Sample records for j-3105 resonances

  1. 9 CFR 3.105 - Feeding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.105 Feeding. (a) The food for marine mammals must be... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feeding. 3.105 Section 3.105 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL...

  2. 9 CFR 3.105 - Feeding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.105 Feeding. (a) The food for marine mammals must be... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feeding. 3.105 Section 3.105 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL...

  3. 9 CFR 3.105 - Feeding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.105 Feeding. (a) The food for marine mammals must be... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feeding. 3.105 Section 3.105 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL...

  4. 9 CFR 3.105 - Feeding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.105 Feeding. (a) The food for marine mammals must be... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feeding. 3.105 Section 3.105 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL...

  5. 43 CFR 3105.4-3 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Requirements. 3105.4-3 Section 3105.4-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... § 3105.4-3 Requirements. The application shall show a reasonable need for the combination and that it...

  6. 43 CFR 3105.2-3 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Requirements. 3105.2-3 Section 3105.2-3... § 3105.2-3 Requirements. (a) The communitization or drilling agreement shall describe the separate tracts... order. (c) The public interest requirement for an approved communitization agreement shall be satisfied...

  7. 43 CFR 3105.3-3 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Requirements. 3105.3-3 Section 3105.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... § 3105.3-3 Requirements. The contract shall be accompanied by a statement showing all the interests held...

  8. 43 CFR 3105.4-3 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Requirements. 3105.4-3 Section 3105.4-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... § 3105.4-3 Requirements. The application shall show a reasonable need for the combination and that it...

  9. 43 CFR 3105.2-3 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Requirements. 3105.2-3 Section 3105.2-3... § 3105.2-3 Requirements. (a) The communitization or drilling agreement shall describe the separate tracts... order. (c) The public interest requirement for an approved communitization agreement shall be satisfied...

  10. 43 CFR 3105.4-3 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Requirements. 3105.4-3 Section 3105.4-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... § 3105.4-3 Requirements. The application shall show a reasonable need for the combination and that it...

  11. 43 CFR 3105.3-3 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Requirements. 3105.3-3 Section 3105.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... § 3105.3-3 Requirements. The contract shall be accompanied by a statement showing all the interests held...

  12. 43 CFR 3105.2-3 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Requirements. 3105.2-3 Section 3105.2-3... § 3105.2-3 Requirements. (a) The communitization or drilling agreement shall describe the separate tracts... order. (c) The public interest requirement for an approved communitization agreement shall be satisfied...

  13. 43 CFR 3105.3-3 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Requirements. 3105.3-3 Section 3105.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... § 3105.3-3 Requirements. The contract shall be accompanied by a statement showing all the interests held...

  14. 43 CFR 3105.6 - Consolidation of leases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Consolidation of leases. 3105.6 Section 3105.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.6 Consolidation of leases....

  15. 43 CFR 3105.6 - Consolidation of leases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Consolidation of leases. 3105.6 Section 3105.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.6 Consolidation of leases....

  16. 43 CFR 3105.6 - Consolidation of leases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Consolidation of leases. 3105.6 Section 3105.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.6 Consolidation of leases....

  17. 43 CFR 3105.6 - Consolidation of leases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Consolidation of leases. 3105.6 Section 3105.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.6 Consolidation of leases....

  18. 32 CFR 310.5 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Policy. 310.5 Section 310.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY... and fundamental right that shall be respected and protected. (1) The Department's need to collect...

  19. 38 CFR 21.3105 - Travel expenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Travel expenses. 21.3105...) VOCATIONAL REHABILITATION AND EDUCATION Survivors' and Dependents' Educational Assistance Under 38 U.S.C. Chapter 35 Counseling § 21.3105 Travel expenses. (a) General. VA shall determine and pay the necessary...

  20. 25 CFR 310.5 - Certificates of genuineness, authority to affix.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Certificates of genuineness, authority to affix. 310.5 Section 310.5 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR USE OF GOVERNMENT MARKS OF GENUINENESS FOR ALASKAN INDIAN AND ALASKAN ESKIMO HAND-MADE PRODUCTS Alaskan Indian § 310.5 Certificates of...

  1. 21 CFR 73.3105 - 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione. 73.3105 Section 73.3105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3105 1...

  2. 21 CFR 73.3105 - 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione. 73.3105 Section 73.3105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3105 1...

  3. 21 CFR 73.3105 - 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione. 73.3105 Section 73.3105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3105 1...

  4. 21 CFR 73.3105 - 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione. 73.3105 Section 73.3105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3105 1...

  5. 21 CFR 73.3105 - 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false 1,4-Bis[(2-methylphenyl)amino]-9,10-anthracenedione. 73.3105 Section 73.3105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3105 1...

  6. 40 CFR 35.3105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE State Water Pollution Control Revolving Funds § 35.3105 Definitions. Words and terms that are not... and 40 CFR part 35, subpart I. (a) Act. The Federal Water Pollution Control Act, more commonly known... LOC. (i) SRF. State water pollution control revolving fund. ...

  7. 40 CFR 35.3105 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE State Water Pollution Control Revolving Funds § 35.3105 Definitions. Words and terms that are not... and 40 CFR part 35, subpart I. (a) Act. The Federal Water Pollution Control Act, more commonly known... LOC. (i) SRF. State water pollution control revolving fund. ...

  8. 40 CFR 35.3105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE State Water Pollution Control Revolving Funds § 35.3105 Definitions. Words and terms that are not... and 40 CFR part 35, subpart I. (a) Act. The Federal Water Pollution Control Act, more commonly known... LOC. (i) SRF. State water pollution control revolving fund. ...

  9. 40 CFR 35.3105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE State Water Pollution Control Revolving Funds § 35.3105 Definitions. Words and terms that are not... and 40 CFR part 35, subpart I. (a) Act. The Federal Water Pollution Control Act, more commonly known... LOC. (i) SRF. State water pollution control revolving fund. ...

  10. 40 CFR 35.3105 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE State Water Pollution Control Revolving Funds § 35.3105 Definitions. Words and terms that are not... and 40 CFR part 35, subpart I. (a) Act. The Federal Water Pollution Control Act, more commonly known... LOC. (i) SRF. State water pollution control revolving fund. ...

  11. 46 CFR 310.5 - Personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for State, Territorial or Regional Maritime Academies and Colleges § 310.5 Personnel. (a) Selection... same criteria used in the employment of such personnel in State-supported colleges and universities... watch aboard at all times. (c) Insignia for officers and other School personnel. The State may furnish...

  12. 15 CFR 310.5 - Report of the Secretary on Federal recognition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Report of the Secretary on Federal recognition. 310.5 Section 310.5 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS OFFICIAL U.S...

  13. 9 CFR 3.105 - Feeding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and must be placed so as to minimize contamination of the food they contain. Such food receptacles... minimize contamination and that will assure that the food retains nutritive value and wholesome quality... Mammals Animal Health and Husbandry Standards § 3.105 Feeding. (a) The food for marine mammals must be...

  14. 45 CFR 310.5 - What options are available for Computerized Tribal IV-D Systems and office automation?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to conduct automated data processing and recordkeeping activities through Office Automation... IV-D Systems and office automation? 310.5 Section 310.5 Public Welfare Regulations Relating to Public... AUTOMATION Requirements for Computerized Tribal IV-D Systems and Office Automation § 310.5 What options are...

  15. 43 CFR 3105.1 - Cooperative or unit agreement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.1 Cooperative or unit agreement. The suggested contents of such an agreement and...

  16. 38 CFR 3.105 - Revision of decisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pension, Compensation, and Dependency and Indemnity Compensation Administrative § 3.105 Revision of..., relationship, service, dependency, line of duty, and other issues, will be accepted as correct in the absence... of information received concerning income, net worth, dependency, or marital or other status, a...

  17. 38 CFR 3.105 - Revision of decisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pension, Compensation, and Dependency and Indemnity Compensation Administrative § 3.105 Revision of..., relationship, service, dependency, line of duty, and other issues, will be accepted as correct in the absence... of information received concerning income, net worth, dependency, or marital or other status, a...

  18. 38 CFR 3.105 - Revision of decisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pension, Compensation, and Dependency and Indemnity Compensation Administrative § 3.105 Revision of..., relationship, service, dependency, line of duty, and other issues, will be accepted as correct in the absence... of information received concerning income, net worth, dependency, or marital or other status, a...

  19. 43 CFR 3105.2 - Communitization or drilling agreements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Communitization or drilling agreements... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.2 Communitization or drilling agreements. ...

  20. 43 CFR 3105.2 - Communitization or drilling agreements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Communitization or drilling agreements... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.2 Communitization or drilling agreements. ...

  1. 43 CFR 3105.2 - Communitization or drilling agreements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Communitization or drilling agreements... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.2 Communitization or drilling agreements. ...

  2. 43 CFR 3105.2 - Communitization or drilling agreements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Communitization or drilling agreements... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.2 Communitization or drilling agreements. ...

  3. 9 CFR 310.5 - Condemned carcasses and parts to be so marked; tanking; separation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Condemned carcasses and parts to be so marked; tanking; separation. 310.5 Section 310.5 Animals and Animal Products FOOD SAFETY AND INSPECTION... marked shall be placed immediately in trucks or receptacles which shall be kept plainly marked “U.S...

  4. Resonant slepton production yields CMS e e j j and e p Tj j excesses

    NASA Astrophysics Data System (ADS)

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-01

    Recent CMS searches for dileptoquark production report local excesses of 2.4 σ in an e e j j channel and 2.6 σ in an e p Tj j channel. Here, we simultaneously explain both excesses with resonant slepton production in R -parity violating supersymmetry. We consider resonant slepton production, which decays to a lepton and a chargino/neutralino, followed by three-body decays of the neutralino/chargino via an R -parity violating coupling. There are regions of parameter space which are also compatible at the 95% confidence level with a 2.8 σ e e j j excess in a recent CMS WR search, while being compatible with other direct search constraints. Phase II of the GERDA neutrinoless double beta decay (0 ν β β ) experiment will probe a sizable portion of the good-fit region.

  5. 43 CFR 3105.3 - Operating, drilling or development contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Operating, drilling or development...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.3 Operating, drilling or development contracts. ...

  6. 43 CFR 3105.3 - Operating, drilling or development contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Operating, drilling or development...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.3 Operating, drilling or development contracts. ...

  7. 43 CFR 3105.3 - Operating, drilling or development contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Operating, drilling or development...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.3 Operating, drilling or development contracts. ...

  8. 43 CFR 3105.3 - Operating, drilling or development contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Operating, drilling or development...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Cooperative Conservation Provisions § 3105.3 Operating, drilling or development contracts. ...

  9. BJ-3105, a 6-Alkoxypyridin-3-ol Analog, Impairs T Cell Differentiation and Prevents Experimental Autoimmune Encephalomyelitis Disease Progression

    PubMed Central

    Timilshina, Maheshwor; Kang, Youra; Dahal, Ishmit; You, Zhiwei; Nam, Tae-gyu; Kim, Keuk-Jun

    2017-01-01

    CD4+ T cells are essential in inflammation and autoimmune diseases. Interferon-γ (IFN-γ) secreting T helper (Th1) and IL-17 secreting T helper (Th17) cells are critical for several autoimmune diseases. To assess the inhibitory effect of a given compound on autoimmune disease, we screened many compounds with an in vitro Th differentiation assay. BJ-3105, a 6-alkoxypyridin-3-ol analog, inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells which were activated by T cell receptor (TCR) engagement. BJ-3105 ameliorated the experimental autoimmune encephalomyelitis (EAE) model by reducing Th1 and Th17 generation. Notably, Th cell differentiation was significantly suppressed by BJ-3105 treatment without inhibiting in vitro proliferation of T cells or inducing programmed cell death. Mechanistically, BJ-3105 inhibited the phosphorylation of JAK and its downstream signal transducer and activator of transcription (STAT) that is critical for Th differentiation. These results demonstrated that BJ-3105 inhibits the phosphorylation of STAT in response to cytokine signals and subsequently suppressed the differentiation of Th cell responses. PMID:28095433

  10. Localized one-dimensional single voxel magnetic resonance spectroscopy without J coupling modulations.

    PubMed

    Lin, Yanqin; Lin, Liangjie; Wei, Zhiliang; Zhong, Jianhui; Chen, Zhong

    2016-12-01

    To acquire single voxel localized one-dimensional 1 H magnetic resonance spectroscopy (MRS) without J coupling modulations, free from amplitude and phase distortions. A pulse sequence, named PRESSIR, is developed for volume localized MRS without J modulations at arbitrary echo time (TE). The J coupling evolution is suppressed by the J-refocused module that uses a 90° pulse at the midpoint of a double spin echo. The localization performance of the PRESSIR sequence was tested with a two-compartment phantom. The proposed sequence shows similar voxel localization accuracy as PRESS. Both PRESSIR and PRESS sequences were performed on MRS brain phantom and pig brain tissue. PRESS spectra suffer from amplitude and phase distortions due to J modulations, especially under moderate and long TEs, while PRESSIR spectra are almost free from distortions. The PRESSIR sequence proposed herein enables the acquisition of single voxel in-phase MRS within a single scan. It allows an enhanced signal intensity of J coupling metabolites and reducing undesired broad resonances with short T2s while suppressing J modulations. Moreover, it provides an approach for direct measurement of nonoverlapping J coupling peaks and of transverse relaxation times T2s. Magn Reson Med 76:1661-1667, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  11. An analysis of 3105 Medico Legal Cases at Tertiary Care Hospital, Rawalpindi.

    PubMed

    Malik, Romana; Atif, Iffat; Rashid, Farah; Abbas, Maqbool

    2017-01-01

    Medico legal cases are essential component of medical practice and comprise most important constituent of emergencies. The reporting of such cases is imperative to recognize theirsocioeconomic burden on any country. The present study was conducted to scrutinize different categories of medico legal cases and characteristics of the victims at casualty department oftertiary care hospital Rawalpindi. The objective of the study was to find out the frequency ofvarious categories of medico legal cases and major characteristics ofvictims at tertiary care hospital, Rawalpindi. This was a cross-sectional study on 3105 registered cases in medico legal record of the casualty department of Benazir Bhutto hospital, Rawalpindi from January 2015 to December 2015. The hospital is located on the main road in densely populated central area of the city. The data wascollected on age, sex, month-wise distribution of various medico legal cases, weapon inflicting the injury, blunt trauma or physical assault, firearm injuries and road traffic accidents. The data thus obtained was analyzed using SPSS; observations were presented in tables and graphs. Out of all 3105 registered medico legal cases, reported cases caused by Road Traffic Accident 1230 (40%) followed by blunt injury or physical assault 966 (32%) cases, 19% by sharp weapons, 5% by poisoning, and 4% by firearm injuries. In our study out of 3105 cases, almost three quarter of victims (73%) were below 30 years of age, with a decreasing frequency beyond this age, males were predominantly inflicted 2516(81%) as compared to females 589 (19%). The reported road traffic accidents cases from urban areas were high (74%) as compared to those from rural locality (37%). In cases of blunt trauma, sharp weapon injuries and firearm injuries, there was a huge preponderance of victims from rural areas (65%), (62%) and 61% respectively, with urban cases constituting less. Road traffic injuries are one of the foremost causes of medico legal cases

  12. Studying the P c ( 4450 ) resonance in J / ψ photoproduction off protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blin, A. N. Hiller; Fernandez-Ramirez, C.; Jackura, A.

    2016-08-01

    In this study, a resonance-like structure, the P c(4450), has recently been observed in the J/ψ p spectrum by the LHCb collaboration. We discuss the feasibility of detecting this structure in J/ψ photoproduction in the CLAS12 experiment at JLab. We present a first estimate of the upper limit for the branching ratio of the P c(4450) to J/ψ p. Our estimates, which take into account the experimental resolution effects, lead to a sizable cross section close to the J/ψ production threshold, which makes future experiments covering this region very promising.

  13. Observation of J/ψp Resonances Consistent with Pentaquark States in Λ_{b}^{0}→J/ψK^{-}p Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Ninci, D; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zucchelli, S

    2015-08-14

    Observations of exotic structures in the J/ψp channel, which we refer to as charmonium-pentaquark states, in Λ_{b}^{0}→J/ψK^{-}p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb^{-1} acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/ψp mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±29 MeV and a width of 205±18±86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.5 MeV and a width of 39±5±19 MeV. The preferred J^{P} assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

  14. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  15. Analysis of the B+→J /ψ ϕ K+ data at low J /ψ ϕ invariant masses and the X (4140 ) and X (4160 ) resonances

    NASA Astrophysics Data System (ADS)

    Wang, En; Xie, Ju-Jun; Geng, Li-Sheng; Oset, Eulogio

    2018-01-01

    We have studied the J /ψ ϕ mass distribution of the B+→J /ψ ϕ K+ reaction from threshold to about 4250 MeV, and find that one needs the contribution of the X (4140 ) with a narrow width, together with the X (4160 ) which accounts for most of the strength of the distribution in that region. The existence of a clear cusp at the Ds*D¯s* threshold indicates that the X (4160 ) resonance is strongly tied to the Ds*D¯s* channel, which finds a natural interpretation in the molecular picture of this resonance.

  16. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance

    EPA Pesticide Factsheets

    NMR fluid measurements of commonly used rat strains when subjected to SQ normotonic or hypertonic salines, as well as physiologic comparisons to sedentary and exercised subjects.This dataset is associated with the following publication:Gordon , C., P. Phillips , and A. Johnstone. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance. American Journal of Physiology- Renal Physiology. American Physiological Society, Bethesda, MD, USA, 310(5): 426-31, (2016).

  17. Analytic forms for cross sections of di-lepton production from e+e- collisions around the Jresonance

    NASA Astrophysics Data System (ADS)

    Zhou, Xing-Yu; Wang, Ya-Di; Xia, Li-Gang

    2017-08-01

    A detailed theoretical derivation of the cross sections of e+e- → e+e- and e+e- → μ + μ - around the Jresonance is reported. The resonance and interference parts of the cross sections, related to Jresonance parameters, are calculated. Higher-order corrections for vacuum polarization and initial-state radiation are considered. An arbitrary upper limit of radiative correction integration is involved. Full and simplified versions of analytic formulae are given with precision at the level of 0.1% and 0.2%, respectively. Moreover, the results obtained in the paper can be applied to the case of the ψ(3686) resonance. Supported by National Natural Science Foundation of China (11275211) and Istituto Nazionale di Fisica Nucleare, Italy

  18. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.

    PubMed

    Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun

    2002-06-01

    Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.

  19. Processing tracking in jMRUI software for magnetic resonance spectra quantitation reproducibility assurance.

    PubMed

    Jabłoński, Michał; Starčuková, Jana; Starčuk, Zenon

    2017-01-23

    Proton magnetic resonance spectroscopy is a non-invasive measurement technique which provides information about concentrations of up to 20 metabolites participating in intracellular biochemical processes. In order to obtain any metabolic information from measured spectra a processing should be done in specialized software, like jMRUI. The processing is interactive and complex and often requires many trials before obtaining a correct result. This paper proposes a jMRUI enhancement for efficient and unambiguous history tracking and file identification. A database storing all processing steps, parameters and files used in processing was developed for jMRUI. The solution was developed in Java, authors used a SQL database for robust storage of parameters and SHA-256 hash code for unambiguous file identification. The developed system was integrated directly in jMRUI and it will be publically available. A graphical user interface was implemented in order to make the user experience more comfortable. The database operation is invisible from the point of view of the common user, all tracking operations are performed in the background. The implemented jMRUI database is a tool that can significantly help the user to track the processing history performed on data in jMRUI. The created tool is oriented to be user-friendly, robust and easy to use. The database GUI allows the user to browse the whole processing history of a selected file and learn e.g. what processing lead to the results, where the original data are stored, to obtain the list of all processing actions performed on spectra.

  20. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Timothy F. G., E-mail: tim.green@materials.ox.ac.uk; Yates, Jonathan R., E-mail: jonathan.yates@materials.ox.ac.uk

    2014-06-21

    We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing themore » heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, {sup 1}J(P-Ag) and {sup 2}J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.« less

  1. Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team

    2018-03-01

    The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.

  2. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.

    2013-04-01

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  3. Enhancement of runaway production by resonant magnetic perturbation on J-TEXT

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Huang, D. W.; Izzo, V. A.; Tong, R. H.; Jiang, Z. H.; Hu, Q. M.; Wei, Y. N.; Yan, W.; Rao, B.; Wang, S. Y.; Ma, T. K.; Li, S. C.; Yang, Z. J.; Ding, D. H.; Wang, Z. J.; Zhang, M.; Zhuang, G.; Pan, Y.; J-TEXT Team

    2016-07-01

    The suppression of runaways following disruptions is key for the safe operation of ITER. The massive gas injection (MGI) has been developed to mitigate heat loads, electromagnetic forces and runaway electrons (REs) during disruptions. However, MGI may not completely prevent the generation of REs during disruptions on ITER. Resonant magnetic perturbation (RMP) has been applied to suppress runaway generation during disruptions on several machines. It was found that strong RMP results in the enhancement of runaway production instead of runaway suppression on J-TEXT. The runaway current was about 50% pre-disruption plasma current in argon induced reference disruptions. With moderate RMP, the runway current decreased to below 30% pre-disruption plasma current. The runaway current plateaus reach 80% of the pre-disruptive current when strong RMP was applied. Strong RMP may induce large size magnetic islands that could confine more runaway seed during disruptions. This has important implications for runaway suppression on large machines.

  4. Nuclear Magnetic Resonance Nondestructive Evaluation of Composite Materials

    DTIC Science & Technology

    1990-04-09

    Pat. Appl. EP 26265, 8 Apr 1981, 13 pp. (1981). 9. A. N. Garroway , J. Baum, M. G. Munowitz, and A. Pines, NMR Imaging in Solids by Multiple-Quantum...Resonance, J. Magn. Reson. 60(2), 337-41 (1984). 10. J. Baum, A. N. Garroway , M. Munowitz, and A. Pines, Multiple-Quantum NMR in Solids: Application to... Garroway , NMR Images of Solids, J. Magn. Reson. 66(3), 530-5 (1986). 28. J. B. Miller and A. N. Garroway , Removal of Static Field Inhomogeneity and

  5. Observation of a J(PC)=1-+ exotic resonance in diffractive dissociation of 190   GeV/c π- into π- π- π+.

    PubMed

    Alekseev, M G; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Badełek, B; Balestra, F; Ball, J; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Dafni, T; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger, M; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gobbo, B; Goertz, S; Grabmüller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heckmann, J; Heinsius, F H; Hermann, R; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d'Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Königsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Krämer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Maximov, A N; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J-F; Ramos, S; Rapatsky, V; Reicherz, G; Reggiani, D; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmitt, L; Schopferer, S; Schröder, W; Shevchenko, O Yu; Siebert, H-W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wiślicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A

    2010-06-18

    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the π- π- π+ final state using a 190  GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420,000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1  GeV2/c2. The well-known resonances a1(1260), a2(1320), and π2(1670) are clearly observed. In addition, the data show a significant natural-parity exchange production of a resonance with spin-exotic quantum numbers J(PC)=1-+ at 1.66  GeV/c2 decaying to ρπ. The resonant nature of this wave is evident from the mass-dependent phase differences to the J(PC)=2-+ and 1++ waves. From a mass-dependent fit a resonance mass of (1660±10(-64)(+0))  MeV/c2 and a width of (269±21(-64)(+42))  MeV/c2 are deduced, with an intensity of (1.7±0.2)% of the total intensity.

  6. A study of J-coupling spectroscopy using the Earth's field nuclear magnetic resonance inside a laboratory.

    PubMed

    Liao, Shu-Hsien; Chen, Ming-Jye; Yang, Hong-Chang; Lee, Shin-Yi; Chen, Hsin-Hsien; Horng, Herng-Er; Yang, Shieh-Yueh

    2010-10-01

    In this paper, an instrumentation of the Earth's field nuclear magnetic resonance (EFNMR) inside a laboratory is presented. A lock-in analysis (LIA) technique was proposed to enhance the signal-to-noise ratio (SNR). A SNR of 137.8 was achieved in a single measurement for 9 ml tap water, and the LIA technique significantly enhanced the SNR to 188 after a 10-average in a noisy laboratory environment. The proton-phosphorus coupling in trimethyl phosphate ((CH(3)O)(3)PO) with J-coupling J[H,F]=(10.99±0.013) Hz has been demonstrated. The LIA technique improves the SNR, and a 2.6-fold improvement in SNR over that of the frequency-adjusted averaging is achieved. To reduce the noise in EFNMR, it was suggested that the LIA technique and the first order gradient shim be used to achieve a subhertz linewidth.

  7. Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING

    2018-05-01

    Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.

  8. 1H, 15N and 13C resonance assignments of the J-domain of co-chaperone Sis1 from Saccharomyces cerevisiae.

    PubMed

    Pinheiro, Glaucia M S; Amorim, Gisele C; Iqbal, Anwar; Ramos, C H I; Almeida, Fabio C L

    2018-04-30

    Protein folding in the cell is usually aided by molecular chaperones, from which the Hsp70 (Hsp = heat shock protein) family has many important roles, such as aiding nascent folding and participating in translocation. Hsp70 has ATPase activity which is stimulated by binding to the J-domain present in co-chaperones from the Hsp40 family. Hsp40s have many functions, as for instance the binding to partially folded proteins to be delivered to Hsp70. However, the presence of the J-domain characterizes Hsp40s or, by this reason, as J-proteins. The J-domain alone can stimulate Hsp70 ATPase activity. Apparently, it also maintains the same conformation as in the whole protein although structural information on full J-proteins is still missing. This work reports the 1 H, 15 N and 13 C resonance assignments of the J-domain of a Hsp40 from Saccharomyces cerevisiae, named Sis1. Secondary structure and order parameter prediction from chemical shifts are also reported. Altogether, the data show that Sis1 J-domain is highly structured and predominantly formed by α-helices, results that are in very good agreement with those previously reported for the crystallographic structure.

  9. Measurement of the neutron capture resonances for platinum using the Ge spectrometer and pulsed neutron beam at the J-PARC/MLF/ANNRI

    NASA Astrophysics Data System (ADS)

    Kino, Koichi; Hasemi, Hiroyuki; Kimura, Atsushi; Kiyanagi, Yoshiaki

    2017-09-01

    The neutron capture cross-section for platinum was measured at J-PARC/MLF/ANNRI. The intense pulsed neutron beam was impinging on a natural platinum foil sample and the emitted prompt γ-rays were detected by a Ge spectrometer. The peak energies of the low energy resonances for natural platinum are consistent with those of the JEFF-3.1.2, RUSFOND2010 and next-JENDL data libraries except for the 20-eV resonance. The resonance cross-sections of the next-JENDL library do not contradict the present measurements within the uncertainty of the absolute value of the present work. We analysed the prompt γ-ray spectrum and found a clear 7921.93 keV peak that originates from the transition from the 196Pt compound state to its ground state. The neutron capture cross-section for 195Pt was obtained by choosing events of this peak. The peak energies of most of the low energy resonances are almost consistent with those of the RUSFOND2010 and next-JENDL libraries. However, there was a disagreement for the 20-eV resonance.

  10. Observation of the Y (4140) structure in the J/ψϕ mass spectrum in B±→ J/ψϕK± decays

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Buccianton, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; de Barbaro, P.; de Cecco, S.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Fernandez, P. Movilla; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Griso, S. Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rubbo, F.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sissakian, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stancari, M.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Ttito-Guzmán, P.; Tkaczyk, S.; Tokar, S.; Tollefson, K.; Tomura, T.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tu, Y.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Whitehouse, B.; Whiteson, D.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamaoka, J.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zucchelli, S.

    2017-08-01

    The observation of the Y (4140) structure in B±→ J/ψϕK± decays produced in p¯p collisions at s = 1.96 TeV is reported with a statistical significance greater than 5 standard deviations. A fit to the J/ψϕ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of 19 ± 6(stat) ± 3(syst) resonance events, and resonance mass and width of 4143.4-3.0+2.9(stat) ± 0.6(syst)MeV/c2 and 15.3-6.1+10.4(stat) ± 2.5(syst)MeV/c2, respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.

  11. Atlas of Neutron Resonances

    Science.gov Websites

    Table Resonance Integrals & Thermal Cross Sections Book Review by J. Rowlands Nuclear Reaction Atlas of Neutron Resonances Preface: This book is the fifth edition of what was previously known as BNL extensive list of detailed individual resonance parameters for each nucleus, this book contains thermal

  12. Orbital-plane precessional resonances for binary black-hole systems

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Zhao, Xinyu; Gerosa, Davide

    2016-03-01

    We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.

  13. Atomic sulfur: Frequency measurement of the J = 0 left arrow 1 fine-structure transition at 56.3 microns by laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.

    1994-01-01

    The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.

  14. Observation of the Y (4140) structure in the J/ψΦ mass spectrum in B±→ J/ψΦK ± decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; González, B. Álvarez; Amerio, S.

    Here, the observation of themore » $Y(4140)$ structure in $$B^\\pm\\rightarrow J/\\psi\\,\\phi K^\\pm$$ decays produced in $$\\bar{p} p $$ collisions at $$\\sqrt{s}=1.96~TeV$$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $$J/\\psi\\,\\phi$$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of $$19^{+6}_{-5}$$ resonance events, and resonance mass and width of $$4143.4^{+2.9}_{-3.0}(\\mathrm{stat})\\pm0.6(\\mathrm{syst}) ~MeVcc$$ and $$15.3^{+10.4}_{-6.1}(\\mathrm{stat})\\pm2.5(\\mathrm{syst})~MeVcc$$ respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.« less

  15. Observation of the Y (4140) structure in the J/ψΦ mass spectrum in B±→ J/ψΦK ± decays

    DOE PAGES

    Aaltonen, T.; González, B. Álvarez; Amerio, S.; ...

    2017-07-27

    Here, the observation of themore » $Y(4140)$ structure in $$B^\\pm\\rightarrow J/\\psi\\,\\phi K^\\pm$$ decays produced in $$\\bar{p} p $$ collisions at $$\\sqrt{s}=1.96~TeV$$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $$J/\\psi\\,\\phi$$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of $$19^{+6}_{-5}$$ resonance events, and resonance mass and width of $$4143.4^{+2.9}_{-3.0}(\\mathrm{stat})\\pm0.6(\\mathrm{syst}) ~MeVcc$$ and $$15.3^{+10.4}_{-6.1}(\\mathrm{stat})\\pm2.5(\\mathrm{syst})~MeVcc$$ respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.« less

  16. Time-resolved double resonance study of J- and K-changing rotational collisional processes in CH3Cl

    NASA Astrophysics Data System (ADS)

    Pape, Travis W.; De Lucia, Frank C.; Skatrud, David D.

    1994-04-01

    Time-resolved double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter-wave probe radiation (IRMMDR) has been used to study rotational energy transfer (RET) in CH3Cl. A collisional energy transfer model using only five parameters for RET plus those needed for vibrational processes is shown to accurately model 350 IRMMDR time responses for two different pump states and 43 probe transitions covering a wide range of rotational states. Previous studies in this laboratory have revealed that J- and K-changing RET have vastly different characters in CH3F [J. Chem. Phys. 92, 6480 (1990)]. Both J- and K-changing RET were accurately modeled with four parameters—one for dipole-dipole collisions, two for the ΔJ scaling law, and one for the cumulative rate of K-changing collisions. As was found for CH3F, J-changing rotational collision rates in CH3Cl are modeled accurately by both the statistical power gap (SPG) law and the infinite order sudden approximation using a power law expression for the basis rates (IOS-P). However, in contrast to CH3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH3Cl states populated by K-changing collisions contain an additional early time feature (ETF) that varies with pump and probe states. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH3F, the temperature is found to be a function of time for CH3Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH3Cl.

  17. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.

    PubMed

    Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S

    2007-12-01

    We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.

  18. Dalitz plot analyses of J /ψ →π+π-π0, J /ψ →K+K-π0, and J /ψ →Ks0K±π∓ produced via e+e- annihilation with initial-state radiation

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Fritsch, M.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Szczepaniak, A. P.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Pennington, M. R.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2017-04-01

    We study the processes e+e- →γISRJ /ψ , where J /ψ →π+π-π0, J /ψ →K+K-π0, and J /ψ →KS0K±π∓ using a data sample of 519 fb-1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e- collider at center-of-mass energies at and near the Υ (n S ) (n =2 ,3 ,4 ) resonances. We measure the ratio of branching fractions R1=B/(J /ψ →K+K-π0) B (J /ψ →π+π-π0) and R2=B/(J /ψ →KS0K±π∓) B (J /ψ →π+π-π0) . We perform Dalitz plot analyses of the three J /ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J /ψ →π+π-π0 decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450 ) in all three J /ψ decay modes and measure the relative branching fraction: R (ρ (1450 ))=B/(ρ (1450 )→K+K-) B (ρ (1450 )→π+π-) =0.307 ±0.084 (stat)±0.082 (sys).

  19. Pionic transitions from X(3872) to {chi}{sub cJ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubynskiy, S.; Voloshin, M.B.; William, I.

    2008-01-01

    We consider transitions from the resonance X(3872) to the {chi}{sub cJ} states of charmonium with emission of one or two pions as a means of studying the structure of the X resonance. We find that the relative rates for these transitions to the final states with different J significantly depend on whether the initial state is a pure charmonium state or a four-quark/molecular state.

  20. Apex-angle-dependent resonances in triangular split-ring resonators

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Fiddy, Michael A.

    2016-02-01

    Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.

  1. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou

    We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS whilemore » blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.« less

  2. Update on J /ψ regeneration in a hadron gas

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.

    2018-04-01

    In heavy-ion collisions, after the quark-gluon plasma there is a hadronic gas phase. Using effective Lagrangians, we study the interactions of charmed mesons which lead to J /ψ production and absorption in this gas. We update and extend previous calculations introducing strange meson interactions and also including the interactions mediated by the recently measured exotic charmonium resonances Z (3900 ) and Z (4025 ) . These resonances open new reaction channels for the J /ψ , which could potentially lead to changes in its multiplicity. We compute the J /ψ production cross section in processes such as D(s) (*)+D¯(*)→J /ψ +(π ,ρ ,K ,K*) and also the J /ψ absorption cross section in the corresponding inverse processes. Using the obtained cross sections as input to solve the appropriate rate equation, we conclude that the interactions in the hadron gas phase lead to a 20-24% reduction of the J /ψ abundance. Within the uncertainties of the calculation, this reduction is the same at the Relativistic Heavy Ion Collider and the large Hadron Collider.

  3. 15 mJ single-frequency Ho:YAG laser resonantly pumped by a 1.9 µm laser diode

    NASA Astrophysics Data System (ADS)

    Na, Q. X.; Gao, C. Q.; Wang, Q.; Zhang, Y. X.; Gao, M. W.; Ye, Q.; Li, Y.

    2016-09-01

    A 2.09 µm injection-seeded single-frequency Ho:YAG laser resonantly pumped by a 1.91 µm laser diode is demonstrated for the first time. The seed laser is a continuous wave (CW) Ho:YAG non-planar ring oscillator. 15.15 mJ single-frequency output energy is obtained from the injection-seeded Q-switched Ho:YAG laser, with a pulse repetition rate of 200 Hz and a pulse width of 109 ns. The half-width of the pulse spectrum is measured to be 4.19 MHz by using the heterodyne technique. The fluctuation of the center frequency of the single-frequency pulses is 1.52 MHz (root mean square (RMS)) in 1 h.

  4. Absorption bleaching of squarylium dye J aggregates via a two-photon excitation process

    NASA Astrophysics Data System (ADS)

    Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Pu, Lyong Sun; Tatsuura, Satoshi; Abe, Shuji

    2001-08-01

    Squarylium dye J aggregates exhibit ultrafast nonlinear optical response of absorption saturation at the resonant wavelength of 770 nm. We studied the two-photon excitation process of J aggregates. By fluorescence measurement, we found the two-photon absorption band at 1.3 μm, which was different from that of the dye solution at 1.2 μm. Absorption saturation at 770 nm via a two-photon excitation process was observed by two-photon resonant excitation at 1.3 μm and also by off-resonant excitation at 1.55 μm, suggesting the possibility of J aggregates for optical switching materials working at the wavelength used in optical communications.

  5. The direct measurement of the 3 3P0-3 3P1 fine-structure interval and the gJ-factor of atomic silicon by laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Evenson, K. M.; Beltran-Lopez, V.; Ley-Koo, E.; Inguscio, M.

    1984-01-01

    The J - 1 fine structure interval and the g-factor of the 3P1 state have been determined with high precision in the present laser magnetic resonance measurements of the ground 3p2 3P multiplet of atomic Si. Delta-E(3P1-3P0) = 2,311,755.6(7) MHz, and gJ(3P1) = 1.500830(70). Single-configuration calculations of gJ for 3P1 and 3P2 yield a value for the latter which, at 1.501095, is noted to differ by an unexpectedly large margin from the experimental value.

  6. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less

  7. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K -π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  8. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-04-10

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K -π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  9. Comment on ``Anisotropy studies of molecular-beam-epitaxy-grown Co(111) thin films by ferromagnetic resonance'' [J. Appl. Phys. 75, 6492 (1994)

    NASA Astrophysics Data System (ADS)

    Artman, J. O.

    1995-05-01

    The magnetic free energy expression E used to calculate ferromagnetic resonance frequencies by F. Schreiber et al., J. Appl. Phys. 75, 6492 (1994) is examined. The expression is correct for hexagonal site symmetry films but not for any type of cubic symmetry film. The correct expression, including both K1c and K2c anisotropy contributions, for E with H in the basal plane of a (111) film is given in the text.

  10. The e{sup +}e{sup -}{yields}J/{psi}DD-bar, J/{psi}DD-bar* reactions with dynamically generated resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamermann, D.; Oset, E.

    2008-08-31

    In two recent reactions by Belle producing DD-bar and DD-bar* meson pairs, peaks above threshold have been measured in the differential cross sections, possibly indicating new resonances in these channels. We want to study such reactions from the point of view that the D meson pairs are produced from already known or predicted resonances below threshold. Our study shows that the peak in the DD-bar* production is not likely to be caused by the X(3872) resonance, but the peak seen in DD-bar invariant mass can be well described if the DD-bar pair comes from the already predicted scalar X(3700) resonance.

  11. Observation of the decay B-->J/psietaK and search for X(3872)-->J/psieta.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Tehrani, F Safai; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; De Nardo, G; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-07-23

    We report the observation of the B meson decay B+/- -->J/psietaK+/- and evidence for the decay B0-->J/psietaK0S, using 90 x 10(6) BB; events collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC PEP-II e+e- asymmetric-energy storage ring. We obtain branching fractions of B(B+/- -->J/psietaK+/-) = [10.8 +/- 2.3(stat) +/- 2.4(syst)] x 10(-5) and B(B0-->J/psietaK0S) = [8.4 +/- 2.6(stat) +/- 2.7(syst)] x 10(-5). We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B+/- -->X(3872)K+/-,X(3872)-->J/psieta and determine an upper limit of B[B +/- -->X(3872)K+/- -->J/psietaK+/-] < 7.7 x 10(-6) at 90% confidence level. Copyright 2004 The American Physical Society

  12. Application of Probabilistic Methods to Assess Risk Due to Resonance in the Design of J-2X Rocket Engine Turbine Blades

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven

    2011-01-01

    The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.

