NASA Astrophysics Data System (ADS)
Hernandez Perez, P. A.; Mori, T.; Notsu, K.; Morita, M.; Padron, E.; Onizawa, S.; Melián, G.; Sumino, H.; Asensio-Ramos, M.; Nogami, K.; Yamane, K.; Perez, N. M.
2016-12-01
degassing, and the observed change in the trend may indicate an increase of the seismic-volcanic activity in the next future. Therefore, performing regularly soil CO2 efflux surveys seems to be an effective geochemical surveillance tool Izu-Oshima volcano in order to detect a change in the tendency of the CO2 emission rate in case of future episodes of volcanic unrest.
Self-potential characteristics of the dormant period of Izu-Oshima volcano
NASA Astrophysics Data System (ADS)
Matsushima, Nobuo; Nishi, Yuji; Onizawa, Shin'ya; Takakura, Shinichi; Hase, Hideaki; Ishido, Tsuneo
2017-12-01
Continuous self-potential (SP) monitoring has been conducted at Izu-Oshima volcano to detect signals resulting from volcanic activity since the installation of an SP monitoring network in March 2006. Since the installation, annual variations of up to 100 mV have been recorded. If we exclude these annual variations, temporal variations in SP do not show notable changes. This is consistent with the volcano being in a state of quiescence during the measurement period. The annual variations have the different amplitudes and mean levels between stations. To investigate the causes of these annual variations, we carried out numerical simulations of SP generation associated with downward meteoric water flow through electrokinetic coupling in a 550 m thick unsaturated layer. The results show that the vertical electric potential gradient varies with changes in liquid-phase saturation in the unsaturated layer. These changes are caused by variations in the rate of meteoric water percolation. This, in turn, correlates with fluctuations in daily precipitation, thus explaining the annual SP variation recorded at the ground surface. Differences in the amplitude and mean level of SP variation are shown to be associated with different rock properties, especially permeability, porosity, and electrical conductivity. Our results indicate that observable SP changes will appear at stations near the summit if the distributions of liquid-phase saturation and/or pertinent parameters controlling the electrokinetic coupling in the thick unsaturated layer are modified the upward flow of volcanic gas.
Diffuse degassing survey at the Higashi Izu monogenetic volcano field, Japan
NASA Astrophysics Data System (ADS)
Notsu, Kenji; Pérez, Nemesio M.; Fujii, Naoyuki; Hernández, Pedro A.; Mori, Toshiya; Padrón, Eleazar; Melián, Gladys
2016-04-01
The Higashi-Izu monogenetic volcanic group, which consists of more than 60 volcanoes, overlies the polygenetic volcanoes in the eastern part of the Izu peninsula, Japan, which are distributed over the area of 350 km2. Some of the monogenetic volcanoes are located on northwest-southeast alignments, suggesting that they developed along fissures. Recent volcanic activity occurred offshore, e.g., at the Izu-Oshima volcano, which erupted in 1986 and a submarine eruption of the small new Teishi knoll off eastern Izu Peninsula in 1989 (Hasebe et al., 2001). This study was carried out to investigate the possible relationship of diffuse CO2 emission and the recent seismic activity recorded NE of Higashi Izu monogenetic volcanic field, to quantify the rate at which CO2 is diffusely degassed from the studied area including Omuroyama volcano and to identify the structures controlling the degassing process. Measurements were carried out over a three day period from 8-10 July 2013. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method and spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Soil gas samples were collected at 30-40 cm depth by withdrawal into 60 cc hypodermic syringes to characterize the chemical and isotopic composition of the soil gas. At Omurayama volcano, soil CO2 efflux values ranged from non-detectable to 97.5 g m-2 d-1, while at the seismic swarm zone ranged from 1.5 to 233.2 g m-2 d-1 and at the fault zone ranged from 5.7 to 101.2 g m-2 d-1. Probability-plot technique of all CO2 efflux data showed two different populations, background with a mean of 8.7 g m-2 d-1 and peak with a mean of 92.7 g m-2 d-1. In order to strength the deep seated contribution to the soil gases at the studied are, carbon isotopic analysis were performed in the CO2 gas. Soil gases (He, CO2 and N2) showed a clear mixing trend between air composition and a rich CO2 end member, suggesting the
NASA Astrophysics Data System (ADS)
McIntosh, I. M.; Tani, K.; Nichols, A. R.
2014-12-01
Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.
Environmental radiation at Izu-Oshima after the Fukushima Daiichi nuclear power plant accident.
Inoue, K; Hosoda, M; Sugino, M; Simizu, H; Akimoto, A; Hori, K; Ishikawa, T; Sahoo, S K; Tokonami, S; Narita, H; Fukushi, M
2012-11-01
Environmental radiation at Izu-Oshima Island was observed 6 months after the accident at the Fukushima Daiichi Nuclear Power Plant (F1-NPP). A car-borne survey of the dose rate in air was conducted over the entire island and the results were compared with measurements performed in 2005 (i.e. before the accident). The activity concentrations of (134)Cs and (137)Cs were also measured using a germanium detector. The dose rate in air was found to be 2.9 ± 1.2 times higher than that in 2005 and (134)Cs was detected on Izu-Oshima Island. These results are attributed to the accident at the F1-NPP.
Communication Between Volcanoes: a Possible Path
NASA Astrophysics Data System (ADS)
Linde, A. T.; Sacks, I. S.
2002-12-01
The Japan Meteorological Agency installed and operates a network of Sacks-Evertson type borehole strainmeters in south-east Honshu. One of these instruments is on Izu-Oshima, a volcanic island at the northern end of the Izu-Bonin arc. That strainmeter recorded large strain changes associated with the 1986 eruption of Miharayama on the island and, over the period from 1980 to the 1986 eruption, the amplitude of the solid earth tides changed by almost a factor of two. Miyake-jima, about 75 km south of Izu-Oshima, erupted in October 1983. No deformation monitoring was available on Miyake but several changes occurred in the strain record at Izu-Oshima. There was a clear decrease in amplitude of the long-term strain rate. Short period (~hour) events recorded by the strainmeter became much more frequent about 6 months before the Miyake eruption and ceased following the eruption. At the time of the Miyake eruption, the rate of increase of the tidal amplitude also decreased. While all of these changes were observed on a single instrument, they are very different types of change. From a number of independent checks, we can be sure that the strainmeter did not experience any change in performance at that time. Thus it recorded a change in deformation behavior in three very different frequency bands: over very long term, at tidal periods (~day) and at very short periods (~hour). It appears that the distant eruption in 1983 had an effect on the magmatic system under Izu-Oshima. It is likely that these changes were enhanced to the observed level because Izu-Oshima was itself close to eruption failure. More recent tomographic and seismic attenuation work in the Tohoku (northern Honshu) area has shown the existence of a low velocity, high attenuation horizontally elongated structure under the volcanic front. This zone, likely to contain partial melt, is horizontally continuous along the front. If such a structure exists in the similar tectonic setting for these volcanoes, it
Simulation of landslide and tsunami of the 1741 Oshima-Oshima eruption in Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Ioki, K.; Yanagisawa, H.; Tanioka, Y.; Kawakami, G.; Kase, Y.; Nishina, K.; Hirose, W.; Ishimaru, S.
2017-12-01
The 1741 tsunami was generated by the Oshima-Oshima sector collapse in the southwestern Hokkaido, Japan. The tsunami caused great damage along the coast of Japan Sea in Oshima and Tsugaru peninsula and was the largest scale generated in the Japan sea. By the survey of tsunami deposits, at the coast of Okushiri Island and Hiyama in Hokkaido, tsunami deposits of this tsunami were found. In this study, the landslide and tsunami by the Oshima-Oshima eruption were modeled to explain distribution of debris deposits, tsunami heights by historical records, and distribution of tsunami deposits. First, region of landslide and debris deposits were made out from the bathymetry based on the bathymetry survey data (Satake and Kato, 2001) in the north slope of Oshima-Oshima. In addition, topography before the sector collapse and landslide volume were re-estimated. The volume of landslide was estimated at 2.2 km3. Based on those data, the landslide and tsunami were simulated using two-layer model considered soil mass and water mass. The model was made improvements the integrated model of landslide and tsunami (Yanagisawa et al., 2014). The angle of internal friction was calculated 4 cases, included the bottom friction term in soil mass, to affect the movement of landslide. The Manning's roughness coefficient was calculated 5 cases, included the bottom friction term in soil mass, to affect the generation of tsunami. By the parameter study, optimal solutions were found. As the results, soil mass slid slowly submarine slope and stopped after about 15 minutes. Distribution of computed debris deposits agree relatively well with region of debris deposits made out from the bathymetry. On the other hand, the first wave of tsunami was generated during 1 minute that soil mass was sliding. Calculated tsunami heights match with historical records along the coast of Okushiri and Hiyama in Hokkaido. Calculated inundation area of tsunami cover distribution of tsunami deposits found by tsunami
NASA Astrophysics Data System (ADS)
Gomez, C.
2018-04-01
From feature recognition to multiscale analysis, the human brain does this computation almost instantaneously, but reproducing this process for effective computation is still a challenge. Although it is a growing field in computational geomorphology, there has been only limited investigation of those issues on volcanoes. For the present study, we investigated Miyakejima, a volcanic island in the Izu archipelago, located 200 km south of Tokyo City (Japan). The island has experienced numerous Quaternary and historical eruptions, which have been recorded in details and therefore provide a solid foundation to experiment remote-sensing methods and compare the results to existing data. In the present study, the author examines the use of DEM derivatives and wavelet decomposition 5 m DEM available from the Geographic Authority of Japan was used. It was pre-processed to generate grid data with QGIS. The data was then analyzed with remote sensing techniques and wavelet analysis in ENVI and Matlab. Results have shown that the combination of 'Elevation' with 'Local Data Range Variation' and 'Relief Mapping' as a RGB image composite provides a powerful visual interpretation tool, but the feature separation remains a subjective analysis provided a more appropriate dataset for computer-based analysis and information extraction and understanding of topographic features at different scales. In order to confirm the usefulness of these topographic derivatives, the results were compared to known geological features and it was found to be in accordance with the data provided by geological, topographic maps and field research at Miyakejima. The protocol presented in the discussion can therefore be re-used at other volcanoes worldwide where less information is available on past-eruption and geology, in order to explain the volcanic geomorphology.
NASA Astrophysics Data System (ADS)
Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu
2016-06-01
The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.
NASA Astrophysics Data System (ADS)
Doke, R.; Harada, M.; Miyaoka, K.; Satomura, M.
2016-12-01
The Izu collision zone, which is characterized by the collision between the Izu-Bonin arc (Izu Peninsula) and the Honshu arc (the main island of Japan), is located in the northernmost part of the Philippine Sea (PHS) plate. Particularly in the northeastern margin of the zone, numerous large earthquakes have occurred. To clarify the convergent tectonics of the zone related to the occurrence of these earthquakes, in this study, we performed Global Positioning System (GPS) observations and analysis around the Izu collision zone. Based on the results of mapping the steady state of the GPS velocity and strain rate fields, we verified that there has been wide shear deformation in the northeastern part of the Izu collision zone, which agrees with the maximum shear directions in the left-lateral slip of the active faults in the study area. Based on the relative motion between the western Izu Peninsula and the eastern subducting forearc, the shear zone can be considered as a transition zone affected by both collision and subduction. The Higashi-Izu Monogenic Volcano Group, which is located in the southern part of the shear deformation zone, may have formed as a result of the steady motion of the subducting PHS plate and the collision of the Izu Peninsula with the Honshu arc. The seismic activities in the Tanzawa Mountains, which is located in the northern part of the shear deformation zone, and the eastern part of the Izu Peninsula may be related to the shear deformation zone, because the temporal patterns of the seismic activity in both areas are correlated.
Continuous monitoring of volcanoes with borehole strainmeters
NASA Astrophysics Data System (ADS)
Linde, Alan T.; Sacks, Selwyn
Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other
Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents
Dvorak, J.J.; Dzurisin, D.
1997-01-01
Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.
NASA Astrophysics Data System (ADS)
Hemmi, R.; Yoshida, S.; Nemoto, Y.; Kotake, N.
2010-12-01
The early-to-middle Holocene outcrops of Izu-Oshima island, 100 km SSW of Tokyo, comprise sand- to gravel-size pyroclasts, and exhibit undulating layered structures, with each wavelet typically measuring 5-10 m high. These outcrops were traditionally interpreted as exemplary subaerial "ash-fall" deposits in volcanology textbooks (e.g. Schmincke 2006). Our detailed sedimentological analyses, however, have revealed that it is of pyroclastic density-current origin, the majority of which formed in shallow-marine settings. The present study focuses on the outcrops along the western coast of the Island, where the three-dimensional architecture of the outcrops is superbly exposed, and the existing archaeological framework provides a reliable chronostratigraphic control. The outcrops contain abundant compound bedforms, where small bedforms (dunes/antidunes) occur within the larger bedforms. The compound bedforms exhibit four-fold hierarchy (ranks 1 to 4), and bedforms for each scale display dominantly upstream-accreting geometry. The largest scale (Rank 1) of these bedforms show wavy parallel-bedding geometry (each wavelet typically measuring 5-10 m high and 50-100 m wide). We interpreted the large-scale architecture as sediment waves (gigantic antidunes) similar to the one reported from the shallow-marine deposits associated with AD 79 Mt. Vesuvius eruptions (Milia et al. 2008). Moreover, we have identified crustacean burrows and other trace fossils indicative of a nearshore shallow-marine environment. The pervasive occurrence of these fossils throughout the outcrops and abundant water-escape structures also suggests their subaqueous origin. On the other hand, evidence of subaerial deposition (e.g., paleosols and rootlets) or subaerial reworking (e.g., lahar) is absent, except for some spots on several regional unconformities that divide 10’s-m-thick sediment-wave deposits. On some of these unconformities, ribbon- to fan-shaped lava and/or ancient human-dwelling sites
Unzipping of the volcano arc, Japan
Stern, R.J.; Smoot, N.C.; Rubin, M.
1984-01-01
A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.
NASA Astrophysics Data System (ADS)
Arakawa, Yoji; Endo, Daisuke; Ikehata, Kei; Oshika, Junya; Shinmura, Taro; Mori, Yasushi
2017-03-01
We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths) in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899-955°C) and pressures (3.6-5.9 kbar) than the B-type gabbro (687-824°C and 0.8-3.6 kbar). These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic) magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.
NASA Astrophysics Data System (ADS)
Nemoto, Y.; Yoshida, S.
2009-12-01
We claim that compound bedforms, where small bedforms (e.g., dunes and antidunes) occur within and around the larger bedforms, are common in pyroclastic-flow deposits, using Quaternary-Holocene outcrop examples from the modern Izu volcanic island chain some 100-150 km SSW of Tokyo. The nested occurrence of bedforms have been well documented for siliciclastic deposits, as exemplified by compound dunes where small dunes (c. cm- dm thick) occur between the avalanche surfaces within larger dunes, indicating that these dunes of different sizes were produced simultaneously. However, compound dunes have rarely been reported from pyroclastic deposits. In contrast, we have discovered that compound dunes are common in pyroclastic flow deposits in the late Pleistocene & Holocene outcrops in Niijima and Oshima of the Izu volcanic island chain. Moreover, these outcrops contain abundant compound antidunes, which have been reported from neither siliciclastic or pyroclastic deposits. This is probably because flume studies, where most of published antidune studies are based, focus on small (c. cm-dm high) antidunes. In Niijima Island, we examined pyroclastic-flow deposits shed from Mt. Miyatsuka (14 ka) and Mt. Mukai (886 A.D.). Both groups of deposits contain abundant antidune stratifications, which commonly form nested structures in a two- or three-fold hierarchy, with subordinate crossbeddings originated from dune migrations. Each class of antidunes is characterized by multiple scour surfaces and vertical aggradations around mounds of lag deposits above erosion surfaces, and typically has both upstream and downstream accretion components with different proportions. The late Pleistocene pyroclastic outcrops of the nearby Oshima Island exhibit similar patterns. The geometry of the accretion surfaces vary significantly in the outcrops of both Niijima and Oshima. Whereas the antidunes dominated by upstream accretion are characterized by (1) gently inclined accretion surface and (2
Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments
NASA Astrophysics Data System (ADS)
Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.
2012-12-01
Fuji volcano, the largest in volume and eruption rate in Japan, is located at the center of Honshu, where North America, Eurasia and Philippine Sea plates meets. Because of the significance of Fuji volcano both in tectonic settings and potential volcanic hazard (particularly after the M9 earthquake in 2011), precise knowledge on its magma feeding system is essentially important. Composition of magma erupted from Fuji volcano in the last 100ky is predominantly basalt (SiO2=50-52wt%, FeO/MgO=1.5-3.0). Total lack of silica-rich magma (basaltic andesite and andesite) which are always present in other nearby volcanoes (e.g., Hakone, Izu-Oshima, see Fig.1) is an important petrologic feature of Fuji volcano. Purpose of this study is to constrain the depth of magma chamber of Fuji volcano and explain its silica-nonenrichment trend. High pressure melting experiments were carried out using two IHPVs at the Magma Factory, Tokyo Institute of Technology (SMC-5000 and SMC-8600, Tomiya et al., 2010). Basalt scoria Tr-1 which represents the final ejecta of Hoei eruption in AD1707, was adopted as a starting material. At 4kbar, temperature conditions were 1050, 1100 and 1150C, and H2O contents were 1.3, 2.7 and 4.7 wt.%, respectively. At 7kbar, temperature conditions were 1075, 1100 and 1125C, and H2O contents were 1.0, 1.1, 3.6 and 6.3wt.%, respectively. The fO2 was controlled at NNO buffer. At 4kbar, crystallization sequence at 3 wt% H2O is magnetite, plagioclase, clinopyroxene and finally orthopyroxene. At 7 kbar, and ~3 wt% H2O, the three minerals (opx, cpx, pl) appears simultaneously near the liquidus. Compositional trend of melt at 4 kbar and 7 kbar are shown with arrows in Fig.1. Because of the dominant crystallization of silica-rich opx at 7 kbar, composition of melt stays in the range SiO2=50-52wt% as predicted by Fujii (2007). Absence of silica-rich rocks in Fuji volcano may be explained by the tectonic setting of the volcano. Because Fuji volcano locates on the plate
Yuko Ota; Mee-Sook Kim; Hitoshi Neda; Ned B. Klopfenstein; Eri Hasegawa
2011-01-01
An undetermined Armillaria species was collected on Amami-Oshima, a subtropical island of Japan. The phylogenetic position of the Armillaria sp. was determined using sequences of the elongation factor-1a (EF-1a) gene and the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of ribosomal DNA (rDNA). The phylogenetic analyses based on EF-1a and ITS sequences...
ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan
2000-08-10
Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people. This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features. http://photojournal.jpl.nasa.gov/catalog/PIA02771
Pyrosequencing analysis of the microbiota of kusaya gravy obtained from Izu Islands.
Fujii, Tateo; Kyoui, Daisuke; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon; Washizu, Yukio; Emoto, Eiji; Hiramoto, Tadahiro
2016-12-05
Kusaya is a salted, dried fish product traditionally produced on the Izu Islands in Japan. Fish are added to kusaya gravy repeatedly and intermittently, and used over several hundred years, which makes unique microbiota and unique flavors. In this study, we performed a metagenomic analysis to compare the composition of the microbiota of kusaya gravy between different islands. Twenty samples obtained from a total of 13 manufacturers on three islands (Hachijojima, Niijima, and Oshima Islands) were analyzed. The statistical analysis revealed that the microbiota in kusaya gravy maintain a stable composition regardless of the production steps, and that the microbiota are characteristic to the particular islands. The bacterial taxa common to all of the samples were not necessarily the dominant ones. On the other hand, the genera Halanaerobium and Tissierella were found to be characteristic to the microbiota of one or two islands. Because these genera are known to be present in the natural environment, it is likely that the bacterial strains peculiar to an island had colonized kusaya gravy for many years. The results of this study revealed an influence of geographical conditions on the microbiota in fermented food. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakajima, Junichi
2018-01-01
The subduction of the Philippine Sea (PHS) Plate toward the north of Izu peninsula, Japan, is of great interest because intraslab seismicity is absent where the buoyant Izu volcanic arc has been subducting over the past 15 Myr. This study analyzes 42 earthquakes in an isolated seismic cluster that occurred 100 km north of Izu peninsula at depths of 40-90 km and discusses seismogenesis in the context of plate subduction. We picked P- and S-wave arrival times of earthquakes to produce a complete hypocenter catalogue, carried out double-difference event relocations, and then determined focal mechanism solutions of 7 earthquakes from P-wave polarity data. Based on the focal mechanism solution, the largest earthquake (M3.1) is interpreted as a thrust earthquake along the upper surface of the PHS Plate. Locations of other earthquakes relative to the largest event suggest that most earthquakes occur within the subducting PHS Plate. Our results suggest that the PHS Plate north of Izu peninsula has temperatures low enough to facilitate thrust and intraslab earthquakes at depths of 60-90 km. Earthquakes are likely to occur where pore pressures are locally high, which weakens pre-existing faults. The presence of the intermediate-depth seismic cluster indicates the continuous subduction of the PHS Plate toward the north of Izu peninsula without any disruption.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Shaw, A. M.; Hauri, E. H.; Fischer, T. P.; Hilton, D. R.
2006-05-01
Subduction zones provide our best window into C cycling processes between Earth's surface reservoirs and the mantle. The efficiency of this process can be constrained through volatile studies of melt inclusions, where measured pre-eruptive CO2 contents are combined with magma production rates to obtain an output CO2 flux. These outputs can then be compared to C inputs from the subducting slab (sedimentary, organic and altered oceanic crust) to evaluate budgets through a given arc system. Decarbonation of the various C components within a slab are strongly controlled by temperature, pressure and fluid availability. The Izu-Bonin subduction zone system is a cold subduction zone and modeled CO2 behaviour for low temperature geotherms suggest that little decarbonation would occur at subarc depths 1. However, fluids can effectively promote decarbonation. Trace element ratios of Izu arc rocks 2 predict that a significant amount of fluid is fluxed through the Izu-Bonin arc system. This study aims to evaluate the extent of C recycling through a cold, yet fluid-rich arc system. Here we report new CO2 melt inclusions abundance data from 4 volcanoes in the Izu-Bonin arc: Nijima, Oshima, Hachijojima and Aogashima. Concentrations of CO2, along with other volatiles (H2O, F, SO2, Cl), were determined using SIMS techniques at the Carnegie Institution of Washington. Various processes can modify intrinsic volatile contents such as degassing, fractional crystallization, crustal contamination and extent of melting, thereby masking true source values. CO2 contents of Izu-Bonin melt inclusions show positive trends with other volatiles (H2O and SO2) and with MgO contents (with the exception of Nijima). This indicates that differentiation and degassing have occurred simultaneously. In this case, we assume that the highest CO2 concentration samples (up to 1200 ppm CO2 from Nijima volcano) best represent pre-eruptive magma compositions. Comparing a total CO2 input of 10.35 Mmol/yr3 to our
Discovery of dense aggregations of stalked crinoids in Izu-Ogasawara trench, Japan.
Oji, Tatsuo; Ogawa, Yujiro; Hunter, Aaron W; Kitazawa, Kota
2009-06-01
Stalked crinoids are recognized as living fossils that typically inhabit modern deep-water environments exceeding 100 m. Previous records of stalked crinoids from hadal depths (exceeding 6000 m) are extremely rare, and no in-situ information has been available. We show here that stalked crinoids live densely on rocky substrates at depths over 9000 m in the Izu-Ogasawara Trench off the eastern coast of Japan, evidenced by underwater photos and videos taken by a remotely operated vehicle. This is the deepest in-situ observation of stalked crinoids and demonstrates that crinoid meadows can exist at hadal depths close to the deepest ocean floor, in a fashion quite similar to populations observed in shallower depths.
NASA Astrophysics Data System (ADS)
Sano, Yuji; Wakita, Hiroshi; Williams, Stanley N.
1990-07-01
We have collected 14 water and gas samples from 9 thermal springs and gas vents near Nevado del Ruiz volcano, Colombia. The 3He/ 4He and 4He/ 20Ne ratios vary significantly from 0.98 Ratm (where Ratm is the atmospheric 3He/ 4He ratio of 1.4 × 10 -6) to 6.30 Ratm, and from 0.37 to 7.0, respectively. The 3He/ 4He ratio (corrected for air contamination) decreases with increasing distance from the central crater of the volcano to the sampling site. The trend is very similar to that observed at Ontake volcano, Japan. A hydrodynamic porous-media dispersion model can explain the 3He/ 4He trend. The temporal variations in the 3He/ 4He ratio at four sites provide useful information on the apparent velocity of the magmatic fluid flow brought on by a volcanic eruption. The estimated value of several tens m day -1 agrees well with the inferred velocity of flow in Oshima volcano, Japan and is comparable to the largest rate of groundwater movement in a deep sedimentary basin.
NASA Astrophysics Data System (ADS)
Kodaira, S.; Sato, T.; Takahashi, N.; Ito, A.; Kaneda, Y.
2005-12-01
A continental-type middle crust having Vp = 6.1 - 6.3 km/s has been imaged at several oceanic island arcs (e.g. northern Izu, Mariana, Tonga, Kyushu-Palau ridge) since Suyehiro et al. (1996) has found a felsic middle crust in the northern Izu arc. A high velocity lower crust (Vp > 7.3 km/s) underlying the felsic middle crust has been also underlined as a characteristic structure in the northern Izu arc. A bulk composition of the crust in the Izu arc may indicate more mafic than that of a typical continental crust due to a large volume of the high velocity lower crust. Since a crust becomes more mature toward the north along the Izu-Bonin arc, investigating structural variation along the volcanic front has been believed to provide a fundamental knowledge for a crustal evolution process. In 2004 and 2005, Japan Agency for Marine-Earth Science and Technology has conducted two along arc wide-angle seismic surveys from the Sagami-bay to the Kita-Iwo jima, a total profile length of about 1000 km. Although data from the Bonin-part of the profile which were acquired this year has not been processed yet, a result from the Izu-part, from the Sagami-bay to Tori shima, shows significant structural variations along the volcanic front. The crustal thickness are varied with a wavelength of several tens of km, i.e., thickened up to 25-30 km around the volcanoes (the Miyake jama, Hachijo jima, Aoga sima, Sumisu jima), while thinned down to 20 km between them. The fine seismic velocity image obtained by refraction tomography as well as a wide-angle reflection migration shows that the variation of the crustal block having 6.0 - 6.7 km/s, which is a typical continental crustal velocity, is mainly responsible for the observed variation of the crustal thickness. The thickness of the high velocity lower crust is not significantly varied along the arc. Therefore, an average crustal seismic velocity (varied 6.6 to 7.0 km/s) represents a higher velocity that that of a typical continental
Volcanic observation data and simulation database at NIED, Japan (Invited)
NASA Astrophysics Data System (ADS)
Fujita, E.; Ueda, H.; Kozono, T.
2009-12-01
NIED (Nat’l Res. Inst. for Earth Sci. & Disast. Prev.) has a project to develop two volcanic database systems: (1) volcanic observation database; (2) volcanic simulation database. The volcanic observation database is the data archive center obtained by the geophysical observation networks at Mt. Fuji, Miyake, Izu-Oshima, Iwo-jima and Nasu volcanoes, central Japan. The data consist of seismic (both high-sensitivity and broadband), ground deformation (tiltmeter, GPS) and those from other sensors (e.g., rain gauge, gravimeter, magnetometer, pressure gauge.) These data is originally stored in “WIN format,” the Japanese standard format, which is also at the Hi-net (High sensitivity seismic network Japan, http://www.hinet.bosai.go.jp/). NIED joins to WOVOdat and we have prepared to upload our data, via XML format. Our concept of the XML format is 1)a common format for intermediate files to upload into the WOVOdat DB, 2) for data files downloaded from the WOVOdat DB, 3) for data exchanges between observatories without the WOVOdat DB, 4) for common data files in each observatory, 5) for data communications between systems and softwares and 6)a for softwares. NIED is now preparing for (2) the volcanic simulation database. The objective of this project is to support to develop a “real-time” hazard map, i.e., the system which is effective to evaluate volcanic hazard in case of emergency, including the up-to-date conditions. Our system will include lava flow simulation (LavaSIM) and pyroclastic flow simulation (grvcrt). The database will keep many cases of assumed simulations and we can pick up the most probable case as the first evaluation in case the eruption started. The final goals of the both database will realize the volcanic eruption prediction and forecasting in real time by the combination of monitoring data and numerical simulations.
NASA Astrophysics Data System (ADS)
Furuya, M.; Okubo, S.; Kimata, F.
2006-12-01
Eruptive and caldera-forming activity at Miyakejima volcano, Japan, was accompanied by more than 40 days of seismic swarms, including more than five M6 (or greater) earthquakes, and significant crustal deformation in nearby islands. Here we review ground deformation and gravity changes at Miyakejima and other nearby islands prior to, during, and after the 2000 caldera collapse episode at Miyakejima. While ground displacements observed at Izu-islands can be basically predicted from the Philippine Sea Plate motion in a global perspective, Miyakejima was undergoing inflation if examined locally within the island before the 2000 unrest. It is also known that a couple of leveling benchmarks inside the previous caldera were secularly subsiding [Miyazaki, 1990]. Using JERS1's InSAR data, Furuya~[2004] also confirmed this. Was the localized subsidence before 2000 a precursor for the caldera collapse? We will argue that this is probably not the case. After the beginning of the earthquake swarm on 26 June 2000, significant ground displacements were recorded at Miyakejima both in the permanent GPS stations [e.g., Nishimura et al. 2001] and tiltmeters by the NIED [Ukawa et al. 2001]. Using both FG5 absolute gravimeter and LaCoste-Romberg G-type gravimeters, high precision gravity survey has been repeatedly carried out by ERI, University of Tokyo. Furuya et al~[2003a] showed spatial-temporal gravity changes from the beginning stage to early 2001. Notably, they detected a gravity decrease of as much as 145 μgals (1 μgal=10^{-8} m/s2) at the summit area 2 days prior to the collapse, and interpreted as reflecting the formation of a large void beneath the volcano. Correcting for the effect of topography change due to the collapse, subsequent gravity change data suggested an effective density decrease until the middle August 2000, followed by a significant density increase toward at least November 2000. Those spatial and temporal gravity changes were associated with the explosive
NASA Astrophysics Data System (ADS)
Saito, Satoshi; Tani, Kenichiro
2017-04-01
Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the
Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan
NASA Astrophysics Data System (ADS)
Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan
2017-04-01
Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.
Injury Patterns After the Landslide Disaster in Oshima, Tokyo, Japan on October 16, 2013.
Homma, Yasuhiro; Watari, Taiji; Baba, Tomonori; Suzuki, Misako; Shimizu, Tadanori; Fujii, Yuji; Takazawa, Yuji; Maruyama, Yuichiro; Kaneko, Kazuo
2016-04-01
Landslides represent a frequent and threatening natural disaster. The aim of this study was to investigate the injury patterns observed after a landslide and to discuss how to minimize the damage caused by a landslide disaster. A landslide occurred on Oshima Island, Japan, on October 16, 2013. A total of 49 victims with landslide-related injuries were identified and analyzed. The patients ranged in age from 5 to 89 years with an average age of 61.0±19.3 years. Of all patients, 69.4% were triaged as black. Of 15 patients who were treated in the nearest hospital (the only hospital on the island), 8 were triaged as red and yellow with severe chest or pelvic injury and a high Injury Severity Score (average score, 25.6; range, 4-45). Of these, 75% had chest injury and 75% had pelvic injury. The percentage of chest and/or pelvic injury was 100% in patients triaged as red or yellow. Traumatic asphyxia was diagnosed in 62.5% of these patients. Compression of the trunk was the main injury in patients triaged as red or yellow after this landslide disaster. Evacuation in advance, the rapid launch of emergency medical support, and knowledge of this specific injury pattern are essential to minimize the potential damage resulting from landslide disasters.
NASA Astrophysics Data System (ADS)
Lynner, Colton; Long, Maureen D.
2015-06-01
Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.
NASA Astrophysics Data System (ADS)
Nishimura, T.; Ozawa, S.; Murakami, M.; Sagiya, T.; Yarai, H.; Tada, T.; Kaidzu, M.
2001-12-01
Miyakejima is located in the northern part of the Izu Islands lying along the boundary between the Pacific plate and the Philippine Sea plate. Miyakejima volcano erupted on Miyakejima is located in the northern part of the Izu Islands which are a chain of volcanoes lying along the boundary between the Pacific plate and the Philippine Sea plate. Miyakejima volcano erupted on June 27, 2000 after the quiescence of 17 years. First eruption is a small submarine eruption 1.5km off the western coast of Miyakejima. Subsequently, several summit eruptions as tephra ejecta occurred in July and August 2000. The summit collapsed just after the first summit eruption and a caldera was formed for 40 days. Collapsed volume and erupted volume are estimated to be 0.6km3 and 0.02km3, respectively. In September 2000, the collapse caldera started emitting a large amount of volcanic gasses. A peak amount of degassing SO2 is ~70000 ton/day in the period from October to December 2000. Amount of volcanic gas is decreasing gradually and is 15000 ton/day (SO2 ) now. However, it is still larger than other active volcanoes. Permanent GPS data reveals the spatial pattern and time evolution of ground deformation. Inflation of Miyakejima was observed by continuous GPS and leveling before the 2000 eruption. The observed displacements associated with the 2000 eruption show radial pattern suggesting shrinking of the island and subsidence. This pattern continues for 14 months from July 2000. Though the rate of crustal deformation is almost constant from July to August 2000, it is decreasing exponentially with a time constant of ~150days from September 2000. We assumed a point deflation source and inverted the observed displacement to estimate parameters of the point source. Volume decrease and depth of the deflation source is 0.12km3 and 4.2km from July to August 2000. We interpret that it is the squeezing of magma from a magma chamber of Miyakejima volcano. The displacement observed in neighbor
NASA Astrophysics Data System (ADS)
Kutterolf, S.; Schindlbeck, J. C.; Robertson, A. H. F.; Avery, A.; Baxter, A. T.; Petronotis, K.; Wang, K.-L.
2018-01-01
Provenance studies of widely distributed tephras, integrated within a well-defined temporal framework, are important to deduce systematic changes in the source, scale, distribution, and changes in regional explosive volcanism. Here, we establish a robust tephrochronostratigraphy for a total of 157 marine tephra layers collected during IODP Expedition 352. We infer at least three major phases of highly explosive volcanism during Oligocene to Pleistocene time. Provenance analysis based on glass composition assigns 56 of the tephras to a Japan source, including correlations with 12 major and widespread tephra layers resulting from individual eruptions in Kyushu, Central Japan, and North Japan between 115 ka and 3.5 Ma. The remaining 101 tephras are assigned to four source regions along the Izu-Bonin arc. One, exclusively assigned to the Oligocene age, is proximal to the Bonin Ridge islands; two reflect eruptions within the volcanic front and back-arc of the central Izu-Bonin arc, and a fourth region corresponds to the Northern Izu-Bonin arc source. First-order volume estimates imply eruptive magnitudes ranging from 6.3 to 7.6 for Japan-related eruptions and between 5.5 and 6.5 for IBM eruptions. Our results suggest tephras between 30 and 22 Ma reflect a subtly different Izu-Bonin chemical signature compared to the recent arc. After a ˜9 Ma gap in eruption, tephra supply from the Izu-Bonin arc predominated from 15 to 5 Ma, and finally a subequal mixture of tephra sources from the (palaeo)Honshu and Izu-Bonin arcs occured within the last ˜5 Ma.
Back-arc spreading of the northern Izu-Ogasawara (Bonin) Islands arc clarified by GPS data
NASA Astrophysics Data System (ADS)
Nishimura, Takuya
2011-11-01
We examined GPS data in the northwestern Pacific region, which includes the Izu-Ogasawara (Bonin)-Mariana (IBM) arc and the Japan arc. GPS velocity vectors on the Izu Islands, including Hachijo-jima and Aoga-shima, show systematic eastward movement deviating from that predicted by the rigid rotation of the Philippine Sea plate; this deviation supports the active back-arc spreading model suggested by previous geological studies. The results of a statistical F-test analysis with 99% confidence level showed that the forearc of the Izu Islands arc has an independent motion with respect to the rigid part of the Philippine Sea plate. We developed a kinematic block-fault model to estimate both rigid rotations of crustal blocks and elastic deformation due to locked faults on the block boundaries. The model suggests that the back-arc opening rate along the Izu back-arc rift zone ranges from 2 mm/yr at its southern end to 9 mm/yr near Miyake-jima, its northern end. It also predicts 23-28 mm/yr of relative motion along the Sagami Trough in the direction of ~ N25°W, where the Izu forearc subducts beneath central Japan. The orientation of this motion is supported by slip vectors of recent medium-size earthquakes, repeated slow-slip events, and the 1923 M = 7.9 Kanto earthquake.
Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan
NASA Astrophysics Data System (ADS)
Haraguchi, S.; Tokuyama, H.; Ishii, T.
2010-12-01
The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites
Activity of Small Repeating Earthquakes along Izu-Bonin and Ryukyu Trenches
NASA Astrophysics Data System (ADS)
Hibino, K.; Matsuzawa, T.; Uchida, N.; Nakamura, W.; Matsushima, T.
2014-12-01
There are several subduction systems near the Japanese islands. The 2011 Mw9.0 Tohoku-oki megathrust earthquake occurred at the NE Japan (Tohoku) subduction zone. We have revealed a complementary relation between the slip areas for huge earthquakes and small repeating earthquakes (REs) in Tohoku. Investigations of REs in these subduction zones and the comparison with Tohoku area are important for revealing generation mechanism of megathrust earthquakes. Our target areas are Izu-Bonin and Ryukyu subduction zones, which appear to generate no large interplate earthquake. To investigate coupling of plate boundary in these regions, we estimated spatial distribution of slip rate by using REs. We use seismograms from the High Sensitivity Seismograph Network (Hi-net), Full Range Seismograph Network of Japan (F-net), and permanent seismic stations of Japan Meteorological Agency (JMA), Tohoku University, University of Tokyo, and Kagoshima University from 8 May 2003 (Izu-Bonin) and 14 July 2005 (Ryukyu) to 31 December 2012 to detect REs along the two trenches, by using similarity of seismograms. We mainly follow the procedure adopted in Uchida and Matsuzawa (2013) that studied REs in Tohoku area to compare our results with the REs in Tohoku. We find that the RE distribution along the Ryukyu trench shows two bands parallel to the trench axis. This feature is similar to the pattern in Tohoku where relatively large earthquakes occur between the bands. Along the Izu-Bonin trench, on the other hand, we find much fewer REs than in Tohoku or Ryukyu subduction zones and only one along-trench RE band, which corresponds to the area where the subducting Pacific plate contacts with the crust of the Philippine Sea plate. We also estimate average slip rate and coupling coefficient by using an empirical relationship between seismic moment and slip for REs (Nadeau and Johnson, 1998) and relative plate motion model. As a result, we find interplate slip rate in the deeper band is higher than
Nonlinear partitioning of OH between Ca-rich plagioclase and arc basaltic melt
NASA Astrophysics Data System (ADS)
Hamada, M.; Ushioda, M.; Takahashi, E.
2011-12-01
The hydrogen in nominally anhydrous minerals (NAMs) is becoming a new proxy for dissolved H2O in silicate melts. Plagioclase is one of the NAMs which accommodates hydrogen as OH. Here, we report experimental results on the partitioning of OH between Ca-rich plagioclase and arc basaltic melt. We carried out hydrous melting experiments of arc basaltic magma at 350 MPa using an internally-heated pressure vessel. Starting material was hydrous glass (0.8 wt.%≦H2O≦4.5 wt.%) of an undifferentiated rock from Miyakejima volcano, a frontal-arc volcano in Izu-arc (MTL rock: 50.5% SiO2, 18.1% Al2O3, 4.9% MgO). A grain of Ca-rich plagioclase (≈ 1 mg, about An95, FeOt ≈ 0.5 wt.%) and ≈ 10 mg of powdered glasses were sealed in Au80Pd20 alloy capsule and kept at around the liquidus temperature. Liquidus phase of MTL rock at 350 MPa is always plagioclase with 0 to 4.5 wt.% H2O in melt, and therefore, a grain of plagioclase and hydrous melt are nearly in equilibrium. Oxygen fugacity during the melting experiments was not controlled; the estimated oxygen fugacity was 3 log unit above Ni-NiO buffer. Experiments were quenched after 24-48 hours. Concentrations of H2O in melt and concentration of OH in plagioclase were analyzed by infrared spectroscopy. Obtained correlation between H2O concentration in melt and OH concentration in plagioclase is nonlinear; partition coefficient in molar basis is ≈ 0.01 with low H2O in melt (≤ 1 wt.%), while it decreases down to ≈ 0.005 with increasing H2O in melt (Fig.1). The OH concentration of Ca-rich plagioclase (about An90) from the 1986 summit eruption of Izu-Oshima volcano, also a frontal-arc volcano in Izu arc, shows variation ranging from <50 ppm H2O through 300 ppm H2O as a result of polybaric degassing (Hamada et al. 2011, EPSL 308, 259-266). Melting experiments of hydrous basalts constrained that An90 plagioclase crystallizes form H2O-rich melt (up to 6 wt.% H2O). In consistent with previous studies, our experiments demonstrate
NASA Astrophysics Data System (ADS)
Haraguchi, S.; Tamaki, K.; Kato, Y.; Machida, S.
2012-12-01
Around the Myojin Depression, westside of the Myojin-sho caldera in the Izu arc, seamounts are circular distributed and hydrothermal activity with sulfide deposition are found from the Baiyonneise Caldera, one of seamounts at the northern side. Some knoll chains distribute in the eastside of the Myojin Depression, and connect between these knolls. This circulator distribution of seamounts and connected knoll chains considered to the dykes are similar to the geographical features of the Kuroko Depositions in the Hokuroku Region, Northwest Japan (Tanahashi et al., 2008). Hydrothermal activities are also found from the other rifts (Urabe and Kusakabe 1990). Based on these observations, the cruise KT09-12 by R/V Tansei-Maru, Ocean Research Institute (ORI), University of Tokyo, investigated in the Myojin Rift. During the cruise, basaltic to dacitic volcanic rocks and some acidic plutonic rocks were recovered by dredge system. Herein, we present petrographical and chemical analyses of these rock samples with sample dredged by the cruise MW9507 by R/V MOANA WAVE, and consider the association with hydrothermal activities and depositions. Dredges during the cruise KT09-12 were obtained at the Daini-Beiyonneise Knoll at the northern side, Daisan-Beiyonneise Knoll at the southern side, and the Dragonborn Hill, small knoll chains, at the southeastern side of the depression. Many volcanic rocks are basalt, and recovered mainly from the Dragonborn Hill. Andesite and dacite was recovered from the Daini- and the Daini-Bayonneise Knoll. Tonalites were recovered from the Daisan-Bayonneise Knoll. Basalts from the Dragonborn Hill show less than 50% of SiO2 and more than 6 wt% and 0.88 wt% of MgO and TiO2 content. Basalts from the rift zone show depleted in the volcanic front (VF) side and enriched in the reararc (RA) side. The Dragonborn Hill is distributed near the VF, and basalts show depleted geochemical characteristics. However, these characteristics are different from the basalts
Seroprevalence of Toxoplasma gondii in free-ranging and feral cats on Amami Oshima Island, Japan.
Matsuu, Aya; Yokota, Shin-Ichi; Ito, Keiko; Masatani, Tatsunori
2017-11-17
On Amami Oshima Island, free-ranging and feral cats are harmful to wildlife populations. In this study, the seroprevalence of Toxoplasma gondii in these cats was examined using a newly developed Gaussia luciferase immunoprecipitation system assay. Of 1,363 cats, 123 cats (9.0%) was positive for T. gondii. The prevalence was significantly different in different areas; among cats in the rural area, where many wild animals live, including endangered species, T. gondii infection was more prevalent than in the urban area of the island. This finding indicates a possible risk to wildlife of infection from free-ranging and feral cats. Therefore, management of cats is important for wildlife conservation.
NASA Astrophysics Data System (ADS)
Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.
2009-12-01
Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a
Space Radar Image of Sakura-Jima Volcano, Japan
NASA Technical Reports Server (NTRS)
1994-01-01
The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international 'Decade Volcano' program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received.
Space Radar Image of Sakura-Jima Volcano, Japan
1999-04-15
The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international "Decade Volcano" program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01777
1996-11-13
This is a space radar image of the area around the Unzen volcano, on the west coast of Kyushu Island in southwestern Japan. Unzen, which appears in this image as a large triangular peak with a white flank near the center of the peninsula, has been continuously active since a series of powerful eruptions began in 1991. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 93rd orbit on April 15, 1994. The image shows an area 41.5 kilometers by 32.8 kilometers (25.7 miles by 20.3 miles) that is centered at 32.75 degrees north latitude and 130.15 degrees east longitude. North is toward the upper left of the image. The radar illumination is from the top of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (vertically transmitted and received); green represents the average of L-band and C-band (vertically transmitted and received); blue represents the C-band (vertically transmitted and received). Unzen is one of 15 "Decade" volcanoes identified by the scientific community as posing significant potential threats to large local populations. The city of Shimabara sits along the coast at the foot of Unzen on its east and northeast sides. At the summit of Unzen a dome of thick lava has been growing continuously since 1991. Collapses of the sides of this dome have generated deadly avalanches of hot gas and rock known as pyroclastic flows. Volcanologists can use radar image data to monitor the growth of lava domes, to better understand and predict potentially hazardous collapses. http://photojournal.jpl.nasa.gov/catalog/PIA00504
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki K. M.
2015-02-01
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km2. We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than +/-0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities.
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan
Tanaka, Hiroyuki K. M.
2015-01-01
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km2. We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than ±0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities. PMID:25660352
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan.
Tanaka, Hiroyuki K M
2015-02-09
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km(2). We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than ±0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities.
NASA Astrophysics Data System (ADS)
Shinohara, Masanao; Ichihara, Mie; Sakai, Shin'ichi; Yamada, Tomoaki; Takeo, Minoru; Sugioka, Hiroko; Nagaoka, Yutaka; Takagi, Akimichi; Morishita, Taisei; Ono, Tomozo; Nishizawa, Azusa
2017-11-01
Nishinoshima in Izu-Ogasawara started erupting in November 2013, and the island size increased. Continuous monitoring is important for study of the formation process. Since it is difficult to make continuous observations on a remote uninhabited island, we started seismic observations near Nishinoshima using ocean bottom seismometers (OBSs) from February 2015. Our OBSs have a recording period of 1 year, and recovery and re-deployment of OBSs were repeated to make continuous observations. The OBSs were deployed with distances of less than 13 km from the crater. Events with particular characteristics were frequently recorded during the eruption period and are estimated to correlate with the release of plumes from the crater by comparison with temporal on-site records using a video camera and microphones. We estimated the number of events using the amplitude average of records to monitor volcanic activity. There were approximately 1800 detected events per day from February to July 2015. The number started to decrease from July 2015, and reached less than 100 per day in November 2015. The surface activity of the volcano was estimated to have ceased in November 2015. Characteristic events began re-occurring in the middle of April 2017. The number of events reached approximately 1400 events per day at the end of May 2017. Seafloor seismic observations using OBSs are a powerful tool for continuous monitoring of island volcanic activity.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Ichinose, S.; Baba, H.
