Sample records for j-integral fracture analysis

  1. Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture

    NASA Astrophysics Data System (ADS)

    Davey, K.; Darvizeh, R.

    2016-09-01

    Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.

  2. Integration of fracturing dynamics and pressure transient analysis for hydraulic fracture evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arihara, N.; Abbaszadeh, M.; Wright, C.A.

    This paper presents pre- and post-fracture pressure transient analysis, combined with net fracture pressure interpretation, for a well in a naturally fractured geothermal reservoir. Integrated analysis was performed to achieve a consistent interpretation of the created fracture geometry, propagation, conductivity, shrinkage, reservoir flow behavior, and formation permeability characteristics. The interpreted data includes two-rate pre-frac injection tests, step-rate injection tests, a series of pressure falloff tests, and the net fracturing pressure from a massive fracture treatment. Pressure transient analyses were performed utilizing advanced well test interpretation techniques and a thermal reservoir simulator with fracture propagation option. Hydraulic fracture propagation analysis wasmore » also performed Milt a generalized 3-D dynamic fracture growth model simulator. Three major conclusions resulted from the combined analysis: (1) that an increasing number of hydraulic fractures were being simultaneously propagated during the fracture treatment. (2) that the reservoir behaved as a composite reservoir Keith the outer region permeability being greater than the permeability of the region immediately surrounding the wellbore, and (3) that the created fractures extended into the outer region during the fracture treatment but retreated to the inner region several days after stimulation had ceased. These conclusions were apparent from independent pressure transient analysis and from independent hydraulic fracture propagation analysis. Integrated interpretation, however, increased the confidence in these conclusions and greatly aided the quantification of the created hydraulic fracture geometry and characterization of the reservoir permeability.« less

  3. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.

    PubMed

    Gomoll, A; Wanich, T; Bellare, A

    2002-11-01

    Radiation and chemical cross-linking of medical grade ultrahigh molecular weight polyethylene (UHMWPE) has recently been utilized in an effort to improve wear performance of total joint replacement components. However, reductions in mechanical properties with cross-linking are cause for concern regarding the use of cross-linked UHMWPE for high-stress applications such as in total knee replacement prostheses. In this study, the fracture behavior of radiation cross-linked UHMWPE was compared to that of uncross-linked UHMWPE. The Rice and Sorensen model that utilizes mechanical parameters obtained from uniaxial tensile and compact tension tests was used to calculate the steady state J-integral fracture toughness, Jss, for radiation cross-linked UHMWPE. Jss decreased monotonically with increase in radiation dose. UHMWPE exhibited tough, ductile tearing behavior with stable crack growth when it was cross-linked using a gamma radiation dose of 0-50 kGy. However, in cross-linked UHMWPE irradiated to a dose of 100 and 200 kGy, unstable fracture occurred spontaneously upon attaining the initial crack driving force, J1c. This indicates that a high degree of cross-linking is less desirable for high-stress applications in orthopaedic implants. However, a substantial increase in J1c, even at a low degree of cross-linking, suggests that a low degree of cross-linking may be beneficial for resistance to delamination and catastrophic failure, both of which require an initiation step for the fracture to propagate in the material. This mechanical test should, however, be considered along with fatigue tests and joint simulator testing before determination of an appropriate amount of cross-linking for total joint replacement prostheses that experience high stresses.

  4. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  5. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1992-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  6. 3D J-Integral Capability in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a largermore » effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.« less

  7. Assessing the fracture strength of geological and related materials via an atomistically based J-integral

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Criscenti, L. J.; Rimsza, J.

    2016-12-01

    Predicting fracture initiation and propagation in low-permeability geomaterials is a critical yet un- solved problem crucial to assessing shale caprocks at carbon dioxide sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-geomaterial interfaces play a major role in subcritical crack growth by weakening the material and altering crack nu- cleation and growth rates. Engineering the subsurface fracture environment, however, has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We have developed a fundamental atomic-level understanding of the chemical-mechanical mecha- nisms that control subcritical cracks through coarse-graining data from reactive molecular simulations. Previous studies of fracture at the atomic level have typically been limited to producing stress-strain curves, quantifying either the system-level stress or energy at which fracture propagation occurs. As such, these curves are neither characteristic of nor insightful regarding fracture features local to the crack tip. In contrast, configurational forces, such as the J-integral, are specific to the crack in that they measure the energy available to move the crack and truly quantify fracture resistance. By development and use of field estimators consistent with the continuum conservation properties we are able to connect the data produced by atomistic simulation to the continuum-level theory of fracture mechanics and thus inform engineering decisions. In order to trust this connection we have performed theoretical consistency tests and validation with experimental data. Although we have targeted geomaterials, this capability can have direct impact on other unsolved technological problems such as predicting the corrosion and embrittlement of metals and ceramics. Sandia National

  8. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2016-03-01

    Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.