  13. Breit-Wigner Approximation and the Distributionof Resonances

    NASA Astrophysics Data System (ADS)

    Petkov, Vesselin; Zworski, Maciej

    For operators with a discrete spectrum, {λj2}, the counting function of λj's, N (λ), trivially satisfies N ( λ+δ ) -N ( λ-δ ) =∑jδλj((λ-δ,λ+δ]). In scattering situations the natural analogue of the discrete spectrum is given by resonances, λj∈+, and of N (λ), by the scattering phase, s(λ). The relation between the two is now non-trivial and we prove that where ω+ is the harmonic measure of the upper of half plane and δ can be taken dependent on λ. This provides a precise high energy version of the Breit-Wigner approximation, and relates the properties of s (λ) to the distribution of resonances close to the real axis.

  14. Discrete contribution to {psi}{sup '}{yields}J/{psi}+{gamma}{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Zhiguo; Soto, Joan; Lu Xiaorui

    2011-03-01

    The decay mode {psi}(2S){yields}J/{psi}+{gamma}{gamma} is proposed in order to experimentally identify the effects of the coupling of charmonium states to the continuum D{bar D} states. To have a better understanding of such a two-photon decay process, in this work we restrict ourselves to investigate the contribution of the discrete part, in which the photons are mainly produced via the intermediate states {chi}{sub cJ}(nP). Besides calculating the resonance contributions of {chi}{sub cJ}(1P)(J=0,1,2), we also take into account the contributions of the higher excited states {chi}{sub cJ}(2P) and the interference effect among the 1P and 2P states. We find that the contributionmore » of the 2P states and the interference terms to the total decay width is very tiny. However, for specific regions of the Dalitz plot, off the resonance peaks, we find that these contributions are sizable and should also be accounted for. We also provide the photon spectrum and study the polarization of J/{psi}.« less

  15. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We study the processes e + e - → γ ISR J / ψ , where J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb - 1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e + e - collider at center-of-mass energies at and near the Υ ( n S ) ( n = 2 , 3 , 4 ) resonances.« less

  16. A novel method to optimize the mode spectrum of the dynamic resonant magnetic perturbation on the J-TEXT tokamak.

    PubMed

    Yi, B; Rao, B; Ding, Y H; Li, M; Xu, H Y; Zhang, M; Zhuang, G; Pan, Y

    2014-11-01

    The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.

  17. A novel method to optimize the mode spectrum of the dynamic resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Yi, B.; Rao, B.; Ding, Y. H.; Li, M.; Xu, H. Y.; Zhang, M.; Zhuang, G.; Pan, Y.

    2014-11-01

    The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.

  18. Response of a core coherent density oscillation on electron cyclotron resonance heating in Heliotron J plasma

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Kobayashi, S.; Lu, X. X.; Kenmochi, N.; Ida, K.; Ohshima, S.; Yamamoto, S.; Kado, S.; Kokubu, D.; Nagasaki, K.; Okada, H.; Minami, T.; Otani, Y.; Mizuuchi, T.

    2018-01-01

    We report properties of a coherent density oscillation observed in the core region and its response to electron cyclotron resonance heating (ECH) in Heliotron J plasma. The measurement was performed using a multi-channel beam emission spectroscopy system. The density oscillation is observed in a radial region between the core and the half radius. The poloidal mode number is found to be 1 (or 2). By modulating the ECH power with 100 Hz, repetition of formation and deformation of a strong electron temperature gradient, which is likely ascribed to be an electron internal transport barrier, is realized. Amplitude and rotation frequency of the coherent density oscillation sitting at the strong electron temperature gradient location are modulated by the ECH, while the poloidal mode structure remains almost unchanged. The change in the rotation velocity in the laboratory frame is derived. Assuming that the change of the rotation velocity is given by the background E × B velocity, a possible time evolution of the radial electric field was deduced.

  19. Large χ(3) of squarylium dye J aggregates measured using the Z-scan technique

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Wada, Osamu; Tian, Minquan; Furuki, Makoto; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun; Kawashima, Hitoshi

    2001-10-01

    Third-order nonlinear optical coefficients χ(3) were measured for the J aggregates of two types of squarylium dye derivatives at resonant and near-resonant wavelengths by using the Z-scan technique. The maximum χ(3) value evaluated at one-photon resonance was 2.9×10-6 e.s.u., which was greater than that of phthalocyanines by 4 orders of magnitude. χ(3) for one squarylium derivative was approximately two times as large as that of the other. This can be attributed to the difference of the number of molecules contributing to a coherent state in each J aggregate.

  20. Accuracy of 1H magnetic resonance spectroscopy for quantification of 2-hydroxyglutarate using linear combination and J-difference editing at 9.4T.

    PubMed

    Neuberger, Ulf; Kickingereder, Philipp; Helluy, Xavier; Fischer, Manuel; Bendszus, Martin; Heiland, Sabine

    2017-12-01

    Non-invasive detection of 2-hydroxyglutarate (2HG) by magnetic resonance spectroscopy is attractive since it is related to tumor metabolism. Here, we compare the detection accuracy of 2HG in a controlled phantom setting via widely used localized spectroscopy sequences quantified by linear combination of metabolite signals vs. a more complex approach applying a J-difference editing technique at 9.4T. Different phantoms, comprised out of a concentration series of 2HG and overlapping brain metabolites, were measured with an optimized point-resolved-spectroscopy sequence (PRESS) and an in-house developed J-difference editing sequence. The acquired spectra were post-processed with LCModel and a simulated metabolite set (PRESS) or with a quantification formula for J-difference editing. Linear regression analysis demonstrated a high correlation of real 2HG values with those measured with the PRESS method (adjusted R-squared: 0.700, p<0.001) as well as with those measured with the J-difference editing method (adjusted R-squared: 0.908, p<0.001). The regression model with the J-difference editing method however had a significantly higher explanatory value over the regression model with the PRESS method (p<0.0001). Moreover, with J-difference editing 2HG was discernible down to 1mM, whereas with the PRESS method 2HG values were not discernable below 2mM and with higher systematic errors, particularly in phantoms with high concentrations of N-acetyl-asparate (NAA) and glutamate (Glu). In summary, quantification of 2HG with linear combination of metabolite signals shows high systematic errors particularly at low 2HG concentration and high concentration of confounding metabolites such as NAA and Glu. In contrast, J-difference editing offers a more accurate quantification even at low 2HG concentrations, which outweighs the downsides of longer measurement time and more complex postprocessing. Copyright © 2017. Published by Elsevier GmbH.

  1. Dust grain resonant capture: A statistical study

    NASA Technical Reports Server (NTRS)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  2. Swinging atwood machine. Far- and near-resonance region

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, A.; Debnath, M.

    1988-11-01

    The swinging Atwood machine, a prototype nonlinear dynamical system, is analyzed following an idea of Bogoliubov and Mitropolsky. A series solution is found for the radial and angular displacement as functions of time. The analysis is repeated in the resonance case, when the frequency of the driving force maintains a fixed ratio to that of the free motion. The condition of resonance requires the mass ratio μ to be equal to 2 j 2-1, where j is an integer not equal to one.

  3. Observing shape resonances in ultraslow H^++H elastic scattering

    NASA Astrophysics Data System (ADS)

    Macek, J. H.; Schultz, D. R.; Ovchinnikov, S. Yu.; Krstic, P. S.

    2004-05-01

    We have calculated highly accurate elastic and charge transfer cross sections for proton-hydrogen scattering at energies 0.0001-10 eV, using fully quantal approach (P.S. Krstic and D.R. Schultz, J. Phys. B 32, 3485 (1999)). A number of resonances are observed. We calculate the positions and widths of the shape resonances in the effective potentials for various orbital angular momenta (J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A 50, 468 (1994)). These correlate well with the observed resonances. We acknowledge support from the US DOE through ORNL, managed by UT-Battelle, LLC under contract DE-AC05-00OR22725.

  4. Proton echo-planar spectroscopic imaging of J-coupled resonances in human brain at 3 and 4 Tesla.

    PubMed

    Posse, Stefan; Otazo, Ricardo; Caprihan, Arvind; Bustillo, Juan; Chen, Hongji; Henry, Pierre-Gilles; Marjanska, Malgorzata; Gasparovic, Charles; Zuo, Chun; Magnotta, Vincent; Mueller, Bryon; Mullins, Paul; Renshaw, Perry; Ugurbil, Kamil; Lim, Kelvin O; Alger, Jeffry R

    2007-08-01

    In this multicenter study, 2D spatial mapping of J-coupled resonances at 3T and 4T was performed using short-TE (15 ms) proton echo-planar spectroscopic imaging (PEPSI). Water-suppressed (WS) data were acquired in 8.5 min with 1-cm(3) spatial resolution from a supraventricular axial slice. Optimized outer volume suppression (OVS) enabled mapping in close proximity to peripheral scalp regions. Constrained spectral fitting in reference to a non-WS (NWS) scan was performed with LCModel using correction for relaxation attenuation and partial-volume effects. The concentrations of total choline (tCho), creatine + phosphocreatine (Cr+PCr), glutamate (Glu), glutamate + glutamine (Glu+Gln), myo-inositol (Ins), NAA, NAA+NAAG, and two macromolecular resonances at 0.9 and 2.0 ppm were mapped with mean Cramer-Rao lower bounds (CRLBs) between 6% and 18% and approximately 150-cm(3) sensitive volumes. Aspartate, GABA, glutamine (Gln), glutathione (GSH), phosphoethanolamine (PE), and macromolecules (MMs) at 1.2 ppm were also mapped, although with larger mean CRLBs between 30% and 44%. The CRLBs at 4T were 19% lower on average as compared to 3T, consistent with a higher signal-to-noise ratio (SNR) and increased spectral resolution. Metabolite concentrations were in the ranges reported in previous studies. Glu concentration was significantly higher in gray matter (GM) compared to white matter (WM), as anticipated. The short acquisition time makes this methodology suitable for clinical studies.

  5. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    NASA Astrophysics Data System (ADS)

    Goosen, Maikel; Kokkelmans, Servaas

    2008-05-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the magnetic fields of intersection of these bound states with the scattering threshold. This model was very successful to assign measured Feshbach resonances in an ultra cold mixture of ^6Li and ^40K atomsootnotetextE. Wille, F.M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T.G. Tiecke, J.T.M. Walraven, S.J.J.M.F. Kokkelmans, E. Tiesinga, P.S. Julienne, arXiv:0711.2916. For this system, the accuracy of the determined scattering lengths is comparable to full coupled channels results. However, it was not possible to predict the width of the resonances. We discuss how an incorporation of threshold effects will improve the model, and we apply it to a mixture of ^87Rb and ^133Cs atoms, where recently Feshbach resonances have been measured.

  6. Resonant third-order optical nonlinearities of thin films containing J-aggregates of a cyanine dye or a squarylium dye

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Jin, Zhaohui; Kasatani, Kazuo

    2005-01-01

    The third-order optical nonlinearities and responses of thin films containing the J-aggregates of a cyanine dye or a squarylium dye were measured using the degenerate four-wave mixing (DFWM) technique under resonant conditions. The sol-gel silica coating films containing the J-aggregates of the cyanine dye, NK-3261, are stable at room temperature and durable against laser beam irradiation. The temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least three components, i.e., the coherent instantaneous nonlinear response and the two slow responses with delay time constants of ca. 1.0 ps and ca. 5.6 ps. The contribution of the later was small. The electronic component of the effective third-order optical nonlinear susceptibility of the film had value of as high as ca. 3.0 x 10-7 esu. We also studied the neat film of a squarylium dye J-aggregates. The temporal profile of the DFWM signal of the neat film of squarylium dye was also found to consist of at least three components, the coherent instantaneous nonlinear response and the delayed response with decay time constants of ca. 0.6 ps and ca. 6.5 ps. The contribution of the slow tail was also very small. The electronic component of effective third-order optical nonlinear susceptibility of the neat film of squarylium dye had value of as high as ca. 3.6 x 10-8 esu.

  7. Soft X-Ray Photoemission

    DTIC Science & Technology

    1977-07-01

    Edward R, Hahn/MS-X22 Attn: Donald R. McMorrow/MS-G30 Attn: Samuel R. Crawford/MS-531 Ford Aerospace & Comm Operations Ford & Jamboree Roads...80933 Attn: Jerry I. Lubell Attn: Walter E. Ware Attn: John R. Hoffman Attn: Donald H. Bryce Attn: Albert P. Bridges Litton Systems, Inc...International Corp, P.O. Box 3105 Anaheim, CA 92803 Attn: George C. Messenger FB61 Attn: Donald J, Stevens FA70 Attn: K. F. Hull Attn: N. J

  8. Is the CMS e e j j excess a hint for light supersymmetry?

    NASA Astrophysics Data System (ADS)

    Krauss, Manuel E.; Porod, Werner

    2015-09-01

    We discuss the impact of additional two-body decays of the right-handed neutrino into a light charged Higgs state on the dilepton plus dijet cross sections from resonant W' production. We consider in particular a supersymmetric left-right symmetric model which predicts such a light charged Higgs boson. We demonstrate that the e e j j excess as measured by CMS can be explained best if the W' also has decay modes into Higgsino-like charginos and neutralinos with masses of a few hundred GeV. Provided that this excess is confirmed, the model predicts also one right-handed neutrino with a mass below 200 GeV as well as a doubly charged Higgs boson which should be discovered at the LHC in the near future.

  9. Simultaneous quantification of glutamate and glutamine by J-modulated spectroscopy at 3 Tesla.

    PubMed

    Zhang, Yan; Shen, Jun

    2016-09-01

    The echo time (TE) averaged spectrum is the one-dimensional (1D) cross-section of the J-resolved spectrum at J = 0. In multiecho TE-averaged spectroscopy, glutamate (Glu) is differentiated from glutamine (Gln) at 3 Tesla (T). This method, however, almost entirely suppresses Gln resonance lines around 2.35 ppm, leaving Gln undetermined. This study presents a novel method for quantifying both Glu and Gln using multi-echo spectral data. A 1D cross-section of J-resolved spectroscopy at J = 7.5 Hz-referred to as J-modulated spectroscopy-was developed to simultaneously quantify Glu and Gln levels in the human brain. The transverse relaxation times (T2 s) of metabolites were first determined using conventional TE-averaged spectroscopy with different starting echo time and then incorporated into the spectral model for fitting J-modulated data. Simulation and in vivo data showed that the resonance signals of Glu and Gln were clearly separated around 2.35 ppm in J-modulated spectroscopy. In the anterior cingulate cortex, both Glu and Gln levels were found to be significantly higher in gray matter than in white matter in healthy subjects (P < 10(-10) and < 10(-5) , respectively). Gln resonances can be clearly separated from Glu and N-acetyl-aspartate around 2.35 ppm using J-modulated spectroscopy. This method can be used to quantitatively measure Glu and Gln simultaneously at 3T. Magn Reson Med 76:725-732, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Explaining a CMS e e j j excess with R -parity violating supersymmetry and implications for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-01

    A recent CMS search for the right-handed gauge boson WR reports an interesting deviation from the Standard Model. The search has been conducted in the e e j j channel and has shown a 2.8 σ excess around me e j j˜2 TeV . In this work, we explain the reported CMS excess with R -parity violating supersymmetry. We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an R -parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay (0 ν β β ) experiments. GERDA Phase-II will probe a significant portion of the good-fit parameter space.

  11. Spinon excitation spectra of the J1-J2 chain from analytical calculations in the dimer basis and exact diagonalization

    NASA Astrophysics Data System (ADS)

    Lavarélo, Arthur; Roux, Guillaume

    2014-10-01

    The excitation spectrum of the frustrated spin-1/2 Heisenberg chain is reexamined using variational and exact diagonalization calculations. We show that the overlap matrix of the short-range resonating valence bond states basis can be inverted which yields tractable equations for single and two spinons excitations. Older results are recovered and new ones, such as the bond-state dispersion relation and its size with momentum at the Majumdar-Ghosh point are found. In particular, this approach yields a gap opening at J 2 = 0.25 J 1 and an onset of incommensurability in the dispersion relation at J 2 = 9/17 J 1 as in [S. Brehmer et al., J. Phys.: Condens. Matter 10, 1103 (1998)]. These analytical results provide a good support for the understanding of exact diagonalization spectra, assuming an independent spinons picture.

  12. Comment on "Exact solution of resonant modes in a rectangular resonator".

    PubMed

    Gutiérrez-Vega, Julio C; Bandres, Miguel A

    2006-08-15

    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation.

  13. Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators and Superconductors.

    NASA Astrophysics Data System (ADS)

    Blumberg, G.; Abbamonte, P.; Klein, M. V.

    1996-03-01

    We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl2 and bilayer YBa_2Cu_3O6 + δ antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the B_1g two-magnon line shape peaked at ~ 2.7J and ~ 4J and strong nonmonotonic dependence of the scattering intensity on excitation energy. Resonant magnetic scattering contributes also to A_1g and B_2g channels. We analyze these data using the triple resonance theory of Chubukov and Frenkel(A. Chubukov and D. Frenkel, Phys. Rev. Lett.74), 3057 (1995). and deduce information about magnetic interaction (J and J_⊥) and band parameters (NN hopping t and charge transfer gap 2Δ) in these antiferromagnets.(G. Blumberg et. al.), Preprint cond-mat/9511080. The ~ 3J spin superexchange excitation persists upon hole doping and is present in superconductors, proving the universality of the short wavelength magnetic excitations in the cuprate superconducting metals and the parent antiferromagnetic insulators.(G. Blumberg et. al.), Phys. Rev. B 49, 13 295 (1994).

  14. Sedation of Pediatric Patients in Magnetic Resonance Imaging

    DTIC Science & Technology

    2000-01-03

    f-U. 7. SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING Alesia D. Ricks APPROVED: ll^fll JohnJ>. McDonough,-CRNA, Ed.D., Chair...any copyrighted material in the thesis entitled: " Sedation of Pediatric Patients in Magnetic Resonance Imaging" beyond brief excerpts is with the...arise from such copyright violations. IV f SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING By CAPT ALESIA D. RICKS, RN, BSN, NQUSAF

  15. χ_{c1} and χ_{c2} Resonance Parameters with the Decays χ_{c1,c2}→J/ψμ^{+}μ^{-}.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Luchinsky, A; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-12-01

    The decays χ_{c1}→J/ψμ^{+}μ^{-} and χ_{c2}→J/ψμ^{+}μ^{-} are observed and used to study the resonance parameters of the χ_{c1} and χ_{c2} mesons. The masses of these states are measured to be m(χ_{c1})=3510.71±0.04(stat)±0.09(syst)  MeV and m(χ_{c2})=3556.10±0.06(stat)±0.11(syst)  MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(χ_{c2})-m(χ_{c1})=45.39±0.07(stat)±0.03(syst)  MeV. The natural width of the χ_{c2} meson is measured to be Γ(χ_{c2})=2.10±0.20(stat)±0.02(syst)  MeV. These results are in good agreement with and have comparable precision to the current world averages.

  16. χc 1 and χc 2 Resonance Parameters with the Decays χc 1 ,c 2→J /ψ μ+μ-

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luchinsky, A.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-12-01

    The decays χc 1→J /ψ μ+μ- and χc 2→J /ψ μ+μ- are observed and used to study the resonance parameters of the χc 1 and χc 2 mesons. The masses of these states are measured to be m (χc 1)=3510.71 ±0.04 (stat ) ±0.09 (syst ) MeV and m (χc 2)=3556.10 ±0.06 (stat ) ±0.11 (syst ) MeV , where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m (χc 2)-m (χc 1)=45.39 ±0.07 (stat ) ±0.03 (syst ) MeV . The natural width of the χc 2 meson is measured to be Γ (χc 2)=2.10 ±0.20 (stat ) ±0.02 (syst ) MeV . These results are in good agreement with and have comparable precision to the current world averages.

  17. High Rydberg resonances in dielectronic recombination of pb(79+).

    PubMed

    Brandau, C; Bartsch, T; Hoffknecht, A; Knopp, H; Schippers, S; Shi, W; Müller, A; Grün, N; Scheid, W; Steih, T; Bosch, F; Franzke, B; Kozhuharov, C; Mokler, P H; Nolden, F; Steck, M; Stöhlker, T; Stachura, Z

    2002-07-29

    Dielectronic recombination resonances of Pb (79+) associated with 2s(1/2)-->2p(1/2) excitations were measured at the heavy-ion storage ring ESR at GSI. The fine structure of the energetically lowest resonance manifold Pb (78+)(1s(2)2p(1/2)20l(j)) at around 18 eV could partially be resolved, and rate coefficients on an absolute scale were obtained. A comparison of the experimental data with results of a fully relativistic theoretical approach shows that high-angular-momentum components up to j=31/2 significantly contribute to the total resonance strength demonstrating the necessity to revise the widespread notion of negligible high-angular-momentum contributions at least for very highly charged ions.

  18. Method for fabricating a microelectromechanical resonator

    DOEpatents

    Wojciechowski, Kenneth E; Olsson, III, Roy H

    2013-02-05

    A method is disclosed which calculates dimensions for a MEM resonator in terms of integer multiples of a grid width G for reticles used to fabricate the resonator, including an actual sub-width L.sub.a=NG and an effective electrode width W.sub.e=MG where N and M are integers which minimize a frequency error f.sub.e=f.sub.d-f.sub.a between a desired resonant frequency f.sub.d and an actual resonant frequency f.sub.a. The method can also be used to calculate an overall width W.sub.o for the MEM resonator, and an effective electrode length L.sub.e which provides a desired motional impedance for the MEM resonator. The MEM resonator can then be fabricated using these values for L.sub.a, W.sub.e, W.sub.o and L.sub.e. The method can also be applied to a number j of MEM resonators formed on a common substrate.

  19. Observation of χ cJ decaying into the pp̄K⁺K⁻ final state

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Alberto, D.; ...

    2011-06-27

    First measurements of the decays of the three χ cJ states to pp̄K⁺K⁻ final states are presented. Intermediate Φ→K⁺K⁻ and Λ(1520)→pK⁻ resonance states are observed, and branching fractions for χ cJ→p̄K⁺Λ(1520), Λ(1520)Λ¯¯¯(1520), and Φpp̄ are reported. We also measure branching fractions for direct χ cJ→pp̄K⁺K⁻ decays. These are first observations of χ cJ decays to unstable baryon resonances and provide useful information about the χ cJ states. The experiment uses samples of χ cJ mesons produced via radiative transitions from 106×10⁶ ψ' mesons collected in the BESIII detector at the BEPCII e⁺e⁻ collider.

  20. Positive parity states in {sup 208}Pb excited by the proton decay of the isobaric analog intruder resonance j{sub 15/2} in {sup 209}Bi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusler, A.; Graw, G.; Hertenberger, R.

    2010-07-15

    With the Q3D magnetic spectrograph of the Maier-Leibnitz-Laboratorium at Muenchen at a resolution of about 3 keV, angular distributions and excitation functions of the reaction {sup 208}Pb(p,p{sup '}) were measured at some scattering angles 20 deg. - 138 deg. for several proton energies 14.8-18.1 MeV. All seven known isobaric analog resonances in {sup 209}Bi are covered. By the excitation near the j{sub 15/2} intruder resonance in {sup 209}Bi, several new positive parity states in {sup 208}Pb with excitation energies 4.6-6.2 MeV are identified by comparison of the mean cross section to the known single particle widths. The dominant configuration formore » 27 positive parity states is determined and compared to the schematic shell model.« less

  1. Complete structure of the polysaccharide from Streptococcus sanguis J22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeygunawardana, C.; Bush, C.A.; Cisar, J.O.

    1990-01-09

    The cell wall polysaccharides of certain oral streptococci such as Streptococcus sanguis strains 34 and J22, although immunologically distinct, act as receptors for the fimbrial lectins of Actinomyces viscosus T14V. The authors report the complete covalent structure of the polysaccharide from S. sanguis J22 which is composed of a heptasaccharide subunit linked by phosphodiester bonds. The repeating subunit, which contains {alpha}-GalNAc, {alpha}-rhamnose, {beta}-rhamnose, {beta}-glucose, and {beta}-galactose all in the pyranoside form and {beta}-galactofuranose, is compared with the previously published structure of the polysaccharide from strain 34. The structure has been determined almost exclusively by high-resolution nuclear magnetic resonance methods. Themore » {sup 1}H and {sup 13}C NMR spectra of the polysaccharides from both strains 34 and J22 have been completely assigned. The stereochemistry of pyranosides was assigned from J{sub H-H} values determined from phase-sensitive COSY spectra, and acetamido sugars were assigned by correlation of the resonances of the amide {sup 1}H with the sugar ring protons. The {sup 13}C spectra were assigned by {sup 1}H-detected multiple-quantum correlation (HMQC) spectra, and the assignments were confirmed by {sup 1}H-detected multiple-bond correlation (HMBC) spectra. The positions of the glycosidic linkages were assigned by detection of three-bond {sup 1}H-{sup 13}C correlation across the glycosidic linkage in the HMBC spectra. The positions of the phosphodiester linkages were determined by splittings observed in the {sup 13}C resonances due to {sup 31}P coupling and also by {sup 1}H-detected {sup 31}P correlation spectroscopy.« less

  2. Prediction for a Four-Neutron Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.

    Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.

  3. Prediction for a Four-Neutron Resonance

    DOE PAGES

    Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; ...

    2016-10-28

    Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.

  4. Experimental Investigation of 'Transonic Resonance' with Convergent-Divergent Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Dahl, M. D.; Bencic, T. J.; Zaman, Khairul (Technical Monitor)

    2001-01-01

    Convergent-divergent nozzles, when run at pressure ratios lower than the design value, often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, different in characteristics from conventional 'screech' tones, has been studied experimentally. Unlike screech, the frequency increases with increasing supply pressure. There is a 'staging' behavior; 'odd harmonic' stages resonate at lower pressures while the fundamental occurs in a range of higher pressures corresponding to a fully expanded Mach number (M(sub j)) around unity. The frequency (f(sub N)) variation with M(sub j) depends on the half angle-of-divergence (theta) of the nozzle. At smaller theta, the slope of f(sub N) versus M(sub j) curve becomes steeper. The resonance involves standing waves and is driven by unsteady shock/boundary layer interaction. The distance between the foot of the shock and the nozzle exit imposes the lengthscale (L'). The fundamental corresponds to a quarterwave resonance, the next stage at a lower supply pressure corresponds to a three-quarter-wave resonance, and so on. The principal trends in the frequency variation are explained simply from the characteristic variation of the length-scale L'. Based on the data, correlation equations are provided for the prediction of f(sub N). A striking feature is that tripping of the boundary layer near the nozzle's throat tends to suppress the resonance. In a practical nozzle a tendency for the occurrence of the phenomenon is thought to be a source of 'internal noise'; thus, there is a potential for noise benefit simply by appropriate boundary layer tripping near the nozzle's throat.

  5. Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.

    PubMed

    Yang, Xueming; Zhang, Dong H

    2008-08-01

    [Reaction: see text]. The concept of transition state has played a crucial role in the field of chemical kinetics and reaction dynamics. Resonances in the transition state region are important in many chemical reactions at reaction energies near the thresholds. Detecting and characterizing isolated reaction resonances, however, have been a major challenge in both experiment and theory. In this Account, we review the most recent developments in the study of reaction resonances in the benchmark F + H 2 --> HF + H reaction. Crossed molecular beam scattering experiments on the F + H 2 reaction have been carried out recently using the high-resolution, highly sensitive H-atom Rydberg tagging technique with HF rovibrational states almost fully resolved. Pronounced forward scattering for the HF (nu' = 2) product has been observed at the collision energy of 0.52 kcal/mol in the F + H 2 (j = 0) reaction. Quantum dynamical calculations based on two new potential energy surfaces, the Xu-Xie-Zhang (XXZ) surface and the Fu-Xu-Zhang (FXZ) surface, show that the observed forward scattering of HF (nu' = 2) in the F + H 2 reaction is caused by two Feshbach resonances (the ground resonance and first excited resonance). More interestingly, the pronounced forward scattering of HF (nu' = 2) at 0.52 kcal/mol is enhanced considerably by the constructive interference between the two resonances. In order to probe the resonance potential more accurately, the isotope substituted F + HD --> HF + D reaction has been studied using the D-atom Rydberg tagging technique. A remarkable and fast changing dynamical picture has been mapped out in the collision energy range of 0.3-1.2 kcal/mol for this reaction. Quantum dynamical calculations based on the XXZ surface suggest that the ground resonance on this potential is too high in comparison with the experimental results of the F + HD reaction. However, quantum scattering calculations on the FXZ surface can reproduce nearly quantitatively the resonance

  6. Nonlinear damping of oblique whistler mode waves through Landau resonance

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle < 20°. Analyzing the wave electric field E and the resonant current J, which is composed of electrons undergoing the Landau resonance, we find that the J·E is mainly positive, which denotes the damping of the wave. Furthermore, we confirm that this positive J•E is dominated by transverse component Jperp·Eperp rather than by longitudinal component Jpara·Eperp. The simulation results reveal that the Landau resonance contributes to the nonlinear damping at 0.5 Ωe for whistler mode waves. Reference [1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023255.

  7. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment.

    PubMed

    Saeed, Maythem; Krug, Roland; Do, Loi; Hetts, Steven W; Wilson, Mark W

    2016-03-28

    To use magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU), magnetic resonance imaging (MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication (n = 24) using a 3T-MRg-HIFU (1.1 MHz frequency and 3000J-4400J energies). T2-weighted fast spin echo (T2-W), perfusion saturation recovery gradient echo and contrast enhanced (CE) T1-weighted (T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student's t-test was used and a P-value < 0.05 was considered statistically significant. Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or non-CE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images in vivo (0.12-0.36 cm(3) for single sonication 3000J, 0.50-0.84 cm(3), for double 3000J, 0.75-0.78 cm(3) for single 4400J and 0.12-2.65 cm(3) for double 4400J) and at postmortem (0.23-0.52 cm(3), 0.25-0.82 cm(3), 0.45-0.68 cm(3) and 0.29-1.80 cm(3), respectively) were comparable. The ablated volumes on 3000J and 4400J double sonication were significantly larger than single (P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively. Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI.

  8. ABC effect and resonance d*(2380)

    NASA Astrophysics Data System (ADS)

    Bashkanov, M.; Clement, H.; Doroshkevich, E.; Skorodko, T.

    2017-11-01

    A new state in the two-baryon system with mass 2380 MeV and width 80 MeV has been detected in the experiments at the Juelich Cooler Synchrotron (COSY). The new particle denoted now d*(2380) has quantum numbers I( J p ) = 0(3+). The total cross sections for the d and 4He fusion reactions show similar to each other resonance-like energy dependence. The resonance-like structure is sensed in the double-pionic fusion channels and polarized np scattering.

  9. Comment on "Electron spin resonance studies in β-FeSi2 crystals" [J. Appl. Phys. 80, 1678 (1996)

    NASA Astrophysics Data System (ADS)

    Irmscher, K.; Gehlhoff, W.; Lange, H.

    1997-06-01

    In a recent article [J. Appl. Phys. 80, 1678 (1996)] Aksenov et al. reported on electron paramagnetic resonance (EPR) studies in β-FeSi2 crystals grown by chemical vapor transport. They did not perform a rigorous measurement of the angular variation of the EPR line positions. Consequently, there has been a drastic loss of information and most of their conclusions turn out to be erroneous. It is shown that the anisotropic signals (Ai,Bi) do not arise from spin triplet states but from centers with S=1/2 and their origins are not Ni2+ ions but Ni+ (Ai) and Cr- (Bi) ions substituting for Fe on one of its two inequivalent lattice sites. The analysis of the line structure of the isotropic signal (C) is incorrect and hence, the structure cannot be attributed to a ligand hyperfine interaction with four iron atoms. Finally, the determination of an acceptor activation energy from the temperature dependence of the C signal is not justified since no correction for the EPR intensity dependence due to the thermal population difference of the Zeeman levels was included.

  10. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    PubMed

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  11. Resonant Enhanced Modulators

    DTIC Science & Technology

    2004-05-01

    Lepore, M. H. Kwakernaak, H. Mohseni, G. A. Pajer, G. Griffel , D. Bechtle, A. F. Ulmer, Z. A. Shellenbarger, H. An, I. Adesida, S. Rommel, J-W...Advanced nanofabrication and advanced process development Giora Griffel – Ring resonator concept Daniel W. Bechtle – RF electrode design University of...conducted in glass microspheres by Giora Griffel (then at Polytechnic University) and other workers. Extremely high quality factors (Q’s) could be

  12. The J3 SCR model applied to resonant converter simulation

    NASA Technical Reports Server (NTRS)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  13. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.

    PubMed

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-17

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  14. Covariance J-resolved spectroscopy: Theory and application in vivo.

    PubMed

    Iqbal, Zohaib; Verma, Gaurav; Kumar, Anand; Thomas, M Albert

    2017-08-01

    Magnetic resonance spectroscopy (MRS) is a powerful tool capable of investigating the metabolic status of several tissues in vivo. In particular, single-voxel-based 1 H spectroscopy provides invaluable biochemical information from a volume of interest (VOI) and has therefore been used in a variety of studies. Unfortunately, typical one-dimensional MRS data suffer from severe signal overlap and thus important metabolites are difficult to distinguish. One method that is used to disentangle overlapping resonances is the two-dimensional J-resolved spectroscopy (JPRESS) experiment. Due to the long acquisition duration of the JPRESS experiment, a limited number of points are acquired in the indirect dimension, leading to poor spectral resolution along this dimension. Poor spectral resolution is problematic because proper peak assignment may be hindered, which is why the zero-filling method is often used to improve resolution as a post-processing step. However, zero-filling leads to spectral artifacts, which may affect visualization and quantitation of spectra. A novel method utilizing a covariance transformation, called covariance J-resolved spectroscopy (CovJ), was developed in order to improve spectral resolution along the indirect dimension (F 1 ). Comparison of simulated data demonstrates that peak structures remain qualitatively similar between JPRESS and the novel method along the diagonal region (F 1 = 0 Hz), whereas differences arise in the cross-peak (F 1 ≠0 Hz) regions. In addition, quantitative results of in vivo JPRESS data acquired on a 3T scanner show significant correlations (r 2 >0.86, p<0.001) when comparing the metabolite concentrations between the two methods. Finally, a quantitation algorithm, 'COVariance Spectral Evaluation of 1 H Acquisitions using Representative prior knowledge' (Cov-SEHAR), was developed in order to quantify γ-aminobutyric acid and glutamate from the CovJ spectra. These preliminary findings indicate that the CovJ method may

  15. Exploring the resonances X (4140 ) and X (4274 ) through their decay channels

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-06-01

    Investigation of the resonances X (4140 ) and X (4274 ), which were recently confirmed by the LHCb Collaboration [1], is carried out by treating them as the color triplet and sextet [c s ][c ¯ s ¯ ] diquark-antidiquark states with the spin-parity JP=1+ , respectively. We calculate the masses and meson-current couplings of these tetraquarks in the context of the QCD two-point sum rule method by taking into account the quark, gluon, and mixed vacuum condensates up to eight dimensions. We also study the vertices X (4140 )J /ψ ϕ and X (4274 )J /ψ ϕ and evaluate corresponding strong couplings gX (4140 )J /ψ ϕ and gX (4274 )J /ψ ϕ by means of the QCD light-cone sum rule method and a technique of the soft-meson approximation. In turn, these couplings contain required information to determine the width of the X (4140 )→J /ψ ϕ and X (4274 )→J /ψ ϕ decay channels. We compare our results for the masses and decay widths of the X (4140 ) and X (4274 ) resonances with the LHCb data and alternative theoretical predictions.

  16. H(C)P and H(P)C triple-resonance experiments at natural abundance employing long-range couplings.

    PubMed

    Malon, Michal; Koshino, Hiroyuki

    2007-09-01

    Modified two-dimensional (2D) triple-resonance H(C)P and H(P)C experiments based on INEPT/HMQC and double-INEPT schemes are applied to the study of organophosphorus compounds at natural abundances. The implementation of effective (1)H--(13)C gradient selection, additional purging pulsed field gradients, spinlock pulses, and improved phase cycling is demonstrated to allow weak correlation signals based on long-range couplings to be readily observed. Through the combination of two heteronuclear long-range coupling constants, (n)J(CH) and (n)J(PC) in H(C)P experiments or (n)J(PH) and (n)J(PC) in H(P)C experiments, protons can be correlated to a second heteronucleus through 4-7 chemical bonds. These experiments thus overcome the inherit limitations of classical (1)H-X HMBC experiments, which require a nonzero value of the heteronuclear coupling constant (n)J(XH). Ultra-broadband inversion composite pulses are successfully employed in the H(P)C INEPT/HMQC and H(P)C double-INEPT pulse sequences to increase the utility of the experiments and the quality of obtained spectra. This work extends and completes a set of 2D phase-sensitive triple-resonance experiments applicable at natural abundances, and also offers insight into the methodology of triple-resonance experiments and the application of pulsed field gradients. A one-dimensional triple-resonance experiment employing carbon detection is suggested for accurate determination of small (n)J(PC).

  17. Influence of kinetic effects on the resonance behavior of the Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Oberrath, Jens; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-10-01

    Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool. One of these tools is the multipole resonance probe (MRP) [1]. The application of such a probe in plasmas with pressures of only a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma resonance spectroscopy has already been presented by the authors [2]. This model can be used to describe the dynamical behavior of the MRP, which is interpretable as a special case of the general model. Neglecting electron-neutral collisions, this model can be solved analytically. Based on this solution we derive an approximated expression for the admittance of the system to investigate the influence of kinetic effects on the resonance behavior of the MRP. [4pt] [1] M. Lapke et al., Plasma Sources Sci. Technol. 20, 2011, 042001[0pt] [2] J. Oberrath et al., Proceedings of the 30th International Conference on Phenomena in Ionized Gases, 28th August - 2nd September, 2011

  18. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{supmore » {pi}} = 1{sup -} and 2{sup -}.« less

  19. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    NASA Astrophysics Data System (ADS)

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  20. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    PubMed Central

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  1. Observation of sub-100-fs optical response from spin-coated films of squarylium dye J aggregates

    NASA Astrophysics Data System (ADS)

    Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Pu, Lyong Sun; Kawashima, Hitoshi; Tatsuura, Satoshi; Wada, Osamu

    2001-04-01

    For spin-coated films of squarylium dye J aggregates, ultrafast nonlinear optical responses were investigated by pump-probe measurements. By using a broadband mode-locked titanium:sapphire laser, we succeeded in observing the optical response with a time resolution of better than 60 fs. Time-resolved transmission data are shown for different excitation wavelengths, resonant to the excitonic absorption band and off-resonant. Relaxation times of the absorption saturation were evaluated to be 140 fs (fast component) and 950 fs (slow component) in the case of resonant excitation and 98 fs in the case of off-resonant excitation.

