. The rise in caesarean birth rate in Sagamu, Nigeria: reflection of changes in obstetric practice.

    PubMed

    Oladapo, O T; Sotunsa, J O; Sule-Odu, A O

    2004-06-01

    A retrospective and comparative study of women delivered by caesarean section over two different 3-year periods was conducted at Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria. The caesarean section rate (CSR) increased from 10.3% in 1989-1991 to 23.1% in 2000-2003. The most frequent indication in both periods was different: prolonged/obstructed labour (20.0%) in 1989-1991 and antepartum haemorrhage (14.9%) in 2000-2003. Malpresentation, antepartum haemorrhage and pre-eclampsia/eclampsia were responsible for 51.7% of the difference in the CSR recorded between both periods. The CSR rose from 13.3% to 25.0% while the instrumental vaginal delivery (IVD) rate decreased significantly by 11.4% among the nulliparous women between the periods. Increase in CSR can be attributed mainly to reduction in IVD rate and alteration in the management of labour complications and induction policy. Strategies to reduce the CSR should cut across all indications and focus on encouraging instrumental vaginal deliveries, especially among nulliparous women.

  20. A pilot study of nimotuzumab combined with cisplatin and 5-FU in patients with advanced esophageal squamous cell carcinoma

    PubMed Central

    Ling, Yang; Chen, Jia; Tao, Min; Chu, Xiaoyuan; Zhang, Xizhi

    2012-01-01

    Objective To observe the short-term effect and adverse reaction of Nimotuzumab in combination with chemotherapy on advanced esophageal squamous cell carcinoma (ESCC). Method 19 patients were treated with the following protocol: Nimotuzumab 400mg/time/week in the 1st week, 200mg/time/week from the 2nd to 8th week, intravenous drip (IVD); Cisplatin 80 mg/m2, IVD, 4 weeks a cycle and repeated again; 5-FU 750 mg/m2, continuous 24-hours pump-in × 5 days, 4 weeks a cycle and repeated again. Result 16 of all 19 patients can be evaluated. After treatment, RP is 42.1% (95% CI, 19.9-64.3%) and DCR is 68.4%; the main side effects include arrest of bone marrow, gastrointestinal reactions, asthenia, etc. Conclusion Nimotuzumab in combination with cisplatin/5-FU regimens in patients with advanced ESCC is safe and effective, which deserves a further expanded sample research. PMID:22295168

  1. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    PubMed Central

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  2. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    ERIC Educational Resources Information Center

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  3. A Cost-Minimization Analysis of Tissue-Engineered Constructs for Corneal Endothelial Transplantation

    PubMed Central

    Tan, Tien-En; Peh, Gary S. L.; George, Benjamin L.; Cajucom-Uy, Howard Y.; Dong, Di; Finkelstein, Eric A.; Mehta, Jodhbir S.

    2014-01-01

    Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses. PMID:24949869

  4. A cost-minimization analysis of tissue-engineered constructs for corneal endothelial transplantation.

    PubMed

    Tan, Tien-En; Peh, Gary S L; George, Benjamin L; Cajucom-Uy, Howard Y; Dong, Di; Finkelstein, Eric A; Mehta, Jodhbir S

    2014-01-01

    Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses.

  5. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China.

    PubMed

    Zou, Qingsong; Fu, Qiang

    2018-04-01

    Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.

  6. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    PubMed

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  8. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.

    PubMed

    Zhang, Wujie; Choi, Jung K; He, Xiaoming

    2017-02-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.

  9. Tissue engineering in dentistry.

    PubMed

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the interests of the patients who could possibly be helped by applying stem cell-based therapies should be carefully assessed against current ethical concerns regarding the moral status of the early embryo. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The role of mechanical loading in ligament tissue engineering.

    PubMed

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  11. Cell-scaffold interactions in the bone tissue engineering triad.

    PubMed

    Murphy, Ciara M; O'Brien, Fergal J; Little, David G; Schindeler, Aaron

    2013-09-20

    Bone tissue engineering has emerged as one of the leading fields in tissue engineering and regenerative medicine. The success of bone tissue engineering relies on understanding the interplay between progenitor cells, regulatory signals, and the biomaterials/scaffolds used to deliver them--otherwise known as the tissue engineering triad. This review will discuss the roles of these fundamental components with a specific focus on the interaction between cell behaviour and scaffold structural properties. In terms of scaffold architecture, recent work has shown that pore size can affect both cell attachment and cellular invasion. Moreover, different materials can exert different biomechanical forces, which can profoundly affect cellular differentiation and migration in a cell type specific manner. Understanding these interactions will be critical for enhancing the progress of bone tissue engineering towards clinical applications.

  12. Hydrogel scaffolds for tissue engineering: Progress and challenges

    PubMed Central

    El-Sherbiny, Ibrahim M.; Yacoub, Magdi H.

    2013-01-01

    Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described. PMID:24689032

  13. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    PubMed

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  14. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs.