2015-12-01
In 2009 to 2014, total geomagnetic and geological surveys by School of Marine Science & Technology, Tokai University, were conducted on Suruga Bay, located on the Pacific coast of Honshu in Shizuoka Prefecture, central Japan, where a large thrust earthquake, often referred to as the Tokai earthquake, has been supposed to occur soon (Ishibashi, 1981). Suruga Bay area, where the Philippine Sea plate subducts beneath Japan, had some local magnetic anomalies on the overriding plate side. The past investigation of ship-borne survey conducted in Suruga Bay area is geomagnetic anomaly data of the Hydrographic Department of the Maritime Safety Agency in 1997. Detailed geomagnetic surveys carried out in the Suruga Bay area, is 50 km x 35km in S-N and W-E, respectively. Total geomagnetic anomaly values range from +100nT to +600nT. In this report, we carried out newly geomagnetic survey lines which costal region on Suruga Bay. The following results were found. (1) The costal region of Izu Peninsula in Northern part of Izu-Ogasawara arc is indicated high geomagnetic anomaly. This cause is regarded as something to come near to some volcanos. (2) And costal region of the Fujigawa fault system in the Sourath Fossa Magna region is indicated high geomagnetic anomaly. We present features of total geomagnetic anomalies on and around Suruga Bay with the results of inversion.
ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan
NASA Technical Reports Server (NTRS)
2000-01-01
Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people.This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features.The ASTER instrument is a cooperative project between NASA, JPL, and the Japanese Ministry of International Trade and Industry.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between theCrustal evolution derived from the Izu-Bonin-Mariana arc velocity images
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Tatsumi, Y.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takahashi, T.; Noguchi, N.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.
2010-12-01
The Izu-Bonin-Mariana arc is known as one of typical oceanic island arcs, which has developed by subduction between oceanic crusts producing continental materials. Japan Agency for Marine-Earth Science and Technology has carried out seismic surveys using a multi-channel reflection survey system (MCS) and ocean bottom seismographs (OBSs) in the Izu-Bonin-Mariana (IBM) arc since 2002, and reported these crustal images. As the results, we identified the structural characteristics of whole Izu-Bonin-Mariana arc. Rough structural characteristics are, 1) middle crust with Vp of 6 km/s, 2) upper part of the lower crust with Vp of 6.5-6.8 km/s, 3) lower part of the lower crust with Vp of 6.8-7.5 km/s, and 4) lower mantle velocity beneath the arc crusts. In addition, structural variation along the volcanic front, for example, thickness variation of andesitic layers was imaged and the distributions is consistent with those of rhyolite volcanoes, that is, it suggested that the cause the structural variation is various degree of crustal growth (Kodaira et al., 2007). Moreover, crustal thinning with high velocity lower crust across arc was also imaged, and it is interpreted that such crust has been influenced backarc opening (Takahashi et al., 2009). According to Tatsumi et al. (2008), andesitic middle crust is produced by differentiation of basaltic lower crust and a part of the restites are transformed to the upper mantle. This means that region showing much crustal differentiation has large volume of transformation of dense crustal materials to the mantle. We calculated volume profiles of the lower crust along all seismic lines based on the petrologic model, and compared them with observed real volumes obtained by seismic images. If the real volume of the lower crust is large, it means that the underplating of dense materials to the crustal bottom is dominant rather than transformation of dense materials to the upper mantle. According to obtained profiles to judge if the
NASA Astrophysics Data System (ADS)
Ichiyama, Yuji; Ito, Hisatoshi; Hokanishi, Natsumi; Tamura, Akihiro; Arai, Shoji
2017-06-01
A Paleogene accretionary complex, the Mineoka-Setogawa Belt, is distributed around the Izu Collision Zone, central Japan. Plutonic rocks of gabbro, diorite and tonalite compositions are included as fragments and dykes in an ophiolitic mélange in this belt. Zircon U-Pb dating of the plutonic rocks indicates that they were formed at ca. 35 Ma simultaneously. These ages are consistent with Eocene-Oligocene tholeiite and calc-alkaline arc magmatism in the Izu-Bonin-Mariana (IBM) Arc and exclude several previous models for the origin of the Mineoka-Setogawa ophiolitic rocks. The geochemical characteristics of these plutonic rocks are similar to those of the Eocene-Oligocene IBM tholeiite and calc-alkaline volcanic rocks as well as to the accreted middle crust of the IBM Arc, the Tanzawa Plutonic Complex. Moreover, their lithology is consistent with those of the middle and lower crust of the IBM Arc estimated from the seismic velocity structure. These lines of evidence strongly indicate that the plutonic rocks in the Mineoka-Setogawa ophiolitic mélange are fragments of the middle to lower crust of the IBM Arc. Additionally, the presence of the Mineoka-Setogawa intermediate to felsic plutonic rocks supports the hypothesis that intermediate magma can form continental crust in intra-oceanic arcs.
Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan
NASA Astrophysics Data System (ADS)
Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu
2018-04-01
Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.
Persistent Axial Dipole Decay for Past 400 Years Deduced from Lava Flows in Japan
NASA Astrophysics Data System (ADS)
Fukuma, K.
2017-12-01
Temporal variation of the axial dipole moment g10 was deduced from paleointensity data that were obtained from volcanic islands Izu-Oshima and Miyakejima in Japan for the last 400 years, combined with historical field model gufm1. The basaltic lava flows are precisely dated based on ancient documents on the eruptions. Essentially no age error is necessary to be counted. Thellier paleointensity measurements were performed using a fully automated magnetometer-furnace system "tspin" using about 450 specimens, which were mainly collected from clinkers and scorias. Appropriate Thellier temperature steps for each specimen were chosen, based on the thermomagnetic curve that was quite variable depending on the vertical position within a lava flow. The newly obtained paleointensities are much more consistent between sites and provide more reliable paleointensity variation than previous data from lava interiors. I applied the method as Gubbins et al. [2006] to this single spot paleointensity variation from Japan, and obtained persisitent decay of the axial dipole moment over the last 400 years. Contrary to gufm1's assumption that g10 linearly decayed from 1590 to 1840 as extrapolating the post-1840 instrumental records, Gubbins et al. [2006] argued no definite temporal trend on g10 recognizable from the existing archeointensity database. The g10 variation calculated from the previous paleointensity data are seriously discredited by both age and intensity errors resulted from various materials, locations and experimental methods involved. Our single spot and well-dated paleointensity data are free from the problems and support persistent axial dipole decay for past 400 years as assumed in gufm1.
Megathrust earthquakes in Japan and Chile triggered multiple volcanoes to subside
NASA Astrophysics Data System (ADS)
Takada, Y.; Pritchard, M. E.; Fukushima, Y.; Jay, J.; Aron, F. A.; Henderson, S.; Lara, L. E.
2012-12-01
With spaceborne interferometric synthetic aperture radar (InSAR) analysis, we found that two recent megathrust earthquakes, the 2011 Mw 9.0 Tohoku earthquake in Japan (March 11, 2011) and the 2010 Mw 8.8 Maule earthquake in Chile (February 27, 2010), have triggered unprecedented subsidence of multiple volcanoes. There are strong similarities in the characteristics of the surface deformation in Chile and Japan; (1) the maximum amount of subsidence is about 15 cm, (2) the shape of subsidence areas exhibit elliptic shape elongated in the North-South direction -- perpendicular to the principal axis of the extensional stress change, and (3) most of the subsidence was aseismic. These similarities imply that volcanic subsidence from megathrust earthquakes is a ubiquitous phenomenon. In both areas, we found that hydro-thermal reservoirs (including water, gas, and possibly magma) would play key roles in the subsidence. Further continuous monitoring is necessary to determine if the surface subsidence leads to additional volcanic unrest. For the 2011 Tohoku Earthquake, we used SAR data acquired before and after the mainshock by ALOS (PALSAR). By removing long wave-length phase trend from InSAR images, we obtained the localized subsidence signals at five active volcanoes: Mt. Akitakoma, Mt. Kurikoma region, Mt. Zao, Mt. Azuma, and Mt. Nasu. All of them belong to the volcanic front of Northeast Japan and so they are among the closest volcanoes to the earthquake. The maximum amount of subsidence reaches 15 cm at Mt. Azuma. GPS data from two volcanoes also indicate surface subsidence consistent with the satellite radar observations. Furthermore, the GPS data show that the subsidence occurred immediately after the earthquake. According to numerical modelling, the observed subsidence can be explained by the co-seismic response of fluid-filled ellipsoid with horizontal dimensions of 10-40 × 5-15 km beneath each volcano. For the 2010 Maule Earthquake, we extracted the localized
Tsunami Numerical Simulation for Hypothetical Giant or Great Earthquakes along the Izu-Bonin Trench
NASA Astrophysics Data System (ADS)
Harada, T.; Ishibashi, K.; Satake, K.
2013-12-01
We performed tsunami numerical simulations from various giant/great fault models along the Izu-Bonin trench in order to see the behavior of tsunamis originated in this region and to examine the recurrence pattern of great interplate earthquakes along the Nankai trough off southwest Japan. As a result, large tsunami heights are expected in the Ryukyu Islands and on the Pacific coasts of Kyushu, Shikoku and western Honshu. The computed large tsunami heights support the hypothesis that the 1605 Keicho Nankai earthquake was not a tsunami earthquake along the Nankai trough but a giant or great earthquake along the Izu-Bonin trench (Ishibashi and Harada, 2013, SSJ Fall Meeting abstract). The Izu-Bonin subduction zone has been regarded as so-called 'Mariana-type subduction zone' where M>7 interplate earthquakes do not occur inherently. However, since several M>7 outer-rise earthquakes have occurred in this region and the largest slip of the 2011 Tohoku earthquake (M9.0) took place on the shallow plate interface where the strain accumulation had considered to be a little, a possibility of M>8.5 earthquakes in this region may not be negligible. The latest M 7.4 outer-rise earthquake off the Bonin Islands on Dec. 22, 2010 produced small tsunamis on the Pacific coast of Japan except for the Tohoku and Hokkaido districts and a zone of abnormal seismic intensity in the Kanto and Tohoku districts. Ishibashi and Harada (2013) proposed a working hypothesis that the 1605 Keicho earthquake which is considered a great tsunami earthquake along the Nankai trough was a giant/great earthquake along the Izu-Bonin trench based on the similarity of the distributions of ground shaking and tsunami of this event and the 2010 Bonin earthquake. In this study, in order to examine the behavior of tsunamis from giant/great earthquakes along the Izu-Bonin trench and check the Ishibashi and Harada's hypothesis, we performed tsunami numerical simulations from fault models along the Izu-Bonin trench
Origin of Japanese White-Eyes and Brown-Eared Bulbuls on the Volcano Islands.
Sugita, Norimasa; Kawakami, Kazuto; Nishiumi, Isao
2016-04-01
The Ogasawara Archipelago comprises two groups of oceanic islands: the Bonin Islands, formed in the Paleogene, and the Volcano Islands, formed in the Quaternary. These groups are located within a moderate distance (ca. 160-270 km) of one another; thus, most land bird species are not distinguished as different subspecies. Two land birds, however, show unusual distribution. The Japanese white-eyes Zosterops japonicus originally inhabited only the Volcano Islands, but has been introduced to the Bonin Islands. The brown-eared bulbuls Hypsipetes amaurotis are distributed as a different subspecies. We investigated their genetic differences and divergences in the Ogasawara Archipelago using mitochondria DNA. The Volcano population of white-eyes had four endemic haplotypes that were divergent from one another, except for the Bonin population, which shared three haplotypes with the Volcano, Izu, and Ryukyu Islands and did not have any endemic haplotype. This is the first genetic suggestion that the Bonin population is a hybrid of introduced populations. With respect to bulbuls, the Volcano and Bonin Islands each had a single endemic haplotype. The Volcano haplotype is closest to a haplotype shared with Izu, the Japanese mainland, Daito and Ryukyu, whereas the Bonin haplotype is closest to one endemic to the south Ryukyu Islands. This indicates that the sources of the two bulbul populations can be geologically and temporally distinguished. The populations of the two species in the Ogasawara Archipelago are irreplaceable, owing to their genetic differences and should be regarded as evolutionarily significant units. In order to prevent introgression between the two populations, we must restrict interisland transfers.
Possible large-volume mafic explosive eruptions in the Izu arc recorded in IODP Site U1436
NASA Astrophysics Data System (ADS)
Tamura, Y.; Jutzeler, M.; Schindlbeck, J. C.; Nichols, A. R.; DeBari, S.; Gill, J.; Busby, C. J.; Blum, P.
2014-12-01
The Izu-Bonin-Mariana volcanic arc system is an excellent example of an intraoceanic convergent margin where the effects of crustal anatexis and assimilation are considered to be minimal. The Izu fore arc is a repository of ashes erupted in the Izu-Bonin frontal arc because the prevailing wind blows from west to east. IODP Site U1436 (proposed Site IBM-4GT), located at 32°23.88'N, 140°21.93'E, lies in the western part of the Izu fore arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of ODP Site 792, and at 1776 mbsl. It was drilled in April-May 2014, during IODP Expedition 350, as a 150 m deep geotechnical test hole for potential future deep drilling at proposed Site IBM-4 using the D/V Chikyu. The stratigraphic record of Late Pleistocene mafic and silicic explosive volcanic products from the arc front consists of tuffaceous mud interstratified with mafic and evolved ash and lapilli, including distinctive black glassy mafic ash layers. These distinctive intervals are basaltic andesite and the most mafic deposits analyzed shipboard at Site U1436. The facies appeared to be unusually homogeneous in componentry and texture; the overwhelmingly glassy nature of the ash suggests subaqueous explosive eruption, and its good sorting suggests deposition by vertical settling through the water column from an ash plume that reached the atmosphere. An alterative hypothesis is that the ash layers have been redeposited in bathymetric lows by submarine density currents. These black glassy mafic ash layers attracted a great deal of interest among the science party because, if the first hypothesis is correct, they could record large-volume mafic explosive eruptions. As a result three more holes were drilled at Site U1436, in order to recover undisturbed examples of these layers. Samples from each hole are currently undergoing post-cruise geochemical (major, traces and volatiles) and componentry analysis to test
NASA Astrophysics Data System (ADS)
Arisa, D.; Heki, K.
2014-12-01
The Izu-Bonin islands lies along the convergent boundary between the subducting Pacific plate (PA) and the overriding Philippine Sea plate (PH) in the western Pacific. Nishimura (2011) found that the back-arc rifting goes on behind the Izu arc by studying the horizontal velocities of GNSS stations on the Izu islands. Here we show that this rifting has accelerated in 2004 using GNSS data at Aogashima, Hachijoujima, and Mikurajima stations. The back-arc rifting behind the Izu islands can be seen as the increasing distance between stations in the Izu-Bonin islands and stations located in the stable part of PH. We found that their movement showed clear acceleration around the third quarter of 2004. Obtaining the Euler vector of the PH is necessary to analyzed the movement of each stations relative to the other stations on the same plate. The analyzing of GPS timeseries leads us to one initial conclusion that some accelerated movement started to occur in the third quarter of 2004. This event was closely related to the earthquake on May 29, 2004 in Nankai Trough and September 5, 2004 earthquake near the triple junction of Sagami Trough. The analyzing process help us to understand that this accelerated movement was not the afterslip of any of these earthquakes, but it was triggering these area to move faster and further than it was. We first rule out the best possible cause by constraining the onset time of the accelerated movement, and correlating it with the earthquakes. May 29, 2004 earthquake (M6.5) at the PA-PH boundary clearly lacked the jump which should mark the onset of the eastward slow movement. Moreover, additional velocity vectors do not converge to the epicenter, and onset time that minimizes the post-fit residual is significantly later than May. We therefore conclude that accelerated movement started in 2004 was not due to the afterslip of interplate earthquake in May 29. On the next step we found that the onset time coincides with the occurrence of
Geochemical challenge to earthquake prediction.
Wakita, H
1996-01-01
The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented. PMID:11607665
NASA Astrophysics Data System (ADS)
Fujii, Yoichiro
1991-07-01
Since the beginning of the anomalous vertical crustal movement in the Izu peninsul, Honshu, Japan, many repeated precise levellings have been carried out by the Geographical Survey Institute. Trilaterations covering the entire Izu peninsula have also been carried out by the Geographical Survey Institute. A new technique is developed to adjust the results of levellings, because they had been carried out for different epochs along each levelling route and because of rapid vertical crustal movements. In conventional least-squares adjustment of levelling network, only corrections to the approximate height are assumed to be unknown, while in the present analysis a special model in which rates of vertical deformation at any bench marks are also assumed to be unknown, is adopted. In addition, tidal stations along the coast of the Izu peninsula yield the rate of vertical crustal movement from analysis of tidal data independent of levelling data. We select several special bench marks in which rates of vertical movement are determined by tidal analysis, thereafter special adjustment is applied according to the type of network. The results show that the peninsula is inclined to the south-west. Uplift in the northeastern part of the peninsula is accompanied by remarkable subsidence in the southwest. The rate of contemporary inclination is many times higher than the rate during the period from 1929 to 1972. The deformation is concentrated in the area where Nakamura (1979, 1980) pointed out the bending of the Philippine Sea plate. The mode and rate of the detected crustal deformation suggest the accelerated bending of the peninsula. There are some local “uplift” that deviate from the general pattern of deformation. The most remarkable land uplift was observed near Ito, a city within the peninsula, and the focus of this uplift migrated with time. The accelerated plate bending will produce an extension at the earth's surface and contraction in the deeper part of the subcrustal
NASA Astrophysics Data System (ADS)
Sagiya, T.
2004-12-01
Starting from June 26, 2000, an unprecedented seismic activity occurred around the Miyake-jima, Kohzu-shima, and Nii-jima Islands, in the northern Izu islands. This seismic swarm activity was initiated by the volcanic magma intrusion beneath the Miyake-jima volcano. An intrusion of massive (about 1km3) magma caused the seismic swarm activity and magnificent crustal deformation in the surrounding area within about 200km from the source region. After the seismic swarm activity calmed down, we detect a change in crustal displacement rates in the southern Kanto region from daily coordinate solutions of the continuous GPS network. Interestingly, the change appears mostly in the E-W components. Comparison of GPS velocity data for two time periods (1996-200 and 2001-2002) indicate that the westward displacement rate decreased by about 25% (from 23 mm/yr to 17 mm/yr) at Tateyama, the southern tip of the Boso Peninsula. On the other hand, we do not see significant changes in the N-S and vertical components. Continuous monitoring of crustal displacements with GPS has revealed that the post-swarm deformation is now coming back to the pre-swarm steady state. That is, the time series of E-W component show transient curves, converging into the original steady state. The transient curve can be equally well reproduced by an exponential decay or a logarithmic function. The relaxation time for the exponential curve is estimated as about 3 years. One possible explanation for this transient deformation is viscoelastic relaxation. Since the Izu Islands are situated on the oceanic Philippine Sea plate, the upper mantle with a low viscosity would response to the huge stress change cause by the magma intrusion. The other possibility is a change of frictional property on the plate interface between the Philippine Sea and the Pacific plate. Under the southern Kanto area, the subducted Philippine Sea slab leans on the subdcted Pacific slab. Interaction between these two oceanic plates is
Scoria cone formation through a violent Strombolian eruption: Irao Volcano, SW Japan
NASA Astrophysics Data System (ADS)
Kiyosugi, Koji; Horikawa, Yoshiyuki; Nagao, Takashi; Itaya, Tetsumaru; Connor, Charles B.; Tanaka, Kazuhiro
2014-01-01
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943-1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10-1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K-Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4 ± 0.05 Ma.
NASA Astrophysics Data System (ADS)
Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.
2001-06-01
We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.
NASA Technical Reports Server (NTRS)
1995-01-01
This is a space radar image of the area around the Unzen volcano, on the west coast of Kyushu Island in southwestern Japan. Unzen, which appears in this image as a large triangular peak with a white flank near the center of the peninsula, has been continuously active since a series of powerful eruptions began in 1991. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 93rd orbit on April 15, 1994. The image shows an area 41.5 kilometers by 32.8 kilometers (25.7 miles by 20.3 miles) that is centered at 32.75 degrees north latitude and 130.15 degrees east longitude. North is toward the upper left of the image. The radar illumination is from the top of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (vertically transmitted and received); green represents the average of L-band and C-band (vertically transmitted and received); blue represents the C-band (vertically transmitted and received). Unzen is one of 15 'Decade' volcanoes identified by the scientific community as posing significant potential threats to large local populations. The city of Shimabara sits along the coast at the foot of Unzen on its east and northeast sides. At the summit of Unzen a dome of thick lava has been growing continuously since 1991. Collapses of the sides of this dome have generated deadly avalanches of hot gas and rock known as pyroclastic flows. Volcanologists can use radar image data to monitor the growth of lava domes, to better understand and predict potentially hazardous collapses.
Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). TheS-wave attenuation structure beneath the northern Izu-Bonin arc
NASA Astrophysics Data System (ADS)
Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi
2016-04-01
To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.
Plate convergence and long-term crustal deformation in central Japan
NASA Astrophysics Data System (ADS)
Heki, Kosuke; Miyazaki, Shin'ichi
Surveys by continuous Global Positioning System in and around Japan revealed that the Amurian Plate collides with the North American Plate in central Japan by ∼2 cm/yr. Long-term crustal deformation seems to be influenced mainly by this collision although subduction of oceanic plates governs short-term elastic deformation over the arc. Here we study the long-term deformation field by carefully removing the short-term signals inferred from a-priori plate convergence vectors and coupling strengths predicted by a thermal model. The obtained field shows that the change in velocities occurs along the longitude 135° ∼ 137°, and there exist a relatively rigid block and zones accommodating strains. Characteristic compressional deformation is found northwest of Izu due possibly to the collision of the Izu-Bonin arc with Honshu. Plate convergence rate along the Nankai-Suruga Trough is considerably smaller in eastern parts, due partly to the transition from the Amurian to the North American Plate of the landward side, and partly to the motion of the Izu Microplate relative to the Philippine Sea Plate. This accounts for longer recurrence intervals of interplate earthquakes in the Suruga Trough where the Tokai earthquake is anticipated to occur.
Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan
NASA Astrophysics Data System (ADS)
Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.
2013-12-01
Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size
NASA Astrophysics Data System (ADS)
Kurashimo, E.; Sato, H.; Abe, S.; Kato, N.; Ishikawa, M.; Obara, K.
2009-12-01
In central Japan, the Philippine Sea Plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region. In western Kanto region, the Izu-Bonin arc (IBA) within the PSP has been colliding from the south with the Honshu arc, forming a complex structure called the Izu-Collision zone (ICZ). Several active faults were formed in and around the ICZ. The geometry of the subducting PSP and the overlying crustal structure of the ICZ are important to constrain the process of earthquake occurrence and the crustal evolution process associated with arc-arc collision. Recent seismic experiments reveal the geometry of the subducting PSP beneath the Kanto region (Sato et al., 2005). The Japanese islands, including the ICZ, are covered with dense arrays of permanent seismic stations, which provide good constraints on velocity structures by a tomographic method. Such studies reveal a general picture of the lithospheric structure such as a descending plate configuration (e.g. Matsubara et al., 2008). However, since an average spacing of the permanent station is typically 20 km, a detailed structure in the upper crust, which is imperative for an understanding of the active tectonics, cannot be well constrained by permanent array alone. Two dense seismic array observations were conducted to obtain a structural image beneath the ICZ. One is a 40-km-long line (EW-line) located in the northern part of the ICZ and the other is a 55-km-long line (NS-line) located in the central part of the ICZ. Seventy-five 3-component portable seismographs were deployed on EW-line with 500 to 700 m interval and waveforms were recorded during a four-month period from October, 2008. Forty 3-component portable seismographs were deployed on NS-line with about 1 km spacing and waveforms were recorded during the three month period from January, 2006. In order to obtain a high-resolution velocity model, a well-controlled hypocenter is essential. Due to this, we combined the seismic array data with
Use of Unmanned Aircraft System (UAS) in Response to the 2014 Eruption of Ontake Volcano, Japan
NASA Astrophysics Data System (ADS)
Mori, T.; Hashimoto, T.; Terada, A.; Shinohara, H.; Kazahaya, R.; Yoshimoto, M.; Tanaka, R.
2015-12-01
On Sept. 27, 2014, a phreatic eruption occurred at Ontake volcano (3067 m a.s.l.), central Japan. The eruption caused an unprecedented volcanic disaster in the last 70 years in Japan. Search and rescue operations started soon after the eruption until they were suspended due to snowfall in late October. Considering the potential hazards of further explosive events and the severe winter condition, an approach to the summit area after late October was very difficult. To reveal the condition of the volcanic activity and foresee the trend, we considered it important to carry out volcanic gas surveys for the dense plumes in the vicinity of the vents using an unmanned aircraft system (UAS). For the surveys at Ontake volcano, the UAS was expected to fly about 8 km roundtrip distance at an altitude of over 3000 m. A multicopter with 8 rotors was adopted and we targeted four types of plume monitoring using the UAS; in-plume monitoring of multiple gas concentrations, SO2 flux measurement with UV spectroscopy, thermography of the vents, and in-plume particle sampling. In order to meet the 1 kg payload of the multicopter, some of the instruments were slimmed down.The UAS campaigns at Ontake volcano were carried out on Nov. 20-21, 2014 and on Jun. 2, 2015 from the safety distance of 3-3.5 km away from the crater. With the UAS surveys, we revealed that the SO2/H2S ratios of volcanic gas were closer to the hydrothermal origin instead of direct magma degassing. The second survey also pointed out that the SO2 emission decreased down below 10 ton/day by June 2015, by taking an advantage of flying the vicinity of the vents before the plume was diluted. Our surveys showed decreasing activity of the volcano, together with the advantages of using UAS in volcano monitoring for inaccessible conditions.
Sakura-jima volcano in Japan as seen from STS-66 Atlantis
NASA Technical Reports Server (NTRS)
1994-01-01
One of the world's most active volcanoes, Sakura-jima in southern-most Kyushu, Japan, erupts dozens of times a year. Volcanic eruptions are so much a part of of daily life in the city of Kagoshima (across the bay and west of Sakura-jima), that school children wear hard hats to school. This photo provides a nice clear view of Sakura-jima on a quiet day - only a plume of steam rises from the summit crater. The summit region is covered with gray ash from the frequent eruptions, and some of the rivers cutting down the mountain (especially the western drainages) appear to be filled with volcanic debris.
Sakura-jima volcano in Japan as seen from STS-66 Atlantis
1994-11-14
One of the world's most active volcanoes, Sakura-jima in southern-most Kyushu, Japan, erupts dozens of times a year. Volcanic eruptions are so much a part of of daily life in the city of Kagoshima (across the bay and west of Sakura-jima), that school children wear hard hats to school. This photo provides a nice clear view of Sakura-jima on a quiet day - only a plume of steam rises from the summit crater. The summit region is covered with gray ash from the frequent eruptions, and some of the rivers cutting down the mountain (especially the western drainages) appear to be filled with volcanic debris.
NASA Astrophysics Data System (ADS)
Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.
2009-12-01
We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.
NASA Astrophysics Data System (ADS)
Lim, Chungwan; Toyoda, Kazuhiro; Ikehara, Ken; Peate, David W.
2013-07-01
Only Ulleung and Baegdusan volcanoes have produced alkaline tephras in the Japan Sea/East Sea during the Quaternary. Little is known about their detailed tephrostratigraphy, except for the U-Oki and B-Tm tephras. Trace element analysis of bulk sediments can be used to identify alkaline cryptotephra because of the large compositional contrast. Five sediment cores spanning the interval between the rhyolitic AT (29.4 ka) and Aso-4 (87 ka) tephras were analyzed using an INAA scanning method. Source volcanoes for the five detected alkaline cryptotephra were identified from major element analyses of hand-picked glass shards: Ulleung (U-Ym, and the newly identified U-Sado), and Baegdusan (B-J, and the newly identified B-Sado and B-Ym). The eruption ages of the U-Ym, U-Sado, B-J, B-Sado, and B-Ym tephras are estimated to be 38 ka, 61 ka, 26 ka, 51 ka, 68-69 ka, and 86 ka, respectively, based on correlations with regional-scale TL (thinly laminated) layer stratigraphy (produced by basin-wide changes in bottom-water oxygen levels in response to millennium-scale paleoclimate variations). This study has allowed construction of an alkaline tephrostratigraphical framework for the late Quaternary linked to global environmental changes in the Japan Sea/East Sea, and improves our knowledge of the eruptive histories of Ulleung and Baegdusan volcanoes.
Estimation of Seismic Attenuation beneath Tateyama Volcano, Central Japan by Using Peak Delay
NASA Astrophysics Data System (ADS)
Iwata, K.; Kawakata, H.; Hirano, S.; Doi, I.
2015-12-01
The Hida Mountain Range located in central Japan has a lot of active volcanoes. Katsumata et al. (1995, GJI) suggested the presence of regions with low-velocity and low-density as well as low Qanomaly at 5-15 km deep beneath the range. Tateyama volcano is located in the northern part of the range. Iwata et al. (2014, AGU Fall Meeting) quantitatively estimated strength of S-wave attenuation beneath Tateyama volcano using twofold spectral ratios and suggested that regions with high seismic attenuation exist in the south or the southeast of Tateyama volcano. However, it is difficult to estimate the contribution of scattering loss and intrinsic absorption to total attenuation on the basis of this method. In the present study, we focused on the peak delay (Takahashi et al., 2007, GJI) in seismic envelopes. We used seismograms observed at five NIED Hi-net stations near Tateyama volcano for 31 local earthquakes (MJMA2.5-4.0). We found seismograms recorded after passing below the southern part of the Hida Mountain Range show longer peak delay than those recorded before passing below the region, while there are no clear difference in peak delay for pairs of seismograms before and after passing below Tateyama volcano. It suggests that causes of the attenuation beneath Tateyama volcano and the southern part of the Hida Mountain Range are different. We used the peak delay values to evaluate the strength of intrinsic absorption. We assumed that the difference of whole peak delay between two seismograms for the same earthquake was caused by intrinsic absorption beneath the region between the two seismic stations. Wecalculated the change in amplitude and peak delay on the basis of a theory suggested by Azimi et al. (1966, Izvestia, Earth Physics). In case of the two envelopes are quite similar to each other, we conclude that intrinsic absorption is a major cause of total attenuation
The “anomalous cedar trees” of Lake Ashi, Hakone Volcano, Japan
Oki, Y.
1984-01-01
On the bottom of Lake Ashi at Hakone, Japan, there stand great trees that, since ancient times, have been widely known as the "Anomalous Cedar Trees" of Ashi. It is not known why these trees grow on the bottom of the lake, and it remains one of the mysteries of Hakone. It was formerly thought that, at the time Lake Ashi was born, a great forest of cedar trees which was growing in the caldera of the volcano sank into the water. From radioactive carbon dating techniques, it is known that a steam explosion in the Kami Mountains created the caldera approximately 3,000 years ago. The age of the "Anomalous Cedars" is placed at approximately.
NASA Astrophysics Data System (ADS)
Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.
2014-12-01
The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.
Repeated aeromagnetic surveys in Shinmoe-dake volcano, Japan by using unmanned helicopter
NASA Astrophysics Data System (ADS)
Koyama, T.; Kaneko, T.; Ohminato, T.; Watanabe, A.; Takeo, M.; Yanagisawa, T.; Honda, Y.
2016-12-01
We repeatedly conducted aeromagnetic surveys at Shinmoe-dake volcano, Japan by using unmanned helicopter, and elucidated magnetization structure and its temporal change. At the beginning of 2011, Shinmoe-dake volcano has done magmatic eruptions. After ceasing activities of volcanic eruptions, the first aeromagnetic survey by an unmanned helicopter was performed in the western part of Shinmoe-dake volcano in May 2011. The advantage to use unmanned vehicle for volcanic survey is ability of the safe flight in lower altitude with precise tracks. It enable us forthcoming repeated survey on the same tracks and elucidate the temporal changes of the magnetic fields. The geomagnetic total intensity measurement flight was conducted by installing cesium optical pumping magnetometer on the helicopter, in which the measurement line intervals were almost 100 m and the altitudes were also fixed at almost 100 m above the ground except above the crater. Total measurement length was about 85 km. The data analysis revealed that the averaged magnetization is about 1.5 A/m, typical value of andesite rock, and some horizontal anomalies can be shown.After that, we conducted four repeated surveys so far, and notable temporal changes are detected just around the crater of Shinmoe-dake volcano due to gaining magnetization by cooling of lava which has accumulated in the crater at the 2011 eruptions. The cooling rate just follows square root of elapsed time from the eruptive events, and thus the cooling is being simply done by thermal diffusion. Magnetizing, however, goes on too fast to be done by thermal diffusion only at the surface of lava, and so the cooling may be very effectively done also inside the lava by evaporating water.In this paper, we'll show the detailed results of measurements and discuss the temporal changes of magnetization.
NASA Astrophysics Data System (ADS)
Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.
2010-12-01
Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity
NASA Astrophysics Data System (ADS)
Vautravers, Maryline
2015-04-01
IODP Expedition 350 Site U1436C lies in the western part of the Izu fore arc basin, ~60 km east of the arc front volcano Aogashima, at 1776 m water depth. This site is a technical hole (only a 150 m long record) for a potential future deep drilling by Chikyu. Site U1437 is located in the Izu rear arc, ~90 km west of the arc front volcanoes Myojinsho and Myojin Knoll, at 2117 m water depth. At this site in order to study the evolution of the IZU rear arc crust we recovered a 1800 meter long sequence of mud and volcaniclastic sediments. These sites provide a rich and well-preserved record of volcanic eruptions within the area of the Izu Bonin-Arc. However, the material recovered, mostly mud with ash containing generally abundant planktonic foraminifera, can support additional paleoceanographic goals in an area affected by the Kuroshio Current. Also, the hydrographic divide created by the Izu rise provides a rare opportunity to gain some insight into the operation of the global intermediate circulation. The Antarctic Intermediate Water Mass is more influential at the depth of U1437B in the West and the North Pacific Intermediate Water at Site U1436C to the East. We analyzed 460 samples recovered at Sites U1436C and U1437B for a quantitative planktonic foraminifer study, and also for carbonate preservation indices, including: shell weight, percent planktonic foraminifera fragments planktonic foraminifer concentrations, various faunal proxies, and benthic/planktonic ratio. We measured the stable isotopes for a similar number of samples using the thermocline dwelling Neogloboquadrina dutertrei. The dataset presented here covers the last 1 Ma at Site U1437B and 0.9 Ma at Site U1436C. The age models for the two sites are largely established through stable isotope stratigraphy (this study). On their respective age models we evidence based on polar/subpolar versus subtropical faunal assemblages changes qualitative surface water temperature variations recording the changing
Cyclic flank-vent and central-vent eruption patterns
NASA Astrophysics Data System (ADS)
Takada, Akira
Many basaltic and andesitic polygenetic volcanoes have cyclic eruptive activity that alternates between a phase dominated by flank eruptions and a phase dominated by eruptions from a central vent. This paper proposes the use of time-series diagrams of eruption sites on each polygenetic volcano and intrusion distances of dikes to evaluate volcano growth, to qualitatively reconstruct the stress history within the volcano, and to predict the next eruption site. In these diagrams the position of an eruption site is represented by the distance from the center of the volcano and the clockwise azimuth from north. Time-series diagrams of Mauna Loa, Kilauea, Kliuchevskoi, Etna, Sakurajima, Fuji, Izu-Oshima, and Hekla volcanoes indicate that fissure eruption sites of these volcanoes migrated toward the center of the volcano linearly, radially, or spirally with damped oscillation, occasionally forming a hierarchy in convergence-related features. At Krafla, terminations of dikes also migrated toward the center of the volcano with time. Eruption sites of Piton de la Fournaise did not converge but oscillated around the center. After the convergence of eruption sites with time, the central eruption phase is started. The intrusion sequence of dikes is modeled, applying crack interaction theory. Variation in convergence patterns is governed by the regional stress and the magma supply. Under the condition that a balance between regional extension and magma supply is maintained, the central vent convergence time during the flank eruption phase is 1-10 years, whereas the flank vent recurrence time during the central eruption phase is greater than 100 years owing to an inferred decrease in magma supply. Under the condition that magma supply prevails over regional extension, the central vent convergence time increases, whereas the flank vent recurrence time decreases owing to inferred stress relaxation. Earthquakes of M>=6 near a volcano during the flank eruption phase extend the
Prejean, Stephanie G.; Haney, Matthew M.
2014-01-01
Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.
Heterogeneous subduction structure within the Pacific plate beneath the Izu-Bonin arc
NASA Astrophysics Data System (ADS)
Gong, Wei; Xing, Junhui; Jiang, Xiaodian
2018-05-01
The Izu-Bonin subduction zone is a subduction system formed in early Eocene. The structure of the subduction zone becomes complicated with the evolution of the surrounding plate motion, and many aspects are still unkown or ambiguous. The geodynamic implications are further investigated in related to published seismic observations and geochemical characters of the Izu-Bonin subduction zone. As indicated by seismic tomography and epicentral distributions, the dip angle of the plate beneath the segment to the south of 29°-30°N (the southern Izu-Bonin) is much steeper than the northern one (the northern Izu-Bonin). Deep focus events in the southern segment extend to the depth of ∼600 km, whereas in the northern section deep events just terminate at 420-450 km. Particularly, tomographic images show an obvious boundary between the northern and southern Izu-Bonin at depths of 150-600 km neglected in the previous studies. The northern and southern segments are even separated by a wide range of low-velocity anomaly in P and S wave tomography at 380 km and 450 km depths. In this depth range, three events near 30°N are characterized by strike-slip mechanisms with slab parallel σ1 and horizontally north-south trending σ3, which differ with the typical down-dip compression mechanisms for neighboring events. These events could be attributed to an abrupt change of the morphology and movement of the slab in the transition segment between the northern and southern Izu-Bonin. Indicated by the focal mechanisms, the northern and southern Izu-Bonin exhibits an inhomogeneous stress field, which is closely related to age differences of the downgoing slab. Because of the reheating process, the thermal age of the Pacific plate entering the Izu-Bonin trench in the past 10 Ma, is only 60-90 ± 20 Ma, along with the younger plate subducting in the northern segment. The seismic anisotropy implies that mantle wedge flow orientation is between the motion direction of the Pacific plate and
Yamazaki, Shoko; Mottate, Keita; Nagata, Noriyo; Seto, Takahiro; Sanada, Takashiro; Sakai, Mizuki; Kariwa, Hiroaki; Takashima, Ikuo
2013-01-01
Abstract Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis in humans. A recent epizootiological survey indicated that endemic foci of TBEV have been maintained in the southern part of Hokkaido until recently. In this study, we sought to isolate TBEV from wild rodents in the area. One virus, designated Oshima 08-As, was isolated from an Apodemus speciosus captured in Hokuto in 2008. Oshima 08-As was classified as the Far Eastern subtype of TBEV and formed a cluster with the other strains isolated in Hokkaido from 1995 to 1996. Thirty-six nucleotide differences resulted in 12 amino acid changes between Oshima 08-As and Oshima 5–10 isolated in 1995. Oshima 08-As caused high mortality and morbidity in a mouse model compared with Oshima 5–10. Although similar transient viral multiplication in the spleen was observed in the mice infected with Oshima 08-As and Oshima 5–10, greater viral multiplication with an inflammatory response was noted in the brains of mice infected with Oshima 08-As than those infected with Oshima 5–10. These data indicate that a few naturally occurring mutations affect the pathogenicity of the Oshima strains endemic in the southern part of Hokkaido. PMID:23590320
Kersting; Arculus; Gust
1996-06-07
Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.
2001-10-22
The nearly perfectly conical profile of Fuji soars 3,776 meters (12,388 feet) above sea level on southern Honshu, near Tokyo. The highest mountain in Japan, Fuji is the country's most familiar symbol. The summit of this graceful, dormant volcano is broken by a crater 610 meters (2,000 feet) in diameter. The crater is ringed by eight jagged peaks. The five Fuji Lakes lie on the northern slopes of the mountain, all formed in the wake of lava flows. Mirrored in the still waters of Kawaguchi-ko, the most beautiful of the five lakes, is a reflection of Fuji. Part of Fuji-Hakone-Izu National Park, Fuji last erupted for a two-month period starting in November 1707, covering Tokyo, some 100 kilometers (60 miles) away, with a layer of ash. According to legend, Fuji arose from the plain during a single night in 286 BC. Geologically, the mountain is much older than this. Considered sacred by many, Fuji is surrounded by temples and shrines. Thousands of pilgrims climb the mountain each year as part of their religious practice, hoping to reach the summit by dawn to watch the sunrise. This animated fly-by was created by draping visible and near infrared image data over a digital topography model, created from ASTER's stereo bands. The spatial resolution of both the image and topography is 15 m. The image is centered at 35.3 degrees north latitude, 138.7 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11166
Episodic Deep Fluid Expulsion at Mud Volcanoes in the Kumano Forearc Basin, SE Offshore Japan
NASA Astrophysics Data System (ADS)
Hammerschmidt, S.; Kopf, A.
2014-12-01
Compressional forces at convergent margins govern a variety of processes, most prominently earthquakes, landslides and mud volcanoes in the forearc. Although all seem related to fluid pressure changes, mud volcanoes are not only characterized by expulsion of fluids, but also fluidized mud and clasts that got ripped-up during mud ascension. They hence provide information regarding mobilization depth, diagenetic overprint, and geodynamic pathways. At the Nankai Trough subduction zone, SE offshore Japan, mud volcanism id common and supposed to be related to seismogenic processes. During MARUM Expedition SO-222 with R/V SONNE, mud volcanoes in the Kumano forearc basin were mapped, cored and sampled. By extending the Integrated Ocean Drilling Program (IODP) Kumano transect landwards, 5 new mud volcanoes were identified by multibeam mapping. Cores revealed mud breccia with semi-consolidated silt- to claystone clasts and gaseous fluid escape structures, while the hemipelagic background sediments are characterized by intercalations of turbidites, ash layers and calcareous fossils. Clasts were subject to thin-section analyses, and the cores were sampled for XRD analyses and radiocarbon dating. Clasts showed prominent deformation structures, neomorphism and pores and fractures filled with polycrystalline quartz and/or calcite cement, probably formed during deep burial and early metamorphosis. Illite crystallinity based on XRD measurements varies between 0.24 and 0.38, which implies that the material originates from the Anchizone at depths ≥ 4 km. Radiocarbon dating revealed ages between 4450 and 30300 yr cal. BP, with age reversals occurring not earlier than 17000 yr cal. BP. Radiocarbon dating beneath turbidites and ash layers found at mud volcano #9 points to an episodic occurrence of these earthquake-related features in intervals of ca. 620 yr, while the mud volcano itself remained inactive. In summary, the preliminary results suggest that the mud volcanoes are nurtured
NASA Astrophysics Data System (ADS)
Ichiki, M.; Moriyama, T.; Kaida, T.; Kanda, W.; Demachi, T.; Hirahara, S.; Miura, S.; Nakayama, T.; Ogawa, Y.; Seki, K.; Akutagawa, M.; Ushioda, M.; Kobayashi, T.; Uyeshima, M.; Yamamoto, M.; Matsu'ura, S.; Omori, S.; Ono, K.; Seki, S.
2017-12-01
Zao volcano is situated at a distance of about 40 km SW from Sendai in NE Japan. There exists the crater lake, Okama, with about 360 m diameter and about 30 m depth, in the summit area. The seismicity of the low frequency earthquakes deeper than 20 km depth beneath Zao volcano has turned active since middle of 2012. We have also observed shallow (˜5 km) volcanic earthquakes beneath Zao volcano in 2013 to 2017. In the historical records, fumaroles, degassing and phreato-magmatic eruptions occurred close to Okama in 1867 to 1943. Since 1940, fumaroles have observed in about 1 to 1.5 km NE of Okama. Subsurface hydrotherm distribution and geotherm variation are the key feature to forecast future phreatic or phreato-magmatic eruption. In this presentation, we report electrical resistivity distribution and demagnetized region beneath Zao volcano.We observed total magnetic intensity variation of a demagnetized spatial pattern between June and October in 2014. To model a demagnetized region, we carried out a global optimized inversion of grid search assuming ellipsoidal shape and 5 A/m demagnetization intensity. The estimated demagnetized body located in 800 m northeastern side of the center of Okama, and the top surface is 330 m depth. The principal axis length is 500, 425, 190 m, respectively. The demagnetized region locates at the middle points between the recent fumarole region and Okama.AMT data were acquired at 24 sites in the area of 2 km by 2 km. The observation sites do not cover over the demagnetized region described above. We obtained the AMT response of 10 kHz to 0.1 Hz and calculated a 3-D electrical conductivity model beneath around Okama. The conductor (1-30 Ohm-m) is embedded in 200-600 m depth beneath Okama and the lateral dimension is up to 400 m. The conductor is isolated and neither expands in deeper parts nor tends to elongate to the demagnetized region. We interpret the conductor as a hydrothermal alteration zone of the past volcanic activities
2000-05-18
The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image.
Precursory changes in well water level prior to the March, 2000 eruption of Usu Volcano, Japan
NASA Astrophysics Data System (ADS)
Shibata, Tomo; Akita, Fujio
The height of water levels in two wells located near Usu volcano, Japan, changed in a systematic fashion for several months prior to the eruption of Usu volcano on 31 March 2000. In one well, water-level decrease relative to normal levels was first observed at the beginning of October 1999. The decreasing water-level is postulated to result from groundwater flow into cracks widened by intruding magma during dike formation. From the beginning of January 2000, the rate of decrease became higher. During this time, the water level of the second well increased by 0.05 m and then gradually decreased. The water-level changes are consistent with volumetric expansion of magma inside the magma chamber, followed by intrusion of magma into the fracture system associated with widening of cracks. We conclude that water-level observations can provide information that may potentially be used to predict further volcanic eruptions.
Turbidite geochemistry and evolution of the Izu-Bonin arc and continents
NASA Astrophysics Data System (ADS)
Gill, J. B.; Hiscott, R. N.; Vidal, Ph.
1994-10-01
The major and trace element and NdPb isotopic composition of Oligocene to Pleistocene volcaniclastic sands and sandstones derived from the Izu Bonin island arc has been determined. Many characteristics of the igneous sources are preserved and record the geochemical evolution of juvenile proto-continental crust in an island arc. After an initial boninitic phase, arc geochemistry has varied primarily as the result of backarc basin formation. The Izu arc source became depleted in incompatible trace elements during backarc basin formation, and re-enriched after spreading stopped in the basin. Renewed rifting during the Pliocene to Recent caused felsic magmatism as a result of easier eruption of differentiates rather than as a result of crustal melting. Four isotopically-distinct source components are recognized. Their combination in the sources of the Izu-Bonin and Mariana arcs initially was similar but diverged after backarc basin formation. The Izu arc turbidites are more similar to Archean than post-Archean sedimentary rocks, indicating that the production of new upper crust at subduction zones has changed little over time. The turbidites are similar in major element composition to average continental crust but are depleted in incompatible trace elements, especially Th and Nb. Consequently, the net effect of adding juvenile arc crust to continents is to reverse the trend of planetary trace element differentiation instead of continuing the process.
High-Resolution, Low-Altitude Helicopter-Borne Aeromagnetic Survey over Unzen Volcano, Kyushu, Japan
NASA Astrophysics Data System (ADS)
Okubo, A.; Tanaka, Y.; Utsugi, M.; Kitada, N.; Shimizu, H.; Matsushima, T.
2003-12-01
We try to use repeated high-resolution aeromagnetic surveys at low altitudes to detect the geomagnetic field changes associated with volcanic activity. Previous magnetic studies in volcanic areas using fixed station distributions have detected small temporal changes, however, they do not have the spatial resolution to detect spatial changes. It may be possible to make repeated magnetic surveys even during active volcano eruptions using, for example, unmanned helicopters. On September 18, 2002, we conducted a high-resolution and low-altitude helicopter-borne magnetic surveys in and around Unzen Volcano in Kyushu, Japan. Unzen is an active volcano that had a sequence of eruptions from November, 1990 to 1995, after a quiescence of 198 years. The first flight covers an area over the Futsu, Chijiwa, and Kanahama faults, which are major normal faults that form the Unzen graben system. The second andthird flights cover the summit area of Unzen volcano with spiral trajectories at altitudes of 1000 and 500 ft, respectively. The spacing between the survey lines is about 50 m. The total geomagnetic was recorded by an optical pumping magnetometer installed in the sensor bird and the sampling intervals are 0.1 sec. Precise positioning data of the sensor bird was obtained by a differential GPS technique, with a time resolution of 1 sec. Diurnal magnetic variations of extra-terrestrial origin were removed by subtracting the total field data recorded at a nearby temporary station. In order to eliminate the effects of topography, the average terrain magnetization was estimated using a statistical correlation method (Grauch, 1987). Finally, an inversion was carried out for the terrain corrected anomalies, after removing the linear regional trend. From the results of this inversion, a low magnetized area was seen around the lava dome, while high magnetization is distributed around Mt.Fugen. The low magnetized area suggests that the rock bodies with remanent magnetization is fractured
NASA Astrophysics Data System (ADS)
Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.