  2. Enantiodifferentiation through frequency-selective pure-shift (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Castañar, Laura; Pérez-Trujillo, Míriam; Nolis, Pau; Monteagudo, Eva; Virgili, Albert; Parella, Teodor

    2014-04-04

    A frequency-selective 1D (1) H nuclear magnetic resonance (NMR) experiment for the fast and sensitive determination of chemical-shift differences between overlapped resonances is proposed. The resulting fully homodecoupled (1) H NMR resonances appear as resolved 1D singlets without their typical J(HH) coupling constant multiplet structures. The high signal dispersion that is achieved is then exploited in enantiodiscrimination studies by using chiral solvating agents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Plasma response to m/n  =  3/1 resonant magnetic perturbation at J-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Qiming; Li, Jianchao; Wang, Nengchao; Yu, Q.; Chen, Jie; Cheng, Zhifeng; Chen, Zhipeng; Ding, Yonghua; Jin, Hai; Li, Da; Li, Mao; Liu, Yang; Rao, Bo; Zhu, Lizhi; Zhuang, Ge; the J-TEXT Team

    2016-09-01

    The influence of resonant magnetic perturbations (RMPs) with a large m/n  =  3/1 component on electron density has been studied at J-TEXT tokamak by using externally applied static and rotating RMPs, where m and n are the poloidal and toroidal mode number, respectively. The detailed time evolution of electron density profile, measured by the polarimeter-interferometer, shows that the electron density n e first increases (decreases) inside (around/outside) of the 3/1 rational surface (RS), and it is increased globally later together with enhanced edge recycling. Associated with field penetration, the toroidal rotation around the 3/1 RS is accelerated in the co-I p direction and the poloidal rotation is changed from the electron to ion diamagnetic drift direction. Spontaneous unlocking-penetration circles occur after field penetration if the RMPs amplitude is not strong enough. For sufficiently strong RMPs, the 2/1 locked mode is also triggered due to mode coupling, and the global density is increased. The field penetration threshold is found to be linearly proportional to n eL (line-integrated density) at the 3/1 RS but to (n eL)0.73 for n e at the plasma core. In addition, for rotating RMPs with a large 3/1 component, field penetration causes a global increase in electron density.

  4. Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface.

    PubMed

    Jiang, Jianwen; Taylor, Alexander B; Prasad, Kondury; Ishikawa-Brush, Yumiko; Hart, P John; Lafer, Eileen M; Sousa, Rui

    2003-05-20

    J-domains are widespread protein interaction modules involved in recruiting and stimulating the activity of Hsp70 family chaperones. We have determined the crystal structure of the J-domain of auxilin, a protein which is involved in uncoating clathrin-coated vesicles. Comparison to the known structures of J-domains from four other proteins reveals that the auxilin J-domain is the most divergent of all J-domain structures described to date. In addition to the canonical J-domain features described previously, the auxilin J-domain contains an extra N-terminal helix and a long loop inserted between helices I and II. The latter loop extends the positively charged surface which forms the Hsc70 binding site, and is shown by directed mutagenesis and surface plasmon resonance to contain side chains important for binding to Hsc70.

  5. Retrograde resonance in the planar three-body problem

    NASA Astrophysics Data System (ADS)

    Morais, M. H. M.; Namouni, F.

    2013-12-01

    We continue the investigation of the dynamics of retrograde resonances initiated in Morais and Giuppone (Mon Notices R Astron Soc 424:52-64, doi:10.1111/j.1365-2966.2012.21151.x, 2012). After deriving a procedure to deduce the retrograde resonance terms from the standard expansion of the three-dimensional disturbing function, we concentrate on the planar problem and construct surfaces of section that explore phase-space in the vicinity of the main retrograde resonances (2/1, 1/1 and 1/2). In the case of the 1/1 resonance for which the standard expansion is not adequate to describe the dynamics, we develop a semi-analytic model based on numerical averaging of the unexpanded disturbing function, and show that the predicted libration modes are in agreement with the behavior seen in the surfaces of section.

  6. Multiple-step relayed correlation spectroscopy: sequential resonance assignments in oligosaccharides.

    PubMed Central

    Homans, S W; Dwek, R A; Fernandes, D L; Rademacher, T W

    1984-01-01

    A general property of the high-resolution proton NMR spectra of oligosaccharides is the appearance of low-field well-resolved resonances corresponding to the anomeric (H1) and H2 protons. The remaining skeletal protons resonate in the region 3-4 ppm, giving rise to an envelope of poorly resolved resonances. Assignments can be made from the H1 and H2 protons to their J-coupled neighbors (H2 and H3) within this main envelope by using 1H-1H correlated spectroscopy. However, the tight coupling (J congruent to delta) between further protons results in poor spectral dispersion with consequent assignment ambiguities. We describe here three-step two-dimensional relayed correlation spectroscopy and show how it can be used to correlate the resolved anomeric (H1) and H2 protons with remote (H4, H5) protons directly through a linear network of couplings using sequential magnetization transfer around the oligosaccharide rings. Resonance assignments are then obtained by inspection of cross-peaks that appear in well-resolved regions of the two-dimensional spectrum. This offers a general solution to the assignment problem in oligosaccharides and, importantly, these assignments will subsequently allow for the three-dimensional solution conformation to be determined by using one-dimensional and two-dimensional nuclear Overhauser experiments. PMID:6593701

  7. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  8. Hunting for a new {Sigma}*(1/2{sup -}) resonance around 1380 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, B. S.; Gao Puze; Theoretical Physics Center for Science Facilities, CAS, Beijing 100049

    2010-08-05

    Quenched and unquenched quark models give very distinctive predictions for the lowest {Sigma}* with spin-parity J{sup P} = 1/2{sup -}. We report evidence for possible existence of a new {Sigma}* resonance with J{sup P} = 1/2{sup -} around 1380 MeV by re-examining data of various relevant reactions.

  9. Resonances at very low temperature for the reaction D2 + H

    NASA Astrophysics Data System (ADS)

    Simbotin, I.; Côté, R.

    2017-05-01

    We present numerical results for rate coefficients of reaction and vibrational quenching in the collision of H with {{{D}}}2(v,j) at cold and ultracold temperatures. We explore both ortho-D{}2(j=0) and para-D{}2(j=1) for several initial vibrational states (v≤slant 5), and find resonant structures in the energy range 0.01-10 K, which are sensitive to the initial rovibrational state (v, j). We compare the reaction rates for D2 + H with our previously obtained results for the isotopologue reaction H2 + D, and discuss the implications of our detailed study of this benchmark system for ultracold chemistry.

  10. Pressure Dependence of Excitation Cross Sections for Resonant Levels of Rare Gases

    NASA Astrophysics Data System (ADS)

    Stewart, Michael D.; Chilton, J. Ethan; Lin, Chun C.

    2000-06-01

    In the rare gases, the excited n'p^5ns and n'p^5nd levels with J = 1 are optically coupled to ground as well as lower lying p levels. Resonant photons emitted when the atom decays to ground can be reabsorbed by another ground-state atom. At low gas pressures this reabsorption occurs infrequently, but at higher pressures becomes increasingly likely until the resonant transition is completely suppressed. This enhances the cascade transitions into lower p levels, resulting in pressure dependent optical emission cross sections. This reabsorption process can be understood quantitatively with a model developed by Heddle et al(D. W. O. Heddle and N. J. Samuel, J. Phys. B 3), 1593 (1970).. The radiation from transitions into the nonresonant levels often lie in the ir, while the resonant radiation is always in the uv spectral region. Using a Fourier-transform spectrometer, one can measure the cross sections for the ir transitions as a function of pressure. The Heddle model can be fit to these data with the use of theoretical values for the Einstein A coefficients. This provides a test of the accuracy of calculated A values. Discussion will include cross section measurements for Ne, Ar, and Kr excited by electron impact over a range of gas pressures.

  11. Photodissociation resonances of jet-cooled NO2 at the dissociation threshold by CW-CRDS

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-05-01

    Around 398 nm, the jet-cooled-spectrum of NO2 exhibits a well identified dissociation threshold (D0). Combining the continuous-wave absorption-based cavity ringdown spectroscopy technique and laser induced fluorescence detection, an energy range of ˜25 cm-1 is analyzed at high resolution around D0. In addition to the usual molecular transitions to long-lived energy levels, ˜115 wider resonances are observed. The position, amplitude, and width of these resonances are determined. The resonance width spreads from ˜0.006 cm-1 (i.e., ˜450 ps) to ˜0.7 cm-1 (˜4 ps) with large fluctuations. The identification of at least two ranges of resonance width versus the excess energy can be associated with the opening of the dissociation channels NO 2 → NO (X 2 Π 1 / 2 , v = 0 , J = 1 / 2) + O (3 P 2) and NO 2 → NO (X 2 Π 1 / 2 , v = 0 , J = 3 / 2) + O (3 P 2). This analysis corroborates the existence of loose transition states close to the dissociation threshold as reported previously and in agreement with the phase space theory predictions as shown by Tsuchiya's group [Miyawaki et al., J. Chem. Phys. 99, 254-264 (1993)]. The data are analyzed in the light of previously reported frequency- and time-resolved data to provide a robust determination of averaged unimolecular dissociation rate coefficients. The density of reactant levels deduced (ρreac ˜ 11 levels/cm-1) is discussed versus the density of transitions, the density of resonances, and the density of vibronic levels.

  12. Observing Resonant Entanglement Dynamics in Circuit QED

    NASA Astrophysics Data System (ADS)

    Mlynek, J. A.; Abdumalikov, A. A.; Fink, J. M.; Steffen, L.; Lang, C.; van Loo, A. F.; Wallraff, A.

    2012-02-01

    We study the resonant interaction of up to three two-level systems and a single mode of an electromagnetic field in a circuit QED setup. Our investigation is focused on how a single excitation is dynamically shared in this fourpartite system. The underlying theory of the experiment is governed by the Tavis-Cummings-model, which on resonance predicts dynamics known as vacuum Rabi oscillations. The resonant situation has already been studied spectroscopically with three qubits [1] and time resolved measurements have been carried out in a tripartite system [2]. Here we are able to observe the coherent oscillations and their √N- enhancement by tracking the populations of all three qubits and the resonator. Full quantum state tomography is used to verify that the dynamics generates the maximally entangled 3-qubit W-state when the cavity state factorizes. The √N-speed-up offers the possibility to create W-states within a few ns with a fidelity of 75%. We compare the resonant collective method to an approach, which achieves entanglement by sequentially tuning qubits into resonance with the cavity.[4pt] [1] J. M. Fink, Physical Review Letters 103, 083601 (2009)[0pt] [2] F. Altomare, Nature Physics 6, 777--781 (2010)

  13. DsJ(2860) as the First Radial Excitation of Ds0*(2317)

    NASA Astrophysics Data System (ADS)

    van Beveren, Eef; Rupp, George

    2006-11-01

    A coupled-channel model previously employed to describe the narrow Ds0*(2317) and broad D0*(2400) charmed scalar mesons is generalized so as to include all ground-state pseudoscalar-pseudoscalar and vector-vector two-meson channels. All parameters are chosen fixed at published values, except for the overall coupling constant, which is fine-tuned to reproduce the Ds0*(2317) mass. Thus, the radial excitations Ds0*(2850) and D0*(2740) are predicted, both with a width of about 50 MeV. The former state appears to correspond to the new DsJ(2860) resonance decaying to DK announced by BABAR in the course of this work. Also, the D0*(2400) resonance is roughly reproduced, though perhaps with a somewhat too low central resonance peak.

  14. Redox-active tyrosine residue in the microcin J25 molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalon, Miriam C.; Wilke, Natalia; Pedersen, Jens

    2011-03-18

    Research highlights: {yields} Cyclic voltammetry measurements showed irreversible oxidation of MccJ25 and MccJ25 (Y9F). {yields} Infrared spectroscopy studies showed that only Tyr9 could be deprotonated upon chemical oxidation. {yields} Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H{sub 2}O{sub 2} was demonstrated. {yields} Tyr9 but not Tyr20 can be easily oxidized and form a tyrosyl radical. -- Abstract: Microcin J25 (MccJ25) is a 21 amino acid lasso-peptide antibiotic produced by Escherichia coli and composed of an 8-residues ring and a terminal 'tail' passing through the ring. We have previously reported two cellular targets for this antibiotic,more » bacterial RNA polymerase and the membrane respiratory chain, and shown that Tyr9 is essential for the effect on the membrane respiratory chain which leads to superoxide overproduction. In the present paper we investigated the redox behavior of MccJ25 and the mutant MccJ25 (Y9F). Cyclic voltammetry measurements showed irreversible oxidation of both Tyr9 and Tyr20 in MccJ25, but infrared spectroscopy studies demonstrated that only Tyr9 could be deprotonated upon chemical oxidation in solution. Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H{sub 2}O{sub 2} was demonstrated by Electron Paramagnetic Resonance Spectroscopy; this radical was not detected when the reaction was carried out with the MccJ25 (Y9F) mutant. These results show that the essential Tyr9, but not Tyr20, can be easily oxidized and form a tyrosyl radical.« less

  15. Persistent psychogenic déjà vu: a case report.

    PubMed

    Wells, Christine E; Moulin, Chris J A; Ethridge, Paige; Illman, Nathan A; Davies, Emma; Zeman, Adam

    2014-12-08

    jà vu is typically a transient mental state in which a novel experience feels highly familiar. Although extensively studied in relation to temporal lobe epilepsy as part of simple partial seizures, déjà vu has been less studied in other clinical populations. A recent review of temporal lobe epilepsy suggested a possible link between clinical levels of anxiety and debilitating déjà vu, indicating further research is required. Here, for the first time in the literature, we present a case study of a young man with anxiety and depersonalisation who reported experiencing persistent and debilitating déjà vu. This report therefore adds to the limited literature on the relationship between anxiety and déjà vu. A 23-year-old White British man presented with a form of persistent déjà vu in 2010, approximately 3 years since symptom onset. He reported a history of anxiety and experiencing feelings of depersonalisation. Neurological assessment (electroencephalogram and magnetic resonance imaging) did not indicate any abnormalities. We assessed his recognition memory with a task used in patients with dementia who report similar experiences but lack awareness of their falseness. Our case's memory performance was more conservative than controls but did not indicate a memory deficit. Unlike other patients with chronic déjà vu (for example, in dementia), he is fully aware of the false nature of his déjà vu and this presumably leads to his intact recognition memory performance. We suggest that his persistent déjà vu is psychogenic and conclude that déjà vu should be further studied in psychiatric disorders.

  16. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    PubMed

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  17. TSCA Section 5(a)(3)(C) Determination for Microbial Commercial Activity Notice (MCAN) J-16-0011, J-16-0012, J-16-0013, J-16-0014, J-16-0015, and J-16-0016

    EPA Pesticide Factsheets

    This document describes EPA's Microbial Commercial Activity Notice (MCAN) review determination under amended TSCA for J-16-0011, J-16-0012, J-16-0013, J-16-0014, J-16-0015, and J-16-0016, a biofuel producing organism.

  18. Measurement of J/psi production in continuum e(+)e(-) annihilations near square root of s = 10.6 GeV.

    PubMed

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Fan, Q; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Gaede, F; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Lepeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Fackler, O; Fujino, D; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Martin, R; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Moore, T B; Staengle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yèche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Manzin, G; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stahl, A; Stelzer, J; Su, D; Sullivan, M K; Talby, M; Tanaka, H A; Trunov, A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Hart, E; Weidemann, A W; Benninger, T; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Orejudos, W; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H

    2001-10-15

    The production of J/psi mesons in continuum e(+)e(-) annihilations has been studied with the BABAR detector at energies near the Upsilon(4S) resonance. The mesons are distinguished from J/psi production in B decays through their center-of-mass momentum and energy. We measure the cross section e(+)e(-)-->J/psi X to be 2.52+/-0.21+/-0.21 pb. We set a 90% C.L. upper limit on the branching fraction for direct Upsilon(4S)-->J/psi X decays at 4.7 x 10(-4).

  19. Quantum and quasi-classical calculations for the S⁺ + H₂(v,j) → SH⁺(v',j') + H reactive collisions.

    PubMed

    Zanchet, Alexandre; Roncero, Octavio; Bulut, Niyazi

    2016-04-28

    State-to-state cross-sections for the S(+) + H2(v,j) → SH(+)(v',j') + H endothermic reaction are obtained using quantum wave packet (WP) and quasi-classical (QCT) methods for different initial ro-vibrational H2(v,j) over a wide range of translation energies. The final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient that vibrational energy is the most favorable for the reaction, and rotational excitation significantly enhances the reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid to an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2. An interesting resonant behaviour found in WP calculations is also discussed and associated with the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al. for S(+) + HD and S(+) + D2 reactions exhibits a reasonably good agreement with those results.

  20. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  1. Resonance between a Prolate and a Superprolate Structure of the Er Nucleus.

    PubMed

    Pauling, L; Blethen, J

    1974-07-01

    Observed energy levels of (162)Er from the normal state J = 0 to the excited rotational state J = 18 correspond to values of the moment of inertia and rotational frequency that indicate that a pronounced change in structure occurs at about J = 14. It is shown that the observed values agree well with the values calculated on the assumption that there is resonance between a more stable prolate structure with a core of two spherons and a less stable superprolate structure with a core of three spherons in line.

  2. 0.8 mJ quasi-continuously pumped sub-nanosecond highly doped Nd:YAG oscillator-amplifier laser system in bounce geometry

    NASA Astrophysics Data System (ADS)

    Jelínek, M.; Kubeček, V.; Čech, M.; Hiršl, P.

    2011-03-01

    A quasi-continuously pumped picosecond oscillator-amplifier laser system based on two identical 2.4% Nd:YAG slabs in a single bounce geometry was developed and investigated. The oscillator was passively mode locked by the multiple quantum well saturable absorber inserted into the resonator in transmission mode. Output train containing 7 pulses with total energy of 900 μJ was generated directly from the oscillator. Single pulse with energy of 75 μJ, duration of 113 ps and Gaussian spatial profile was cavity dumped from the resonator and amplified by the single pass amplifier to the energy of 830 μJ. Comparison with our previously reported data obtained with similar system based on Nd:GdVO4 shows advantage of using highly doped Nd:YAG for generation of sub-millijoule pulses in one hundred picoseconds range, which might be interesting in many applications.

  3. Measurement of B⁰→J/ψη (') and constraint on the η-η' mixing angle

    DOE PAGES

    Chang, M.-C.; Duh, Y.-C.; Lin, J.-Y.; ...

    2012-05-04

    We measure the branching fractions of B⁰→J/ψη (') decays with the complete Belle data sample of 772×10⁶ BB¯¯¯ events collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e⁺e⁻ collider. The results for the branching fractions are: B(B⁰→J/ψη)=(12.3± 1.81 1.7±0.7)×10⁻⁶ and B(B⁰→J/ψη')<7.4×10⁻⁶ at 90% confidence level. The η-η' mixing angle is constrained to be less than 42.2° at 90% confidence level.

  4. A Measurement of PSI(2S) Resonance Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunwoodie, William

    2002-11-08

    Cross sections for e{sup +}e{sup -} {yields} hadrons, {pi}{sup +} {pi}{sup -} J/{psi}, and {mu}{sup +}{mu}{sup -} have been measured in the vicinity of the {psi}(2S) resonance using the BESII detector operated at the BEPC. The {psi}(2S) total width; partial widths to hadrons, {pi}{sup +} {pi}{sup -} J/{psi}, muons; and corresponding branching fractions have been determined to be {Lambda}{sub t} = 264 {+-} 27 keV; {Lambda}{sub h} = 258 {+-} 26 keV, {Lambda}{sub {mu}} = 2.44 {+-} 0.21 keV, and {Lambda}{sub {pi}+{pi} = J/{psi}} = 85.4 {+-} 8.7 keV; and B{sub h} = (97.79 {+-} 0.15)%, B{sub {pi}{sup +}{pi}{sup -}}more » = (32.3 {+-} 1.4)%, B{sub {mu}} = (0.93 {+-} 0.08)%, respectively.« less

  5. Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Osteoid Osteoma: A Case Series Report.

    PubMed

    Rovella, Marcello S; Martins, Guilherme L P; Cavalcanti, Conrado F A; Bor-Seng-Shu, Edson; Camargo, Olavo P; Cerri, Giovanni G; Menezes, Marcos R

    2016-04-01

    Osteoid osteoma is painful benign tumor. The aim of this study was to report our initial experience using magnetic resonance-guided focused ultrasound to treat osteoid osteomas. This retrospective single-center study included four patients treated with magnetic resonance-guided focused ultrasound. They presented with severe pain with reduced quality of life and a poor response to clinical treatment. The pre- and post-treatment evaluation comprised computed tomography and magnetic resonance imaging and focused on quality of life and the impact of pain on daily activities. After treatment, three patients had complete pain resolution with no recurrence. One patient had a recurrence of symptoms after 2 wk and underwent a new successful treatment with increased energy levels. On average, 13 sonications were administered (8-18 sonications/treatment) with an average energy of 2,003 J (range: 1,063-3,522 J). Magnetic resonance-guided focused ultrasound appears to be a feasible, tolerable and effective treatment in selected patients with osteoid osteomas. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    NASA Astrophysics Data System (ADS)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  7. Resonance between a Prolate and a Superprolate Structure of the 162Er Nucleus

    PubMed Central

    Pauling, Linus; Blethen, John

    1974-01-01

    Observed energy levels of 162Er from the normal state J = 0 to the excited rotational state J = 18 correspond to values of the moment of inertia and rotational frequency that indicate that a pronounced change in structure occurs at about J = 14. It is shown that the observed values agree well with the values calculated on the assumption that there is resonance between a more stable prolate structure with a core of two spherons and a less stable superprolate structure with a core of three spherons in line. PMID:16592173

  8. Magnetic Resonance Spectroscopy: An Objective Technique for the Quantification of Prostate Cancer Pathologies

    DTIC Science & Technology

    2007-02-01

    5d. PROJECT NUMBER Leo L. Cheng, Ph.D. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...Scott RM, Anthony DC, Gonzalez RG, Black PM. Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance...Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J Neurosurg 2002;96: 1023–1031. 7

  9. Monomolecular layer of squarylium dye J aggregates exhibiting a femtosecond optical response of delocalized excitons

    NASA Astrophysics Data System (ADS)

    Furuki, Makoto; Pu, Lyong Sun; Sasaki, Fumio; Kobayashi, Shyunsuke; Tani, Toshiro

    1998-05-01

    We report on the demonstration of the femtosecond nonlinear optical response from a two-dimensional monomolecular layer of squarylium dye J aggregate at 5 °C. The formation of a monomolecular layer Langmuir film was achieved by spreading squarylium dye modified by two propyl and two hexyl groups at the air-water interface, which resulted in a very strong J band (o.d.=0.3) at 777 nm. The transient absorption spectra in a resonant pump-probe measurement showed a low absorption saturation power (9.7×106W/cm2) and an ultrafast response (300 fs), which are indicative of exciton delocalization over 18 molecules in this J aggregate, even at 5 °C.

  10. Random acoustic metamaterial with a subwavelength dipolar resonance.

    PubMed

    Duranteau, Mickaël; Valier-Brasier, Tony; Conoir, Jean-Marc; Wunenburger, Régis

    2016-06-01

    The effective velocity and attenuation of longitudinal waves through random dispersions of rigid, tungsten-carbide beads in an elastic matrix made of epoxy resin in the range of beads volume fraction 2%-10% are determined experimentally. The multiple scattering model proposed by Luppé, Conoir, and Norris [J. Acoust. Soc. Am. 131(2), 1113-1120 (2012)], which fully takes into account the elastic nature of the matrix and the associated mode conversions, accurately describes the measurements. Theoretical calculations show that the rigid particles display a local, dipolar resonance which shares several features with Minnaert resonance of bubbly liquids and with the dipolar resonance of core-shell particles. Moreover, for the samples under study, the main cause of smoothing of the dipolar resonance of the scatterers and the associated variations of the effective mass density of the dispersions is elastic relaxation, i.e., the finite time required for the shear stresses associated to the translational motion of the scatterers to propagate through the matrix. It is shown that its influence is governed solely by the value of the particle to matrix mass density contrast.

  11. Combining Fourier phase encoding and broadband inversion toward J-edited spectra

    NASA Astrophysics Data System (ADS)

    Lin, Yulan; Guan, Quanshuai; Su, Jianwei; Chen, Zhong

    2018-06-01

    Nuclear magnetic resonance (NMR) spectra are often utilized for gathering accurate information relevant to molecular structures and composition assignments. In this study, we develop a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks, and combine it with a pure shift experiments (PSYCHE) based J-modulated scheme, providing simple 2D J-edited spectra for accurate measurement of scalar coupling networks. Chemical shifts and J coupling constants of protons coupled to the specific protons are demonstrated along the F2 and F1 dimensions, respectively. Polychromatic pulses by Fourier phase encoding were performed to simultaneously detect several coupling networks. Proton-proton scalar couplings are chosen by a polychromatic pulse and a PSYCHE element. Axis peaks and unwanted couplings are complete eradicated by incorporating a selective COSY block as a preparation period. The theoretical principles and the signal processing procedure are laid out, and experimental observations are rationalized on the basis of theoretical analyses.

  12. The eccentric Kozai-Lidov effect as a resonance phenomenon

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav V.

    2018-01-01

    Exploring weakly perturbed Keplerian motion within the restricted three-body problem, Lidov (Planet Space Sci 9:719-759, 1962) and, independently, Kozai (Astron J 67:591-598, 1962) discovered coupled oscillations of eccentricity and inclination (the KL cycles). Their classical studies were based on an integrable model of the secular evolution, obtained by double averaging of the disturbing function approximated with its first non-trivial term. This was the quadrupole term in the series expansion with respect to the ratio of the semimajor axis of the disturbed body to that of the disturbing body. If the next (octupole) term is kept in the expression for the disturbing function, long-term modulation of the KL cycles can be established (Ford et al. in Astrophys J 535:385-401, 2000; Naoz et al. in Nature 473:187-189, 2011; Katz et al. in Phys Rev Lett 107:181101, 2011). Specifically, flips between the prograde and retrograde orbits become possible. Since such flips are observed only when the perturber has a nonzero eccentricity, the term "eccentric Kozai-Lidov effect" (or EKL effect) was proposed by Lithwick and Naoz (Astrophys J 742:94, 2011) to specify such behavior. We demonstrate that the EKL effect can be interpreted as a resonance phenomenon. To this end, we write down the equations of motion in terms of "action-angle" variables emerging in the integrable Kozai-Lidov model. It turns out that for some initial values the resonance is degenerate and the usual "pendulum" approximation is insufficient to describe the evolution of the resonance phase. Analysis of the related bifurcations allows us to estimate the typical time between the successive flips for different parts of the phase space.

  13. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  14. High-J rotational spectrum of toluene in |m| ⩽ 3 torsional states

    NASA Astrophysics Data System (ADS)

    Ilyushin, Vadim V.; Alekseev, Eugene A.; Kisiel, Zbigniew; Pszczółkowski, Lech

    2017-09-01

    The study of the rotational spectrum of toluene (C6H5CH3) is considerably extended to include transitions in |m| ⩽ 3 torsional states up to the onset of the submillimeter wave region. New data involving torsion-rotation transitions up to 336 GHz were combined with previously published measurements and fitted using the rho-axis-method torsion-rotation Hamiltonian. The final fit used 50 parameters to give an overall weighted root-mean-square deviation of 0.69 for a dataset consisting of 8924 transitions with J up to 94 and Ka up to 50. The new analysis allowed us to resolve all problems encountered previously for m = 0 transitions beyond a certain combination of quantum numbers J and Ka when many lines of appreciable intensity and unambiguous assignment deviated from the distorted asymmetric rotor treatment. Those discrepancies are now identified to result from m = 0 ↔ m = 3 and m = 0 ↔ m = -3 resonances, which have been successfully encompassed by the current fit. At the same time an analogous problem was discovered and fitted for m = 2 transitions, which were found to be affected by many m = 1 ↔ m = 2 resonances.

  15. Analysis of resonant population transfer in time-dependent elliptical quantum billiards

    NASA Astrophysics Data System (ADS)

    Liss, Jakob; Liebchen, Benno; Schmelcher, Peter

    2013-01-01

    A Fermi golden rule for population transfer between instantaneous eigenstates of elliptical quantum billiards with oscillating boundaries is derived. Thereby the occurrence of both the recently observed resonant population transfer between instantaneous eigenstates and the empirical criterion stating that these transitions occur when the driving frequency matches the mean difference of the latter [Lenz , New J. Phys.NJOPFM1367-263010.1088/1367-2630/13/10/103019 13, 103019 (2011)] is explained. As a second main result a criterion judging which resonances are resolvable in a corresponding experiment of certain duration is provided. Our analysis is complemented by numerical simulations for three different driving laws. The corresponding resonance spectra are in agreement with the predictions of both criteria.

  16. Central diffractive resonance production at the LHC

    NASA Astrophysics Data System (ADS)

    Fiore, Roberto; Jenkovszky, Laszlo; Schicker, Rainer

    2016-07-01

    Central production of resonances resulting from the scattering of Pomerons in the central rapidity region of proton-proton scattering is studied. Estimates for relevant cross sections are presented. L.J. gratefully acknowledges an EMMI visiting Professorship at the University of Heidelberg for completion of this work. He is grateful to the organizers of this meeting for their hospitality and support. His work was supported also by DOMUS, Hungarian Academy of Sciences

  17. Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials

    PubMed Central

    Fedotov, V. A.; Rogacheva, A. V.; Savinov, V.; Tsai, D. P.; Zheludev, N. I.

    2013-01-01

    Engaging strongly resonant interactions allows dramatic enhancement of functionalities of many electromagnetic devices. However, resonances can be dampened by Joule and radiation losses. While in many cases Joule losses may be minimized by the choice of constituting materials, controlling radiation losses is often a bigger problem. Recent solutions include the use of coupled radiant and sub-radiant modes yielding narrow asymmetric Fano resonances in a wide range of systems, from defect states in photonic crystals and optical waveguides with mesoscopic ring resonators to nanoscale plasmonic and metamaterial systems exhibiting interference effects akin to electromagnetically-induced transparency. Here we demonstrate theoretically and confirm experimentally a new mechanism of resonant electromagnetic transparency, which yields very narrow isolated symmetric Lorentzian transmission lines in toroidal metamaterials. It exploits the long sought non-trivial non-radiating charge-current excitation based on interfering electric and toroidal dipoles that was first proposed by Afanasiev and Stepanovsky in [J. Phys. A Math. Gen. 28, 4565 (1995)]. PMID:24132231

  18. Modeling scattering enhancements at isolated resonances using energy conservation, reciprocity, symmetry, and the optical theorem

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Osterhoudt, Curtis F.

    2003-04-01

    Sound scattered by some objects in water exhibits isolated narrow resonances that are sufficiently large in amplitude to dominate the low-frequency scattering. Examples include the quadrupole mode of thin spherical shells and of solid plastic spheres [B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 107, 1930-1936 (2000)] and organ-pipe modes of water-filled pipes [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. This presentation concerns simple methods for approximating the scattering. In the case of spheres, ray theory for the backscattering reduces to a simple form for high-Q modes: Eq. (58) of Marston [J. Acoust. Soc. Am. 83, 25-37 (1988)]. This result gives the backscattering form function at resonance (in the usual normalization) to have the magnitude 2(2n+1)/ka. Here n is the partial wave index associated with the mode of the sphere and ka is the product of the wave number and the sphere radius. This result may also be derived directly from energy conservation and the optical theorem. Scattering amplitudes associated with high-Q organ pipe resonances of open cylindrical pipes are also derived here by a related method using the energy conservation, reciprocity, symmetry, and the optical theorem.

  19. Long-term motion of resonant satellites with arbitrary eccentricity and inclination

    NASA Technical Reports Server (NTRS)

    Nacozy, P. E.; Diehl, R. E.

    1982-01-01

    A first-order, semi-analytical method for the long-term motion of resonant satellites is introduced. The method provides long-term solutions, valid for nearly all eccentricities and inclinations, and for all commensurability ratios. The method allows the inclusion of all zonal and tesseral harmonics of a nonspherical planet. We present here an application of the method to a synchronous satellite including J2 and J22 harmonics. Global, long-term solutions for this problem are given for arbitrary values of eccentricity, argument of perigee and inclination.

  20. Measurement of the ratio of the production cross sections times branching fractions of $$B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}$$ and $$B^{\\pm} \\to J/\\psi K^{\\pm}$$ and $$\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}\\pi^{\\pm}\\pi^{\\mp})/\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm})$$ in pp collisions at $$\\sqrt{s} =$$ 7 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-01-13

    The ratio of the production cross sections times branching fractions (σ(B ± c)B(B ± c→J/ψπ ±))/(σ(B ±)B(B ±→J/ψK ±)) is studied in proton-proton collisions at a center of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires B c ± and B ± mesons with transverse momentum p T > 15 GeV and rapidity |y|< 1.6. The data sample corresponds to an integrated luminosity of 5.1 fb -1. The ratio is determined to be [0.48±0.05(stat)± 0.03(syst)±0.05 (τBc)]%. The B c ± → J/ψπ ± π ± π ∓ decay is also observedmore » in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(B ± c→J/ψπ ±π ±π ∓)/B(B ± c→J/ψπ ±) is measured to be 2.55±0.80(stat)±0.33(syst) +0.04 -0.01(τ Bc), consistent with the previous LHCb result.« less

  1. Measurement of the ratio of the production cross sections times branching fractions of $$B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}$$ and $$B^{\\pm} \\to J/\\psi K^{\\pm}$$ and $$\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}\\pi^{\\pm}\\pi^{\\mp})/\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm})$$ in pp collisions at $$\\sqrt{s} =$$ 7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    The ratio of the production cross sections times branching fractions (σ(B ± c)B(B ± c→J/ψπ ±))/(σ(B ±)B(B ±→J/ψK ±)) is studied in proton-proton collisions at a center of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires B c ± and B ± mesons with transverse momentum p T > 15 GeV and rapidity |y|< 1.6. The data sample corresponds to an integrated luminosity of 5.1 fb -1. The ratio is determined to be [0.48±0.05(stat)± 0.03(syst)±0.05 (τBc)]%. The B c ± → J/ψπ ± π ± π ∓ decay is also observedmore » in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(B ± c→J/ψπ ±π ±π ∓)/B(B ± c→J/ψπ ±) is measured to be 2.55±0.80(stat)±0.33(syst) +0.04 -0.01(τ Bc), consistent with the previous LHCb result.« less

  2. A precise determination of black hole spin in GRO J1655-40

    NASA Astrophysics Data System (ADS)

    Abramowicz, M. A.; Kluźniak, W.

    2001-08-01

    We note that the recently discovered 450 Hz frequency in the X-ray flux of the black hole candidate GRO J1655-40 is in a 3:2 ratio to the previously known 300 Hz frequency of quasi-periodic oscillations (QPO) in the same source. If the origin of high frequency QPOs in black hole systems is a resonance between orbital and epicyclic motion of accreting matter, as suggested previously, the angular momentum of the black hole can be accurately determined, given its mass. We find that the dimensionless angular momentum is in the range 0.2<j<0.67 if the mass is in the (corresponding) range of 5.5 to 7.9 solar masses.

  3. Wigner Transport Simulation of Resonant Tunneling Diodes with Auxiliary Quantum Wells

    NASA Astrophysics Data System (ADS)

    Lee, Joon-Ho; Shin, Mincheol; Byun, Seok-Joo; Kim, Wangki

    2018-03-01

    Resonant-tunneling diodes (RTDs) with auxiliary quantum wells ( e.g., emitter prewell, subwell, and collector postwell) are studied using a Wigner transport equation (WTE) discretized by a thirdorder upwind differential scheme. A flat-band potential profile is used for the WTE simulation. Our calculations revealed functions of the auxiliary wells as follows: The prewell increases the current density ( J) and the peak voltage ( V p ) while decreasing the peak-to-valley current ratio (PVCR), and the postwell decreases J while increasing the PVCR. The subwell affects J and PVCR, but its main effect is to decrease V p . When multiple auxiliary wells are used, each auxiliary well contributes independently to the transport without producing side effects.

  4. Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: J Scrambling and Perfectly Anticorrelated Cross Peaks

    NASA Astrophysics Data System (ADS)

    Mandal, Aritra; Ng Pack, Greg; Shah, Parth P.; Erramilli, Shyamsunder; Ziegler, L. D.

    2018-03-01

    Ultrafast two-dimensional infrared (2DIR) spectra of the N2O ν3 mode in moderately dense SF6 gas exhibit complex line shapes with diagonal and antidiagonal features in contrast to condensed phase vibrational 2DIR spectroscopy. Observed spectra for this quasifree rotor system are well captured by a model that includes all 36 possible rovibrational pathways and treats P (Δ J =-1 ) and R (Δ J =+1 ) branch resonances as distinct Kubo line shape features. Transition frequency correlation decay is due to J scrambling within one to two gas collisions at each density. Studies of supercritical solvation and relaxation at high pressure and temperature are enabled by this methodology.

  5. Direct experimental observation of the molecular J eff = 3/2 ground state in the lacunar spinel GaTa4Se8.

    PubMed

    Jeong, Min Yong; Chang, Seo Hyoung; Kim, Beom Hyun; Sim, Jae-Hoon; Said, Ayman; Casa, Diego; Gog, Thomas; Janod, Etienne; Cario, Laurent; Yunoki, Seiji; Han, Myung Joon; Kim, Jungho

    2017-10-04

    Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff  = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa 4 Se 8 was theoretically predicted to form the molecular J eff  = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff  = 3/2 state. Here, we report direct experimental evidence of the J eff  = 3/2 state in GaTa 4 Se 8 by means of excitation spectra of resonant inelastic X-ray scattering at the Ta L 3 and L 2 edges. We find that the excitations involving the J eff  = 1/2 molecular orbital are absent only at the Ta L 2 edge, manifesting the realization of the molecular J eff  = 3/2 ground state in GaTa 4 Se 8 .The strong interaction between electron spin and orbital degrees of freedom in 5d oxides can lead to exotic electronic ground states. Here the authors use resonant inelastic X-ray scattering to demonstrate that the theoretically proposed J eff  = 3/2 state is realised in GaTa 4 Se 8 .

  6. Near-resonance scattering from arrays of artificial fish swimbladders.

    PubMed

    Nero, R W; Feuillade, C; Thompson, C H; Love, R H

    2007-01-01

    The air-filled swimbladders of fish resonate like damped air bubbles, and are very efficient acoustic scatterers at low to mid frequencies (typically <20 kHz). Scattering experiments were performed on an artificial "fish school" constructed from polyethylene bubbles. A mathematical model, developed to describe near-resonance backscattering from schooling fish [J. Acoust. Soc. Am. 99, 196-208 (1996)], was used to analyze the physical behavior for three different arrays of these bubbles. The measurements gave excellent agreement with the model, showing that coupled-resonance and interference effects cause the frequency response of tightly packed arrays, with spacing corresponding to the order of a body length for fish, to differ significantly from those of more dispersed arrays. As the array spacing is increased to the equivalent of several body lengths, these effects rapidly diminish. The results of this comparison demonstrate that, at low to mid frequencies, coupled resonance and interference effects are likely in schooling fish, and need to be considered in applications of underwater acoustic methods to the study of fish populations.