    PubMed

    An, Jia; Chua, Chee Kai; Yu, Ting; Li, Huaqiong; Tan, Lay Poh

    2013-04-01

    Nanobiomaterials, a field at the interface of biomaterials and nanotechnologies, when applied to tissue engineering applications, are usually perceived to resemble the cell microenvironment components or as a material strategy to instruct cells and alter cell behaviors. Therefore, they provide a clear understanding of the relationship between nanotechnologies and resulting cellular responses. This review will cover recent advances in nanobiomaterial research for applications in tissue engineering. In particular, recent developments in nanofibrous scaffolds, nanobiomaterial composites, hydrogel systems, laser-fabricated nanostructures and cell-based bioprinting methods to produce scaffolds with nanofeatures for tissue engineering are discussed. As in native niches of cells, where nanofeatures are constantly interacting and influencing cellular behavior, new generations of scaffolds will need to have these features to enable more desirable engineered tissues. Moving forward, tissue engineering will also have to address the issues of complexity and organization in tissues and organs.

  15. Functional and morphological ultrasonic biomicroscopy for tissue engineers

    NASA Astrophysics Data System (ADS)

    Mallidi, S.; Aglyamov, S. R.; Karpiouk, A. B.; Park, S.; Emelianov, S. Y.

    2006-03-01

    Tissue engineering is an interdisciplinary field that combines various aspects of engineering and life sciences and aims to develop biological substitutes to restore, repair or maintain tissue function. Currently, the ability to have quantitative functional assays of engineered tissues is limited to existing invasive methods like biopsy. Hence, an imaging tool for non-invasive and simultaneous evaluation of the anatomical and functional properties of the engineered tissue is needed. In this paper we present an advanced in-vivo imaging technology - ultrasound biomicroscopy combined with complementary photoacoustic and elasticity imaging techniques, capable of accurate visualization of both structural and functional changes in engineered tissues, sequential monitoring of tissue adaptation and/or regeneration, and possible assistance of drug delivery and treatment planning. The combined imaging at microscopic resolution was evaluated on tissue mimicking phantoms imaged with 25 MHz single element focused transducer. The results of our study demonstrate that the ultrasonic, photoacoustic and elasticity images synergistically complement each other in detecting features otherwise imperceptible using the individual techniques. Finally, we illustrate the feasibility of the combined ultrasound, photoacoustic and elasticity imaging techniques in accurately assessing the morphological and functional changes occurring in engineered tissue.

  16. Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering

    PubMed Central

    Singh, Milind; Berkland, Cory

    2008-01-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field—biomimetic, interfacial, and functional tissue engineering—by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell–protein–biomaterial interactions in a more native tissue–like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches. PMID:18803499

  17. Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update.

    PubMed

    Zeineddine, Hussein A; Frush, Todd J; Saleh, Zeina M; El-Othmani, Mouhanad M; Saleh, Khaled J

    2017-07-01

    Research in tissue engineering has undoubtedly achieved significant milestones in recent years. Although it is being applied in several disciplines, tissue engineering's application is particularly advanced in orthopedic surgery and in degenerative joint diseases. The literature is full of remarkable findings and trials using tissue engineering in articular cartilage disease. With the vast and expanding knowledge, and with the variety of techniques available at hand, the authors aimed to review the current concepts and advances in the use of cell sources in articular cartilage tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. 45 CFR 301.1 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that Act. Agent of a Child means a caretaker relative having custody of or responsibility for the child... or the child's resident parent to provide legal representation to the child or resident parent... IV-D. Federal PLS means the Parent Locator Service operated by the Office of Child Support...

  19. 45 CFR 301.1 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that Act. Agent of a Child means a caretaker relative having custody of or responsibility for the child... or the child's resident parent to provide legal representation to the child or resident parent... IV-D. Federal PLS means the Parent Locator Service operated by the Office of Child Support...

  20. 45 CFR 301.1 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that Act. Agent of a Child means a caretaker relative having custody of or responsibility for the child... or the child's resident parent to provide legal representation to the child or resident parent... IV-D. Federal PLS means the Parent Locator Service operated by the Office of Child Support...

  1. 45 CFR 305.65 - State cooperation in audit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAM PERFORMANCE MEASURES, STANDARDS, FINANCIAL INCENTIVES, AND PENALTIES § 305.65 State cooperation in... submitted on the Federal statistical and financial reports that will be used to calculate the State's performance. The State shall also make available personnel associated with the State's IV-D program to provide...

  2. 45 CFR 303.7 - Provision of services in interstate IV-D cases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES STANDARDS FOR PROGRAM OPERATIONS § 303.7 Provision of services in interstate IV... central registry responsible for receiving, distributing and responding to inquiries on all incoming...

  3. Biomarkers of Spontaneous Recovery from Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2017-10-01

    this was continued challenges with recruitment and retention, which we hope will be mitigated by our inclusion of additional sites of excellence from...Disc. Disability and pain from degenerated intervertebral discs (IVD) affects >40% of U.S adults, costs >$100 billion annually and the etiology is

  4. 45 CFR 304.30 - Public sources of State's share.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... funds, other than those derived from private resources, used by the IV-D agency for its child support... 304.30 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND...