2016-12-01
International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.
NASA Astrophysics Data System (ADS)
Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro
2016-06-01
The Kanto Basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the repeated collision of the Izu-Bonin arc fragments with the Japanese island arc. Geomorphological, geological, and thermochronological data on vertical movements over the last 1 My suggest that subsidence initially affected the entire basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modeled the tectonic evolution of the Kanto Basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the latest collision of the Izu Peninsula block has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following the shift in plate motion. Observed changes in the uplift/subsidence pattern are better explained by scenario (2), suggesting that recent (< 1 My) deformation in the Kanto Basin shows a lag in crustal response to the plate motion shift. We also calculated stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.
Resuspension of ash after the 2014 phreatic eruption at Ontake volcano, Japan
NASA Astrophysics Data System (ADS)
Miwa, Takahiro; Nagai, Masashi; Kawaguchi, Ryohei
2018-02-01
We determined the resuspension process of an ash deposit after the phreatic eruption of September 27th, 2014 at Ontake volcano, Japan, by analyzing the time series data of particle concentrations obtained using an optical particle counter and the characteristics of an ash sample. The time series of particle concentration was obtained by an optical particle counter installed 11 km from the volcano from September 21st to October 19th, 2014. The time series contains counts of dust particles (ash and soil), pollen, and water drops, and was corrected to calculate the concentration of dust particles based on a polarization factor reflecting the optical anisotropy of particles. The dust concentration was compared with the time series of wind velocity. The dust concentration was high and the correlation coefficient with wind velocity was positive from September 28th to October 2nd. Grain-size analysis of an ash sample confirmed that the ash deposit contains abundant very fine particles (< 30 μm). Simple theoretical calculations revealed that the daily peaks of the moderate wind (a few m/s at 10 m above the ground surface) were comparable with the threshold wind velocity for resuspension of an unconsolidated deposit with a wide range of particle densities. These results demonstrate that moderate wind drove the resuspension of an ash deposit containing abundant fine particles produced by the phreatic eruption. Histogram of polarization factors of each species experimentally obtained. The N is the number of analyzed particles.
NASA Astrophysics Data System (ADS)
Smith, Cassandra M.; Van Eaton, Alexa R.; Charbonnier, Sylvain; McNutt, Stephen R.; Behnke, Sonja A.; Thomas, Ronald J.; Edens, Harald E.; Thompson, Glenn
2018-06-01
Volcanic lightning detection has become a useful resource for monitoring remote, under-instrumented volcanoes. Previous studies have shown that the behavior of volcanic plume electrification responds to changes in the eruptive processes and products. However, there has not yet been a study to quantify the links between ash textures and plume electrification during an actively monitored eruption. In this study, we examine a sequence of vulcanian eruptions from Sakurajima Volcano in Japan to compare ash textural properties (grain size, shape, componentry, and groundmass crystallinity) to plume electrification using a lightning mapping array and other monitoring data. We show that the presence of the continual radio frequency (CRF) signal is more likely to occur during eruptions that produce large seismic amplitudes (>7 μm) and glass-rich volcanic ash with more equant particle shapes. We show that CRF is generated during energetic, impulsive eruptions, where charge buildup is enhanced by secondary fragmentation (milling) as particles travel out of the conduit and into the gas-thrust region of the plume. We show that the CRF signal is influenced by a different electrification process than later volcanic lightning. By using volcanic CRF and lightning to better understand the eruptive event and its products these key observations will help the monitoring community better utilize volcanic electrification as a method for monitoring and understanding ongoing explosive eruptions.
NASA Astrophysics Data System (ADS)
Kimata, F.; Tasaka, S.; Asai, Y.
2016-12-01
Wariishi Spa is locating at Atotsugawa active fault, and it is an flowing spring from the 850m depth by the bore hole. The spring is coming from the rain fall through the geological boundary. Discharge was measured 100L/minute by manual every week in 1977. In 1990, measurement system was updated to 1Hz by electromagnetic flowmeter system. Co-seismic discharge rises are measured for about 100 examples of the earthquake occurrence in around area. The discharge rise is decreasing asymptotic convergence with time. In 2011 Tohoku Earthquake, the discharge of spring is a rise of 30 L/minutes, and it took 1 and half year to return to 20 L/minute. Ontake Volcano is one of the active volcanoes in same mountain range, but it is located about 50 km south from the Wariishi spa. There are three active volcanoes between Wariishi Spa and Ontake Volcano. The volcano was erupted in a phreatic explosion on September 27, 2014. There is no observation of the discharge change at the eruption in the hot spring. There are other hot spring systems in Wariishi spa. The spa has a periodic spring with one to two-hour frequencies. The periodic frequencies are depended on the discharge volume. Therefore, at the co-seismic discharge rise, the shortenings of periodic frequencies are observed. Hence, the mechanism of main discharge and periodic spring is located at the depth of 850 m. Based on discussion on time series of discharge spa, there are observed many pulsed noises between the periodic springs. The noises are caused by gas bubbling from the precise examinations. It is suggested that gas bubbling is different mechanism with periodic spring, because no effects on the periodic spring frequency. Bubbling is sourced from more deep than 850 m. Gas bubbling was observed about 50 times between the periodic spa around the Ontake volcano eruption. There is no report on such gas bubbling rise since 2012. Discussed above, it is suggested some changes of strain field at central Japan, especially in
Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc
NASA Astrophysics Data System (ADS)
Freymuth, Heye; Ivko, Ben; Gill, James B.; Tamura, Yoshihiko; Elliott, Tim
2016-08-01
We address the question of whether melting of the mafic oceanic crust occurs beneath ordinary volcanic arcs using constraints from U-Series (238U/232Th, 230Th/232Th and 226Ra/230Th) measurements. Alteration of the top few hundred meters of the mafic crust leads to strong U enrichment. Via decay of 238U to 230Th, this results in elevated (230Th/232Th) (where brackets indicate activity ratios) over time-scales of ∼350 ka. This process leads to the high (230Th/232Th), between 2.6 and 11.0 in the mafic altered oceanic crust (AOC) sampled at ODP Sites 801 and 1149 near the Izu-Bonin-Mariana arc. Th activity ratios in the Izu arc lavas range from (230Th/232Th) = 1.2-2.0. These values are substantially higher than those in bulk sediment subducting at the Izu trench and also extend to higher values than in mid-ocean ridge basalts and the Mariana arc. We show that the range in Th isotope ratios in the Izu arc lavas is consistent with the presence of a slab melt from a mixed source consisting of AOC and subducted sediments with an AOC mass fraction of up to approximately 80 wt.% in the component added to the arc lava source. The oceanic plate subducting at the Izu arc is comparatively cold which therefore indicates that temperatures high enough for fluid-saturated melting of the AOC are commonly achieved beneath volcanic arcs. The high ratio of AOC/sediments of the slab melt component suggested for the Izu arc lavas requires preferential melting of the AOC. This can be achieved when fluid-saturated melting of the slab is triggered by fluids derived from underlying subducted serpentinites. Dehydration of serpentinites and migration of the fluid into the overlying crust causes melting to start within the AOC. The absence of a significant sediment melt component suggests there was insufficient water to flux both AOC and overlying sediments.
NASA Astrophysics Data System (ADS)
Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.; Arculus, R. J.; Ishizuka, O.; Shukle, J. T.
2017-10-01
A 1.2 km thick Paleogene volcaniclastic section at International Ocean Discovery Program Site 351-U1438 preserves the deep-marine, proximal record of Izu-Bonin oceanic arc initiation, and volcano evolution along the Kyushu-Palau Ridge (KPR). Pb/U ages and trace element compositions of zircons recovered from volcaniclastic sandstones preserve a remarkable temporal record of juvenile island arc evolution. Pb/U ages ranging from 43 to 27 Ma are compatible with provenance in one or more active arc edifices of the northern KPR. The abundances of selected trace elements with high concentrations provide insight into the genesis of U1438 detrital zircon host melts, and represent useful indicators of both short and long-term variations in melt compositions in arc settings. The Site U1438 zircons span the compositional range between zircons from mid-ocean ridge gabbros and zircons from relatively enriched continental arcs, as predicted for melts in a primitive oceanic arc setting derived from a highly depleted mantle source. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic melts that evolved toward more Th and U-rich compositions with time. Th, U, and light rare earth element enrichments beginning about 35 Ma are consistent with detrital zircons recording development of regional arc asymmetry and selective trace element-enriched rear arc silicic melts as the juvenile Izu-Bonin arc evolved.
NASA Technical Reports Server (NTRS)
2001-01-01
[figure removed for brevity, see original site] Click on image to view the movie The nearly perfectly conical profile of Fuji soars 3,776 meters (12,388 feet) above sea level on southern Honshu, near Tokyo. The highest mountain in Japan, Fuji is the country's most familiar symbol. The summit of this graceful, dormant volcano is broken by a crater 610 meters (2,000 feet) in diameter. The crater is ringed by eight jagged peaks. The five Fuji Lakes lie on the northern slopes of the mountain, all formed in the wake of lava flows. Mirrored in the still waters of Kawaguchi-ko, the most beautiful of the five lakes, is a reflection of Fuji. Part of Fuji-Hakone-Izu National Park, Fuji last erupted for a two-month period starting in November 1707, covering Tokyo, some 100 kilometers (60 miles) away, with a layer of ash. According to legend, Fuji arose from the plain during a single night in 286 BC. Geologically, the mountain is much older than this. Considered sacred by many, Fuji is surrounded by temples and shrines. Thousands of pilgrims climb the mountain each year as part of their religious practice, hoping to reach the summit by dawn to watch the sunrise. This animated fly-by was created by draping visible and near infrared image data over a digital topography model, created from ASTER's stereo bands. The spatial resolution of both the image and topography is 15 m. The image is centered at 35.3 degrees north latitude, 138.7 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.NASA Astrophysics Data System (ADS)
Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.; Honda, Y.
2012-04-01
Observations in the vicinity of summit area of active volcanoes are very important from various viewpoints such as understanding physical processes in the volcanic conduit. It is, however, highly difficult to install observation sensors near active vents because of the risk of sudden eruptions. We have been developing a safe volcano observation system based on an unmanned aerial vehicle (UAV). As an UAV, we adopted an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. We have also developed earthquake observation modules and GPS receiver modules that are exclusively designed for UAV installation at summit areas of active volcanoes. These modules are light weight, compact size, and solar powered. For data transmission, a commercial cellular-phone network is used. Our first application of the sensor installation by the UAV is Sakurajima, one of the most active volcanos in Japan. In November 2009, 2010, and 2011, we installed up to four seismic sensors within 2km from the active summit crater. In the 2010 and 2011 operations, we succeeded in pulling up and collecting the sensor modules by using the UAV. In the 2011 experiment, we installed two GPS receivers near the summit area of Sakurajima volcano. We also applied the UAV installation to another active volcano, Shinmoedake in Kirishima volcano group. Since the sub-plinian eruption in February 2011, entering the area 3km from the summit of Shinmoe-dake has been prohibited. In May and November 2011, we installed seismic sensors and GPS receivers in the off-limit zone. Although the ground coupling of the seismic modules is not perfect due to the way they are installed, the signal-to-noise ratio of the seismic signals recorded by these modules is fairly good. Despite the low antenna height of 50 cm from the ground surface, the location errors in horizontal and vertical GPS components are 1cm and 3cm, respectively. For seismic signals associated with eruptions at Sakurajima from November 2010 to
Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan
NASA Astrophysics Data System (ADS)
Terada, Akihiko; Morita, Yuichi; Hashimoto, Takeshi; Mori, Toshiya; Ohba, Takeshi; Yaguchi, Muga; Kanda, Wataru
2018-04-01
Remote sampling of water from Yugama crater lake at Kusatsu-Shirane volcano, Japan, was performed using a drone. Despite the high altitude of over 2000 m above sea level, our simple method was successful in retrieving a 250 mL sample of lake water. The procedure presented here is easy for any researcher to follow who operates a drone without additional special apparatus. We compare the lake water sampled by drone with that sampled by hand at a site where regular samplings have previously been carried out. Chemical concentrations and stable isotope ratios are largely consistent between the two techniques. As the drone can fly automatically with the aid of navigation by Global Navigation Satellite System (GNSS), it is possible to repeatedly sample lake water from the same location, even when entry to Yugama crater lake is restricted due to the risk of eruption.[Figure not available: see fulltext.
Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.
Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F
2016-11-18
Field investigations and seismic data show that the 16 April 2016 moment magnitude (M w ) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.
2015-12-01
The Izu Bonin rear arc represents a unique laboratory to study the development of continental crust precursors at an intraoceanic subduction zone., Volcanic output in the Izu Bonin rear arc is compositionally distinct from the Izu Bonin main volcanic front, with med- to high-K and LREE-enrichment similar to the average composition of the continental crust. Drilling at IODP Expedition 350 Site U1437 in the Izu Bonin rear arc obtained volcaniclastic material that was deposited from at least 13.5 Ma to present. IODP Expedition 350 represents the first drilling mission in the Izu Bonin rear arc region. This study presents fresh glass and mineral compositions (obtained via EMP and LA-ICP-MS) from unaltered tephra layers in mud/mudstone (Lithostratigraphic Unit I) and lapillistone (Lithostratigraphic Unit II) <4.5 Ma to examine the geochemical signature of Izu Bonin rear arc magmas. Unit II samples are coarse-grained tephras that are mainly rhyolitic in composition (72.1-77.5 wt. % SiO2, 3.2-3.9 wt. % K2O and average Mg# 24) and LREE-enriched. These rear-arc rhyolites have an average La/Sm of 2.6 with flat HREEs, average Th/La of 0.15, and Zr/Y of 4.86. Rear-arc rhyolite trace element signature is distinct from felsic eruptive products from the Izu Bonin main volcanic front, which have lower La/Sm and Th/La as well as significantly lower incompatible element concentrations. Rear arc rhyolites have similar trace element ratios to rhyolites from the adjacent but younger backarc knolls and actively-extending rift regions, but the latter is typified by lower K2O, as well as a smaller degree of enrichment in incompatible elements. Given these unique characteristics, we explore models for felsic magma formation and intracrustal differentiation in the Izu Bonin rear arc.
NASA Astrophysics Data System (ADS)
Iizasa, Kokichi; Asada, Akira; Mizuno, Katsunori; Katase, Fuyuki; Lee, Sangkyun; Kojima, Mitsuhiro; Ogawa, Nobuhiro
2018-04-01
Sulfide deposits with extremely high Au concentrations (up to 275 ppm; avg. 102 ppm, n = 15), high Au/Ag ratios (0.24, n = 15), and low Cu/(Cu + Zn) ratios (0.03, n = 15) were discovered in 2015 in active hydrothermal fields at a water depth of 760 m in a basalt-dominated submarine caldera in the Izu-Ogasawara frontal arc, Japan. Native gold grains occur in massive sulfide fragments, concretions, and metalliferous sediments from a sulfide mound (40 m across and 20 m high) with up to 30-m-high black smoker chimneys. Tiny native gold grains up to 14 μm in diameter are mainly present in sulfide fallouts from chimney orifices and plumes. Larger native gold grains up to 150 μm long occur mostly as discrete particles and/or with amorphous silica and sulfides. The larger gold grains are interpreted to represent direct precipitation from Au-bearing hydrothermal fluids circulating in and/or beneath the unconsolidated sulfide mound deposits. Sulfur isotope compositions from a limited number of sulfide separates (n = 4) range from 4.3 to 5.8‰ δ34S, similar to the quaternary volcanic rocks of the arc. Barite separates have values of 22.2 and 23.1‰, close to modern seawater values, and indicate probable seawater sulfate origin. The Cu, Zn, and Pb concentrations in bulk samples of sulfide-rich rocks are similar to those of volcanogenic massive sulfides formed in continental crustal environments. The gold is interpreted to have formed by low-temperature hydrothermal activity, perhaps genetically different from systems with documented magmatic contributions or from seafloor hydrothermal systems in other island arc settings. Its presence suggests that basalt-dominated submarine calderas situated on relatively thick continental crust in an intraoceanic arc setting such as the Higashi-Aogashima knoll caldera may be perspective for gold mineralization.
1981-10-14
STS002-09-390 (12-14 Nov. 1981) --- Honshu Island, Japan, and its snow-covered Fuji-San or Fuji-Yama volcano are the features of this 70mm frame. The volcano peak is 12,400 feet tall. The western suburbs of Tokyo are at right edge of the photograph. Isu Peninsula is at the bottom, separating the Suruga and Sagami Bay. Other large cities include Yokohama, Kozu, Shizuoka, Namazu and Odawara. Photo credit: NASA
Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea
NASA Astrophysics Data System (ADS)
Choi, Eun-kyeong; Kim, Sung-wook
2017-04-01
Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asaji, T., E-mail: asaji@oshima-k.ac.jp; Hirabara, N.; Izumihara, T.
A new electron cyclotron resonance ion/plasma source has been designed and will be built at Oshima National College of Maritime Technology by early 2014. We have developed an ion source that allows the control of the plasma parameters over a wide range of electron temperatures for material research. A minimum-B magnetic field composed of axial mirror fields and radial cusp fields was designed using mainly Nd-Fe-B permanent magnets. The axial magnetic field can be varied by three solenoid coils. The apparatus has 2.45 GHz magnetron and 2.5–6.0 GHz solid-state microwave sources.
Fee, David; Izbekov, Pavel; Kim, Keehoon; ...
2017-10-09
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fee, David; Izbekov, Pavel; Kim, Keehoon
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan
McKee, Kathleen; Fee, David; Yokoo, Akihiko; ...
2017-03-30
The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less
Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Kathleen; Fee, David; Yokoo, Akihiko
The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less
Temporal Variation in Oscillatory Characteristics of Long-period Tremor at Aso Volcano, Japan.
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Ohkura, T.; Kaneshima, S.; Kawakatsu, H.
2017-12-01
At Aso volcano, Japan, various kinds of volcanic signals with broad frequency contents have been observed since 1930s. One of these signals is long-period tremor (LPT) with a dominant period of around 15 s, which is intermittently emitted from the volcano regardless of the surface activity. Our broadband seismic observations have revealed that LPTs are a kind of resonance oscillation of a crack-like conduit beneath the crater. In this study, aiming to detect a temporal variation of volcanic system, we analyze the long-term variation of LPTs from 1994 to the present.We first examine the temporal variation of dominant periods of LPTs (fundamental mode of around 15 s and the first overtone of around 7 s) using the continuous data recorded at broadband stations close to the active crater. The result shows a clear temporal change in the dominant periods of LPTs in 2003-2005 and 2014-2015. In 2003-2005, the periods of the two modes show correlated temporal change, and it can be interpreted as compositional and/or thermal change of hydrothermal fluids. On the other hand, in 2014-2015, the period of first overtone is almost constant at around 8 s, while that of the fundamental mode shows relatively large temporal fluctuations between 16 s and 12 s. To explain the different behavior among the two resonant modes, we examine the oscillatory characteristics of a fluid-filled crack having linearly varying thickness. With this model, we find that the ratio between resonance periods becomes smaller than that in the case of a flat crack having constant thickness. This behavior can be understood by considering the effective thickness of the crack depends on the wavelength of each resonant mode. Based on these results, the different temporal variation of dominant periods can be interpreted by depth-dependent thickness of the crack-like conduit which may be caused by pressurization and/or intrusion of magma at deeper portion of the conduit. These results suggest the importance of
Alaska - Russian Far East connection in volcano research and monitoring
NASA Astrophysics Data System (ADS)
Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.
2012-12-01
The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program
NASA Astrophysics Data System (ADS)
Kataoka, Kyoko; Nagahashi, Yoshitaka
2017-04-01
Adatara and Bandai volcanoes in the northeast Japan are very close to each other ( 18 km). Bandai volcano is well known for a large-scale debris avalanche following the phreatic eruption in AD1888 that took more than 400 fatalities. Eruptive history consists of at least 6 more debris avalanche events, 3 more phreatic eruptions, 6 lava flows, and 4 Vulcanian/sub-Plinian eruptions during the last 50,000 years revealed by subaerial proximal deposits. Whereas, the eruptive history of Adatara volcano comprises 6 Vulcanian and 5 phreatic eruptions during the last 10,000 years. The most recent eruption occurred in AD1899-1900. The studied sedimentary core (INW2012) was drilled out from Lake Inawashiro-ko, the largest dammed lake in Japan, that was formed by the 50 ka Okinajima debris avalanche event at Bandai volcano. The lake is 94 m deep, and drilling site is located at the central part of the lake ( 90 m deep). In the 28 m long core sequence, in contrast to background lake sediments deposited under a deep offshore environment, very frequent (70) intercalations of event layers are recognized. Eight types of event layers can be recognized: 1) gray muddy layer (Gm), 2) gray sandy layer (Gs), 3) brown muddy layer (Bm), 4) brown sandy layer (Bs), 5) olive-gray muddy layer, 6) pale-brown sandy layer, and 7) yellow sandy layer, and 8) 2011 earthquake-induced turbidite, based on the characteristics of sedimentary facies, petrography, grainsize, mineral assemblages (XRD) and vertical variation of chemistry (micro-XRF). There are many tephra-fall layers but most of them are extra-basinal origin, i.e., of other volcanoes than Adatara and Bandai. Gm is usually a few millimeters to centimeters thick, blue-gray color, homogenized, and finer than background sediments. Gs is accompanied with coarser subunits and thicker than Gm. Especially, Gm/Gs contain pyrite, sulfate minerals and smectite, and are characterized by high sulfur contents. Bm and Bs are 1 to 6 cm thick and are normally
NASA Astrophysics Data System (ADS)
Kurokawa, A. K.; Ishibashi, H.
2016-12-01
Volcanic ash is known to accumulate on the ground surface around volcano after eruptions. Once the ash gains weight and mixes with water to a critical point, the mixture of volcanic ash and water runs down a side of volcano causing severe damage to the ambient environment. The flow is referred to as lahar that is widely observed all over the world and it occasionally generates seismic signals [Walsh et al., 2016; Ogiso and Yomogida, 2015]. Sometimes it happens just after an eruption [Nakayama and Kuroda, 2003] whereas a large debris flow, which occurred about 30 years after the latest eruption due to heavy rainfall is also reported [Ogiso and Yomogida, 2015]. Thus when the lahar starts flowing is a key. In order to understand flow characteristics of lahar, it is important to focus on the rheology. However, little is known about the rheological property although the experimental condition can be controlled at atmospheric pressure and ambient temperature. This is an advantage when compared with magma and rock, which need to reach high-pressure and/or high-temperature conditions to be measured. Based on the background, we have performed basic rheological measurements using mixtures of water and volcanic ashes collected at Sakurajima and Ontake volcanoes in Japan. The first important point of our findings is that the two types of mixtures show non-linear characteristics differently. For instance, the viscosity variation strongly depends on the water content in the case of Sakurajima sample while the viscosity fluctuates within a certain definite range of shear rate using Ontake sample. Since these non-linear characteristics are related to structural changes in the flow, our results indicate that the flow of lahar is time-variable and complicated. In this presentation, we report the non-linear rheology in detail and go into the relation to temporal changes in the flow.
Asymmetric deformation structure of lava spine in Unzen Volcano, Japan
NASA Astrophysics Data System (ADS)
Miwa, T.; Okumura, S.; Matsushima, T.; Shimizu, H.
2013-12-01
Lava spine is commonly generated by effusive eruption of crystal-rich, dacitic-andesitic magmas. Especially, deformation rock on surface of lava spine has been related with processes of magma ascent, outgassing, and generation of volcanic earthquake (e.g., Cashman et al. 2008). To reveal the relationships and generation process of the spine, it is needed to understand a spatial distribution of the deformation rock. Here we show the spatial distribution of the deformation rock of lava spine in the Unzen volcano, Japan, to discuss the generation process of the spine. The lava spine in Unzen volcano is elongated in the E-W direction, showing a crest like shape with 150 long, 40 m wide and 50 m high. The lava spine is divided into following four parts: 1) Massive dacite part: Dense dacite with 30 m of maximum thickness, showing slickenside on the southern face; 2) Sheared dacite part: Flow band developed dacite with 1.0 m of maximum thickness; 3) Tuffisite part: Network of red colored vein develops in dacite with 0.5 m of maximum thickness; 4) Breccia part: Dacitic breccia with 10 m of maximum thickness. The Breccia part dominates in the northern part of the spine, and flops over Massive dacite part accross the Sheared dacite and Tuffisite parts. The slickenside on southern face of massive dacite demonstrates contact of solids. The slickenside breaks both of phenocryst and groundmass, demonstrating that the slickenside is formed after significant crystallization at the shallow conduit or on the ground surface. The lineation of the slickenside shows E-W direction with almost horizontal rake angle, which is consistent with the movement of the spine to an east before emplacement. Development of sub-vertical striation due to extrusion was observed on northern face of the spine (Hayashi, 1994). Therefore, we suggest that the spine just at extrusion consisted of Massive dacite, Sheared dacite, Tuffisite, Breccia, and Striation parts in the northern half of the spine. Such a
Common origin of plagioclase in the last three eruptions of Unzen volcano, Japan
NASA Astrophysics Data System (ADS)
Nakai, Shun'ichi; Maeda, Yasunobu; Nakada, Setsuya
2008-07-01
Megacrysts (large crystals of 2-15 mm in length) of plagioclases extracted from the lavas of the last three eruptions of southwestern Japan's Unzen volcano (AD 1663, AD 1792 and AD 1991-1995) have limited 87Sr/ 86Sr ratios of 0.70439-0.70454. Results of micro-drilling analyses indicated that three of eight megacrysts showed a gradual decrease in 87Sr/ 86Sr ratios from the core to the rim, whereas other megacrysts showed a homogeneous 87Sr/ 86Sr ratio. This relative homogeneity contrasts sharply to the wide variation of 87Sr/ 86Sr ratios of matrixes of the lavas of the last three eruptions (0.71417, 0.70467, 0.70447-0.70450, respectively). Most megacrysts show isotopic disequilibrium between their outer rims and their matrixes, suggesting that they did not grow in the host magmas. In addition, seven of the eight megacrysts of plagioclase also have similar trace element abundance ratios (La/Nd and Sr/Ba). Their similar chemical and isotopic compositions suggest that they crystallized from the same parent magma, which suggests to us that they were formed prior to or during the eruption in 1663. The isotopic ratios of the 1663 eruption lavas of 0.71417, however, rules out the possibility that it is the parent magma for the plagioclase megacrysts. The lavas erupted 4000 and 5000 years ago have 87Sr/ 86Sr ratios of 0.70454 and 0.70442, respectively, [Chen, C.-H., DePaolo, D.J., Nakada, S., Shieh, Y.-N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831-834]; they are inferred to be of the parent magma because of their Sr isotope ratios. Consequently, the micro-analytical results seem to suggest that plagioclases with a single origin can be supplied to volcanic products of several different eruptions surviving several eruption events.
Observations of eruption clouds from Sakura-zima volcano, Kyushu, Japan from Skylab 4
Friedman, J.D.; Heiken, G.; Randerson, D.; McKay, D.S.
1976-01-01
Hasselblad and Nikon stereographic photographs taken from Skylab between 9 June 1973 and 1 February 1974 give synoptic plan views of several entire eruption clouds emanating from Sakura-zima volcano in Kagoshima Bay, Kyushu, Japan. Analytical plots of these stereographic pairs, studied in combination with meteorological data, indicate that the eruption clouds did not penetrate the tropopause and thus did not create a stratospheric dust veil of long residence time. A horizontal eddy diffusivity of the order of 106 cm2 s-1 and a vertical eddy diffusivity of the order of 105 cm2 s-1 were calculated from the observed plume dimensions and from available meteorological data. These observations are the first, direct evidence that explosive eruption at an estimated energy level of about 1018 ergs per paroxysm may be too small under atmospheric conditions similar to those prevailing over Sakura-zima for volcanic effluents to penetrate low-level tropospheric temperature inversions and, consequently, the tropopause over northern middle latitudes. Maximum elevation of the volcanic clouds was determined to be 3.4 km. The cumulative thermal energy release in the rise of volcanic plumes for 385 observed explosive eruptions was estimated to be 1020 to 1021 ergs (1013 to 1014 J), but the entire thermal energy release associated with pyroclastic activity may be of the order of 2.5 ?? 1022 ergs (2.5 ?? 1015 J). Estimation of the kinetic energy component of explosive eruptions via satellite observation and meteorological consideration of eruption clouds is thus useful in volcanology as an alternative technique to confirm the kinetic energy estimates made by ground-based geological and geophysical methods, and to aid in construction of physical models of potential and historical tephra-fallout sectors with implications for volcano-hazard prediction. ?? 1976.
NASA Astrophysics Data System (ADS)
Murase, M.; Nakao, S.; Kato, T.; Tabei, T.; Kimata, F.; Fujii, N.
2003-12-01
Kozujima - Niijima Islands of Izu Volcano Islands are located about 180 km southeast of Tokyo, Japan. Although the last volcano eruptions in Kozujima and Niijima volcanoes are recorded more than 1000 year before, the ground deformation of 2-3 cm is detected at Kozujima - Niijima Islands by GPS measurements since 1996. On June 26, 2000, earthquake swarm and large ground deformation more than 20 cm are observed at Miyakejima volcano located 40 km east-southeastward of Kozu Island, and volcano eruption are continued since July 7. Remarkable earthquake swarm including five earthquakes more than M5 is stretching to Kozushima Island from Miyakejima Island. From the rapid ground deformation detected by continuous GPS measurements at Miyakejima Island on June 26, magma intrusion models of two or three dikes are discussed in the south and west part of Miyakejima volcano by Irwan et al.(2003) and Ueda et al.(2003). They also estimate dike intrusions are propagated from southern part of Miyakejima volcano to western part, and finally dike intrusion is stretching to 20 km distance toward Kozujima Island. From the ground deformation detected by GPS daily solution of Nation-wide dense GPS network (GEONET), some dike intrusion models are discussed. Ito et al.(2002) estimate the huge dike intrusion with length of about 20 km and volume of 1 km3 in the sea area between the Miyake Island and Kozu Island. (And) Nishimura et al.(2001) introduce not only dike but also aseismic creep source to explain the deformation in Shikinejima. Yamaoka et al.(2002) discuss the dike and spherical deflation source under the dike, because of no evidence supported large aseismic creep. They indicate a dike and spherical deflation source model is as good as dike and creep source model. In case of dike and creep, magma supply is only from the chamber under the Miyakejima volcano. In dike and spherical deflation source model, magma supply is from under Miyakejima volcano and under the dike. Furuya et al
NASA Astrophysics Data System (ADS)
Ryan, J. G.
2007-12-01
Students today have online access to nearly unlimited scientific information in an entirely unfiltered state. As such, they need guidance and training in identifying and assessing high-quality information resources for educational and research use. The extensive research data resources available online for the Izu-Bonin-Mariana (IBM) subduction system that have been developed with MARGINS Program and related NSF funding are an ideal venue for focused Web research exercises that can be tailored to a range of undergraduate geoscience courses. This presentation highlights student web research activities examining: a) The 2003-2005 eruptions of Anatahan Volcano in the Mariana volcanic arc. MARGINS-supported geophysical research teams were in the region when the eruption initiated, permitting a unique "event response" data collection and analysis process, with preliminary results presented online at websites linked to the MARGINS homepage, and ultimately published in a special issue of the Journal of Volcanology and Geothermal Research. In this activity, students will conduct a directed Web surf/search effort for information on and datasets from the Anatahan arc volcano, which they will use in an interpretive study of recent magmatic activity in the Mariana arc. This activity is designed as a homework exercise for use in a junior-senior level Petrology course, but could easily be taken into greater depth for the benefit of graduate-level volcanology or geochemistry offerings. b) Geochemical and mineralogical results from ODP Legs 125 and 195 focused on diapiric serpentinite mud volcanoes, which erupt cold, high pH fluids, serpentine muds, and serpentinized ultramafic clasts at a number of sites in the forearc region of the Mariana subduction zone. The focus of this activity is an examination of the trace element chemistry of the forearc serpentines and their associated upwelling porefluids as a means of understanding the roles of ionic radius, valence, and system
NASA Astrophysics Data System (ADS)
Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav
2009-12-01
A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl—van der Hilst—Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations—episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci—led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be
NASA Astrophysics Data System (ADS)
Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav
2009-12-01
A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl-van der Hilst-Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations-episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci-led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a
NASA Astrophysics Data System (ADS)
Tsukui, Masashi
1985-12-01
Daisen volcano, located in the San'in district, southwest Japan, started its activity in the middle Pleistocene and continued until at least ca. 20,000 yr B.P. The volcano is composed entirely of dacitic pyroclastic materials, lava domes and subordinate thick lava flows. Its activity is divided into two groups, Older (1.0-0.4 Ma) and Younger (0.4 Ma to ca. 17.000 yr B.P.). Chemical compositions of phenocrysts in the members of the Upper Tephra Group (the last 150,000 years) in the Younger Group were examined in detail by electron microprobe analysis. The compositions of phenocryst minerals change systematically and cyclically with the order of eruptions. Phenocrysts with less differentiated compositions were found in the products of eruptions 60,000 and 20,000 years ago. The variation patterns of inferred magma temperature (estimated by the Fe-Ti oxide geothermometer) with time are well correlated with those of the chemical compositions of phenocrysts. Orthopyroxene phenocrysts generally show both reversed and normal zoning in single rock specimens and the compositional range of rims is much smaller than that of the core, indicating that the process of re-equilibration of two compositionally distinct orthopyroxenes took place. These facts could be explained by injection of less differentiated, higher-temperature magmas from a deeper level into the shallower more differentiated magma reservoir. A relatively active (frequent and/or voluminous) injection episode seems to have taken place twice during the last 150,000 years; 60,000 and 20,000 years ago.
NASA Astrophysics Data System (ADS)
Scudder, Rachel P.; Murray, Richard W.; Schindlbeck, Julie C.; Kutterolf, Steffen; Hauff, Folkmar; McKinley, Claire C.
2014-11-01
We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ˜30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as, respectively, being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149, the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc-related and climate-related controls.
NASA Technical Reports Server (NTRS)
2001-01-01
This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of theLava flow hazards-An impending threat at Miyakejima volcano, Japan
NASA Astrophysics Data System (ADS)
Cappello, Annalisa; Geshi, Nobuo; Neri, Marco; Del Negro, Ciro
2015-12-01
The majority of the historic eruptions recorded at Miyakejima volcano were fissure eruptions that occurred on the flanks of the volcano. During the last 1100 years, 17 fissure eruptions have been reported with a mean interval of about 76-78 years. In the last century, the mean interval between fissure eruptions decreased to 21-22 years, increasing significantly the threat of lava flow inundations to people and property. Here we quantify the lava flow hazards posed by effusive eruptions in Miyakejima by combining field data, numerical simulations and probability analysis. Our analysis is the first to assess both the spatiotemporal probability of vent opening, which highlights the areas most likely to host a new eruption, and the lava flow hazard, which shows the probabilities of lava-flow inundation in the next 50 years. Future eruptive vents are expected in the vicinity of the Hatchodaira caldera, radiating from the summit of the volcano toward the costs. Areas more likely to be threatened by lava flows are Ako and Kamitsuki villages, as well as Miike port and Miyakejima airport. Thus, our results can be useful for risk evaluation, investment decisions, and emergency response preparation.
Distant Mt. Fuji, Island of Honshu Japan
1992-11-01
This distant view of Mt. Fuji, on the main home island of Honshu, Japan (34.0N, 139.0E) was taken from about 450 miles to the south. Evan at that great distance, the majestic and inspiring Mt. Fuji is still plainly visible and easily recognized as a world renowned symbol of Japan. The snow capped extinct volcano lies just a few miles south of Tokyo.
NASA Astrophysics Data System (ADS)
van der Land, C.; Sena, C.; Loudin, L. C.; Zhang, Z.
2014-12-01
The rapid deposition of volcanogenic sediments, highly susceptible to alteration by seawater has led to distinct pore water geochemical profiles throughout the sedimentary basins of the Izu-Bonin-Mariana Arc. Drilling at Site U1438, in the Amami-Sankaku Basin, recovered a 1300 m thick volcaniclastic section overlain by a 160 m thick section of sediments largely devoid of volcanic input. At Site U1438, 67 porewater samples were analyzed onboard for salinity, pH, oxidation-reduction potential and major and trace element concentrations. Here we focus on the depth profiles of elements which were also analyzed at Sites U1201, 792 and 793. Chloride and Bromide concentrations display similar trends; near constant in the upper 160 m and a linear downward increase to maximum concentrations from 600 mbsf onwards. This increase is likely caused by uptake of water by secondary minerals, resulting in chloride and bromide enrichment in the porewater. Calcium and magnesium porewater concentrations display opposite trends in the upper 440 m; the first increases from 11.5 to 140 mM, and the latter decreases from 53 mM until its depletion in the porewater. Leaching of Ca from the glass-rich sediments and underlying igneous basement are potential sources for Ca in the porewater, while Mg, Na and K presumably replace Ca through cation-exchange. Compared to Site U1438, similar trends of major elements concentration in the pore water were observed at the nearby Sites U1201 (serpentine mud volcano in the forearc of the Mariana subduction system), 792 and 793 (both in the Izu-Bonin forearc sedimentary basin). However, differences in depositional rates, thickness and age of the sedimentary basins, geothermal gradients and the influence of serpentine mud flows, have led to distinct pore water geochemical profiles.
NASA Astrophysics Data System (ADS)
de Hoog, C.; Hattori, K. H.
2003-12-01
Following its eruptions in the summer of 2000, Miyake-jima volcano discharged on average 40 kton SO2/day for over a year, the highest SO2 flux in the world at the time. We used juvenile pyroclastic fragments of the June 27 (submarine) and August 18 (subaerial near the summit) eruptions to study trace-element behavior during degassing. The fragments are medium-K calc-alkaline basalts (51-53 wt% SiO2, 4% MgO, 9-11% CaO, 2.1-2.7% Na2O) with high concentrations of chalcophile elements, most notably Cu. Sulfides have not been observed in these samples. Melt inclusions (5-300 μ m) are common in plagioclase phenocrysts and consist of brown glass with occasionally vapor bubbles. They show little compositional variation (52 wt% SiO2, 5.1% MgO, 9.5% CaO, 2.3% Na2O) and no significant differences between subaerial and submarine samples. Sulfur concentrations in melt inclusions are high, ˜900 ppm, compared to those in groundmass glass, ˜70 ppm, indicating significant sulfur loss after the entrapment of melt inclusions. However, no decrease is observed for the concentrations of any trace elements, not even the chalcophile or volatile elements (such as Cu, Zn, As, Sb, and Pb), except Bi. We conclude that large-scale open-system degassing at Miyake-jima did not mobilize trace elements in significant amounts. Comparable K/Cl ratios of melt inclusions and groundmass glass imply that little or no chlorine was lost from the magma, in accordance with its high solubility in mafic melts at low pressures. High-T fumarole studies and thermodynamic modeling indicate that many metals are transported as volatile chloride-complexes, which may explain the limited mobility of trace metals reported here. Our findings indicate that, at magmatic temperatures, sulfur only plays a limited role in the transport of metals across the melt-vapor interface.
The diversity of mud volcanoes in the landscape of Azerbaijan
NASA Astrophysics Data System (ADS)
Rashidov, Tofig
2014-05-01
As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts
Mitsuya, Daisuke; Hayashi, Takuya; Wang, Yu; Tanaka, Mami; Okai, Masahiko; Ishida, Masami; Urano, Naoto
2017-07-01
The Yukawa River is an extremely acidic river whose waters on the east foot of the Kusatu-Shirane Volcano (in Gunma Prefecture, Japan) contain sulfate ions. Here we isolated many acid-tolerant yeasts from the Yukawa River, and some of them neutralized an acidic R2A medium containing casamino acid. Candida fluviatilis strain CeA16 had the strongest acid tolerance and neutralizing activity against the acidic medium. To clarify these phenomena, we performed neutralization tests with strain CeA16 using casamino acid, a mixture of amino acids, and 17 single amino acid solutions adjusted to pH 3.0, respectively. Strain CeA16 neutralized not only acidic casamino acid and the mixture of amino acids but also some of the acidic single amino acid solutions. Seven amino acids were strongly decomposed by strain CeA16 and simultaneously released ammonium ions. These results suggest strain CeA16 is a potential yeast as a new tool to neutralize acidic environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Multiplicity of the 660-km discontinuity beneath the Izu-Bonin area
NASA Astrophysics Data System (ADS)
Zhou, Yuan-Ze; Yu, Xiang-Wei; Yang, Hui; Zang, Shao-Xian
2012-05-01
The relatively simple subducting slab geometry in the Izu-Bonin region provides a valuable opportunity to study the multiplicity of the 660-km discontinuity and the related response of the subducting slab on the discontinuity. Vertical short-period recordings of deep events with simple direct P phases beneath the Izu-Bonin region were retrieved from two seismic networks in the western USA and were used to study the structure of the 660-km discontinuity. After careful selection and pre-processing, 23 events from the networks, forming 32 pairs of event-network records, were processed. Related vespagrams were produced using the N-th root slant stack method for detecting weak down-going SdP phases that were inverted to the related conversion points. From depth histograms and the spatial distribution of the conversion points, there were three clear interfaces at depths of 670, 710 and 730 km. These interfaces were depressed approximately 20-30 km in the northern region. In the southern region, only two layers were identified in the depth histograms, and no obvious layered structure could be observed from the distribution of the conversion points.
2010-03-11
Shiveluch volcano on Russia’s Kamchatka Peninsula. This is a false-color satellite image, acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on March 10, 2010. To download a full high res version of this image and to learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43103 Credit: NASA Earth Observatory image by Jesse Allen and Robert Simmon, based on data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Instrument: Terra - ASTER For more information about the Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html
Fundamental structure model of island arcs and subducted plates in and around Japan
NASA Astrophysics Data System (ADS)
Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.
2015-12-01
The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (<50-100 km). The obtained
Geodetic Observations Using GNSS, Tiltmeter, and DInSAR, at Tokachi-dake Volcano, Japan
NASA Astrophysics Data System (ADS)
Miyagi, Y.
2017-12-01
Tokachi-dake volcano is located in central Hokkaido, Japan. Middle sized eruptions occurred in 1926, 1962, and 1988-1989, and several small phreatic eruptions also occurred in the meanwhile. After the latest eruption in 1988-1989, many volcanic tremor and active seismicity were revealed. Active fumarolic activities from Taisho crater and 62-2 crater have been observed. In recent years, Tokachi-dake volcano has been observed by using several geodetic techniques, including DInSAR, GNSS, tiltmeter, and gravimeter, to detect regional and local signals associated with volcanic activities. Continuous GNSS stations in summit area operated by Geological Survey of Hokkaido and Hokkaido University [Okazaki et al., 2015] and DInSAR observations using ALOS-2 and TerraSAR-X data have revealed long-term small deformation after 2006 and transient large deformation in May, 2015. We found that these are quite local deformation, because regional GNSS and tiltmeter network did not detect any obvious signals in same period. The remarkable deformation detected by GNSS and DInSAR in the summit area between May and July, 2015, indicates that horizontal displacements are larger than vertical displacements, and westward displacement are much larger than eastward displacement. First, we try to model the deformation pattern using a simple spherical source model [Mogi, 1958] and a dike source model [Okada, 1985]. However, they cannot explain observed deformation because they do not take into consideration a topographic effect in the deformation area. Kawguchi & Miyagi [2016] tried to model the deformation using a boundary element method considering the topographic effect. Consequently, a deformation source which is vertically prolate spheroid beneath the summit shows a better fit between observed and simulated deformation. Annual campaign gravity observations have carried out by several Japanese university and institutes since 2010 [Takahashi et al., 2016]. These reveal that gravity value
Observations at Kuchinoerabu-jima volcano, southern Kyushu, Japan, by using unmanned helicopter
NASA Astrophysics Data System (ADS)
Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Kanda, W.; Tameguri, T.; Kazahaya, R.
2015-12-01
Kuchinoerabu-jima, volcano is a volcanic island located southern Kyushu, Japan. In 3 August, 2014, a small eruption at active summit crater, Shin-dake, destroyed all the observation stations near the summit. Since then, this volcano was only poorly monitored. After the eruption, entering within 2km from Shin-dake crater was strictly prohibited and thus it was impossible to fix summit stations on site. In April, 2015, we conducted seismic sensor installation by using unmanned helicopter (RMAX-G1 manufactured by Yamaha) so as to reestablish the seismic monitoring network near the summit area. We installed four seismic stations in the summit area. We also conducted various types of near-summit observations including an aero-magnetic measurement over the summit area, taking visual and infra-red images from low altitude, and volcanic gas sampling. We present preliminary results of the near summit observations using unmanned helicopter. The light-weight (5kg) and solar-powered seismic stations were designed exclusively for helicopter installation. They transmit seismic data every 10 minutes by using mobile data communication network. We could install them within 500m from the summit crater on 17, April. On 29 May, Shin-dake crater erupted again and the newly installed seismic stations were all destroyed by this eruption. The seismic stations could transmit data until just before the eruption. These data made us possible to evaluate the change in seismic activity leading up to the eruption. An aero-magnetic survey was conducted on 17 and 18 April. The flight altitude was between 100m and 150m above the ground (i.e a draped magnetic survey) . Path interval is 100m and the total flight path length is 80km. The magnetic intensity data were converted to magnetization of the edifice of Shin-dake. Comparison between the result this time with that obtained in 2001 shows demagnetization near the summit area. Temperature measurement over the summit area detected 368ºC at the
Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement
Dvorak, J.J.
1992-01-01
At some well-studied volcanoes, surface movements of at least several centimeters take place out to distances of about 10 km from the summit of the volcano. Widespread deformation of this type is relatively easy to monitor, because the necessary survey stations can be placed at favorable sites some distance from the summit of the volcano. Examples of deformation of this type include Kilauea and Mauna Loa in Hawaii, Krafla in Iceland, Long Valley in California, Camp Flegrei in Italy, and Sakurajima in Japan. In contrast, surface movement at some other volcanoes, usually volcanoes with steep slopes, is restricted to places within about 1 km of their summits. Examples of this class of volcanoes include Mount St. Helens in Washington, Etna in Italy, and Tangkuban Parahu in Indonesia. Local movement on remote, rugged volcanoes of this type is difficult to observe using conventional methods of measuring ground movement, which generally require a clear line-of-sight between points of interest. However, a revolutionary new technique, called the Global Positional System (GPS), provides a very efficient, alternative method of making such measurements. GPS, which uses satellites and ground-based receivers to accurately record slight crustal movements, is rapidly becoming the method of choice to measure deformation at volcanoes.
NASA Technical Reports Server (NTRS)
2000-01-01
On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet.
This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. 'Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption,' said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption.In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16NASA Astrophysics Data System (ADS)
Miwa, T.; Toramaru, A.; Iguchi, M.
2009-07-01
We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R
Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua
NASA Astrophysics Data System (ADS)
Asahina, T.; Navarro, M.; Strauch, W.
2007-05-01
A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.