  7. Transverse Mode Formation in Positive Branch Unstable Resonators.

    DTIC Science & Technology

    1983-08-01

    UNSTABLE RESONATORS S. PERFORMING ORG11. REPORT NURSER 7. AUTNOR(q) S. CONTRACT OR GRANT NUMS1ER111) R. William Jones S. PERFORMING ORGANIZATION NAME AND...EIAO-IWETA .3WSTPOSCOS(TIOUTA) SOIC 725 710 J 24S6JWINT94p DATA 4 1* 1) t) ?AJI1*Mot MT1MPUMI’dSTPZ wwub**vSTP%-wI ’wSTPj 733 IU(ISIGN)7319?43,?40

  8. Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios

    2007-01-01

    A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.

  9. cyNeo4j: connecting Neo4j and Cytoscape

    PubMed Central

    Summer, Georg; Kelder, Thomas; Ono, Keiichiro; Radonjic, Marijana; Heymans, Stephane; Demchak, Barry

    2015-01-01

    Summary: We developed cyNeo4j, a Cytoscape App to link Cytoscape and Neo4j databases to utilize the performance and storage capacities Neo4j offers. We implemented a Neo4j NetworkAnalyzer, ForceAtlas2 layout and Cypher component to demonstrate the possibilities a distributed setup of Cytoscape and Neo4j have. Availability and implementation: The app is available from the Cytoscape App Store at http://apps.cytoscape.org/apps/cyneo4j, the Neo4j plugins at www.github.com/gsummer/cyneo4j-parent and the community and commercial editions of Neo4j can be found at http://www.neo4j.com. Contact: georg.summer@gmail.com PMID:26272981

  10. Vacuum fluctuations and radiation reaction contributions to the resonance dipole-dipole interaction between two atoms near a reflecting boundary

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Rizzuto, Lucia; Passante, Roberto

    2018-04-01

    We investigate the resonance dipole-dipole interaction energy between two identical atoms, one in the ground state and the other in the excited state, interacting with the electromagnetic field in the presence of a perfectly reflecting plane boundary. The atoms are prepared in a correlated (symmetric or antisymmetric) Bell-type state. Following a procedure due to Dalibard et al. [J. Dalibard et al., J. Phys. (Paris) 43, 1617 (1982);, 10.1051/jphys:0198200430110161700 J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], we separate the contributions of vacuum fluctuations and radiation reaction (source) field to the resonance interaction energy between the two atoms and show that only the source field contributes to the interatomic interaction, while vacuum field fluctuations do not. By considering specific geometric configurations of the two-atom system with respect to the mirror and specific choices of dipole orientations, we show that the presence of the mirror significantly affects the resonance interaction energy and that different features appear with respect to the case of atoms in free space, for example, a change in the spatial dependence of the interaction. Our findings also suggest that the presence of a boundary can be exploited to tailor and control the resonance interaction between two atoms, as well as the related energy transfer process. The possibility of observing these phenomena is also discussed.

  11. Optimized phases for the acquisition of J-spectra in coupled spin systems for thermally and PHIP polarized molecules

    NASA Astrophysics Data System (ADS)

    Bussandri, S.; Prina, I.; Acosta, R. H.; Buljubasich, L.

    2018-04-01

    We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yy yy ‾ or xx xx ‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems.

  12. Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; O'Shaughnessy, Richard; Kesden, Michael; Berti, Emanuele; Sperhake, Ulrich

    2014-06-01

    If binary black holes form following the successive core collapses of sufficiently massive binary stars, precessional dynamics may align their spins, Smathvariant="bold">1 and Smathvariant="bold">2, and the orbital angular momentum L into a plane in which they jointly precess about the total angular momentum J. These spin orientations are known as spin-orbit resonances since S1, S2, and L all precess at the same frequency to maintain their planar configuration. Two families of such spin-orbit resonances exist, differentiated by whether the components of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors could measure this fraction they could provide important insights into astrophysical formation scenarios for binary black holes. In this paper, we show that even under the conservative assumption that binary black holes are observed along the direction of J (where precession-induced modulations to the gravitational waveforms are minimized), the waveforms of many members of each resonant family can be distinguished from all members of the other family in events with signal-to-noise ratios ρ ≃10, typical of those expected for the first detections with Advanced LIGO and Virgo. We hope that our preliminary findings inspire a greater appreciation of the capability of gravitational-wave detectors to constrain stellar astrophysics and stimulate further studies of the distinguishability of spin-orbit resonant families in more expanded regions of binary black-hole parameter space.

  13. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  14. Latest developments in resonantly diode-pumped Er:YAG lasers

    NASA Astrophysics Data System (ADS)

    Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark

    2007-04-01

    Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of an external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62 - 70%. As a result, the incident power threshold was reduced by a factor of 2.5, and the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23 - 30%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing. More than 180 mJ QCW pulse output energy was obtained in a stable-unstable resonator configuration with a beam quality of M2 = 1.3 in the stable direction and M2 = 1.1 in the unstable direction. The measured slope efficiency was 0.138 J/J with a threshold energy of 0.91 J.

  15. The solar gravitational figure: J2 and J4

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Hawkins, G. W.

    1980-01-01

    The theory of the solar gravitational figure is derived including the effects of differential rotation. It is shown that J sub 4 is smaller than J sub 2 by a factor of about 10 rather than being of order J sub 2 squared as would be expected for rigid rotation. The dependence of both J sub 2 and J sub 4 on envelope mass is given. High order p-mode oscillation frequencies provide a constraint on solar structure which limits the range in envelope mass to the range 0.01 M sub E/solar mass 0.04. For an assumed rotation law in which the surface pattern of differential rotation extends uniformly throughout the convective envelope, this structural constraint limits the ranges of J sub 2 and J sub 4 in units of 10 to the -8th power to 10 J sub 2 15 and 0.6 -J sub 4 1.5. Deviations from these ranges would imply that the rotation law is not constant with depth and would provide a measure of this rotation law.

  16. Observation of two new Ξ(b)(-) baryon resonances.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2015-02-13

    Two structures are observed close to the kinematic threshold in the Ξ(b)(0)π(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0  fb(-1), recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity J(P)=(1/2)(+) and J(P)=(3/2)(+) states, denoted Ξ(b)('-) and Ξ(b)(*-). Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξ(b)('-))-m(Ξ(b)(0))-m(π(-))=3.653±0.018±0.006  MeV/c(2), m(Ξ(b)(*-))-m(Ξ(b)(0))-m(π(-))=23.96±0.12±0.06  MeV/c(2), Γ(Ξ(b)(*-))=1.65±0.31±0.10  MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξ(b)('-))<0.08  MeV at 95% confidence level. Relative production rates of these states are also reported.

  17. Infrared-Terahertz Double-Resonance Spectroscopy of CH3F and CH3Cl at Atmospheric Pressure

    DTIC Science & Technology

    2012-05-16

    coincidence with the RQ3(6) rovibrational transition in CH3 35Cl [Fig. 4(b)]. At atmospheric pressure, nine more P -, Q-, and R-branch rovibrational...the double-resonance signatures of all IR-THz pump-probe coincidences at atmospheric pressure for 12CH3F and CH3 35Cl 052507-11050-2947/2012/85(5...were calculated using the rotational constants listed in Tables I and II. For CH3F, the standard P - type (J = − 1), Q-type (J = 0), and R-type (J

  18. Automatic frequency and phase alignment of in vivo J-difference-edited MR spectra by frequency domain correlation.

    PubMed

    Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette

    2017-12-01

    J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.

  19. KC-130J Transport Aircraft (KC-130J)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-433 KC-130J Transport Aircraft (KC-130J) As of FY 2017 President’s Budget Defense Acquisition...Management Information Retrieval (DAMIR) March 23, 2016 15:23:28 UNCLASSIFIED KC-130J December 2015 SAR March 23, 2016 15:23:28 UNCLASSIFIED 2...Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost KC-130J December 2015 SAR March 23

  20. Compact 1 mJ fiber MOPA for space-based laser-ablation resonant ionization mass spectrometry (LARIMS)

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Crain, William; Nguyen, Can; Ionov, Pavel; Steinvurzel, Paul; Dotan, Yaniv; Karuza, Petras; Lotshaw, William; Rose, Todd; Beck, Steven; Anderson, F. Scott

    2018-02-01

    A 1064 nm, 1 mJ pulsed fiber MOPA module, housed in 16"x14"x2.5" package for application in a lunar and planetary in-situ surface dating instrument is demonstrated. The module is based on a three-stage MOPA with a 60 μm core tapered fiber terminal amplifier. The master oscillator and first two preamplifier stages, which generate 20 μJ pulses, are all contained on a 13"x11"x1" board. Several improvements to the electronic signal control were instrumental to the laser development, including bipolar drive of the phase modulator for SBS suppression, shaping of the seed pulse to compensate pulse steepening, and pulsed operation of the power amplifier pump to reduce spontaneous emission at low pulse repetition frequency. The packaged laser runs at a repetition rate of 10 kHz and generates 10 ns pulses at 1 mJ with a 40 GHz linewidth, an M2 1.2 beam quality, and an 18 dB polarization extinction ratio. The modular design enables seven independent lasers to be stacked in a 20"x18"x16.25" enclosure, supporting a path towards a fiber laser based LARIMS for advanced materials characterization and chronological dating in harsh and remote environments.

  1. Observation of ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ.

    PubMed

    Ablikim, M; Achasov, M N; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2017-06-02

    Using 4.479×10^{8}  ψ(3686) events collected with the BESIII detector, we search for the decays ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ, where J=0, 1, 2. The decays ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ are observed for the first time. The measured branching fractions are B(ψ(3686)→e^{+}e^{-}χ_{cJ})=(11.7±2.5±1.0)×10^{-4}, (8.6±0.3±0.6)×10^{-4}, (6.9±0.5±0.6)×10^{-4} for J=0, 1, 2, and B(χ_{cJ}→e^{+}e^{-}J/ψ)=(1.51±0.30±0.13)×10^{-4}, (3.73±0.09±0.25)×10^{-3}, (2.48±0.08±0.16)×10^{-3} for J=0, 1, 2, respectively. The ratios of the branching fractions B(ψ(3686)→e^{+}e^{-}χ_{cJ})/B(ψ(3686)→γχ_{cJ}) and B(χ_{cJ}→e^{+}e^{-}J/ψ)/B(χ_{cJ}→γJ/ψ) are also reported. Also, the α values of helicity angular distributions of the e^{+}e^{-} pair are determined for ψ(3686)→e^{+}e^{-}χ_{c1,2} and χ_{c1,2}→e^{+}e^{-}J/ψ.

  2. 38 CFR 4.117 - Schedule of ratings-hemic and lymphatic systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... based upon that or any subsequent examination shall be subject to the provisions of § 3.105(e) of this... or any subsequent examination shall be subject to the provisions of § 3.105(e) of this chapter. If there has been no recurrence, rate on residuals. 7704Polycythemia vera: During periods of treatment with...

  3. Results of the mission profile life test. [for J-series mercury ion engines

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Trump, G. E.; James, E. L.

    1982-01-01

    Seven J series 30-cm diameter thrusters have been tested in segments of up to 5,070 hr, for 14,541 hr in the Mission Profile Life Test facility. Test results have indicated the basic thruster design to be consistent with the lifetime goal of 15,000 hr at 2-A beam. The only areas of concern identified which appear to require additional verification testing involve contamination of mercury propellant isolators, which may be due to facility constituents, and the ability of specially covered surfaces to contain sputtered material and prevent flake formation. The ability of the SCR, series resonant inverter power processor to operate the J series thruster and autonomous computer control of the thruster/processor system were demonstrated.

  4. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  5. Associated production of J/ψ and mesons and the prospects to observe a new hypothetical tetraquark state

    NASA Astrophysics Data System (ADS)

    Baranov, Sergey

    2017-10-01

    We propose a new mechanism for prompt simultaneous production of J/ψ and mesons in high energy hadronic collisions. The process is considered as a perturbative production of mesons followed by a long-distance final state interaction that rearranges the quarks to form J/ψ and mesons. Passing from configuration to J/ψ+ configuration may proceed via a hypothetical resonance state, the tetraquark. The goal of this work is to examine whether the respective cross section is large enough to encourage a direct search for the tetraquark at the LHC conditions (yes), and whether this hypothesis can help to explain recent D0 data without assigning an unusually low value to σeff in the double parton scattering mechanism (no).

  6. Tissue Oxygenation Monitoring using Resonance Raman Spectroscopy during Hemorrhage

    DTIC Science & Technology

    2013-12-27

    saturation measurements using resonance Raman intravital micros- copy. Am J Physiol Heart Circ Physiol. 2005;289:H488 H495. 14. Ward KR, Ivatury RR, Barbee...Nighswander-Rempel SP, Kupriyanov VV, Shaw RA. Relative contribu- tions of hemoglobin and myoglobin to near-infrared spectroscopic images of cardiac tissue...DC, Shapiro NI. The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image

  7. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  8. Resonance dynamics of DCO (X ˜ '2A ) simulated with the dynamically pruned discrete variable representation (DP-DVR)

    NASA Astrophysics Data System (ADS)

    Larsson, Henrik R.; Riedel, Jens; Wei, Jie; Temps, Friedrich; Hartke, Bernd

    2018-05-01

    Selected resonance states of the deuterated formyl radical in the electronic ground state X ˜ '2A are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D—C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps.

  9. Resonant acoustic measurement of vapor phase transport phenomenon in porous media

    NASA Astrophysics Data System (ADS)

    Schuhmann, Richard; Garrett, Steven

    2002-05-01

    Diffusion of gases through porous media is commonly described using Fick's law and is characterized by a gas diffusion coefficient modified by a media-specific tortuosity parameter. A phase-locked-loop resonance frequency tracker [J. Acoust. Soc. Am. 108, 2520 (2000)] has been upgraded with an insulated copper resonator and a bellows-sealed piston instrumented with an accelerometer. Average system stability (temperature divided by frequency squared) is about 180 ppm. Glass-bead-filled cores of different lengths are fitted into an o-ring sealed opening at the top of the resonator. The rate at which the tracer gas is replaced by air within the resonator is controlled by the core's diffusion constant. Mean molecular weight of the gas mixture in the resonator is determined in real time from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Molecular weight of the gas mixture is determined approximately six times per minute. Changes in the gas mixture concentration are exponential in time (within 0.1%) over nearly two decades in concentration. We will report diffusion constants for two different sizes of glass beads, in samples of five different lengths, using two different tracer gases, to establish the validity of this approach. [Work supported by ONR.

  10. Fidelity for kicked atoms with gravity near a quantum resonance.

    PubMed

    Dubertrand, Rémy; Guarneri, Italo; Wimberger, Sandro

    2012-03-01

    Kicked atoms under a constant Stark or gravity field are investigated for experimental setups with cold and ultracold atoms. The parametric stability of the quantum dynamics is studied using the fidelity. In the case of a quantum resonance, it is shown that the behavior of the fidelity depends on arithmetic properties of the gravity parameter. Close to a quantum resonance, the long-time asymptotics of the fidelity is studied by means of a pseudoclassical approximation introduced by Fishman et al. [J. Stat. Phys. 110, 911 (2003)]. The long-time decay of fidelity arises from the tunneling out of pseudoclassical stable islands, and a simple ansatz is proposed which satisfactorily reproduces the main features observed in numerical simulations.

  11. Optimized phases for the acquisition of J-spectra in coupled spin systems for thermally and PHIP polarized molecules.

    PubMed

    Bussandri, S; Prina, I; Acosta, R H; Buljubasich, L

    2018-04-01

    We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yyyy‾ or xxxx‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. 75 FR 33164 - Modification of Jet Routes J-32, J-38, and J-538; Minnesota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-1080; Airspace Docket No. 09-AGL-13] RIN 2120-AA66 Modification of Jet Routes J-32, J-38, and J-538; Minnesota AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action...

  13. Contribution of non-resonant wave-wave interactions in the dynamics of long-crested sea wave fields

    NASA Astrophysics Data System (ADS)

    Benoit, Michel

    2017-04-01

    durations ranging from a few wave periods to 1000 periods), with the aim of highlighting the capabilities and limitations of the GKE-PAE models. Different situations are considered by varying the relative water depth, the initial steepness of the wave field, and the shape of the initial wave spectrum, including arbitrary forms. References: Annenkov S.Y., Shrira V.I. (2006) Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech., 561, 181-207. Badulin S.I., Pushkarev A.N., Resio D., Zakharov V.E. (2005) Self-similarity of wind-driven seas. Nonlin. Proc. Geophys., 12, 891-946. Gramstad O., Stiassnie M. (2013) Phase-averaged equation for water waves. J. Fluid Mech., 718, 280- 303. Hasselmann K. (1962) On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481-500. Zakharov V.E. (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. App. Mech. Tech. Phys., 9(2), 190-194.

  14. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Fry, Charles G.

    2004-07-01

    A review is given of the crucial work performed by Paul C. Lauterbur and Peter Mansfield that lead to their being awarded the Nobel Prize in Medicine in 2003. Lauterbur first expounded the idea of mapping spatial information from spectral data in nuclear magnetic resonance (NMR) through the application of magnetic field gradients (P. C. Lauterbur, Nature 1973 , 242, 190-191). One year later Mansfield and co-workers introduced the idea of selective excitation to NMR imaging (A. N. Garroway, P. K. Grannell, and P. Mansfield. J. Phys. C: Solid State Physics 1974 , 7, L457-L462). A major step in making the technique useful for clinical imaging came with Mansfield's publication of the method known as echo planar imaging (P. Mansfield, J. Phys. C: Solid State Physics 1977, 10 (3) , L55-L58). Lauterbur's and Mansfield's work captured the essence of scientific discovery, collaboration, and concerted effort to overcome significant technical issues, and were key to the development of the technique of magnetic resonance imaging (MRI). Examples of how MRI technology can be extended to chemical research are given, and limitations of the technique in this regard are discussed. Discussion of how to use commonly available NMR spectrometers for chemical imaging is also provided.

  15. Strong decays of DJ(3000 ) and Ds J(3040 )

    NASA Astrophysics Data System (ADS)

    Li, Si-Chen; Wang, Tianhong; Jiang, Yue; Tan, Xiao-Ze; Li, Qiang; Wang, Guo-Li; Chang, Chao-Hsi

    2018-03-01

    In this paper, we systematically calculate two-body strong decays of newly observed DJ(3000 ) and Ds J(3040 ) with 2 P (1+) and 2 P (1+') assignments in an instantaneous approximation of the Bethe-Salpeter equation method. Our results show that both resonances can be explained as the 2 P (1+') with broad width via 3P1 and 1P1 mixing in D and Ds families. For DJ(3000 ), the total width is 229.6 MeV in our calculation, close to the upper limit of experimental data, and the dominant decay channels are D2*π , D*π , and D*(2600 )π . For Ds J(3040 ), the total width is 157.4 MeV in our calculation, close to the lower limit of experimental data, and the dominant channels are D*K and D*K*. These results are consistent with observed channels in experiments. Given the very little information that has been obtained from experiments and the large error bars of the total decay widths, we recommend the detection of dominant channels in our calculation.

  16. J. J. Thomson goes to America.

    PubMed

    Downard, Kevin M

    2009-11-01

    Joseph John (J. J.) Thomson was an accomplished scientist who helped lay the foundations of nuclear physics. A humble man of working class roots, Thomson went on to become one of the most influential physicists of the late 19th century. He is credited with the discovery of the electron, received a Nobel Prize in physics in 1906 for investigations into the conduction of electricity by gases, was knighted in 1908, and served as a Cavendish Professor and Director of the laboratory for over 35 years from 1884. His laboratory attracted some of the world's brightest minds; Francis W. Aston, Niels H. D. Bohr, Hugh L. Callendar, Charles T. R. Wilson, Ernest Rutherford, George F. C. Searle, Geoffrey I. Taylor, and John S. E. Townsend all worked under him. This article recounts J. J. Thomson's visits to North America in 1896, 1903, 1909, and finally 1923. It presents his activities and his personal impressions of the people and society of the U.S.A. and Canada, and the science of atomic physics and chemistry in the late 1800s and early 1900s.

  17. Resonant Raman Auger effect in Xe

    NASA Astrophysics Data System (ADS)

    Armen, Brad; Levin, Jon

    1996-05-01

    The L_3-M_4,5M_4,5 spectator Auger process in xenon is investigated from the viewpoint of radiationless resonant Raman scattering. Calculations for spectator cross sections and electron spectra are presented as functions of incident photon energy near the L3 edge. These calculations are based on the lowest-order scattering theory(T. Åberg, Phys. Scr. T41, 71 (1992).) which has proved successful in the interpretation of argon ion yields coincident with K-L_2,3L_2,3 decay.footnote G. B. Armen, J. C. Levin, and I. A. Sellin , Phys Rev A 53, 1 (1996).

  18. Amplitude analysis of resonant production in three pions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackura, Andrew; Mikhasenko, Mikhail; Szczepaniak, Adam

    2016-11-29

    We present some results on the analysis of three pion resonances. The analyses are motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. We construct reaction amplitudes that satisfy fundamentalmore » $S$-matrix principles, which allows the use of models that have physical constraints to be used in fitting data. The models are motivated by the isobar model that satisfy unitarity constraints. The model consist of a Deck production amplitude with which final state interactions are constrained by unitarity. We employ the isobar model where two of the pions form a quasi-stable particle. The analysis is performed in the high-energy, single Regge limit. We specifically discuss the examples of the three pion $$J^{PC}=2^{-+}$$ resonance in the $$\\rho\\pi$$ and $$f_2\\pi$$ channels.« less

  19. C-130J Hercules Transport Aircraft (C-130J)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-220 C-130J Hercules Transport Aircraft (C-130J) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 21, 2016 11:33:03 UNCLASSIFIED C-130J December 2015 SAR March 21, 2016 11:33:03...Requirements Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost C-130J December 2015 SAR March 21

  20. KSC-2012-3105

    NASA Image and Video Library

    2012-05-29

    CAPE CANAVERAL, Fla. – Technicians monitor the progress as one of space shuttle Endeavour's three fuel cells is removed from the vehicle's payload bay. The operation took place inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson

  1. KSC-2013-3105

    NASA Image and Video Library

    2013-07-24

    CAPE CANAVERAL, Fla. – Erik Nason, an athletic trainer with InoMedic Health/RehabWorks, instructs Kennedy Space Center workers during a foam rolling class. The class was part of the National Employee Health and Fitness Day event. Yoga, cardio dance, and boot camp classes were also offered throughout the day at the Operations and Checkout Building's Fitness Center. Photo credit: NASA/ Dimitri Gerondidakis

  2. KSC-2014-3105

    NASA Image and Video Library

    2014-07-01

    VANDENBERG AIR FORCE BASE, Calif. – Final preparations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California for liftoff of NASA's Orbiting Carbon Observatory-2, or OCO-2, aboard a United Launch Alliance Delta II rocket. Launch of OCO-2 is scheduled for 5:56 a.m. EDT on July 2 following the repair of the pad's water suppression system, which failed on the first launch attempt July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://www.nasa.gov/oco2. Photo credit: NASA/Randy Beaudoin

  3. Understanding the quantum nature of low-energy C(3P j ) + He inelastic collisions.

    PubMed

    Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François

    2018-05-01

    Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C( 3 P j=0 ) and helium atoms-at collision energies in the vicinity of spin-orbit excitation thresholds (~0.2 and 0.5 kJ mol -1 )-that result in spin-orbit excitation to C( 3 P j=1 ) and C( 3 P j=2 ). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C( 3 P j=0 ) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.

  4. Investigation of possible phase transition of the frustrated spin-1/2 J 1-J 2-J 3 model on the square lattice.

    PubMed

    Hu, Ai-Yuan; Wang, Huai-Yu

    2017-09-05

    The frustrated spin-1/2 J 1 -J 2 -J 3 antiferromagnet with exchange anisotropy on the two-dimensional square lattice is investigated. The exchange anisotropy is presented by η with 0 ≤ η < 1. The effects of the J 1 , J 2 , J 3 and anisotropy on the possible phase transition of the Néel state and collinear state are studied comprehensively. Our results indicate that for J 3  > 0 there are upper limits [Formula: see text] and η c values. When 0 < J 3  ≤ [Formula: see text] and 0 ≤ η ≤ η c , the Néel and collinear states have the same order-disorder transition point at J 2  = J 1 /2. Nevertheless, when the J 3 and η values beyond the upper limits, it is a paramagnetic phase at J 2  = J 1 /2. For J 3  < 0, in the case of 0 ≤ η < 1, the two states always have the same critical temperature as long as J 2  = J 1 /2. Therefore, for J 2  = J 1 /2, under such parameters, a first-order phase transition between the two states for these two cases below the critical temperatures may occur. When J 2  ≠ J 1 /2, the Néel and collinear states may also exist, while they have different critical temperatures. When J 2  > J 1 /2, a first-order phase transition between the two states may also occur. However, for J 2  < J 1 /2, the Néel state is always more stable than the collinear state.

  5. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  6. Asymmetric resonance Raman excitation profiles and violation of the Condon approximation in single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Doorn, Stephen; Duque, Juan; Telg, Hagen; Chen, Hang; Swan, Anna; Haroz, Erik; Kono, Junichiro; Tu, Xiaomin; Zheng, Ming

    2012-02-01

    DNA wrapping-based ion exchange chromatography and density gradient ultracentrifugation provide nanotube samples highly enriched in single chiralities. We present resonance Raman excitation profiles for the G-band of several single chirality semiconducting and metallic species. The expected incoming and outgoing resonance peaks are observed in the profiles, but contrary to long-held assumptions, the outgoing resonance is always significantly weaker than the ingoing resonance peak. This strong asymmetry in the profiles arises from a violation of the Condon approximation [1]. Results will be discussed in the context of theoretical models that suggest significant coordinate dependence in the transition dipole (non-Condon effects). The generality of the behavior across semiconducting and metallic types, nanotube family, phonon mode, and Eii will be demonstrated. [4pt] [1] J. Duque et. al., ACS Nano, 5, 5233 (2011).

  7. J SERIES MAGAZINE. J 107 NORTH END AND REAR (EAST). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 107 NORTH END AND REAR (EAST). J 106-103 IN BACKGROUND. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  8. Nuclear Resonance Fluorescence off 54Cr: The Onset of the Pygmy Dipole Resonance

    NASA Astrophysics Data System (ADS)

    Ries, P. C.; Beck, T.; Beller, J.; Krishichayan; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pai, H.; Pietralla, N.; Romig, C.; Savran, D.; Schilling, M.; Tornow, W.; Werner, V.; Zweidinger, M.

    2016-06-01

    Low-lying electric and magnetic dipole excitations (E1 and M1) below the neutron separation threshold, particularly the Pygmy Dipole Resonance (PDR), have drawn considerable attention in the last years. So far, mostly moderately heavy nuclei in the mass regions around A = 90 and A = 140 were examined with respect to the PDR. In the present work, the systematics of the PDR have been extended by measuring excitation strengths and parity quantum numbers of J = 1 states in lighter nuclei near A = 50 in order to gather information on the onset of the PDR. The nuclei 50,52,54Cr and 48,50Ti were examined via bremsstrahlung produced at the DArmstadt Superconducting electron Linear Accelerator (S-DALINAC) with photon energies up to 9.7 MeV with the method of nuclear resonance fluorescence. Numerous excited states were observed, many of which for the first time. The parity quantum numbers of these states have been determined at the High Intensity Gamma-ray Source (HIγS) of the Triangle Universities Nuclear Laboratory in Durham, NC, USA. Informations to the methods and the experimental setups will be provided and the results on 54Cr achieved will be discussed with respect to the onset of the PDR.

  9. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  10. Resonant and Nonresonant Nonlinear Optical Spectroscopy of CDSE Quantum Dots for Nonlinear Photonic Applications

    DTIC Science & Technology

    2006-11-01

    Temple D., Yoo K. P., Kim S. Y., Mott A., Namkung M., and Jung S. S., 2003: Large and pure refractive nonlinearity of nanostructure silica ... aerogel , Appl. Phys. Lett., 82(25), 4444-4446. [18] Sun W., Patton T., Stultz L., andClaude J. P., 2003: Resonant third-order nonlinearities of tetrakis

  11. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  12. Edge resonant fluctuations and particle transport in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Möller, A.

    1998-12-01

    Electrostatic fluctuations are measured in the Extrap T2 reversed-field pinch [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 2, pp. 193-199] using a Langmuir probe array. The electrostatic fluctuation, driven particle transport ΓnΦ is derived and found to constitute a large fraction of the total particle transport. The spectral density of all measured quantities exhibits a peak in the frequency range 100-250 kHz, which originates from fluctuations that are resonant close to the edge [n=-(40-80)]. This peak contains only about 10-20% of the total fluctuation power, but is shown to dominate ΓnΦ. The main reason for this is the high toroidal mode number as compared with internally resonant magnetohydrodynamic fluctuations. The edge resonant fluctuations also features a higher coherence (γ=0.5) and close to 90° phase shift between density and potential fluctuations.

  13. Resonantly pumped high efficiency Ho:YAG laser.

    PubMed

    Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu

    2012-11-20

    High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.

  14. Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment.

    PubMed

    Robson, Scott A; Takeuchi, Koh; Boeszoermenyi, Andras; Coote, Paul W; Dubey, Abhinav; Hyberts, Sven; Wagner, Gerhard; Arthanari, Haribabu

    2018-01-24

    Backbone resonance assignment is a critical first step in the investigation of proteins by NMR. This is traditionally achieved with a standard set of experiments, most of which are not optimal for large proteins. Of these, HNCA is the most sensitive experiment that provides sequential correlations. However, this experiment suffers from chemical shift degeneracy problems during the assignment procedure. We present a strategy that increases the effective resolution of HNCA and enables near-complete resonance assignment using this single HNCA experiment. We utilize a combination of 2- 13 C and 3- 13 C pyruvate as the carbon source for isotope labeling, which suppresses the one bond ( 1 J αβ ) coupling providing enhanced resolution for the Cα resonance and amino acid-specific peak shapes that arise from the residual coupling. Using this approach, we can obtain near-complete (>85%) backbone resonance assignment of a 42 kDa protein using a single HNCA experiment.

  15. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology.

    PubMed

    Patel, Ankur; Nagesh, K V; Kolge, Tanmay; Chakravarthy, D P

    2011-04-01

    LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications. © 2011 American Institute of Physics

  16. J SERIES MAGAZINE. J 107 SOUTH ELEVATION. Naval Magazine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 107 SOUTH ELEVATION. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  17. Zero energy resonance and the logarithmically slow decay of unstable multilevel systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Manabu

    2006-08-15

    The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance. The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay proportional to (log t){sup -1}more » of the reduced time evolution operator can be realized.« less

  18. Exponential quantum spreading in a class of kicked rotor systems near high-order resonances

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Wang, Jiao; Guarneri, Italo; Casati, Giulio; Gong, Jiangbin

    2013-11-01

    Long-lasting exponential quantum spreading was recently found in a simple but very rich dynamical model, namely, an on-resonance double-kicked rotor model [J. Wang, I. Guarneri, G. Casati, and J. B. Gong, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.234104 107, 234104 (2011)]. The underlying mechanism, unrelated to the chaotic motion in the classical limit but resting on quasi-integrable motion in a pseudoclassical limit, is identified for one special case. By presenting a detailed study of the same model, this work offers a framework to explain long-lasting exponential quantum spreading under much more general conditions. In particular, we adopt the so-called “spinor” representation to treat the kicked-rotor dynamics under high-order resonance conditions and then exploit the Born-Oppenheimer approximation to understand the dynamical evolution. It is found that the existence of a flat band (or an effectively flat band) is one important feature behind why and how the exponential dynamics emerges. It is also found that a quantitative prediction of the exponential spreading rate based on an interesting and simple pseudoclassical map may be inaccurate. In addition to general interests regarding the question of how exponential behavior in quantum systems may persist for a long time scale, our results should motivate further studies toward a better understanding of high-order resonance behavior in δ-kicked quantum systems.

  19. The Grid Density Dependence of the Unsteady Pressures of the J-2X Turbines

    NASA Technical Reports Server (NTRS)

    Schmauch, Preston B.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. As part of the design requirements, the turbine blades must meet minimum high cycle fatigue factors of safety for various vibrational modes that have resonant frequencies in the engine's operating range. The unsteady blade loading is calculated directly from CFD simulations. A grid density study was performed to understand the sensitivity of the spatial loading and the magnitude of the on blade loading due to changes in grid density. Given that the unsteady blade loading has a first order effect on the high cycle fatigue factors of safety, it is important to understand the level of convergence when applying the unsteady loads. The convergence of the unsteady pressures of several grid densities will be presented for various frequencies in the engine's operating range.

  20. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic

  1. Tunable resonant and non-resonant interactions between a phase qubit and LC resonator

    NASA Astrophysics Data System (ADS)

    Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.

  2. High-Resolution Triple Resonance Autoionization of Uranium Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Philipp G.; Wendt, K; Bushaw, Bruce A.

    2005-11-01

    The near-threshold autoionization (AI) spectrum of uranium has been investigated by triple-resonance excitation with single-mode continuous lasers. Spectra were recorded over the first {approx}30 cm-1 above the first ionization limit at a resolution of 3x10-4 cm 1 using intermediate states with different J values (6, 7, 8) to assign AI level total angular momentum JAI = 5 to 9. Resonances with widths ranging from 8 MHz to 30 GHz were observed; the strongest ones have JAI = 9 and widths of {approx} 60 MHz. Hyperfine structures for 235U and isotope shifts for 234,235U have been measured in the two intermediatemore » levels and in the final AI level for the most favorable excitation path. These measurements were performed using aqueous samples containing sub-milligram quantities of uranium at natural isotopic abundances, indicating the potential of this approach for trace isotope ratio determinations.« less

  3. The reawakening of the sleeping X-ray pulsar XTE J1946+274

    NASA Astrophysics Data System (ADS)

    Müller, S.; Kühnel, M.; Caballero, I.; Pottschmidt, K.; Fürst, F.; Kreykenbohm, I.; Sagredo, M.; Obst, M.; Wilms, J.; Ferrigno, C.; Rothschild, R. E.; Staubert, R.

    2012-10-01

    We report on a series of outbursts of the high-mass X-ray binary XTE J1946+274 in 2010/2011 observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron Kα fluorescence line at 6.4 keV, which are variable in flux and pulse phase. We find possible evidence for a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst that was confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE J1946+274 is variable between individual outbursts.

  4. Simulation and Micro-Fabrication of Optically Switchable Split Ring Resonators

    DTIC Science & Technology

    2007-01-01

    Simulation and micro-fabrication of optically switchable split ring resonators T.F. Gundogdu a,*, Mutlu Gökkavas b, Kaan Güven b, M. Kafesaki a...mail address: tamara@iesl.forth.gr (T.F. Gundogdu ). 1569-4410/$ – see front matter # 2007 Published by Elsevier B.V. doi:10.1016/j.photonics...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 T.F. Gundogdu et al. / Photonics and

  5. Absorption and resonance Raman characteristics of β-carotene in water-ethanol mixtures, emulsion and hydrogel

    NASA Astrophysics Data System (ADS)

    Meinhardt-Wollweber, Merve; Suhr, Christian; Kniggendorf, Ann-Kathrin; Roth, Bernhard

    2018-05-01

    Absorption or resonance Raman scattering are often used to identify and even quantify carotenoids in situ. We studied the absorption spectra, the Raman spectra and their resonance behavior of β-carotene in different molecular environments set up as mixtures from lipid (emulsion) and non-polar (ethanol) solvents and a polar component (water) with regard to their application as references for in situ measurement. We show how both absorption profiles and resonance spectra of β-carotene strongly depend on the molecular environment. Most notably, our data suggests that the characteristic bathochromic absorption peak of J-aggregates does not contribute to carotenoid resonance conditions, and show how the Raman shift of the C=C stretching mode is dependent on both, the molecular environment and the excitation wavelength. Overall, the spectroscopic data collected here is highly relevant for the interpretation of in situ spectroscopic data in terms of carotenoid identification and quantification by resonance Raman spectroscopy as well as the preparation of reference samples. In particular, our data promotes careful consideration of appropriate molecular environment for reference samples.

  6. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  7. Kinetics and Thermochemistry of Reversible Adduct Formation in the Reaction of Cl((sup 2)P(sub J)) with CS2

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with CS2 has been observed over the temperature range 193-258 K by use of time-resolved resonance fluorescence spectroscopy to follow the decay of pulsed-laser-generated Cl((sup 2)P(sub J)) into equilbrium with CS2Cl. Rate coefficients for CS2Cl formation and decomposition have been determined as a function of temperature and pressure; hence, the equilbrium constant has been determined as a function of temperature. A second-law analysis of the temperature dependence of Kp and heat capacity corrections calculated with use of an assumed CS2Cl structure yields the following thermodynamic parameters for the association reaction: Delta-H(sub 298) = -10.5 +/- 0.5 kcal/mol, Delta-H(sub 0) = -9.5 +/- 0.7 kcal/mol, Delta-S(sub 298) = -26.8 +/- 2.4 cal/mol.deg., and Delta-H(sub f,298)(CS2Cl) = 46.4 +/- 0.6 kcal/mol. The resonance fluorescence detection scheme has been adapted to allow detection of Cl((sup 2)P(sub J)) in the presence of large concentrations of O2, thus allowing the CS2Cl + Cl + O2 reaction to be investigated. We find that the rate coefficient for CS2Cl + O2 reaction via all channels that do not generate Cl((sup 2)P(sub J)) is less than 2.5 x 10(exp-16) cu cm/(molecule.s) at 293 K and 300-Torr total pressure and that the total rate coefficient is less than 2 x 10 (exp -15) cu cm/(molecule.s) at 230 K and 30-Torr total pressure. Evidence for reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with COS was sought but not observed, even at temperatures as low as 194 K.

  8. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive tomore » small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.« less

  9. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    PubMed

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  10. Comments on ""Lake Woebegone," Twenty Years Later" by J. J. Cannell, MD

    ERIC Educational Resources Information Center

    McRae, D. J.

    2006-01-01

    This article presents the author's comments on ""Lake Woebegone," Twenty Years Later" by J. J. Cannell, MD. J. J. Cannell's article on the so-called "Lake Woebegone" effect for K-12 educational testing systems is mostly an historical account of technical issues and policy considerations that led in part to development…

  11. Subpicosecond resonance Raman spectroscopy of carbonmonoxy- and oxyhemoglobin.

    PubMed Central

    van den Berg, R; el-Sayed, M A

    1990-01-01

    In this paper we present the resonance Raman spectrum of the carbonmonoxy- (HbCO) and oxyhemoglobin (HbO2) photointermediates on a 800-900 fs timescale. In the case of HbCO, the frequencies of the so-called core-size markers (1500-1650 cm-1) are characteristic of a deoxylike photoproduct in a high spin state (S = 2) with a partially domed heme. The spectrum of the HbO2 photointermediate, on the other hand, is different, and may be characteristic of an excited-state species. These results are discussed in terms of a reaction scheme previously presented by Petrich, J. W., C. Poyart, and J. L. Martin (1988. Biochemistry. 27:4049-4060) and compared with those obtained in the literature on a 30-40 ps timescale. In both molecules a distinct downshift of the v4 mode was observed with respect to the equilibrium value, which is indicative of an elevated temperature of the heme after photodissociation. PMID:2248996

  12. All-optical switching in GaAs microdisk resonators by a femtosecond pump-probe technique through tapered-fiber coupling.

    PubMed

    Lin, Yen-Chih; Mao, Ming-Hua; Lin, You-Ru; Lin, Hao-Hsiung; Lin, Che-An; Wang, Lon A

    2014-09-01

    We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.