  5. 45 CFR 304.15 - Cost allocation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT... FEDERAL FINANCIAL PARTICIPATION § 304.15 Cost allocation. A State agency in support of its claims under title IV-D of the Social Security Act must have an approved cost allocation plan on file with the...

  6. 45 CFR 303.0 - Scope and applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 303.0 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND... prescribes: (a) The minimum organizational and staffing requirements the State IV-D agency must meet in...

  7. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    PubMed

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-06

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Substance P Receptor Antagonist Suppresses Inflammatory Cytokine Expression in Human Disc Cells.

    PubMed

    Kepler, Christopher K; Markova, Dessislava Z; Koerner, John D; Mendelis, Joseph; Chen, Chiu-Ming; Vaccaro, Alexander R; Risbud, Makarand V; Albert, Todd J; Anderson, D Greg

    2015-08-15

    Laboratory study. To evaluate whether blockade of the Substance P (SP) NK1R attenuates its proinflammatory effect on human intervertebral disc cells (IVD), and to evaluate the signaling pathways associated with SP. SP and its receptors are expressed in human IVD cells, and cause upregulation of inflammatory mediators; however, the effects of blocking these receptors have not been studied in human IVD cells. Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were expanded in monolayer, and then suspended in alginate beads. The alginate beads were treated with culture medium first containing a high affinity NK1R antagonist (L-760735) at different concentrations, and then with medium containing both NK1R antagonist and SP at 2 concentrations. Ribonucleic acid was isolated and transcribed into cDNA. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate expression of interleukin (IL)-1β, IL-6, and IL-8. Western blot analysis was performed to examine levels of the phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB p65). The cells were pretreated with specific inhibitors of p38 (SB203580), ERK1/2 (PD98059), and p65 (SM7368) and then stimulated with SP. We detected expression of NK1R, neurokinin receptor 2 (NK2R), and neurokinin receptor 3 (NK3R) in AF and NP cells. Treatment of disc cells with the NK1R antagonist was able to suppress expression of IL-1β, IL-6, and IL-8 in a dose-dependent manner. SP stimulation increased phosphorylation of p38-MAPK and ERK1/2, but not of NFκB p65. This indicates that p38-MAPK and ERK1/2 control SP-induced cytokine expression independently from NF-kB p65. Inhibition of p38 and ERK1/2 activation reduced SP-induced IL-6 production in human disc cells. NK1R is responsible for the proinflammatory effect of SP on IVD cells and this effect can be blocked by preventing binding of SP to NK1R. This study shows for the first time that SP mediates signaling in disc cells through NK1R and that SP activates the proinflammatory p38-MAPK and ERK1/2 pathways. 4.

  9. Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering

    PubMed Central

    Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2010-01-01

    The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546

  10. MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING

    PubMed Central

    Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.

    2009-01-01

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239

  11. The self-assembling process and applications in tissue engineering

    PubMed Central

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  12. Biomaterials for tissue engineering applications.

    PubMed

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  13. Recent insights on applications of pullulan in tissue engineering.

    PubMed

    Singh, Ram Sarup; Kaur, Navpreet; Rana, Vikas; Kennedy, John F

    2016-11-20

    Tissue engineering is a recently emerging line of act which assists the regeneration of damaged tissues, unable to self-repair themselves and in turn, enhances the natural healing potential of patients. The repair of injured tissue can be induced with the help of some artificially created polymer scaffolds for successful tissue regeneration. The pullulan composite scaffolds can be used to enhance the proliferation and differentiation of cells for tissue regeneration. The unique pattern of pullulan with α-(1→4) and α-(1→6) linkages along with the presence of nine hydroxyl groups on its surface, endows the polymer with distinctive physical features required for tissue engineering. Pullulan can be used for vascular engineering, bone repair and skin tissue engineering. Pullulan composite scaffolds can also be used for treatment of injured femoral condyle bone, skull bone and full thickness skin wound of murine models, transversal mandibular and tibial osteotomy in goat, etc. This review article highlights the latest developments on applications of pullulan and its derivatives in tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    PubMed

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  15. Self-Organization and the Self-Assembling Process in Tissue Engineering

    PubMed Central

    Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.

    2015-01-01

    In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238

  16. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds

    PubMed Central

    Gaihre, Bipin; Uswatta, Suren; Jayasuriya, Ambalangodage C.

    2017-01-01

    Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies. PMID:29156629

  17. Tissue-engineered oral mucosa grafts for intraoral lining reconstruction of the maxilla and mandible with a fibula flap.