Stereo Image of Mt. Usu Volcano
NASA Technical Reports Server (NTRS)
2002-01-01
On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. This anaglyph stereo image is of Mt Usu volcano. On Friday, March 31, more than 15,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. A 3-D view can be obtained by looking through stereo glasses, with the blue film through your left eye and red film with your right eye at the same time. North is on your right hand side. For more information, see When Rivers of Rock Flow ASTER web page Image courtesy of MITI, ERSDAC, JAROS, and the U.S./Japan ASTER Science Team
Infrasound Waveform Inversion and Mass Flux Validation from Sakurajima Volcano, Japan
NASA Astrophysics Data System (ADS)
Fee, D.; Kim, K.; Yokoo, A.; Izbekov, P. E.; Lopez, T. M.; Prata, F.; Ahonen, P.; Kazahaya, R.; Nakamichi, H.; Iguchi, M.
2015-12-01
Recent advances in numerical wave propagation modeling and station coverage have permitted robust inversion of infrasound data from volcanic explosions. Complex topography and crater morphology have been shown to substantially affect the infrasound waveform, suggesting that homogeneous acoustic propagation assumptions are invalid. Infrasound waveform inversion provides an exciting tool to accurately characterize emission volume and mass flux from both volcanic and non-volcanic explosions. Mass flux, arguably the most sought-after parameter from a volcanic eruption, can be determined from the volume flux using infrasound waveform inversion if the volcanic flow is well-characterized. Thus far, infrasound-based volume and mass flux estimates have yet to be validated. In February 2015 we deployed six infrasound stations around the explosive Sakurajima Volcano, Japan for 8 days. Here we present our full waveform inversion method and volume and mass flux estimates of numerous high amplitude explosions using a high resolution DEM and 3-D Finite Difference Time Domain modeling. Application of this technique to volcanic eruptions may produce realistic estimates of mass flux and plume height necessary for volcanic hazard mitigation. Several ground-based instruments and methods are used to independently determine the volume, composition, and mass flux of individual volcanic explosions. Specifically, we use ground-based ash sampling, multispectral infrared imagery, UV spectrometry, and multigas data to estimate the plume composition and flux. Unique tiltmeter data from underground tunnels at Sakurajima also provides a way to estimate the volume and mass of each explosion. In this presentation we compare the volume and mass flux estimates derived from the different methods and discuss sources of error and future improvements.
Diversity and Petrogenesis of <4.4 Ma Rhyolites from the Izu Bonin Rear-Arc
NASA Astrophysics Data System (ADS)
Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.; Gill, J.
2016-12-01
The Izu Bonin subduction zone has a history of abundant rhyolite production that is relevant to the development of intermediate to silicic middle crust. This study presents major and trace elemental compositions (via electron microprobe and LA-ICP-MS) of unaltered volcanic glass and phenocrysts from select medium- to high-K tephra intervals from IODP Site 1437 (Expedition 350, Izu Bonin Rear Arc). These data provide a time-resolved record of regional explosive magmatism ( 4.4Ma to present). Tephra from Site 1437 is basaltic to rhyolitic glass with accompanying phenocrysts, including hornblende. Glass compositions form a medium-K magmatic series with LREE enrichment (LaN/YbN = 2.5-6) whose trace element ratios and isotopic compositions are distinct from magmas with similar SiO2 contents in the main Izu Bonin volcanic front. Other workers have shown progressive enrichment in K and other trace element ratios moving from volcanic front westwards through the extensional region to the western seamounts in the rear arc. The <4.4 Ma rear-arc rhyolites from Site 1437 show pronounced negative Eu anomalies, high LaN/SmN (2-3.5), Ba/La <25 and Th of 1.5-4 ppm. These rhyolites show the highest variability for a given SiO2 content among all rear-arc magmas (rhyolites have 1.5-3.5 wt% K2O, Zr/Y of 1-8, LaN of 5-9 ppm) consistent with variability in literature reports of other rhyolite samples dredged from surrounding seamounts. Rhyolites have been dredged from several nearby seamounts with other high-K rhyolites dredged as close as nearby Meireki Seamount ( 3.8 Ma) and further afield in the Genroku seamount chain ( 1.88 Ma), which we compare to Site 1437 rhyolites. An extremely low-K rhyolite sill (13.6 Ma) was drilled lower in the section at Site U1437, suggesting that the mechanism for producing rhyolites in the Western Seamounts region changed over time. Rhyolites are either produced by differentiation of mafic magmas, by melting of pre-existing arc crust (as hypothesized in
Seismic evidence of the lithosphere-asthenosphere boundary beneath Izu-Bonin area
NASA Astrophysics Data System (ADS)
Cui, H.; Gao, Y.; Zhou, Y.
2016-12-01
The lithosphere-asthenosphere boundary (LAB), separating the rigid lithosphere and the ductile asthenosphere layers, is the seismic discontinuity with the negative velocity contrast of the Earth's interior [Fischer et al., 2010]. The LAB has been also termed the Gutenberg (G) discontinuity that defines the top of the low velocity zone in the upper mantle [Gutenberg, 1959; Revenaugh and Jordan, 1991]. The seismic velocity, viscosity, resistivity and other physical parameters change rapidly with the depths across the boundary [Eaton et al., 2009]. Seismic detections on the LAB in subduction zone regions are of great help to understand the interactions between the lithosphere and asthenosphere layers and the geodynamic processes related with the slab subductions. In this study, the vertical broadband waveforms are collected from three deep earthquake events occurring from 2000 to 2014 with the focal depths of 400 600 km beneath the Izu-Bonin area. The waveform data is processed with the linear slant stack method [Zang and Zhou, 2002] to obtain the vespagrams in the relative travel-time to slowness domain and the stacked waveforms. The sP precursors reflected on the LAB (sLABP), which have the negative polarities with the amplitude ratios of 0.17 0.21 relative to the sP phases, are successfully extracted. Based on the one-dimensional modified velocity model (IASP91-IB), we obtain the distributions for six reflected points of the sLABP phases near the source region. Our results reveal that the LAB depths range between 58 and 65 km beneath the Izu-Bonin Arc, with the average depth of 62 km and the small topography of 7 km. Compared with the results of the tectonic stable areas in Philippine Sea [Kawakatsu et al., 2009; Kumar and Kawakatsu, 2011], the oceanic lithosphere beneath the Izu-Bonin Arc shows the obvious thinning phenomena. We infer that the lithospheric thinning is closely related with the partial melting, which is caused by the volatiles continuously released
NASA Astrophysics Data System (ADS)
Yamashita, M.; Kodaira, S.; Takahashi, N.; Tatsumi, Y.; Kaneda, Y.
2009-12-01
The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. By previous seismic survey and deep sea drilling, convex basements are distributed along North-South direction in present forearc region. The convex basements are reported to be formed during Oligocene and Eocene (Taylor, 1992). In IBM forearc region, the middle crust with 6 km/s is recognized by seismic survey using OBSs. In IBM region, four IODP drilling sites are proposed in order to understand comprehensive growth process of arc and continental crust evolution. Two of them are located in forearc region. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 7,800/12,000 cu.in. air gun and 5-6 km streamer with 444/204 ch hydrophones in the IBM region since 2004. We investigate the crustal structure beneath the Izu-Bonin forearc region for contribution of IBM drilling site along five long survey lines, which are across from present volcanic front to forearc basin. Seismic refraction survey is also conducted across forearc region using 84 OBSs every 1 km interval. Shallow crustal structure can be classified four units including basement which compared between previous drilling results and obtained seismic profiles. In IBM forearc region, thick sedimentary basin distribute from east side of volcanic front. Two convex basement peaks are indicated in across profile of forearc region. These peaks are estimated the top of paleoarc (Oligocene and Eocene) by previous ODP drilling. The half graben structure with major displacement is identified from west side of present volcanic front to the top of Oligocene arc. On the other hand, there is no displacement of sediments between the Oligocene arc and Eocene arc. This result shows the same origin of basement between the present volcanic front and Oligocene arc. There is long time difference of
Big Blast at Sakurajima Volcano, Japan
2013-08-27
Although Japan’s Sakura-jima volcano is one of the most active in the world, it rarely makes headlines. One or two small explosions typically occur every few days, with effects no greater than a light dusting of ash on the surrounding cities. On August 18, 2013, a large eruption sent ash 20,000 feet (6,000 meters) above Kagoshima Bay, breaking the established pattern. It was possibly the largest eruption ever from the Showa Crater, which formed in 1946. NASA Earth Observatory images by Jesse Allen and Robert Simmon, using Landsat 8 data from the USGS Earth Explorer. Caption by Robert Simmon. Instrument: Landsat 8 - OLI More details: 1.usa.gov/19WQpBQ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Miyagi, Isoji; Kita, Noriko; Morishita, Yuichi
2017-09-01
Evaluating the magma depth and its physical properties is critical to conduct a better geophysical assessment of magma chambers of caldera volcanoes that may potentially cause future volcanic hazards. To understand pre-eruptive conditions of a magma chamber before its first appearance at the surface, this paper describes the case of Hijiori caldera volcano in northeastern Japan, which emerged approximately 12,000 years ago at a place where no volcano ever existed. We estimated the depth, density, bulk modulus, vesicularity, crystal content, and bulk H_2O content of the magma chamber using petrographic interpretations, bulk and microchemical compositions, and thermodynamic calculations. The chemical mass balance calculations and thermodynamic modeling of the erupted magmas indicate that the upper portion of the Hijiori magmatic plumbing system was located at depths between 2 and 4 km, and had the following characteristics: (1) pre-eruptive temperature: about 780 °C; (2) bulk magma composition: 66 ± 1.5 wt% SiO2; (3) bulk magmatic H_2O: approximately 2.5 wt%, and variable characteristics that depend on depth; (4) crystal content: ≤57 vol%; (5) bulk modulus of magma: 0.1-0.8 GPa; (6) magma density: 1.8-2.3 g/cm3; and (7) amount of excess magmatic H_2O: 11-32 vol% or 48-81 mol%. The range of melt water contents found in quartz-hosted melt inclusions (2-9 wt%) suggests the range of depth phenocrysts growth to be wide (2˜13 km). Our data suggest the presence of a vertically elongated magma chamber whose top is nearly solidified but highly vesiculated; this chamber has probably grown and re-mobilized by repeated injections of a small amount of hot dacitic magma originated from the depth.
Back-arc basin opening and closure along the southern margin of the Sea of Japan
NASA Astrophysics Data System (ADS)
Sato, Hiroshi; Claringbould, Johan; Ishiyama, Tatsuya; Kato, Naoko; Abe, Susumu; Kawasaki, Shinji
2016-04-01
Following the tsunami disaster produced by 2001 Off-Tohoku earthquake (M9) along the Pacific coast of Japan, the Japanese government started an intense evaluation of tsunami hazards. This evaluation spanned along the full Japanese coast, including the Sea of Japan coast on the western side of the Japan arc. In the Sea of Japan, tsunamis are produced by crustal faults. As the longer interval of faulting activity, the historical records of tsunamis in the Sea of Japan are not enough for the evaluation of tsunami height. Thus, the evaluation is carried out based on structural analyses of the margin of the Sea of Japan. To get better understanding of the present-day structural geometry and develop a source-fault model in this region, intense seismic reflection profiling has been carried out since 2013. We introduce the results of the seismic reflection profiles and discuss the structural evolution of the southern margin of the Sea of Japan. 2D seismic reflection profiles were acquired using 1950 cu. in. air-gun and 2100 m streamer cable. The seismic profiles provide the image image up to 3 seconds TWT. The southern margin of the Sea of Japan was produced by back-arc opening and post-rift deformation, and the structural evolution of this area is divided into several stages: rifting (25 - 14 Ma), post-rift compression (14 - 5 Ma), weak thrusting (5 - 1 Ma), and strike-slip deformation (1 Ma to present). During the rifting stage that is associated with the fan-shaped opening of the Sea of Japan, grabens and half-grabens were formed trending parallel to the extension of SW-Japan arc. These grabens were filled by syn-rift sediments, and the maximum thickness of basin fill is observed along the southern margin of the rifted crust. The opening of the Sea of Japan ceased as a result of the collision of Izu-Bonin-Mariana arc system at the Izu collision zone on the central part of Honshu, Japan. Soon after the this event, the young Shikoku basin within the Philippine Sea plate
NASA Astrophysics Data System (ADS)
Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana
2017-04-01
In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to
Eguchi, Katsuyuki; Fujii, Hidefumi; Oshima, Kengo; Otani, Masashi; Matsuo, Toshiaki; Yamamoto, Taro
2009-08-01
Peripheral blood samples were collected from 23 human T-lymphotropic virus type-1 (HTLV-1) carriers residing in Kakeroma Island, Japan (Kagoshima Prefecture, Oshima County, Setouchi Town), one of the most highly endemic areas in Japan. The samples were subjected to amplification by PCR and sequencing of the Long Terminal Repeat in order to reconstruct a phylogenetic tree of HTLV-1 isolates. Restriction Fragment Length Polymorphism (RFLP) analysis of env region was also conducted for subgrouping of HTLV-1. Although one sample could not be amplified by PCR, and three more could not be sequenced due to the existence of conspicuous nonspecific bands or repeated sequences, the phylogenetic analysis revealed that the remaining 19 isolates obtained from Kakeroma Island belonged to either the Transcontinental or the Japanese subgroups of the Cosmopolitan subtype, one of the three major subtypes. The RFLP data corresponded closely with the typing data throughout the sequencing. The proportion of the Transcontinental subgroup among the isolates was 26.3% (5 of 19) by sequence analysis and 27.3% (6 of 22) by RFLP. Unlike in Taiwan, China and Okinawa, the Japanese subgroup was dominant in Kakeroma Island. The analysis would also suggest that the Japanese subgroup seems not to have derived from the Transcontinental subgroup, but rather that the Transcontinental subgroup came to Japan first and was followed later by the Japanese one. 2009 Wiley-Liss, Inc.
A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc
NASA Astrophysics Data System (ADS)
Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J., III; van der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui
2015-09-01
The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant lithosphere, would result in extension and magmatism. The rock record of subduction initiation is typically obscured by younger deposits, so evaluating these possibilities has proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks and overlying sediments, sampled from the Amami Sankaku Basin in the northwest Philippine Sea. The uppermost basement rocks are areally widespread and supplied via dykes. They are similar in composition and age--as constrained by the biostratigraphy of the overlying sediments--to the 52-48-million-year-old basalts in the adjacent Izu-Bonin-Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a component of subducted lithosphere was involved in their genesis, and the lavas were derived from mantle source rocks that were more melt-depleted than those tapped at mid-ocean ridges. We propose that the basement lavas formed during the inception of Izu-Bonin-Mariana subduction in a mode consistent with the spontaneous initiation of subduction.
Submarine geology of Hana Ridge and Haleakala Volcano's northeast flank, Maui
Eakins, Barry W.; Robinson, Joel E.
2006-01-01
We present a morphostructural analysis of the submarine portions of Haleakala Volcano and environs, based upon a 4-year program of geophysical surveys and submersible explorations of the underwater flanks of Hawaiian volcanoes that was conducted by numerous academic and governmental research organizations in Japan and the U.S. and funded primarily by the Japan Agency for Marine–Earth Science and Technology. A resulting reconnaissance geologic map features the 135-km-long Hana Ridge, the 3000 km2 Hana slump on the volcano's northeast flank, and island-surrounding terraces that are the submerged parts of volcanic shields. Hana Ridge below 2000 m water depth exhibits the lobate morphology typical of the subaqueously erupted parts of Hawaiian rift zones, with some important distinctions: namely, subparallel crestlines, which we propose result from the down-rift migration of offsets in the dike intrusion zone, and an amphitheater at its distal toe, where a submarine landslide has embayed the ridge tip. Deformation of Haleakala's northeast flank is limited to that part identified as the Hana slump, which lies downslope from the volcano's submerged shield, indicating that flank mobility is also limited in plan, inconsistent with hypothesized volcanic spreading driven by rift-zone dilation. The leading edge of the slump has transverse basins and ridges that resemble the thrust ramps of accretionary prisms, and we present a model to describe the slump's development that emphasizes the role of coastally generated fragmental basalt on gravitational instability of Haleakala's northeast flank and that may be broadly applicable to other ocean-island slumps.
Nakano, M.; Kumagai, H.
2005-01-01
We investigate temporal variations in the complex frequencies (frequency and quality factor Q) of long-period (LP) events that occurred at Kusatsu-Shirane Volcano, central Japan. We analyze LP waveforms observed at this volcano in the period between 1988 and 1995, which covers a seismically active period between 1989 and 1993. Systematic temporal variations in the complex frequencies are observed in October-November 1989, July-October 1991, and September 1992-January 1993. We use acoustic properties of a crack filled with hydrothermal fluids to interpret the observed temporal variations in the complex frequencies. The temporal variations in October-November 1989 can be divided into two periods, which are explained by a gradual decrease and increase of a gas-volume fraction in a water-steam mixture in a crack, respectively. The temporal variations in July-October 1991 can be also divided into two periods. These variations in the first and second periods are similar to those observed in November 1989 and in September-November 1992, respectively, and are interpreted as drying of a water-steam mixture and misty gas in a crack, respectively. The repeated nature of the temporal variations observed in similar seasons between July and November suggests the existence of seasonality in the occurrence of LP events. This may be caused by a seasonally variable meteoritic water supply to a hydrothermal system, which may have been heated by the flux of volcanic gases from magma beneath this volcano. ?? 2005 Elsevier B.V. All rights reserved.
Brandley, Matthew C.; Kuriyama, Takeo; Hasegawa, Masami
2014-01-01
Predation may create strong natural selection pressure on the phenotype and life history characteristics of prey species. The Izu scincid lizards (Plestiodon latiscutatus) that inhabit the four Japanese Izu Islands with only bird predators are drab brown, mature later, lay small clutches of large eggs, and hatch large neonates. In contrast, skinks on seven islands with both snake and bird predators are conspicuously colored, mature early, lay large clutches of small eggs, and hatch small neonates. We test the hypothesis that these suites of traits have evolved independently on each island via natural selection pressures from one of two predator regimes – birds-only and birds + snakes. Using two mtDNA genes and a nuclear locus, we infer a time-calibrated phylogeny of P. latiscutatus that reveals a basal split between Mikura and all islands south, and Miyake, all islands north, and the Izu Peninsula. Populations inhabiting Miyake, Niijima, Shikine, and Toshima are not monophyletic, suggesting either multiple colonizations or an artifact of incomplete lineage sorting (ILS). We therefore developed novel phylogenetic comparative analyses that assume either a multiple colonization or more restrictive single colonization ILS scenario and found 1) statistically significant support for the of different suites of phenotypic and life history characteristics with the presence of bird-only or bird + snake predator assemblages, and 2) strong phylogenetic support for at least two independent derivations of either the “bird-only” or “snakes + birds” phenotypes regardless of colonization scenario. Finally, our time-calibrated phylogeographic analysis supports the conclusion that the ancestor to modern Izu Island P. latiscutatus dispersed from the mainland to the Izu proto-islands between 3–7.6 million years ago (Ma). These lineages remained present in the area during successive formation of the islands, with one lineage re-colonizing the mainland 0.24-0.7 Ma. PMID
Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes
NASA Astrophysics Data System (ADS)
Fischer, T.
2001-05-01
5.4 Mmol/a of non-mantle N2). Other subduction zone volcanoes are currently degassing a much more substantial amount of volatiles. Popocatepetl, Mexico, has degassed approximately 14 Mt of SO2 to the atmosphere over the past 6 years (Witter et al. 2000). Satsuma-Iwojima, Japan, has degassed for longer than 800 years and is currently releasing 500-1000 tones/day (Kazahaya et al. 2000). At these volcanoes CO2 and N2 discharges from the magma should also be balanced by the supply from slab and crustal sources. The rate of subduction off Mexico and Japan, however, is similar to the rate at the Kuriles. Therefore, large amounts of slab derived volatiles must be, in some fashion, stored in the "subduction factory" to supply the large amounts degassing passively from these volcanoes. Kazahaya et al. (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI. Witter et al (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI.
Shiveluch Volcano, Kamchatka Peninsula, Russia
NASA Technical Reports Server (NTRS)
2001-01-01
On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964.Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the 'Ring of Fire,' a string of volcanoes that encircles the Pacific Ocean.The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.NASA Astrophysics Data System (ADS)
Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya
2018-04-01
On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.
Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene
NASA Astrophysics Data System (ADS)
Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly
2017-12-01
A detailed tephrostratigraphy of an active volcano is essential for evaluating its eruptive history, forecasting future eruptions and correlation with distal tephra records. Changbaishan volcano is known for its Millennium eruption (ME, AD 940s; VEI 7) and the ME tephra has been detected in Greenland ice cores ∼9000 km from the vent. However, the pre-Millennium (pre-ME) and post-Millennium (post-ME) eruptions are still poorly characterized. In this study, we present a detailed late Holocene eruptive sequence of Changbaishan volcano based on single glass shard compositions from tephra samples collected from around the caldera rim and flanks. Tephra ages are constrained by optically stimulated luminescence (OSL) and AMS 14C dates. Tephra from the mid-Holocene pre-ME eruption can be divided into two pyroclastic fall subunits, and it cannot be correlated with any known Changbaishan-sourced tephra recorded in the Japan Sea based on major element composition of glass shards, such as the B-J (Baegdusan-Japan Basin) and B-V (Baegdusan-Vladivostok-oki) tephras. ME pyroclastic fall deposits from the caldera rims and volcanic flanks can be correlated to the juvenile pumice lapilli or blocks within the pyroclastic density current (PDC) deposits deposited in the valleys around the volcano based on glass shard compositions. Our results indicate that the glass shard compositions of proximal ME tephra are more varied than previously thought and can be correlated with distal ME tephra. In addition, widely-dispersed mafic scoria was ejected by the ME Plinian column and deposited on the western and southern summits and the eastern flank of the volcano. Data for glass from post-ME eruptions, such as the historically-documented AD 1403, AD 1668 and AD 1702 eruptions, are reported here for the first time. Except for the ME, other Holocene eruptions, including pre-ME and post-ME eruptions, had the potential to form widely-distributed tephra layers around northeast Asia, and our dataset
40Ar/39Ar dating and zircon chronochemistry for the Izu-Bonin rear arc, IODP site U1437
NASA Astrophysics Data System (ADS)
Schmitt, A. K.; Konrad, K.; Andrews, G. D.; Horie, K.; Brown, S. R.; Koppers, A. A. P.; Busby, C.; Tamura, Y.
2016-12-01
The scientific objective of IODP Expedition 350 drilling at Site U1437 (31°47.390'N, 139°01.580'E) was to reveal the "missing half of the subduction factory": the rear arc of a long-lived intraoceanic subduction zone. Site U1437 lies in a 50 km long and 20 km wide volcano-bounded basin, 90 km west of the Izu arc front, and is the only IODP site drilled in the rear arc. The Izu rear arc is dominated by Miocene basaltic to dacitic seamount chains, which strike at a high angle to the arc front. Radiometric dating targeted a single igneous unit (1390 mbsf), and fine to coarse volcaniclastic units for which we present zircon and 40Ar/39Ar (hornblende, plagioclase, and groundmass) age determinations. All zircons analyzed as grain separates were screened for contamination from drill-mud (Andrews et al., 2016) by analyzing trace elements and, where material was available, O and Hf isotope compositions. Igneous Unit 1 is a rhyolite sheet and yielded concordant in-situ and crystal separate U-Pb zircon ages (13.7±0.3 Ma; MSWD = 1.3; n = 40 spots), whereas the 40Ar/39Ar hornblende plateau age (12.9±0.3; MSWD = 1.1; n = 9 steps) is slightly younger, possibly reflecting pre-eruptive zircon crystallization, or alteration of hornblende. U-Pb zircon and 40Ar/39Ar plateau ages from samples above igneous Unit 1 are concordant with biostratigraphic and paleomagnetic ages (available to 1300 mbsf), but plagioclase and groundmass samples below 1300 m become younger with depth, hinting at post-depositional alteration. A single zircon from 1600 mbsf yielded a U-Pb age of 15.4±1.8 Ma; its trace element composition resembles other igneous zircons from U1437, and is tentatively interpreted as a Middle Miocene age for the lowermost lithostratigraphic unit VII. Oxygen and Hf isotopic values of igneous zircon indicate mantle origins, with some influence of assimilation of hydrothermally altered oceanic crust evident in sub-mantle oxygen isotopic compositions. Lessons from site U1437 are
NASA Astrophysics Data System (ADS)
Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.
2013-12-01
southeast. We investigate a possible relationship between the seismicity and the subsidence and find that the swarm generates a stress field which may encourage the opening of fractures oriented parallel to both the elongation of the subsidence signal and the trend of regional faults. Thus, we hypothesize that the Ticsani swarm triggered the subsidence to the southeast by allowing migration of hydrothermal fluids through cracks, similar to the volcanic subsidence observed in southern Chile following the 2010 Maule earthquake and in Japan following the 2011 Tohoku earthquake, though other explanations for the subsidence cannot be ruled out. A noteworthy null result of our InSAR survey is the lack of deformation at Ubinas volcano, one of the most active volcanoes in Peru, even spanning its 2006 eruption.
NASA Astrophysics Data System (ADS)
Cui, Qinghui; Wei, Rongqiang; Zhou, Yuanze; Gao, Yajian; Li, Wenlan
2018-01-01
The lithosphere-asthenosphere boundary (LAB) is the seismic discontinuity with negative velocity contrasts in the upper mantle. Seismic detections on the LAB are of great significance in understanding the plate tectonics, mantle convection and lithospheric evolution. In this paper, we study the LAB in the Izu-Bonin subduction zone using four deep earthquakes recorded by the permanent and temporary seismic networks of the USArray. The LAB is clearly revealed with sP precursors (sdP) through the linear slant stacking. As illustrated by reflected points of the identified sdP phases, the depth of LAB beneath the Izu-Bonin Arc (IBA) is about 65 km with a range of 60-68 km. The identified sdP phases with opposite polarities relative to sP phases have the average relative amplitude of 0.21, which means a 3.7% velocity drop and implies partial melting in the asthenosphere. On the basis of the crustal age data, the lithosphere beneath the IBA is located at the 1100 °C isotherm calculated with the GDH1 model. Compared to tectonically stable areas, such as the West Philippine Basin (WPB) and Parece Vela Basin (PVB) in the Philippine Sea, the lithosphere beneath the Izu-Bonin area shows the obvious lithospheric thinning. According to the geodynamic and petrological studies, the oceanic lithospheric thinning phenomenon can be attributed to the strong erosion of the small-scale convection in the mantle wedge enriched in volatiles and melts.
Double seismic zone for deep earthquakes in the izu-bonin subduction zone.
Iidaka, T; Furukawa, Y
1994-02-25
A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.
NASA Astrophysics Data System (ADS)
Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro
2015-04-01
The Kanto basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the collision of the Izu-Bonin arc with the Japanese island arc. Geomorphological, geological, and thermochronological data on long-term vertical movements over the last 1 My suggest that subsidence initially affected the entire Kanto basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modelled the tectonic evolution of the Kanto basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the arc-arc collision process has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following a change in plate motion. Observed changes in the subsidence/uplift pattern are better explained by scenario (2), suggesting that recent (<1 My) deformation in the Kanto basin shows a lag in crustal response to the shift in plate motion. We also calculated recent stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.
Big Blast at Sakurajima Volcano, Japan [annotated
2013-08-27
Although Japan’s Sakura-jima volcano is one of the most active in the world, it rarely makes headlines. One or two small explosions typically occur every few days, with effects no greater than a light dusting of ash on the surrounding cities. On August 18, 2013, a large eruption sent ash 20,000 feet (6,000 meters) above Kagoshima Bay, breaking the established pattern. It was possibly the largest eruption ever from the Showa Crater, which formed in 1946. NASA Earth Observatory images by Jesse Allen and Robert Simmon, using Landsat 8 data from the USGS Earth Explorer. Caption by Robert Simmon. Instrument: Landsat 8 - OLI More details: 1.usa.gov/19WQpBQ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Perspective View of Shaded Relief with Color as Height, Miyake-Jima, Japan
NASA Technical Reports Server (NTRS)
2000-01-01
This 3D perspective view shows the Japanese island called Miyake-Jima viewed from the northeast. This island -- about 180 kilometers (110 miles) south of Tokyo -- is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Dominated by the 820-meter-high (2,700 feet) volcano Mount Oyama, Miyake-Jima is home to 3,800 people. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity and on June 27 authorities evacuated 2,600 people. On July 7, the island was hit by a typhoon passing overhead, and on July 8 the volcano began erupting. The volcano erupted five times over the next week, spreading gray ash over surrounding areas. Detailed topographic information can be used to predict the directions that lava flows will take. The previous major eruption of Mount Oyama occurred in 1983, when lava flows destroyed hundreds of houses, and an earlier eruption in 1940 killed 11 people.This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows, while colors show the elevation as measured by SRTM. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. The elevation is indicated by colors. Lowest elevation areas appear blue, medium elevations appear green, while higher elevations appear brown and white.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-footNASA Astrophysics Data System (ADS)
Straub, S. M.; Schindlbeck, J. C.; Jegen, M. D.; Corry-Saavedra, K.; Murayama, M.; Woodhead, J. D.; Kutterolf, S.; Vautravers, M. J.; Wang, K. L.
2016-12-01
While the influences of orbital cycles on the ocean-atmosphere system are well documented, it remains largely unknown whether Earth's interior processes are similarly connected to orbital cycles. Recent studies of cyclic deposition in ash fallout from arc volcanism suggest that global climate changes in the form of variable glacial and water load are inversely related to magma production and/or volcanic eruption rate. However, a rigorous test of this hypotheses requires a temporally precise record of past volcanism which spans multiple glacial cycles at high resolution. The marine ash record of explosive volcanism provides such records readily. Here we undertake a detailed chemical study of discrete and disperse tephra deposits in cores from IODP Holes U1437B and U1436A drilled near the Izu Bonin arc in the northwestern Pacific. These locations combine a high background sedimentation rate (>10 m/Ma) of biogenic carbonate and Asian-derived dust with frequent emplacement of tephra fallout from the nearby Izu Bonin and Japan arcs. δ18O analyses record thirteen climatic cycles in the carbonate mud of the uppermost 120 m of Hole U1437B and eleven cycles in the uppermost 70 m of Hole U1436C. Strikingly, the distribution of 134 primary ash layers in Hole U1437B seems to be synchronous with glacial cycles, with a distinct increase in eruption occurrences at either the transitions of glacial/interglacial or at the early interglacials. This is confirmed by first results of a frequency analysis of the ash-time series that indicate a dominance of a 100 ka cycle. The question, which remains to be answered, is whether deglaciation drives volcanism or volcanism drives deglaciation? We also investigate the distribution of `dispersed ash' in this sequence, which is not visible to the naked eye but is volumetrically significant and thus also critical in testing time-cause relationships between arc volcanism and glacial cycles. Major questions we address are: 1) do we see the same
NASA Technical Reports Server (NTRS)
2002-01-01
In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.
This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission isAugustine Volcano, Cook Inlet, Alaska (January 31, 2006)
NASA Technical Reports Server (NTRS)
2006-01-01
Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. In the last week, volcanic flows have been seen on the volcano's flanks. An ASTER thermal image was acquired at night at 22:50 AST on January 31, 2006, during an eruptive phase of Augustine. The image shows three volcanic flows down the north flank of Augustine as white (hot) areas. The eruption plume spreads out to the east in a cone shape: it appears dark blue over the summit because it is cold and water ice dominates the composition; further downwind a change to orange color indicates that the plume is thinning and the signal is dominated by the presence of ash. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located atNASA Astrophysics Data System (ADS)
Arisa, Deasy; Heki, Kosuke
2016-07-01
The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. Horizontal velocities of continuous Global Navigation Satellite System stations on the Izu Islands move eastward by up to 1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. Here, we report that such eastward movements transiently accelerated in the middle of 2004 resulting in 3 cm extra movements in 3 years. We compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. By comparing crustal movements in different regions, the first possibility can be shown unlikely. It is difficult to rule out the second possibility, but current evidence support the third possibility, i.e. a large slow slip event with moment magnitude of 7.5 may have occurred there.
NASA Astrophysics Data System (ADS)
Tamura, T.; Kyono, A.; Kebukawa, Y.; Takagi, S.
2017-12-01
Recently, lichens as the earliest colonizers of terrestrial habitats are recognized to accelerate the mineral degradation at the interface between lichens and surface rocks. Much interest has been therefore devoted in recent years to the weathering induced by the lichen colonization. Here, we report nano-scale observations of the interface between lichens and basaltic rock by TEM and STXM techniques. Some samples of basaltic rocks totally covered by lichens were collected from the 1986 lava flows on the northwest part of Izu-Oshima volcano, Japan. To prepare specimens for the nano-scale observation, we utilized the focused ion beam (FIB) system. The microstructure and local chemistry of the specimens were thoroughly investigated by TEM equipped with energy-dispersive X-ray spectroscopy (EDX). Chemical components and chemical heterogeneity at the interface were observed by scanning transmission X-ray microscopy (STXM) at Advanced Light Source branch line 5.3.2.2. The collected rocks were classified into the augite-pigeonite-bronzite basalt including 6 to 8% plagioclase phenocrysts. The lichens adhering to the rocks were mainly Stereocaulon vesuvianum, fruticose lichen, which are widespread over the study area. The metabolites of the Stereocaulon vesuvianum exhibited a mean pH of 4.5 and dominance by acids. The STEM-EDX observations revealed that the interface between augite and the lichen was completely covered with amorphous silica multilayer with a thickness of less than 1 µm. Ca L-edge XANES spectra of the augite showed that the energy profile of the absorption edge at 349 eV was varied with the depth from the surface, indicating that the M2 site coordination accommodating Ca2+ undergoes significant change in shape as a function of distance from the surface. This behavior results from the fact that the M2 site is more distorted and more flexible in the C2/c clinopyroxene phase. Taking into consideration that the S. vesuvianum can produce acidic organic compounds
Detection, Source Location, and Analysis of Volcano Infrasound
NASA Astrophysics Data System (ADS)
McKee, Kathleen F.
The study of volcano infrasound focuses on low frequency sound from volcanoes, how volcanic processes produce it, and the path it travels from the source to our receivers. In this dissertation we focus on detecting, locating, and analyzing infrasound from a number of different volcanoes using a variety of analysis techniques. These works will help inform future volcano monitoring using infrasound with respect to infrasonic source location, signal characterization, volatile flux estimation, and back-azimuth to source determination. Source location is an important component of the study of volcano infrasound and in its application to volcano monitoring. Semblance is a forward grid search technique and common source location method in infrasound studies as well as seismology. We evaluated the effectiveness of semblance in the presence of significant topographic features for explosions of Sakurajima Volcano, Japan, while taking into account temperature and wind variations. We show that topographic obstacles at Sakurajima cause a semblance source location offset of 360-420 m to the northeast of the actual source location. In addition, we found despite the consistent offset in source location semblance can still be a useful tool for determining periods of volcanic activity. Infrasonic signal characterization follows signal detection and source location in volcano monitoring in that it informs us of the type of volcanic activity detected. In large volcanic eruptions the lowermost portion of the eruption column is momentum-driven and termed the volcanic jet or gas-thrust zone. This turbulent fluid-flow perturbs the atmosphere and produces a sound similar to that of jet and rocket engines, known as jet noise. We deployed an array of infrasound sensors near an accessible, less hazardous, fumarolic jet at Aso Volcano, Japan as an analogue to large, violent volcanic eruption jets. We recorded volcanic jet noise at 57.6° from vertical, a recording angle not normally feasible
2000-04-26
On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet. This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. "Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption," said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption. In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16 miles
Volcano hazards at Newberry Volcano, Oregon
Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.
1997-01-01
Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry
ERIC Educational Resources Information Center
Tilling, Robert I.
One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…
Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users
Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward
2008-01-01
Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.
Volcano-hazard zonation for San Vicente volcano, El Salvador
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.
2001-01-01
San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.
Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn
2008-01-01
Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.
Diffuse CO_{2} and ^{222}Rn degassing monitoring of Ontake volcano, Japan
NASA Astrophysics Data System (ADS)
Alonso, Mar; Sagiya, Takeshi; Meneses-Gutiérrez, Ángela; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Melián, Gladys; Padilla, Germán D.
2017-04-01
Mt. Ontake (3067 m.a.s.l.) is a stratovolcano located in central Honsu and around 100 Km northeast of Nagoya, Japan, with the last eruption occurring on September 27, 2014, killing 57 people, and creating a 7-10 km high ash plume (Kagoshima et. al., 2016). There were no significant earthquakes that might have warned authorities in the lead up to the phreatic eruption, caused by ground water flashing to steam in a hydrothermal explosion. At the time of the eruption there was no operational geochemical surveillance program. In order to contribute to the strengthening of this program, the Disaster Mitigation Research Center of Nagoya University and the Volcanological Institute of Canary Islands started a collaborative program. To do so, an automatic geochemical station was installed at Ontake volcano and a survey of diffuse CO2efflux and other volatiles was carried out at the surface environment of selected areas of the volcano. The station was installed 10.9 km east away from the eruptive vent, where some earthquakes occurred, and consists of a soil radon (Rn) monitor (SARAD RTM-2010-2) able to measure 222Rn and 220Rn activities. Monitoring of radon is an important geochemical tool to forecast earthquakes and volcanic eruptions due to its geochemical properties. Rn ascends from the lower to the upper part of earth's crust mainly through cracks or faults and its transport needs the existence of a naturally occurring flux of a carrier gas. Regarding to the soil gas survey, it was carried out in August 2016 with 183 measurement points performed in an area of 136 km2. Measurements of soil CO2 efflux were carried out following the accumulation chamber method by means of a portable soil CO2 efflux instrument. To estimate the total CO2 output, sequential Gaussian simulation (sGs) was used allowing the interpolation of the measured variable at not-sampled sites and assess the uncertainly of the total diffuse emission of carbon dioxide estimated for the entire studied area
Advent of Continents: A New Hypothesis
Tamura, Yoshihiko; Sato, Takeshi; Fujiwara, Toshiya; Kodaira, Shuichi; Nichols, Alexander
2016-01-01
The straightforward but unexpected relationship presented here relates crustal thickness to magma type in the Izu-Ogasawara (Bonin) and Aleutian oceanic arcs. Volcanoes along the southern segment of the Izu-Ogasawara arc and the western Aleutian arc (west of Adak) are underlain by thin crust (10–20 km). In contrast those along the northern segment of the Izu-Ogasawara arc and eastern Aleutian arc are underlain by crust ~35 km thick. Interestingly, andesite magmas dominate eruptive products from the former volcanoes and mostly basaltic lavas erupt from the latter. According to the hypothesis presented here, rising mantle diapirs stall near the base of the oceanic crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, melting occurs at relatively low pressures in the mantle wedge producing andesitic magmas. Where the crust is thick, melting pressures are higher and only basaltic magmas tend to be produced. The implications of this hypothesis are: (1) the rate of continental crust accumulation, which is andesitic in composition, would have been greatest soon after subduction initiated on Earth, when most crust was thin; and (2) most andesite magmas erupted on continental crust could be recycled from “primary” andesite originally produced in oceanic arcs. PMID:27669662
Soufriere Hills Volcano Resumes Activity
2017-12-08
A massive eruption of Montserrat’s Soufrière Hills Volcano covered large portions of the island in debris. The eruption was triggered by a collapse of Soufrière Hills’ summit lava dome on February 11, 2010. Pyroclastic flows raced down the northern flank of the volcano, leveling trees and destroying buildings in the village of Harris, which was abandoned after Soufrière Hills became active in 1995. The Montserrat Volcano Observatory reported that some flows, about 15 meters (49 feet) thick, reached the sea at Trant’s Bay. These flows extended the island’s coastline up to 650 meters (2,100 feet). These false-color satellite images show the southern half of Montserrat before and after the dome collapse. The top image shows Montserrat on February 21, 2010, just 10 days after the event. For comparison, the bottom image shows the same area on March 17, 2007. Red areas are vegetated, clouds are white, blue/black areas are ocean water, and gray areas are covered by flow deposits. Fresh deposits tend to be lighter than older deposits. On February 21, the drainages leading down from Soufrière Hills, including the White River Valley, the Tar River Valley, and the Belham River Valley, were filled with fresh debris. According to the Montserrat Volcano Observatory, pyroclastic flows reached the sea through Aymers Ghaut on January 18, 2010, and flows entered the sea near Plymouth on February 5, 2010. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. To read more go to: earthobservatory.nasa.gov/IOTD/view.php?id=42792 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Venezky, Dina Y.; Orr, Tim R.
2008-01-01
Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.
Preliminary volcano-hazard assessment for Kanaga Volcano, Alaska
Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.
2002-01-01
Kanaga Volcano is a steep-sided, symmetrical, cone-shaped, 1307 meter high, andesitic stratovolcano on the north end of Kanaga Island (51°55’ N latitude, 177°10’ W longitude) in the western Aleutian Islands of Alaska. Kanaga Island is an elongated, low-relief (except for the volcano) island, located about 35 kilometers west of the community of Adak on Adak Island and is part of the Andreanof Islands Group of islands. Kanaga Volcano is one of the 41 historically active volcanoes in Alaska and has erupted numerous times in the past 11,000 years, including at least 10 eruptions in the past 250 years (Miller and others, 1998). The most recent eruption occurred in 1993-95 and caused minor ash fall on Adak Island and produced blocky aa lava flows that reached the sea on the northwest and west sides of the volcano (Neal and others, 1995). The summit of the volcano is characterized by a small, circular crater about 200 meters in diameter and 50-70 meters deep. Several active fumaroles are present in the crater and around the crater rim. The flanking slopes of the volcano are steep (20-30 degrees) and consist mainly of blocky, linear to spoonshaped lava flows that formed during eruptions of late Holocene age (about the past 3,000 years). The modern cone sits within a circular caldera structure that formed by large-scale collapse of a preexisting volcano. Evidence for eruptions of this preexisting volcano mainly consists of lava flows exposed along Kanaton Ridge, indicating that this former volcanic center was predominantly effusive in character. In winter (October-April), Kanaga Volcano may be covered by substantial amounts of snow that would be a source of water for lahars (volcanic mudflows). In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is not present on the volcano or on other parts of Kanaga Island. Kanaga Island is uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by
NASA Technical Reports Server (NTRS)
2006-01-01
Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.
2009-12-01
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu
Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska
Waythomas, Christopher F.; Miller, Thomas P.
1999-01-01
Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.
Atmospheric Science Data Center
2013-04-18
article title: Nicaraguan Volcanoes View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project: MISR category: gallery ...
Hahajima Seamount: an enigmatic tectonic block at the junction between Izu-Bonin and Mariana Trench
NASA Astrophysics Data System (ADS)
Tokunaga, W.; Fujioka, K.; Yokose, H.
2005-12-01
The Hahajima Seamount located at the junction between Izu-Bonin and Mariana forearc slopes, represents a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, NE-SW and NW-SE. These lineaments are of faults based on the topographic cross sections and three-dimensional view (Whale's-eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin in the Philippine Sea whereas the latter is to the nearby transform fault on the subducting Pacific Plate underneath the Izu-Bonin arc-trench system. The rocks obtained from the Hahajima Seamount are ultramafic rocks mostly harzburgite, boninite, basalt, andesite, gabbro breccia and sedimentary rocks, which characterize an island arc and an ocean basin affinities. The gravity measurement and seismic reflection survey offer neither definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. The NW-SE trending fault and small scale serpentine flows were observed during the JAMSTEC submersible Shinkai 2000 dives at the Hahajima Seamount. The rectangular shape, size of seamount, various kinds of rocks and all the geophysical measurements strongly support that the Hahajima Seamount is not a simple serpentine seamount but a tectonic block unlike previously believed that was controlled by various tectonic movements.
Tilling, Robert I.; ,
1998-01-01
Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.
NASA Astrophysics Data System (ADS)
Shibuya, H.; Mochizuki, N.; Miyabuchi, Y.
2017-12-01
In the central cone of Aso volcano, Kyushu Japan, there are 4 basaltic volcanic cones of 3-4 ka in age. The lava flows from those cones spread on the flank of the cones, and they were classified in the relation to each cone. The composition and lithology of those lavas are, however, often difficult to distinguish each other. Thus, we try the magnetostratigraphic study of those lava flows to confirm the classification. The samples were collected from 22 sites, one from a scoria cone and others are from lava, and measured their paleomagnetism. The magnetization of those samples is quite simple, as expected, and alternating field demagnetization well defines the primary component. The site mean directions aligns well on an arc, which defines the paleosecular variation of those ages, 3-4ka. The lava flows and a welded scoria classified as of two centers (Komezuka and Kamikomezuka) are well clustered and confirmed to a single or very closely erupted in time for each center. On the other hand, lava flows related to the other two centers (Ojo and Kijima) have multiple clusters in paleomagnetic directions, and their ages estimated from the paleosecular variation curve interfingers to the classification. It is also very interesting that there seems to be a stagnant point in secular variation just before 3ka, whose direction is similar to the known stagnant point in archeomagnetic secular variation at around 800CE. If there is tendency to stop the SV at the direction, it may be related to the core dynamo processes.
Venezky, Dina Y.; Murray, Tom; Read, Cyrus
2008-01-01
Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.
Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska
Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.
2003-01-01
Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy
Alaska Volcano Observatory at 20
NASA Astrophysics Data System (ADS)
Eichelberger, J. C.
2008-12-01
The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and
Assessing eruption column height in ancient flood basalt eruptions
NASA Astrophysics Data System (ADS)
Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.
2017-01-01
A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced
Assessing Eruption Column Height in Ancient Flood Basalt Eruptions
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.
2015-01-01
A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained
Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc
NASA Astrophysics Data System (ADS)
Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi
2018-01-01
To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.
Volcano Hazards Assessment for Medicine Lake Volcano, Northern California
Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.
2007-01-01
Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.
... Oregon have the most active volcanoes, but other states and territories have active volcanoes, too. A volcanic eruption may involve lava and other debris that can flow up to 100 mph, destroying everything in their ...
NASA Astrophysics Data System (ADS)
Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko
2018-03-01
A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.
Eruption of Shiveluch Volcano, Kamchatka, Russia
NASA Technical Reports Server (NTRS)
2001-01-01
On the night of June 4, 2001 ASTER captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 8028'. The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25 km ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and the Far East, this area is constantly monitored for potential ash hazards to aircraft. The lower image is the same as the upper, except it has been color coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists inNASA Astrophysics Data System (ADS)
Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.
2011-12-01
Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We have been developing a volcano observation system based on an unmanned aerial vehicle (UAV) for safe observations near active volcanic vents. We deployed an unmanned autonomous helicopter which can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time, flight distance, and payload are 90 minutes, 5km, and 10kg, respectively. By using the UAV, we installed seismic stations at the summit area of Sakurajima volcano, Japan. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the summit area. From November 2nd to 12th, 2009, and from November 2nd to 12th, 2010, we conducted seismic station installation in Sakurajima summit area using UAV and successfully installed four seismic stations within 2km from the active craters. Since the installation of the seismic stations, we have succeeded in acquiring waveform data accompanying more than 500 moderate eruptions at Showa-crater. Except for the mechanical resonance contamination at 35Hz, the recorded waveforms are as good as that recorded at permanent stations in Sakurajima. Since the beginning of the observation in the vicinity of the summit crater, the normalized amplitudes of the signals accompanying eruptions at Showa crater had been almost steady. However, after early April 2011, gradual increase of the normalized amplitude started, and this increasing trend is continuing at the time of the
Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.
2008-01-01
As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at
"Mediterranean volcanoes vs. chain volcanoes in the Carpathians"
NASA Astrophysics Data System (ADS)
Chivarean, Radu
2017-04-01
Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes
ERIC Educational Resources Information Center
Kunar, L. N. S.
1975-01-01
Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)
Some fundamental questions about the evolution of the Sea of Japan back-arc
NASA Astrophysics Data System (ADS)
Van Horne, A.; Sato, H.; Ishiyama, T.