  9. Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry

    NASA Technical Reports Server (NTRS)

    Macon, David J.

    2006-01-01

    An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.

  10. A review of path-independent integrals in elastic-plastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Kim, Kwang S.; Orange, Thomas W.

    1988-01-01

    The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  11. Comparison of mixed-mode stress-intensity factors obtained through displacement correlation, J-integral formulation, and modified crack-closure integral

    NASA Astrophysics Data System (ADS)

    Bittencourt, Tulio N.; Barry, Ahmabou; Ingraffea, Anthony R.

    This paper presents a comparison among stress-intensity factors for mixed-mode two-dimensional problems obtained through three different approaches: displacement correlation, J-integral, and modified crack-closure integral. All mentioned procedures involve only one analysis step and are incorporated in the post-processor page of a finite element computer code for fracture mechanics analysis (FRANC). Results are presented for a closed-form solution problem under mixed-mode conditions. The accuracy of these described methods then is discussed and analyzed in the framework of their numerical results. The influence of the differences among the three methods on the predicted crack trajectory of general problems is also discussed.

  12. A review of path-independent integrals in elastic-plastic fracture mechanics, task 4

    NASA Technical Reports Server (NTRS)

    Kim, K. S.

    1985-01-01

    The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  13. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Zhou, Youhe

    2015-04-01

    Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  14. An integrated approach to characterization of fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta-Gupta, A.; Majer, E.; Vasco, D.

    1995-12-31

    This paper summarizes an integrated hydrologic and seismic characterization of a fractured limestone formation at the Conoco Borehole Test Facility (CBTF) in Kay County, Oklahoma. Transient response from pressure interference tests were first inverted in order to identify location and orientation of dominant fractures at the CBTF. Subsequently, high resolution (1000 to 10000 Hz) cross-well and single-well seismic surveys were conducted to verify the preferential slow paths indicated by hydrologic analysis. Seismic surveys were conducted before and after an air injection in order to increase the visibility of the fracture zone to seismic imaging. Both Seismic and hydrologic analysis weremore » found to yield consistent results in detecting the location of a major fracture zone.« less

  15. J-R fracture characteristics of ferritic steels for RPVs and RCS piping of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Yoon, Ji-Hyun; Lee, Bong-Sang; Hong, Jun-Hwa

    2001-10-01

    J-R fracture resistance tests have been performed on 3 heats of SA508-Gr.3 nuclear reactor pressure vessel (RPV) steel as well as 2 heats of SA516-Gr.70 and a heat of SA508-Gr.1a steels for nuclear reactor coolant system (RCS) piping. For the latter two steels, dynamic in addition to static J-R fracture resistances were investigated. From the test results of the SA508-Gr.3 steels, the J-R fracture resistance was superior in the following order: Si-killing steel, modified VCD steel and VCD steel. Microstructural analyses were carried out to correlate J-R fracture resistances with microstructural characteristics. According to the test results for SA508-Gr.1a and SA516-Gr.70 steels, all of the tested steels showed steep drops in fracture resistance at certain temperature and loading rate combinations. One heat of SA516-Gr.70 steel was very sensitive to dynamic strain aging and its fracture resistance was significantly low. It was concluded that microstructural and chemical factors affect the J-R fracture and DSA characteristics of SA516-Gr.70 steels.

  16. The application of an atomistic J-integral to a ductile crack.

    PubMed

    Zimmerman, Jonathan A; Jones, Reese E

    2013-04-17

    In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.

  17. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  18. Experimental and Numerical Analysis of Fracture in 41Cr4 Steel - Issues of the Stationary Cracks

    NASA Astrophysics Data System (ADS)

    Graba, M.

    2018-02-01

    This paper analyzes the process of fracture in 41Cr4 steel on the basis of experimental and numerical data obtained for non-propagating cracks. The author's previous and latest experimental results were used to determine the apparent crack initiation moment and fracture toughness for the material under plane strain conditions. Numerical simulations were carried out to assess changes in the J-integral, the crack tip opening displacement, the size of the plastic region and the distribution of stresses around the crack tip. A complex numerical analysis based on the true stress-strain curve was performed to determine the behavior of 41Cr4 steel under increasing external loads.