    PubMed

    Sieira Gil, Ramón; Pagés, Carles Martí; Díez, Eloy García; Llames, Sara; Fuertes, Ada Ferrer; Vilagran, Jesús Lopez

    2015-01-01

    Many types of soft tissue grafts have been used for grafting or prelaminating bone flaps for intraoral lining reconstruction. The best results are achieved when prelaminating free flaps with mucosal grafts. We suggest a new approach to obtain keratinized mucosa over a fibula flap using full-thickness, engineered, autologous oral mucosa. We report on a pilot study for grafting fibula flaps for mandibular and maxilla reconstruction with full-thickness tissue-engineered autologous oral mucosa. We describe 2 different techniques: prelaminating the fibula flap and second-stage grafting of the fibula after mandibular reconstruction. Preparation of the full-thickness tissue-engineered oral mucosa is also described. The clinical outcome of the tissue-engineered intraoral lining reconstruction and response after implant placement are reported. A peri-implant granulation tissue response was not observed when prelaminating the fibula, and little response was observed when intraoral grafting was performed. Tissue engineering represents an alternative method by which to obtain sufficient autologous tissue for reconstructing mucosal oral defects. The full-thickness engineered autologous oral mucosa offers definite advantages in terms of reconstruction planning, donor site morbidity, and quality of the intraoral soft tissue reconstruction, thereby restoring native tissue and avoiding peri-implant tissue complications. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Tissue engineering: confronting the transplantation crisis.

    PubMed

    Nerem, R M

    2000-01-01

    Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.

  19. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.

    PubMed

    Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin

    2014-11-01

    Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

  20. Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.

    PubMed

    Lu, Helen H; Spalazzi, Jeffrey P

    2009-07-01

    The emphasis in the field of orthopaedic tissue engineering is on imparting biomimetic functionality to tissue engineered bone or soft tissue grafts and enabling their translation to the clinic. A significant challenge in achieving extended graft functionality is engineering the biological fixation of these grafts with each other as well as with the host environment. Biological fixation will require re-establishment of the structure-function relationship inherent at the native soft tissue-to-bone interface on these tissue engineered grafts. To this end, strategic biomimicry must be incorporated into advanced scaffold design. To facilitate integration between distinct tissue types (e.g., bone with soft tissues such as cartilage, ligament, or tendon), a stratified or multi-phasic scaffold with distinct yet continuous tissue regions is required to pre-engineer the interface between bone and soft tissues. Using the ACL-to-bone interface as a model system, this review outlines the strategies for stratified scaffold design for interface tissue engineering, focusing on identifying the relevant design parameters derived from an understanding of the structure-function relationship inherent at the soft-to-hard tissue interface. The design approach centers on first addressing the challenge of soft tissue-to-bone integration ex vivo, and then subsequently focusing on the relatively less difficult task of bone-to-bone integration in vivo. In addition, we will review stratified scaffold design aimed at exercising spatial control over heterotypic cellular interactions, which are critical for facilitating the formation and maintenance of distinct yet continuous multi-tissue regions. Finally, potential challenges and future directions in this emerging area of advanced scaffold design will be discussed.

  1. Real-time quantitation of internal metabolic activity of three-dimensional engineered tissues using an oxygen microelectrode and optical coherence tomography.

    PubMed

    Kagawa, Yuki; Haraguchi, Yuji; Tsuneda, Satoshi; Shimizu, Tatsuya

    2017-05-01

    Recent progress in tissue engineering technology has enabled us to develop thick tissue constructs that can then be transplanted in regenerative therapies. In clinical situations, it is vital that the engineered tissues to be implanted are safe and functional before use. However, there is currently a limited number of studies on real-time quality evaluation of thick living tissue constructs. Here we developed a system for quantifying the internal activities of engineered tissues, from which we can evaluate its quality in real-time. The evaluation was achieved by measuring oxygen concentration profiles made along the vertical axis and the thickness of the tissues estimated from cross-sectional images obtained noninvasively by an optical coherence tomography system. Using our novel system, we obtained (i) oxygen concentration just above the tissues, (ii) gradient of oxygen along vertical axis formed above the tissues within culture medium, and (iii) gradient of oxygen formed within the tissues in real-time. Investigating whether these three parameters could be used to evaluate engineered tissues during culturing, we found that only the third parameter was a good candidate. This implies that the activity of living engineered tissues can be monitored in real-time by measuring the oxygen gradient within the tissues. The proposed measuring strategy can be applied to developing more efficient culturing methods to support the fabrication of engineered thick tissues, as well as providing methods to confirm the quality in real-time. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 855-864, 2017. © 2015 Wiley Periodicals, Inc.

  2. Cells for tissue engineering of cardiac valves.

    PubMed

    Jana, Soumen; Tranquillo, Robert T; Lerman, Amir

    2016-10-01

    Heart valve tissue engineering is a promising alternative to prostheses for the replacement of diseased or damaged heart valves, because tissue-engineered valves have the ability to remodel, regenerate and grow. To engineer heart valves, cells are harvested, seeded onto or into a three-dimensional (3D) matrix platform to generate a tissue-engineered construct in vitro, and then implanted into a patient's body. Successful engineering of heart valves requires a thorough understanding of the different types of cells that can be used to obtain the essential phenotypes that are expressed in native heart valves. This article reviews different cell types that have been used in heart valve engineering, cell sources for harvesting, phenotypic expression in constructs and suitability in heart valve tissue engineering. Natural and synthetic biomaterials that have been applied as scaffold systems or cell-delivery platforms are discussed with each cell type. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. "Deep-media culture condition" promoted lumen formation of endothelial cells within engineered three-dimensional tissues in vitro.