  13. Evaluation of neutron total and capture cross sections on 99Tc in the unresolved resonance region

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki; Katabuchi, Tatsuya

    2017-09-01

    Long-lived fission product Technetium-99 is one of the most important radioisotopes for nuclear transmutation. The reliable nuclear data are indispensable for a wide energy range up to a few MeV, in order to develop environmental load reducing technology. The statistical analyses of resolved resonances were performed by using the truncated Porter-Thomas distribution, coupled-channels optical model, nuclear level density model and Bayes' theorem on conditional probability. The total and capture cross sections were calculated by a nuclear reaction model code CCONE. The resulting cross sections have statistical consistency between the resolved and unresolved resonance regions. The evaluated capture data reproduce those recently measured at ANNRI of J-PARC/MLF above resolved resonance region up to 800 keV.

  14. Observation of e+e-→ηJ/ψ at center-of-mass energy s=4.009GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Bennett, J. V.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Ferroli, R. B.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K. Y.; Liu, Kai; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Ma, Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Morales, C. Morales; Motzko, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nicholson, C.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Prencipe, E.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schaefer, B. D.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Toth, D.; Ullrich, M.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, Q. G.; Wen, S. P.; Werner, M.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, S. X.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yu, S. P.; Yuan, C. Z.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, K. X.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. C.; Zhu, Y. M.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.

    2012-10-01

    Using a 478pb-1 data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring at a center-of-mass energy of s=4.009GeV, the production of e+e-→ηJ/ψ is observed for the first time with a statistical significance of greater than 10σ. The Born cross section is measured to be (32.1±2.8±1.3)pb, where the first error is statistical and the second systematic. Assuming the ηJ/ψ signal is from a hadronic transition of the ψ(4040), the fractional transition rate is determined to be B(ψ(4040)→ηJ/ψ)=(5.2±0.5±0.2±0.5)×10-3, where the first, second, and third errors are statistical, systematic, and the uncertainty from the ψ(4040) resonant parameters, respectively. The production of e+e-→π0J/ψ is searched for, but no significant signal is observed, and B(ψ(4040)→π0J/ψ)<2.8×10-4 is obtained at the 90% confidence level.

  15. Integer ratios of S{sub n}/E{sub n} in {sup 40}Ca+n resonances suggesting two-oscillator excitations in the target nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkubo, Makio

    2009-08-15

    In s-wave neutron resonances of {sup 40}Ca at E{sub n}{<=}2.5 MeV, S{sub n}/E{sub n} for many levels is found to be of the form 17(n/m) where n, m are small integers. Statistical tests show small probabilities for the observed dispositions of many levels at E{sub n}=(j/k)(1/70)G (j, k; small integers). To meet the requirement of time periodicity of the compound nucleus at resonance, a breathing model is developed, where the excitation energies E{sub x} are written as a sum of inverse integers; E{sub x}=S{sub n}+E{sub n}=G{sigma}(1/k) (k: integer). In {sup 40}Ca+n, the separation energy S{sub n}=8362 keV is written asmore » S{sub n}=(17/70)G=(1/7+1/10)G, where G=34.4 MeV. G is almost equal to the Fermi energy of the nucleus. It is suggested that two oscillators of energy (1/7)G and (1/10)G are excited in {sup 40}Ca by neutron incidence, in which the recurrence energy (1/70)G is resonant with neutrons of energies at (j/k)(1/70)G, forming a simple compound nucleus.« less

  16. Anti-resonance scattering at defect levels in the quantum conductance of a one-dimensional system

    NASA Astrophysics Data System (ADS)

    Sun, Z. Z.; Wang, Y. P.; Wang, X. R.

    2002-03-01

    For the ballistic quantum transport, the conductance of one channel is quantized to a value of 2e^2/h described by the Landauer formula. In the presence of defects, electrons will be scattered by these defects. Thus the conductance will deviate from the values of the quantized conductance. We show that an anti-resonance scattering can occur when an extra defect level is introduced into a conduction band. At the anti-resonance scattering, exact one quantum conductance is destroyed. The conductance takes a non-zero value when the Fermi energy is away from the anti-resonance scattering. The result is consistent with recent numerical calculations given by H. J. Choi et al. (Phys. Rev. Lett. 84, 2917(2000)) and P. L. McEuen et al. (Phys. Rev. Lett. 83, 5098(1999)).

  17. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng

    2017-07-01

    We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.

  18. Accessing the real part of the forward elastic J/Psi-p and Phi-p threshold scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Gryniuk, Oleksii; Vanderhaeghen, Marc

    2017-09-01

    We provide an updated analysis of the forward J / ψ -p scattering amplitude, relating its imaginary part to γp -> J / ψp and γp -> c c X cross section data, and calculating its real part through a once-subtracted dispersion relation. From a global fit to both differential and total cross section data, we extract a value for the spin-averaged J / ψ -p s-wave scattering length aψp = 0.046 +/- 0.005 fm, which can be translated into a J / ψ binding energy in nuclear matter Bψ = 2.7 +/- 0.3 MeV. We estimate the forward-backward asymmetry to the γp ->e-e+ p process around the J / ψ resonance, which results from interchanging the leptons in the interference between the J / ψ production and the Bethe-Heitler mechanisms. We show that this asymmetry can reach values around -25%. Its measurement can thus provide a very sensitive observable for a refined extraction of aψp. A preliminary analysis of the ϕ-p forward scattering led to the estimated forward-backward asymmetry reaching values of about -20% for the beam energies E = 2.2 , 4.4 GeV. The suitable kinematics were investigated for the specific setup of HMS and SHMS detectors of Hall C at JLab. Studies for the other JLab experiments (e.g. GlueX, SOLID) are ongoing.

  19. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities.

    PubMed

    Nozaki, Kengo; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya

    2013-05-20

    We experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth. We successfully fabricated a Fano system consisting of doubly coupled photonic-crystal (PhC) nanocavities, and demonstrated all-optical switching for the first time. A steep asymmetric transmission spectrum was clearly observed, thereby enabling a low-energy and high-contrast switching operation. We achieved the switching with a pump energy of a few fJ, a contrast of more than 10 dB, and an 18 ps switching time window. These levels of performance are actually better than those for Lorentzian resonance in a single cavity. We also theoretically investigated the achievable performance in a well-designed Fano system, which suggested a high contrast for the switching of more than 20 dB in a fJ energy regime.

  20. Effects of Dorzolamide on Retinal and Choroidal Blood Flow in the DBA/2J Mouse Model of Glaucoma

    PubMed Central

    Chandra, Saurav; Muir, Eric R.; Deo, Kaiwalya; Kiel, Jeffrey W.; Duong, Timothy Q.

    2016-01-01

    Purpose To test the hypothesis that acute topical dorzolamide (DZ) decreases intraocular pressure (IOP) and increases retinal and choroidal blood flow in the DBA/2J mouse model of glaucoma. Methods Retinal and choroidal blood flow were measured in 4- and 9-month-old DBA/2J mice, and 4-month C57BL/6 (control) mice under isoflurane anesthesia using magnetic resonance imaging. Ocular blood flow was measured at baseline, and 1 and 2 hours after topical dorzolamide. Intraocular pressure was measured using a rebound tonometer in a subset of animals at the same time points. Results Baseline IOP in the 4-month-old DBA/2J mice and C57BL/6 mice was not significantly different (P > 0.05), and IOP in both groups was less than in the 9-month-old DBA/2J mice (P < 0.05 for both). Compared to baseline, dorzolamide reduced IOP at 1 and 2 hours after dorzolamide in the 4- (P < 0.05) and 9-month-old (P < 0.01) DBA/2J mice, but not in the C57BL/6J mice (P > 0.05). Baseline retinal blood flow was lower in the 4-month and 9-month-old DBA/2J mice compared with the 4-month-old C57BL/6J mice (P < 0.05). Baseline choroidal blood flow in the 9-month-old DBA/2J mice was less than in the C57BL/6J mice (P < 0.05). Compared with baseline, both retinal and choroidal blood flow increased at 1-hour post-dorzolamide and remained elevated 2 hours later in the 9-month-old DBA/2J mice (P < 0.05). Conclusions Dorzolamide lowers IOP and raises retinal and choroidal blood flow in older DBA/2J mice, consistent with the study hypothesis. PMID:26934140

  1. J SERIES MAGAZINE. J 107 SOUTH ELEVATION W/POLE. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 107 SOUTH ELEVATION W/POLE. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  2. J SERIES MAGAZINE. J 106 INTERIOR. BOMB TAILS ON LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 106 INTERIOR. BOMB TAILS ON LEFT. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  3. Considerations on the Design of a Molecular Frequency Standard Based on the Molecular Beam Electric Resonance Method

    NASA Technical Reports Server (NTRS)

    Hughes, Vernon W.

    1959-01-01

    The use of a rotational state transition as observed by the molecular beam electric resonance method is discussed as a possible frequency standard particularly in the millimeter wavelength range. As a promising example the 100 kMc transition between the J = 0 and J = 1 rotational states of Li 6F19 is considered. The relative insensitivity of the transition frequency to external electric and magnetic fields and the low microwave power requirements appear favorable; the small fraction of the molecular beam that is in a single rotational state is a limiting factor.

  4. The anode power supply for the ECRH system on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Donghui, XIA; Fangtai, CUI; Changhai, LIU; Zhenxiong, YU; Yikun, JIN; Zhijiang, WANG; J-TEXT, Team1

    2018-01-01

    The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.

  5. Study of J/ψ→pp̄ and J/ψ→nn̄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.

    2012-08-31

    The decays J/ψ→pp̄ and J/ψ→nn̄ have been investigated with a sample of 225.2×10⁶ J/ψ events collected with the BESIII detector at the BEPCII e⁺e⁻ collider. The branching fractions are determined to be B(J/ψ→pp̄)=(2.112±0.004±0.031)×10⁻³ and B(J/ψ→nn̄)=(2.07±0.01±0.17)×10⁻³. Distributions of the angle θ between the proton or antineutron and the beam direction are well described by the form 1+αcos²θ, and we find α=0.595±0.012±0.015 for J/ψ→pp̄ and α=0.50±0.04±0.21 for J/ψ→nn̄. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the J/ψ→NN¯¯¯ decay.

  6. An alternate protocol to achieve stochastic and deterministic resonances

    NASA Astrophysics Data System (ADS)

    Tiwari, Ishant; Dave, Darshil; Phogat, Richa; Khera, Neev; Parmananda, P.

    2017-10-01

    Periodic and Aperiodic Stochastic Resonance (SR) and Deterministic Resonance (DR) are studied in this paper. To check for the ubiquitousness of the phenomena, two unrelated systems, namely, FitzHugh-Nagumo and a particle in a bistable potential well, are studied. Instead of the conventional scenario of noise amplitude (in the case of SR) or chaotic signal amplitude (in the case of DR) variation, a tunable system parameter ("a" in the case of FitzHugh-Nagumo model and the damping coefficient "j" in the bistable model) is regulated. The operating values of these parameters are defined as the "setpoint" of the system throughout the present work. Our results indicate that there exists an optimal value of the setpoint for which maximum information transfer between the input and the output signals takes place. This information transfer from the input sub-threshold signal to the output dynamics is quantified by the normalised cross-correlation coefficient ( | CCC | ). | CCC | as a function of the setpoint exhibits a unimodal variation which is characteristic of SR (or DR). Furthermore, | CCC | is computed for a grid of noise (or chaotic signal) amplitude and setpoint values. The heat map of | CCC | over this grid yields the presence of a resonance region in the noise-setpoint plane for which the maximum enhancement of the input sub-threshold signal is observed. This resonance region could be possibly used to explain how organisms maintain their signal detection efficacy with fluctuating amounts of noise present in their environment. Interestingly, the method of regulating the setpoint without changing the noise amplitude was not able to induce Coherence Resonance (CR). A possible, qualitative reasoning for this is provided.

  7. A portable version of the program of nettar and villafranca for the simulation of electron paramagnetic resonance spectra of powders

    NASA Astrophysics Data System (ADS)

    Soulié, Edgar; Gaugenot, Jacques

    1995-04-01

    Nettar and Villafranca wrote in the FORTRAN programming language a computer program which simulates the electron paramagnetic resonance (EPR) spectra of powders (Journal of Magnetic Resonance, vol. 64 (1985) pp. 61-65). The spin Hamiltonian which their program can handle includes the Zeeman electronic interaction, the fine interaction up to the sixth order in the electron spin, a general hyperfine interaction, an isotropic nuclear Zeeman term; anisotropic ligand hyperfine terms are treated to first order in perturbation. The above Hamiltonian, without the ligand hyperfine terms, is treated exactly, i.e. the resonance equation for a transition between states labeled i and j is solved numerically: h.ν=Ei(H)-Ej(H).

  8. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698

  9. Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic.

    PubMed

    Tremblay, Jean Christophe; Carrington, Tucker

    2005-06-22

    We introduce new ideas for calculating resonance energies and widths. It is shown that a non-Hermitian-Lanczos approach can be used to compute eigenvalues of H+W, where H is the Hamiltonian and W is a complex absorbing potential (CAP), without evaluating complex matrix-vector products. This is done by exploiting the link between a CAP-modified Hamiltonian matrix and a real but nonsymmetric matrix U suggested by Mandelshtam and Neumaier [J. Theor. Comput. Chem. 1, 1 (2002)] and using a coupled-two-term Lanczos procedure. We use approximate resonance eigenvectors obtained from the non-Hermitian-Lanczos algorithm and a very good CAP to obtain very accurate energies and widths without solving eigenvalue problems for many values of the CAP strength parameter and searching for cusps. The method is applied to the resonances of HCO. We compare properties of the method with those of established approaches.

  10. Direct experimental observation of the molecular J eff=3/2 ground state in the lacunar spinel GaTa 4Se 8

    DOE PAGES

    Jeong, Min Yong; Chang, Seo Hyoung; Kim, Beom Hyun; ...

    2017-10-04

    Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa 4Se 8 was theoretically predicted to form the molecular J eff = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff = 3/2 state. Here, we report direct experimental evidence of themore » J eff = 3/2 state in GaTa 4Se 8 by means of excitation spectra of resonant inelastic x-rays scattering at the Ta L 3 and L 2 edges. In conclusion, we found that the excitations involving the J eff = 1/2 molecular orbital were absent only at the Ta L 2 edge, manifesting the realization of the molecular J eff = 3/2 ground state in GaTa 4Se 8.« less

  11. Direct experimental observation of the molecular J eff=3/2 ground state in the lacunar spinel GaTa 4Se 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Min Yong; Chang, Seo Hyoung; Kim, Beom Hyun

    Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa 4Se 8 was theoretically predicted to form the molecular J eff = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff = 3/2 state. Here, we report direct experimental evidence of themore » J eff = 3/2 state in GaTa 4Se 8 by means of excitation spectra of resonant inelastic x-rays scattering at the Ta L 3 and L 2 edges. In conclusion, we found that the excitations involving the J eff = 1/2 molecular orbital were absent only at the Ta L 2 edge, manifesting the realization of the molecular J eff = 3/2 ground state in GaTa 4Se 8.« less

  12. The Spin-down of PSR J0821-4300 and PSR J1210-5226: Confirmation of Central Compact Objects as Anti-magnetars

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.; Alford, J.

    2013-03-01

    Using XMM-Newton and Chandra, we measure period derivatives for the second and third known pulsars in the class of central compact objects (CCOs) in supernova remnants, proving that these young neutron stars have exceptionally weak dipole magnetic field components. For the 112 ms PSR J0821-4300 in Puppis A, \\dot{P} = (9.28 +/- 0.36) \\times 10^{-18}. Its proper motion, μ = 61 ± 9 mas yr-1, was also measured using Chandra. This contributes a kinematic term to the period derivative via the Shklovskii effect, which is subtracted from \\dot{P} to derive dipole Bs = 2.9 × 1010 G, a value similar to that of the first measured CCO, PSR J1852+0040 in Kes 79, which has Bs = 3.1 × 1010 G. Antipodal surface hot spots with different temperatures and areas are deduced from the X-ray spectrum and pulse profiles. Paradoxically, such nonuniform surface temperature appears to require strong crustal magnetic fields, probably toroidal or quadrupolar components much stronger than the external dipole. A spectral feature, consisting of either an emission line at ≈0.75 keV or an absorption line at ≈0.46 keV, is modulated in strength with the rotation. It may be due to a cyclotron process in a magnetic field on the surface that is slightly stronger than the dipole deduced from the spin-down. We also timed anew the 424 ms PSR J1210-5226, resolving previous ambiguities about its spin-down rate. Its \\dot{P} is (2.22 ± 0.02) × 10-17, corresponding to Bs = 9.8 × 1010 G. This is also compatible with a cyclotron resonance interpretation of its prominent absorption line at 0.7 keV and its harmonics. These results deepen the mystery of the origin and evolution of CCOs: Why are their numerous descendants not evident?

  13. Resonant enhancement of band-to-band tunneling in in-plane MoS2/WS2 heterojunctions

    NASA Astrophysics Data System (ADS)

    Kuroda, Tatsuya; Mori, Nobuya

    2018-04-01

    The band-to-band (BTB) tunneling current J through in-plane MoS2/WS2 heterojunctions is calculated by the nonequilibrium Green function method combined with tight-binding approximation. Types A and B of band configurations are considered. For type-A (type-B) heterojunctions, a potential notch exists (or is absent) at the heterointerface. Both type-A and type-B MoS2/WS2 heterojunctions can support a higher BTB current than MoS2 and WS2 homojunctions. For type-A heterojunctions, the resonant enhancement of J occurs resulting in a significantly higher BTB tunneling current.

  14. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour.

    PubMed

    Mathy, Nathalie; Hébert, Agnès; Mervelet, Peggy; Bénard, Lionel; Dorléans, Audrey; Li de la Sierra-Gallay, Inés; Noirot, Philippe; Putzer, Harald; Condon, Ciarán

    2010-01-01

    Ribonucleases J1 and J2 are recently discovered enzymes with dual 5'-to-3' exoribonucleolytic/endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently. Here we present evidence that RNases J1 and J2 form a complex that is likely to be the predominant form of these enzymes in wild-type cells. While both RNase J1 and the RNase J1/J2 complex have robust 5'-to-3' exoribonuclease activity in vitro, RNase J2 has at least two orders of magnitude weaker exonuclease activity, providing a possible explanation for why RNase J1 is essential. The association of the two proteins also has an effect on the endoribonucleolytic properties of RNases J1 and J2. While the individual enzymes have similar endonucleolytic cleavage activities and specificities, as a complex they behave synergistically to alter cleavage site preference and to increase cleavage efficiency at specific sites. These observations dramatically change our perception of how these ribonucleases function and provide an interesting example of enzyme subfunctionalization after gene duplication.

  15. Familial mesial temporal lobe epilepsy and the borderland of déjà vu.

    PubMed

    Perucca, Piero; Crompton, Douglas E; Bellows, Susannah T; McIntosh, Anne M; Kalincik, Tomas; Newton, Mark R; Vajda, Frank J E; Scheffer, Ingrid E; Kwan, Patrick; O'Brien, Terence J; Tan, K Meng; Berkovic, Samuel F

    2017-08-01

    The cause of mesial temporal lobe epilepsy (MTLE) is often unknown. We ascertained to what extent newly diagnosed nonlesional MTLE actually represents familial MTLE (FMTLE). We identified all consecutive patients presenting to the Austin Health First Seizure Clinic with MTLE and normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis over a 10-year period. Patients' first-degree relatives and pairwise age- and sex-matched controls underwent a comprehensive epilepsy interview. Each interview transcript was reviewed independently by 2 epileptologists, blinded to relative or control status. Reviewers classified each subject as follows: epilepsy, specifying if MTLE; manifestations suspicious for epilepsy; or unaffected. Physiological déjà vu was noted. Forty-four patients were included. At the Clinic, MTLE had been recognized to be familial in 2 patients only. Among 242 subjects interviewed, MTLE was diagnosed in 9 of 121 relatives versus 0 of 121 controls (p = 0.008). All affected relatives had seizures with intense déjà vu and accompanying features; 6 relatives had not been previously diagnosed. Déjà vu experiences that were suspicious, but not diagnostic, of MTLE occurred in 6 additional relatives versus none of the controls (p = 0.04). Physiological déjà vu was common, and did not differ significantly between relatives and controls. After completing the relatives' interviews, FMTLE was diagnosed in 8 of 44 patients (18.2%). FMTLE accounts for almost one-fifth of newly diagnosed nonlesional MTLE, and it is largely unrecognized without direct questioning of relatives. Relatives of patients with MTLE may experience déjà vu phenomena that clinically lie in the "borderland" between epileptic seizures and physiological déjà vu. Ann Neurol 2017;82:166-176. © 2017 American Neurological Association.

  16. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  17. 5-HT(2C) receptor RNA editing in the amygdala of C57BL/6J, DBA/2J, and BALB/cJ mice.

    PubMed

    Hackler, Elizabeth A; Airey, David C; Shannon, Caitlin C; Sodhi, Monsheel S; Sanders-Bush, Elaine

    2006-05-01

    Post-transcriptional RNA editing of the G-protein coupled 5-hydroxytryptamine-2C (5-HT(2C)) receptor predicts an array of 24 receptor isoforms, some of which are characterized by reduced constitutive activity and potency to initiate intracellular signaling. The amygdala is integral to anxiety, fear, and related psychiatric diseases. Activation of 5-HT(2C) receptors within the amygdala is anxiogenic. Here, we describe the RNA editing profiles from amygdala of two inbred mouse strains (BALB/cJ and DBA/2J) known to be more anxious than a third (C57BL/6J). We confirmed the strain anxiety differences using light<-->dark exploration, and we discovered that BALB/cJ and DBA/2J are each characterized by a higher functioning RNA editing profile than C57BL/6J. BALB/cJ and DBA/2J exhibit a roughly two-fold reduction in C site editing, and a corresponding two-fold reduction in the edited isoform VSV. C57BL/6J is characterized by a relative decrease in the unedited highly functional isoform INI. We estimated the heritability of editing at the C site to be approximately 40%. By sequencing genomic DNA, we found complete conservation between C57BL/6J, BALB/cJ, DBA/2J and 37 other inbred strains for the RNA edited region of Htr2c, suggesting Htr2c DNA sequence does not influence variation in Htr2c RNA editing between inbred strains of mice. We did, however, discover that serotonin turnover is reduced in BALB/cJ and DBA/2J, consistent with emerging evidence that synaptic serotonin levels regulate RNA editing. These results encourage further study of the causes and consequences of 5-HT(2C) receptor RNA editing in the amygdala of mice.

  18. Design of the high voltage isolation transmission module with low delay for ECRH system on J-TEXT

    NASA Astrophysics Data System (ADS)

    Haiyan, MA; Donghui, XIA; Zhijiang, WANG; Fangtai, CUI; Zhenxiong, YU; Yikun, JIN; Changhai, LIU

    2018-02-01

    As a flexible auxiliary heating method, the electron cyclotron resonance heating (ECRH) has been widely used in many tokamaks and also will be applied for the J-TEXT tokamak. To meet requirements of protection and fault analysis for the ECRH system on J-TEXT, signals of gyrotrons such as the cathode voltage and current, the anode voltage and current, etc should be transmitted to the control and data acquisition system. Considering the high voltage environment of gyrotrons, isolation transmission module based on FPGA and optical fiber communication has been designed and tested. The test results indicate that the designed module has strong anti-noise ability, low error rate and high transmission speed. The delay of the module is no more than 5 μs which can fulfill the requirements.

  19. Spectroscopic manifestations of hybrid association of CdS colloidal quantum dots with J-aggregates of a thiatrimethine cyanine dye

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, O. V.; Smirnov, M. S.; Shapiro, B. I.; Dedikova, A. O.; Shatskikh, T. S.

    2015-11-01

    We have found spectroscopic manifestations of hybrid association in mixtures of CdS colloidal quantum dots with an average size of 2.5-4.2 nm with J-aggregates of pyridinium salt of the 3,3'-di-(γ- sulfopropyl)-9-ethyl-4,5,4',5'-dibenzo-thiacarbocyanine betaine dye that were prepared by the sol-gel method in gelatin. Observed changes of the spectral properties of J-aggregates of dye molecules due to their hybrid association with CdS quantum dots are ensured by steric transformations of dye molecules, which lead to the formation of luminescent trans-J-aggregates. The hybrid association is accompanied by the quenching of the recombination luminescence band of CdS quantum dots (540-640 nm) and by an increase in the luminescence intensity of J-aggregates of dye molecules (670-680 nm). This regularity becomes enhanced with an increase in the ratio of the number of dye molecules to the number of quantum dots [ n dye]: [ n QD] and in the degree of overlap between the luminescence spectrum of quantum dots and the absorption spectrum of J-aggregates, which indicates that there is a resonant nonradiative transfer of the electronic excitation energy from recombination luminescence centers in CdS quantum dots to trans-J-aggregates of dye molecules conjugated to them.

  20. KSC-08pd3105

    NASA Image and Video Library

    2008-10-06

    VANDENBERG AIR FORCE BASE, Fla. -- On the ramp on Vandenberg Air Force Base in California, the Orbital Sciences’ L-1011 aircraft is being prepared to receive the Pegasus XL rocket and NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB

  1. KSC-07pd3105

    NASA Image and Video Library

    2007-11-04

    KENNEDY SPACE CENTER, FLA. — This U.S. Air Force F-22 Raptor is part of an aerial salute for the World Space Expo at NASA's Kennedy Space Center Visitor Complex. Other aircraft joining in the expo salute include the U.S. Air Force Thunderbirds Demonstration Squadron, the U.S. Navy F-18 Super Hornets, the U.S. Air Force F-15 Eagle, P-51 Mustang Heritage Flight, the U.S. Air Force 920th Rescue Wing, which was responsible for Mercury and Gemini capsule recovery, and the U.S. Army Golden Knights demonstrating precision skydiving. The World Space Expo Nov. 1-4 was an event commemorating humanity's first 50 years in space while looking forward to returning people to the moon and exploring beyond. The expo showcased various panels, presentations and educational programs. It also was a part of NASA's 50th anniversary celebrations, highlighting the 45th Anniversary of the Mercury Program celebration featuring original NASA astronauts John Glenn and Scott Carpenter and the Pioneering Women of Aerospace forum featuring Eileen Collins and other prominent female space veterans. The agency was founded Oct. 1, 1958. Photo credit: NASA/George Shelton

  2. Microstrip resonators for electron paramagnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  3. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  4. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  5. CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui

    2017-12-01

    Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)

  6. Observation of Bs production at the Y(5S) resonance.

    PubMed

    Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Bornheim, A; Pappas, S P; Weinstein, A J; Asner, D M; Edwards, K W; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Maravin, Y; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E

    2006-01-20

    Using the CLEO detector at the Cornell Electron Storage Ring, we have observed the Bs meson in e+e- annihilation at the Y(5S) resonance. We find 14 candidates consistent with Bs decays into final states with a J/psi or a Ds(*)- . The probability that we have observed a background fluctuation is less than 8 x 10(-10) . We have established that at the energy of the Y(5S) resonance Bs production proceeds predominantly through the creation of Bs*Bs* pairs. We find sigma(e+e- --> Bs*Bs*) = [0.11(-0.03))(+0.04)(stat) +/- 0.02(syst)]nb , and set the following limits: sigma(e+e- --> BsBs)/ sigma(e+ e- --> Bs*Bs*) <0.16 and [sigma(e+e- --> BsBs*) + sigma(e+e- --> Bs*Bs)]/sigma(e+e- -->Bs*Bs*) < 0.16 (90% C.L.). The mass of the Bs* meson is measured to be M(Bs*) = [5.414+/- 0.001(stat) +/- 0.003(syst)] GeV/c2 .

  7. Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI

    PubMed Central

    Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.

    2018-01-01

    Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611

  8. Improvement of on/off ratio in single-shot multichannel demultiplexing by using an optical Kerr gate of a squarylium dye J aggregate film

    NASA Astrophysics Data System (ADS)

    Sato, Yasuhiro; Furuki, Makoto; Tian, Minquan; Iwasa, Izumi; Pu, Lyong Sun; Tatsuura, Satoshi

    2002-04-01

    We demonstrated ultrafast single-shot multichannel demultiplexing by using a squarylium dye J aggregate film as an optical Kerr medium. High efficiency and fast recovery of the optical Kerr responses were achieved when a signal-pulse wavelength was close to the absorption peak of the J aggregate film with off-resonant excitation. The on/off ratio in demultiplexing of 1 Tb/s signals was improved to be approximately 5. By introducing time delay to both horizontal and vertical directions, we succeeded in directly observing the conversion of 1 Tb/s serial signals into two-dimensionally arranged parallel signals.

  9. I Dream of J.J., or Affordances and Motion Pictures.

    ERIC Educational Resources Information Center

    Anderson, Joseph D.

    1995-01-01

    Categorizes attempts to account for how viewers garner meanings from motion pictures as either semiotic, realist, or conventionalist. Proposes an alternative explanation based on J. J. Gibson's ecological theory of perception. Offers his concept of "affordances" as the key to an explanation of how meanings in motion pictures are…

  10. Collisional relaxation of an isotopic, strongly magnetized pure ion plasma and topics in resonant wave-particle interaction of plasmas

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung

    First in Chapter 2, we discuss the collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses, but both with singly-ionized atoms. In a limit of high cyclotron frequencies O j, the total cyclotron action Ij for the two species are adiabatic invariants. In a few collisions, maximizing entropy yields a modified Gibbs distribution of the form exp[-H/T ∥-alpha1 I 1-alpha2I2]. Here, H is the total Hamiltonian and alphaj's are related to parallel and perpendicular temperatures through T ⊥j=(1/T∥ +alphaj/Oj) -1. On a longer timescale, the two species share action so that alpha 1 and alpha2 relax to a common value alpha. On an even longer timescale, the total action ceases to be a constant of the motion and alpha relaxes to zero. Next, weak transport produces a low density halo of electrons moving radially outward from the pure electron plasma core, and the m = 1 mode begins to damp algebraically when the halo reaches the wall. The damping rate is proportional to the particle flux through the resonant layer at the wall. Chapter 3 explains analytically the new algebraic damping due to both mobility and diffusion transport. Electrons swept around the resonant "cat's eye" orbits form a dipole (m = 1) density distribution, setting up a field that produces ExB-drift of the core back to the axis, that is, damps the mode. Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation, the non-resonant electrons are driven resonantly by the bare electric field from the resonant electrons, and this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in 2D ExB-drift waves, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes ExB-drift motion back in the core plasma, thus damping the wave.

  11. An empirical model to determine the hadronic resonance contributions \\overline{B}{} ^0 → \\overline{K}{} ^{*0} μ ^+ μ ^- to transitions

    NASA Astrophysics Data System (ADS)

    Blake, T.; Egede, U.; Owen, P.; Petridis, K. A.; Pomery, G.

    2018-06-01

    A method for analysing the hadronic resonance contributions in \\overline{B}{} ^0 → \\overline{K}{} ^{*0} μ ^+ μ ^- decays is presented. This method uses an empirical model that relies on measurements of the branching fractions and polarisation amplitudes of final states involving J^{PC}=1^{-} resonances, relative to the short-distance component, across the full dimuon mass spectrum of \\overline{B}{} ^0 → \\overline{K}{} ^{*0} μ ^+ μ ^- transitions. The model is in good agreement with existing calculations of hadronic non-local effects. The effect of this contribution to the angular observables is presented and it is demonstrated how the narrow resonances in the q^2 spectrum provide a dramatic enhancement to CP-violating effects in the short-distance amplitude. Finally, a study of the hadronic resonance effects on lepton universality ratios, R_{K^{(*)}}, in the presence of new physics is presented.

  12. Determination of Hund's coupling in 5 d oxides using resonant inelastic x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bo; Clancy, J. P.; Cook, A. M.

    2017-06-01

    We report resonant inelastic x-ray scattering (RIXS) measurements on ordered double-perovskite samples containing Re5+ and Ir5+ with 5d(2) and 5d(4) electronic configurations, respectively. In particular, the observedRIXS spectra of Ba2YReO6 and Sr2MIrO6 (M = Y, Gd) show sharp intra-t(2g) transitions, which can be quantitatively understood using a minimal "atomic" Hamiltonian incorporating spin-orbit coupling. and Hund's coupling J(H). Our analysis yields lambda = 0.38(2) eV with J(H) = 0.26(2) eV for Re5+ and lambda = 0.42(2) eV with J(H) = 0.25(4) eV for Ir5+. Our results provide sharp estimates for Hund's coupling in 5d oxides and suggest that it should bemore » treated on equal footing with spin-orbit interaction in multiorbital 5d transition-metal compounds.« less

  13. Measured pulse width of sonoluminescence flashes in the form of resonance radiation

    NASA Astrophysics Data System (ADS)

    Giri, Asis; Arakeri, Vijay H.

    1998-09-01

    Recent studies have shown that the measured flash widths from single and multibubble sonoluminescence are in subnanosecond or even picosecond regime. Here, we provide conclusive evidence for the existence of nanosecond multibubble sonoluminescence. This has become possible by our ability to find a medium from which exclusive sodium D line resonance radiation as a form of sonoluminescence is possible. The measured flash width of this emission is found to be in the range of tens of nanoseconds and is sensitively dependent on experimental parameters. Our finding is important since all the earlier pulse width measurements have been limited to emission with the physical source or species responsible for observed optical radiation not being clearly identified. We propose that the presently observed resonance radiation is from ``soft'' bubble collapse as analyzed by V. Kamath et al. [J. Acoust. Soc. Am. 94, 248 (1993)].

  14. Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.

    PubMed

    Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun

    2016-02-26

    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.

  15. Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2013-04-01

    Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O_2({X}\\, ^3\\Sigma_g^{-}) are considered. Molecular rotations are parametrized by the rotational quantum number J, which is considered in the range 1-151. The lowest four resonant states of O_2^- , 2Πg, 2Πu, ^4\\Sigma_u^- and ^2\\Sigma_u^- are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4 eV are investigated: the first one is characterized by sharp structures in the cross section and the second by a broad resonance peaked at 10 eV. The computed cross sections are compared with theoretical and experimental results available in the literature for both energy regions, and are made available for use by modelers. The effect of including rotational motion is found to be non-negligible.

  16. DETAIL OF CORNERSTONE, WHICH STATES "J.J. DANIELS, BUILDER 1861." NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNERSTONE, WHICH STATES "J.J. DANIELS, BUILDER 1861." NOTE ALSO IRON STRAP AT EAST CORNER OF ABUTMENT. - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  17. Resonant Coherent Excitation of Hydrogen-Like Ar Ions to the n =: 3 States

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Ito, T.; Takabayashi, Y.; Komaki, K.; Yamazaki, Y.; Yamazaki, Y.; Takada, E.; Murakami, T.

    We have succeeded in observing resonant coherent excitaion (RCE) of 1s electrons to the n = 3 states in 390 MeV/u hydrogen-like Ar17+ ions planar channeled in a silicon crystal through measurements of the charge-state distribution of ions transmitting the crystal. Furthermore, we directly confirmed RCE to the n = 3 states by observing the enhancement of the de-excitation X-rays, i.e., Kβ X-rays under the resonance condition. The resonance profiles of the charge-state distribution as functions of the incident angle to the crystal, which uniquely relates with the transition energy, have a characteristic structure consisting of several peaks. Compared with the profile of RCE to the n = 2 states, the present profiles show a large peak shift from the j = 1/2 and 3/2 levels in vacuum, and the profiles are much wider than those expected from the Stark-split level structure of the n = 3 manifolds due to the position- (distance from the channel center in the planar channel) dependent strong static field in the crystal.

  18. Search for the X ( 4140 ) state in B + → J / ψ Φ K + decays with the D0 detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.

    2014-01-01

    We investigate the decay B +→J/ψΦK + in a search for the X(4140) state, a narrow threshold resonance in the J/ψΦ system. The data sample corresponds to an integrated luminosity of 10.4 fb -1 of pmore » $$\\bar{p}$$ collisions at √s =1.96 TeV collected by the D0 experiment at the Fermilab Tevatron collider. We observe a mass peak with a statistical significance of 3.1 standard deviations and measure its invariant mass to be M=4159.0 ± 4.3 (stat) ± 6.6 (syst) MeV and its width to be Γ= 19.9±12.6 (stat)$$+1.0\\atop{-8.0}$$ (syst) MeV.« less

  19. Control of Expression of the RNases J1 and J2 in Bacillus subtilis

    PubMed Central

    Jamalli, Ailar; Hébert, Agnès; Zig, Léna

    2014-01-01

    In Bacillus subtilis, the dual activity 5′ exo- and endoribonucleases J1 and J2 are important players in mRNA and stable RNA maturation and degradation. Recent work has improved our understanding of their structure and mechanism of action and identified numerous RNA substrates. However, almost nothing is known about the expression of these enzymes. Here, we have identified the transcriptional and translational signals that control the expression of the rnjA (RNase J1) and rnjB (RNase J2) genes. While the rnjB gene is transcribed constitutively from a sigma A promoter, optimal expression of RNase J1 requires cotranscription and cotranslation with the upstream ykzG gene, encoding a protein of unknown function. In the absence of coupled translation, RNase J1 expression is decreased more than 5-fold. Transcription of the ykzG operon initiates at a sigma A promoter with a noncanonical −35 box that is required for optimal transcription. Biosynthesis of RNase J1 is autocontrolled within a small range (1.4-fold) and also slightly stimulated (1.4-fold) in the absence of RNase J2. These controls are weak but might be useful to maintain the overall RNase J level and possibly also equimolar amounts of the two nucleases in the cell that primarily act as a heterodimer in vivo. PMID:24187087

  20. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  1. Comment on "Analysis of single-layer metamaterial absorber with reflection theory" [J. Appl. Phys. 117, 154906 (2015)

    NASA Astrophysics Data System (ADS)

    Tung, Nguyen Thanh

    2016-03-01

    In a recent paper, Xiong et al. [J. Appl. Phys. 117, 154906 (2015)] presented the simulated results of a Jerusalem-cross structure in an attempt to elaborate their proposed reflection theory for metamaterial absorbers. Noting that even at non-resonant frequencies the real part of the permeability shows an over-high average value and its imaginary part drops abruptly from positivity to negativity, we argue that their simulated results are unphysical, resulting from an incomplete understanding of the retrieval procedure.