  19. Fracture mechanics evaluation of heavy welded structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprung, I.; Ericksson, C.W.; Zilberstein, V.A.

    1982-05-01

    This paper describes some applications of nondestructive examination (NDE) and engineering fracture mechanics to evaluation of flaws in heavy welded structures. The paper discusses not only widely recognized linear elastic fracture mechanics (LEFM) analysis, but also methods of the elastic-plastic fracture mechanics (EPFM), such as COD, J-integral, and Failure Assessment Diagram. Examples are given to highlight the importance of interaction between specialists providing input and the specialists performing the analysis. The paper points out that the critical parameters for as-welded structures when calculated by these methods are conservative since they are based on two pessimistic assumptions: that the magnitude ofmore » residual stress is always at the yield strength level, and that the residual stress always acts in the same direction as the applied (mechanical) stress. The suggestion is made that it would be prudent to use the COD or the FAD design curves for a conservative design. The appendix examines a J-design curve modified to include residual stresses.« less

  20. Measurement of J-integral in CAD/CAM dental ceramics and composite resin by digital image correlation.

    PubMed

    Jiang, Yanxia; Akkus, Anna; Roperto, Renato; Akkus, Ozan; Li, Bo; Lang, Lisa; Teich, Sorin

    2016-09-01

    Ceramic and composite resin blocks for CAD/CAM machining of dental restorations are becoming more common. The sample sizes affordable by these blocks are smaller than ideal for stress intensity factor (SIF) based tests. The J-integral measurement calls for full field strain measurement, making it challenging to conduct. Accordingly, the J-integral values of dental restoration materials used in CAD/CAM restorations have not been reported to date. Digital image correlation (DIC) provides full field strain maps, making it possible to calculate the J-integral value. The aim of this study was to measure the J-integral value for CAD/CAM restorative materials. Four types of materials (sintered IPS E-MAX CAD, non-sintered IPS E-MAX CAD, Vita Mark II and Paradigm MZ100) were used to prepare beam samples for three-point bending tests. J-integrals were calculated for different integral path size and locations with respect to the crack tip. J-integral at path 1 for each material was 1.26±0.31×10(-4)MPam for MZ 100, 0.59±0.28×10(-4)MPam for sintered E-MAX, 0.19±0.07×10(-4)MPam for VM II, and 0.21±0.05×10(-4)MPam for non-sintered E-MAX. There were no significant differences between different integral path size, except for the non-sintered E-MAX group. J-integral paths of non-sintered E-MAX located within 42% of the height of the sample provided consistent values whereas outside this range resulted in lower J-integral values. Moreover, no significant difference was found among different integral path locations. The critical SIF was calculated from J-integral (KJ) along with geometry derived SIF values (KI). KI values were comparable with KJ and geometry based SIF values obtained from literature. Therefore, DIC derived J-integral is a reliable way to assess the fracture toughness of small sized specimens for dental CAD/CAM restorative materials; however, with caution applied to the selection of J-integral path. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. J-Resistance Curves of Aluminum Specimens Using Moire Interferometry

    DTIC Science & Technology

    1989-04-01

    elastic-plastic fracture mechanics ( EPFM ) methodologies are based on the J-integral or the crack opening displacement (COD) approach. The J-resistance curve...in the HRR field [13,141. In this paper, we present further application of the approximate J-evaluation procedure in large 2024-0 and 5052-H32 aluminum...Davis, J. A. Joyce, and R. A. Hays, " Application of the J-Integral and the Modified J-Integral to Cases of Large Crack Extension and High Toughness

  2. Integrated analysis and interpretation of microseismic monitoring of hydraulic fracturing in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Zorn, Erich Victor

    In 2012 and 2013, hydraulic fracturing was performed at two Marcellus Shale well pads, under the supervision of the Energy Corporation of America. Six lateral wells were hydraulically fractured in Greene County in southwestern Pennsylvania and one lateral well was fractured in Clearfield County in north-central Pennsylvania. During hydraulic fracturing operations, microseismic monitoring by strings of downhole geophones detected a combination of >16,000 microseismic events at the two sites. High quality traditional and geomechanical well logs were acquired at Clearfield County, as well as tomographic velocity profiles before and after stimulation. In partnership with the US Department of Energy's National Energy Technology Laboratory, I completed detailed analysis of these geophysical datasets to maximize the understanding of the engineering and geological conditions in the reservoir, the connection between hydraulic input and microseismic expression, and the geomechanical factors that control microseismic properties. Additionally, one broad-band surface seismometer was deployed at Greene County and left to passively monitor site acoustics for the duration of hydraulic fracturing. Data from this instrument shows the presence of slow-slip or long period/long duration (LPLD) seismicity. In years prior to our investigation, lab-scale fracturing studies and broadband seismic monitoring of hydraulic fracturing had been completed by other researchers in unconventional shale and tight sand in Texas and Canada. This is the first study of LPLD seismicity in the Marcellus Shale and reveals aseismic deformation during hydraulic fracturing that could account for a large portion of "lost" hydraulic energy input. Key accomplishments of the studies contained in this dissertation include interpreting microseismic data in terms of hydraulic pumping data and vice versa, verifying the presence of LPLD seismicity during fracturing, establishing important geomechanical controls on the