2016-12-01
The Japanese island arc separated from Asia through the rifting of an active continental margin, and the opening of the Sea of Japan back-arc, in the middle Miocene. Due to its complex tectonic setting, the Sea of Japan back-arc was affected by multiple external events contemporary with its opening, including a plate reorganization, the opening of at least two other nearby back-arcs (Shikoku Basin and Okhotsk Sea/Kuril Basin), and two separate arc-arc collisions, involving encroachment upon Japan of the Izu-Bonin and Kuril arcs. Recent tectonic inversion has exposed entire sequences of back-arc structure on land, which remain virtually intact because of the short duration of inversion. Japan experiences a high level of seismic activity due to its position on the overriding plate of an active subduction margin. Continuous geophysical monitoring via a dense nationwide seismic/geodetic network, and a program of controlled-source refraction/wide-angle reflection profiling, directed towards earthquake hazard mitigation, have made it the repository of a rich geophysical data set through which to understand the processes that have shaped back-arc development. Timing, structural evolution, and patterns of magmatic activity during back-arc opening in the Sea of Japan were established by earlier investigations, but fundamental questions regarding back-arc development remain outstanding. These include (1) timing of the arrival of the Philippine Sea plate in southwest Japan, (2) the nature of the plate boundary prior to its arrival, (3) the pre-rift location of the Japanese island arc when it was attached to Asia, (4) the mechanism of back-arc opening (pull-apart or trench retreat), (5) the speed of opening, (6) simultaneous or sequential development of the multi-rift system, (7) the origin of the anomalously thick Yamato Basin ocean crust, and (8) the pattern of concentrated deformation in the failed-rift system of the eastern Sea of Japan since tectonic inversion. Resolving
NASA Astrophysics Data System (ADS)
Takahashi, Kosuke; Takakura, Shinichi; Matsushima, Nobuo; Fujii, Ikuko
2018-01-01
Hydrothermal activity at Meakandake volcano, Japan, from 2004 to 2014 was investigated by using long-term geomagnetic field observations and audio-frequency magnetotelluric (AMT) surveys. The total intensity of the geomagnetic field has been measured around the summit crater Ponmachineshiri since 1992 by Kakioka Magnetic Observatory. We reanalyzed an 11-year dataset of the geomagnetic total intensity distribution and used it to estimate the thermomagnetic source models responsible for the surface geomagnetic changes during four time periods (2004-2006, 2006-2008, 2008-2009 and 2013-2014). The modeled sources suggest that the first two periods correspond to a cooling phase after a phreatic eruption in 1998, the third one to a heating phase associated with a phreatic eruption in 2008, and the last one to a heating phase accompanying minor internal activity in 2013. All of the thermomagnetic sources were beneath a location on the south side of Ponmachineshiri crater. In addition, we conducted AMT surveys in 2013 and 2014 at Meakandake and constructed a two-dimensional model of the electrical resistivity structure across the volcano. Combined, the resistivity information and thermomagnetic models revealed that the demagnetization source associated with the 2008 eruptive activity, causing a change in magnetic moment about 30 to 50 times greater than the other sources, was located about 1000 m beneath Ponmachineshiri crater, within or below a zone of high conductivity (a few ohm meters), whereas the other three sources were near each other and above this zone. We interpret the conductive zone as either a hydrothermal reservoir or an impermeable clay-rich layer acting as a seal above the hydrothermal reservoir. Along with other geophysical observations, our models suggest that the 2008 phreatic eruption was triggered by a rapid influx of heat into the hydrothermal reservoir through fluid-rich fractures developed during recent seismic swarms. The hydrothermal reservoir
Digital Data for Volcano Hazards at Newberry Volcano, Oregon
Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.
2008-01-01
Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability
Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan
NASA Astrophysics Data System (ADS)
Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.
2016-06-01
Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.
View of Island of Kyushu, Japan from Skylab
1974-01-07
SL4-139-3942 (7 Jan. 1974) --- This oblique view of the Island of Kyushu, Japan, was taken from the Earth-orbiting Skylab space station on Jan. 8, 1974 during its third manning. A plume from the volcano Sakurajima (bottom center) is clearly seen as it extends about 80 kilometers (50 miles) east from the volcano. (EDITOR'S NOTE: On Jan. 10, 2013, a little over 39 years after this 1974 photo was made from the Skylab space station, Expedition 34 crew members aboard the International Space Station took a similar picture (frame no. ISS034-E-027139) featuring smoke rising from the same volcano, with much of the island of Kyushu visible. Interesting comparisons can be made between the two photos, at least as far as the devices used to record them. The Skylab image was made by one of the three Skylab 4 crew members with a hand-held camera using a 100-mm lens and 70-mm color film, whereas the station photo was taken with 180-mm lens on a digital still camera, hand-held by one of the six crew members). Photo credit: NASA
Why did we lose the 59 climbers in 2014 Ontake Volcano Eruption?
NASA Astrophysics Data System (ADS)
Kimata, F.
2015-12-01
The first historical eruption at Ontake volcano, central Japan was in 1979, and it was a phreatic eruption. Until then, most Japanese volcanologists understood that Ontake is a dormant or an extinct volcano. Re-examination of active volcanoes was done after the eruption.After the first historical eruption in 1979, two small eruptions are repeated in 1991 and 2007. Through the three eruptions, nobody has got injured. The last eruption on September 27, 2014, we lost 65 people included missing. Because it was fine weekend and there were many climbers on the summit. The eruption was almost at lunchtime. Clearly, casualties by tsunamis are inhabitants along the coastlines, and casualties by eruption are visitors not inhabitants around the volcano. Basically, visitors have small information of Ontake volcano. After the accident, one mountain guide tells us that we never have long broken such as lunch around the summit, because an active creator is close, and they are afraid of the volcano gas accidents. All casualties by eruption were lost their lives in the area of 1.0 km distance from the 2014 creators. In 2004 Sumatra Earthquake Tsunami, we could not recognize the tsunami inspiration between the habitants in Banda Aceh, Sumatra. They have no idea of tsunami, and they called "Rising Sea" never"Tsunami". As the result, they lost many habitants close to the coast. In 2011 Tohoku Earthquake Tsunami, when habitants felt strong shaking close to coast, they understood the tsunami coming. 0ver 50 % habitants decide to evacuate from the coast. However, 20-30 % habitants believe in themselves no tsunami attacking for them. As a result we lost many habitants. Additionally, the tsunami height was higher than broadcasting one by JMA. According to the results of the questionnaire survey in climbers or bereaved families of the eruption day on Ontake volcano (Shinano Mainich Newspaper, 2015), 39 % of them were climbing no understand of "Ontake active volcano". Moreover, only 10
A detailed map of the 660-kilometer discontinuity beneath the izu-bonin subduction zone.
Wicks, C W; Richards, M A
1993-09-10
Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.
GlobVolcano: Earth Observation Services for Global Monitroing of Active Volcanoes
NASA Astrophysics Data System (ADS)
Borgstrom, S.; Bianchi, M.; Bronson, W.; Tampellini, M. L.; Ratti, R.; Seifert, F. M.; Komorowski, J. C.; Kaminski, E.; Peltier, A.; Van der Voet, P.
2010-03-01
The GlobVolcano project (2007-2010) is part of the Data User Element (DUE) programme of the European Space Agency (ESA).The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcano Observatories and other mandate users (Civil Protection, volcano scientific community) in their monitoring activities.The set of offered EO based information products is the following:- Deformation Mapping- Surface Thermal Anomalies- Volcanic Gas Emission- Volcanic Ash TrackingThe Deformation Mapping service is performed exploiting either PSInSARTM or Conventional DInSAR (EarthView® InSAR). The processing approach is selected according to the availability of SAR data and users' requests.The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site.In a first phase, the GlobVolcano Information System was designed, implemented and validated, involving a limited number of test areas and respective user organizations (Colima in Mexico, Merapi in Indonesia, Soufrière Hills in Montserrat Island, Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli and Volcano in Italy). In particular Deformation Mapping results obtained for Piton de la Fournaise were compared with deformation rates measured by the volcano observatory using GPS stations and tiltmeters. IPGP (Institut de Physique du Globe de Paris) is responsible for the validation activities.The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are monitored and as many user organizations are involved and cooperating with the project team.In addition to the proprietary tools mentioned before, in
Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.
Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi
2016-02-19
Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.
Monitoring eruption activity using temporal stress changes at Mount Ontake volcano
Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi
2016-01-01
Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716
Seismicity of the Earth 1900-2007, Japan and Vicinity
Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Benz, Harley
2010-01-01
This map shows details of Japan and vicinity not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. Japan and its island possessions lie across four major tectonic plates: Pacific plate, North America plate; Eurasia plate; and Philippine Sea plate. The Pacific plate is subducted into the mantle, beneath Hokkaido and northern Honshu, along the eastern margin of the Okhotsk microplate, a proposed subdivision of the North America plate (Bird, 2003). Farther south, the pacific plate is subducted beneath volcanic islands along the eastern margin of the Philippine Sea plate. This 2,200 km-long zone of subduction of the Pacific plate is responsible for the creation of the deep offshore Ogasawara and Japan trenches as well as parallel chains of islands and volcanoes, typical of the Circumpacific island arcs. Similarly, the Philippine Sea plate is itself subducting under the Eurasia plate along a zone, extending from Taiwan to southern Honshu, that comprises the Ryuku Islands and the Nansei-Shonto trench.
NASA Astrophysics Data System (ADS)
Seno, Tetsuzo
2005-10-01
Based on the fact that interseismic deformation of collision zones is generally described by slip along a detachment at depth, I attempt to interpret the deformation of the Izu collision zone in terms of a detachment model. The systematic deviation of the GPS velocities of the Izu Peninsula (Nov. 1998-June 2000) from the Philippine Sea-Eurasian relative plate motions is fitted by the slip on the detachment at a depth of 15-20 km with a rate of 3 cm/yr. On June 26, 2000, seismo-magmatic activity that started near Miyakejima expanded NW by 20 km close to Kozushima in association with dike intrusion over a few months. The horizontal movements associated with this event, however, spread over wide areas in central Honshu. Simple dike intrusion models cannot explain these movements. To explain these, I hypothesize that a 20 cm of rapid slip occurred on the detachment at the time of this event. The abnormal crustal movements in the Tokai-central Honshu-Kanto region then started after the event. I propose that they represent delayed diffusive transfer of the slip on the detachment over surrounding low viscosity layers, such as nearby rupture zones of great earthquakes.
NASA Astrophysics Data System (ADS)
Regalla, Christine
Here we investigate the relationships between outer forearc subsidence, the timing and kinematics of upper plate deformation and plate convergence rate in Northeast Japan to evaluate the role of plate boundary dynamics in driving forearc subsidence. The Northeastern Japan margin is one of the first non-accretionary subduction zones where regional forearc subsidence was argued to reflect tectonic erosion of large volumes of upper crustal rocks. However, we propose that a significant component of forearc subsidence could be the result of dynamic changes in plate boundary geometry. We provide new constraints on the timing and kinematics of deformation along inner forearc faults, new analyses of the evolution of outer forearc tectonic subsidence, and updated calculations of plate convergence rate. These data collectively reveal a temporal correlation between the onset of regional forearc subsidence, the initiation of upper plate extension, and an acceleration in local plate convergence rate. A similar analysis of the kinematic evolution of the Tonga, Izu-Bonin, and Mariana subduction zones indicates that the temporal correlations observed in Japan are also characteristic of these three non-accretionary margins. Comparison of these data with published geodynamic models suggests that forearc subsidence is the result of temporal variability in slab geometry due to changes in slab buoyancy and plate convergence rate. These observations suggest that a significant component of forearc subsidence at these four margins is not the product of tectonic erosion, but instead reflects changes in plate boundary dynamics driven by variable plate kinematics.
Borgia, A.; Delaney, P.T.; Denlinger, R.P.
2000-01-01
As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.
NASA Astrophysics Data System (ADS)
Durkin, K.; Castillo, P.; Abe, N.; Kaneko, R.; Straub, S. M.; Garcia, E. S. M.; Yan, Q.; Tamura, Y.
2015-12-01
Subduction zone magmatism primarily occurs due to flux melting of the mantle wedge that has been metasomatized by the slab component. The latter is enriched in volatiles and fluid-mobile elements and derived mainly from subducted sediments and altered oceanic crust (AOC). Subduction input has been linked to arc output in many studies, but this relationship is especially well documented in sedimented arc-trench systems. However, the Izu-Bonin system is sediment-poor, therefore the compositional and latitudinal variations (especially in Pb isotopes) of its arc magmas must be sourced from the subduction component originating primarily from the AOC. Pb is a very good tracer of recycled AOC that may contribute 50% or more of arc magma Pb. Izu-Bonin arc chemistry suggests a subduction influx of Indian-type crust, but the subducting crust sampled at ODP Site 1149 is Pacific-type. The discrepancy between subduction input and arc output calls into question the importance of the AOC as a source of the subduction component, and raises major concerns with our understanding of slab input. During the R/V Revelle 1412 cruise in late 2014, we successfully dredged vertical fault scarps at several sites from 27.5 N to 34.5 N, spanning a range of crustal ages that include a suggested compositional change at ~125 Ma. Major element data show an alkali enrichment towards the north of the study transect. Preliminary incompatible trace element data (e.g. Ba, Zr and Sr) data support this enrichment trend. Detailed mass balance calculations supported by Sr, Nd, Hf and especially Pb isotope analyses will be performed to evaluate whether the AOC controls the Pb isotope chemistry of the Izu-Bonin volcanic arc.
The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results
Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.
2004-01-01
Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.
NASA Astrophysics Data System (ADS)
Watada, S.; Arai, N.; Murayama, T.; Iwakuni, M.; Nogami, M.; Oi, T.; Imanishi, Y.; Kitagawa, Y.
2010-12-01
With more than 20 microbarometers in a distance range from as small as 4 km to 1100 km, we observed the strongest explosive eruption since 2000 of the Sakurajima volcano, located at the southern end of the Kyushu Island in Japan. An MB2005 at 4-km away from the summit recorded one strong sharp acoustic signal with peak-to-peak amplitude 1200 Pa and duration 4 sec. This nearby microbarogram guarantees that no small eruption occurred with amplitude more than a few tens Pa within a day after this explosive eruption. At the I30H IMS array which is 1000 km away from the volcano, we observed a dispersed pressure wave train with duration 1 min and maximum amplitude 5 Pa and dominant periods 5-10 sec. Array analysis shows a tropospheric propagating infrasound from the azimuth of Sakurajima with an apparent velocity 0.345 km/s. All distant stations are nearly linearly aligned from Sakurajima to the I30H array and their azimuths are 37-65 deg. Within this small azimuth range, we observed a strong azimuthal anisotropy in traveltime and amplitude. The patterns of traveltime anomaly and amplitude are similar, earlier the arrival, larger the amplitude. This implies that these traveltime and amplitude anomalies are wave propagation origin and are likely caused by the wind, not by an asymmetric radiation pattern of the explosion source. More microbarograms including two MB2005s were running in the Honshu Island during the eruption but these records show little infrasound signals with amplitude more than a few Pa. There seems a clear areal boundary where infrasound was observed or not. Another prominent feature of waveforms is the multiple later phases reflected from the troposphere and the thermosphere. The record section of microbarograms recorded at less than 500 km from the volcano reveals nearly-equally time-separated later phases up to 5 bounces. The traveltime curves progressively increases the apparent velocity as the time increases and distance decreases, suggesting
NASA Astrophysics Data System (ADS)
Watada, Shingo; Arai, Nobuo; Murayama, Takahiko; Iwakuni, Makiko; Nogami, Mami; Imanishi, Yuichi; Oi, Takuma; Kitagawa, Yuichi
2010-05-01
With more than 20 microbarometers in a distance range from as small as 4 km to 1100 km, we observed the strongest explosive eruption since 2000 of the Sakurajima volcano, located at the southern end of the Kyushu Island in Japan. An MB2005 at 4-km away from the summit recorded one strong sharp acoustic signal with peak-to-peak amplitude 1200 Pa and duration 4 sec. This nearby microbarogram guarantees that no small eruption occurred with amplitude more than a few tens Pa within a day after this explosive eruption. At the I30H IMS array which is 1000 km away from the volcano, we observed a dispersed pressure wave train with duration 1 min and maximum amplitude 5 Pa and dominant periods 5-10 sec. Array analysis shows a tropospheric propagating infrasound from the azimuth of Sakurajima with an apparent velocity 0.345 km/s. All distant stations are nearly linearly aligned from Sakurajima to the I30H array and their azimuths are 37-65 deg. Within this small azimuth range, we observed a strong azimuthal anisotropy in traveltime and amplitude. The patterns of traveltime anomaly and amplitude are similar, earlier the arrival, larger the amplitude. This implies that these traveltime and amplitude anomalies are wave propagation origin and are likely caused by the wind, not by an asymmetric radiation pattern of the explosion source. More microbarograms including two MB2005s were running in the Honshu Island during the eruption but these records show little infrasound signals with amplitude more than a few Pa. There seems a clear areal boundary where infrasound was observed or not. Another prominent feature of waveforms is the multiple later phases reflected from the troposphere and the thermosphere. The record section of microbarograms recorded at less than 500 km from the volcano reveals nearly-equally time-separated later phases up to 5 bounces. The traveltime curves progressively increases the apparent velocity as the time increases and distance decreases, suggesting
Interactions and interconnectivity of neighboring volcanic systems in southern Japan (Kyūshū)
NASA Astrophysics Data System (ADS)
Brothelande, E.; Amelung, F.; Zhang, Y.
2016-12-01
The global volcanic eruption record contains about 60 volcano pairs that erupted the same day and 30 pairs that erupted within 3 days. However, neighboring volcano interactions are still poorly understood, in mafic as well as in felsic systems. Here, we use GPS time series of Japan's Aira caldera and Kirishima volcanic system (andesitic systems) to search for interactions between the two neighboring plumbing systems. Aira caldera (17 km x 23 km), also known as Kagoshima Bay, was formed by a massive eruption about 22,000 years ago and is often considered as the world's most active caldera volcano. The center of the caldera is occupied by Sakurajima volcano, a volcanic island that emerged about 13,000 years ago. Today, the caldera hosts more than 1 million people living along the shore and in the city of Kagoshima. The Kirishima volcanoes are a group of 18 eruption cones located 20 km north of Aira caldera. An eruption, the largest in more than 50 years, occurred in 2011 at Shinmoe-dake volcano. The magmatic system of Kirishima volcano was considered to be independent of Aira caldera, but our preliminary results suggest that this may not be the case: it seems that subtle uplift of the Aira caldera occurring during at least the first decade of this century ceased with the 2011 eruption of the Kirishima system. Using deformation data and finite element modeling, we explore possible interactions between magma reservoirs at depth.
Eruption histories and hypotheses of magma genesis of Mt. Baegdu volcano
NASA Astrophysics Data System (ADS)
Lim, C.; Lee, I.
2017-12-01
The tephra or cryptotephra are principally composed of alkaline glass shards, and INAA of individual grains offers a way of distinguishing chemical characteristics. That may be used to discriminate different events age and to correlate separate deposits of the same source volcanoes. The identification of tephra or cryptotephra layers presents an opportunity to define time-parallel marker horizons. With using INAA scanning method three newly identified tephras (named B-J, B-Sado and B-Ym) were detected and eruption ages identified between AT (29.24 cal. ka) and Aso-4 (88 ka) in five cores based on microscopic observation and the stratigraphic correlations between cores of the Holocene sediments in the southeastern East Sea/Japan Sea. By the correlation with TL (dark layer) data, the approximate age of B-J, B-Sado and B-Ym tephras were calculated as to be 50.6 ka, 67.6 ka, 86.8 ka, respectively. The intraplate Baegdusan (Changbai) volcanoes located on the border of China and North Korea have been explained by either hotspots by mantle plumes or asthenospheric mantle upwelling (wet plume) caused by stagnation slab of the subducted Pacific plate. To understand the origin of the Baegdusan volcanism, we performed geochemical analyses on the volcanic rocks and tephra deposits erupted from the Baegdusan volcanoes. We propose that the intraplate alkaline volcanism associated with Baekdusan volcanic region is fed by a mantle upwelling originating below the discontinuity subducting slab. The upwelling is a result of a slab neck into the subducting slabs. The Baekdusan volcano relies on a slab neck within subducting slab at depth to allow for a focused upwelling. Therefore, the magmatic progression of back-arc magmatism in Baekdusan volcanoes can be explained by the interaction of this Philippine Sea Plate Slab and upwelling mantle.
Permeability evolution governed by shear: An example during spine extrusion at Unzen volcano, Japan
NASA Astrophysics Data System (ADS)
Ashworth, James; Lavallée, Yan; Wallace, Paul; Kendrick, Jackie; Coats, Rebecca; Miwa, Takahiro; Hess, Kai-Uwe
2017-04-01
A volcano's eruptive style is strongly controlled by the permeability of the magma and the surrounding edifice rock - explosive activity is more likely if exsolved gases cannot escape the system. In this study, we investigate how shear strain causes variations in permeability within a volcanic conduit, and discuss how spatio-temporal variation in shear regimes may develop. The eruption of Unzen volcano, Japan, which occurred between 1990 - 1995, culminated in the extrusion of a 60 metre-high dacitic spine. The spine, left exposed at the lava dome surface, displays the petrographic architecture of the magma in the shallow conduit. Observations and measurements made in the field are combined with laboratory experiments to understand the distribution of permeability in the shallow conduit. Examination of the lava dome led to the selection of two sites for detailed investigation. First, we examined a section of extruded spine 6 metres in width, which displays a transition from apparently unsheared rock in the conduit core to rocks exhibiting increasing shear towards the conduit margin, bounded by a fault gouge zone. Laboratory characterisation (mineralogy, porosity, permeability, X-ray tomography) was undertaken on these samples. In contrast, a second section of spine (extruded later during the eruption) exhibited a large tensile fracture, and this area was investigated using non-destructive in-situ permeability measurements. Our lab measurements show that in the first outcrop, permeability decreases across the shear zone from core to gouge by approximately one order of magnitude perpendicular to shear; a similar decrease is observed parallel to shear, but is less severe. The lowest permeability is observed in the most highly sheared block; here, permeability is 2.5 x10-14 m2 in the plane of shear and 9 x10-15 m2 perpendicular to shear. Our measurements clearly demonstrate the influence of shear on conduit permeability, with significant anisotropy in the shear zone
An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth
NASA Technical Reports Server (NTRS)
Brian, A. W.; Smrekar, S. E.; Stofan, E. R.
2004-01-01
Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.
Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes
NASA Astrophysics Data System (ADS)
Bonini, Marco; Rudolph, Maxwell L.; Manga, Michael
2016-03-01
Earthquakes can trigger the eruption of mud. We use eruptions in Azerbaijan, Italy, Romania, Japan, Andaman Islands, Pakistan, Taiwan, Indonesia, and California to probe the nature of stress changes that induce new eruptions and modulate ongoing eruptions. Dynamic stresses produced by earthquakes are usually inferred to be the dominant triggering mechanism; however static stress changes acting on the feeder systems of mud volcanoes may also play a role. In Azerbaijan, eruptions within 2-10 fault lengths from the epicenter are favored in the year following earthquakes where the static stress changes cause compression of the mud source and unclamp feeder dikes. In Romania, Taiwan, and some Italian sites, increased activity is also favored where the static stress changes act to unclamp feeder dikes, but responses occur within days. The eruption in the Andaman Islands, and those of the Niikappu mud volcanoes, Japan are better correlated with amplitude of dynamic stresses produced by seismic waves. Similarly, a new island that emerged off the coast of Pakistan in 2013 was likely triggered by dynamic stresses, enhanced by directivity. At the southern end of the Salton Sea, California earthquakes increase the gas flux at small mud volcanoes. Responses are best correlated with dynamic stresses. The comparison of responses in these nine settings indicates that dynamic stresses are most often correlated with triggering, although permanent stress changes as small as, and possibly smaller than, 0.1 bar may be sufficient to also influence eruptions. Unclamping stresses with magnitude similar to Earth tides (0.01 bar) persist over time and may play a role in triggering delayed responses. Unclamping stresses may be important contributors to short-term triggering only if they exceed 0.1-1 bar.
NASA Astrophysics Data System (ADS)
Asada, M.
2017-12-01
Mud volcanoes (MV) are geological features that are observed all over the world, especially along plate convergent margins. MVs bring fluid and sediment to the surface from depth. MVs around Japan are expected to transport of information from the shallow portions of the seismogenic zone. The Kumano forearc basin (FAB) in the Nankai region is the most studied area in Japan. It is bounded by a shelf on the north, and the Kumano Basin edge fault zone (KBEFZ) on the south. The Kumano FAB has 1-2 km of sediment and overlies the accretionary prism. There are at least 14 MVs in the Kumano Basin. Most of them are found over the northern basin floor, and at least one MV is at the KBEFZ. The MV at the KBEFZ is imaged on a 3D seismic data set as a small topographic feature on seafloor with a disrupted BSR below it. On high-resolution acoustic imagery, it is an 80 100m-high hill with a crater-like depression. It is characterized by a negative ph anomaly detected just above it. High-backscatter seafloor recognized around the MV suggests that harder seafloor exists in that area. To determine whether large subseafloor diapirs exist below active MVs, we try to detect the gravity contrast between the allochthonous materials and basin sediment. Gravity data were collected by research vessels over the area in 2012 2017. After corrections of drift and Etovos effects, absolute gravity, free-air and Bouguer gravity anomalies were calculated. The gravity data do not always show anomalies directly on MVs over the northern basin, thus suggesting that larger diapirs which have gravity contrast over a few milli-Gals do not exist below most of MVs in this basin. Instead, a large negative gravity anomaly is found at the northeastern end of the Kumano Basin. Localized positive anomalies exist along the KBEFZ in the area of theMV. The positive anomaly may suggest that an allochthonous high-density sediment body intrudes along the highly deformed, weak, fault zone.
Volcanoes: Nature's Caldrons Challenge Geochemists.
ERIC Educational Resources Information Center
Zurer, Pamela S.
1984-01-01
Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…
Full-wave Ambient Noise Tomography of Mt Rainier volcano, USA
NASA Astrophysics Data System (ADS)
Flinders, Ashton; Shen, Yang
2015-04-01
Mount Rainier towers over the landscape of western Washington (USA), ranking with Fuji-yama in Japan, Mt Pinatubo in the Philippines, and Mt Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding its picturesque stature, Mt Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath is shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded by Mt Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of the volcano's summit hydrothermal alteration, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt Rainier remains enigmatic both in terms of the shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography allowing us to accuratly account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mt Rainier, and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds.
Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography
Tanaka, Hiroyuki K. M.
2016-01-01
An emerging elementary particle imaging technique called muography has increasingly been used to resolve the internal structures of volcanoes with a spatial resolution of less than 100 m. However, land-based muography requires several days at least to acquire satisfactory image contrast and thus, it has not been a practical tool to diagnose the erupting volcano in a real time manner. To address this issue, airborne muography was implemented for the first time, targeting Heisei-Shinzan lava dome of Unzen volcano, Japan. Obtained in 2.5 hours, the resultant image clearly showed the density contrast inside the dome, which is essential information to predict the magnitude of the dome collapse. Since airborne muography is not restricted by topographic conditions for apparatus placements, we anticipate that the technique is applicable to creating images of this type of lava dome evolution from various angles in real time. PMID:28008978
2006-07-23
This MOC image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust
Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dorothy
2010-01-01
laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.
Atmospheric Science Data Center
2013-04-23
article title: Eyjafjallajökull, Iceland, Volcano Ash Cloud View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...
NASA Astrophysics Data System (ADS)
Iwata, M.; Mogi, T.; Okuma, S.; Nakatsuka, T.
2016-12-01
Tokachidake Volcano, central Hokkaido, Japan erupted in 1926, 1962 and 1988-1989 in the 20th century from the central part. In recent years, expansions of the edifice of the volcano at shallow depth and increases of the volcanic smoke in the Taisho crater were observed (Meteorological Agency of Japan, 2014). Magnetic changes were observed at the 62-2 crater by repeated magnetic measurements in 2008-2009, implying a demagnetization beneath the crater (Hashimoto at al., 2010). Moreover, a very low resistivity part was found right under the 62-2 crater from an AMT survey (Yamaya et al., 2010). However, since the station numbers of the survey are limited, the area coverage is not sufficient. In this study, we have re-analyzed high-resolution aeromagnetic data to delineate the three-dimensional magnetic structure of the volcano to understand the nature of other craters.A low altitude airborne magnetic survey was conducted in 2014 mainly over the active areas of the volcano by the Ministry of Land, Infrastructure, Transport and Tourism to manage land slide risk in the volcano. The survey was flown at an altitude of 60 m above ground by a helicopter with a Cesium magnetometer in the towed-bird 30m below the helicopter. The low altitude survey enables us to delineate the detailed magnetic structure. We calculated magnetic anomaly distribution on a smooth surface assuming equivalent anomalies below the observation surface. Then the 3D magnetic imaging method (Nakatsuka and Okuma, 2014) was applied to the magnetic anomalies to reveal the three-dimensional magnetic structure.As a result, magnetization highs were seen beneath the Ground crater, Suribachi crater and Kitamuki crater. This implies that magmatic activity occurred in the past at these craters. These magma should have already solidified and acquired strong remanent magnetization. Relative magnetization lows were seen beneath the 62-2 crater and the Taisho crater where fumarolic activity is active. However a
NASA Astrophysics Data System (ADS)
Bessat, Annelore; Pilet, Sébastien; Duretz, Thibault; Schmalholz, Stefan M.
2017-04-01
Petit-spot volcanoes were discovered fifteen years ago by Japanese researchers at the top of the down going plate in front of Japan (1). The location of these small lava flows is unusual, and seems related to the plate flexure in front of the subduction zone. Their formation seems, therefore, not to correspond to any classical type of volcanism such as MORB generation at mid ocean ridges, arc volcanism in subduction zones or intraplate volcanoes classically associated to deep mantle plumes. The discovery of petit-spot volcanoes is of great significance as it demonstrates, for the first time, that tectonic processes could generate intraplate volcanism and supports the existence of small-degree melts at the base of the lithosphere. First models for the formation of petit-spot volcanoes suggest that plate bending produces extension at the base of the lithosphere, thus allowing large cracks to propagate across the lithosphere. These cracks promote the extraction of low degree melts from the base of the lithosphere (2). However, the study of petit-spot mantle xenoliths from Japan (3) demonstrates that low degree melts are not directly extracted to the surface, but percolate and metasomatize the oceanic lithosphere. The aim of this study is to better understand the physical processes associated with the formation of petit-spot volcanoes. These thermo-mechanical processes will be studied using upper-mantle scale numerical simulations based on a 2D finite difference code. The numerical model considers viscoelastoplastic deformation; combination of laboratory-derived flow laws (e.g. diffusion and dislocation creep, Peierls creep) and heat transfer. The first step is to quantify the deformation processes that occur in the lithosphere and at the Lithosphere-Asthenosphere Boundary (LAB). The aims are to investigate, in particular, extensional deformation at the base of the lithosphere which is induced by plate flexure in front of a subduction zone. This study focuses on
NASA Technical Reports Server (NTRS)
1994-01-01
This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.
NASA Technical Reports Server (NTRS)
2004-01-01
30 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano located southwest of the giant volcano, Pavonis Mons, near 2.5oS, 109.4oW. Lava flows can be seen to have emanated from the summit region, which today is an irregularly-shaped collapse pit, or caldera. A blanket of dust mantles this volcano. Dust covers most martian volcanoes, none of which are young or active today. This picture covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.1979-01-01
Ryukyu Archipelago Ogasawara and Volcano islands Prefectures of Japan (large bold numerals) 13. Hyogo 14. Ibaraki 15. Ishikawa 16. Iwate 17...Kishimoto, 1969: 33, Haneji and Ishikawa , Okinawa Is. ; &omi and Sonae, Iriomote Is. ; Ryukyu Archipelago. Descriptions based on specimens from Taiwan...d, 9, P, L). Type-locality: Mt. Hakusan, Ishikawa Pref., Japan. FEMALE (Fig. 216). Wing length 5.1-5.4 mm. Head. Eyes narrowly narrowly separated
Revisiting Jorullo volcano (Mexico): monogenetic or polygenetic volcano?
NASA Astrophysics Data System (ADS)
Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Victoria Morales, A.; Pérez Bustamante, J. C.; Correa Olan, J. C.; Gutiérrez Jiménez, A. J.; Adán González, N.; Bravo Cardona, E. F.
2007-05-01
Jorullo volcano is located near the volcanic front of the westernmost part of the Trans-Mexican Volcanic Belt, which is related to the subduction of the Cocos plate beneath the North American plate. This part of the TMVB is known as the Michoacán-Guanajuato Volcanic Field, a region where widespread monogenetic volcanism is present although polygenetic volcanism is also recognized (i. e. Tancítaro volcano; Ownby et al., 2006). Jorullo volcano was born in the middle of crop fields. During its birth several lava flows were emitted and several cones were constructed. The main cone is the Jorullo proper, but there is a smaller cone on the north (Volcán del Norte), and three smaller cones aligned N-S on the south (Unnamed cone, UC; Volcán de Enmedio, VE; and Volcán del Sur, VS). The cone of Jorullo volcano is made up of tephra and lava flows erupted from the crater. The three southern cones show very interesting histories not described previously. VE erupted highly vesiculated tephras including xenoliths from the granitic basement. VS is made of spatter and bombs. A very well preserved hummocky morphology reveals that VE and VS collapsed towards the west. After the collapses, phreatomagmatic activity took place at the UC blanketing VE, VS and the southern flank of the Jorullo cone with sticky surge deposits. The excellent study by Luhr and Carmichael (1985) indicates that during the course of the eruption, lavas evolved from primitive basalt to basaltic andesite, although explosive products show a reverse evolution pattern (Johnson et al., 2006). We mapped lava flows not described by the observers in the 18th century nor considered in previous geologic reports as part of the Jorullo lavas. These lavas are older, distributed to the west and south, and some of them resemble the lava flows from La Pilita volcano, a cone older than Jorullo (Luhr and Carmichael, 1985). These lava flows were not considered before because they were not extruded during the 1759
Volcanoes: observations and impact
Thurber, Clifford; Prejean, Stephanie G.
2012-01-01
Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.
NASA Astrophysics Data System (ADS)
Ishibashi, Hidemi
2009-03-01
Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.
NASA Astrophysics Data System (ADS)
Shinohara, Hiroshi; Tanaka, Hiroyuki K. M.
2012-10-01
Quantitative re-evaluation of the muon radiography data obtained by Tanaka et al. (2009) was conducted to constrain conduit magma convection at the Iwodake rhyolitic cone of Satsuma-Iwojima volcano, Japan. Re-evaluation of the measurement error considering topography and fake muon counts confirms the existence of a low-density body of 300 m in diameter and with 0.9-1.0 g cm-3 at depths of 135-190 m from the summit crater floor. The low-density material is interpreted as rhyolitic magma with 60% vesicularity on average, and existence of this unstable highly vesiculated magma at shallow depth without any recent eruptive or intrusive activity is considered as evidence of conduit magma convection. The structure of the convecting magma column top was modeled based on density calculations of vesiculated ascending and outgassed descending magmas, compared with the observed density anomaly. The existence of the low-density anomaly was confirmed by comparison with published gravity measurements, and the predicted degassing at the shallow magma conduit top agrees with observed heat discharge anomaly distribution localized at the summit area. This study confirms that high viscosity of silicic magmas can be compensated by a large size conduit to cause the conduit magma convection phenomena. The rare occurrence of conduit magma convection in a rhyolitic magma system at Iwodake is suggested to be due to its specific magma features of low H2O content and high temperature.
NASA Astrophysics Data System (ADS)
Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.
2014-12-01
The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc
NASA Technical Reports Server (NTRS)
2002-01-01
A January 6, 2002 ASTER nighttime thermal infrared image of Chiliques volcano in Chile shows a hot spot in the summit crater and several others along the upper flanks of the edifice, indicating new volcanic activity. Examination of an earlier nighttime thermal infrared image from May 24,2000 showed no thermal anomaly. Chiliques volcano was previously thought to be dormant. Rising to an elevation of 5778 m, Chiliques is a simple stratovolcano with a 500-m-diameter circular summit crater. This mountain is one of the most important high altitude ceremonial centers of the Incas. It is rarely visited due to its difficult accessibility. Climbing to the summit along Inca trails, numerous ruins are encountered; at the summit there are a series of constructions used for rituals. There is a beautiful lagoon in the crater that is almost always frozen.The daytime image was acquired on November 19, 2000 and was created by displaying ASTER bands 1,2 and 3 in blue, green and red. The nighttime image was acquired January 6, 2002, and is a color-coded display of a single thermal infrared band. The hottest areas are white, and colder areas are darker shades of red. Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. AA Scientific Excursion: Volcanoes.
ERIC Educational Resources Information Center
Olds, Henry, Jr.
1983-01-01
Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)
Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan
2018-03-01
We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.
Toda, S.; Stein, R.S.; Lin, J.
2011-01-01
We report on a broad and unprecedented increase in seismicity rate following the M=9.0 Tohoku mainshock for M ≥ 2 earthquakes over inland Japan, parts of the Japan Sea and Izu islands, at distances of up to 425 km from the locus of high (≥15 m) seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M ≥ 3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ~80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common.
Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska
Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.
1998-01-01
Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.
Preliminary volcano-hazard assessment for Aniakchak Volcano, Alaska
Neal, Christina A.; McGimsey, Robert G.; Miller, Thomas P.; Riehle, James R.; Waythomas, Christopher F.
2000-01-01
Aniakchak is an active volcano located on the Alaska Peninsula 670 kilometers southwest of Anchorage. The volcano consists of a dramatic, 10-kilometer-diameter, 0.5 to 1.0-kilometer-deep caldera that formed during a catastrophic eruption 3,500 years ago. Since then, at least a dozen separate vents within the caldera have erupted, often explosively, to produce lava flows and widespread tephra (ash) deposits. The most recent eruption at Aniakchak occurred in 1931 and was one of the largest explosive eruptions in Alaska in the last 100 years. Although Aniakchak volcano presently shows no signs of unrest, explosive and nonexplosive eruptions will occur in the future. Awareness of the hazards posed by future eruptions is a key factor in minimizing impact.
NASA Technical Reports Server (NTRS)
Komar, Paul D.
1991-01-01
The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.
View of Island of Kyushu, Japan from Skylab
1974-01-08
SL4-139-3971 (8 Jan. 1974) --- An oblique view of Japan as seen from the Skylab space station in Earth orbit. The Island of Kyushu is at center left. The Island of Honshu is in the right background. The Korean Peninsula is in the left background. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera with a 100mm lens. The plume form Kyushu's volcano Sakurajima is clearly seen in this photograph. Volcanic activity at Sakurajima is known to have occurred for over 1,200 years (first recorded in the year 708 A.D.) but for the first time the entire volcanic plume can be documented at one time. Skylab photographs and crew descriptions are much more detailed then information available from other satellites. The volcano and its plume were observed at least seven times during Skylab 4, and photographed and documented with television. In repeated observations the plume was seen to stream out to the south or southeast and become increasingly diffuse away from the volcano. As the plume reached the open ocean cast of Kyushu it changed direction, sometimes abruptly, and fanned out to the northeast. In this photograph it extends about 80 kilometers (50 miles) east from the volcano; the distribution and dispersion of particulate materials and volcanic gasses will be studied in this and similar Skylab photographs. Although the plume is primarily water vapor, it contains significant quantities of oxides of carbon, sulphur and nitrogen. These gases are considered pollutants, and understanding their abundance and distribution will help to evaluate the relative effect and significance of man-made atmospheric pollutants. Photo credit: NASA
Airborne EM survey in volcanoes : Application to a volcanic hazards assessment
NASA Astrophysics Data System (ADS)
Mogi, T.
2010-12-01
Airborne electromagnetics (AEM) is a useful tool for investigating subsurface structures of volcanoes because it can survey large areas involving inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. AEM has been widely used in mineral exploration in frontier areas, and have been applying to engineering and environmental fields, particularly in studies involving active volcanoes. AEM systems typically comprise a transmitter and a receiver on an aircraft or in a towed bird, and although effective for surveying large areas, their penetration depth is limited because the distance between the transmitter and receiver is small and higher-frequency signals are used. To explore deeper structures using AEM, a semi-airborne system called GRounded Electrical source Airborne Transient ElectroMagnetics (GREATEM) has been developed. The system uses a grounded-electrical-dipole as the transmitter and generates horizontal electric fields. The GREATEM technology, first proposed by Mogi et al. (1998), has recently been improved and used in practical surveys (Mogi et al., 2009). The GREATEM survey system was developed to increase the depth of investigation possible using AEM. The method was tested in some volcanoes at 2004-2005. Here I will talk about some results of typical AEM surveys and GREATEM surveys in some volcanoes in Japan to mitigate hazards associated with volcano eruption. Geologic hazards caused by volcanic eruptions can be mitigated by a combination of prediction, preparedness and land-use control. Risk management depends on the identification of hazard zones and forecasting of eruptions. Hazard zoning involves the mapping of deposits which have formed during particular phases of volcanic activity and their extrapolation to identify the area which would be likely to suffer a similar hazard at some future time. The mapping is usually performed by surface geological surveys of volcanic deposits. Resistivity mapping by AEM is useful
NASA Astrophysics Data System (ADS)
Kumagai, H.; Yepes, H.; Vaca, M.; Caceres, V.; Nagai, T.; Yokoe, K.; Imai, T.; Miyakawa, K.; Yamashina, T.; Arrais, S.; Vasconez, F.; Pinajota, E.; Cisneros, C.; Ramos, C.; Paredes, M.; Gomezjurado, L.; Garcia-Aristizabal, A.; Molina, I.; Ramon, P.; Segovia, M.; Palacios, P.; Enriquez, W.; Inoue, I.; Nakano, M.; Inoue, H.
2006-12-01
Tungurahua and Cotopaxi are andesitic active volcanoes in Ecuadorian Andes. Tungurahua continues its eruptive activity since 1999, in which explosive eruptions accompanying pyroclastic flows occurred in July- August, 2006. Cotopaxi is one of the world's highest glacier-clad active volcanoes, and its seismic activity remains high since 2001. To enhance the monitoring capability of these volcanoes, we have installed broadband seismometers (Guralp CMG-40T: 60 s-50 Hz) and infrasonic sensors (ACO TYPE7144/4144: 10 s- 100 Hz) on these volcanoes through the technical cooperation program of Japan International Cooperation Agency (JICA). Three and five stations are currently installed at Tungurahua and Cotopaxi, respectively, and additional two stations will be installed at Tungurahua. Both seismic and infrasonic waveform data at each station are digitized by a Geotech Smart24D datalogger with a sampling frequency of 50 Hz, and transmitted by a digital telemetry system using 2.4 GHz Wireless LAN to the central office in Quito. The Tungurahua's eruptive activity accompanying pyroclastic flows in July-August 2006 was monitored in real-time by the network. The observed waveforms show a wide variety of signatures in response to various eruption styles: intermittent tremor during Strombolian eruptions, five-hour-long continuous strong tremor during heightened eruptions, very-long-period (VLP) seismic signals (10-50 s) associated with pyroclastic flows, and impulsive seismic and infrasonic events of explosions. At Cotopaxi Volcano, VLP signals (2 s) accompanying long- period signals (1-2 Hz) were detected by our network. Similar events occurred in 2002, and are interpreted as gas-release process from magma in an intruded dike beneath Cotopaxi (Molina et al, submitted to JGR). The present observation of the same type of events suggests that the intruded dike is still active beneath Cotopaxi. These signals detected by our networks are highly useful to understand volcanic processes
Preliminary volcano-hazard assessment for Augustine Volcano, Alaska
Waythomas, Christopher F.; Waitt, Richard B.
1998-01-01
Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.
Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites
Parkinson; Hawkesworth; Cohen
1998-09-25
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.
Pyroclastic Flow Remnants at Shiveluch Volcano
2017-12-08
NASA image acquired February 25, 2011 Pyroclastic flows are some of the most fearsome hazards posed by erupting volcanoes. These avalanches of superheated ash, gas, and rock are responsible for some of the most famous volcanic disasters in history, including the burial of the ancient Roman city of Pompei and the destruction of Saint-Pierre in 1902. More recently, pyroclastic flows from Mount Merapi in Indonesia caused most of the casualties during the volcano’s 2010 eruption. The intense heat—over 1,000° Celsius (1800° Fahrenheit)—the terrific speed—up to 720 kilometers (450 miles) per hour—and the mixture of toxic gases all contribute to the deadly potential. Pyroclastic flows can incinerate, burn, or asphyxiate people who cannot get out of the flow path. This false-color satellite image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra satellite shows the remnants of a large pyroclastic flow on the slopes of Shiveluch Volcano. Fortunately, no one was hurt during the eruption and flow in the sparsely-populated area. ASTER detected heat from the flow during or shortly after an event on January 25, 2011. Note how the heat signatures from January line up with the dark surface deposits visible on February 25; those deposits cover more than 10 square kilometers (4 square miles). Light brown ash covers the snow above the flow deposits, and a tiny plume rises from Shiveluch’s growing lava dome. Vegetation surrounding the volcano is colored dark red. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. Instrument: Terra - ASTER Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific
Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force
NASA Astrophysics Data System (ADS)
Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.
2013-12-01
Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this
Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska
Waythomas, Christopher F.; Nye, Christopher J.
2001-01-01
Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many
NASA Technical Reports Server (NTRS)
2007-01-01
The Klyuchevskaya Volcano on Russia's Kamchatka Peninsula continued its ongoing activity by releasing another plume on May 24, 2007. The same day, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image, at 01:00 UTC. In this image, a hotspot marks the volcano's summit. Outlined in red, the hotspot indicates where MODIS detected unusually warm surface temperatures. Blowing southward from the summit is the plume, which casts its shadow on the clouds below. Near the summit, the plume appears gray, and it lightens toward the south. With an altitude of 4,835 meters (15,863 feet), Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) is both the highest and most active volcano on the Kamchatka Peninsula. As part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Klyuchevskaya is estimated to have experienced more than 100 flank eruptions in the past 3,000 years. Since its formation 6,000 years ago, the volcano has seen few periods of inactivity. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC. The Rapid Response Team provides daily images of this region.
High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors.
Oláh, László; Tanaka, Hiroyuki K M; Ohminato, Takao; Varga, Dezső
2018-02-16
Muography is a novel method to highly resolve the internal structure of active volcanoes by taking advantage of the cosmic muon's strong penetration power. In this paper, we present the first high-definition image in the vicinity of craters of an erupting volcano called Sakurajima, Kyushu, Japan. The muography observation system based on the technique of multi-wire proportional chamber (mMOS) has been operated reliably during the data taking period of 157 days. The mMOS measured precisely the flux of muons up to the thickness of 5,000 meter-water-equivalent. It was shown that high-definition density maps around the Craters A, B and Showa could be determined with a precision of less than 7.5 × 7.5 m 2 which earlier had not yet been achieved. The observed density distribution suggests that the fall back deposits filled the magma pathway and increased their density underneath Craters A and B.
Volcano spacing and plate rigidity
ten Brink, Uri S.
1991-01-01
In-plane stresses, which accompany the flexural deformation of the lithosphere under the load of adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.
Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.
2003-01-01
Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while
NASA Technical Reports Server (NTRS)
2002-01-01
On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene
NASA Astrophysics Data System (ADS)
Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain
2017-07-01
To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.
NASA Astrophysics Data System (ADS)
Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.
2015-12-01
Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.
Poland, Michael P.; Hamburger, Michael W.; Newman, Andrew V.