  2. Progress of recent experimental research on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Gentle, K. W.; Chen, Z. Y.; Chen, Z. P.; Yang, Z. J.; Zheng, Wei; Hu, Q. M.; Chen, J.; Rao, B.; Zhong, W. L.; Zhao, K. J.; Gao, L.; Cheng, Z. F.; Zhang, X. Q.; Wang, L.; Jiang, Z. H.; Xu, T.; Zhang, M.; Wang, Z. J.; Ding, Y. H.; Yu, K. X.; Hu, X. W.; Pan, Y.; Huang, H.; the J-TEXT Team

    2017-10-01

    The progress of experimental research over the last two years on the J-TEXT tokamak is reviewed and reported in this paper, including: investigations of resonant magnetic perturbations (RMPs) on the J-TEXT operation region show that moderate amplitude of applied RMPs either increases the density limit from less than 0.7n G to 0.85n G (n G is the Greenwald density, {{n}\\text{G}}={{I}\\text{p}}/π {{a}2} ) or lowers edge safety factor q a from 2.15 to nearly 2.0; observations of influence of RMPs with a large m/n  =  3/1 dominant component (where m and n are the toroidal and poloidal mode numbers respectively) on electron density indicate electron density first increases (decreases) inside (around/outside) of the 3/1 rational surface, and it is increased globally later together with enhanced edge recycling; investigations of the effect of RMPs on the behavior of runaway electrons/current show that application of RMPs with m/n  =  2/1 dominant component during disruptions can reduce runaway production. Furthermore, its application before the disruption can reduce both the amplitude and the length of runaway current; experimental results in the high-density disruption plasmas confirm that local current shrinkage during a multifaceted asymmetric radiation from the edge can directly terminate the discharge; measurements by a multi-channel Doppler reflectometer show that the quasi-coherent modes in the electron diamagnetic direction occur in the J-TEXT ohmic confinement regime in a large plasma region (r/a ~ 0.3-0.8) with frequency of 30-140 kHz.

  3. Characterization of Aptamer BC 007 Substance and Product Using Circular Dichroism and Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Weisshoff, Hardy; Wenzel, Katrin; Schulze-Rothe, Sarah; Nikolenko, Heike; Davideit, Hanna; Becker, Niels-Peter; Göttel, Peter; Srivatsa, G Susan; Dathe, Margitta; Müller, Johannes; Haberland, Annekathrin

    2018-04-18

    Possible unwanted folding of biopharmaceuticals during manufacturing and storage has resulted in analysis schemes compared to small molecules that include bioanalytical characterization besides chemical characterization. Whether bioanalytical characterization is required for nucleotide-based drugs, may be decided on a case-by-case basis. Nucleotide-based pharmaceuticals, if chemically synthesized, occupy an intermediate position between small-molecule drugs and biologics. Here, we tested whether a physicochemical characterization of a nucleotide-based drug substance, BC 007, was adequate, using circular dichroism (CD) spectroscopy. Nuclear magnetic resonance confirmed CD data in one experimental setup. BC 007 forms a quadruplex structure under specific external conditions, which was characterized for its stability and structural appearance also after denaturation using CD and nuclear magnetic resonance. The amount of the free energy (ΔG 0 ) involved in quadruplex formation of BC 007 was estimated at +8.7 kJ/mol when dissolved in water and +1.4 kJ/mol in 154 mM NaCl, indicating structural instability under these conditions. However, dissolution of the substance in 5 mM of KCl reduced the ΔG 0 to -5.6 kJ/mol due to the stabilizing effect of cations. These results show that positive ΔG 0 of quadruplex structure formation in water and aqueous NaCl prevents BC 007 from preforming stable 3-dimensional structures, which could potentially affect drug function. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Where are χ _{cJ}(3P)?

    NASA Astrophysics Data System (ADS)

    Chen, Dian-Yong

    2016-12-01

    In the present work, we propose Y(4140) as the χ _{c1}(3P) state by studying the χ _{c1} π ^+ π ^- invariant mass spectrum of the B→ K χ _{c1} π ^+ π ^- process. In the Dbar{D} invariant mass spectrum of the B→ K Dbar{D} process, we find a new resonance with the mass and width to be ( 4083.0 ± 5.0) and (24.1 ± 15.4) MeV, respectively, which could be a good candidate of the χ _{c0}(3P) state. The theoretical investigations on the decay behaviors of the χ _{cJ}(3P) in the present work support the assignments of the Y(4140) and Y(4080) as the χ _{c1}(3P) and χ _{c0}(3P) states, respectively. In addition, the χ _{c2}(3P) state is predicted to be a very narrow state. The results in the present work could be tested by further experiments in the LHCb and forthcoming Belle II.

  5. J-tube technique for double-j stent insertion during laparoscopic upper urinary tract surgical procedures.

    PubMed

    Kim, Hyung Suk; Lee, Byung Ki; Jung, Jin-Woo; Lee, Jung Keun; Byun, Seok-Soo; Lee, Sang Eun; Jeong, Chang Wook

    2014-11-01

    Double-J stent insertion has been generally performed during laparoscopic upper urinary tract (UUT) surgical procedures to prevent transient urinary tract obstruction and postoperative flank pain from ureteral edema and blood clots. Several restrictive conditions that make this procedure difficult and time consuming, however, include the coiled distal ends of the flexible Double-J stent and the limited bending angle of the laparoscopic instruments. To overcome these limitations, we devised a Double-J stent insertion method using the new J-tube technique. Between July 2011 and May 2013, Double-J stents were inserted using the J-tube technique in 33 patients who underwent a laparoscopic UUT surgical procedure by a single surgeon. The mean stent placement time was 4.8±2.7 minutes, and there were no intraoperative complications. In conclusion, the J-tube technique is a safe and time-saving method for Double-J stent insertion during laparoscopic surgical procedures.

  6. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  7. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    PubMed

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  8. Instability of subharmonic resonances in magnetogravity shear waves.

    PubMed

    Salhi, A; Nasraoui, S

    2013-12-01

    We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.

  9. Determination of the number of J/ψ events with inclusive J/ψ decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.

    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 10 6, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 10 6. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ±more » 7.0) × 10 6, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible.« less

  10. Determination of the number of J/ψ events with inclusive J/ψ decays

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; ...

    2016-08-26

    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 10 6, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 10 6. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ±more » 7.0) × 10 6, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible.« less

  11. Study of e(+)e(-)→ωχ(cJ) at center of mass energies from 4.21 to 4.42 GeV.

    PubMed

    Ablikim, M; Achasov, M N; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Bondarenko, O; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Chu, Y P; Cibinetto, G; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Fava, L; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fu, C D; Gao, Q; Gao, Y; Garzia, I; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, T; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Han, Y L; Harris, F A; He, K L; He, Z Y; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G M; Huang, G S; Huang, H P; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L L; Jiang, L W; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lai, W; Lange, J S; Lara, M; Larin, P; Li, Cheng; Li, C H; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, K; Li, P R; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C L; Liu, C X; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, Q; Liu, S B; Liu, X; Liu, X X; Liu, Y B; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, R Q; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, S; Ma, T; Ma, X N; Ma, X Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Moeini, H; Morales, C Morales; Moriya, K; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Ping, J L; Ping, R G; Poling, R; Pu, Y N; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ren, H L; Ripka, M; Rong, G; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shepherd, M R; Song, W M; Song, X Y; Sosio, S; Spataro, S; Spruck, B; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Toth, D; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q J; Wang, S G; Wang, W; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L G; Xia, Y; Xiao, D; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H X; Yang, L; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, H W; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S H; Zhang, X J; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, Li; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zou, B S; Zou, J H

    2015-03-06

    Based on data samples collected with the BESIII detector at the BEPCII collider at nine center of mass energies from 4.21 to 4.42 GeV, we search for the production of e^{+}e^{-}→ωχ_{cJ} (J=0, 1, 2). The process e^{+}e^{-}→ωχ_{c0} is observed for the first time, and the Born cross sections at sqrt[s]=4.23 and 4.26 GeV are measured to be (55.4±6.0±5.9) and (23.7±5.3±3.5)  pb, respectively, where the first uncertainties are statistical and the second are systematic. The ωχ_{c0} signals at the other seven energies and the e^{+}e^{-}→ωχ_{c1} and ωχ_{c2} signals are not significant, and the upper limits on the cross sections are determined. By examining the ωχ_{c0} cross section as a function of center of mass energy, we find that it is inconsistent with the line shape of the Y(4260) observed in e^{+}e^{-}→π^{+}π^{-}J/ψ. Assuming the ωχ_{c0} signals come from a single resonance, we extract the mass and width of the resonance to be (4230±8±6)  MeV/c^{2} and (38±12±2)  MeV, respectively, and the statistical significance is more than 9σ.

  12. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  13. Interference effect as resonance killer of newly observed charmoniumlike states Y(4320) and Y(4390)

    NASA Astrophysics Data System (ADS)

    Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2018-02-01

    In this letter, we decode the newly observed charmoniumlike states, Y(4320) and Y(4390), by introducing interference effect between ψ (4160) and ψ (4415), which plays a role of resonance killer for Y(4320) and Y(4390). It means that two newly reported charmoniumlike states are not genuine resonances, according to which we can naturally explain why two well-established charmonia ψ (4160) and ψ (4415) are missing in the cross sections of e^+e^- → π ^+ π ^- J/ψ and π ^+ π ^- h_c simultaneously. To well describe the detailed data of these cross sections around √{s}=4.2 GeV, our study further illustrates that a charmoniumlike structure Y(4220) must be introduced. As a charmonium, Y(4220) should dominantly decay into its open-charm channel e^+e^- → D^0 π ^+ D^{*-}, which provides an extra support to ψ (4S) assignment to Y(4220). In fact, this interference effect introduced to explain Y(4320) and Y(4390) gives a typical example of non-resonant explanations to the observed XYZ states, which should be paid more attention especially before identifying the observed XYZ states as genuine resonances.

  14. Transformations of Gaussian Light Beams Caused by Reflection in FEL (free Electron Lasers) Resonators

    DTIC Science & Technology

    1988-10-27

    il FILE COPy Naval Research Laboratory Washingon, DC 20375-500 NRL Memorandum Report 6347 ,qJ. o Transformations of Gaussian Light Beams N Caused by...Transformations of 7aussian Light Beams Caused by Reflection in FEL Resonators 12 PERSONAL AUTHOR(S) Riyopoulos,* S., Tang, C.M. and Sprangle, P...34 𔃾-6603 -"I, -,’ SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACTS (Continued) cross-coupling among vector components of the radiation field, caused

  15. PRESS echo time behavior of triglyceride resonances at 1.5 T: Detecting ω-3 fatty acids in adipose tissue in vivo

    NASA Astrophysics Data System (ADS)

    Lundbom, Jesper; Heikkinen, Sami; Fielding, Barbara; Hakkarainen, Antti; Taskinen, Marja-Riitta; Lundbom, Nina

    2009-11-01

    AimThis study investigated the impact of fatty acid (FA) composition on the echo time behavior of triglyceride resonances in a clinical setting. The feasibility of 1H NMR spectroscopy to detect these resonances was also evaluated in human adipose tissue in vivo. MethodTen edible oils chosen to cover a wide spectrum of FA compositions were used as phantom material. The detailed FA composition and intrinsic proton spectra of the oils were characterized by gas chromatography and high-resolution 1H NMR spectroscopy (11.7 T), respectively. The detailed echo time behavior of the oils were subsequently measured by 1H NMR spectroscopy in a clinical scanner (1.5 T) using PRESS. The effect of temperature was investigated in five oils. ResultsThe olefinic (5.3 ppm) and diallylic (2.8 ppm) resonances exhibited distinct J-modulation patterns independent of oil FA composition. The methylene resonance (1.3 ppm) displayed an exponential decay, with the apparent T2 showing a weak positive correlation with oil unsaturation ( R = 0.628, P = 0.052), probably a result of changes in viscosity. For the methyl resonance (0.9 ppm), oils high in ω-3 FA displayed a markedly different J-modulation pattern compared to non-ω-3 oils. The characteristic J-modulation of the ω-3 methyl group could be attributed to the phase behavior of the ω-3 methyl triplet signal (all triplet lines in-phase at TE of 135 ms), a result of the ω-3 methyl end forming a first order spin system. The ω-3 methyl outer triplet line at 1.08 ppm of the TE = 140 ms spectrum was found to be useful for determining the ω-3 content of the oils ( R = 0.999, standard error of estimate (SE) 0.80). The olefinic and diallylic proton resonance (measured at TE = 50 ms) areas correlated with the olefinic ( R = 0.993, SE 0.33) and diallylic ( R = 0.997, SE 0.19) proton contents calculated from the GC data. Information derived from long echo time spectra (TE = 200) demonstrated good correlations to GC data and showed no change with

  16. Searching for planetary nebulae at the Galactic halo via J-PAS and J-PLUS

    NASA Astrophysics Data System (ADS)

    Goncalves, Denise R.; Aparício-Villegas, Teresa; Akras, Stavros; Borges Fernandes, Marcelo; J-PAS Collaboration

    2015-08-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey to be carried out from a dedicated 2.5m telescope and a 4.7 sq.deg camera with 1.2Gpix. It will last 5 years and will observe 8500 sq.deg of Northern sky to a 5-σ magnitude depth for point sources, equivalent to i ~23.3 over an aperture of 2 arcsec2. The J-PAS filter system consists of 54 contiguous narrow band filters of 145-Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus 3 SDSS g, r, and i filters. The Javalambre Photometric Local Universe Survye (J-PLUS) will be an auxiliary survey ofJ-PAS (mainly for calibration) with a dedicated 0.80m telescope. J-PLUS comprises 12 filters, including g, r, i and z SDSS ones. Though about 2,500 planetary nebulae (PNe, confirmed spectroscopically) are known in the Galaxy, only 14 objects have been convincingly identified as halo PNe. They were classified as such from their location, kinematics and chemistry. Halo PNe are able to reveal precious information for the study of low- and intermediate-mass star evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense line emissions of PNe make them good objects to be searched by J-PAS, and even by J-PLUS. For instance, the halo PNe BoBn 1, DdDm 1 and PS 1, located somewhere between 11 and 24 kpc from the Sun, have B magnitudes of 16, 14 and 13.4, respectively. Such values are easily encompassed by J-PAS/J-PLUS, given the typical limit magnitude of the survey. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS/J-PLUS strategy to search for PNe. Our first results will be shown in this poster.

  17. Implanted bismuth donors in 28-Si: Process development and electron spin resonance measurements

    NASA Astrophysics Data System (ADS)

    Weis, C. D.; Lo, C. C.; Lang, V.; George, R. E.; Tyryshkin, A. M.; Bokor, J.; Lyon, S. A.; Morton, J. J. L.; Schenkel, T.

    2012-02-01

    Spins of donor atoms in silicon are excellent qubit candidates. Isotope engineered substrates provide a nuclear spin free host environment, resulting in long spin coherence times [1,2]. The capability of swapping quantum information between electron and nuclear spins can enable quantum communication and gate operation via the electron spin and quantum memory via the nuclear spin [2]. Spin properties of donor qubit candidates in silicon have been studied mostly for phosphorous and antimony [1-3]. Bismuth donors in silicon exhibit a zero field splitting of 7.4 GHz and have attracted attention as potential nuclear spin memory and spin qubit candidates [4,5] that could be coupled to superconducting resonators [4,6]. We report on progress in the formation of bismuth doped 28-Si epi layers by ion implantation, electrical dopant activation and their study via pulsed electron spin resonance measurements showing narrow linewidths and good coherence times. [4pt] [1] A. M. Tyryshkin, et al. arXiv: 1105.3772 [2] J. J. L. Morton, et al. Nature (2008) [3] T. Schenkel, et al APL 2006; F. R. Bradbury, et al. PRL (2006) [4] R. E. George, et al. PRL (2010) [5] G. W. Morley, et al. Nat Mat (2010) [6] M. Hatridge, et al. PRB (2011), R. Vijay, et al. APL (2010) This work was supported by NSA (100000080295) and DOE (DE-AC02-05CH11231).

  18. Ultrafast two-photon absorption generated free-carrier modulation in a silicon nanoplasmonic resonator

    NASA Astrophysics Data System (ADS)

    Nielsen, M. P.; Elezzabi, A. Y.

    2014-03-01

    Ultrafast all-optical modulation in Ag/HfO2/Si/HfO2/Ag metal-insulator-semiconductor-insulator-metal (MISIM) nanoring resonators through two-photon absorption photogenerated free-carriers is studied using self-consistent 3-D finite difference time domain (FDTD) simulations. The self-consistent FDTD simulations incorporate the two-photon absorption, free carrier absorption, and plasma dispersion effects in silicon. The nanorings are aperture coupled to Ag/HfO2/Si(100nm)/HfO2/Ag MISIM waveguides by 300nm wide and 50nm deep apertures. The effects of pump pulse energy, HfO2 spacer thickness, and device footprint on the modulation characteristics are studied. Nanoring radius is varied between 540nm and 1μm, the HfO2 spacer thickness is varied between 10nm and 20nm, and the pump pulse energy is explored up to 60pJ. Modulation amplitude, switching time, average generated carrier density, and wavelength resonant shift is studied for each of the device configurations. In a compact device footprint of only 1.4μm2, a 13.1dB modulation amplitude was obtained with a switching time of only 2ps using a modest pump pulse energy of 16.0pJ. The larger bandwidth associated with more compact nanorings and thinner spacer layers is shown to result in increased modulation amplitude.

  19. Vertical transmission of avian leukosis virus subgroup J (ALV-J) from hens infected through artificial insemination with ALV-J infected semen.

    PubMed

    Li, Yang; Cui, Shuai; Li, Weihua; Wang, Yixin; Cui, Zhizhong; Zhao, Peng; Chang, Shuang

    2017-06-29

    Avian leukosis virus (ALV) is one of the main causes of tumour development within the poultry industry in China. The subgroup J avian leukosis viruses (ALV-J), which induce erythroblastosis and myelocytomatosis, have the greatest pathogenicity and transmission ability within this class of viruses. ALV can be transmitted both horizontally and vertically; however, the effects of ALV infection in chickens-especially roosters-during the propagation, on future generations is not clear. Knowing the role of the cock in the transmission of ALV from generation to generation might contribute to the eradication programs for ALV. The results showed that two hens inseminated with ALV-J-positive semen developed temporary antibody responses to ALV-J at 4-5 weeks post insemination. The p27 antigen was detected in cloacal swabs of six hens, and in 3 of 26 egg albumens at 1-6 weeks after insemination. Moreover, no viremia was detected at 6 weeks after insemination even when virus isolation had been conducted six times at weekly intervals for each of the 12 females. However, ALV-J was isolated from 1 of their 34 progeny chicks at 1 week of age, and its gp85 had 98.4%-99.2% sequence identity with the gp85 of ALV-J isolated from semen samples of the six cocks. Our findings indicated that females that were late horizontally infected with ALV-J by artificial insemination might transmit the virus to progeny through eggs, which amounts to vertical transmission.

  20. Sociability and brain development in BALB/cJ and C57BL/6J mice

    PubMed Central

    Fairless, Andrew H.; Dow, Holly C.; Kreibich, Arati Sadalge; Torre, Matthew; Kuruvilla, Mariyam; Gordon, Elliot; Morton, Elizabeth A.; Tan, Junhao; Berrettini, Wade H.; Li, Hongzhe; Abel, Ted; Brodkin, Edward S.

    2012-01-01

    Sociability—the tendency to seek social interaction–propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains’ contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. We also hypothesized that littermates would resemble one another in sociability more than non-littermates. Finally, we hypothesized that low sociability would be associated with low corpus callosum size and increased brain size in BALB/cJ mice. Separate cohorts of C57BL/6J and BALB/cJ mice were tested for sociability at 19-, 23-, 31-, 42-, or 70-days-of-age, and brain weights and mid-sagittal corpus callosum area were measured. BALB/cJ sociability increased with age, and a strain by age interaction in sociability between 31 and 42 days of age suggested strong effects of puberty on sociability development. Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development. PMID:22178318

  1. Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-09-01

    Announcement of discovery of Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460. Discovered independently by John Seach (Chatsworth Island, NSW, Australia, on 2011 Sep. 06.37 UT at mag=9.8 (DSLR)) and by Yuji Nakamura (Kameyama, Mie, Japan, on 2011 Sep. 06.4313 UT at mag=9.7 C (CCD)). Posted on the IAU Central Bureau for Astronomical Telegrams Transient Object Confirmation Page (TOCP) as PNV J16364440-4132340 (Nakamura) and PNV J16364300-4132460 (Seach); identifications consolidated in VSX under PNV J16364440-4132340. Spectra obtained by A. Arai et al. on 2011 Sep. 7.42 UT suggest a highly reddened Fe II-type classical nova. Spectra by F. Walter and J. Seron obtained Sep. 2011 8.091 UT confirm a young galactic nova; they report spectra are reminiscent of an early recurrent nova. Initially announced in AAVSO Special Notice #251 (Matthew Templeton) and IAU Central Bureau Electronic Telegram 2813 (Daniel W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  2. Coupled-channel model for K ¯ N scattering in the resonant region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Ramírez, Cesar; Danilkin, Igor V.; Manley, D. Mark

    2016-02-18

    Here, we present a unitary multichannel model formore » $$\\bar{K}$$N scattering in the resonance region that fulfills unitarity. It has the correct analytical properties for the amplitudes once they are extended to the complex-$s$ plane and the partial waves have the right threshold behavior. In order to determine the parameters of the model, we have fitted single-energy partial waves up to J = 7/2 and up to 2.15 GeV of energy in the center-of-mass reference frame obtaining the poles of the Λ* and Σ* resonances, which are compared to previous analyses. Furthermore, we provide the most comprehensive picture of the S = –1 hyperon spectrum to date. Here, important differences are found between the available analyses making the gathering of further experimental information on $$\\bar{K}$$N scattering mandatory to make progress in the assessment of the hyperon spectrum.« less

  3. Triple coupling and parameter resonance in quantum optomechanics with a single atom

    NASA Astrophysics Data System (ADS)

    Chang, Yue; Ian, H.; Sun, C. P.

    2009-11-01

    We study the energy level structure and quantum dynamics for a cavity optomechanical system assisted by a single atom. It is found that a triple coupling involving a photon, a phonon and an atom cannot be described only by the quasi-orbital angular momentum at frequency resonance, there also exists the phenomenon of parameter resonance, namely, when the system parameters are matched in some way, the evolution of the end mirror of the cavity is conditioned by the dressed states of the photon-atom subsystem. The quantum decoherence due to this conditional dynamics is studied in detail. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings (J-C) model when the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible parameter.

  4. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    NASA Astrophysics Data System (ADS)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  5. Black hole spin inferred from 3:2 epicyclic resonance model of high-frequency quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Šrámková, E.; Török, G.; Kotrlová, A.; Bakala, P.; Abramowicz, M. A.; Stuchlík, Z.; Goluchová, K.; Kluźniak, W.

    2015-06-01

    Estimations of black hole spin in the three Galactic microquasars GRS 1915+105, GRO J1655-40, and XTE J1550-564 have been carried out based on spectral and timing X-ray measurements and various theoretical concepts. Among others, a non-linear resonance between axisymmetric epicyclic oscillation modes of an accretion disc around a Kerr black hole has been considered as a model for the observed high-frequency quasi-periodic oscillations (HF QPOs). Estimates of spin predicted by this model have been derived based on the geodesic approximation of the accreted fluid motion. Here we assume accretion flow described by the model of a pressure-supported torus and carry out related corrections to the mass-spin estimates. We find that for dimensionless black hole spin a ≡ cJ/GM2 ≲ 0.9, the resonant eigenfrequencies are very close to those calculated for the geodesic motion. Their values slightly grow with increasing torus thickness. These findings agree well with results of a previous study carried out in the pseudo-Newtonian approximation. The situation becomes different for a ≳ 0.9, in which case the resonant eigenfrequencies rapidly decrease as the torus thickness increases. We conclude that the assumed non-geodesic effects shift the lower limit of the spin, implied for the three microquasars by the epicyclic model and independently measured masses, from a ~ 0.7 to a ~ 0.6. Their consideration furthermore confirms compatibility of the model with the rapid spin of GRS 1915+105 and provides highly testable predictions of the QPO frequencies. Individual sources with a moderate spin (a ≲ 0.9) should exhibit a smaller spread of the measured 3:2 QPO frequencies than sources with a near-extreme spin (a ~ 1). This should be further examined using the large amount of high-resolution data expected to become available with the next generation of X-ray instruments, such as the proposed Large Observatory for X-ray Timing (LOFT).

  6. Defect-mediated resonance shift of silicon-on-insulator racetrack resonators.

    PubMed

    Ackert, J J; Doylend, J K; Logan, D F; Jessop, P E; Vafaei, R; Chrostowski, L; Knights, A P

    2011-06-20

    We present a study on the effects of inert ion implantation of Silicon-On-Insulator (SOI) racetrack resonators. Selective ion implantation was used to create deep-level defects within a portion of the resonator. The resonant wavelength and round-trip loss were deduced for a range of sequential post-implantation annealing temperatures from 100 to 300 °C. As the devices were annealed there was a concomitant change in the resonance wavelength, consistent with an increase in refractive index following implantation and recovery toward the pre-implanted value. A total shift in resonance wavelength of ~2.9 nm was achieved, equivalent to a 0.02 increase in refractive index. The excess loss upon implantation increased to 301 dB/cm and was reduced to 35 dB/cm following thermal annealing. In addition to providing valuable data for those incorporating defects within resonant structures, we suggest that these results present a method for permanent tuning (or trimming) of ring resonator characteristics.

  7. Branching fraction measurement of J /ψ →KSKL and search for J /ψ →KSKS

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chen, Z. X.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, S. H.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, B. Q.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, X. H.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-12-01

    Using a sample of 1.31 ×109 J /ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J /ψ →KSKL and KSKS . The branching fraction of J /ψ →KSKL is determined to be B (J /ψ →KSKL)=(1.93 ±0.01 (stat )±0.05 (syst ))×10-4 , which significantly improves on previous measurements. No clear signal is observed for the J /ψ →KSKS process, and the upper limit at the 95% confidence level for its branching fraction is determined to be B (J /ψ →KSKS)<1.4 ×10-8 , which improves on the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.

  8. Nonequilibrium Green's function theory of resonant steady state photoconduction in a double quantum well FET subject to THz radiation at plasmon frequency

    NASA Astrophysics Data System (ADS)

    Morgenstern Horing, Norman J.; Popov, Vyacheslav V.

    2006-04-01

    Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This ''conditioning'' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening.

  9. Sociability and brain development in BALB/cJ and C57BL/6J mice.

    PubMed

    Fairless, Andrew H; Dow, Holly C; Kreibich, Arati Sadalge; Torre, Matthew; Kuruvilla, Mariyam; Gordon, Elliot; Morton, Elizabeth A; Tan, Junhao; Berrettini, Wade H; Li, Hongzhe; Abel, Ted; Brodkin, Edward S

    2012-03-17

    Sociability--the tendency to seek social interaction--propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains' contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. We also hypothesized that littermates would resemble one another in sociability more than non-littermates. Finally, we hypothesized that low sociability would be associated with low corpus callosum size and increased brain size in BALB/cJ mice. Separate cohorts of C57BL/6J and BALB/cJ mice were tested for sociability at 19-, 23-, 31-, 42-, or 70-days-of-age, and brain weights and mid-sagittal corpus callosum area were measured. BALB/cJ sociability increased with age, and a strain by age interaction in sociability between 31 and 42 days of age suggested strong effects of puberty on sociability development. Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Resonant-enhanced spectroscopy of molecular rotations with a scanning tunneling microscope.

    PubMed

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2014-07-22

    We use rotational excitation spectroscopy with a scanning tunneling microscope to investigate the rotational properties of molecular hydrogen and its isotopes physisorbed on the surfaces of graphene and hexagonal boron nitride (h-BN), grown on Ni(111), Ru(0001), and Rh(111). The rotational excitation energies are in good agreement with ΔJ = 2 transitions of freely spinning p-H2 and o-D2 molecules. The variations of the spectral line shapes for H2 among the different surfaces can be traced back to a molecular resonance-mediated tunneling mechanism. Our data for H2/h-BN/Rh(111) suggest a local intrinsic gating on this surface due to lateral static dipoles. Spectra on a mixed monolayer of H2, HD, and D2 display all three J = 0 → 2 rotational transitions, irrespective of tip position, thus pointing to a multimolecule excitation, or molecular mobility in the physisorbed close-packed layer.

  11. Laurence J. Capellas

    ERIC Educational Resources Information Center

    Nishimoto, Warren

    2007-01-01

    Laurence J. Capellas, teacher, principal, and administrator in the Hawai'i Department of Education from 1935 to 1977. Laurence J. Capellas was born in 1913 in Hakalau to two Hawai'i island school-teachers. After attending Hakalau School, St. Mary's School in Hilo, and St. Louis College in Honolulu, he went on to the University of Hawai'i Teachers…

  12. Modification of the D2 radial wavefunction by near resonant compact states

    NASA Astrophysics Data System (ADS)

    Hagelstein, Peter L.

    2003-03-01

    We have proposed that phonon exchange can occur in the presence of a highly excited optical phonon mode during a dd-fusion reaction. We have also suggested (P. L. Hagelstein, Bull. APS 45, 235 (2000)) at new second-order site-other-site reactions can occur when the energy of a fusion reaction is transferred elsewhere. Fast particle ejecta from the experiments of Chambers( G. P. Chambers, et al, J. Fusion Energy, Vol. 9, p. 281 (1990).) and of Cecil (F. E. Cecil, et al, AIP Conf. Proc. Vol. 228, p. 383 (1990).) appear to be consistent with such a mechanism, in which a dd-fusion reaction at one site is coupled to a disintegration at another site. The dominant process of this type is the null reaction in which dd-fusion is coupled to He-4 dissociation. This process can lead to compact dd-states(P. L. Hagelstein, Bull. APS 2001), and is consistent with the Kasagi experiment(J. Kasagi et al, J. Phys. Soc. Japan 64, 777 (1995). ). We find that compact states near resonance with the molecular D2 states changes the radial wavefunction at small r.

  13. Capture Cross-section Measurement of 241Am(n,γ) at J-PARC/MLF/ANNRI

    NASA Astrophysics Data System (ADS)

    Harada, H.; Ohta, M.; Kimura, A.; Furutaka, K.; Hirose, K.; Hara, K. Y.; Kin, T.; Kitatani, F.; Koizumi, M.; Nakamura, S.; Oshima, M.; Toh, Y.; Igashira, M.; Katabuchi, T.; Mizumoto, M.; Kino, K.; Kiyanagi, Y.; Fujii, T.; Fukutani, S.; Hori, J.; Takamiya, K.

    2014-05-01

    The 241Am(n, γ) 242Am cross sections have been measured for neutron energies between 0.01 and 10 eV using the Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) installed at the Materials and Life-science experimental Facility (MLF) in J-PARC. ANNRI combines the strongest neutron-pulsed beam and a high energy resolution γ-ray spectrometer, making possible accurate measurements of neutron capture cross sections for highly radioactive samples. From the measured cross section, the Westcott neutron capture factor and strength of the first three resonances in 241Am are deduced. These results with precision less than 0.5 % are compared with those derived from JENDL-4.0.

  14. A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-12-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.

  15. Autoionizing resonances in electron-impact ionization of O5+ ions

    NASA Astrophysics Data System (ADS)

    Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.

    2000-12-01

    We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].

  16. Optical spectroscopy of SN2014J

    NASA Astrophysics Data System (ADS)

    Kotak, R.

    2014-01-01

    Authors: J. Polshaw, R. Kotak, J. R. Maund, S. J. Smartt (QUB), M. Fraser, N. Walton (IoA), J. M. Abreu (IAC), M. Balcells, C. Benn, J. Mendez, A. Oscoz, O. Zamora, C. Zurita (ING) A spectrum of the supernova SN 2014J in the nearby galaxy M82 was obtained on Jan. 23.2 2014 (UT) at the 2.54m Isaac Newton Telescope (INT) with IDS and the grating R1200R (approximate wavelength range 5600 - 7500A, at 2A resolution).

  17. Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice.

    PubMed

    Dow, H C; Kreibich, A S; Kaercher, K A; Sankoorikal, G M V; Pauley, E D; Lohoff, F W; Ferraro, T N; Li, H; Brodkin, E S

    2011-02-01

    Aggressive behaviors are disabling, treatment refractory, and sometimes lethal symptoms of several neuropsychiatric disorders. However, currently available treatments for patients are inadequate, and the underlying genetics and neurobiology of aggression is only beginning to be elucidated. Inbred mouse strains are useful for identifying genomic regions, and ultimately the relevant gene variants (alleles) in these regions, that affect mammalian aggressive behaviors, which, in turn, may help to identify neurobiological pathways that mediate aggression. The BALB/cJ inbred mouse strain exhibits relatively high levels of intermale aggressive behaviors and shows multiple brain and behavioral phenotypes relevant to neuropsychiatric syndromes associated with aggression. The A/J strain shows very low levels of aggression. We hypothesized that a cross between BALB/cJ and A/J inbred strains would reveal genomic loci that influence the tendency to initiate intermale aggressive behavior. To identify such loci, we conducted a genomewide scan in an F2 population of 660 male mice bred from BALB/cJ and A/J inbred mouse strains. Three significant loci on chromosomes 5, 10 and 15 that influence aggression were identified. The chromosome 5 and 15 loci are completely novel, and the chromosome 10 locus overlaps an aggression locus mapped in our previous study that used NZB/B1NJ and A/J as progenitor strains. Haplotype analysis of BALB/cJ, NZB/B1NJ and A/J strains showed three positional candidate genes in the chromosome 10 locus. Future studies involving fine genetic mapping of these loci as well as additional candidate gene analysis may lead to an improved biological understanding of mammalian aggressive behaviors. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  18. A proposed U.S./China theoretical/experimental collaborative effort on baryon resonance extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.L. Cole

    2009-12-01

    In this paper we discuss the reasons for our work towards establishing a new collaboration between Jefferson Lab (JLab) and the Institute of High Energy Physics (IHEP) in Beijing. We seek to combine experimentalists and theorists into a dedicated group focused on better understanding the current and future data from JLab and from the Beijing Electron Positron Collider (BEPC). Recent JLab results on the extraction of single- and double-polarization observables in both the 1{pi}- and 2{pi}-channel show their high sensitivity to small production amplitudes and therefore their importance for the extraction of resonance parameters. The Beijing Electron Spectrometer (BES) atmore » the BEPC has collected high statistics data on J/{Psi} production. Its decay into baryon-antibaryon channels offers a unique and complementary way of probing nucleon resonances. The CEBAF Large Acceptance Spectrometer, CLAS, has access to N* form factors at high Q{sup 2}, which is advantageous for the study of dynamical properties of nucleon resonances, while the low-background BES results will be able to provide guidance for the search for less-dominant excited states at JLab. Moreover, with the recently approved experimental proposal Nucleon Resonance Studies with CLAS12 and the high-quality data streaming from BES-III and CLAS, the time has come for forging a new Trans-Pacific collaboration of theorists and experimentalists on NSTAR physics.« less

  19. Coupled-Resonator-Induced Transparency

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hong-Rok; Fuller, Kirk A.; Rosenberger, A. T.; Boyd, Robert W.

    2003-01-01

    We demonstrate that a cancellation of absorption occurs on resonance for two (or any even number of) coupled optical resonators, due to mode splitting and classical destructive interference, particularly when the resonator finesse is large and the loss in the resonator furthest from the excitation waveguide is small. The linewidth and group velocity of a collection of such coupled-resonator structures may be decreased by using larger resonators of equal size, using larger resonators of unequal size where the optical path length of the larger resonator is an integer multiple of that of the smaller one, or by using a larger number of resonators per structure. We explore the analogy between these effects and electromagnetically induced transparency in an atomic system.

  20. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    NASA Astrophysics Data System (ADS)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  1. 7. Detail view of 1866 cornerstone (J.J. Havis and M.F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of 1866 cornerstone (J.J. Havis and M.F. Echols, Builders). This cornerstone was moved to the third floor, west elevation of an addition built in 1899. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL

  2. STS-51J Mission Insignia

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The 51-J mission insignia, designed by Atlantis's first crew, pays tribute to the Statue of Liberty and the ideas it symbolizes. The historical gateway figure bears additional significance for Astronauts Karol J. Bobko, mission commander; and Ronald J. Grabe, pilot, both New Your Natives.

  3. 3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip

    2017-07-01

    We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.

  4. Bose gases near resonance: Renormalized interactions in a condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.

    2013-01-15

    Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less

  5. Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Karouby, Johanna; Spitzer, William G.; Becerra, Juana C.; Li, Lanqing

    2014-12-01

    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ -particles and anti-ϕ -particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.

  6. Resonances above the proton threshold in 26Si

    DOE PAGES

    Chipps, Kelly A.

    2016-03-06

    26Al remains an intriguing target for observational gamma-ray astronomy, thanks to its characteristic decay. The 25Al(p, )26Si reaction is part of a chain that bypasses the production of the observable 26Alg in favor of the isomeric state; its rate at novae temperatures is dominated by a resonance around 400 keV, the precise location and J assignment of which has been hotly debated. Considerable confusion in this regard has arisen from the use of outdated excitation energies and masses. Here, a reanalysis of previous work is completed to first, elucidate the confusion regarding the level structure just above the proton threshold,more » and second, provide focus to future studies.« less

  7. 30 CFR Appendix A to Subpart J of... - Appendix A to Subpart J of Part 75

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Appendix A to Subpart J of Part 75 A Appendix A to Subpart J of Part 75 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Medium-Voltage Alternating Current Circuits Pt. 75, Subpt. J, App. A Appendix A to Subpart J of Part 75...

  8. Noise Strength Estimates of Three SGRs: Swift J1822.3-1606, SGR J1833-0832 and Swift J1834.9-0846

    NASA Astrophysics Data System (ADS)

    Serim, M. M.; Inam, S. Ç.; Baykal, A.

    2012-12-01

    We studied timing solutions of the three magnetars SWIFT J1822.3-1606, SGR J1833-0832 and Swift J1834.9-0846. We extracted the residuals of pulse arrival times with respect to the constant pulse frequency derivative. Using polynomial estimator techniques, we estimated the noise strengths of the sources. Our results showed that the noise strength and spin-down rate are strongly correlated, indicating that increase in spin-down rate leads to more torque noise on the magnetars. We are in progress of extending our analysis to the other magnetars.

  9. Fine structure of the giant M1 resonance in 90Zr.

    PubMed

    Rusev, G; Tsoneva, N; Dönau, F; Frauendorf, S; Schwengner, R; Tonchev, A P; Adekola, A S; Hammond, S L; Kelley, J H; Kwan, E; Lenske, H; Tornow, W; Wagner, A

    2013-01-11

    The M1 excitations in the nuclide 90Zr have been studied in a photon-scattering experiment with monoenergetic and linearly polarized beams from 7 to 11 MeV. More than 40 J(π)=1+ states have been identified from observed ground-state transitions, revealing the fine structure of the giant M1 resonance with a centroid energy of 9 MeV and a sum strength of 4.17(56) μ(N)(2). The result for the total M1 strength and its fragmentation are discussed in the framework of the three-phonon quasiparticle-phonon model.

  10. Multiferroicity of CuCrO2 tested by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Gotovko, S. K.; Soldatov, T. A.; Svistov, L. E.; Zhou, H. D.

    2018-03-01

    We have carried out the electron spin resonance (ESR) study of the multiferroic triangular antiferromagnet CuCrO2 in the presence of an electric field. The shift of ESR spectra by the electric field was observed; the value of the shift exceeds that in materials with linear magnetoelectric coupling. It was shown that the low-frequency dynamics of magnetically ordered CuCrO2 is defined by joint oscillations of the spin plane and electric polarization. The results demonstrate an agreement with theoretical expectations of a phenomenological model [V. I. Marchenko, J. Exp. Theor. Phys. 119, 1084 (2014), 10.1134/S1063776114120073].

  11. Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators.