  3. Fracture and fatigue analysis of functionally graded and homogeneous materials using singular integral equation approach

    NASA Astrophysics Data System (ADS)

    Zhao, Huaqing

    functionally graded materials. This work provides a solid foundation for further applications of the singular integral equation approach to fracture and fatigue problems in advanced composites. The concept of crack bridging is a unifying theory for fracture at various length scales, from atomic cleavage to rupture of concrete structures. However, most of the previous studies are limited to small scale bridging analyses although large scale bridging conditions prevail in engineering materials. In this work, a large scale bridging analysis is included within the framework of singular integral equation approach. This allows us to study fracture, fatigue and toughening mechanisms in advanced materials with crack bridging. As an example, the fatigue crack growth of grain bridging ceramics is studied. With the advent of composite materials technology, more complex material microstructures are being introduced, and more mechanics issues such as inhomogeneity and nonlinearity come into play. Improved mathematical and numerical tools need to be developed to allow theoretical modeling of these materials. This thesis work is an attempt to meet these challenges by making contributions to both micromechanics modeling and applied mathematics. It sets the stage for further investigations of a wide range of problems in the deformation and fracture of advanced engineering materials.

  4. Elastic-plastic fracture mechanics of compact bone

    NASA Astrophysics Data System (ADS)

    Yan, Jiahau

    Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear

  5. Fracture toughness and fracture behavior of SA508-III steel at different temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Jia-hua; Wang, Lei; Liu, Yang; Song, Xiu; Luo, Jiong; Yuan, Dan

    2014-12-01

    The fracture toughness of SA508-III steel was studied in the temperature range from room temperature to 320°C using the J-integral method. The fracture behavior of the steel was also investigated. It was found that the conditional fracture toughness ( J Q) of the steel first decreased and then increased with increasing test temperature. The maximum and minimum values of J Q were 517.4 kJ/m2 at 25°C and 304.5 kJ/m2 at 180°C, respectively. Dynamic strain aging (DSA) was also observed to occur when the temperature exceeded 260°C with a certain strain rate. Both the dislocation density and the number of small dislocation cells effectively increased because of the occurrence of DSA; as a consequence, crack propagation was more strongly inhibited in the steel. Simultaneously, an increasing number of fine carbides precipitated under high stress at temperatures greater than 260°C. Thus, the deformation resistance of the steel was improved and the J Q was enhanced.

  6. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  7. How tough is bone? Application of elastic-plastic fracture mechanics to bone.

    PubMed

    Yan, Jiahau; Mecholsky, John J; Clifton, Kari B

    2007-02-01

    Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is

  8. Guidelines for Proof Test Analysis

    NASA Technical Reports Server (NTRS)

    Chell, G. G.; McClung, R. C.; Kuhlman, C. J.; Russell, D. A.; Garr, K.; Donnelly, B.

    1999-01-01

    These guidelines integrate state-of-the-art elastic-plastic fracture mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a road map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the road map to proof test analysis. The state-of-the art fracture technology employed in these guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the failure assessment diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy Inconel 718, the aluminum alloy 2024-T3511, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and multiple-cycle proof testing (MCPT) are addressed. Finally, recommendations are provided on how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors.

  9. SHOCKS Impulse-Jerk(I-J) Plasticity/Fracture Burst Acoustic-Emission(BAE) NON:``1''/ ω -``Noise'' Power-Law; Universality Power-Spectrum is I-J Time-Series Fourier-Transform: 1687 < < < 1988: VERY-LONG PRE-``Bak''!!!