    PubMed

    Sekiya, Sachiko; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2011-03-01

    In the field of tissue engineering, the induction of microvessels into tissues is an important task because of the need to overcome diffusion limitations of oxygen and nutrients within tissues. Powerful methods to create vessels in engineered tissues are needed for creating real living tissues. In this study, we utilized three-dimensional (3D) highly cell dense tissues fabricated by cell sheet technology. The 3D tissue constructs are close to living-cell dense tissue in vivo. Additionally, creating an endothelial cell (EC) network within tissues promoted neovascularization promptly within the tissue after transplantation in vivo. Compared to the conditions in vivo, however, common in vitro cell culture conditions provide a poor environment for creating lumens within 3D tissue constructs. Therefore, for determining adequate conditions for vascularizing engineered tissue in vitro, our 3D tissue constructs were cultured under a "deep-media culture conditions." Compared to the control conditions, the morphology of ECs showed a visibly strained cytoskeleton, and the density of lumen formation within tissues increased under hydrostatic pressure conditions. Moreover, the increasing expression of vascular endothelial cadherin in the lumens suggested that the vessels were stabilized in the stimulated tissues compared with the control. These findings suggested that deep-media culture conditions improved lumen formation in engineered tissues in vitro.

  4. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.

    PubMed

    Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-12-01

    Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.

  5. Recent tissue engineering advances for the treatment of temporomandibular joint disorders

    PubMed Central

    Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-01-01

    Temporomandibular disorders (TMD) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although, current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ. PMID:27704395

  6. Myocardial Tissue Engineering for Regenerative Applications.

    PubMed

    Fujita, Buntaro; Zimmermann, Wolfram-Hubertus

    2017-09-01

    This review provides an overview of the current state of tissue-engineered heart repair with a special focus on the anticipated modes of action of tissue-engineered therapy candidates and particular implications as to transplant immunology. Myocardial tissue engineering technologies have made tremendous advances in recent years. Numerous different strategies are under investigation and have reached different stages on their way to clinical translation. Studies in animal models demonstrated that heart repair requires either remuscularization by delivery of bona fide cardiomyocytes or paracrine support for the activation of endogenous repair mechanisms. Tissue engineering approaches result in enhanced cardiomyocyte retention and sustained remuscularization, but may also be explored for targeted paracrine or mechanical support. Some of the more advanced tissue engineering approaches are already tested clinically; others are at late stages of pre-clinical development. Process optimization towards cGMP compatibility and clinical scalability of contractile engineered human myocardium is an essential step towards clinical translation. Long-term allograft retention can be achieved under immune suppression. HLA matching may be an option to enhance graft retention and reduce the need for comprehensive immune suppression. Tissue-engineered heart repair is entering the clinical stage of the translational pipeline. Like in any effective therapy, side effects must be anticipated and carefully controlled. Allograft implantation under immune suppression is the most likely clinical scenario. Strategies to overcome transplant rejection are evolving and may further boost the clinical acceptance of tissue-engineered heart repair.

  7. The potential of tissue engineering for developing alternatives to animal experiments: a systematic review.

    PubMed

    de Vries, Rob B M; Leenaars, Marlies; Tra, Joppe; Huijbregtse, Robbertjan; Bongers, Erik; Jansen, John A; Gordijn, Bert; Ritskes-Hoitinga, Merel

    2015-07-01

    An underexposed ethical issue raised by tissue engineering is the use of laboratory animals in tissue engineering research. Even though this research results in suffering and loss of life in animals, tissue engineering also has great potential for the development of alternatives to animal experiments. With the objective of promoting a joint effort of tissue engineers and alternative experts to fully realise this potential, this study provides the first comprehensive overview of the possibilities of using tissue-engineered constructs as a replacement of laboratory animals. Through searches in two large biomedical databases (PubMed, Embase) and several specialised 3R databases, 244 relevant primary scientific articles, published between 1991 and 2011, were identified. By far most articles reviewed related to the use of tissue-engineered skin/epidermis for toxicological applications such as testing for skin irritation. This review article demonstrates, however, that the potential for the development of alternatives also extends to other tissues such as other epithelia and the liver, as well as to other fields of application such as drug screening and basic physiology. This review discusses which impediments need to be overcome to maximise the contributions that the field of tissue engineering can make, through the development of alternative methods, to the reduction of the use and suffering of laboratory animals. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Vascularized Bone Tissue Engineering: Approaches for Potential Improvement

    PubMed Central

    Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing

    2012-01-01

    Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012

  9. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.