    PubMed

    Scott, Faith J; Sesti, Erika L; Choi, Eric J; Laut, Alexander J; Sirigiri, Jagadishwar R; Barnes, Alexander B

    2018-04-19

    We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197-GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ω r /2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13 C J-couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high-resolution nuclear magnetic resonance spectroscopy. Additionally, 13 C Rabi nutation curves of ω 1 /2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low-power microwave sources, and electron paramagnetic resonance detection. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser.

    PubMed

    Krzempek, Karol; Sotor, Jaroslaw; Abramski, Krzysztof

    2016-11-01

    The first demonstration of a compact all-fiber figure-9 double-clad erbium-ytterbium laser working in the dissipative soliton resonance (DSR) regime is presented. Mode-locking was achieved using a nonlinear amplifying loop (NALM) resonator configuration. The laser was assembled with an additional 475 m long spool of SMF28 fiber in the NALM loop in order to obtain large net-anomalous cavity dispersion (-10.4  ps2), and therefore ensure that DSR would be the dominant mode-locking mechanism. At maximum pump power (4.78 W) the laser generated rectangular-shaped pulses with 455 ns duration and an average power of 950 mW, which at a repetition frequency of 412 kHz corresponds to a record energy of 2.3 μJ per pulse.

  13. Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Vincent, Roger; Cherns, David; Dan, Nguyen Huy; Yu, Seong-Cho

    2008-08-01

    We have studied Raman scattering in Co-doped ZnO nanorods prepared by thermal diffusion. Experimental results show that the features of their non-resonant spectra are similar to Raman spectra from Co-doped ZnO materials investigated previously. Under resonant conditions, however, there is a strong enhancement of multiple-phonon Raman scattering processes. Longitudinal optical (LO)-phonon overtones up to eleventh order are observed. The modes become more obvious when the Co concentration diffused into ZnO nanorods goes to an appropriate value. This phenomenon is explained due to the shift of the band-gap energy and also due to the decrease in the intensity of near-band-edge luminescence. Our observation is in agreement with the prediction [J. F. Scott, Phys. Rev. B 2, 1209 (1970)] that the number of LO-phonon lines in ZnO is higher than that observed for CdS.

  14. Direct Detection of Time-Resolved Rabi Oscillationsin a Single Quantum Dot via Resonance Fluorescence

    DTIC Science & Technology

    2013-03-19

    Ware, E. A. Stinaff, D. Gammon, M. F. Doty, A. S . Bracker, D. Gershoni, V. L. Korenev , S . C. Bădescu, Y. Lyanda-Geller, and T. L. Reinecke, Phys. Rev...A SINGLE QUANTUM DOT VIA RESONANCE FLUORESCENCE 5a. CONTRACT NUMBER FA8750-12-2-0333 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) J...NUMBER CH 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) University of Michigan 450 Church Street Ann Arbor MI 48109-1040 8. PERFORMING

  15. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    NASA Astrophysics Data System (ADS)

    Jia, X.; Johnson, P. A.

    2004-12-01

    beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).

  16. A high-level 3D visualization API for Java and ImageJ.

    PubMed

    Schmid, Benjamin; Schindelin, Johannes; Cardona, Albert; Longair, Mark; Heisenberg, Martin

    2010-05-21

    Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.

  17. Observation of beta-induced Alfvén Eigenmode in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Linzi; He, Jiyang; Hu, Qiming; Zhuang, Ge

    2015-06-01

    High-frequency oscillations have been frequently observed under the conditions of tearing modes and runaway electrons in J-TEXT Ohmic plasmas. It is found the frequencies of these oscillations range from 20 to 45 kHz, being consistent with the beta-induced Alfvén Eigenmodes (BAEs) with the same order of the low-frequency gap induced by finite beta effects and the coupling of the shear Alfvén wave with the compressional response of the plasma. The exciting conditions for BAEs are investigated, which indicate that runaway electrons, as well as magnetic perturbations contributed by magnetic islands, are indispensable in the excitation of BAEs. In addition, externally applied static resonant magnetic perturbations (RMPs) are used to excite BAEs successfully for the first time in J-TEXT, as indicated by high frequency oscillations (~30 kHz). Further studies show that BAEs can be excited only when the coil current of RMP is stronger than 4 kA, and the strength of BAEs becomes stronger with stronger RMP. To assess the verification of the BAEs, the frequencies of observed modes are compared to the calculated frequencies of the BAE frequency gap in the Alfvén continuum, namely the continuum accumulation point (CAP), and they are found to be close.

  18. Magnetic Resonance Imaging

    MedlinePlus

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  19. Katherine J. Chou | NREL

    Science.gov Websites

    J. Chou Photo of Katherine J. Chou Katherine Chou Microbial Physiology & Engineering , Clostridium thermocellum, through metabolic engineering. "Biological Electron Transfer and Catalysis principles governing substrate utilization. "Advance Biofuels from Cellulose via Genetic Engineering of

  20. Theoretical investigation of resonant frequencies of unstrapped magnetron with arbitrary side resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Song, E-mail: yuessd@163.com; University of Chinese Academy of Sciences, Beijing 100049; Zhang, Zhao-chuan

    In this paper, a sector steps approximation method is proposed to investigate the resonant frequencies of magnetrons with arbitrary side resonators. The arbitrary side resonator is substituted with a series of sector steps, in which the spatial harmonics of electromagnetic field are also considered. By using the method of admittance matching between adjacent steps, as well as field continuity conditions between side resonators and interaction regions, the dispersion equation of magnetron with arbitrary side resonators is derived. Resonant frequencies of magnetrons with five common kinds of side resonators are calculated with sector steps approximation method and computer simulation softwares, inmore » which the results have a good agreement. The relative error is less than 2%, which verifies the validity of sector steps approximation method.« less

  1. J-difference-edited MRS measures of γ-aminobutyric acid before and after acute caffeine administration.

    PubMed

    Oeltzschner, Georg; Zöllner, Helge J; Jonuscheit, Marc; Lanzman, Rotem S; Schnitzler, Alfons; Wittsack, Hans-Jörg

    2018-05-12

    The aim of this study was to investigate potential effects of acute caffeine intake on J-difference-edited MRS measures of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA). J-difference-edited Mescher-Garwood PRESS (MEGA-PRESS) and conventional PRESS data were acquired at 3T from voxels in the anterior cingulate and occipital area of the brain in 15 healthy subjects, before and after oral intake of a 200-mg caffeine dose. MEGA-PRESS data were analyzed with the MATLAB-based Gannet tool to estimate GABA+ macromolecule (GABA+) levels, while PRESS data were analyzed with LCModel to estimate levels of glutamate, glutamate+glutamine, N-acetylaspartate, and myo-inositol. All metabolites were quantified with respect to the internal reference compounds creatine and tissue water, and compared between the pre- and post-caffeine intake condition. For both MRS voxels, mean GABA+ estimates did not differ before and after caffeine intake. Slightly lower estimates of myo-inositol were observed after caffeine intake in both voxels. N-acetylaspartate, glutamate, and glutamate+glutamine did not show significant differences between conditions. Mean GABA+ estimates from J-difference-edited MRS in two different brain regions are not altered by acute oral administration of caffeine. These findings may increase subject recruitment efficiency for MRS studies. © 2018 International Society for Magnetic Resonance in Medicine.

  2. On Nulling, Drifting, and Their Interactions in PSRs J1741-0840 and J1840-0840

    NASA Astrophysics Data System (ADS)

    Gajjar, V.; Yuan, J. P.; Yuen, R.; Wen, Z. G.; Liu, Z. Y.; Wang, N.

    2017-12-01

    We report detailed investigation of nulling and drifting behavior of two pulsars PSRs J1741-0840 and J1840-0840 observed from the Giant Meterwave Radio Telescope at 625 MHz. PSR J1741-0840 was found to show a nulling fraction (NF) of around 30% ± 5% while PSR J1840-0840 was shown to have an NF of around 50% ± 6%. We measured drifting behavior from different profile components in PSR J1840-0840 for the first time with the leading component showing drifting with 13.5 ± 0.7 periods while the weak trailing component showed drifting of around 18 ± 1 periods. Large nulling hampers accuracy of these quantities derived using standard Fourier techniques. A more accurate comparison was drawn from driftband slopes, measured after sub-pulse modeling. These measurements revealed interesting sporadic and irregular drifting behavior in both pulsars. We conclude that the previously reported different drifting periodicities in the trailing component of PSR J1741-0840 is likely due to the spread in these driftband slopes. We also find that both components of PSR J1840-0840 show similar driftband slopes within the uncertainties. Unique nulling-drifting interaction is identified in PSR J1840-0840 where, on most occasions, the pulsar tends to start nulling after what appears to be the end of a driftband. Similarly, when the pulsar switches back to an emission phase, on most occasions it starts at the beginning of a new driftband in both components. Such behaviors have not been detected in any other pulsars to our knowledge. We also found that PSR J1741-0840 seems to have no memory of its previous burst phase while PSR J1840-0840 clearly exhibits memory of its previous state even after longer nulls for both components. We discuss possible explanations for these intriguing nulling-drifting interactions seen in both pulsars based on various pulsar nulling models.

  3. Rotationally mediated selective adsorption as a probe of isotropic and anisotropic molecule. Surface interaction potentials: HD(J)/Ag(111)

    NASA Astrophysics Data System (ADS)

    Uy, C. F.; Hogg, C. S.; Cowin, J. P.; Whaley, K. B.; Light, J. C.; Sibener, S. J.

    1982-08-01

    Rotationally mediated selective adsorption scattering resonances are used to make an experimental and theoretical study of the laterally averaged interaction potential between HD and a weakly corrugated system, Ag(111). The experimentally observed resonances determine the vibrational levels of the HD/Ag(111) physisorption potential as a function of bound rotational state. These vibrational levels show J-dependent shifts due to the orientational anisotropy of the potential. Exact quantum scattering calculations using a full laterally averaged potential of the form V sub o(z,0) = v sub o (z) (1 + beta P sub 2 (cos theta)) have been carried out to obtain rotationally inelastic transition probabilities. Experimental and theoretical resonance energies are compared for two forms of v sub o(z), a Morse and a variable exponent potential, as a function of Beta, and are found to be very close to the first order perturbed energies of a free rotor in bound states of v sub o(z). Both potential forms give equally good fits to the data, yielding an optimum value of the asymmetry parameter, Beta approx. -0.05. The determination of Beta is relatively insensitive to small changes in the v sub o(z) well depth.

  4. Resonator design and performance estimation for a space-based laser transmitter

    NASA Astrophysics Data System (ADS)

    Agrawal, Lalita; Bhardwaj, Atul; Pal, Suranjan; Kamalakar, J. A.

    2006-12-01

    Development of a laser transmitter for space applications is a highly challenging task. The laser must be rugged, reliable, lightweight, compact and energy efficient. Most of these features are inherently achieved by diode pumping of solid state lasers. Overall system reliability can further be improved by appropriate optical design of the laser resonator besides selection of suitable electro-optical and opto-mechanical components. This paper presents the design details and the theoretically estimated performance of a crossed-porro prism based, folded Z-shaped laser resonator. A symmetrically pumped Nd: YAG laser rod of 3 mm diameter and 60 mm length is placed in the gain arm with total input peak power of 1800 W from laser diode arrays. Electro-optical Q-switching is achieved through a combination of a polarizer, a fractional waveplate and LiNbO 3 Q-switch crystal (9 x 9 x 25 mm) placed in the feedback arm. Polarization coupled output is obtained by optimizing azimuth angle of quarter wave plate placed in the gain arm. Theoretical estimation of laser output energy and pulse width has been carried out by varying input power levels and resonator length to analyse the performance tolerances. The designed system is capable of meeting the objective of generating laser pulses of 10 ns duration and 30 mJ energy @ 10 Hz.

  5. Secular resonances. [of asteroidal dynamics

    NASA Technical Reports Server (NTRS)

    Scholl, H.; Froeschle, CH.; Kinoshita, H.; Yoshikawa, M.; Williams, J. G.

    1989-01-01

    Theories and numerical experiments regarding secular resonances are reviewed. The basic dynamics and the positions of secular resonances are discussed, and secular perturbation theories for the nu16 resonance case, the nu6 resonance, and the nu5 resonance are addressed. What numerical experiments have revealed about asteroids located in secular resonances, the stability of secular resonances, variations of eccentricities and inclinations, and chaotic orbits is considered. Resonant transport of meteorites is discussed.

  6. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  7. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  8. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  9. Evidence for the decay B0→J/ψω and measurement of the relative branching fractions of Bs0 meson decays to J/ψη and J/ψη'

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellan Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, Th.; Bay, A.; Beddow, J.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Büchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Domingo Bonal, F.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Esperante Pereira, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J.-C.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Harrison, P. F.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicks, E.; Hill, D.; Hoballah, M.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Huston, R. S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, M.; Keaveney, J.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y. M.; Kochebina, O.; Komarov, I.; Komarov, V.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Li, L.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; von Loeben, J.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Mac Raighne, A.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Magnin, J.; Maino, M.; Malde, S.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Mazurov, A.; McCarthy, J.; McGregor, G.; McNulty, R.; Meissner, M.; Merk, M.; Merkel, J.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pie Valls, B.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Rogers, G. J.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sobczak, K.; Soler, F. J. P.; Solomin, A.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tsaregorodtsev, A.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Videau, I.; Vieira, D.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, H.; Voß, C.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2013-02-01

    First evidence of the B0→J/ψω decay is found and the Bs0→J/ψη and Bs0→J/ψη' decays are studied using a dataset corresponding to an integrated luminosity of 1.0 fb-1 collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of √{s}=7 TeV. The branching fractions of these decays are measured relative to that of the B0→J/ψρ0 decay: {B(B0→J/ψω)}/{B(B0→J/ψρ0)}=0.89±0.19(stat)-0.13+0.07(syst), {B(B}/{s0→J/ψη)B(B0→J/ψρ0)}=14.0±1.2(stat)-1.5+1.1(syst)-1.0+1.1(fd/fs), {B(B}/{s0→J/ψη')B(B0→J/ψρ0)}=12.7±1.1(stat)-1.3+0.5(syst)-0.9+1.0(fd/fs), where the last uncertainty is due to the knowledge of fd/fs, the ratio of b-quark hadronization factors that accounts for the different production rate of B0 and Bs0 mesons. The ratio of the branching fractions of Bs0→J/ψη' and Bs0→J/ψη decays is measured to be {B(B}/{s0→J/ψη')B(Bs0→J/ψη)}=0.90±0.09(stat)-0.02+0.06(syst).

  10. My Personal Comments on J-PARC

    NASA Astrophysics Data System (ADS)

    Nagamiya, Shoji

    In this talk I present four topics excluding scientific aspects and/or a general overview of J-PARC, which will be described by the next speaker (J. M. Poutisou). Instead, I describe firstly a brief history of how J-PARC was born, as a view from me. Secondly the effects from two major accidents at J-PARC, the earthquake and the radioactive material leak accident, are described. Thirdly, I describe the future 5-year plan. Finally in the fourth, I would like to emphasize the importance of the internationalization at J-PARC.

  11. From CELSIUS to COSY: on the observation of a dibaryon resonance

    NASA Astrophysics Data System (ADS)

    Clement, H.; Bashkanov, M.; Skorodko, T.

    2015-11-01

    Using a high-quality beam of storage rings in combination with a pellet target and a hermetic WASA detector covering practically the full solid angle, two-pion production in nucleon-nucleon collisions has been systematically studied by exclusive and kinematically complete measurements—first at CELSIUS and subsequently at COSY. These measurements resulted in a detailed understanding of the two-pion production mechanism by t-channel meson exchange. The investigation of the ABC effect, which denotes an unusual low-mass enhancement in the ππ-invariant mass spectrum, in double-pionic fusion reactions led the trace to the observation of a narrow dibaryon resonance with I({J}P)=0({3}+) about 80 MeV below the nominal mass of the conventional Δ Δ system. New neutron-proton scattering data, taken with a polarized beam at COSY, produced a pole in the coupled {}3{D}3-3{G}3 partial waves at (2380+/- 10\\-\\i\\40+/- 5) MeV, establishing thus the first observation of a genuine s-channel dibaryon resonance.

  12. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan

    2017-06-01

    The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

  13. The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice

    PubMed Central

    2014-01-01

    Background The liver plays a major role in regulating metabolic homeostasis and is vital for nutrient metabolism. Identifying the genetic factors regulating these processes could lead to a greater understanding of how liver function responds to a high-fat diet and how that response may influence susceptibilities to obesity and metabolic syndrome. In this study we examine differences in hepatic gene expression between the LG/J and SM/J inbred mouse strains and how gene expression in these strains is affected by high-fat diet. LG/J and SM/J are known to differ in their responses to a high-fat diet for a variety of obesity- and diabetes-related traits, with the SM/J strain exhibiting a stronger phenotypic response to diet. Results Dietary intake had a significant effect on gene expression in both inbred lines. Genes up-regulated by a high-fat diet were involved in biological processes such as lipid and carbohydrate metabolism; protein and amino acid metabolic processes were down regulated on a high-fat diet. A total of 259 unique transcripts exhibited a significant diet-by-strain interaction. These genes tended to be associated with immune function. In addition, genes involved in biochemical processes related to non-alcoholic fatty liver disease (NAFLD) manifested different responses to diet between the two strains. For most of these genes, SM/J had a stronger response to the high-fat diet than LG/J. Conclusions These data show that dietary fat impacts gene expression levels in SM/J relative to LG/J, with SM/J exhibiting a stronger response. This supports previous data showing that SM/J has a stronger phenotypic response to high-fat diet. Based upon these findings, we suggest that SM/J and its cross with the LG/J strain provide a good model for examining non-alcoholic fatty liver disease and its role in metabolic syndrome. PMID:24499025

  14. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    PubMed

    Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  15. SlideJ: An ImageJ plugin for automated processing of whole slide images

    PubMed Central

    Baroni, Giulia L.; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images—up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations. PMID:28683129

  16. Magnetic field effects on coenzyme B12- and B6-dependent lysine 5,6-aminomutase: switching of the J-resonance through a kinetically competent radical-pair intermediate.

    PubMed

    Chen, Jun-Ru; Ke, Shyue-Chu

    2018-05-09

    The environmental magnetic field is beneficial to migratory bird navigation through the radical-pair mechanism. One of the continuing challenges in understanding how magnetic fields may perturb biological processes is that only a very few field-sensitive examples have been explored despite the prevalence of radical pairs in enzymatic reactions. We show that the reaction of adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase proceeds via radical-pair intermediates and is magnetic field dependent. The 5'-deoxyadenosyl radical from adenosylcobalamin abstracts a C5(H) from the substrate to yield a {cob(ii)alamin - substrate} radical pair wherein the large spin-spin interaction (2J = 8000 gauss) locks the radical pair in a triplet state, as evidenced by electron paramagnetic resonance spectroscopy. Application of an external magnetic field in the range of 6500 to 8500 gauss triggers intersystem crossing to the singlet {cob(ii)alamin - substrate} radical-pair state. Spin-conserved H back-transfer from deoxyadenosine to the substrate radical yields a singlet {cob(ii)alamin-5'-deoxyadenosyl} radical pair. Spin-selective recombination to adenosylcobalamin decreased the enzyme catalytic efficiency kcat/Km by 16% at 7600 gauss. As a mechanistic probe, observation of magnetic field effects successfully demonstrates the presence of a kinetically significant radical pair in this enzyme. The study of a pronounced high-field level-crossing characteristic through an immobilized radical pair with a constant exchange interaction deepens our understanding of how a magnetic field may interact with an enzyme.

  17. Resonant fast dynamo

    NASA Technical Reports Server (NTRS)

    Strauss, H. R.

    1986-01-01

    A resonant fast dynamo is found in chaotic shear flows. The dynamo effect is produced by resonant perturbations of the velocity field, similar to resonant diffusion in plasma physics. The dynamo is called fast because the flow produces an electric field independent of the fluid resistivity.

  18. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  19. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  20. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.

    PubMed

    Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas

    2007-01-24

    G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.

  1. 1. Photocopied December 1977, from original in 'Report of J.B.J.,'Vol. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopied December 1977, from original in 'Report of J.B.J.,'Vol. I, Jervis Library. ELEVATION OF SING SING KILL BRIDGE, SHOWING ORIGINAL PLAN FOR AN 80-FOOT ARCH. - Old Croton Aqueduct, Sing Sing Kill Bridge, Spanning Aqueduct Street & Broadway, Ossining, Westchester County, NY

  2. Branching ratio measurements of B meson decays to J/psi meson eta meson kaon and charged B meson decays to neutral D meson charged kaon with neutral D meson decays to positive pion negative pion neutral pion

    NASA Astrophysics Data System (ADS)

    Zeng, Qinglin

    Results are presented for the decays of B → J/psietaK and B+/- → DK+/-, respectively, with experimental data collected with BABAR detector at PEP-II, located at Stanford Linear Accelerator Center (SLAC). With 90 x 106 BB¯ events at the Upsilon(4S) resonance, we obtained branching fractions of B (B+/- → J/psietaK +/-) = [10.8 +/- 2.3(stat) +/- 2.4(syst)] x 10-5 and B (B0 → J/psieta K0S ) = [8.4 +/- 2.6(stat) +/- 2.7( syst)] x 10-5; and we set an upper limit of B [B+/- → X(3872) K+/- → J/psietaK +/-] < 7.7 x 10-6 at 90% confidence level. The branching fraction of decay chain B (B+/- → DK +/- → pi+pi-pi 0K+/-) = [5.5 +/- 1.0( stat) +/- 0.7(syst)] x 10-6 with 229 x 106 BB¯ events at Upsilon(4S) resonance, here D represents the neutral D meson. The decay rate asymmetry is A = 0.02 +/- 0.16(stat) +/- 0.03(syst) for this full decay chain. This decay can be used to extract the unitarity angle gamma, a weak CP violation phase, through the interference of decay production of D0 and D¯ 0 to pi+pi-pi 0.

  3. Nicholas J. Nagle | NREL

    Science.gov Websites

    presentation. Featured Publications "Impact of biomass processing, blending and densification, on J. Nagle Photo of Nicholas J. Nagle Nicholas Nagle Researcher IV-Chemical Engineering Nick.Nagle impact on lignin upgrading post conversion. As feedstocks rapidly evolve into new formats, such as

  4. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  5. Phase diagram of the frustrated J 1 ‑ J 2 transverse field Ising model on the square lattice

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Langari, A.

    2018-03-01

    We study the zero-temperature phase diagram of transverse field Ising model on the J 1 ‑ J 2 square lattice. In zero magnetic field, the model has a classical Néel phase for J 2/J 1 < 0.5 and an antiferromagnetic collinear phase for J 2/J 1 > 0.5. We incorporate harmonic fluctuations by using linear spin wave theory (LSWT) with single spin flip excitations above a magnetic order background and obtain the phase diagram of the model in this approximation. We find that harmonic quantum fluctuations of LSWT fail to lift the large degeneracy at J 2/J 1 = 0.5 and exhibit some inconsistent regions on the phase diagram. However, we show that anharmonic fluctuations of cluster operator approach (COA) resolve the inconsistency of the LSWT, which reveals a string-valence bond solid ordered phase for the highly frustrated region.

  6. Peak Locations and Relative Phase of Different Decay Modes of the a 1 Axial Vector Resonance in Diffractive Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basdevant, Jean-Louis; Berger, Edmond L.

    2015-05-01

    We show that a single I = 1 spin-parity J(PC) = 1(++) a(1) resonance can manifest itself as two separated mass peaks, one decaying into an S-wave rho pi system and the second decaying into a P-wave f(0)(980)pi system, with a rapid increase of the phase difference between their amplitudes arising mainly from the structure of the diffractive production process. This study clarifies questions related to the mass, width, and decay rates of the a(1) resonance raised by the recent high statistics data of the COMPASS Collaboration on a 1 production in pi N -> pi pi pi N atmore » high energies.« less

  7. Spatiotemporal Stochastic Resonance:Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Peter, Jung

    1996-03-01

    The amplification of weak periodic signals in bistable or excitable systems via stochastic resonance has been studied intensively over the last years. We are going one step further and ask: Can noise enhance spatiotemporal patterns in excitable media and can this effect be observed in nature? To this end, we are looking at large, two dimensional arrays of coupled excitable elements. Due to the coupling, excitation can propagate through the array in form of nonlinear waves. We observe target waves, rotating spiral waves and other wave forms. If the coupling between the elements is below a critical threshold, any excitational pattern will die out in the absence of noise. Below this threshold, large scale rotating spiral waves - as they are observed above threshold - can be maintained by a proper level of the noise[1]. Furthermore, their geometric features, such as the curvature can be controlled by the homogeneous noise level[2]. If the noise level is too large, break up of spiral waves and collisions with spontaneously nucleated waves yields spiral turbulence. Driving our array with a spatiotemporal pattern, e.g. a rotating spiral wave, we show that for weak coupling the excitational response of the array shows stochastic resonance - an effect we have termed spatiotemporal stochastic resonance. In the last part of the talk I'll make contact with calcium waves, observed in astrocyte cultures and hippocampus slices[3]. A. Cornell-Bell and collaborators[3] have pointed out the role of calcium waves for long-range glial signaling. We demonstrate the similarity of calcium waves with nonlinear waves in noisy excitable media. The noise level in the tissue is characterized by spontaneous activity and can be controlled by applying neuro-transmitter substances[3]. Noise effects in our model are compared with the effect of neuro-transmitters on calcium waves. [1]P. Jung and G. Mayer-Kress, CHAOS 5, 458 (1995). [2]P. Jung and G. Mayer-Kress, Phys. Rev. Lett.62, 2682 (1995). [3

  8. Neuronal Tryptophan Hydroxylase Expression in BALB/cJ and C57Bl/6J Mice

    PubMed Central

    Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J. John; Underwood, Mark D.

    2014-01-01

    BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared to other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei (DRN) was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-HIAA were determined by high pressure liquid chromatography (HPLC). BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral DRN (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain of BALB/cJ compared to C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. PMID:21740442

  9. Neuronal tryptophan hydroxylase expression in BALB/cJ and C57Bl/6J mice.

    PubMed

    Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J John; Underwood, Mark D

    2011-09-01

    BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared with other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid. Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-hydroxyindoleacetic acid were determined by HPLC. BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral dorsal raphe nuclei (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain and 18% lower in the cerebral cortex of BALB/cJ compared with C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  10. Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Krynkin, A.; Garcia-Raffi, L. M.; Umnova, O.; Sánchez-Pérez, J. V.

    2013-01-01

    An acoustic metamaterial made of a two-dimensional (2D) periodic array of multi-resonant acoustic scatterers is analyzed both experimentally and theoretically. The building blocks consist of a combination of elastic beams of low-density polyethylene foam (LDPF) with cavities of known area. Elastic resonances of the beams and acoustic resonances of the cavities can be excited by sound producing several attenuation peaks in the low frequency range. Due to this behavior the periodic array with long wavelength multi-resonant structural units can be classified as a locally multi-resonant acoustic metamaterial (LMRAM) with strong dispersion of its effective properties.The results presented in this paper could be used to design effective tunable acoustic filters for the low frequency range.

  11. Evidence for the decay B0→J/ψω and measurement of the relative branching fractions of Bs0 meson decays to J/ψη and J/ψη‧

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Aaij, R.; Abellan Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, Th.; Bay, A.; Beddow, J.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Büchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Domingo Bonal, F.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Esperante Pereira, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J.-C.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Harrison, P. F.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicks, E.; Hill, D.; Hoballah, M.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Huston, R. S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, M.; Keaveney, J.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y. M.; Kochebina, O.; Komarov, I.; Komarov, V.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Li, L.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; von Loeben, J.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Mac Raighne, A.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Magnin, J.; Maino, M.; Malde, S.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Mazurov, A.; McCarthy, J.; McGregor, G.; McNulty, R.; Meissner, M.; Merk, M.; Merkel, J.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pie Valls, B.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Rogers, G. J.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sobczak, K.; Soler, F. J. P.; Solomin, A.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tsaregorodtsev, A.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Videau, I.; Vieira, D.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, H.; Voß, C.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhong, L.; Zvyagin, A.

    2013-02-01

    First evidence of the B0→J/ψω decay is found and the Bs0→J/ψη and Bs0→J/ψη‧ decays are studied using a dataset corresponding to an integrated luminosity of 1.0 fb-1 collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of s=7 TeV. The branching fractions of these decays are measured relative to that of the B0→J/ψρ0 decay:B(B0→J/ψω)B(B0→J/ψρ0)=0.89±0.19(stat)-0.13+0.07(syst), B(Bs0→J/ψη)B(B0→J/ψρ0)=14.0±1.2(stat)-1.5+1.1(syst)-1.0+1.1(fdfs), B(Bs0→J/ψη‧)B(B0→J/ψρ0)=12.7±1.1(stat)-1.3+0.5(syst)-0.9+1.0(fdfs), where the last uncertainty is due to the knowledge of fd/fs, the ratio of b-quark hadronization factors that accounts for the different production rate of B0 and Bs0 mesons. The ratio of the branching fractions of Bs0→J/ψη‧ and Bs0→J/ψη decays is measured to beB(Bs0→J/ψη‧)B(Bs0→J/ψη)=0.90±0.09(stat)-0.02+0.06(syst).

  12. 76 FR 39156 - R. J. Corman Railroad Company/Bardstown Line-Lease and Operation Exemption-R. J. Corman Railroad...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35364] R. J. Corman Railroad Company/Bardstown Line--Lease and Operation Exemption--R. J. Corman Railroad Property, LLC R. J... notice of exemption under 49 CFR 1150.41 to lease from R. J. Corman Railroad Property, LLC (RJC Railroad...

  13. The thymus of the hairless rhino-j (hr/hr-j) mice

    PubMed Central

    SAN JOSE, I.; GARCÍA-SUÁREZ, O.; HANNESTAD, J.; CABO, R.; GAUNA, L.; REPRESA, J.; VEGA, J. A.

    2001-01-01

    The hairless (hr) gene is expressed in a large number of tissues, primarily the skin, and a mutation in the hr gene is responsible for the typical cutaneous phenotype of hairless mice. Mutant hr mouse strains show immune defects involving especially T cells and macrophages, as well as an age-related immunodeficiency and an accelerated atrophy of the thymus. These data suggest that the hr mutation causes a defect of this organ, although hr transcripts have not been detected in fetal or adult mice thymus. The present study analyses the thymus of young (3 mo) and adult (9 mo) homozygous hr-rh-j mice (a strain of hairless mice) by means of structural techniques and immunohistochemistry to selectively identify thymic epithelial cells, dendritic cells, and macrophages. There were structural alterations in the thymus of both young and adult rh-rh-j mice, which were more severe in older animals. These alterations consisted of relative cortical atrophy, enlargement of blood vessels, proliferation of perivascular connective tissue, and the appearance of cysts. hr-rh-j mice also showed a decrease in the number of epithelial and dendritic cells, and macrophages. Taken together, present results strongly suggest degeneration and accelerated age-dependent regression of the thymus in hr-rh-j mice, which could explain at least in part the immune defects reported in hairless mouse strains. PMID:11327202

  14. 32 CFR 310.5 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exercises rights guaranteed by the First Amendment to the Constitution, except as follows: (1) When... accurate, relevant, timely, or complete. (4) Appeal a denial of access or a request for amendment. (f...

  15. 32 CFR 310.5 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exercises rights guaranteed by the First Amendment to the Constitution, except as follows: (1) When... accurate, relevant, timely, or complete. (4) Appeal a denial of access or a request for amendment. (f...

  16. 32 CFR 310.5 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and fundamental right that shall be respected and protected. (1) The Department's need to collect... and the Office of Management and Budget, in accordance with, and as required by, 5 U.S.C. 552a, OMB...

  17. 32 CFR 310.5 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Privacy Provision of the E-Government Act of 2002 (44 U.S.C. 3501, Note), the preparation of a... safeguards shall be established, based on the media (e.g., paper, electronic, etc.) involved, to ensure the... Circular A-130, and DoD 5400.11-R, are satisfied. (e) Individuals shall be permitted, to the extent...

  18. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., institution, or organization, or other entity, or any person, to whom Federal financial assistance is extended... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... unit means a school, department, or college of an educational institution (other than a local...

  19. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  20. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  1. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... higher education means an institution that: (1) Offers academic study beyond the bachelor of arts or bachelor of science degree, whether or not leading to a certificate of any higher degree in the liberal arts and sciences; (2) Awards any degree in a professional field beyond the first professional degree...

  2. 24 CFR 3.105 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... not offer academic study. Institution of vocational education means a school or institution (except an... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... unit means a school, department, or college of an educational institution (other than a local...

  3. 46 CFR 310.5 - Personnel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... training cruise the Training Ship shall have assigned one or more radio officers holding a valid license... Office of Management and Budget under control number 2133-0010) (Sec. 204(b), Merchant Marine Act, 1936...

  4. 46 CFR 310.5 - Personnel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... training cruise the Training Ship shall have assigned one or more radio officers holding a valid license... Office of Management and Budget under control number 2133-0010) (Sec. 204(b), Merchant Marine Act, 1936...

  5. 46 CFR 310.5 - Personnel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... training cruise the Training Ship shall have assigned one or more radio officers holding a valid license... Office of Management and Budget under control number 2133-0010) (Sec. 204(b), Merchant Marine Act, 1936...

  6. 46 CFR 310.5 - Personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... training cruise the Training Ship shall have assigned one or more radio officers holding a valid license... Office of Management and Budget under control number 2133-0010) (Sec. 204(b), Merchant Marine Act, 1936...

  7. Daniel J. Friedman | NREL

    Science.gov Websites

    solar cells for concentrator systems. One of his early focuses after joining the group was to adapt the J. Friedman Photo of Daniel J. Friedman. Daniel Friedman Group Research Manager III-Physics manager of the High Efficiency Crystalline Photovoltaics Group. He received his doctorate in applied

  8. Study of J/ψ Production in Jets.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-05-12

    The production of J/ψ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/ψ meson, z(J/ψ)≡p_{T}(J/ψ)/p_{T}(jet), is measured using jets with p_{T}(jet)>20  GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/ψ) distribution for J/ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the p_{T} fraction carried by prompt J/ψ mesons in jets at any experiment.

  9. Pioneer 11 observations of trapped particle absorption by the Jovian ring and the satellites 1979, J1, J2, and J3

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Mckibben, R. B.; Simpson, J. A.

    1983-01-01

    Pioneer 11 low energy telescope observation of charged particles around the Jovian satellites Amalthea, 1979 J1, J2, and J3, and the Jupiter ring are examined in the light of Voyager optical data from the same region. Good agreement was found in the absorption features of 0.5-8.7 MeV protons, electrons with energies of 3.4 MeV or more, and medium-Z nuclei. The heavier nuclei are suggested to be oxygen and sulfur particles with energies exceeding 70 MeV/nucleon. The observed intensity features in the regularly spaced radiation bands are interpreted as ring and satellite absorption.

  10. A satellite relative motion model including J_2 and J_3 via Vinti's intermediary

    NASA Astrophysics Data System (ADS)

    Biria, Ashley D.; Russell, Ryan P.

    2018-03-01

    Vinti's potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti's spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating J_2, J_3, and generally a partial J_4 in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti's solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti's solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti's solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the J_2 through J_5 terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim-Alfriend state transition matrix, which considers the J_2 perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.

  11. Laser Flash Photolysis Studies of Radical-Radical Reaction Kinetics: The O((sup 3)P(sub J)) + BrO Reaction

    NASA Technical Reports Server (NTRS)

    Thorn, R. P.; Cronkhite, J. M.; Nicovich, J. M.; Wine, P. H.

    1997-01-01

    A novel dual laser flash photolysis-long path absorption-resonance fluorescence technique has been employed to study the kinetics of the important stratospheric reaction 0((sup 3)P(sub j)) + Br yields(k1) BrO((sup 2)P(sub J)) + O2 as a function of temperature (231-328 K) and pressure (25-150 Torr) in N2 buffer gas. The experimental approach preserves the principal advantages of the flash photolysis method, i.e., complete absence of surface reactions and a wide range of accessible pressures, but also employs techniques which are characteristic of the discharge flow method, namely chemical titration as a means for deducing the absolute concentration of a radical reactant and use of multiple detection axes. We find that k1 is independent of pressure, and that the temperature dependence of k1 is adequately described by the Arrhenius expression k1(T) = 1.91 x 10(exp -11)(230/J) cu cm/ molecule.s; the absolute accuracy of measured values for k1 is estimated to vary from +/- 20 percent at at T approximately 230 K to +/- 30 percent at T approximately 330 K. Our results demonstrate that the O((sup 3)P(sub j)) + BrO rate coefficient is significantly faster than previously 'guesstimated,' and suggest that the catalytic cycle with the O((sup 3)P(sub j)) + BrO reaction as its rate-limiting step is the dominant stratospheric BrO(x), odd-oxygen destruction cycle at altitudes above 24 km.

  12. Enzyme-substrate and enzyme-inhibitor complexes of triose phosphate isomerase studied by 31P nuclear magnetic resonance.

    PubMed Central

    Campbell, I D; Jones, R B; Kiener, P A; Waley, S G

    1979-01-01

    The complex formed between the enzyme triose phosphate isomerase (EC 5.3.1.1.), from rabbit and chicken muscle, and its substrate dihydroxyacetone phosphate was studied by 31P n.m.r. Two other enzyme-ligant complexes examined were those formed by glycerol 3-phosphate (a substrate analogue) and by 2-phosphoglycollate (potential transition-state analogue). Separate resonances were observed in the 31P n.m.r. spectrum for free and bound 2-phosphoglycollate, and this sets an upper limit to the rate constant for dissociation of the enzyme-inhibitor complex; the linewidth of the resonance assigned to the bound inhibitor provided further kinetic information. The position of this resonance did not vary with pH but remained close to that of the fully ionized form of the free 2-phosphoglycollate. It is the fully ionized form of this ligand that binds to the enzyme. The proton uptake that accompanies binding shows protonation of a group on the enzyme. On the basis of chemical and crystallographic information [Hartman (1971) Biochemistry 10, 146--154; Miller & Waley (1971) Biochem. J. 123, 163--170; De la Mare, Coulson, Knowles, Priddle & Offord )1972) Biochem. J. 129, 321--331; Phillips, Rivers, Sternberg, Thornton & Wilson (1977) Biochem. Soc. Trans. 5, 642--647] this group is believed to be glutamate-165. On the other hand, the position of the resonance of D-glycerol 3 phosphate (sn-glycerol 1-phosphate) in the enzyme-ligand complex changes with pH, and both monoanion and dianon of the ligand bind, although dianion binds better. The substrate, dihydroxyacetone phosphate, behaves essentially like glycerol 3-phosphate. The experiments with dihydroxy-acetone phosphate and triose phosphate isomerase have to be carried out at 1 degree C because at 37 degrees C there is conversion into methyl glyoxal and orthophosphate. The mechanismof the enzymic reaction and the reasons for rate-enhancement are considered, and aspects of the pH-dependence are discussed in an Appendix. PMID:38777

  13. The resonant body transistor.

    PubMed

    Weinstein, Dana; Bhave, Sunil A

    2010-04-14

    This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.