    NASA Astrophysics Data System (ADS)

    Chavira, Aldo; Gregson, Victor, Jr.; Green, Sidney; Siegel, Edward

    2011-06-01

    SHOCKS impulse-jerk(I-J) [apply strain/impulse to get stress/jerk ],{VS. NON-shocks[apply stress to get strain]}, plasticity/fracture BAE[E. S.: MSE 8.,310(71); PSS: (a) 5, 601/607(71); Xl..-Latt. Defects 5, 277(74); Scripta Met.: 6, 785(72); 8, 587/617(74); 3rd Tokyo A.-E. Symp. (76);Acta Met.25,383(77); JMMM 7, 312(78)] NON: ``1''/ ω -``Noise'' Zipf(NON-Pareto); power-law ; universality power-spectrum is manifestly-demonstrated in ONLY ``PURE''-MATHS way to be nothing but d[F(t)=m(t)a(t)=Newton's (3rd) Law of Motion=(I-J)]/dt I-Jderivative d(I-J)/dt=dF(t)/dt=[m(t)da(t)/dt+a(t)dm(t)/dt] REdiscovery!!! A/Siegel NON-shock PHYSICS derivation fails!!!; ''PURE''-MATHS: dF(t)/dt=d2p(t)/dt2=[m(t)da(t)/dt+a(t)dm(t)/dt] TRIPLE-integral [VS. NON -shocks F = ma time-series DOUBLE-integral] Dichotomy: s(t) = [v0+(1/2)a(t)t2+EXTRA-TERM(S)], {VS. s(t) = [v0t+(1/2) at2]}, integral-transform formally defines power-spectrum Dichotomy:

  10. Fracture mechanics validity limits

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.; Ernst, Hugo A.

    1994-01-01

    Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in

  11. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  12. Fracture mechanisms and fracture control in composite structures

    NASA Astrophysics Data System (ADS)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  13. ROTATIONAL- SHOCK(S) Impulse-Jerk(I-J) [VS. T=I α] Plasticity/Fracture Burst Acoustic-Emission(BAE) NON: ``1''/[f= ω]-``Noise'' Power-Law Power-Spectrum is T=I α DERIVATIVE I-J Time-Series Integral-Transform

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Siegel, Edward

    2011-06-01

    ROTATIONAL-[``spin-up''/``spin-down'']-SHOCK(S)-plasticity/fracture BAE[E.S.:MSE 8,310(71); PSS:(a)5,601 /607(71); Xl..-Latt. Defects 5,277(74);Scripta Met.:6,785(72);8,587/617(74);3rd Tokyo A.-E. Symp.(76);Acta Met. 25,383(77);JMMM 7,312(78)] NON: ``1''/ ω noise'' Zipf-(Pareto); power-law universality power-spectrum; is manifestly-demonstrated in two distinct ways to be nothing but ROTATIONAL(in 2 OR 3-dimensions)ANGULAR-momentum Newton's 3rd Law of Motion T=I α=dJ/dt REdiscovery!!! A/Siegel PHYSICS derivation FAILS!!! ''PURE''-MATHS: dT(t)/dt=(dJ(t)/dt)2=[I(t)d α(t)/dt+ α(t)(t)dI(t)/dt TRIPLE-integral VS. T=I α DOUBLE-integral time-series(T-S) Dichotomy: θ(t)=[ϖ0 t + α(t) t 2 / 2 + EXTRA-TERM(S)] VS. θ(t)=[ϖ0 t + α(t) t 2 / 2 ] integral-transform formally defines power-spectrum Dichotomy: P(ω) =? θ(t)e-iωtdt=?[ϖ0 t + αt2 / 2 ]e-iωtdt=φ0?te-iωtdt+?{[ α ≠ α (t)]/2}t2eiωtdt= φ0 (ω) /d ω+{[a ≠a(t)]/2}d2 δ (ω) /dω2 =φ0 /ω0+{[ α ≠ α (t)]/2}/ω 1 . 000 ...: if α=0, then P(ω) 1/ω0, VS. if α ≠ α (t) ≠0, then P(ω) 1/ ω 1/ω 1 . 000 ...

  14. Integrated detection of fractures and caves in carbonate fractured-vuggy reservoirs based on seismic data and well data

    NASA Astrophysics Data System (ADS)