2006-01-01
At the very heart of volcanology lies the search for the 'plumbing systems' that form the inner workings of Earth’s active volcanoes. By their very nature, however, the magmatic reservoirs and conduits that underlie these active volcanic systems are elusive; mostly they are observable only through circumstantial evidence, using indirect, and often ambiguous, surficial measurements. Of course, we can infer much about these systems from geologic investigation of materials brought to the surface by eruptions and of the exposed roots of ancient volcanoes. But how can we study the magmatic processes that are occurring beneath Earth’s active volcanoes? What are the geometry, scale, physical, and chemical characteristics of magma reservoirs? Can we infer the dynamics of magma transport? Can we use this information to better forecast the future behavior of volcanoes? These questions comprise some of the most fundamental, recurring themes of modern research in volcanology. The field of volcano geodesy is uniquely situated to provide critical observational constraints on these problems. For the past decade, armed with a new array of technological innovations, equipped with powerful computers, and prepared with new analytical tools, volcano geodesists have been poised to make significant advances in our fundamental understanding of the behavior of active volcanic systems. The purpose of this volume is to highlight some of these recent advances, particularly in the collection and interpretation of geodetic data from actively deforming volcanoes. The 18 papers that follow report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide
NASA Technical Reports Server (NTRS)
2002-01-01
Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.
Diverse long Period tremors and their implications on degassing and heating inside Aso volcano
NASA Astrophysics Data System (ADS)
Niu, Jieming; Song, Teh-Ru Alex
2017-04-01
Long-period tremors (LPTs) are frequently observed and documented in many active volcanoes around the world, Typically, LPTs are in the period range of 2-100 seconds and total duration of 300 seconds or less. In many instances, LPTs in different volcanic settings are repetitive, but time-invariant in their location, frequency content and waveform shape, suggesting a nondestructive source and providing critical insights into the fluid-dynamic processes operating inside a volcanic system. However, the diversities of LPTs in a single volcanic system are not necessarily well understood and they could potentially provide a clue on the interplay between volcanic degassing, magmatic heating and the style of upcoming eruption. To explore possible diverse LPT behavior in a volcanic system, we investigate LPTs in Aso-san, one of the most well studied and active volcanoes in the southwest Kyushu, Japan. We carry out systematic analysis of continuous seismic data (2010-2016) operated at V-net by NIED and Japan Meterogeolgical Agency (JMA) Volcanic Seismic Network, covering the interval where Aso-san experiences diverse behaviors, including long period of quiescence (2010-2013), phreatic eruption (2013-2014), Strombolian-type eruption (2014-2015) and phreatomagmatic eruption (2016). We use LPT waveforms identified in previous studies as templates and cross-correlate them against the entire dataset in the wavelet domain to construct LPTs catalog. However, LPTs with different phase, but similar frequency content and location are also retained to examine possible temporal changes in the characteristics of LPTs. Through waveform cross-correlation and stacking, we identify four types of LPTs that are located in close proximity as those identified in prior studies, but they display diverse waveform polarity and shape. We will present waveform semblance analysis and moment tensor inversion of these LPTs and discuss how their frequency, amplitude and energetics may be indicative of the
Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska
Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.
2008-01-01
Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.
Fluvial valleys on Martian volcanoes
NASA Technical Reports Server (NTRS)
Baker, Victor R.; Gulick, Virginia C.
1987-01-01
Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.
NASA Astrophysics Data System (ADS)
Takarada, Shinji; Oikawa, Teruki; Furukawa, Ryuta; Hoshizumi, Hideo; Itoh, Jun'ichi; Geshi, Nobuo; Miyagi, Isoji
2016-08-01
The total mass discharged by the phreatic eruption of Ontake Volcano, central Japan, on September 27, 2014, was estimated using several methods. The estimated discharged mass was 1.2 × 106 t (segment integration method), 8.9 × 105 t (Pyle's exponential method), and varied from 8.6 × 103 to 2.5 × 106 t (Hayakawa's single isopach method). The segment integration and Pyle's exponential methods gave similar values. The single isopach method, however, gave a wide range of results depending on which contour was used. Therefore, the total discharged mass of the 2014 eruption is estimated at between 8.9 × 105 and 1.2 × 106 t. More than 90 % of the total mass accumulated within the proximal area. This shows how important it is to include a proximal area field survey for the total mass estimation of phreatic eruptions. A detailed isopleth mass distribution map was prepared covering as far as 85 km from the source. The main ash-fall dispersal was ENE in the proximal and medial areas and E in the distal area. The secondary distribution lobes also extended to the S and NW proximally, reflecting the effects of elutriation ash and surge deposits from pyroclastic density currents during the phreatic eruption. The total discharged mass of the 1979 phreatic eruption was also calculated for comparison. The resulting volume of 1.9 × 106 t (using the segment integration method) indicates that it was about 1.6-2.1 times larger than the 2014 eruption. The estimated average discharged mass flux rate of the 2014 eruption was 1.7 × 108 kg/h and for the 1979 eruption was 1.0 × 108 kg/h. One of the possible reasons for the higher flux rate of the 2014 eruption is the occurrence of pyroclastic density currents at the summit area.
Nakano, M.; Kumagai, H.; Chouet, B.A.
2003-01-01
We investigate the source mechanism of long-period (LP) events observed at Kusatsu-Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1-3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake. ?? 2003 Elsevier Science B.V. All rights reserved.
Age of Izu-Bonin-Mariana arc basement
NASA Astrophysics Data System (ADS)
Ishizuka, Osamu; Hickey-Vargas, Rosemary; Arculus, Richard J.; Yogodzinski, Gene M.; Savov, Ivan P.; Kusano, Yuki; McCarthy, Anders; Brandl, Philipp A.; Sudo, Masafumi
2018-01-01
Documenting the early tectonic and magmatic evolution of the Izu-Bonin-Mariana (IBM) arc system in the Western Pacific is critical for understanding the process and cause of subduction initiation along the current convergent margin between the Pacific and Philippine Sea plates. Forearc igneous sections provide firm evidence for seafloor spreading at the time of subduction initiation (52 Ma) and production of "forearc basalt". Ocean floor drilling (International Ocean Discovery Program Expedition 351) recovered basement-forming, low-Ti tholeiitic basalt crust formed shortly after subduction initiation but distal from the convergent margin (nominally reararc) of the future IBM arc (Amami Sankaku Basin: ASB). Radiometric dating of this basement gives an age range (49.3-46.8 Ma with a weighted average of 48.7 Ma) that overlaps that of basalt in the present-day IBM forearc, but up to 3.3 m.y. younger than the onset of forearc basalt activity. Similarity in age range and geochemical character between the reararc and forearc basalts implies that the ocean crust newly formed by seafloor spreading during subduction initiation extends from fore- to reararc of the present-day IBM arc. Given the age difference between the oldest forearc basalt and the ASB crust, asymmetric spreading caused by ridge migration might have taken place. This scenario for the formation of the ASB implies that the Mesozoic remnant arc terrane of the Daito Ridges comprised the overriding plate at subduction initiation. The juxtaposition of a relatively buoyant remnant arc terrane adjacent to an oceanic plate was more favourable for subduction initiation than would have been the case if both downgoing and overriding plates had been oceanic.
NASA Astrophysics Data System (ADS)
Johnson, E. R.
2015-12-01
Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (<65 ka), extremely thick (few m to >250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.
Volcano monitoring with an infrared camera: first insights from Villarrica Volcano
NASA Astrophysics Data System (ADS)
Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina
2015-04-01
This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes
NASA Technical Reports Server (NTRS)
2001-01-01
An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.
Organizational changes at Earthquakes & Volcanoes
Gordon, David W.
1992-01-01
Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).
NASA Astrophysics Data System (ADS)
Siebert, L.; Simkin, T.; Kimberly, P.
2010-12-01
The 3rd edition of the Smithsonian Institution’s Volcanoes of the World incorporates data on the world’s volcanoes and their eruptions compiled since 1968 by the Institution’s Global Volcanism Program (GVP). Published this Fall jointly by the Smithsonian and the University of California Press, it supplements data from the 1994 2nd edition and includes new data on the number of people living in proximity to volcanoes, the dominant rock lithologies at each volcano, Holocene caldera-forming eruptions, and preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions. The 3rd edition contains data on nearly 1550 volcanoes of known or possible Holocene age, including chronologies, characteristics, and magnitudes for >10,400 Holocene eruptions. The standard 20 eruptive characteristics of the IAVCEI volcano catalog series have been modified to include dated vertical edifice collapse events due to magma chamber evacuation following large-volume explosive eruptions or mafic lava effusion, and lateral sector collapse. Data from previous editions of Volcanoes of the World are also supplemented by listings of up to the 5 most dominant lithologies at each volcano, along with data on population living within 5, 10, 30, and 100 km radii of each volcano or volcanic field. Population data indicate that the most populated regions also contain the most frequently active volcanoes. Eruption data document lava and tephra volumes and Volcanic Explosivity Index (VEI) assignments for >7800 eruptions. Interpretation of VRF data has led to documentation of global eruption rates and the power law relationship between magnitude and frequency of volcanic eruptions. Data with volcanic hazards implications include those on fatalities and evacuations and the rate at which eruptions reach their climax. In recognition of the hazards implications of potential resumption of activity at pre-Holocene volcanoes, the 3rd edition includes very preliminary lists of Pleistocene
Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory
Heliker, Christina C.; Griggs, J. D.; Takahashi, T. Jane; Wright, Thomas L.; Spall, Henry
1986-01-01
The island of Hawaii has one of the youngest landscapes on Earth, formed by frequent addition of new lava to its surface. Because Hawaiian are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruptions. The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary. has been in the forefront of volcanology since the 1900's. This issue of Earthquakes and volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.
Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory
1986-01-01
The island of Hawaii has one of the youngest landscapes on Earth, formed by the frequent addition of new lava to its surface. Because Hawaiian eruptions are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruption. The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary, has been in the forefront of volcanology since the early 1900s. This issue of Earthquakes and Volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.
1995-10-29
STS073-E-5274 (3 Nov. 1995) --- Colima was photographed with a color Electronic Still Camera (ESC) onboard the Earth-orbiting space shuttle Columbia. The volcano lies due south of Guadalajara and Lake Chapala. It is considered to be one of Mexico's most active and most dangerous volcanoes, lying not far from heavily populated areas.
Relationship between geomorphology and lithotypes of lahar deposit from Chokai volcano, Japan
NASA Astrophysics Data System (ADS)
Minami, Y.; Ohba, T.; Hayashi, S.; Kataoka, K.
2013-12-01
Chokai volcano, located in the northern Honshu arc in Japan, is an andesitic stratovolcano that collapsed partly at ca. 2500 years ago. A post collapse lahar deposit (Shirayukigawa lahar deposit) is distributed in the northern foot of the volcanic edifice. The deposit consists of 16 units of debris flow, hyperconcentrated flow and streamflow deposits. The Shirayukigawa lahar deposit has a total thickness of 30 m and overlies the 2.5-ka Kisakata debris avalanche deposit. Shirayukigawa lahar deposit forms volcanic fan and volcanic apron. The volcanic fan is subdivided into four areas on the basis of slope angles and of geomorphological features: 1) steeply sloped area, 2) moderately sloped area, 3) gently sloped area and 4) horizontal area. From sedimentary facies and structures, each unit of the Shirayukigawa lahar deposit is classified into one of four lithotypes: clast-supported debris flow deposit (Cc), matrix-supported debris flow deposit (Cm1), hyperconcentrated flow deposit (Cm2) and streamflow deposit (Sl). Each type has the following lithological characteristics. The lithotypes are well correlated with the geomorphology of the volcanic fan. The steeply-sloped and the moderately-sloped areas are dominated by Cc, Cm1, and Cm2, and The horizontal area are dominated by Sl. Debris flow deposit (Cc) is massive, very poorly sorted, partly graded, and clast-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Preferred clast orientation are present. Debris flow deposit (Cm1) is massive, very poorly sorted, and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Some layers exhibit coarse-tail normal/inverse grading. Most clasts are oriented. Hyperconcentrated flow deposit (Cm2) is massive to diffusely laminated, very poorly sorted and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic rocks. Matrix is sandy. The
NASA Technical Reports Server (NTRS)
2002-01-01
Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison
Volcanic hazards at Atitlan volcano, Guatemala
Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.
2006-01-01
Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.
The California Volcano Observatory: Monitoring the state's restless volcanoes
Stovall, Wendy K.; Marcaida, Mae; Mangan, Margaret T.
2014-01-01
Volcanic eruptions happen in the State of California about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and future volcanic eruptions are inevitable. The U.S. Geological Survey California Volcano Observatory monitors the State's potentially hazardous volcanoes.
Volcanoes. A planetary perspective.
NASA Astrophysics Data System (ADS)
Francis, P.
In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.
NASA Astrophysics Data System (ADS)
Ishizuka, O.; Yuasa, M.; Tani, K.; Umino, S.; Reagan, M. K.; Kanayama, K.; Harigane, Y.; Miyajima, Y.
2009-12-01
The Bonin Ridge is an unusually prominent forearc massif in the Izu-Bonin arc that exposes early arc volcanic rocks on Bonin Islands. Submarine parts of the ridge, which could complement the record of volcanism preserved on the islands, had not been extensively investigated. In 2007, dredge sampling in the Izu-Bonin forearc brought us ample evidence of exposure of arc crustal section formed at initial stage of this arc along the landward slope of Izu-Ogasawara trench. Based on this discovery, we conducted Shinkai 6500 submersible survey in May, 2009. This expedition enabled us to obtain general understanding of the crustal section that formed when this oceanic arc began. We investigated 3 areas of the Bonin Ridge. Near 28o25’N, 4 dives were used to look at the lower to upper crustal section. The deepest dive observed both gabbro and basalt/dolerite, and appears to have passed over the boundary between the two. Lower slope is composed of fractured gabbro, whereas pillow lava was observed in the uppermost part of this dive track. Two dives surveyed up-slope of the previous dive found outcrop of numerous doleritic basalt dykes and fractured basaltic lava cut by dykes between water depth of 6000 and 5500m. The shallowest dive recovered volcanic breccia and conglomerate with boninitic and basaltic clasts. Combined with results from other dives and dredging, the members of forearc crustal section are from bottom to top: 1) gabbroic rocks, 2) a sheeted dyke complex, 3) basaltic lava flows, 4) volcanic breccia and conglomerate with boninitic and basaltic clasts, 5) boninite and tholeiitic andesite lava flows and dykes (on the Bonin Islands). In addition to this crustal section, dredge sampling and ROV Kaiko dives recovered mantle peridotite below the gabbro. These observations indicate that almost all of the forearc crust down to Moho has been preserved. Preliminary data indicate that basaltic rocks made of sheeted dykes and lava flows and lower gabbros are generally
NASA Astrophysics Data System (ADS)
Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato
2017-12-01
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of
Vertical Motions of Oceanic Volcanoes
NASA Astrophysics Data System (ADS)
Clague, D. A.; Moore, J. G.
2006-12-01
Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift
Dzurisin, Daniel; Lu, Zhong
2009-01-01
A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.
Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China
NASA Astrophysics Data System (ADS)
Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin
2017-04-01
Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water
Eruption of Kliuchevskoi volcano
1994-10-04
STS068-273-060 (4 October 1994) --- Astronauts aboard the Space Shuttle Endeavour recorded this follow-up 70mm frame of the Kliuchevskoi volcano on the Kamchatka Peninsula in Russia. The volcano was near its peak on launch day, five days earlier, but only a small steam plume was rising from the summit in this Day 5 photo. Tendrils of ash are airborne on the northern flank of the volcano. Scientists feel that the source of these plumes is from a flow down the mountain's northern flank. The entire summit region is covered in ash. As various members of the six-person crew were using handheld cameras to record the various stages of the volcano, hardware in Endeavour's cargo bay was taking radar data of the event in support of the Space Radar Laboratory (SRL-2) mission.
Science education in Elementary school by using of "Geopark", Oki Islands, Japan
NASA Astrophysics Data System (ADS)
Oku, S.; Matsumoto, I.
2012-12-01
The Oki islands are located at Japan sea coast side of southwest Japan and belonging to Shimane Prefecture. And there is rich Nature which is consist of mainly alkaline volcanic rocks and metamorphic rocks. Aiming at authorization "Geopark" authorization of Oki Islands, Geologist, Biologist, and residents of Oki Islands are doing investigation and advertisement. Promotion of the science education which utilized the precious Nature, or environmental education is very important in the viewpoint of the science literacy which can protect a Nature and the earth. In this presentation, we mainly propose activity at an elementary school about how to advance the science education by using of this precious Nature. Children learn about the geology which constitutes the ground, and its petro-genesis in the Science of the sixth grade of elementary school. The viewpoint of having been formed by volcano, Earthquake, etc, in long global time is important for the precious and beautiful geology which constitutes the ground. It is at the same time important for a global change to teach also about often doing serious damage to human beings or a living thing with an Earthquake, a volcano, tsunami, etc. That is, we can push (teaching beautiful geology and a precious living thing using "Geopark"), and can learn about the blessing and disaster of a Nature. Moreover, teaching materials and teaching tools like a local textbook or a signboard with which a teacher and a resident can teach them to a child are required.
NASA Astrophysics Data System (ADS)
Yu, Zhiteng; Zhao, Dapeng; Niu, Xiongwei; Li, Jiabiao
2018-01-01
Low-frequency earthquakes (LFEs) in the lower crust and uppermost mantle are widely observed in Southwest Japan, and they occur not only along the subducting Philippine Sea (PHS) slab interface but also beneath active arc volcanoes. The volcanic LFEs are still not well understood because of their limited quantities and less reliable hypocenter locations. In this work, seismic tomography is used to determine detailed three-dimensional (3-D) P- and S-wave velocity (Vp and Vs) models of the crust and upper mantle beneath Southwest Japan, and then the obtained 3-D Vp and Vs models are used to relocate the volcanic LFEs precisely. The results show that the volcanic LFEs can be classified into two types: pipe-like and swarm-like LFEs, and both of them are located in or around zones of low-velocity and high-Poisson's ratio anomalies in the crust and uppermost mantle beneath the active volcanoes. The pipe-like LFEs may be related to the fluid migration from the lower crust or the uppermost mantle, whereas the swarm-like LFEs may be related to local magmatic activities or small magma chambers. The number of LFEs sometimes increases sharply before or after a nearby large crustal earthquake which may cause cracks and fluid migration. The spatiotemporal distribution of the LFEs may indicate the track of migrating fluids. As compared with the tectonic LFEs along the PHS slab interface, the volcanic LFEs are more sensitive to fluid migration and local magmatic activities. High pore pressures play an important role in triggering both types of LFEs in Southwest Japan.
Sheveluch Volcano, Kamchatka, Russia
2010-04-05
Sheveluch Volcano in Kamchatka, Siberia, is one of the frequently active volcanoes located in eastern Siberia. In this image from NASA Terra spacecraft, brownish ash covers the southern part of the mountain, under an ash-laden vertical eruption plume.
NASA Astrophysics Data System (ADS)
Trunk, Laura; Bernard, Alain
2008-12-01
A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu-Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu-Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.
The New USGS Volcano Hazards Program Web Site
NASA Astrophysics Data System (ADS)
Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.
2008-12-01
The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.
Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc
NASA Astrophysics Data System (ADS)
Kong, Xiangchao; Li, Sanzhong; Wang, Yongming; Suo, Yanhui; Dai, Liming; Géli, Louis; Zhang, Yong; Guo, Lingli; Wang, Pengcheng
2018-01-01
Statistics about the occurrence frequency of earthquakes (1973-2015) at shallow, intermediate and great depths along the Izu-Bonin-Mariana (IBM) Arc is presented and a percent perturbation relative to P-wave mean value (LLNL-G3Dv3) is adopted to show the deep structure. The correlation coefficient between the subduction rate and the frequency of shallow seismic events along the IBM is 0.605, proving that the subduction rate is an important factor for shallow seismic events. The relationship between relief amplitudes of the seafloor and earthquake occurrences implies that some seamount chains riding on the Pacific seafloor may have an effect on intermediate-depth seismic events along the IBM. A probable hypothesis is proposed that the seamounts or surrounding seafloor with high degree of fracture may bring numerous hydrous minerals into the deep and may result in a different thermal structure compared to the seafloor where no seamounts are subducted. Fluids from the seamounts or surrounding seafloor are released to trigger earthquakes at intermediate-depth. Deep events in the northern and southern Mariana arc are likely affected by a horizontal propagating tear parallel to the trench.
Infrasound as a Long Standing Tool for Monitoring Continental Ecuadorean Volcanoes
NASA Astrophysics Data System (ADS)
Ruiz, M. C.; Ortiz, H. D.; Hernandez, S.; Palacios, P.; Anzieta, J. C.
2017-12-01
In the last 10 years, infrasound and seismic methods have been successfully used in the continuous monitoring of eruptive activity at Tunguruhua, Reventador, Sangay and Cotopaxi volcanoes. After a dormant period of 81 years, Tungurahua woke up in 1999 and has since been characterized by vulcanian and strombolian eruptions. Beginning in July 2006, a permanent seismo-infrasonic network with 5 collocated seismic and infrasound sensors was installed through a cooperation with Japan International Cooperation Agency (JICA). It recorded more than 6,000 explosions at Tungurahua with reduced amplitudes larger than 270 Pa at 1 km from the active crater, including 3 explosions greater than 6000 Pa associated with short-lived explosions. Major and long sustained eruptions (July 14-15, 2006; August 16-17, 2006; February 6-8, 2008, May 28, 2010; December 4, 2010; December 3-4, 2011; August 18, 2012) generated seismic and infrasound tremors with complex waveforms. In 2002, Reventador volcano produced the largest eruption in Ecuador in the last century (VEI-4). Since September 2012, alternating periods of strombolian activity and short-lived vulcanian explosions are monitored by seismic and microbarometer sensors located on the south-east border of the caldera rim. Non-steady activity with fluctuations between quiescence and frequent explosions, tremor, and chugging events is recorded. Infrasound of explosions ranges from 75 to 6350 Pa in reduced peak-to-peak amplitudes. Sangay, a remote and very active volcano, is monitored by a broadband seismometer and microbarometer collocated at 8 km from the summit. Active periods during the last few months are characterized by explosion events followed by lava flows and small ash emissions. In March 2016, more than 100 explosions were recorded in a single day. Finally, in 2015 Cotopaxi volcano began its recent eruptive period after 138 years of quiescence. One month after the initiation of its eruptive activity, 76 harmonic infrasound
Mount Rainier active cascade volcano
NASA Technical Reports Server (NTRS)
1994-01-01
Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.
For Kids | Volcano World | Oregon State University
Volcanic Gases Volcanic Lightning Volcanic Sounds Volcanic Hazards Kids Only! Art Gallery Volcano Games Lightning Volcanic Sounds Volcanic Hazards Kids Only! Art Gallery Volcano Games Adventures and Fun Virtual volcano? Check out our games and fun section below! Kids' Volcano Art Gallery Games & Fun Stuff
GlobVolcano pre-operational services for global monitoring active volcanoes
NASA Astrophysics Data System (ADS)
Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.
2010-05-01
The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island
Development of an automatic volcanic ash sampling apparatus for active volcanoes
NASA Astrophysics Data System (ADS)
Shimano, Taketo; Nishimura, Takeshi; Chiga, Nobuyuki; Shibasaki, Yoshinobu; Iguchi, Masato; Miki, Daisuke; Yokoo, Akihiko
2013-12-01
We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008-2012) at Sakurajima volcano in southwest Japan.
The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile
Wicks, Charles; De La, Llera; Lara, L.E.; Lowenstern, J.
2011-01-01
Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile’s southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.
The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile.
Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob
2011-10-19
Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.
Volcano art at Hawai`i Volcanoes National Park—A science perspective
Gaddis, Ben; Kauahikaua, James P.
2018-03-26
Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.
Lava Flow Simulation for the Disaster Area of the Volcano Eruption
NASA Astrophysics Data System (ADS)
Ishikawa, Tomoya; Muranaka, Noriaki; Ishida, Tkahiro; Hashimoto, Junichi; Tokumaru, Msataka; Imanishi, Shigeru
Japan is the eminent volcanic country in the world, and Suwanose-jima in Kagoshima and Mt. Asama in Gunma are puffing out smoke vigorously at present. In the past, the large-scale eruptions occurred in Sakura-jima and Unzen-Fugendake, and 10 percent of the energy in the earthquake and the volcano eruption of the whole earth is released in Japan. Therefore the prediction for the flow area of lava is very important. Then, we try to develop the simulation system which predicts the flow area of lava and the people want to use it at their homes. Because of this, our system must be able to use on a PC becoming popular in the present time. Our simulation technique can reduce the computing time using the simple way without considering the viscosity dynamics and so on. Also this system can show the simulation result with the three dimensional image and the animation using OpenGL. The user can view the area of the lava flow from the various angles, and we think that this is useful for the improvement of their conscience for the disaster prevention.
Eruption of Shiveluch Volcano, Kamchatka Peninsula
NASA Technical Reports Server (NTRS)
2007-01-01
On March 29, 2007, the Shiveluch Volcano on the Russian Federation's Kamchatka Peninsula erupted. According to the Alaska Volcano Observatory the volcano underwent an explosive eruption between 01:50 and 2:30 UTC, sending an ash cloud skyward roughly 9,750 meters (32,000 feet), based on visual estimates. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA's Aqua satellite took this picture at 02:00 UTC on March 29. The top image shows the volcano and its surroundings. The bottom image shows a close-up view of the volcano at 250 meters per pixel. Satellites often capture images of volcanic ash plumes, but usually as the plumes are blowing away. Plumes have been observed blowing away from Shiveluch before. This image, however, is different. At the time the Aqua satellite passed overhead, the eruption was recent enough (and the air was apparently still enough) that the ash cloud still hovered above the summit. In this image, the bulbous cloud casts its shadow northward over the icy landscape. Volcanic ash eruptions inject particles into Earth's atmosphere. Substantial eruptions of light-reflecting particles can reduce temperatures and even affect atmospheric circulation. Large eruptions impact climate patterns for years. A massive eruption of the Tambora Volcano in Indonesia in 1815, for instance, earned 1816 the nickname 'the year without a summer.' Shiveluch is a stratovolcano--a steep-sloped volcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. One of Kamchatka's largest volcanoes, it sports a summit reaching 3,283 meters (10,771 feet). Shiveluch is also one of the peninsula's most active volcanoes, with an estimated 60 substantial eruptions in the past 10,000 years.
Orographic Flow over an Active Volcano
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian
2014-05-01
Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.
2002-02-01
This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue. http://photojournal.jpl.nasa.gov/catalog/PIA03462
Waitt, Richard B.; Edwards, B.R.; Fountain, Andrew G.; Huggel, C.; Carey, Mark; Clague, John J.; Kääb, Andreas
2015-01-01
An icy volcano even if called extinct or dormant may be active at depth. Magma creeps up, crystallizes, releases gas. After decades or millennia the pressure from magmatic gas exceeds the resistance of overlying rock and the volcano erupts. Repeated eruptions build a cone that pokes one or two kilometers or more above its surroundings - a point of cool climate supporting glaciers. Ice-clad volcanic peaks ring the northern Pacific and reach south to Chile, New Zealand, and Antarctica. Others punctuate Iceland and Africa (Fig 4.1). To climb is irresistible - if only “because it’s there” in George Mallory’s words. Among the intrepid ascents of icy volcanoes we count Alexander von Humboldt’s attempt on 6270-meter Chimborazo in 1802 and Edward Whymper’s success there 78 years later. By then Cotopaxi steamed to the north.
The Absence of Remotely Triggered Seismicity in Japan from 1997 to 2002
NASA Astrophysics Data System (ADS)
Wakefield, R. H.; Brodsky, E. E.
2003-12-01
Observations of increased seismicity following the Landers, Hector Mine, Izmit, and the Denali, earthquakes suggests remote seismic triggering occurs in geothermal locations as far as 3150 km. This study attempts to determine if the same effects occur in Japan, a geothermal region of high seismicity. For the period of 1997 to 2002, we searched for significant increases in the seismicity levels following earthquakes with Mw >= 6.5 at distances larger than conventionally associated with aftershocks. Additionally, we examined available waveform data in order to detect uncataloged events hidden by the coda of the mainshock. Five events had associated waveform data: March 24, 2001 Geiyo, Mw = 6.8; March 28, 2000 Volcano Islands, Mw = 7.6; July 30, 2000 Honshu, Mw = 6.5; October 6, 2000 Tottori, Mw = 6.7; and the January 28, 1999 Kuril Islands, Mw = 6.8 earthquake. Located 260 km from the Geiyo epicenter, station TKO recorded one possible triggered event within 65 km during the hour following the mainshock. However, the TKO data contains many anomalous spikes, and we are not confident the record is clear enough to differentiate small local events from noise. An ambiguous, two-day, regional seismicity increase followed the Volcano Islands event. We interpret the swarm associated with the signal as coincidental because no similar swarms occurred at the same location following Tottori or Geiyo, both of which had an order of magnitude larger shaking. Both waveforms and cataloged events indicate no triggering occurred following the Honshu, Tottori and Kuril Islands mainshocks. We do not interpret the one indefinite local event recorded by TKO as evidence for mid range dynamic triggering, implying that the 2.5 cm/s shaking at TKO did not exceed the local triggering threshold. Additionally, the lack of triggering following Honshu, Tottori, and Kuril Islands suggests that the 1, 2.5 and 2.6 cm/s shaking at distances of 182, 238, and 267 km, respectively, creates lower bounds for
Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano
NASA Astrophysics Data System (ADS)
Le Corvec, Nicolas; McGovern, Patrick
2015-04-01
Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of Galgana et al. (2011) and McGovern and Solomon (1993), respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic
Perspective View of Shaded Relief with Color as Height, Miyake-Jima, Japan
2000-08-10
This 3D perspective view shows the Japanese island called Miyake-Jima viewed from the northeast. This island - about 180 kilometers south of Tokyo - is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu.
New Perspectives on the Climatic Impact of the 1600 Eruption of Huaynaputina Volcano, Peru
NASA Astrophysics Data System (ADS)
Verosub, K. L.; Lippman, J.
2007-05-01
A critical test of the new understanding of volcanic aerosols developed since 1982 is to determine if it can predict the effects of larger eruptions than those that have occurred since El Chichon. To do that, requires detailed information about the effects of specific large eruptions. We have been investigating the human and climatic impacts of the 1600 eruption of Huaynaputina volcano in Peru. The estimated Volcanic Explosivity Index for this eruption is 6, which is comparable to that of the 1815 eruption of Tambora volcano in Indonesia, which produced global cooling and led to crop failures, famine and social unrest. On the basis of tree-ring data, Briffa et al. (1998) suggested that the most severe short-term Northern Hemisphere cooling event of the past 600 years occurred in 1601, the year following the Huaynaputina eruption. In order gain a better understanding of the nature and extent of this cooling, we have been collecting annual time series that provide information about climatic conditions during time intervals that bracket the Huaynaputina eruption. Among the time series that we have examined (or plan to examine) are ice conditions in the harbors of Tallinn, Estonia, and Riga, Latvia and in Lake Suwa in Japan: cherry blossom blooming (sakura) dates from Kyoto, Japan; records of agricultural production from China and Russia; tithe records from the Spanish colonial empire; dates of the beginning of the wine harvest in France and the rye harvest in Sweden; prices of agricultural commodities in Europe; and river flows from the Nile and the Colorado. Often, in the records we have examined, 1601 shows up as one of the coldest years, if not the coldest year. In addition, the worst famines in Russian history took place between 1601 and 1603, which eventually led to the overthrow of Tsar Boris Gudonov. Thus, there is considerable evidence that the climatic impacts of the Huaynaputina eruption were comparable to those from the Tambora eruption. This result is
Space Radar Image of Colombian Volcano
1999-01-27
This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by NASA Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar SIR-C/X-SAR. The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations of Colombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. http://photojournal.jpl.nasa.gov/catalog/PIA01722
Volcanoes: Coming Up from Under.
ERIC Educational Resources Information Center
Science and Children, 1980
1980-01-01
Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)
San Cristobal Volcano, Nicaragua
NASA Technical Reports Server (NTRS)
1990-01-01
A white plume of smoke, from San Cristobal Volcano (13.0N, 87.5W) on the western coast of Nicaragua, blows westward along the Nicaraguan coast just south of the Gulf of Fonseca and the Honduran border. San Csistobal is a strato volcano some 1,745 meters high and is frequently active.
Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.
ERIC Educational Resources Information Center
Schimmrich, Steven Henry; Gore, Pamela J. W.
1996-01-01
Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…
Iceland: Eyjafjallajökull Volcano
Atmospheric Science Data Center
2013-04-17
article title: Eyjafjallajökull Volcano Plume Heights View ... and stereo plume Iceland's Eyjafjallajökull volcano produced its second major ash plume of 2010 beginning on May 7. Unlike ...
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS
1991-05-06
STS039-151-179 (28 April-6 May 1991) --- A large format frame of one of the USSR's volcanic complex (Kamchatka area) with the active volcano Klyuchevskaya (Kloo-chevs'-ska-ya), 15,584 feet in elevation. The last reported eruption of the volcano was on April 8, but an ash and steam plume extending to the south was observed by the STS-39 crew almost three weeks later. The south side of the volcano is dirty from the ash fall and landslide activity. The summit is clearly visible, as is the debris flow from an earlier eruption. Just north of the Kamchatka River is Shiveluch, a volcano which was active in early April. There are more than 100 volcanic edifices recognized on Kamchatka, with 15 classified as active.
NASA Astrophysics Data System (ADS)
Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.
2016-12-01
The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are
NASA Astrophysics Data System (ADS)
Houlié, N.; Nercessian, A.; Briole, P.; Murakami, M.
2003-12-01
Using the GAMIT software we processed seventy days of GPS data (30s sampling rate) collected by the GSI at four sites on Miyake Jima volcanic island (Japan) between June 27, 2000 and September 5, 2000. This period includes a large seismic swarm (June 27, 2000 - July 8, 2000) followed by several major paroxysms at the volcano crater (July 9, 10, 14, 15, August 29) producing a 1 km wide caldera. The medium term velocity of the stations coordinates, already published elsewhere, is maximum during the seismic swarm and corresponds to a large dyke intrusion mostly offshore west of the volcano. No anomalies are observed in the time series of the daily GPS coordinates for the days of the paroxysms. An epoch by epoch processing of those days, using a kinematic software shows that there is no deformation during the paroxysms themselves. We then examined epoch by epoch the path delay residuals of the GPS phases at each GPS station during the events. Those delays exceed 200 mm in some cases. As they cannot be explained by a temporal change of the stations coordinates, we conclude that the cause of these delays is the presence of the hot volcanic plume not modeled by the GPS data processing which assumes a homogenous troposphere. We used a classical seismic tomography algorithm (modified to handle 3D + time) to map the path delay anomaly in the plume as a function of time. We interpret the anomalous delays as temperature anomalies in the plume, assuming a normal pressure and a plume saturated in humidity. The maximum average temperature anomaly is 20° , a low value compared to what is currently proposed in the literature. Higher temperature should exist in the inner part of the plume, but the horizontal extension of this hot zone cannot be more than 50-100 m, otherwise the GPS data would detect it.
Volcano-Monitoring Instrumentation in the United States, 2008
Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.
2010-01-01
The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing
Lahar-hazard zonation for San Miguel volcano, El Salvador
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.
2001-01-01
San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content
NASA Astrophysics Data System (ADS)
Lopes, Rosaly
2005-02-01
This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.
Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors
NASA Astrophysics Data System (ADS)
Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.
2014-12-01
The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351
NASA Astrophysics Data System (ADS)
Fujiwara, Yoshiaki; Yamasato, Hitoshi; Shimbori, Toshiki; Sakai, Takayuki
2014-12-01
Since the caldera-forming eruption of Miyakejima Volcano in 2000, low-frequency (LF) earthquakes have occurred frequently beneath the caldera. Some of these LF earthquakes are accompanied by emergent infrasonic pulses that start with dilatational phases and may be accompanied by the eruption of small amounts of ash. The estimated source locations of both the LF earthquakes and the infrasonic signals are within the vent at shallow depth. Moreover, the maximum seismic amplitude roughly correlates with the maximum amplitude of the infrasonic pulses. From these observations, we hypothesized that the infrasonic waves were excited by partial subsidence within the vent associated with the LF earthquakes. To verify our hypothesis, we used the infrasonic data to estimate the volumetric change due to the partial subsidence associated with each LF earthquake. The results showed that partial subsidence in the vent can well explain the generation of infrasonic waves.
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS
NASA Technical Reports Server (NTRS)
1991-01-01
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS (56.0N, 160.5E) is one of several active volcanoes in the CIS and is 15,584 ft. in elevation. Fresh ash fall on the south side of the caldera can be seen as a dirty smudge on the fresh snowfall. Just to the north of the Kamchatka River is Shiveluch, a volcano which had been active a short time previously. There are more than 100 volcanic edifices recognized on Kamchatka, 15 of which are still active.
Automatic readout for nuclear emulsions in muon radiography of volcanoes
NASA Astrophysics Data System (ADS)
Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.
2012-04-01
Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has
Preliminary Volcano-Hazard Assessment for Redoubt Volcano, Alaska
Waythomas, Christopher F.; Dorava, Joseph M.; Miller, Thomas P.; Neal, Christina A.; McGimsey, Robert G.
1997-01-01
Redoubt Volcano is a stratovolcano located within a few hundred kilometers of more than half of the population of Alaska. This volcano has erupted explosively at least six times since historical observations began in 1778. The most recent eruption occurred in 1989-90 and similar eruptions can be expected in the future. The early part of the 1989-90 eruption was characterized by explosive emission of substantial volumes of volcanic ash to altitudes greater than 12 kilometers above sea level and widespread flooding of the Drift River valley. Later, the eruption became less violent, as developing lava domes collapsed, forming short-lived pyroclastic flows associated with low-level ash emission. Clouds of volcanic ash had significant effects on air travel as they drifted across Alaska, over Canada, and over parts of the conterminous United States causing damage to jet aircraft. Economic hardships were encountered by the people of south-central Alaska as a result of ash fallout. Based on new information gained from studies of the 1989-90 eruption, an updated assessment of the principal volcanic hazards is now possible. Volcanic hazards from a future eruption of Redoubt Volcano require public awareness and planning so that risks to life and property are reduced as much as possible.
NASA Astrophysics Data System (ADS)
Saito, Hitoshi; Uchiyama, Shoichiro; Hayakawa, Yuichi S.; Obanawa, Hiroyuki
2018-12-01
Unmanned aerial systems (UASs) and structure-from-motion multi-view stereo (SfM-MVS) photogrammetry have attracted a tremendous amount of interest for use in the creation of high-definition topographic data for geoscientific studies. By using these techniques, this study examined the topographic characteristics of coseismic landslides triggered by the 2016 Kumamoto earthquake (Mw 7.1) in the Sensuikyo area (1.0 km2) at Aso volcano, Japan. The study area has frequently experienced rainfall-induced landslide events, such as those in 1990, 2001, and 2012. We obtained orthorectified images and digital surface models (DSMs) with a spatial resolution of 0.06 m before and after the 2016 Kumamoto earthquake. By using these high-definition images and DSMs, we detected a total of 54 coseismic landslides with volumes of 9.1-3994.6 m3. These landslides, many of which initiated near topographic ridges, were typically located on upside hillslopes of previous rainfall-induced landslide scars that formed in 2012. This result suggests that the topographic effect on seismic waves, i.e., amplification of ground acceleration, was important for coseismic landslide initiation in the study area. The average depth of the coseismic landslides was 1.5 m, which is deeper than the depth of the rainfall-induced landslides prior to these. The total sediment production of the coseismic landslides reached 2.5 × 104 m3/km2, which is of the same order as the sediment production triggered by the previous single heavy rainfall event. This result indicates that the effects of the 2016 Kumamoto earthquake in terms of sediment production and topographic changes were similar to those of the rainfall-induced landslide event in the study area.
NASA Astrophysics Data System (ADS)
Yamashita, M.; Takahashi, N.; Kodaira, S.; No, T.; Takizawa, K.; Miura, S.; Kaiho, Y.; Sato, T.; Kaneda, Y.
2007-12-01
Detailed crustal structure information of a back-arc basin must be obtained to elucidate the mechanism of its opening. Especially, the Shikoku Basin, which occupies the northern part of the Philippine Sea Plate between the Kyushu-Palau Ridge and the Izu-Ogasawara Arc, is an important area to elucidate the evolution of the back-arc basins as a part of the growth process of the Philippine Sea. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 12,000 cu.in. air gun and streamer with 204 ch hydrophones in the Izu-Ogasawara region since 2004. The total length of survey lines is more than 10,000 km until 2006. We investigate the crustal structure beneath the Shikoku Basin along 10 survey lines, which are across to the strike of the en-echelon seamount chains in the rear arc. From the seismic profiles, some faults and intrusion structures are obtained in the Shikoku Basin. The deformation structure with acoustic basement is widely distributed between the Shikoku Basin and the Izu-Ogasawara arc. Some intrusions structure is identified in the Shikoku Basin are exposed on seafloor. The intrusions structure is assumed to locate in the extended region of the en-echelon arrangement. The strike-slip faults with flower structure cutting whole sediments are located in the arc-backarc transition zone in the northern Shikoku Basin, suggesting that this region is in share stress. On the other hand, these structures indicating the deformation and intrusions are not recognized in the eastern side of the Kyushu-Palau Ridge. The Izu-Ogasawara arc is colliding to the Japan Island arc in the Sagami Bay. In the Nankai Trough, the Philippine Sea plate is subducting to the Japan Island arc. Therefore, the strike-slip and reverse fault would be developed by the compression stress in the eastern side of Philippine Sea plate. If the en-echelon arrangement is developed along these faults, the intrusions structure obtained by
P and S wave attenuation tomography of the Japan subduction zone
NASA Astrophysics Data System (ADS)
Wang, Zewei; Zhao, Dapeng; Liu, Xin; Chen, Chuanxu; Li, Xibing
2017-04-01
We determine the first high-resolution P and S wave attenuation (Q) tomography beneath the entire Japan Islands using a large number of high-quality t∗ data collected from P and S wave velocity spectra of 4222 local shallow and intermediate-depth earthquakes. The suboceanic earthquakes used in this study are relocated precisely using sP depth phases. Significant landward dipping high-Q zones are revealed clearly, which reflect the subducting Pacific slab beneath Hokkaido and Tohoku, and the subducting Philippine Sea (PHS) slab beneath SW Japan. Prominent low-Q zones are visible in the crust and mantle wedge beneath the active arc volcanoes in Hokkaido, Tohoku, and Kyushu, which reflect source zones of arc magmatism caused by fluids from the slab dehydration and corner flow in the mantle wedge. Our results also show that nonvolcanic low-frequency earthquakes (LFEs) in SW Japan mainly occur in the transition zone between a narrow low-Q belt and its adjacent high-Q zones right above the flat segment of the PHS slab. This feature suggests that the nonvolcanic LFEs are caused by not only fluid-affected slab interface but also specific conditions such as high pore pressure which is influenced by the overriding plate.
Seismicity pattern: an indicator of source region of volcanism at convergent plate margins
NASA Astrophysics Data System (ADS)
Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří
2004-04-01
The results of detailed investigation into the geometry of distribution of earthquakes around and below the volcanoes Korovin, Cleveland, Makushin, Yake-Dake, Oshima, Lewotobi, Fuego, Sangay, Nisyros and Montagne Pelée at convergent plate margins are presented. The ISC hypocentral determinations for the period 1964-1999, based on data of global seismic network and relocated by Engdahl, van der Hilst and Buland, have been used. The aim of this study has been to contribute to the solution of the problem of location of source regions of primary magma for calc-alkaline volcanoes spatially and genetically related to the process of subduction. Several specific features of seismicity pattern were revealed in this context. (i) A clear occurrence of the intermediate-depth aseismic gap (IDAG) in the Wadati-Benioff zone (WBZ) below all investigated active volcanoes. We interpret this part of the subducted slab, which does not contain any teleseismically recorded earthquake with magnitude greater than 4.0, as a partially melted domain of oceanic lithosphere and as a possible source of primary magma for calc-alkaline volcanoes. (ii) A set of earthquakes in the shape of a seismically active column (SAC) seems to exists in the continental wedge below volcanoes Korovin, Makushin and Sangay. The seismically active columns probably reach from the Earth surface down to the aseismic gap in the Wadati-Benioff zone. This points to the possibility that the upper mantle overlying the subducted slab does not contain large melted domains, displays an intense fracturing and is not likely to represent the site of magma generation. (iii) In the continental wedge below the volcanoes Cleveland, Fuego, Nisyros, Yake-Dake, Oshima and Lewotobi, shallow seismicity occurs down to the depth of 50 km. The domain without any earthquakes between the shallow seismically active column and the aseismic gap in the Wadati-Benioff zone in the depth range of 50-100 km does not exclude the melting of the mantle
The chronology of the martian volcanoes
NASA Technical Reports Server (NTRS)
Plescia, J. B.; Saunders, R. S.
1979-01-01
The volcanoes of Mars have been divided into three groups based on morphology: basaltic shields, domes and composite cones, and highland patera. A fourth group can be added to include the volcano-tectonic depressions. Using crater counts and the absolute chronology of Soderblom, an attempt is made to estimate the history of the volcanoes. Early in the martian history, about 2.5 b.y. ago, all three styles of volcanoes were active at various locations on the surface. At approximately 1.7-1.8 b.y. ago a transition occurred in the style and loci of volcanic construction. Volcanoes of younger age appear to be only of the basaltic shield group and are restricted to the Tharsis region. This same transition was noted by a change in the style of the basaltic shield group. Older shields were small low features, while the younger shields are significantly broader and taller.
Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)
NASA Technical Reports Server (NTRS)
2006-01-01
Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerousThematic mapper studies of Andean volcanoes
NASA Technical Reports Server (NTRS)
Francis, P. W.
1986-01-01
The primary objective was to identify all the active volcanoes in the Andean region of Bolivia. Morphological features of the Tata Sabaya volcano, Bolivia, were studied with the thematic mapper. Details include marginal levees on lava and pyroclastic flows, and summit crater structure. Valley glacier moraine deposits, not easily identified on the multispectral band scanner, were also unambiguous, and provide useful marker horizons on large volcanic edifices which were built up in preglacial times but which were active subsequently. With such high resolution imagery, it is not only possible to identify potentially active volcanoes, but also to use standard photogeological interpretation to outline the history of individual volcanoes.
Iceland: Eyjafjallajökull Volcano
Atmospheric Science Data Center
2013-04-17
article title: Ash from Eyjafjallajökull Volcano, Iceland Stretches over the North Atlantic ... that occurred in late March 2010, the Eyjafjallajökull Volcano in Iceland began erupting again on April 14, 2010. The resulting ash ...
Costa Rica's Chain of laterally collapsed volcanoes.
NASA Astrophysics Data System (ADS)
Duarte, E.; Fernandez, E.
2007-05-01
From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in
Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc
NASA Astrophysics Data System (ADS)
Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.
2011-12-01
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore
Rock magnetic signature of paleoenvironmental changes in the Izu Bonin rear arc over the last 1 Ma
NASA Astrophysics Data System (ADS)
Kars, Myriam; Vautravers, Maryline; Musgrave, Robert; Kodama, Kazuto
2015-04-01
During April and May 2014, IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu-Bonin rear arc, in order to understand, among other objectives, the compositional evolution of the arc since the Miocene and track the missing half of the subduction factory. The good recovery of mostly fine grained sediments at this site enables a high resolution paleontological and rock magnetic studies. Particularly, variations in magnetic properties and mineralogy are well documented. Natural remanent magnetization and magnetic susceptibility vary with a saw-tooth pattern. Routine rock magnetic measurements performed on about 400 samples in the first 120 meters of Hole U1437B showed that pseudo single domain to multidomain magnetite is the main carrier of the remanence. The origin of magnetite is likely detrital. The magnetic susceptibility variations depend on many factors (e.g. lithology, magnetic mineralogy, and also dilution by the carbonate matrix). The magnetic susceptibility is also used as a proxy, at first order, for magnetic minerals concentration. In order to highlight changes in magnetic minerals concentration, it's necessary to correct for the carbonate dilution effect. Onboard and onshore carbonate measurements by coulometry show that the carbonate content of the samples can be up to ~60%. About 70 samples were measured onshore. After correcting the susceptibility by the carbonate content measured on the same samples, it appears that the pattern of the magnetic susceptibility before and after correction is similar. Then the magnetic susceptibility variations do not result from carbonate dilution but reflect fluctuating influx of the detrital sediment component. The delta O18 variations obtained on foraminifers (N. dutertrei) show MIS 1 to MIS 25 over the studied interval covering the last 1 Ma (see Vautravers et al., this meeting). Rock magnetic properties, concentration and grain size variations of the magnetic minerals will be compared to
Poland, Michael P.; Newman, Andrew V.