    PubMed

    Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C

    2016-01-15

    Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tissue-engineered vascularized bone grafts: basic science and clinical relevance to trauma and reconstructive microsurgery.

    PubMed

    Johnson, Elizabeth O; Troupis, Theodore; Soucacos, Panayotis N

    2011-03-01

    Bone grafts are an important part of orthopaedic surgeon's armamentarium. Despite well-established bone-grafting techniques, large bone defects still represent a challenge. Efforts have therefore been made to develop osteoconductive, osteoinductive, and osteogenic bone-replacement systems. The long-term clinical goal in bone tissue engineering is to reconstruct bony tissue in an anatomically functional three-dimensional morphology. Current bone tissue engineering strategies take into account that bone is known for its ability to regenerate following injury, and for its intrinsic capability to re-establish a complex hierarchical structure during regeneration. Although the tissue engineering of bone for the reconstruction of small to moderate sized bone defects technically feasible, the reconstruction of large defects remains a daunting challenge. The essential steps towards optimized clinical application of tissue-engineered bone are dependent upon recent advances in the area of neovascularization of the engineered construct. Despite these recent advances, however, a gap from bench to bedside remains; this may ultimately be bridged by a closer collaboration between basic scientists and reconstructive surgeons. The aim of this review is to introduce the basic principles of tissue engineering of bone, outline the relevant bone physiology, and discuss the recent concepts for the induction of vascularization in engineered bone tissue. Copyright © 2011 Wiley-Liss, Inc.

  11. Interactive Video and Informal Learning Environments.

    ERIC Educational Resources Information Center

    Morrissey, Kristine A.

    The Michigan State University Museum used an interactive videodisc (IVD) as an introduction to a special exhibit, "Birds in Trouble in Michigan." The hardware components included a videodisc player, a microcomputer, a video monitor, and a mouse. Software included a HyperCard program and the videodisc "Audubon Society's VideoGuide to…

  12. 75 FR 5331 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... decision concerning the collection of information between 30 and 60 days after publication of this document... who are delinquent in making child support payments. Respondents: State IV-D Agencies. Annual Burden... 0.14 393.12 Certification Letter 54 1 0.40 21.60 Federal Offset Processing Menu Screens--State 176...

  13. 75 FR 82406 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... interstate forms. 45 CFR 303.7 also requires CSE IV-D agencies to transmit child support case information on standard interstate forms when referring cases to other States and Territories for processing. During the... instructions have been clarified by highlighting policy information that was included with the instructions so...

  14. 45 CFR 302.14 - Fiscal policies and accountability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Fiscal policies and accountability. 302.14 Section... HUMAN SERVICES STATE PLAN REQUIREMENTS § 302.14 Fiscal policies and accountability. The State plan shall provide that the IV-D agency, in discharging its fiscal accountability, will maintain an accounting system...

  15. 45 CFR 305.62 - Disregard of a failure which is of a technical nature.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES PROGRAM PERFORMANCE MEASURES, STANDARDS, FINANCIAL INCENTIVES, AND... adversely affect the performance of the State's IV-D program or does not adversely affect the determination of the level of the State's paternity establishment or other performance measures percentages. ...

  16. 75 FR 69682 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... OMB Review; Comment Request Title: Income Withholding for Support (IWO). OMB No.: 0970-0154. Description Use of the OMB-approved Income Withholding for Support form falls under the authority of section... the employer for income withholding in IV-D cases shall be in a standard format prescribed by the...

  17. 75 FR 57802 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... OMB Review; Comment Request Title: Income Withholding for Support (IWO). OMB No.: 0970-0154. Description Use of the OMB-approved Income Withholding for Support form falls under the authority of section... the employer for income withholding in IV-D cases shall be in a standard format prescribed by the...

  18. 76 FR 27331 - Draft Guidance for Industry and Food and Drug Administration Staff; Establishing the Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Characteristics of In Vitro Diagnostic Devices for Chlamydia Trachomatis and/or Neisseria Gonorrhoeae: Screening... entitled ``Establishing the Performance Characteristics of In Vitro Diagnostic Devices for Chlamydia... clinical performance of in vitro diagnostic devices (IVDs) intended for C. trachomatis and/or N...

  19. 45 CFR 95.601 - Scope and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Scope and applicability. 95.601 Section 95.601 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GENERAL ADMINISTRATION... IV-B, IV-D, IV-E, XIX or XXI of the Social Security Act. The conditions of approval of this subpart...

  20. 45 CFR 304.15 - Cost allocation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true Cost allocation. 304.15 Section 304.15 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT... title IV-D of the Social Security Act must have an approved cost allocation plan on file with the...

  1. 45 CFR 304.15 - Cost allocation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Cost allocation. 304.15 Section 304.15 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT... title IV-D of the Social Security Act must have an approved cost allocation plan on file with the...

  2. 45 CFR 95.601 - Scope and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Scope and applicability. 95.601 Section 95.601 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GENERAL ADMINISTRATION... IV-B, IV-D, IV-E, XIX or XXI of the Social Security Act. The conditions of approval of this subpart...