    Cao, Zhanning; Li, Xiangyang; Sun, Shaohan; Liu, Qun; Deng, Guangxiao

    2018-04-01

    Aiming at the prediction of carbonate fractured-vuggy reservoirs, we put forward an integrated approach based on seismic and well data. We divide a carbonate fracture-cave system into four scales for study: micro-scale fracture, meso-scale fracture, macro-scale fracture and cave. Firstly, we analyze anisotropic attributes of prestack azimuth gathers based on multi-scale rock physics forward modeling. We select the frequency attenuation gradient attribute to calculate azimuth anisotropy intensity, and we constrain the result with Formation MicroScanner image data and trial production data to predict the distribution of both micro-scale and meso-scale fracture sets. Then, poststack seismic attributes, variance, curvature and ant algorithms are used to predict the distribution of macro-scale fractures. We also constrain the results with trial production data for accuracy. Next, the distribution of caves is predicted by the amplitude corresponding to the instantaneous peak frequency of the seismic imaging data. Finally, the meso-scale fracture sets, macro-scale fractures and caves are combined to obtain an integrated result. This integrated approach is applied to a real field in Tarim Basin in western China for the prediction of fracture-cave reservoirs. The results indicate that this approach can well explain the spatial distribution of carbonate reservoirs. It can solve the problem of non-uniqueness and improve fracture prediction accuracy.

  15. Cortical bone fracture analysis using XFEM - case study.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2017-04-01

    We aim to achieve an accurate simulation of human cortical bone fracture using the extended finite element method within a commercial finite element software abaqus. A two-dimensional unit cell model of cortical bone is built based on a microscopy image of the mid-diaphysis of tibia of a 70-year-old human male donor. Each phase of this model, an interstitial bone, a cement line, and an osteon, are considered linear elastic and isotropic with material properties obtained by nanoindentation, taken from literature. The effect of using fracture analysis methods (cohesive segment approach versus linear elastic fracture mechanics approach), finite element type, and boundary conditions (traction, displacement, and mixed) on cortical bone crack initiation and propagation are studied. In this study cohesive segment damage evolution for a traction separation law based on energy and displacement is used. In addition, effects of the increment size and mesh density on analysis results are investigated. We find that both cohesive segment and linear elastic fracture mechanics approaches within the extended finite element method can effectively simulate cortical bone fracture. Mesh density and simulation increment size can influence analysis results when employing either approach, and using finer mesh and/or smaller increment size does not always provide more accurate results. Both approaches provide close but not identical results, and crack propagation speed is found to be slower when using the cohesive segment approach. Also, using reduced integration elements along with the cohesive segment approach decreases crack propagation speed compared with using full integration elements. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. NASA Contractor Report: Guidelines for Proof Test Analysis

    NASA Technical Reports Server (NTRS)

    Chell, G. G.; McClung, R. C.; Kuhlman, C. J.; Russell, D. A.; Garr, K.; Donnelly, B.

    1997-01-01

    These Guidelines integrate state-of-the-art Elastic-Plastic Fracture Mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a Road Map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the Road Map to proof test analysis. The state-of-the-art fracture technology employed in these Guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the Failure Assessment Diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy IN-718, the aluminum alloy 2024-T351 1, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and Multiple Cycle Proof Testing (MCPT) are addressed. Finally, recommendations are provided on to how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors.

  17. Analysis on the Fracture of Al-Cu Dissimilar Materials Friction Stir Welding Lap Joint

    NASA Astrophysics Data System (ADS)

    Sun, Hongyu; Zhou, Qi; Zhu, Jun; Peng, Yong

    2017-12-01

    Friction stir welding (FWS) is regarded as a more plausible alternative to other welding methods for Al-Cu dissimilar joining. However, the structure of an FSW joint is different from others. In this study, lap joints of 6061 aluminum alloy and commercially pure copper were produced by FSW, and the effects of rotation rate on macromorphology, microstructure and mechanical properties were investigated. In addition, a fracture J integral model was used to analyze the effect of microstructure on the mechanical properties. The results revealed that the macrodefect-free joints were obtained at a feed rate of 150 mm/min and 1100 rpm and that the failure load of the joint reached as high as 4.57 kN and only reached 2.91 kN for the 900 rpm, where tunnel defects were identified. Particle-rich zones composed of Cu particles dispersed in an Al matrix, and "Flow tracks" were observed by the EDS. The J integral results showed that the microdefects on the advancing side cause serious stress concentration compared with the microdefects located on the Al-Cu interface, resulting in the fracture of the joints.