2006-01-01
The 18 papers herein report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.
Alaska volcanoes guidebook for teachers
Adleman, Jennifer N.
2011-01-01
Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at
Three active volcanoes in China and their hazards
NASA Astrophysics Data System (ADS)
Wei, H.; Sparks, R. S. J.; Liu, R.; Fan, Q.; Wang, Y.; Hong, H.; Zhang, H.; Chen, H.; Jiang, C.; Dong, J.; Zheng, Y.; Pan, Y.
2003-02-01
The active volcanoes in China are located in the Changbaishan area, Jingbo Lake, Wudalianchi, Tengchong and Yutian. Several of these volcanoes have historical records of eruption and geochronological evidence of Holocene activity. Tianchi Volcano is a well-preserved Cenozoic polygenetic central volcano, and, due to its recent history of powerful explosive eruptions of felsic magmas, with over 100,000 people living on its flanks is a high-risk volcano. Explosive eruptions at 4000 and 1000 years BP involved plinian and ignimbrite phases. The Millennium eruption (1000 years BP) involved at least 20-30 km 3 of magma and was large enough to have a global impact. There are 14 Cenozoic monogenetic scoria cones and associated lavas with high-K basalt composition in the Wudalianchi volcanic field. The Laoheishan and Huoshaoshan cones and related lavas were formed in 1720-1721 and 1776 AD. There are three Holocene volcanoes, Dayingshan, Maanshan, and Heikongshan, among the 68 Quaternary volcanoes in the Tengchong volcanic province. Three of these volcanoes are identified as active, based on geothermal activity, geophysical evidence for magma, and dating of young volcanic rocks. Future eruptions of these Chinese volcanoes pose a significant threat to hundreds of thousands of people and are likely to cause substantial economic losses.
NASA Astrophysics Data System (ADS)
Hyodo, G.; Takahashi, M.; Saito, S.; Hirose, T.
2014-12-01
The Kanto region in central Japan lies atop of three tectonic plates: the North American Plate, the Pacific Plate, and the Philippine Sea Plate. The collision and subduction of the Izu-Bonin-Mariana (IBM) arc on the Philippine Sea Plate into the Kanto region results in occurring the different type of earthquakes, including seismic slip (e.g., the Kanto earthquake) and aseismic creep (i.e., slow earthquakes around the Boso peninsula). The seismic and aseismic slip seems to generate side by side at almost same depth (probably nearly same P-T conditions). This study focus on frictional property of incoming materials to be subducted into the Kanto region, in order to examine a hypothesis that the different types of slips arise from different input materials. Thus, we have performed friction experiments on rocks that constitute the IBM forearc using a high P-T gas medium apparatus at AIST. We sampled five rocks (marl, boninite, andesite, sheared serpentinite and serpentinized dunite) recovered from the IBM forearc by Leg 125, Ocean Drilling Program (ODP Site 784, 786). The rocks were crushed and sieved into 10˜50 µm in grain size. Experiments were conducted at temperature of 300○C, confining pressure of 156 MPa, pore pressure of 60 MPa and axial displacement rates of 0.1 and 1 µm/s. For marl, andesite and boninite, a periodic stick-slip behavior appears at 1 µm/s. Rise time of the stick-slip behaviors are quite long (3.1, 9.9 and 14.2 sec, for marl, andesite and boninite, respectively). We called such events as a "slow stick-slip". Similar slow stick-slip behaviors were observed in previous studies (Noda and Shimamoto, 2010; Okazaki, 2013; Kaproth and Marone, 2013), but this is first time to recognize this characteristic slip behavior in sedimentary and igneous rocks. Although it is difficult to discuss the diverse slip behaviors observed at the Kanto region based on our limited experimental results, we will examine the conditions where the transition between
NASA Astrophysics Data System (ADS)
Ohta, T.; Mahara, Y.
2010-12-01
Young groundwater dating less than 100 years is possible to be obtained from environmental radioactivity with short half life, 3H+3He, 85Kr, or chemical material, CFC-12. The 3H+3He dating method is excellent method to estimate the residence time of shallow groundwater. The one of advantage of the method is small sample volume. The 3He in groundwater is originated by 3 sources, tritiogenic He, mantle He, radiogenic He produced in rock. Especially, as the contribution of the mantle He is greater than the radiogenic and triogenic, when 3H+3He dating apply for groundwater dating on volcanic area, we have to determine ratio of 3 sources. On the other hand, as 85Kr is only originated from atmosphere, it is excellent groundwater dating tracer on volcanic area. However, as 85Kr is ultra low concentration in groundwater, 85Kr is needed to separate from large amount of ground water about 10^5 L. Young groundwater dating by these methods has both advantages and disadvantages, but the disadvantages of the individual methods can be offset by using multiple tracers. Development of a lot of groundwater dating techniques is desired. Therefore, an application of radium isotopes which is simple origin to groundwater dating on volcanic area was tried. Ra-228 and Ra-226 are progenies of Th and U, respectively. The 228Ra/226Ra in ground waters depends on the Th/U in the relevant rocks. As the 228Ra and 226Ra in shallow groundwater on volcanic area are originated from only rock, and the collection of radium isotopes from groundwater is easier than that of 85Kr, implying that it is possible to be good tracer for volcanic area. We aim that groundwater age obtain from 228Ra/226Ra in groundwater and relevant rock on volcanic area. We determined that 228Ra/226Ra observed with river waters and the relevant rocks. The method applied for Kakitagawa around Fuji Volcano, Japan. The relevant rock of Kakitagawa is Mishima lava flow. Our method compared with 3H+3He dating. The residence time of
NASA Astrophysics Data System (ADS)
Marti, Edited By Joan; Ernst, Gerald G. J.
2005-10-01
Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards. An all-inclusive text that goes beyond the geological working of volcanoes to consider their environmental and sociological impacts Each chapter is written by one of the world's leading authorities on the subject Accessible to students and researchers from a wide variety of backgrounds
The 2014 eruptions of Pavlof Volcano, Alaska
Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.
2017-12-22
Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel
Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program
NASA Astrophysics Data System (ADS)
Kasahara, Junzo; Utada, Hisashi; Sato, Toshinori; Kinoshita, Hajimu
1998-06-01
In order to study the Earth's structure and subduction zone tectonics, seismic data from the oceanic region are extremely important. The present seismograph distribution in the oceanic region, however, provides a very poor coverage. To improve this poor seismic coverage, a cable OBS system using a retired submarine telecommunication cable is proposed. The GeO-TOC cable runs from Ninomiya, Japan, to Guam through the Izu-Bonin forearc and the Marina Trough. The total length of the cable is 2659 km. An OBS, IZU, using the GeO-TOC cable, was successfully installed at the landward slope of the Izu-Bonin Trench in January 1997. The IZU OBS is located approximately 400 km south of Tokyo. The installation method is similar to repair work on submarine cables. The IZU OBS is equipped with three accelerometers, a hydrophone, a quartz pressure gauge, and a quartz precision thermometer with a few temperature sensors to monitor overheating of the internal electronics. After installation, the voltage increase is 90 V when the current is maintained at a constant 370 mA. Data from accelerometers are digitized by 24-bit A/D converters and sent to Ninomiya at 9600 bps for each component. Hydrophone data are sent to Ninomiya as analog signals using the AM (Amplitude Modulation) method for safety reasons. Hydrophone data are digitized at the shore station. Other slow-rate data are multiplexed and sent to the shore at 9600 bps. The instrument can be controlled by a shore computer. All data will be transmitted from Ninomiya to Tokyo and combined with other existing seismic data.
Hoshino, Tatsuhiko; Toki, Tomohiro; Ijiri, Akira; Morono, Yuki; Machiyama, Hideaki; Ashi, Juichiro; Okamura, Kei; Inagaki, Fumio
2017-01-01
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth's surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria , heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 10 4 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as "deep-biosphere seeds" into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.
Hoshino, Tatsuhiko; Toki, Tomohiro; Ijiri, Akira; Morono, Yuki; Machiyama, Hideaki; Ashi, Juichiro; Okamura, Kei; Inagaki, Fumio
2017-01-01
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth’s surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as “deep-biosphere seeds” into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere. PMID:28676800
Catalogue of Icelandic Volcanoes
NASA Astrophysics Data System (ADS)
Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun
2016-04-01
The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various
Volcano warning systems: Chapter 67
Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.
2015-01-01
Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.
NASA Astrophysics Data System (ADS)
Miyabuchi, Yasuo; Iizuka, Yoshiyuki; Hara, Chihoko; Yokoo, Akihiko; Ohkura, Takahiro
2018-02-01
An explosive eruption occurred at Nakadake first crater, Aso Volcano in central Kyushu, southwestern Japan, on September 14, 2015. The sequence and causes of the eruption were reconstructed from the distribution, textures, grain-size, component and chemical characteristics of the related deposits, and video record. The eruptive deposits are divided into ballistics, pyroclastic density current and ash-fall deposits. A large number of ballistic clasts (mostly < 10 cm in diameter; maximum size 1.6 m) are scattered within about 500 m from the center of the crater. Almost half of the ballistics appear as fresh and unaltered basaltic andesite rocks interpreted to be derived from a fresh batch of magma, while the rest is weakly to highly altered clasts. A relatively thin ash derived from pyroclastic density currents covered an area of 2.3 km2 with the SE-trending main axis and two minor axes to the NE and NW. The pyroclastic density current deposit (maximum thickness < 10 cm even at the crater rim) is wholly fine grained, containing no block-sized clasts. Based on the isopach map, the mass of the pyroclastic density current deposit was estimated at ca. 5.2 × 104 tons. The ash-fall deposit is finer grained and clearly distributed to about 8 km west of the source crater. The mass of the ash-fall deposit was calculated at about 2.7 × 104 tons. Adding the mass of the pyroclastic density current deposit, the total discharged mass of the September 14, 2015 eruption was 7.9 × 104 tons. The September 14 pyroclastic density current and ash-fall deposits consist of glass shards (ca. 30%), crystals (20-30%) and lithic (40-50%) grains. Most glass shards are unaltered poorly crystallized pale brown glasses which probably resulted from quenching of juvenile magma. This suggests that the September 14, 2015 event at the Nakadake first crater was a phreatomagmatic eruption. Similar phreatomagmatic eruptions occurred at the same crater on September 6, 1979 and April 20, 1990 whose
Volcano hazards in the Three Sisters region, Oregon
Scott, William E.; Iverson, R.M.; Schilling, S.P.; Fisher, B.J.
2001-01-01
Three Sisters is one of three potentially active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. Two types of volcanoes exist in the Three Sisters region and each poses distinct hazards to people and property. South Sister, Middle Sister, and Broken Top, major composite volcanoes clustered near the center of the region, have erupted repeatedly over tens of thousands of years and may erupt explosively in the future. In contrast, mafic volcanoes, which range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater, are typically short-lived (weeks to centuries) and erupt less explosively than do composite volcanoes. Hundreds of mafic volcanoes scattered through the Three Sisters region are part of a much longer zone along the High Cascades of Oregon in which birth of new mafic volcanoes is possible. This report describes the types of hazardous events that can occur in the Three Sisters region and the accompanying volcano-hazard-zonation map outlines areas that could be at risk from such events. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the
Volcanoes Distribution in Linear Segmentation of Mariana Arc
NASA Astrophysics Data System (ADS)
Andikagumi, H.; Macpherson, C.; McCaffrey, K. J. W.
2016-12-01
A new method has been developed to describe better volcanoes distribution pattern within Mariana Arc. A previous study assumed the distribution of volcanoes in the Mariana Arc is described by a small circle distribution which reflects the melting processes in a curved subduction zone. The small circle fit to this dataset used in the study, comprised 12 -mainly subaerial- volcanoes from Smithsonian Institute Global Volcanism Program, was reassessed by us to have a root-mean-square misfit of 2.5 km. The same method applied to a more complete dataset from Baker et al. (2008), consisting 37 subaerial and submarine volcanoes, resulted in an 8.4 km misfit. However, using the Hough Transform method on the larger dataset, lower misfits of great circle segments were achieved (3.1 and 3.0 km) for two possible segments combination. The results indicate that the distribution of volcanoes in the Mariana Arc is better described by a great circle pattern, instead of small circle. Variogram and cross-variogram analysis on volcano spacing and volume shows that there is spatial correlation between volcanoes between 420 and 500 km which corresponds to the maximum segmentation lengths from Hough Transform (320 km). Further analysis of volcano spacing by the coefficient of variation (Cv), shows a tendency toward not-random distribution as the Cv values are closer to zero than one. These distributions are inferred to be associated with the development of normal faults at the back arc as their Cv values also tend towards zero. To analyse whether volcano spacing is random or not, Cv values were simulated using a Monte Carlo method with random input. Only the southernmost segment has allowed us to reject the null hypothesis that volcanoes are randomly spaced at 95% confidence level by 0.007 estimated probability. This result shows infrequent regularity in volcano spacing by chance so that controlling factor in lithospheric scale should be analysed with different approach (not from random
Mobile Response Team Saves Lives in Volcano Crises
Ewert, John W.; Miller, C. Dan; Hendley, James W.; Stauffer, Peter H.
1997-01-01
The world's only volcano crisis response team, organized and operated by the USGS, can be quickly mobilized to assess and monitor hazards at volcanoes threatening to erupt. Since 1986, the team has responded to more than a dozen volcano crises as part of the Volcano Disaster Assistance Program (VDAP), a cooperative effort with the Office of Foreign Disaster Assistance of the U.S. Agency for International Development. The work of USGS scientists with VDAP has helped save countless lives, and the valuable lessons learned are being used to reduce risks from volcano hazards in the United States.
Lahar hazards at Agua volcano, Guatemala
Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.
2001-01-01
At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.
SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile
NASA Astrophysics Data System (ADS)
Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich
2015-04-01
The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt
Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu
2004-01-01
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and ɛ-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments. PMID:14711668
Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu
2004-01-01
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.
Community Revitalization by Geotourism: Tourism Study with Geoscience in Wakayama, Japan
NASA Astrophysics Data System (ADS)
Nakakushi, T.; Hisatomi, K.; Konomatsu, M.; Furukubo, A.
2012-12-01
This paper presents our community-revitalization project in Wakayama Prefecture, Japan. Wakayama Prefecture is the southwestern part of the Kii Peninsula. The Kii Peninsula, especially its southern part, has many geoscientifically important natural heritages such as the volcano-plutonic complex including well exposed ring dyke in the Kumano region. Those geoheritages have been considered just as on-site educational tools, and not received enough attentions as contents for geotours. UNESCO defines that a Geopark is a geographical area where geological heritage sites are part of a holistic concept of protection, education and sustainable development. UNESCO also describes that it is necessary to also include and highlight sites of ecological, archaeological, historical and cultural value within each Geopark. In many societies, natural, cultural and social history are inextricably linked and cannot be separated. We plan to have the region registered as a geopark by Japan (or Global) Geopark Network. In the context of community-revitalization, a "regional brand" has drawn attention for its potential to attract tourists. A Geopark may contribute to establish a regional brand.
Wilch, T.I.; McIntosh, W.C.
2007-01-01
Ar geochronology of seven eroded monogenetic volcanoes near the Hobbs Coast, Marie Byrd Land, West Antarctica provide proxy records of WAIS paleo-ice-levels in Miocene-Pliocene times. Interpretations, based on lithofacies analysis, indicate whether the volcanoes erupted below, near, or above the level of the ice sheet. Our interpretations differ significantly from previous interpretations as they highlight the abundant evidence for ice-volcano interactions at emergent paleoenvironments but limited evidence of higher-than-present syn-eruptive ice-levels. Evidence for subglacial volcanic paleoenvironments is limited to Kennel Peak, a ~8 Ma volcano where a pillow lava sequence extending 25 m above current ice level overlies an inferred glacial till and unconformity. A major complication in the Hobbs Coast region is that the volcanism occurred on interfluves between regions of fast-flowing ice. Such a setting precludes establishing precise regional paleo-ice-levels although the presence or absence of ice at times of eruptions can be inferred.
Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea
NASA Astrophysics Data System (ADS)
Zhao, Dapeng
2017-09-01
The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related
Mud volcanoes of the Orinoco Delta, Eastern Venezuela
Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.
2001-01-01
Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.
Geologic map of Medicine Lake volcano, northern California
Donnelly-Nolan, Julie M.
2011-01-01
Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.
Santa Maria Volcano, Guatemala
NASA Technical Reports Server (NTRS)
2002-01-01
The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to
Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”
Yamaoka, Koshun; Geshi, Nobuo; Hashimoto, Tasheki; Ingebritsen, Steven E.; Oikawa, Teruki
2016-01-01
Mt. Ontake volcano erupted at 11:52 on September 27, 2014, claiming the lives of at least 58 hikers. This eruption was the worst volcanic disaster in Japan since the 1926 phreatic eruption of Mt. Tokachidake claimed 144 lives (Table 1). The timing of the eruption contributed greatly to the heavy death toll: near midday, when many hikers were near the summit, and during a weekend of clear weather conditions following several rainy weekends. The importance of this timing is reflected by the fact that a somewhat larger eruption of Mt. Ontake in 1979 resulted in injuries but no deaths. In 2014, immediate precursors were detected with seismometers and tiltmeters about 10 min before the eruption, but the eruption started before a warning was issued.
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.
Exploring the Llaima Volcano Using Receiver Functions
NASA Astrophysics Data System (ADS)
Bishop, J. W.; Biryol, C.; Lees, J. M.
2016-12-01
The Llaima volcano in Chile is one of the most active volcanos in the Southern Andes, erupting at least 50 times since 1640. To understand the eruption dynamics behind these frequent paroxysms, it is important to identify the depth and extent of the magma chamber beneath the volcano. Furthermore, it is also important to identify structural controls on the magma storage regions and volcanic plumbing system, such as fault and fracture zones. To probe these questions, a dense, 26 station broadband seismic array was deployed around the Llaima volcano for 3 months (January to March, 2015). Additionally, broadband seismic data from 7 stations in the nearby Observatorio Volcanológico de Los Andes del Sur (OVDAS) seismic network was also obtained for this period. Teleseismic receiver functions were calculated from this combined data using an iterative deconvolution technique. Receiver function stacks (both H-K and CCP) yield seismic images of the deep structure beneath the volcano. Initial results depict two low velocity layers at approximately 4km and 12km. Furthermore, Moho calculations are 5-8 km deeper than expected from regional models, but a shallow ( 40 km) region is detected beneath the volcano peak. A large high Vp/Vs ratio anomaly (Vp/Vs > 0.185) is discernable to the east of the main peak of the volcano.
Penguin Bank: A Loa-Trend Hawaiian Volcano
NASA Astrophysics Data System (ADS)
Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.
2007-12-01
Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes
Eruption of Kliuchevskoi volcano
1994-10-05
STS068-155-094 (30 September-11 October 1994) --- (Kliuchevskoi Volcano) The crewmembers used a Linhof large format Earth observation camera to photograph this nadir view of the Kamchatka peninsula's week-old volcano. The eruption and the follow-up environmental activity was photographed from 115 nautical miles above Earth. Six NASA astronauts spent a week and a half aboard the Space Shuttle Endeavour in support of the Space Radar Laboratory 2 (SRL-2) mission.
Remote sensing of volcanos and volcanic terrains
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.
1989-01-01
The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.
NASA Astrophysics Data System (ADS)
Tani, K.; Ishizuka, O.; Horie, K.; Barth, A. P.; Harigane, Y.; Ueda, H.
2016-12-01
The Izu-Bonin-Mariana Arc is widely regarded to be a typical intra-oceanic arc, with the oceanic Pacific Plate subducting beneath the Philippine Sea Plate, an evolving complex of active and inactive arcs and back-arc basins. However, little is known about the origin of the proto-Philippine Sea Plate, which existed along with the Pacific Plate at the time of subduction initiation in the Eocene. To investigate the crustal structures of the proto-Philippine Sea Plate, we conducted manned-submersible and dredge surveys in the Daito Ridges and the Kyushu-Palau Ridge. The Daito Ridges comprise the northwestern Philippine Sea Plate along with what are regarded as remnants of the proto-Philippine Sea Plate. Submersible observations and rock sampling revealed that the Daito Ridges expose deep crustal sections of gabbroic, granitic, metamorphic, and ultra-mafic rocks, along with volcanic rocks ranging from basalt to andesite. Mesozoic magmatic zircon U-Pb ages have been obtained from the plutonic rocks, and whole-rock geochemistry of the igneous rocks indicates arc origins. Furthermore, mafic schist collected from the Daito Ridge has experienced amphibolite facies metamorphism, with phase assemblages suggesting that the crust was thicker than 20 km at the time. Similar amphibolite-facies metamorphic rocks with Proterozoic zircons have been recovered in the southern Kyushu-Palau Ridge, indicating that such distinctively older basement rocks exist as isolated tectonic blocks within the present Philippine Sea Plate. These finds show that the parts of the Daito Ridges and Kyushu-Palau Ridge represent developed crustal sections of the Pre-Cenozoic arc that comprises part of the proto-Philippine Sea Plate, and, together with the tectonic reconstruction of the proto-Philippine Sea Plate (Deschamps and Lallemand 2002, JGR), they suggest that subduction of the Izu-Bonin-Mariana Arc initiated at the continental margin of the Southeast Asia.
NASA Astrophysics Data System (ADS)
Anderson, Kyle R.; Poland, Michael P.
2016-08-01
Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and
Spreading and collapse of big basaltic volcanoes
NASA Astrophysics Data System (ADS)
Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael
2016-04-01
Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These
NASA Astrophysics Data System (ADS)
Ogawa, Yujiro; Kawamura, Kiichiro; Tsunogae, Toshiaki; Mori, Ryota; Chiba, Tae; Sasaki, Tomoyuki
2010-05-01
-fluid supported animals within injection or diapiric intrusion. On the other hand, in the Nankai prism and the on land Miura-Boso Peninsulas, many examples of sandy matrix supported mudstone breccia are a result of liquefaction and injection of such coarse-grained clastic fragments during the earthquake shake and subsequent landsliding. Those deposits are faulted, folded and injected in various stages, some before accretionary prism incorporation, some after. Some are of sedimentary origin by gravitational process, others tectonic or diapiric, but in most cases thrust duplexes and complex folds are common. The third and fourth are mélanges including igneous, metamorphic and/or ophiolitic rock blocks. They look similar to the on land examples in the Franciscan, Mineoka (Boso, central Japan) and the Ankara, and used to be attributable to the diapiric origin, as those that have been already known as serpenitine mud volcanoes with metamorphic block at the foot of the Izu-Bonin-Mariana forearc. However, such analogue need careful consideration how the rock association would form to the final emplacement. As the fourth new type, we found an example of deep (1.5 to 2 GPa) metamorphic rock blocks of eclogitic conditions from the fault line in the schistose serpentinite (antigorite-dominated) in the middle part of the Izu arc near the Ohmachi seamount. This implies for the incorporation and exhumation of igneous and metamorphic rocks in the island arc setting, and may give an adequate analogue to the specific mélange formation of the Franciscan, Mineoka and Ankara.
Multiphase modelling of mud volcanoes
NASA Astrophysics Data System (ADS)
Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.
2015-04-01
Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946
Geomorphometric comparative analysis of Latin-American volcanoes
NASA Astrophysics Data System (ADS)
Camiz, Sergio; Poscolieri, Maurizio; Roverato, Matteo
2017-07-01
The geomorphometric classifications of three groups of volcanoes situated in the Andes Cordillera, Central America, and Mexico are performed and compared. Input data are eight local topographic gradients (i.e. elevation differences) obtained by processing each volcano raster ASTER-GDEM data. The pixels of each volcano DEM have been classified into 17 classes through a K-means clustering procedure following principal component analysis of the gradients. The spatial distribution of the classes, representing homogeneous terrain units, is shown on thematic colour maps, where colours are assigned according to mean slope and aspect class values. The interpretation of the geomorphometric classification of the volcanoes is based on the statistics of both gradients and morphometric parameters (slope, aspect and elevation). The latter were used for a comparison of the volcanoes, performed through classes' slope/aspect scatterplots and multidimensional methods. In this paper, we apply the mentioned methodology on 21 volcanoes, randomly chosen from Mexico to Patagonia, to show how it may contribute to detect geomorphological similarities and differences among them. As such, both its descriptive and graphical abilities may be a useful complement to future volcanological studies.
Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS
1991-05-06
STS039-77-010 (28 April 1991) --- The Kamchatka Peninsula, USSR. This oblique view of the eastern margin of the Kamchatka Peninsula shows pack-ice along the coast, which is drifting along with local currents and delineates the circulation patterns. Also visible are the Kamchatka River (left of center), and the volcanic complex with the active volcano Klyuchevskaya (Kloo-chevs'-ska-ya), 15,584 feet in elevation. The last reported eruption of the volcano was on April 8, but an ash and steam plume extending to the south can be seen in this photograph, taken almost three weeks later (April 28). On April 29, the crew observed and photographed the volcano again, and it was no longer visibly active. However, the flanks of the mountain are dirty from the ash fall. Just north of the Kamchatka River (to the left, just off frame) is Shiveluch, a volcano which was active in early April. There are more than 100 volcanic edifices recognized on Kamchatka, with 15 classified as active.
Infrared surveys of Hawaiian volcanoes
Fischer, W. A.; Moxham, R.M.; Polcyn, F.; Landis, G.H.
1964-01-01
Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain.Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities.Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected.Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.
Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano
NASA Astrophysics Data System (ADS)
Le Corvec, N.; McGovern, P. J., Jr.
2014-12-01
Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of [Galgana et al., 2011] and [McGovern and Solomon, 1993], respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic
NASA Astrophysics Data System (ADS)
Charco, María; González, Pablo J.; Galán del Sastre, Pedro
2017-04-01
The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.
Living with Volcanoes: Year Eleven Teaching Resource Unit.
ERIC Educational Resources Information Center
Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard
2000-01-01
Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)
NASA Astrophysics Data System (ADS)
Hosono, Masaki; Mitsui, Yuta; Ishibashi, Hidemi; Kataoka, Jun
2016-12-01
We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.
Effects of Volcanoes on the Natural Environment
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.
2005-01-01
The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).
Spreading And Collapse Of Big Basaltic Volcanoes
NASA Astrophysics Data System (ADS)
Puglisi, G.; Bonforte, A.; Guglielmino, F.; Peltier, A.; Poland, M. P.
2015-12-01
Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. Our work aims to investigate the relation between basement setting and volcanic activity and stability at Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These volcanoes, due to their similarities and differences, coupled with
The critical role of volcano monitoring in risk reduction
Tilling, R.I.
2008-01-01
Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks - ground-based as well space-based - has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions) are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. Helens (Washington, USA) in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines) in 1991. However, even with the ever-improving state-ofthe-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-549, 19 November 2003
The volcanic plains to the east, southeast, and south of the giant Tharsis volcano, Pavonis Mons, are dotted by dozens of small volcanoes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 2.1oS, 109.1oW. The elongate depression in the lower left (southwest) quarter of the image is the collapsed vent area for this small, unnamed volcano. A slightly sinuous, leveed channel runs from the depression toward the upper right (north-northeast); this is the trace of a collapsed lava tube. The entire scene has been mantled by dust, such that none of the original volcanic rocks are exposed--except minor occurrences on the steepest slopes in the vent area. The scene is 3 km (1.9 mi) wide and illuminated by sunlight from the left/upper left.NASA Astrophysics Data System (ADS)
Hoshi, H.; Sugisaki, Y.
2017-12-01
Central Honshu of Japan is an ideal field for the study of crustal deformation related to arc-arc collision. In this study we obtained rock magnetic and paleomagnetic results from early Miocene igneous rocks in central Honshu in order to examine rotational deformation caused by the collision of the Izu-Bonin-Mariana (IBM) arc with central Honshu. In Takane of the Hida region, gabbro intrusions and older sedimentary rocks are intruded by numerous andesitic dikes that comprise a parallel dike swarm. The dikes formed under two different normal-faulting paleostress conditions, which were suggested using a method of clustering dike orientations. Cross-cutting relationships indicate that the two paleostress conditions existed during the same period. More than 240 oriented cores were taken at 38 sites in two localities for magnetic study. The andesites and gabbros generally have magnetite, and some andesites also contain pyrrhotite. The magnetite records easterly deflected remanent magnetization directions of dual polarities that pass the reversals test. Positive baked contact tests at two sites demonstrate that the easterly deflected direction is a thermoremanent magnetization acquired at the time of intrusion. The overall in situ (i.e., in geographic coordinates) mean direction for andesitic dikes is judged to be highly reliable, although there are two possible scenarios for explaining the easterly deflection: (1) clockwise rotation and (2) tilting to the northwest. We prefer the former scenario and conclude that 45° clockwise rotation occurred in Takane with respect to the North China Block of the Asian continent. This rotation must represent the clockwise rotation of entire Southwest Japan during the opening period of the Japan Sea. Very little difference is observed between the amount of the easterly deflection in Takane and those in the Tokai and Hokuriku regions, indicating no significant relative rotation. Thus, the crust beneath Takane has not suffered rotation
Thermal structure of the Kanto region, Japan
NASA Astrophysics Data System (ADS)
Wada, Ikuko; He, Jiangheng
2017-07-01
Using a 3-D numerical thermal model, we investigate the thermal structure of the Kanto region of Japan where two oceanic plates subduct. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, bringing in hot mantle from the back-arc toward the forearc. Beneath Kanto, however, the presence of the subducting Philippine Sea plate between the overlying North American plate and the subducting Pacific plate prevents a typical mantle wedge flow pattern, resulting in a cooler condition. Further, frictional heating and the along-margin variation in the maximum depth of slab-mantle decoupling along the Pacific slab surface affect the thermal structure significantly. The model provides quantitative estimates of spatial variations in the temperature condition that are consistent with the observed surface heat flow pattern and distributions of interplate seismicity and arc volcanoes in Kanto.
Ubinas Volcano Activity in Peruvian Andes
2014-05-01
On April 28, 2014, NASA Terra spacecraft spotted signs of activity at Ubinas volcano in the Peruvian Andes. The appearance of a new lava dome in March 2014 and frequent ash emissions are signs of increasing activity at this volcano.
1987-02-01
Japan is composed of 4 main islands and more than 3900 smaller islands and has 317.7 persons/square kilometer. This makes it one of the most densely populated nations in the world. Religion is an important force in the life of the Japanese and most consider themselves Buddhists. Schooling is free through junior high but 90% of Japanese students complete high school. In fact, Japan enjoys one of the highest literacy rates in the world. There are over 178 newspapers and 3500 magazines published in Japan and the number of new book titles issued each year is greater than that in the US. Since WW1, Japan expanded its influence in Asia and its holdings in the Pacific. However, as a direct result of WW2, Japan lost all of its overseas possessions and was able to retain only its own islands. Since 1952, Japan has been ruled by conservative governments which cooperate closely with the West. Great economic growth has come since the post-treaty period. Japan as a constitutional monarchy operates within the framework of a constitution which became effective in May 1947. Executive power is vested in a cabinet which includes the prime minister and the ministers of state. Japan is one of the most politically stable of the postwar democracies and the Liberal Democratic Party is representative of Japanese moderate conservatism. The economy of Japan is strong and growing. With few resources, there is only 19% of Japanese land suitable for cultivation. Its exports earn only about 19% of the country's gross national product. More than 59 million workers comprise Japan's labor force, 40% of whom are women. Japan and the US are strongly linked trading partners and after Canada, Japan is the largest trading partner of the US. Foreign policy since 1952 has fostered close cooperation with the West and Japan is vitally interested in good relations with its neighbors. Relations with the Soviet Union are not close although Japan is attempting to improve the situation. US policy is based on
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2018-05-01
Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.
A Probabilistic Approach for Real-Time Volcano Surveillance
NASA Astrophysics Data System (ADS)
Cannavo, F.; Cannata, A.; Cassisi, C.; Di Grazia, G.; Maronno, P.; Montalto, P.; Prestifilippo, M.; Privitera, E.; Gambino, S.; Coltelli, M.
2016-12-01
Continuous evaluation of the state of potentially dangerous volcanos plays a key role for civil protection purposes. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the coupling of highly non-linear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, we present a probabilistic graphical model to estimate automatically the ongoing volcano state from all the available different kind of measurements. The model consists of a Bayesian network able to represent a set of variables and their conditional dependencies via a directed acyclic graph. The model variables are both the measurements and the possible states of the volcano through the time. The model output is an estimation of the probability distribution of the feasible volcano states. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision making purposes.
Lahar hazards at Mombacho Volcano, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.
2001-01-01
Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001
Volcano Hazards - A National Threat
,
2006-01-01
When the violent energy of a volcano is unleashed, the results are often catastrophic. The risks to life, property, and infrastructure from volcanoes are escalating as more and more people live, work, play, and travel in volcanic regions. Since 1980, 45 eruptions and 15 cases of notable volcanic unrest have occurred at 33 U.S. volcanoes. Lava flows, debris avalanches, and explosive blasts have invaded communities, swept people to their deaths, choked major riverways, destroyed bridges, and devastated huge tracts of forest. Noxious volcanic gas emissions have caused widespread lung problems. Airborne ash clouds have disrupted the health, lives, and businesses of hundreds of thousands of people; caused millions of dollars of aircraft damage; and nearly brought down passenger flights.
Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.
1999-01-01
Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.
Anderson, Kyle R.; Poland, Michael
2016-01-01
Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between
1989-02-01
Japan consists of 3900 islands and lies off the east coast of Asia. Even though Japan is one of the most densely populated nations in the world, its growth rate has stabilized at .5%. 94% of all children go to senior high school and almost 90% finish. Responsibility for the sick, aged, and infirmed is changing from the family and private sector to government. Japan was founded in 600 BC and its 1st capital was in Nara (710-1867). The Portuguese, the 1st Westerners to make contact with Japan in 1542, opened trade which lasted until the mid 17th century. US Navy Commodore Matthew Perry forced Japan to reopen in 1854. Following wars with China and Russia in the late 1800s and early 1900s respectively, Japan took part in World Wars I and II. In between these wars Japan invaded Manchuria and China. The US dropped an atomic bomb on Hiroshima and Nagasaki and the Japanese surrendered in September, 1945 ending World War II (WWII). Following, WWII, the Allied Powers guided Japan's establishment as a nonthreatening nation and a democratic parliamentary government (a constitutional monarchy) with a limited defense force. Japan remains one of the most politically stable of all postwar democracies. The Liberal Democratic Party's Noboru Takeshita became prime minister in 1987. Japan has limited natural resources and only 19% of the land is arable. Japanese ingenuity and skill combine to produce one of the highest per hectare crop yields in the world. Japan is a major economic power, and its and the US economies are becoming more interdependent. Its exports, making up only 13% of the gross national product, mainly go to Canada and the US. Many in the US are concerned, however, with the trade deficit with Japan and are seeking ways to make trade more equitable. Japan wishes to maintain good relations with its Asian neighbors and other nations. The US and Japan enjoy a strong, productive relationship.
Eruption history of the Tharsis shield volcanoes, Mars
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1993-01-01
The Tharsis Montes volcanoes and Olympus Mons are giant shield volcanoes. Although estimates of their average surface age have been made using crater counts, the length of time required to build the shields has not been considered. Crater counts for the volcanoes indicate the constructs are young; average ages are Amazonian to Hesperian. In relative terms; Arsia Mons is the oldest, Pavonis Mons intermediate, and Ascreaus Mons the youngest of the Tharsis Montes shield; Olympus Mons is the youngest of the group. Depending upon the calibration, absolute ages range from 730 Ma to 3100 Ma for Arsia Mons and 25 Ma to 100 Ma for Olympus Mons. These absolute chronologies are highly model dependent, and indicate only the time surficial volcanism ceased, not the time over which the volcano was built. The problem of estimating the time necessary to build the volcanoes can be attacked in two ways. First, eruption rates from terrestrial and extraterrestrial examples can be used to calculate the required period of time to build the shields. Second, some relation of eruptive activity between the volcanoes can be assumed, such as they all began at a speficic time or they were active sequentially, and calculate the eruptive rate. Volumes of the shield volcanoes were derived from topographic/volume data.
How Do Volcanoes Affect Human Life? Integrated Unit.
ERIC Educational Resources Information Center
Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle
This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…
The Powell Volcano Remote Sensing Working Group Overview
NASA Astrophysics Data System (ADS)
Reath, K.; Pritchard, M. E.; Poland, M. P.; Wessels, R. L.; Biggs, J.; Carn, S. A.; Griswold, J. P.; Ogburn, S. E.; Wright, R.; Lundgren, P.; Andrews, B. J.; Wauthier, C.; Lopez, T.; Vaughan, R. G.; Rumpf, M. E.; Webley, P. W.; Loughlin, S.; Meyer, F. J.; Pavolonis, M. J.
2017-12-01
Hazards from volcanic eruptions pose risks to the lives and livelihood of local populations, with potential global impacts to businesses, agriculture, and air travel. The 2015 Global Assessment of Risk report notes that 800 million people are estimated to live within 100 km of 1400 subaerial volcanoes identified as having eruption potential. However, only 55% of these volcanoes have any type of ground-based monitoring. The only methods currently available to monitor these unmonitored volcanoes are space-based systems that provide a global view. However, with the explosion of data techniques and sensors currently available, taking full advantage of these resources can be challenging. The USGS Powell Center Volcano Remote Sensing Working Group is working with many partners to optimize satellite resources for global detection of volcanic unrest and assessment of potential eruption hazards. In this presentation we will describe our efforts to: 1) work with space agencies to target acquisitions from the international constellation of satellites to collect the right types of data at volcanoes with forecasting potential; 2) collaborate with the scientific community to develop databases of remotely acquired observations of volcanic thermal, degassing, and deformation signals to facilitate change detection and assess how these changes are (or are not) related to eruption; and 3) improve usage of satellite observations by end users at volcano observatories that report to their respective governments. Currently, the group has developed time series plots for 48 Latin American volcanoes that incorporate variations in thermal, degassing, and deformation readings over time. These are compared against eruption timing and ground-based data provided by the Smithsonian Institute Global Volcanism Program. Distinct patterns in unrest and eruption are observed at different volcanoes, illustrating the difficulty in developing generalizations, but highlighting the power of remote sensing
Geoflicks Reviewed--Films about Hawaiian Volcanoes.
ERIC Educational Resources Information Center
Bykerk-Kauffman, Ann
1994-01-01
Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)
Crustal Seismic Vs and Vs anisotropy of Northeast Japan Revealed by Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Chen, K. X.; Gung, Y.; Kuo, B. Y.; Huang, T. Y.
2017-12-01
We present 3D crustal models of Vs and Vs azimuthal anisotropy of the Tohoku region, Japan. We employ the Welch's method to derive the empirical Green's functions (EGF) of Rayleigh waves from one year of continuous records of 123 short-period stations of the dense high-sensitivity seismograph network (Hi-net). We compute EGFs for about 4000 station pairs with interstation distance less than 300 km. For each qualified EGF, we measure the dispersion in the period range from 3 to 16 seconds. We then construct the models by using a wavelet-based multi-scale inversion technique. In the resulting models, characteristics of Vs variations and Vs azimuthal anisotropy are closely related to surface geology, Quaternary volcano activities, and plate motions. For the Vs variations in the shallow crust (< 12km), the prominent high velocity anomalies are observed in the eastern part of the volcano belt, and they can be attributed to the old (Palaeozoic to Mesozoic) sedimentary and plutonic rocks located in the northeastern and the southeastern Tohoku, respectively. In the middle crust, the distribution of the low velocity anomalies is well correlated to the volcano belt. For the Vs anisotropy, the strength and the patterns of fast polarization directions (FPD) are depth-dependent. In the shallow crust, the anisotropy is strong, and are dominated by the typical orogeny parallel anisotropy, with FPDs parallel to the main strikes of the mountain range. While in the lower crust, the FPDs are generally parallel to the absolute plate motion. Interestingly, the distribution of PFDs is rather chaotic and strength of anisotropy is weak in the middle crust ( 8 - 20 km). We propose that the weak and random anisotropy in this layer is likely related to the presence of magma reservoirs beneath the volcano belt, as the associated active volcanism may cause the destruction of the alignment of crustal fabrics Key words: Tohoku, ambient noise, seismic anisotropy, surface wave tomography, volcano
Volcano hazards in the San Salvador region, El Salvador
Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.
2001-01-01
San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local
Small-scale volcanoes on Mars: distribution and types
NASA Astrophysics Data System (ADS)
Broz, Petr; Hauber, Ernst
2015-04-01
Volcanoes differ in sizes, as does the amount of magma which ascends to a planetary surface. On Earth, the size of volcanoes is anti-correlated with their frequency, i.e. small volcanoes are much more numerous than large ones. The most common terrestrial volcanoes are scoria cones (
NASA Astrophysics Data System (ADS)
Eichelberger, J. C.; Gordeev, E.; Ivanov, B.; Izbekov, P.; Kasahara, M.; Melnikov, D.; Selyangin, O.; Vesna, Y.
2003-12-01
The Kamchatka State University of Education, University of Alaska Fairbanks, and Hokkaido University are developing an international field school focused on explosive volcanism of the North Pacific. An experimental first session was held on Mutnovsky and Gorely Volcanoes in Kamchatka during August 2003. Objectives of the school are to:(1) Acquaint students with the chemical and physical processes of explosive volcanism, through first-hand experience with some of the most spectacular volcanic features on Earth; (2) Expose students to different concepts and approaches to volcanology; (3) Expand students' ability to function in a harsh environment and to bridge barriers in language and culture; (4) Build long-lasting collaborations in research among students and in teaching and research among faculty in the North Pacific region. Both undergraduate and graduate students from Russia, the United States, and Japan participated. The school was based at a mountain hut situated between Gorely and Mutnovsky Volcanoes and accessible by all-terrain truck. Day trips were conducted to summit craters of both volcanoes, flank lava flows, fumarole fields, ignimbrite exposures, and a geothermal area and power plant. During the evenings and on days of bad weather, the school faculty conducted lectures on various topics of volcanology in either Russian or English, with translation. Although subjects were taught at the undergraduate level, lectures led to further discussion with more advanced students. Graduate students participated by describing their research activities to the undergraduates. A final session at a geophysical field station permitted demonstration of instrumentation and presentations requiring sophisticated graphics in more comfortable surroundings. Plans are underway to make this school an annual offering for academic credit in the Valley of Ten Thousand Smokes, Alaska and in Kamchatka. The course will be targeted at undergraduates with a strong interest in and
Lahar Hazards at Concepción volcano, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.; Howell, M.M.
2001-01-01
Concepción is one of Nicaragua’s highest and most active volcanoes. The symmetrical cone occupies the northeastern half of a dumbbell shaped island called Isla Ometepa. The dormant volcano, Maderas, occupies the southwest half of the island. A narrow isthmus connects Concepción and Maderas volcanoes. Concepción volcano towers more than 1600 m above Lake Nicaragua and is within 5 to 10 km of several small towns situated on its aprons at or near the shoreline. These towns have a combined population of nearly 5,000. The volcano has frequently produced debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. Concepción volcano has erupted more than 25 times in the last 120 years. Its first recorded activity was in AD 1883. Eruptions in the past century, most of which have originated from a small summit crater, comprise moderate explosions, ash that falls out of eruption plumes (called tephra), and occasional lava flows. Near the summit area, there are accumulations of rock that were emplaced hot (pyroclastic deposits), most of which were hot enough to stick together during deposition (a process called welding). These pyroclastic rocks are rather weak, and tend to break apart easily. The loose volcanic rock remobilizes during heavy rain to form lahars. Volcanic explosions have produced blankets of tephra that are distributed downwind, which on Isla Ometepe is mostly to the west. Older deposits at the west end of the island that are up to 1 m thick indicate larger explosive events have happened at Concepción volcano in prehistoric time. Like pyroclastic-flow deposits, loose tephra on the steep slopes of the volcano provides source material that heavy rainstorms and earthquakes can mobilize to trigger debris flow.
Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano
NASA Astrophysics Data System (ADS)
Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.
2016-09-01
he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.
Atmospheric Science Data Center
2013-04-16
... southeast. The darker areas of the plume typically indicate volcanic ash, while the white portions of the plume indicate entrained water droplets and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano ...
Interdisciplinary studies of eruption at Chaiten Volcano, Chile
John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli
2010-01-01
There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...
Moore, R.B.; Trusdell, F.A.
1993-01-01
This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.
Chemical characteristics of hadal waters in the Izu-Ogasawara Trench of the western Pacific Ocean.
Gamo, Toshitaka; Shitashima, Kiminori
2018-01-01
Vertical profiles of potential temperature, salinity, and some chemical components were obtained at a trench station (29°05'N, 142°51'E; depth = 9768 m) in the Izu-Ogasawara (Bonin) Trench in 1984 and 1994 to characterize the hadal waters below ∼6000 m depth. We compared portions of both the 1984 and 1994 profiles with nearby data obtained between 1976 and 2013. Results demonstrated that the hadal waters had slightly higher potential temperature and nitrate and lower dissolved oxygen than waters at sill depths (∼6000 m) outside the trench, probably due to the effective accumulation of geothermal heat and active biological processes inside the trench. The silicate, iron, and manganese profiles in 1984 showed slight but significant increases below ∼6000 m depth, suggesting that these components may have been intermittently supplied from the trench bottom. Significant amounts of 222 Rn in excess over 226 Ra were detected in the hadal waters up to 2675 m from the bottom, reflecting laterally supplied 222 Rn from the trench walls.
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Bevens, D.
2015-12-01
The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.
Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes
Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.
2014-01-01
Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.
NASA Astrophysics Data System (ADS)
Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.
2017-12-01
Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.
Acoustic scattering from mud volcanoes and carbonate mounds.
Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe
2006-12-01
Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.
Ionospheric "Volcanology": Ionospheric Detection of Volcano Eruptions
NASA Astrophysics Data System (ADS)
Astafyeva, E.; Shults, K.; Lognonne, P. H.; Rakoto, V.