  3. 45 CFR 1355.53 - Conditions for approval of funding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... title IV-A, (ii) National Child Abuse and Neglect Data Systems (NCANDS), (iii) Systems operated under title XIX, and (iv) Systems operated under title IV-D; (3) Support the provisions of section 422(a) by... system, which is effective and efficient, to improve the program management and administration of the...

  4. Special Advanced Studies for Pollution Prevention Delivery Order 0065: The Monitor - Winter 2001

    DTIC Science & Technology

    2001-04-01

    were selected based on previous efforts. These alternatives included Alodine 2000, NCS Rainseal, Sanchem Full Process, and trivalent chromium . CTC’s IVD...12 Alternatives for Chromium Electroplating: ElectroSpark Deposition .................. 13...Requirements ............ 15 Aluminum Substitution for Cadmium/ Chromium ............................................... 16 Review of Cadmium Alternatives

  5. 45 CFR 304.50 - Treatment of program income.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Treatment of program income. 304.50 Section 304.50 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT... FEDERAL FINANCIAL PARTICIPATION § 304.50 Treatment of program income. The IV-D agency must exclude from...

  6. 45 CFR 301.0 - Scope and applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 301.0 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND.... This part deals with the administration of title IV-D of the Social Security Act by the Federal...

  7. 45 CFR 304.50 - Treatment of program income.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Treatment of program income. 304.50 Section 304.50 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT... FEDERAL FINANCIAL PARTICIPATION § 304.50 Treatment of program income. The IV-D agency must exclude from...

  8. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  9. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    PubMed

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic

    PubMed Central

    Shearn, Jason T.; Kinneberg, Kirsten R.C.; Dyment, Nathaniel A.; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; Butler, David L.

    2013-01-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products. PMID:21625053

  11. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  12. Global tissue engineering trends. A scientometric and evolutive study.

    PubMed

    Santisteban-Espejo, Antonio; Campos, Fernando; Martin-Piedra, Laura; Durand-Herrera, Daniel; Moral-Munoz, Jose A; Campos, Antonio; Martin-Piedra, Miguel Angel

    2018-04-24

    Tissue engineering is defined as a multidisciplinary scientific discipline with the main objective to develop artificial bioengineered living tissues in order to regenerate damaged or lost tissues. Since its appearance in 1988, tissue engineering has globally spreaded in order to improve current therapeutical approaches, entailing a revolution in clinical practice. The aim of this study is to analyze global research trends on tissue engineering publications in order to realize the scenario of tissue engineering research from 1991 to 2016 by using document retrieval from Web of Science database and bibliometric analysis. Document type, language, source title, authorship, countries and filiation centers and citation count were evaluated in 31,859 documents. Obtained results suggest a great multidisciplinary role of tissue engineering due to a wide spectrum -up to 51- of scientific research areas identified in the corpus of literature, being predominant technological disciplines as Material Sciences or Engineering, followed by biological and biomedical areas, as Cell Biology, Biotechnology or Biochemistry. Distribution of authorship, journals and countries revealed a clear imbalance in which a minority is responsible of a majority of documents. Such imbalance is notorious in authorship, where a 0.3% of authors are involved in the half of the whole production.

  13. Biomimetic strategies for engineering composite tissues.

    PubMed

    Lee, Nancy; Robinson, Jennifer; Lu, Helen

    2016-08-01

    The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering

    PubMed Central

    Webber, Matthew J.; Khan, Omar F.; Sydlik, Stefanie A.; Tang, Benjamin C.; Langer, Robert

    2016-01-01

    Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine. PMID:25201605

  15. A perspective on the clinical translation of scaffolds for tissue engineering.

    PubMed

    Webber, Matthew J; Khan, Omar F; Sydlik, Stefanie A; Tang, Benjamin C; Langer, Robert

    2015-03-01

    Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.

  16. Cartilage tissue engineering approaches applicable in orthopaedic surgery: the past, the present, and the future.

    PubMed

    Khan, Wasim S; Hardingham, Timothy E

    2012-01-01

    Tissue is frequently damaged or lost in injury and disease. There has been an increasing interest in stem cell applications and tissue engineering approaches in surgical practice to deal with damaged or lost tissue. Although there have been developments in almost all surgical disciplines, the greatest advances are being made in orthopaedics, especially in cartilage repair. This is due to many factors including the familiarity with bone marrow derived mesenchymal stem cells and cartilage being a relatively simpler tissue to engineer. Unfortunately significant hurdles remain to be overcome in many areas before tissue engineering becomes more routinely used in clinical practice. In this paper we discuss the structure, function and embryology of cartilage and osteoarthritis. This is followed by a review of current treatment strategies for the repair of cartilage and the use of tissue engineering.

  17. Stem Cells in Skeletal Tissue Engineering: Technologies and Models

    PubMed Central

    Langhans, Mark T.; Yu, Shuting; Tuan, Rocky S.