  18. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  19. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    PubMed

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  20. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  1. Cross-borehole slug test analysis in a fractured limestone aquifer

    NASA Astrophysics Data System (ADS)

    Audouin, Olivier; Bodin, Jacques

    2008-01-01

    SummaryThis work proposes new semi-analytical solutions for the interpretation of cross-borehole slug tests in fractured media. Our model is an extension of a previous work by Barker [Barker, J.A., 1988. A generalized radial flow model for hydraulic tests in fractured rock. Water Resources Research 24 (10), 1796-1804; Butler Jr., J.J., Zhan X., 2004. Hydraulic tests in highly permeable aquifers. Water Resources Research 40, W12402. doi:10.1029/2003/WR002998]. It includes inertial effects at both test and observation wells and a fractional flow dimension in the aquifer. The model has five fitting parameters: flow dimension n, hydraulic conductivity K, specific storage coefficient Ss, and effective lengths of test well Le and of observation well Leo. The results of a sensitivity analysis show that the most sensitive parameter is the flow dimension n. The model sensitivity to other parameters may be ranked as follows: K > Le ˜ Leo > Ss. The sensitivity to aquifer storage remains one or two orders of magnitude lower than that to other parameters. The model has been coupled to an automatic inversion algorithm for facilitating the interpretation of real field data. This inversion algorithm is based on a Gauss-Newton optimization procedure conditioned by re-scaled sensitivities. It has been used to interpret successfully cross-borehole slug test data from the Hydrogeological Experimental Site (HES) of Poitiers, France, consisting of fractured and karstic limestones. HES data provide flow dimension values ranging between 1.6 and 2.5, and hydraulic conductivity values ranging between 4.4 × 10 -5 and 7.7 × 10 -4 m s -1. These values are consistent with previous interpretations of single-well slug tests. The results of the sensitivity analysis are confirmed by calculations of relative errors on parameter estimates, which show that accuracy on n and K is below 20% and that on Ss is about one order of magnitude. The K-values interpreted from cross-borehole slug tests are one

  2. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less

  3. Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading

    NASA Astrophysics Data System (ADS)

    Settgast, C.; Abendroth, M.; Kuna, M.

    2016-11-01

    Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.

  4. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  5. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  6. Ductile fracture theories for pressurised pipes and containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Two mechanisms of fracture are distinguished. Plane strain fractures occur in materials which do not undergo large-scale plastic deformations prior to and during a possible fracture deformation. Plane stress or high energy fractures are generally accompanied by large inelastic deformations. Theories for analyzing plane stress are based on the concepts of critical crack opening stretch, K(R) characterization, J-integral, and plastic instability. This last is considered in some detail. The ductile fracture process involves fracture initiation followed by a stable crack growth and the onset of unstable fracture propagation. The ductile fracture propagation process may be characterized by either a multiparameter (discrete) model, or some type of a resistance curve which may be considered as a continuous model expressed graphically. These models are studied and an alternative model is also proposed for ductile fractures which cannot be modeled as progressive crack growth phenomena.

  7. Theme 3: Mechanical Integrity - Pre & Post Well Integrity Methods for Hydraulically Fractured/Stimulated Wells

    EPA Pesticide Factsheets

    This presentation looks into wellbore design and monitoring techniques that are critical in assuring that wellbore integrity is maintained in conjunction with hydraulic fracturing/stimulation completion practices.

  8. Integrated In Situ Stress Estimation by Hydraulic Fracturing, Borehole Observations and Numerical Analysis at the EXP-1 Borehole in Pohang, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hanna; Xie, Linmao; Min, Ki-Bok; Bae, Seongho; Stephansson, Ove

    2017-12-01

    It is desirable to combine the stress measurement data produced by different methods to obtain a more reliable estimation of in situ stress. We present a regional case study of integrated in situ stress estimation by hydraulic fracturing, observations of borehole breakouts and drilling-induced fractures, and numerical modeling of a 1 km-deep borehole (EXP-1) in Pohang, South Korea. Prior to measuring the stress, World Stress Map (WSM) and modern field data in the Korean Peninsula are used to construct a best estimate stress model in this area. Then, new stress data from hydraulic fracturing and borehole observations is added to determine magnitude and orientation of horizontal stresses. Minimum horizontal principal stress is estimated from the shut-in pressure of the hydraulic fracturing measurement at a depth of about 700 m. The horizontal stress ratios ( S Hmax/ S hmin) derived from hydraulic fracturing, borehole breakout, and drilling-induced fractures are 1.4, 1.2, and 1.1-1.4, respectively, and the average orientations of the maximum horizontal stresses derived by field methods are N138°E, N122°E, and N136°E, respectively. The results of hydraulic fracturing and borehole observations are integrated with a result of numerical modeling to produce a final rock stress model. The results of the integration give in situ stress ratios of 1.3/1.0/0.8 ( S Hmax/ S V/ S hmin) with an average azimuth of S Hmax in the orientation range of N130°E-N136°E. It is found that the orientation of S Hmax is deviated by more than 40° clockwise compared to directions reported for the WSM in southeastern Korean peninsula.