2016-12-01
It is known that volcano eruptions and explosions can generate acoustic and gravity waves. These neutral waves further propagate into the atmosphere and ionosphere, where they are detectable by atmospheric and ionospheric sounding tools. So far, the features of co-volcanic ionospheric perturbations are not well understood yet. The development of the global and regional networks of ground-based GPS/GNSS receivers has opened a new era in the ionospheric detection of natural hazard events, including volcano eruptions. It is now known that eruptions with the volcanic explosivity index (VEI) of more than 2 can be detected in the ionosphere, especially in regions with dense GPS/GNSS-receiver coverage. The co-volcanic ionospheric disturbances are usually characterized as quasi-periodic oscillations. The Calbuco volcano, located in southern Chile, awoke in April 2015 after 43 years of inactivity. The first eruption began at 21:04UT on 22 April 2015, preceded by only an hour-long period of volcano-tectonic activity. This first eruption lasted 90 minutes and generated a sub-Plinian (i.e. medium to large explosive event), gray ash plume that rose 15 km above the main crater. A larger second event on 23 April began at 04:00UT (01:00LT), it lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km. The VEI was estimated to be 4 to 5 for these two events. In this work, we first study ionospheric TEC response to the Calbuco volcano eruptions of April 2015 by using ground-based GNSS-receivers located around the volcano. We analyze the spectral characteristics of the observed TEC variations and we estimate the propagation speed of the co-volcanic ionospheric perturbations. We further proceed with the normal mode summation technique based modeling of the ionospheric TEC variations due to the Calbuco volcano eruptions. Finally, we attempt to localize the position of the volcano from the ionospheric measurements, and we also estimate the time of the
NASA Satellite Images Erupting Russian Volcano
2017-08-22
Klyuchevskoi, one of the world's most active volcanoes, is seen poking through above a solid cloud deck, with an ash plume streaming to the west. Located on the Kamchatka Peninsula in far eastern Russia, it is one of many active volcanoes on the Peninsula. Nearby, to the south, the smaller Bezymianny volcano can be seem with a small steam plume coming from its summit. The image was acquired Aug. 20, 2017, covers an area of 12 by 14 miles (19.5 by 22.7 kilometers), and is located at 56.1 degrees north, 160.6 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA21878
Studies of volcanoes of Alaska by satellite radar interferometry
Lu, Z.; Wicks, C.; Dzurisin, D.; Thatcher, W.; Power, J.; ,
2000-01-01
Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite
NASA Astrophysics Data System (ADS)
Lallemand, Serge
2016-12-01
We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite
Kumagai, H.; Chouet, B.A.
1999-01-01
Long-period (LP) events have been widely observed in relation to magmatic and hydrothermal activities in volcanic areas. LP waveforms characterized by their harmonic signature have been interpreted as oscillations of a fluid-filled resonator, and mixtures of liquid and gas in the form of bubbly liquids have been mainly assumed for the fluid. To investigate the characteristic properties of the resonator system, we analyse waveforms of LP events observed at four different volcanoes in Hawaii, Alaska, Colombia and Japan using a newly developed spectral method. This method allows an estimation of the complex frequencies of decaying sinusoids based on an autoregressive model. The results of our analysis show a wide variety of Q factors, ranging from tens to several hundred. We compare these complex frequencies with those predicted by the fluid-filled crack model for various mixtures of liquid, gas and ash. Although the oscillations of LP events with Q smaller than 50 can be explained by various combinations of liquids and gases, we find that ash-laden gases are required to explain long-lasting oscillations with Q larger than 100. The complex frequencies of LP events yield useful information on the types of fluids. Temporal and spatial variations of the complex frequencies can be used as probes of fluid composition beneath volcanoes.
The First Historical Eruption of Kambalny Volcano in 2017 .
NASA Astrophysics Data System (ADS)
Gordeev, E.
2017-12-01
The first historical eruption at Kambalny volcano began about 21:20 UTC on March 24, 2017 with powerful ash emissions up to 6 km above sea level from the pre-summit crater. According to tephrochronological data, it is assumed that the strong eruptions of the volcano occurred 200 (?) and 600 years ago. KVERT (Kamchatka Volcanic Eruption Response Team) of the Institute of Volcanology and Seismology FEB RAS has been monitoring Kambalny volcano since 2002. KVERT worked closely with AMC Elizovo and Tokyo VAAC during the eruption at Kambalny volcano in 2017. The maximum intensity of ash emissions occurred on 25-26 March: a continuous plume laden with ash particles spread over several thousand kilometers, changing the direction of propagation from the volcano from the south-west to the south and south-east. On 27-29 March, the ash plume extended to the west, on 30 March - to the southeast of the volcano. On March 31 and April 01, the volcano was relatively quiet. The resumption of the volcano activity after two days of rest was expressed in powerful ash emissions up to 7 km above sea level. Gas-steam plumes containing some amount of ash were noted on 02-05 April, and powerful ash emissions up to 7 km above sea level occurred on 09 April. The explosive activity at the volcano ended on 11 April. The area of ash deposits was about 1500 km2, the total area covered by ash falls, for example, on 25 March, was about 650 thousand km2. To monitor and study the Kambalny volcano eruption we mainly used satellite images of medium resolution available in the information system "Monitoring volcanic activity in Kamchatka and Kurile Islands" (VolSatView). This work was supported by the Russian Science Foundation, project No. 16-17-00042.
Three Short Videos by the Yellowstone Volcano Observatory
Wessells, Stephen; Lowenstern, Jake; Venezky, Dina
2009-01-01
This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic
Morphological classification and spatial distribution of Philippine volcanoes
NASA Astrophysics Data System (ADS)
Paguican, E. M. R.; Kervyn, M.; Grosse, P.
2016-12-01
The Philippines is an island arc composed of two major blocks: the aseismic Palawan microcontinental block and the Philippine mobile belt. It is bounded by opposing subduction zones, with the left-lateral Philippine Fault running north-south. This setting is ideal for volcano formation and growth, making it one of the best places to study the controls on island arc volcano morphometry and evolution. In this study, we created a database of volcanic edifices and structures identified on the SRTM 30 m digital elevation models (DEM). We computed the morphometry of each edifice using MORVOLC, an IDL code for generating quantitative parameters based on a defined volcano base and DEM. Morphometric results illustrate the large range of sizes and volumes of Philippine volcanoes. Heirarchical classification by principal component analysis distinguishes between large massifs, large cones/sub-cones, small shields/sub-cones, and small cones, based mainly on size (volume, basal width) and steepness (height/basal width ratio, average slopes). Poisson Nearest Neighbor analysis was used to examine the spatial distribution of volcano centroids. Spatial distribution of the different types of volcanoes suggests that large volcanic massifs formed on thickened crust. Although all the volcanic fields and arcs are a response to tectonic activity such as subduction or rifting, only West Luzon, North and South Mindanao, and Eastern Philippines volcanic arcs and Basilan, Macolod, and Maramag volcanic fields present a statistical clustering of volcanic centers. Spatial distribution and preferential alignment of edifices in all volcanic fields confirm that regional structures had some control on their formation. Volcanoes start either as steep cones or as less steep sub-cones and shields. They then grow into large cones, sub-cones and eventually into massifs as eruption focus shifts within the volcano and new eruptive material is deposited on the slopes. Examination of the directions of
Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.
2008-01-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of
NASA Astrophysics Data System (ADS)
Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.
2008-08-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of
Iridium emissions from Hawaiian volcanoes
NASA Technical Reports Server (NTRS)
Finnegan, D. L.; Zoller, W. H.; Miller, T. M.
1988-01-01
Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.
Morphometry of terrestrial shield volcanoes
NASA Astrophysics Data System (ADS)
Grosse, Pablo; Kervyn, Matthieu
2018-03-01
Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.
Space Radar Image of Colombian Volcano
NASA Technical Reports Server (NTRS)
1999-01-01
This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of
Darwin's triggering mechanism of volcano eruptions
NASA Astrophysics Data System (ADS)
Galiev, Shamil
2010-05-01
Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a
NASA Astrophysics Data System (ADS)
Greeley, R.; Fink, J. H.
1984-07-01
The unusual rheological properties of sulfur are discussed in order to determine the distinctive volcanic flow morphologies which indicate the presence of sulfur volcanoes on the Saturnian satellite Io. An analysis of high resolution Voyager imagery reveals three features which are considered to be possible sulfur volcanoes: Atar Patera, Daedalus Patera, and Kibero Patera. All three features are distinguished by circular-to-oval central masses surrounded by irregular widespread flows. The central zones of the features are interpreted to be domes formed of high temperature sulfur. To confirm the interpretations of the satellite data, molten sulfur was extruded in the laboratory at a temperature of 210 C on a flat surface sloping 0.5 deg to the left. At this temperature, the sulfur formed a viscous domelike mass over the event. As parts of the mass cooled to 170 C the viscosity decreased to a runny stage, forming breakout flows. It is concluded that a case can be made for sulfur volcanoes on Io sufficient to warrant further study, and it is recommended that the upcoming Galileo mission examine these phenomena.
NASA Technical Reports Server (NTRS)
Greeley, R.; Fink, J. H.
1984-01-01
The unusual rheological properties of sulfur are discussed in order to determine the distinctive volcanic flow morphologies which indicate the presence of sulfur volcanoes on the Saturnian satellite Io. An analysis of high resolution Voyager imagery reveals three features which are considered to be possible sulfur volcanoes: Atar Patera, Daedalus Patera, and Kibero Patera. All three features are distinguished by circular-to-oval central masses surrounded by irregular widespread flows. The central zones of the features are interpreted to be domes formed of high temperature sulfur. To confirm the interpretations of the satellite data, molten sulfur was extruded in the laboratory at a temperature of 210 C on a flat surface sloping 0.5 deg to the left. At this temperature, the sulfur formed a viscous domelike mass over the event. As parts of the mass cooled to 170 C the viscosity decreased to a runny stage, forming breakout flows. It is concluded that a case can be made for sulfur volcanoes on Io sufficient to warrant further study, and it is recommended that the upcoming Galileo mission examine these phenomena.
Living on Active Volcanoes - The Island of Hawai'i
Heliker, Christina; Stauffer, Peter H.; Hendley, James W.
1997-01-01
People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.
NASA Astrophysics Data System (ADS)
Mcfarlin, H. L.; Christensen, D. H.; Thompson, G.; McNutt, S. R.; Ryan, J. C.; Ward, K. M.; Zandt, G.; West, M. E.
2014-12-01
Uturuncu Volcano and a zone between Lastarria and Cordon del Azufre Volcanoes (also calledLazufre), have seen much attention lately because of significant and rapid inflation of one to twocentimeters per year over large areas. Uturuncu is located near the Bolivian-Chilean border, andLazufre is located near the Chilean-Argentine border. The PLUTONS Project deployed 28broadband seismic stations around Uturuncu Volcano, from April 2009 to Octobor 2012, and alsodeployed 9 stations around Lastarria and Cordon del Azufre volcanoes, from November, 2011 toApril 2013. Teleseismic receiver functions were generated using the time-domain iterativedeconvolution algorithm of Ligorria and Ammon (1999) for each volcanic area. These receiverfunctions were used to better constrain the depths of magma bodies under Uturuncu and Lazufre,as well as the ultra low velocity layer within the Altiplano-Puna Magma Body (APMB). Thelow velocity zone under Uturuncu is shown to have a top around 10 km depth b.s.l and isgenerally around 20 km thick with regional variations. Tomographic inversion shows a well resolved,near vertical, high Vp/Vs anomaly directly beneath Uturuncu that correlates well with adisruption in the receiver function results; which is inferred to be a magmatic intrusion causing alocal thickening of the APMB. Preliminary results at Lazufre show the top of a low velocityzone around 5-10 km b.s.l with a thickness of 15-30 km.
Eruptions of Hawaiian volcanoes - Past, present, and future
Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.
2010-01-01
Viewing an erupting volcano is a memorable experience, one that has inspired fear, superstition, worship, curiosity, and fascination since before the dawn of civilization. In modern times, volcanic phenomena have attracted intense scientific interest, because they provide the key to understanding processes that have created and shaped more than 80 percent of the Earth's surface. The active Hawaiian volcanoes have received special attention worldwide because of their frequent spectacular eruptions, which often can be viewed and studied with relative ease and safety. In January 1987, the Hawaiian Volcano Observatory (HVO), located on the rim of Kilauea Volcano, celebrated its 75th Anniversary. In honor of HVO's Diamond Jubilee, the U.S. Geological Survey (USGS) published Professional Paper 1350 (see list of Selected Readings, page 57), a comprehensive summary of the many studies on Hawaiian volcanism by USGS and other scientists through the mid-1980s. Drawing from the wealth of data contained in that volume, the USGS also published in 1987 the original edition of this general-interest booklet, focusing on selected aspects of the eruptive history, style, and products of two of Hawai'i's active volcanoes, Kilauea and Mauna Loa. This revised edition of the booklet-spurred by the approaching Centennial of HVO in January 2012-summarizes new information gained since the January 1983 onset of Kilauea's Pu'u 'O'o-Kupaianaha eruption, which has continued essentially nonstop through 2010 and shows no signs of letup. It also includes description of Kilauea's summit activity within Halema'uma'u Crater, which began in mid-March 2008 and continues as of this writing (late 2010). This general-interest booklet is a companion to the one on Mount St. Helens Volcano first published in 1984 and revised in 1990 (see Selected Readings). Together, these publications illustrate the contrast between the two main types of volcanoes: shield volcanoes, such as those in Hawai'i, which generally
Modeling volcano growth on the Island of Hawaii: deep-water perspectives
Lipman, Peter W.; Calvert, Andrew T.
2013-01-01
Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux
The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano
Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.
2014-01-01
The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.
Volcanoes muon imaging using Cherenkov telescopes
NASA Astrophysics Data System (ADS)
Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.
2016-01-01
A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.
NASA Spacecraft Captures Fury of Russian Volcano
2011-01-27
This nighttime thermal infrared image from NASA Terra spacecraft shows Shiveluch volcano, one of the largest and most active volcanoes in Russia Kamchatka Peninsula; the bright, hot summit lava dome is evident in the center of the image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.B.; Trusdell, F.A.
1993-08-01
This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less
Eruption of Alaska volcano breaks historic pattern
Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.
2009-01-01
In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.
Eruption of Alaska Volcano Breaks Historic Pattern
NASA Astrophysics Data System (ADS)
Larsen, Jessica; Neal, Christina; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick
2009-05-01
In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (˜2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud “thunder,” lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.
NASA Astrophysics Data System (ADS)
Ohkura, Hiroshi
Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.
Atmospheric Science Data Center
2013-04-17
article title: Grímsvötn Volcano Injects Ash into the Stratosphere ... p.m. local time (1730 UTC) on Saturday, May 21, 2011. The volcano, located approximately 140 miles (220 kilometers) east of the capital ...
NASA Astrophysics Data System (ADS)
Ruiz, M. C.; Yepes, H. A.; Hall, M. L.; Mothes, P. A.; Ramon, P.; Hidalgo, S.; Andrade, D.; Vallejo Vargas, S.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Palacios, P.; Alvarado, A. P.; Enriquez, W.; Vasconez, F.; Vaca, M.; Arrais, S.; Viracucha, G.; Bernard, B.
2014-12-01
In 1988, the Instituto Geofisico (IG) began a permanent surveillance of Ecuadorian volcanoes, and due to activity on Guagua Pichincha, SP seismic stations and EDM control lines were then installed. Later, with the UNDRO and OAS projects, telemetered seismic monitoring was expanded to Tungurahua, Cotopaxi, Cuicocha, Chimborazo, Antisana, Cayambe, Cerro Negro, and Quilotoa volcanoes. In 1992 an agreement with the Instituto Ecuatoriano de Electrificacion strengthened the monitoring of Tungurahua and Cotopaxi volcanoes with real-time SP seismic networks and EDM lines. Thus, background activity levels became established, which was helpful because of the onset of the 1999 eruptive activity at Tungurahua and Guagua Pichincha. These eruptions had a notable impact on Baños and Quito. Unrest at Cotopaxi volcano was detected in 2001-2002, but waned. In 2002 Reventador began its eruptive period which continues to the present and is closely monitored by the IG. In 2006 permanent seismic BB stations and infrasound sensors were installed at Tungurahua and Cotopaxi under a cooperative program supported by JICA, which allowed us to follow Tungurahua's climatic eruptions of 2006 and subsequent eruptions up to the present. Programs supported by the Ecuadorian Secretaria Nacional de Ciencia y Tecnologia and the Secretaria Nacional de Planificacion resulted in further expansion of the IG's monitoring infrastructure. Thermal and video imagery, SO2 emission monitoring, geochemical analyses, continuous GPS and tiltmeters, and micro-barometric surveillance have been incorporated. Sangay, Soche, Ninahuilca, Pululahua, and Fernandina, Cerro Azul, Sierra Negra, and Alcedo in the Galapagos Islands are now monitored in real-time. During this time, international cooperation with universities (Blaise Pascal & Nice-France, U. North Carolina, New Mexico Tech, Uppsala-Sweden, Nagoya, etc.), and research centers (USGS & UNAVCO-USA, IRD-France, NIED-Japan, SGC-Colombia, VAAC, MIROVA) has introduced
NASA Astrophysics Data System (ADS)
Sohn, Y. K.
1995-02-01
Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes. The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.
The Anatahan volcano-monitoring system
NASA Astrophysics Data System (ADS)
Marso, J. N.; Lockhart, A. B.; White, R. A.; Koyanagi, S. K.; Trusdell, F. A.; Camacho, J. T.; Chong, R.
2003-12-01
A real-time 24/7 Anatahan volcano-monitoring and eruption detection system is now operational. There had been no real-time seismic monitoring on Anatahan during the May 10, 2003 eruption because the single telemetered seismic station on Anatahan Island had failed. On May 25, staff from the Emergency Management Office (EMO) of the Commonwealth of the Northern Mariana Islands and the U. S. Geological Survey (USGS) established a replacement telemetered seismic station on Anatahan whose data were recorded on a drum recorder at the EMO on Saipan, 130 km to the south by June 5. In late June EMO and USGS staff installed a Glowworm seismic data acquisition system (Marso et al, 2003) at EMO and hardened the Anatahan telemetry links. The Glowworm system collects the telemetered seismic data from Anatahan and Saipan, places graphical display products on a webpage, and exports the seismic waveform data in real time to Glowworm systems at Hawaii Volcano Observatory and Cascades Volcano Observatory (CVO). In early July, a back-up telemetered seismic station was placed on Sarigan Island 40 km north of Anatahan, transmitting directly to the EMO on Saipan. Because there is currently no population on the island, at this time the principal hazard presented by Anatahan volcano would be air traffic disruption caused by possible erupted ash. The aircraft/ash hazard requires a monitoring program that focuses on eruption detection. The USGS currently provides 24/7 monitoring of Anatahan with a rotational seismic duty officer who carries a Pocket PC-cell phone combination that receives SMS text messages from the CVO Glowworm system when it detects large seismic signals. Upon receiving an SMS text message notification from the CVO Glowworm, the seismic duty officer can use the Pocket PC - cell phone to view a graphic of the seismic traces on the EMO Glowworm's webpage to determine if the seismic signal is eruption related. There have been no further eruptions since the monitoring system was
Hawaii Volcano Observatory 75th anniversary
Wright, Thomas L.; Decker, Robert W.
1988-01-01
The 75th anniversary of the founding of the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) was celebrated in January 1987. The festivities began on January 9 with the opening in Hilo of a major exhibit at the Wailoa Center on the current work of HVO, its history, and its special relationship to Hawaii Volcanoes National Park.
Iceland's Grímsvötn volcano erupts
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-05-01
About 13 months after Iceland's Eyjafjallajökull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grímsvötn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajökull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grímsvötn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.
Active Deformation of Etna Volcano Combing IFSAR and GPS data
NASA Technical Reports Server (NTRS)
Lundgren, Paul
1997-01-01
The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.
NASA Astrophysics Data System (ADS)
Maeno, Fukashi; Nakada, Setsuya; Oikawa, Teruki; Yoshimoto, Mitsuhiro; Komori, Jiro; Ishizuka, Yoshihiro; Takeshita, Yoshihiro; Shimano, Taketo; Kaneko, Takayuki; Nagai, Masashi
2016-05-01
The phreatic eruption at Ontake volcano on 27 September 2014, which caused the worst volcanic disaster in the past half-century in Japan, was reconstructed based on observations of the proximal pyroclastic density current (PDC) and fallout deposits. Witness observations were also used to clarify the eruption process. The deposits are divided into three major depositional units (Units A, B, and C) which are characterized by massive, extremely poorly sorted, and multimodal grain-size distribution with 30-50 wt% of fine ash (silt-clay component). The depositional condition was initially dry but eventually changed to wet. Unit A originated from gravity-driven turbulent PDCs in the relatively dry, vent-opening phase. Unit B was then produced mainly by fallout from a vigorous moist plume during vent development. Unit C was derived from wet ash fall in the declining stage. Ballistic ejecta continuously occurred during vent opening and development. As observed in the finest population of the grain-size distribution, aggregate particles were formed throughout the eruption, and the effect of water in the plume on the aggregation increased with time and distance. Based on the deposit thickness, duration, and grain-size data, and by applying a scaling analysis using a depth-averaged model of turbulent gravity currents, the particle concentration and initial flow speed of the PDC at the summit area were estimated as 2 × 10-4-2 × 10-3 and 24-28 m/s, respectively. The tephra thinning trend in the proximal area shows a steeper slope than in similar-sized magmatic eruptions, indicating a large tephra volume deposited over a short distance owing to the wet dispersal conditions. The Ontake eruption provided an opportunity to examine the deposits from a phreatic eruption with a complex eruption sequence that reflects the effect of external water on the eruption dynamics.
July 1973 ground survey of active Central American volcanoes
NASA Technical Reports Server (NTRS)
Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.
1973-01-01
The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.
NASA Technical Reports Server (NTRS)
Toon, O. B.
1982-01-01
The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between volcanoes and climate, a good theoretical understanding exists. The magnitude of the climatic changes anticipated following volcanic explosions agrees well with the observations. Volcanoes affect climate because volcanic particles in the atmosphere upset the balance between solar energy absorbed by the Earth and infrared energy emitted by the Earth. These interactions can be observed. The most important ejecta from volcanoes is not volcanic ash but sulfur dioxide which converts into sulfuric acid droplets in the stratosphere. For an eruption with its explosive magnitude, Mount St. Helens injected surprisingly little sulfur into the stratosphere. The amount of sulfuric acid formed is much smaller than that observed following significant eruptions and is too small to create major climatic shifts. However, the Mount St. Helens eruption has provided an opportunity to measure many properties of volcanic debris not previously measured and has therefore been of significant value in improving our knowledge of the relations between volcanic activity and climate.
Mount Rainier: A decade volcano
NASA Astrophysics Data System (ADS)
Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.
Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”
Venus small volcano classification and description
NASA Technical Reports Server (NTRS)
Aubele, J. C.
1993-01-01
The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep
Volcano geodesy in the Cascade arc, USA
NASA Astrophysics Data System (ADS)
Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben
2017-08-01
Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic
Volcano geodesy in the Cascade arc, USA
Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin
2017-01-01
Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic
System for ranking relative threats of U.S. volcanoes
Ewert, J.W.
2007-01-01
A methodology to systematically rank volcanic threat was developed as the basis for prioritizing volcanoes for long-term hazards evaluations, monitoring, and mitigation activities. A ranking of 169 volcanoes in the United States and the Commonwealth of the Northern Mariana Islands (U.S. volcanoes) is presented based on scores assigned for various hazard and exposure factors. Fifteen factors define the hazard: Volcano type, maximum known eruptive explosivity, magnitude of recent explosivity within the past 500 and 5,000 years, average eruption-recurrence interval, presence or potential for a suite of hazardous phenomena (pyroclastic flows, lahars, lava flows, tsunami, flank collapse, hydrothermal explosion, primary lahar), and deformation, seismic, or degassing unrest. Nine factors define exposure: a measure of ground-based human population in hazard zones, past fatalities and evacuations, a measure of airport exposure, a measure of human population on aircraft, the presence of power, transportation, and developed infrastructure, and whether or not the volcano forms a significant part of a populated island. The hazard score and exposure score for each volcano are multiplied to give its overall threat score. Once scored, the ordered list of volcanoes is divided into five overall threat categories from very high to very low. ?? 2007 ASCE.
NASA Astrophysics Data System (ADS)
Ishihara, Y.; Yamanaka, Y.; Kikuchi, M.
2002-12-01
The existences of variety of low-frequency seismic sources are obvious by the dense and equalized equipment_fs seismic network. Kikuchi(2000) and Kumagai et.al. (2001) analyzed about 50sec period ground motion excited by the volcanic activities Miyake-jima, Izu Islands. JMA is listing the low frequency earthquakes routinely in their hypocenter determination. Obara (2002) detected the low frequency, 2-4 Hz, tremor that occurred along subducting Philippine Sea plate by envelope analysis of high dense and short period seismic network (Hi-net). The monitoring of continuos long period waveform show us the existence of many unknown sources. Recently, the broadband seismic network of Japan (F-net, previous name is FREESIA) is developed and extends to linear array about 3,000 km. We reviewed the long period seismic data and earthquake catalogues. Many candidates, which are excited by unknown sources, are picked up manually. The candidates are reconfirmed in detail by the original seismograms and their rough frequency characteristics are evaluated. Most events have the very low frequency seismograms that is dominated period of 20 _E30 sec and smaller amplitude than ground noise level in shorter period range. We developed the hypocenter determination technique applied the grid search method. Moreover for the major events moment tensor inversion was performed. The most source locates at subducting plate and their depth is greater than 30km. However the location don_ft overlap the low frequency tremor source region. Major event_fs moment magnitude is 4 or greater and estimated source time is around 20 sec. We concluded that low frequency seismic event series exist in wide period range in subduction area. The very low frequency earthquakes occurred along Nankai and Ryukyu trough at southwestern Japan. We are planing to survey the very low frequency event systematically in wider western Pacific region.
Watershed Profiles and Stream-net Structure of Vesuvio Volcano, Italy
NASA Astrophysics Data System (ADS)
Lin, Z.; Oguchi, T.; Komatsu, G.
2006-12-01
Watershed topography including stream-net structure in 32 watersheds of Vesuvio Volcano was analyzed using a DEM with a 20-m resolution, with special attention to geomorphological differences between the northern ?0-8 area and the other areas. The longitudinal and transverse profiles and stream-nets of the watersheds were extracted from the DEM. Drainage density and statistical morphometric parameters representing the shape of the profiles were investigated, and their relations with other basic morphometric parameters such as slope angle were examined. The relationships between drainage density and slope angle for each watershed can be divided into two types: Type 1 - negative correlation and Type 2 - convex-form correlation. The Type 2 watersheds have smaller bifurcation ratios and larger low-order stream lengths than the Type 1 watersheds, indicating that low-order streams in the Type 2 watersheds are more integrated. The results of longitudinal and transverse profile analyses also show that the topography of the Type 2 watersheds is simpler and more organized than that of the Type 1 watersheds, suggesting that the Type 2 watersheds are closer to equilibrium conditions. The Type 2 watersheds are located in the steepest and highest part of the somma area, where only limited eruption products have been deposited during the Holocene, due to the existence of the high and steep outer rim of the caldera at the top of the volcano. The results including the existence of the two types are similar to those from non-volcanic watersheds in Japan, indicating that stream-net studies combined with profile analysis using DEMs are effective in discussing the erosional stages of watersheds.
A field guide to Newberry Volcano, Oregon
Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele
2009-01-01
Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.
Radial anisotropy ambient noise tomography of volcanoes
NASA Astrophysics Data System (ADS)
Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph
2016-04-01
The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.
Optical satellite data volcano monitoring: a multi-sensor rapid response system
Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan
2009-01-01
In this chapter, the use of satellite remote sensing to monitor active geological processes is described. Specifically, threats posed by volcanic eruptions are briefly outlined, and essential monitoring requirements are discussed. As an application example, a collaborative, multi-agency operational volcano monitoring system in the north Pacific is highlighted with a focus on the 2007 eruption of Kliuchevskoi volcano, Russia. The data from this system have been used since 2004 to detect the onset of volcanic activity, support the emergency response to large eruptions, and assess the volcanic products produced following the eruption. The overall utility of such integrative assessments is also summarized. The work described in this chapter was originally funded through two National Aeronautics and Space Administration (NASA) Earth System Science research grants that focused on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. A skilled team of volcanologists, geologists, satellite tasking experts, satellite ground system experts, system engineers and software developers collaborated to accomplish the objectives. The first project, Automation of the ASTER Emergency Data Acquisition Protocol for Scientific Analysis, Disaster Monitoring, and Preparedness, established the original collaborative research and monitoring program between the University of Pittsburgh (UP), the Alaska Volcano Observatory (AVO), the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, and affiliates on the ASTER Science Team at the Jet Propulsion Laboratory (JPL) as well as associates at the Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan. This grant, completed in 2008, also allowed for detailed volcanic analyses and data validation during three separate summer field campaigns to Kamchatka Russia. The second project, Expansion and synergistic use
Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica
NASA Astrophysics Data System (ADS)
Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.
2009-04-01
Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even
2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF ...
2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF MEDIAN. NOTE VOLCANIC STONE CURBING (EDGING) TYPICAL OF MOST PARKING AREAS; TRIANGLING AT END NOT TYPICAL. MAUNA LOA VOLCANO IN BACK. - Crater Rim Drive, Volcano, Hawaii County, HI
Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes
NASA Astrophysics Data System (ADS)
Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.
2015-12-01
Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.
Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes
Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.
2014-01-01
All seaward flank movement occurs along a detachment fault, or décollement, that forms within the mixture of pelagic clays and volcaniclastic deposits on the old seafloor and pushes up a bench of debris along the distal margin of the flank. The offshore uplift that builds this bench is generated by décollement slip that terminates upward into the overburden along thrust faults. Finite strain and finite strength models for volcano growth on a low-friction décollement reproduce this bench structure, as well as much of the morphology and patterns of faulting observed on the actively growing volcanoes of Mauna Loa and Kīlauea. These models show how stress is stored within growing volcano flanks, but not how rapid, potentially seismic slip is triggered along their décollements. The imbalance of forces that triggers large, rapid seaward displacement of the flank after decades of creep may result either from driving forces that change rapidly, such as magma pressure gradients; from resisting forces that rapidly diminish with slip, such as those arising from coupling of pore pressure and dilatancy within décollement sediment; or, from some interplay between driving and resisting forces that produces flank motion. Our understanding of the processes of flank motion is limited by available data, though recent studies have increased our ability to quantitatively address flank instability and associated hazards.
Seismic unrest at Katla Volcano- southern Iceland
NASA Astrophysics Data System (ADS)
jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group
2014-05-01
Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes
ICE-VOLC Project: unravelling the dynamics of Antarctica volcanoes
NASA Astrophysics Data System (ADS)
Cannata, Andrea; Del Carlo, Paola; Giudice, Gaetano; Giuffrida, Giovanni; Larocca, Graziano; Liuzzo, Marco
2017-04-01
Melbourne and Rittmann volcanoes are located in the Victoria Land. Whilst Rittmann's last eruption dates probably to Pleistocene, Melbourne's most recent eruption between 1862 and 1922, testifying it is still active. At present, both volcanoes display fumarolic activity. Melbourne was discovered in 1841 by James Clark Ross, Rittmann during the 4th Italian Expedition (1988/1989). Our knowledge on both volcanoes is really little. The position of these volcanoes in the Antarctic region (characterised by absence of anthropic noise) and its proximity with the Italian Mario Zucchelli Station makes them ideal sites for studying volcano seismic sources, geothermal emissions, seismo-acoustic signals caused by cryosphere-hydrosphere-atmosphere dynamics, and volcanic gas impact on environment. Hence, the main aim of the ICE-VOLC ("multiparametrIC Experiment at antarctica VOLCanoes: data from volcano and cryosphere-ocean-atmosphere dynamics") project is the study of Melbourne and Rittmann, by acquisition, analysis and integration of multiparametric geophysical, geochemical and thermal data. Complementary objectives include investigation of the relationship between seismo-acoustic activity recorded in Antarctica and cryosphere-hydrosphere-atmosphere dynamics, evaluation of the impact of volcanic gas in atmosphere. This project involves 26 researchers, technologists and technicians from University of Perugia and from Istituto Nazionale di Geofisica e Vulcanologia of Catania, Palermo, Pisa and Rome. In this work, we show the preliminary results obtained after the first expedition in Antarctica, aiming to perform geochemical-thermal surveys in the volcano ice caves, as well as to collect ash samples and to install temporary seismic stations.
NASA Spacecraft Spots Signs of Erupting Russian Volcano
2014-05-20
Winter still grips the volcanoes on Russia Kamchatka peninsula. NASA Terra spacecraft acquired this image showing the mantle of white, disturbed by dark ash entirely covering Sheveluch volcano from recent eruptions.
Interferometric Synthetic Aperture radar studies of Alaska volcanoes
Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Power, John A.; Thatcher, Wayne R.; Masterlark, Timothy
2003-01-01
In this article, we summarize our recent InSAR studies of 13 Alaska volcanoes, including New Trident, Okmok, Akutan, Kiska, Augustine, Westdahl, Peulik, Makushin, Seguam, Shishaldin, Pavlof, Cleveland, and Korovin volcanoes.
Geochemical evolution of Kohala Volcano, Hawaii
Lanphere, M.A.; Frey, F.A.
1987-01-01
Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source. ?? 1987 Springer-Verlag.
Relative chronology of Martian volcanoes
NASA Technical Reports Server (NTRS)
Landheim, R.; Barlow, N. G.
1991-01-01
Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history.
The Evolution of Galápagos Volcanoes: An Alternative Perspective
NASA Astrophysics Data System (ADS)
Harpp, Karen S.; Geist, Dennis J.
2018-05-01
The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Moreover, the eastern islands tend to have been constructed by linear fissure systems and many are cut by faults. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. The exceptions are volcanoes at the leading edge of the hotspot, which have yet to develop mush columns, and volcanoes that are waning in activity, because they are being carried away from the plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. This is attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of hypersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates with the distance to the Galápagos Spreading Center (GSC). When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes
Space Radar Image of Colima Volcano, Jalisco, Mexico
1999-05-01
This is an image of the Colima volcano in Jalisco, Mexico, a vigorously active volcano that erupted as recently as July 1994. The eruption partially destroyed a lava dome at the summit and deposited a new layer of ash on the volcano's southern slopes. Surrounding communities face a continuing threat of ash falls and volcanic mudflows from the volcano, which has been designated one of 15 high-risk volcanoes for scientific study during the next decade. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 24th orbit on October 1, 1994. The image is centered at 19.4 degrees north latitude, 103.7 degrees west longitude. The area shown is approximately 35.7 kilometers by 37.5 kilometers (22 miles by 23 miles). This single-frequency, multi-polarized SIR-C image shows: red as L-band horizontally transmitted and received; green as L-band horizontally transmitted and vertically received; and blue as the ratio of the two channels. The summit area appears orange and the recent deposits fill the valleys along the south and southwest slopes. Observations from space are helping scientists understand the behavior of dangerous volcanoes and will be used to mitigate the effects of future eruptions on surrounding populations. http://photojournal.jpl.nasa.gov/catalog/PIA01739
Mantle compositions below petit-spot volcanoes of the NW Pacific Plate
NASA Astrophysics Data System (ADS)
Hirano, N.
2017-12-01
Monogenetic petit-spot volcanoes of a few kilometers in diameter and <300 m in height form volcanic clusters on the subducting NW Pacific plate offshore from NE Japan. Three of these petit-spot provinces form clusters with extents of 1,000-10,000 km2, containing between 15 to 90 monogenetic volcanoes, respectively (Hirano et al., 2008). The magmas that form these volcanoes originate below the lithosphere and ascend along the concavely flexed zone of the outer-rise prior to plate subduction at the trench (Hirano et al., 2006). This forms a unique opportunity to geochemically examine the mantle beneath the oceanic crust in a region outside of the well-examined but spatially restricted areas of mid-oceanic ridges and hotspots, indicating that these petit-spot lavas and associated xenoliths can directly provide the information on the asthenospheric and lithospheric material within and beneath old and subducting plates. Recent research into the geochemistry of petit-spot lavas and the petrography of xenoliths within these lavas indicates that the conventional subducting lithospheric theories require some revision in terms of the nature of subducting lithospheric and asthenospheric materials (e.g., heterogeneous asthenosphere and the presence of a higher geothermal gradient than the conventional GDH1 model; Machida et al., 2015; Yamamoto et al., 2014). The fact that the majority of the petit-spot lava samples do not contain olivine phenocrysts and have differentiated compositions (45-52 wt% SiO2, Mg# values of 50-65) indicates that these magmas have undergone differentiation in a magma chamber. However, geobarometry indicates that the deepest-sourced associated peridotitic xenoliths were derived from a depth of 42 km (Yamamoto et al., 2014). This indicates that melt fractionation must have occurred at depths greater than the middle lithosphere, a situation where the depth of fractionation could correlate with the rotation of the σ3 stress axis from the extensionally
Translating Volcano Hazards Research in the Cascades Into Community Preparedness
NASA Astrophysics Data System (ADS)
Ewert, J. W.; Driedger, C. L.
2015-12-01
Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.
Augustine Volcano, Cook Inlet, Alaska January 31, 2006
2006-02-02
Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.
Augustine Volcano, Cook Inlet, Alaska January 12, 2006
2006-02-02
Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.
Building a flood hazard map due to magma effusion into the caldera lake of the Baekdusan Volcano
NASA Astrophysics Data System (ADS)
Lee, K.; Kim, S.; Yun, S.; Yu, S.; Kim, I.
2013-12-01
Many volcanic craters and calderas are filled with large amounts of water that can pose significant flood hazards to downstream communities due to their high elevation and the potential for catastrophic releases of water. Recent reports pointed out the Baekdusan volcano that is located between the border of China and North Korea as a potential active volcano. Since Millennium Eruption around 1000 AD, smaller eruptions have occurred at roughly 100-year intervals, with the last one in 1903. The volcano is showing signs of waking from a century-long slumber recently and the volcanic ash may spread up to the northeastern of Japan. The development of various forecasting techniques to prevent and minimize economic and social damage is in urgent need. Floods from lake-filled calderas may be particularly large and high. Volcanic flood may cause significant hydrologic hazards for this reason. This study focuses on constructing a flood hazard map triggered by the uplift of lake bottom due to magma effusion in the Baekdusan volcano. A physically-based uplift model was developed to compute the amount of water and time to peak flow. The ordinary differential equation was numerically solved using the finite difference method and Newton-Raphson iteration method was used to solve nonlinear equation. The magma effusion rate into the caldera lake is followed by the past record from other volcanic activities. As a result, the hydrograph serves as an upper boundary condition when hydrodynamic model (Flo-2D) runs to simulate channel routing downstream. The final goal of the study stresses the potential flood hazard represented by the huge volume of water in the caldera lake, the unique geography, and the limited control capability. he study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Effusion rate, Volcanic flood, Caldera lake, Uplift, Flood hazard map Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from
Experimental simulation and morphological quantification of volcano growth
NASA Astrophysics Data System (ADS)
Grosse, Pablo; Kervyn, Matthieu; Gallland, Olivier; Delcamp, Audray; Poppe, Sam
2016-04-01
Volcanoes display very diverse morphologies as a result of a complex interplay of several constructive and destructive processes. Here the role played by the spatial distribution of eruption centre and by an underlying strike-slip fault in controlling the long term growth of volcanoes is investigated with analogue models. Volcano growth was simulated by depositing loads of granular material (sand-kaolin mixtures) from a point source. An individual load deposited at a fixed location produces a simple symmetrical cone with flank slopes at the angle of repose of the granular material (~33°) that can be considered as the building-block for the experiments. Two sets of experiments were undertaken: (1) the location of deposition of the granular material (i.e. the volcano growth location) was shifted with time following specific probability density functions simulating shifts or migrations in vent location; (2) the location of deposition was kept fixed, but the deposition rate (i.e. the volcano growth rate) was varied coupled with the movement of a basal plate attached to a step-motor simulating a strike-slip displacement under the growing cone (and hence deformation of the cone). During the progression of the experiments, the models were photographed at regular time intervals using four digital cameras positioned at slightly different angles over the models. The photographs were used to generate synthetic digital elevation models (DEMs) with 0.2 mm spatial resolution of each step of the models by applying the MICMAC digital stereo-photogrammetry software. Morphometric data were extracted from the DEMs by applying two IDL-language algorithms: NETVOLC, used to automatically calculate the volcano edifice basal outline, and MORVOLC, used to extract a set of morphometric parameters that characterize the volcano edifice in terms of size, plan shape, profile shape and slopes. Analysis of the DEM-derived morphometric parameters allows to quantitatively characterize the growth
Hazard maps of Colima volcano, Mexico
NASA Astrophysics Data System (ADS)
Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.
2011-12-01
Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros P.; Takemi, Tetsuya; Shimizu, Atsushi; Iguchi, Masato; Jenkins, Susanna F.
2018-04-01
With the eruption of Eyjafjallajökull (Iceland) in 2010, interest in the transport of volcanic ash after moderate to major eruptions has increased with regards to both the physical and the emergency hazard management aspects. However, there remain significant gaps in the understanding of the long-term behaviour of emissions from volcanoes with long periods of activity. Mt. Sakurajima (Japan) provides us with a rare opportunity to study such activity, due to its eruptive behaviour and dense observation network. In the 6-year period from 2009 to 2015, the volcano was erupting at an almost constant rate introducing approximately 500 kt of ash per month to the atmosphere. The long-term characteristics of the transport and deposition of ash and SO2 in the area surrounding the volcano are studied here using daily surface observations of suspended particulate matter (SPM) and SO2 and monthly ashfall values. Results reveal different dispersal patterns for SO2 and volcanic ash, suggesting volcanic emissions' separation in the long-term. Peak SO2 concentrations at different locations on the volcano vary up to 2 orders of magnitude and decrease steeply with distance. Airborne volcanic ash increases SPM concentrations uniformly across the area surrounding the volcano, with distance from the vent having a secondary effect. During the period studied here, the influence of volcanic emissions was identifiable both in SO2 and SPM concentrations which were, at times, over the recommended exposure limits defined by the Japanese government, European Union and the World Health Organisation. Depositional patterns of volcanic ash exhibit elements of seasonality, consistent with previous studies. Climatological and topographic effects are suspected to impact the deposition of volcanic ash away from the vent: for sampling stations located close to complex topographical elements, sharp changes in the deposition patterns were observed, with ash deposits for neighbouring stations as close as
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John
2003-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to
NASA Technical Reports Server (NTRS)
Francis, P. W.; Rothery, D. A.
1987-01-01
The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.
One hundred years of volcano monitoring in Hawaii
Kauahikaua, Jim; Poland, Mike
2012-01-01
In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.
One hundred years of volcano monitoring in Hawaii
Kauahikaua, J.; Poland, M.
2012-01-01
In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.
Near-specular acoustic scattering from a buried submarine mud volcano.
Gerig, Anthony L; Holland, Charles W
2007-12-01
Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.
Volcanoes in the Classroom--an Explosive Learning Experience.
ERIC Educational Resources Information Center
Thompson, Susan A.; Thompson, Keith S.
1996-01-01
Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)
Commencement of Geoparks, Geology day and International Earth Science Olympiad, IYPE in Japan
NASA Astrophysics Data System (ADS)
Tsukuda, Eikichi; Kodama, Kisaburo; Miyazaki, Teruki
2010-05-01
The GSJ is the main supporting organization of IYPE Japan, which is an implementation body of IYPE in Japan, serving as its secretariat. During the IYPE triennial activity, the GSJ has been supporting development of Geparks, establishment of "the Geology Day" and the Earth Science Olympiad activities with some academic societies, and has distributed geological maps with IYPE logo. The GSJ also established an outreach network "Geo-networks Tsukuba" as a local legacy of the IYPE, and has managed it with a local government, research organizations, nonprofit corporations and local media to increase geological and environmental literacy of public, especially among young people. The GSJ-AIST has also contributed internationally to IYPE by joining two international projects, OneGeology and the CCOP Book project. Geoparks in Japan are characterized by following features. The Japanese Islands and the surrounding seas are situated in the area of unique geologic features; the place where several tectonic plates meet and collide. This causes earthquakes and volcanic activities, and makes Japan one of most dynamic areas on the earth. The dynamics of the earth bring about not only geological hazards but also a lot of blessings. In August of 2009, three Geoparks, the Toya Caldera and Usu Volcano Geopark, the Itoigawa Geopark and the Unzen Volcanic Area Geopark, were accepted to join the Global Geopark Network from Japan for the first time. Since its launch in 2006, the GSJ has been playing a major role in promoting Geoparks in Japan together with Geological Society of Japan. The GSJ hosts the Japan Geopark Committee (JGC) for quality evaluation, serving as the information center of Geoparks in Japan. The Geology Day of Japan (10th of May) has been set up by the academic societies for geology in Japan and GSJ in 2007. The Geology Day is expected to provide the chances for the public to enjoy field trips and excursions and to understand the importance of geo-diversity. The Day
Shiveluch and Klyuchevskaya Volcanoes
NASA Technical Reports Server (NTRS)
2007-01-01
A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.
Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.
2008-01-01
Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the
Establishment, test and evaluation of a prototype volcano surveillance system
NASA Technical Reports Server (NTRS)
Ward, P. L.; Eaton, J. P.; Endo, E.; Harlow, D.; Marquez, D.; Allen, R.
1973-01-01
A volcano-surveillance system utilizing 23 multilevel earthquake counters and 6 biaxial borehole tiltmeters is being installed and tested on 15 volcanoes in 4 States and 4 foreign countries. The purpose of this system is to give early warning when apparently dormant volcanoes are becoming active. The data are relayed through the ERTS-Data Collection System to Menlo Park for analysis. Installation was completed in 1972 on the volcanoes St. Augustine and Iliamna in Alaska, Kilauea in Hawaii, Baker, Rainier and St. Helens in Washington, Lassen in California, and at a site near Reykjavik, Iceland. Installation continues and should be completed in April 1973 on the volcanoes Santiaguito, Fuego, Agua and Pacaya in Guatemala, Izalco in El Salvador and San Cristobal, Telica and Cerro Negro in Nicaragua.
Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.
2008-01-01
Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline
Volcaniclastic stratigraphy of Gede volcano in West Java
NASA Astrophysics Data System (ADS)
Belousov, A.; Belousova, M.; Zaennudin, A.; Prambada, O.
2012-12-01
Gede volcano (2958 m a.s.l.) and the adjacent Pangrango volcano (3019 m a.s.l.) form large (base diameter 35 km) volcanic massif 60 km south of Jakarta. While Pangrango has no recorded eruptions, Gede is one of the most active volcanoes in Indonesia: eruptions were reported 26 times starting from 1747 (Petroeschevsky 1943; van Bemmelen 1949). Historic eruptions were mildly explosive (Vulcanian) with at least one lava flow. Modern activity of the volcano includes persistent solfataric activity in the summit crater and periodic seismic swarms - in 1990, 1991, 1992, 1995, 1996, 1997, 2000, 2010, and 2012 (CVGHM). Lands around the Gede-Pangrango massif are densely populated with villages up to 1500-2000 m a.s.l. Higher, the volcano is covered by rain forest of the Gede-Pangrango Natural Park, which is visited every day by numerous tourists who camp in the summit area. We report the results of the detailed reinvestigation of volcaniclastic stratigraphy of Gede volcano. This work has allowed us to obtain 24 new radiocarbon dates for the area. As a result the timing and character of activity of Gede in Holocene has been revealed. The edifice of Gede volcano consists of main stratocone (Gumuruh) with 1.8 km-wide summit caldera; intra-caldera lava cone (Gede proper) with a 900 m wide summit crater, having 2 breaches toward N-NE; and intra-crater infill (lava dome/flow capped with 3 small craters surrounded by pyroclastic aprons). The Gumuruh edifice, composed mostly of lava flows, comprises more than 90% of the total volume of the volcano. Deep weathering of rocks and thick (2-4 m) red laterite soil covering Gumuruh indicates its very old age. Attempts to get 14C dates in 4 different locations of Gumuruh (including a large debris avalanche deposit on its SE foot) provided ages older than 45,000 years - beyond the limit for 14C dating. Outside the summit caldera, notable volumes of fresh, 14C datable volcaniclastic deposits were found only in the NNE sector of the volcano
Ground survey of active Central American volcanoes in November - December 1973
NASA Technical Reports Server (NTRS)
Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.
1974-01-01
The author has identified the following significant results. Thermal anomalies at two volcanoes, Santiaguito and Izalco, have grown in size in the past six months, based on repeated ground survey. Thermal anomalies at Pacaya volcano have became less intense in the same period. Large (500 m diameter) thermal anomalies exist at 3 volcanoes presently, and smaller scale anomalies are found at nine other volcanoes.
Recent Seismicity in the Ceboruco Volcano, Western Mexico
NASA Astrophysics Data System (ADS)
Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.
2017-12-01
The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.