    2017-01-01

    This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering is presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering. PMID:26423296

  18. 3D bioprinting for vascularized tissue fabrication

    PubMed Central

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  19. Microstructural Heterogeneity in Native and Engineered Fibrocartilage Directs Micromechanics and Mechanobiology

    PubMed Central

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2015-01-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994

  20. Mechanical design criteria for intervertebral disc tissue engineering.

    PubMed

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Expediting the transition from replacement medicine to tissue engineering.

    PubMed

    Coury, Arthur J

    2016-06-01

    In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

  2. Fixing Flawed Body Parts: Engineering New Tissues and Organs

    MedlinePlus

    ... 2015 Print this issue Fixing Flawed Body Parts Engineering New Tissues and Organs En español Send us ... ones. This type of research is called tissue engineering. Exciting advances continue to emerge in this fast- ...

  3. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    PubMed

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  4. Challenges in translating vascular tissue engineering to the pediatric clinic.

    PubMed

    Duncan, Daniel R; Breuer, Christopher K

    2011-10-14

    The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.

  5. Biological aspects of tissue-engineered cartilage.

    PubMed

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  6. Box 11: Tissue Engineering and Bioscience Methods Using Proton Beam Writing

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.

    Tissue engineering is a rapidly developing and highly interdisciplinary field that applies the principles of cell biology, engineering, and materials science to the culture of biological tissue. The artificially grown tissue then can be implanted directly into the body, or it can form part of a device that replaces organ functionality.

  7. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    PubMed

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Commercial considerations in tissue engineering

    PubMed Central

    Mansbridge, Jonathan

    2006-01-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024

  9. Commercial considerations in tissue engineering.

    PubMed

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  10. Branched-chain amino acids in metabolic signalling and insulin resistance.

    PubMed

    Lynch, Christopher J; Adams, Sean H

    2014-12-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.

  11. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    PubMed

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Vascularization strategies for tissue engineers.

    PubMed

    Dew, Lindsey; MacNeil, Sheila; Chong, Chuh Khiun

    2015-01-01

    All tissue-engineered substitutes (with the exception of cornea and cartilage) require a vascular network to provide the nutrient and oxygen supply needed for their survival in vivo. Unfortunately the process of vascular ingrowth into an engineered tissue can take weeks to occur naturally and during this time the tissues become starved of essential nutrients, leading to tissue death. This review initially gives a brief overview of the processes and factors involved in the formation of new vasculature. It then summarizes the different approaches that are being applied or developed to overcome the issue of slow neovascularization in a range of tissue-engineered substitutes. Some potential future strategies are then discussed.

  13. Regenerative endodontics as a tissue engineering approach: past, current and future.

    PubMed

    Malhotra, Neeraj; Mala, Kundabala

    2012-12-01

    With the reported startling statistics of high incidence of tooth decay and tooth loss, the current interest is focused on the development of alternate dental tissue replacement therapies. This has led to the application of dental tissue engineering as a clinically relevant method for the regeneration of dental tissues and generation of bioengineered whole tooth. Although, tissue engineering approach requires the three main key elements of stem cells, scaffold and morphogens, a conductive environment (fourth element) is equally important for successful engineering of any tissue and/or organ. The applications of this science has evolved continuously in dentistry, beginning from the application of Ca(OH)(2) in vital pulp therapy to the development of a fully functional bioengineered tooth (mice). Thus, with advances in basic research, recent reports and studies have shown successful application of tissue engineering in the field of dentistry. However, certain practical obstacles are yet to be overcome before dental tissue regeneration can be applied as evidence-based approach in clinics. The article highlights on the past achievements, current developments and future prospects of tissue engineering and regenerative therapy in the field of endodontics and bioengineered teeth (bioteeth). © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  14. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    PubMed

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  15. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  16. Fabrication of Novel Porous Chitosan Matrices as Scaffolds for Bone Tissue Engineering

    DTIC Science & Technology

    2005-01-01

    Tissue Engineering Tao Jianga, Cyril M. Pilaneb, Cato T. Laurencina’b"c’ * a Department of Chemical Engineering , University of Virginia, Charlottesville...Chair of Orthopaedic Surgery Professor of Biomedical and Chemical Engineering 400 Ray C. Hunt Drive, Suite 330 University of Virginia Charlottesville...an alternative therapeutic approach for skeletal regeneration. Tissue engineering has been defined as the application of biological, chemical , and

  17. New Methods in Tissue Engineering: Improved Models for Viral Infection.

    PubMed

    Ramanan, Vyas; Scull, Margaret A; Sheahan, Timothy P; Rice, Charles M; Bhatia, Sangeeta N

    2014-11-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo-like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.

  18. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  19. Current progress in 3D printing for cardiovascular tissue engineering.

    PubMed

    Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K

    2015-03-16

    3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.

  20. Nanotechnology in the Regeneration of Complex Tissues

    PubMed Central

    Cassidy, John W.

    2015-01-01

    Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds. PMID:26097381

Top