  14. J-Plus Web Portal

    NASA Astrophysics Data System (ADS)

    Civera Lorenzo, Tamara

    2017-10-01

    Brief presentation about the J-PLUS EDR data access web portal (http://archive.cefca.es/catalogues/jplus-edr) where the different services available to retrieve images and catalogues data have been presented.J-PLUS Early Data Release (EDR) archive includes two types of data: images and dual and single catalogue data which include parameters measured from images. J-PLUS web portal offers catalogue data and images through several different online data access tools or services each suited to a particular need. The different services offered are: Coverage map Sky navigator Object visualization Image search Cone search Object list search Virtual observatory services: Simple Cone Search Simple Image Access Protocol Simple Spectral Access Protocol Table Access Protocol

  15. Single-resonator double-negative metamaterial

    DOEpatents

    Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Johnson, William A.; Ihlefeld, Jon; Ginn, III, James C.; Clem, Paul G.; Sinclair, Michael B.

    2016-06-21

    Resonances can be tuned in dielectric resonators in order to construct single-resonator, negative-index metamaterials. For example, high-contrast inclusions in the form of metallic dipoles can be used to shift the first electric resonance down (in frequency) to the first magnetic resonance, or alternatively, air splits can be used to shift the first magnetic resonance up (in frequency) near the first electric resonance. Degenerate dielectric designs become especially useful in infrared- or visible-frequency applications where the resonator sizes associated with the lack of high-permittivity materials can become of sufficient size to enable propagation of higher-order lattice modes in the resulting medium.

  16. Laser spectroscopy of the 5P3/2 → 6Pj (j = 1/2 and 3/2) electric dipole forbidden transitions in atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Hoyos, L. M.; Flores-Mijangos, J.; Ramírez-Martínez, F.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2018-04-01

    Doppler-free optical double-resonance spectroscopy is used to study the 5S1/2 → 5P3/2 → 6Pj (j = 3/2,1/2) excitation sequence in room-temperature rubidium atoms. This involves a 5S1/2 → 5P3/2 electric dipole preparation step followed by the 5P3/2 → 6Pj electric quadrupole excitation. The electric dipole forbidden transitions occur at 911.0 nm (j = 3/2) and 917.5 nm (j = 1/2). Production of atoms in the 6Pj states is detected by observing their direct decay to the ground state through emission of blue photons (λ ≈ 420 nm). A detailed experimental and theoretical study of the dependence on the relative linear polarizations of excitation beams is made. It is shown that specific electric quadrupole selection rules over magnetic quantum numbers are directly related to the relative orientation of the linear polarization of the excitation beams.

  17. Timothy J. Coutts | NREL

    Science.gov Websites

    conducting films of cadmium stannate: X. Wu, and T. J. Coutts (NREL IR#9545) PV devices comprising cadmium (NREL IR#9535) PV devices comprising zinc stannate buffer layer and method for making: X. Wu, P. Sheldon , and T. J. Coutts (NREL IR#9721) (filed) Publications View all NREL publications for Dr. Coutts. Awards

  18. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Hammer, H.-W.; Klos, P.; Lynn, J. E.; Schwenk, A.

    2017-06-01

    We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.

  19. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    DOE PAGES

    Gandolfi, Stefano; Hammer, Hans -Werner; Klos, P.; ...

    2017-06-08

    Here, we present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy.more » This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.« less

  20. Evaluation of 15th-Order Harmonics in the Geopotential from Analysis of Resonant Orbits.

    DTIC Science & Technology

    1981-01-01

    ORBITS, by D.G./ King -Hele Doreen M.C./Walker i* Procurement Executive, Ministry of Defence Farnborough, Hants 8j 6 11 045 UDC 521.6 521.4 517.564.4 RO Y A...FROM ANALYSIS OF RESONANT ORBITS by D. G. King -Hele Doreen M. C. Walker SUMMARY -s Satellite orbits contracting under the influence of air drag...seemed sure to be fruitless and was not attempted. The orbit of 1977-12B is now being determined with PROP at the University of Astor and, when this work

  1. Experiments with Helmholtz Resonators.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  2. Pea chloroplast DnaJ-J8 and Toc12 are encoded by the same gene and localized in the stroma.

    PubMed

    Chiu, Chi-Chou; Chen, Lih-Jen; Li, Hsou-min

    2010-11-01

    Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.

  3. XTE J1946+274 = GRO J1944+26 Observations with RXTE and BATSE

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Scott, D. Matthew

    2000-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8 second transient X-ray pulsar discovered simultaneously with the Rossi X-ray Timing Explorer (RXTE) and Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) during an outburst in September 1998. Since its discovery, XTE J1946+274 has undergone 7 regularly spaced outbursts, that were observed with BATSE and the RXTE All-Sky Monitor (ASM). The pulse frequency and pulsed flux measurements with BATSE suggest that XTE J1946+274 is in an about 170 day orbit and is outbursting twice per orbit. The first outburst, which was brighter and longer than subsequent outbursts, was also observed with the RXTE Proportional Counter Array (PCA). We present histories of pulse frequency, pulsed flux, and total flux measured in the 20-50 keV band with BATSE and a history of the 2-10 keV total flux measured with the RXTE ASM. From the first outburst, we present energy and power spectra and pulse profiles from RXTE PCA observations.

  4. Scattering of plane evanescent waves by buried cylinders: Modeling the coupling to guided waves and resonances

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2003-04-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of guided waves on buried fluid cylinders and shells by acoustic evanescent waves and the associated target resonances, the two-dimensional partial wave series for the scattering is found for normal incidence in an unbounded medium. The shell formulation uses the simplifications of thin-shell dynamics. The expansion of the incident wave becomes a double summation with products of modified and ordinary Bessel functions [P. L. Marston, J. Acoust. Soc. Am. 111, 2378 (2002)]. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on depth. Some consequences of this imbalance of partial-wave amplitudes are given by modifying previous ray theory for the scattering [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. The exponential dependence of the scattering on the location of a scatterer was previously demonstrated in air [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  5. NMR Studies of Organic Thin Films

    DTIC Science & Technology

    1994-02-28

    C.G. Chingas, J.B. Miller, and A.N. Garroway , J. Magn. Reson., 1986, 66, 530. 126. D.G. Cory, J.W.M. van Os, and W.S. Veeman, J. Magn. Reson., 1988, 76...Zumbulyadis and J.M. O’Reilly, J. Magn. Reson., 1989, 82, 613. 131. H.A. Resing, A.N. Garroway , D.C. Weber, J. Ferraris, and D. Slotfeldt-Ellingsen, Pure...Natansohn, Polym. Eng. Sci., 1992, 32, 1711. 137. J.B. Miller and A.N. Garroway , J. Magn. Reson., 1989, 82, 529. 138. D.G. Cory, J.B. Miller, R. Turner

  6. DEVELOPMENT OF HOME CAGE SOCIAL BEHAVIORS IN BALB/cJ vs. C57BL/6J MICE

    PubMed Central

    Fairless, Andrew H.; Katz, Julia M.; Vijayvargiya, Neha; Dow, Holly C.; Kreibich, Arati Sadalge; Berrettini, Wade H.; Abel, Ted; Brodkin, Edward S.

    2012-01-01

    BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ~30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism. PMID:22982070

  7. Development of home cage social behaviors in BALB/cJ vs. C57BL/6J mice.

    PubMed

    Fairless, Andrew H; Katz, Julia M; Vijayvargiya, Neha; Dow, Holly C; Kreibich, Arati Sadalge; Berrettini, Wade H; Abel, Ted; Brodkin, Edward S

    2013-01-15

    BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ∼30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved NMR.

    PubMed

    Perras, Frédéric A; Bryce, David L

    2014-05-01

    The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Similarity of PSR J1906+0746 TO PSR J0737-3039: A Candidate of a New Double Pulsar System?

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Yan; Zhang, Cheng-Min; Li, Di; Wang, De-Hua; Pan, Yuan-Yue; Lingfu, Rong-Feng; Zhou, Zhu-Wen

    2017-02-01

    PSR J1906+0746 is a nonrecycled strong magnetic field neutron star (NS), sharing the properties of the secondary-formed NS PSR J0737-3039B in the double pulsar system PSR J0737-3039AB. By comparing the orbital parameters of PSR J1906+0746 with those of PSR J0737-3039AB, we conclude that both systems have a similar origin and evolution history, involving an e-capture process for forming the second-born NS, like in the case of PSR J0737-3039B. We expect the companion of PSR J1906+0746 to be a long-lived recycled pulsar with radio beams that currently cannot be observed from Earth. We suggest possible ways to detect its presence. To compare PSR J1906+0746 with PSR J0737-3039, we also present the mass distribution of eight pairs of double NSs and find that in double NSs the mass of the recycled pulsar is usually larger than that of the nonrecycled one, which may be the result of accretion.

  10. Photonic Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Ian, Hou; Shi, Tao; Dong, Hui; Sun, Changpu

    2010-07-01

    Feshbach resonance is a resonance for two-atom scattering with two or more channels, in which a bound state is achieved in one channel. We show that this resonance phenomenon not only exists during the collisions of massive particles, but also emerges during the coherent transport of massless particles, that is, photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system (TLS). When the TLS is coupled to one array to form a bound state in this setup, the vanishing transmission appears to display the photonic Feshbach resonance. This process can be realized through various experimentally feasible solid state systems, such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line. The numerical simulation based on the finite-different time-domain (FDTD) method confirms our assumption about the physical implementation.

  11. J-2X engine

    NASA Image and Video Library

    2012-04-20

    NASA Administrator Charles Bolden (r) takes an up-close look at the first development J-2X rocket engine on the A-2 Test Stand at Stennis Space Center during an April 20, 2012, visit. Pictured with Bolden is A-2 Test Stand Director Skip Roberts. The J-2X engine is being developed for NASA by Pratt & Whitney Rocketdyne.

  12. J-2X engine

    NASA Image and Video Library

    2012-04-20

    NASA Administrator Charles Bolden (r) takes an up-close look at the first development J-2X rocket engine on the A-2 Test Stand at Stennis Space Center during an April 20, 2012, visit. Pictured with Bolden is A-2 Test Stand Director Skip Roberts. The J-2X engine i s being developed for NASA by Pratt & Whitney Rocketdyne.

  13. Model-Independent Evidence for J/ψp Contributions to Λ_{b}^{0}→J/ψpK^{-} Decays.

    PubMed

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M M; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Niess, V; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S

    2016-08-19

    The data sample of Λ_{b}^{0}→J/ψpK^{-} decays acquired with the LHCb detector from 7 and 8 TeV pp collisions, corresponding to an integrated luminosity of 3  fb^{-1}, is inspected for the presence of J/ψp or J/ψK^{-} contributions with minimal assumptions about K^{-}p contributions. It is demonstrated at more than nine standard deviations that Λ_{b}^{0}→J/ψpK^{-} decays cannot be described with K^{-}p contributions alone, and that J/ψp contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for P_{c}^{+}→J/ψp charmonium-pentaquark states in the same data sample.

  14. Structure and dynamics of [3.3]paracyclophane as studied by nuclear magnetic resonance and density functional theory calculations.

    PubMed

    Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning

    2010-09-30

    Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.

  15. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  16. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  17. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  18. Nonclassical effects in liquid-phase nuclear magnetic resonance spectra of 9-methyltriptycene derivatives

    NASA Astrophysics Data System (ADS)

    Czerski, I.; Bernatowicz, P.; Jaźwiński, J.; Szymański, S.

    2003-04-01

    The dynamics of strongly hindered methyl groups in 9-methyltriptycene derivatives, monitored by liquid-phase nuclear magnetic resonance spectra, were investigated using an iterative, least-squares method of line shape analysis. For two of the compounds, apart from nonclassical effects in the stochastic dynamics, anomalously strong dependence on temperature (ca. 0.05 and 0.08 Hz/K) of the J coupling between the methyl protons was observed. The latter effect was attributed to the occurrence of coherent quantum tunneling of the methyl rotor. For methyl group, this would be the first observation of coherent tunneling above cryogenic temperatures.

  19. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction.

    PubMed

    Franz, Daniela; Syväri, Jan; Weidlich, Dominik; Baum, Thomas; Rummeny, Ernst J; Karampinos, Dimitrios C

    2018-06-06

     Adipose tissue has become an increasingly important tissue target in medicine. It plays a central role in the storage and release of energy throughout the human body and has recently gained interest for its endocrinologic function. Magnetic resonance imaging (MRI) is an established method for quantitative direct evaluation of adipose tissue distribution, and is used increasingly as the modality of choice for metabolic phenotyping. The purpose of this review was the identification and presentation of the currently available literature on MRI of adipose tissue in metabolic dysfunction.  A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) keyword search up to August 2017 without starting date limitation was performed and reference lists of relevant articles were searched.  MRI provides excellent tools for the evaluation of adipose tissue distribution and further characterization of the tissue. Standard as well as newly developed MRI techniques allow a risk stratification for the development of metabolic dysfunction and enable monitoring without the use of ionizing radiation or contrast material.   · Different types of adipose tissue play a crucial role in various types of metabolic dysfunction.. · Magnetic resonance imaging (MRI) is an excellent tool for noninvasive adipose tissue evaluation with respect to distribution, composition and metabolic activity.. · Both standard and newly developed MRI techniques can be used for risk stratification for the development of metabolic dysfunction and allow monitoring without the use of ionizing radiation or contrast material.. · Franz D, Syväri J, Weidlich D et al. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0612-8006. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser

    NASA Astrophysics Data System (ADS)

    Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan

    2017-11-01

    High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.

  1. A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2015-12-17

    The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne,...). Based on earlier work on 2-butyne [Xu et al., J. Chem. Phys. 2012, 136, 154303], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) charactermore » and approximate pi symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding g pi virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate pi channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra.« less

  2. Characterisation and molecular dynamic simulations of J15 asparaginase from Photobacterium sp. strain J15.

    PubMed

    Yaacob, Mohd Adilin; Hasan, Wan Atiqah Najiah Wan; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Basri, Mahiran; Leow, Thean Chor

    2014-01-01

    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.

  3. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  4. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  5. Ovenized microelectromechanical system (MEMS) resonator

    DOEpatents

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  6. Resonances from lattice QCD

    DOE PAGES

    Briceno, Raul A.

    2018-03-26

    The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less

  7. Resonances from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.

    The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less

  8. Resonant nature of intrinsic defect energy levels in PbTe revealed by infrared photoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bingpo; Cai, Chunfeng; Jin, Shuqiang; Ye, Zhenyu; Wu, Huizhen; Qi, Zhen

    2014-07-01

    Step-scan Fourier-transform infrared photoreflectance and modulated photoluminescence spectroscopy were used to characterize the optical transitions of the epitaxial PbTe thin film grown by molecular beam epitaxy on BaF2 (111) substrate in the vicinity of energy gap of lead telluride at 77 K. It is found that the intrinsic defect energy levels in the electronic structure are of resonant nature. The Te-vacancy energy level is located above the conduction band minimum by 29.1 meV. Another defect (VX) energy level situated below valance band maximum by 18.1 meV is also revealed. Whether it is associated with the Pb vacancy is still not clear. It might also be related to the misfit dislocations stemming from the lattice mismatch between PbTe and BaF2 substrate. The experimental results support the theory prediction (N. J. Parada and G. W. Pratt, Jr., Phys. Rev. Lett. 22, 180 (1969), N. J. Parada, Phys. Rev. B 3, 2042 (1971)) and are consistent with the reported Hall experimental results (G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero, J. Appl. Phys. 47, 1721 (1976)).

  9. Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites

    NASA Astrophysics Data System (ADS)

    Brosseau, C.; Molinié, P.; Boulic, F.; Carmona, F.

    2001-06-01

    Electron paramagnetic resonance (EPR) has now become firmly established as one of the methods of choice for analyzing the carbon network over a range of different volume fraction of the carbon black in the composite, i.e., below and above the respective conduction threshold concentration. In the present article, two types of carbon blacks, having very different primary structures, surface areas, and percolation thresholds, were used; Raven 7000 (of high surface area and high percolation threshold volume fraction) and Y50A (of low surface area and low percolation threshold volume fraction). A semiquantitative image analysis of the microstructure from transmission electron microscopy reveals information about the spatial distribution of the carbon aggregates and agglomerates inside the composite. We observe that the apparent surface of agglomerates increases significantly with increasing carbon black content for the two types of blacks investigated. Adsorbed oxygen on the carbon black cristallites and dynamic coalescence under mixing conditions can be responsible for the broadening of the dispersed phase surface distribution. The interagglomerate distance in two samples of concentrations fresonance lines and a single (narrow) Lorentzian resonance line for composite samples containing Y50A. The spins giving rise to the EPR signal reside in the carbon black particles. In Raven 7000, the significant difference in linewidth between the two signals demonstrates a different environment where the restriction of the motion of the

  10. J-2X engine assembly

    NASA Image and Video Library

    2011-03-03

    Pratt & Whitney Rocketdyne employees Carlos Alfaro (l) and Oliver Swanier work on the main combustion element of the J-2X rocket engine at their John C. Stennis Space Center facility. Assembly of the J-2X rocket engine to be tested at the site is under way, with completion and delivery to the A-2 Test Stand set for June. The J-2X is being developed as a next-generation engine that can carry humans into deep space. Stennis Space Center is preparing a trio of stands to test the new engine.

  11. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  12. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  13. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  14. Sound propagation in water containing large tethered spherical encapsulated gas bubbles with resonance frequencies in the 50 Hz to 100 Hz range.

    PubMed

    Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S

    2011-11-01

    The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.

  15. Differences in aggressive behavior and DNA copy number variants between BALB/cJ and BALB/cByJ substrains.

    PubMed

    Velez, Lady; Sokoloff, Greta; Miczek, Klaus A; Palmer, Abraham A; Dulawa, Stephanie C

    2010-03-01

    Some BALB/c substrains exhibit different levels of aggression. We compared aggression levels between male BALB/cJ and BALB/cByJ substrains using the resident intruder paradigm. These substrains were also assessed in other tests of emotionality and information processing including the open field, forced swim, fear conditioning, and prepulse inhibition tests. We also evaluated single nucleotide polymorphisms (SNPs) previously reported between these BALB/c substrains. Finally, we compared BALB/cJ and BALB/cByJ mice for genomic deletions or duplications, collectively termed copy number variants (CNVs), to identify candidate genes that might underlie the observed behavioral differences. BALB/cJ mice showed substantially higher aggression levels than BALB/cByJ mice; however, only minor differences in other behaviors were observed. None of the previously reported SNPs were verified. Eleven CNV regions were identified between the two BALB/c substrains. Our findings identify a robust difference in aggressive behavior between BALB/cJ and BALB/cByJ substrains, which could be the result of the identified CNVs.

  16. Multipartite quantum correlations in the extended J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Batle, J.; Tarawneh, O.; Nagata, Koji; Nakamura, Tadao; Abdalla, S.; Farouk, Ahmed

    2017-11-01

    Multipartite entanglement and the maximum violation of Bell inequalities are studied in finite clusters of spins in an extended J1-J2 Heisenberg model at zero temperature. The ensuing highly frustrated states will unveil a rich structure for different values of the corresponding spin-spin interaction strengths. The interplay between nearest-neighbors, next-nearest neighbors and further couplings will be explored using multipartite correlations. The model is relevant to certain quantum annealing computation architectures where an all-to-all connectivity is considered.

  17. Inclusive J / $$\\psi$$ Production at D0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Christopher R.

    1995-04-01

    We present results on inclusivemore » $$J/\\psi$$ and b-quark production in $$p\\bar{p}$$ collisions at $$\\sqrt{s}$$ = 1.8 TeV. The results are based on data collected at the D0 experiment during the 1992-1993 FermiLab collider run. There is excellent agreement between the differential $$J/\\psi$$ cross section measured at D0 and that measured at the CDF detector. A measurement of the fraction of $$J/\\psi$$ events due to b-quark decays is presented and we extract from this a measurement of the integrated b-quark cross section. The radiative decays of $$_{Xc}$$ charmonium states into the $$J/\\psi$$ is discussed and we present results on the fraction of $$J/\\psi$$ mesons that are due to $$_{Xc}$$ decays. We also observe that a fraction of promptly produced $$J/\\psi$$ mesons is larger than the measured fraction of $$J/\\psi$$ due to $$_{Xc}$$ decays and is not accounted for by existing charmonium. production models.« less

  18. GeV Detection of HESS J0632+057

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Torres, Diego F.; Wilhelmi, Emma de Oña

    2017-09-10

    HESS J0632+057 is the only gamma-ray binary that has been detected at TeV energies, but not at GeV energies yet. Based on nearly nine years of Fermi Large Area Telescope (LAT) Pass 8 data, we report here on a deep search for the gamma-ray emission from HESS J0632+057 in the 0.1–300 GeV energy range. We find a previously unknown gamma-ray source, Fermi J0632.6+0548, spatially coincident with HESS J0632+057. The measured flux of Fermi J0632.6+0548 is consistent with the previous flux upper limit on HESS J0632+057 and shows variability that can be related to the HESS J0632+057 orbital phase. We proposemore » that Fermi J0632.6+0548 is the GeV counterpart of HESS J0632+057. Considering the Very High Energy spectrum of HESS J0632+057, a possible spectral turnover above 10 GeV may exist in Fermi J0632.6+0548, as appears to be common in other established gamma-ray binaries.« less

  19. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  20. Spectrophotometry of J8, J9, and four Trojan asteroids from 0.32 to 1.05 microns

    NASA Technical Reports Server (NTRS)

    Smith, D. W.; Johnson, P. E.; Shorthill, R. W.

    1981-01-01

    New 30-channel narrowband photometry from 0.32 to 1.05 microns of the retrograde Jovian satellites J9 (to 0.7 micron) and J8 and the trailing Trojan asteroids 617, 884, 1172, and 1173 is presented. The data confirm previous measurements of J8, 617, 884, and 1172 at wavelengths less than 0.8 micron, but the extension into the infrared shows that the normalized spectral reflectance of these objects rises steadily from approximately 0.8 at 0.4 micron to approximately 1.4 at 1.05 microns, suggesting they are too bright in the near infrared to be C-type asteroids. The C classification of 1173 is confirmed. J9 is markedly redder than J8 at visible wavelengths. The results indicate a greater taxonomic contrast between these distant objects and main-belt asteroids than previously thought.

  1. Resonant torus-assisted tunneling.

    PubMed

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Kim, Chil-Min

    2016-01-01

    We report a new type of dynamical tunneling, which is mediated by a resonant torus, i.e., a nonisolated periodic orbit. To elucidate the phenomenon, we take an open elliptic cavity and show that a pair of resonances localized on two classically disconnected tori tunnel through a resonant torus when they interact with each other. This so-called resonant torus-assisted tunneling is verified by using Husimi functions, corresponding actions, Husimi function distributions, and the standard deviations of the actions.

  2. 75 FR 18254 - R.J. Corman Railroad Company/Bardstown Line-Lease and Operation Exemption-R.J. Corman Railroad...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Finance Docket No. 35364] R.J. Corman Railroad Company/Bardstown Line--Lease and Operation Exemption--R.J. Corman Railroad Property, LLC R.J. Corman Railroad Company/Bardstown Line (RJC Railroad Company), a Class III rail carrier, has...

  3. New perspectives in the PAW/GIPAW approach: J(P-O-Si) coupling constants, antisymmetric parts of shift tensors and NQR predictions.

    PubMed

    Bonhomme, Christian; Gervais, Christel; Coelho, Cristina; Pourpoint, Frédérique; Azaïs, Thierry; Bonhomme-Coury, Laure; Babonneau, Florence; Jacob, Guy; Ferrari, Maude; Canet, Daniel; Yates, Jonathan R; Pickard, Chris J; Joyce, Siân A; Mauri, Francesco; Massiot, Dominique

    2010-12-01

    In 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics. Points (i), (ii) and (iii) will be illustrated by selected examples: (i) chemical shift tensors and heteronuclear (2)J(P-O-Si) coupling constants in the case of silicophosphates and calcium phosphates [Si(5)O(PO(4))(6), SiP(2)O(7) polymorphs and α-Ca(PO(3))(2)]; (ii) antisymmetric chemical shift tensors in cyclopropene derivatives, C(3)X(4) (X = H, Cl, F) and (iii) (14)N and (35)Cl NQR predictions in the case of RDX (C(3)H(6)N(6)O(6)), β-HMX (C(4)H(8)N(8)O(8)), α-NTO (C(2)H(2)N(4)O(3)) and AlOPCl(6). RDX, β-HMX and α-NTO are explosive compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  4. J Wave Syndromes: History and Current Controversies

    PubMed Central

    Liu, Tong; Zheng, Jifeng

    2016-01-01

    The concept of J wave syndromes was first proposed in 2004 by Yan et al for a spectrum of electrocardiographic (ECG) manifestations of prominent J waves that are associated with a potential to predispose affected individuals to ventricular fibrillation (VF). Although the concept of J wave syndromes is widely used and accepted, there has been tremendous debate over the definition of J wave, its ionic and cellular basis and arrhythmogenic mechanism. In this review article, we attempted to discuss the history from which the concept of J wave syndromes (JWS) is evolved and current controversies in JWS. PMID:27721848

  5. jà Experiences in Temporal Lobe Epilepsy

    PubMed Central

    Illman, Nathan A.; Butler, Chris R.; Souchay, Celine; Moulin, Chris J. A.

    2012-01-01

    Historically, déjà vu has been linked to seizure activity in temporal lobe epilepsy, and clinical reports suggest that many patients experience the phenomenon as a manifestation of simple partial seizures. We review studies on déjà vu in epilepsy with reference to recent advances in the understanding of déjà vu from a cognitive and neuropsychological standpoint. We propose a decoupled familiarity hypothesis, whereby déjà vu is produced by an erroneous feeling of familiarity which is not in keeping with current cognitive processing. Our hypothesis converges on a parahippocampal dysfunction as the locus of déjà vu experiences. However, several other temporal lobe structures feature in reports of déjà vu in epilepsy. We suggest that some of the inconsistency in the literature derives from a poor classification of the various types of déjà experiences. We propose déjà vu/déjà vécu as one way of understanding déjà experiences more fully. This distinction is based on current models of memory function, where déjà vu is caused by erroneous familiarity and déjà vécu by erroneous recollection. Priorities for future research and clinical issues are discussed. PMID:22957231

  6. jà experiences in temporal lobe epilepsy.

    PubMed

    Illman, Nathan A; Butler, Chris R; Souchay, Celine; Moulin, Chris J A

    2012-01-01

    Historically, déjà vu has been linked to seizure activity in temporal lobe epilepsy, and clinical reports suggest that many patients experience the phenomenon as a manifestation of simple partial seizures. We review studies on déjà vu in epilepsy with reference to recent advances in the understanding of déjà vu from a cognitive and neuropsychological standpoint. We propose a decoupled familiarity hypothesis, whereby déjà vu is produced by an erroneous feeling of familiarity which is not in keeping with current cognitive processing. Our hypothesis converges on a parahippocampal dysfunction as the locus of déjà vu experiences. However, several other temporal lobe structures feature in reports of déjà vu in epilepsy. We suggest that some of the inconsistency in the literature derives from a poor classification of the various types of déjà experiences. We propose déjà vu/déjà vécu as one way of understanding déjà experiences more fully. This distinction is based on current models of memory function, where déjà vu is caused by erroneous familiarity and déjà vécu by erroneous recollection. Priorities for future research and clinical issues are discussed.

  7. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  8. Electron Spin Resonance at the Level of 1 04 Spins Using Low Impedance Superconducting Resonators

    NASA Astrophysics Data System (ADS)

    Eichler, C.; Sigillito, A. J.; Lyon, S. A.; Petta, J. R.

    2017-01-01

    We report on electron spin resonance measurements of phosphorus donors localized in a 200 μ m2 area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited parametric amplification with a low impedance microwave resonator design, we are able to detect around 2 ×1 04 spins with a signal-to-noise ratio of 1 in a single shot. The 150 Hz coupling strength between the resonator field and individual spins is significantly larger than the 1-10 Hz coupling rates obtained with typical coplanar waveguide resonator designs. Because of the larger coupling rate, we find that spin relaxation is dominated by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell.

  9. Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator.

    PubMed

    Cho, C Y; Huang, Y P; Huang, Y J; Chen, Y C; Su, K W; Chen, Y F

    2013-01-28

    We exploit an ultra-low-magnification unstable resonator to develop a high-pulse-energy side-pumped passively Q-switched Nd:YLF/Cr⁴⁺:YAG laser with improving beam quality. A wedged laser crystal is employed in the cavity to control the emissions at 1047 nm and 1053 nm independently through the cavity alignment. The pulse energies at 1047 nm and 1053 nm are found to be 19 mJ and 23 mJ, respectively. The peak powers for both wavelengths are higher than 2 MW. Furthermore, the developed Nd:YLF lasers are employed to pump a monolithic optical parametric oscillator for confirming the applicability in nonlinear wavelength conversions.

  10. Detection of J-coupling using atomic magnetometer

    DOEpatents

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  11. Sequence stratigraphy and reservoir architecture of the J18/20 and J15 sequences in PM-9, Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, R.A.; Said, Md.J.; Bedingfield, J.R.

    1994-07-01

    The group J stratigraphic interval is lower Miocene (18.5-21 Ma) in age and was deposited during the early sag phase of the Malay Basin structural development. Reduction in depositional relief and first evidence of widespread marine influence characterize the transition into this interval. Twelve group J sequences have been identified. Reservoirs consist of progradational to aggradational tidally-dominated paralic to shallow marine sands deposited in the lowstand systems tract. Transgressive and highstand deposits are dominantly offshore shales. In PM-9, the original lift-related depocenters, coupled with changes in relative sea level, have strongly influenced group J unit thickness and the distribution ofmore » reservoir and seal facies. Two important reservoir intervals in PM-9 are the J18/20 and J15 sands. The reservoirs in these intervals are contained within the lowstand systems tracts of fourth-order sequences. These fourth-order sequences stack to form sequence sets in response to a third-order change in relative sea level. The sequences of the J18/20 interval stack to form part of a lowstand sequence set, whereas the J15 interval forms part of the transgressive sequence set. Reservoir facies range from tidal bars and subtidal shoals in the J18/20 interval to lower shoreface sands in the J15. Reservoir quality and continuity in group J reservoirs are dependent on depositional facies. An understanding of the controls on the distribution of facies types is crucial to the success of the current phase of field development and exploration programs in PM-9.« less

  12. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  13. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  14. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest

    NASA Astrophysics Data System (ADS)

    McCaffery, Anthony J.

    2018-03-01

    This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.

  15. Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.

    1991-01-01

    A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.

  16. Ethanol teratogenesis in the C57BL/6J, DBA/2J, and A/J inbred mouse strains.

    PubMed

    Boehm, S L; Lundahl, K R; Caldwell, J; Gilliam, D M

    1997-01-01

    Research has shown variations in susceptibility to alcohol-related birth defects in humans. Genetic differences are one reason for this variability. This study compared three inbred mouse strains to determine whether they differ in their susceptibilities to ethanol teratogenesis because previous studies have generated conflicting data. Pregnant C57BL/6J (B6), DBA/2J (D2), and A/J (A) dams were intubated intragastrically with either an acute dose of ethanol (5.8 g/kg) or an isocaloric amount of maltose-dextrine on day 9 of pregnancy. Litters were removed on day 18 of pregnancy and examined for gross, soft-tissue, and skeletal malformations. Results showed that ethanol-exposed B6 litters had a higher percentage of digit (19%), kidney (24%), and skeletal (32%, mostly vertebral) malformations than their maltose-exposed controls (7% or below). Prenatal exposure to ethanol increased skeletal (68%, both rib and vertebral) malformations for A litters when compared to their maltose-exposed controls (4%), but did not increase digit or kidney malformations. Ethanol-exposed D2 litters did not differ from maltose-exposed controls. Maternal blood ethanol levels did not differ among the B6, D2, and A strains. These results provide additional evidence suggesting a genetic component to ethanol teratogenesis.

  17. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus

    PubMed Central

    Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng

    2015-01-01

    Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus. PMID:26538085

  18. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  19. Evaluation of sub-microsecond recovery resonators for In Vivo Electron Paramagnetic Resonance Imaging

    PubMed Central

    F, Hyodo; S, Subramanian; N, Devasahayam; R, Murugesan; K, Matsumoto; JB, Mitchell; MC, Krishna

    2008-01-01

    Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300 MHz for in vivo applications requires resonators with recovery times less than 1 microsecond after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis. PMID:18042414

  20. j5 DNA assembly design automation.

    PubMed

    Hillson, Nathan J

    2014-01-01

    Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost-benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.

  1. The Selection of Q-Switch for a 350mJ Air-borne 2-micron Wind Lidar

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.

    2008-01-01

    In the process of designing a coherent, high energy 2micron, Doppler wind Lidar, various types of Q-Switch materials and configurations have been investigated for the oscillator. Designing an oscillator with a relatively low gain laser material, presents challenges related to the management high internal circulating fluence due to high reflective output coupler. This problem is compounded by the loss of hold-off. In addition, the selection has to take into account the round trip optical loss in the resonator and the loss of hold-off. For this application, a Brewster cut 5mm aperture, fused silica AO Q-switch is selected. Once the Q-switch is selected various rf frequencies were evaluated. Since the Lidar has to perform in single longitudinal and transverse mode with transform limited line width, in this paper, various seeding configurations are presented in the context of Q-Switch diffraction efficiency. The master oscillator power amplifier has demonstrated over 350mJ output when the amplifier is operated in double pass mode and higher than 250mJ when operated in single pass configuration. The repetition rate of the system is 10Hz and the pulse length 200ns.

  2. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  3. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  4. Alfven wave cyclotron resonance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.B.; Yosikawa, S.; Oberman, C.

    1981-02-01

    The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.

  5. 75 FR 20774 - Modification of Jet Routes J-37 and J-55; Northeast United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010-0003; Airspace Docket No. 09-ANE-104] Modification of Jet Routes J-37 and J-55; Northeast United States AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Jet...

  6. Resonant spin Hall effect in two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  7. Surface acoustic wave resonators

    NASA Astrophysics Data System (ADS)

    Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco

    1991-10-01

    The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.

  8. 206Pb+n resonances for E=600-900 keV: Neutron strength functions

    NASA Astrophysics Data System (ADS)

    Horen, D. J.; Harvey, J. A.; Hill, N. W.

    1981-11-01

    Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.

  9. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    PubMed Central

    Daghestani, Hikmat N.; Day, Billy W.

    2010-01-01

    Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed. PMID:22163431

  10. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  11. jà Vu: An Illusion of Prediction.

    PubMed

    Cleary, Anne M; Claxton, Alexander B

    2018-04-01

    jà vu is beginning to be scientifically understood as a memory phenomenon. Despite recent scientific advances, a remaining puzzle is the purported association between déjà vu and feelings of premonition. Building on research showing that déjà vu can be driven by an unrecalled memory of a past experience that relates to the current situation, we sought evidence of memory-based predictive ability during déjà vu states. Déjà vu did not lead to above-chance ability to predict the next turn in a navigational path resembling a previously experienced but unrecalled path (although such resemblance increased reports of déjà vu). However, déjà vu states were accompanied by increased feelings of knowing the direction of the next turn. The results suggest that feelings of premonition during déjà vu occur and can be illusory. Metacognitive bias brought on by the state itself may explain the peculiar association between déjà vu and the feeling of premonition.

  12. Constraints on the design of core-shell resonators of locally resonant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Bos, Lionel; Lukyanova, Lyubov; Wunenburger, Régis

    2012-11-01

    We perform a parametric study of the analytic model of Liu [Z. Liu , Phys. Rev. B10.1103/PhysRevB.71.014103 71, 014103 (2005)] describing the mechanical response of a core-shell particle to an acoustic excitation in order to help in selecting the constitutive materials and in designing innovative processes of fabrication of downsized core-shell resonators, which are key constituents of locally resonant acoustic metamaterials. We show that the value of the first Lamé coefficient of the material constituting the shell has no marked influence on the value of the resonance frequency of the core-shell resonator, that is, it does not necessarily need to be small for satisfying the condition of subwavelength resonator dimension at resonance. Moreover, we show that the larger the density contrast between the core and the shell and the thinner the shell, the broader is the frequency band over which the effective density of the resonator suspension is negative, but that it is practically useless to decrease the dimensionless shell thickness below 0.6. Finally, we show that the dissipation is also less perceptible the thinner is the shell and the larger is the density contrast. The effect of the density contrast between the core and the shell and of the dissipation on the resonance width are explained by comparing with the harmonic oscillator and the mass-in-mass 1D lattice.

  13. An Inexpensive Resonance Demonstration

    ERIC Educational Resources Information Center

    Dukes, Phillip

    2005-01-01

    The phenomenon of resonance is applicable to almost every branch of physics. Without resonance, there wouldn't be televisions or stereos, or even swings on the playground. However, resonance also has undesirable side effects such as irritating noises in the car and the catastrophic events such as helicopters flying apart. In this article, the…

  14. Observation of J/psi-->3gamma.

    PubMed

    Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Ma, J S Y; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B

    2008-09-05

    We report the first observation of the decay J/psi-->3gamma. The signal has a statistical significance of 6sigma and corresponds to a branching fraction of B(J/psi-->3gamma)=(1.2+/-0.3+/-0.2)x10;{-5}, in which the errors are statistical and systematic, respectively. The measurement uses psi(2S)-->pi;{+}pi;{-}J/psi events acquired with the CLEO-c detector operating at the CESR e;{+}e;{-} collider.

  15. Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses

    PubMed Central

    Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui; Tong, Shi; Liu, Yuan; Boppart, Stephen A.

    2013-01-01

    We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers. PMID:24104233

  16. Micro-machined resonator oscillator

    DOEpatents

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  17. Micro-machined resonator oscillator

    DOEpatents

    Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.

    1994-08-16

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.

  18. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ.

    PubMed

    Sittig, Laura J; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios-Camacho, Camila M; Palmer, Abraham A

    2014-12-01

    Closely related substrains of inbred mice often show phenotypic differences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole-genome sequence data for both inbred strains (~3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies.

  19. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ

    PubMed Central

    Sittig, Laura J.; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios Camacho, Camila M.; Palmer, Abraham A.

    2014-01-01

    Closely related substrains of inbred mice often show phenotypic difzferences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole genome sequence data for both inbred strains (∼3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies. PMID:24997021

  20. Spin-dependent electrical conduction in a pentacene Schottky diode explored by electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Fukuda, Kunito; Asakawa, Naoki

    2017-02-01

    Reported is the observation of dark spin-dependent electrical conduction in a Schottky barrier diode with pentacene (PSBD) using electrically detected magnetic resonance at room temperature. It is suggested that spin-dependent conduction exists in pentacene thin films, which is explored by examining the anisotropic linewidth of the EDMR signal and current density-voltage (J-V) measurements. The EDMR spectrum can be decomposed to Gaussian and Lorentzian components. The dependency of the two signals on the applied voltage was consistent with the current density-voltage (J-V) of the PSBD rather than that of the electron-only device of Al/pentacene/Al, indicating that the spin-dependent conduction is due to bipolaron formation associated with hole polaronic hopping processes. The applied-voltage dependence of the ratio of intensity of the Gaussian line to the Lorentzian may infer that increasing current density should make conducting paths more dispersive, thereby resulting in an increased fraction of the Gaussian line due to the higher dispersive g-factor.