  9. Cohesive fracture of elastically heterogeneous materials: An integrative modeling and experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Xia, Shuman

    2017-01-01

    A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.

  10. An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in

  11. Citation analysis of the 100 most common articles regarding distal radius fractures.

    PubMed

    Jones, Richard; Hughes, Travis; Lawson, Kevin; DeSilva, Gregory

    2017-01-01

    Bibliometric studies are increasingly being utilized as a tool for gauging the impact of different literature within a given field. The purpose of this study was to identify the most cited articles related to the management of distal radius fractures to better understand how the evidence of this topic has been shaped and changed over time. We utilized the ISI web of science database to conduct a search for the term "distal radius fracture" under the "orthopaedics" research area heading, and sorted the results by number of times cited. The 100 most cited articles published in orthopedic journals were then analyzed for number of citations, source journal, year of publication, number of authors, study type, level of evidence, and clinical outcomes utilized. The 100 most cited articles identified were published between 1951 and 2009. Total number of citations ranged between 525 and 67, and came from ten different orthopedic journals. The largest number of articles came from J Hand Surg Am and J Bone Joint Surg Am, each with 32. Consistent with previous analyses of orthopedic literature, the articles were primarily clinical, and of these, 53/76 were case series. The vast majority were evidence level IV. Only a small percentage of articles utilized patient reported outcome measures. These data show that despite distal radius fractures being a common fracture encountered by physicians, very few of the articles were high quality studies, and only a low proportion of the studies include patient reported outcome measures. Surgeons should take this lack of high-level evidence into consideration when referencing classic papers in this field. Analysis of the 100 most cited distal radius fracture articles allows for delineation of which articles are most common in the field and if a higher level of evidence correlates positively with citation quantity.

  12. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines

    NASA Astrophysics Data System (ADS)

    Kang, Jidong; Gianetto, James A.; Tyson, William R.

    2018-03-01

    Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

  13. Fracture risk assessment: improved evaluation of vertebral integrity among metastatic cancer patients to aid in surgical decision-making

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Camp, Jon J.; Holmes, David R.; Huddleston, Paul M.; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.

    2012-03-01

    Failure of the spine's structural integrity from metastatic disease can lead to both pain and neurologic deficit. Fractures that require treatment occur in over 30% of bony metastases. Our objective is to use computed tomography (CT) in conjunction with analytic techniques that have been previously developed to predict fracture risk in cancer patients with metastatic disease to the spine. Current clinical practice for cancer patients with spine metastasis often requires an empirical decision regarding spinal reconstructive surgery. Early image-based software systems used for CT analysis are time consuming and poorly suited for clinical application. The Biomedical Image Resource (BIR) at Mayo Clinic, Rochester has developed an image analysis computer program that calculates from CT scans, the residual load-bearing capacity in a vertebra with metastatic cancer. The Spine Cancer Assessment (SCA) program is built on a platform designed for clinical practice, with a workflow format that allows for rapid selection of patient CT exams, followed by guided image analysis tasks, resulting in a fracture risk report. The analysis features allow the surgeon to quickly isolate a single vertebra and obtain an immediate pre-surgical multiple parallel section composite beam fracture risk analysis based on algorithms developed at Mayo Clinic. The analysis software is undergoing clinical validation studies. We expect this approach will facilitate patient management and utilization of reliable guidelines for selecting among various treatment option based on fracture risk.

  14. Fracture related-fold patterns analysis and hydrogeological implications: Insight from fault-propagation fold in Northwestern of Tunisia

    NASA Astrophysics Data System (ADS)

    Sanai, L.; Chenini, I.; Ben Mammou, A.; Mercier, E.

    2015-01-01

    The spatial distribution of fracturing in hard rocks is extremely related to the structural profile and traduces the kinematic evolution. The quantitative and qualitative analysis of fracturing combined to GIS techniques seem to be primordial and efficient in geometric characterization of lineament's network and to reconstruct the relative timing and interaction of the folding and fracturing histories. Also a detailed study of the area geology, lithology, tectonics, is primordial for any hydrogeological study. For that purpose we used a structural approach that consist in comparison between fracture sets before and after unfolding completed by aerospace data and DEM generated from topographic map. The above methodology applied in this study carried out in J. Rebia located in Northwestern of Tunisia demonstrated the heterogeneity of fracturing network and his relation with the fold growth throught time and his importance on groundwater flow.

  15. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other

  16. Swift, INTEGRAL, RXTE, and Spitzer Reveal IGR J16283-4838

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Markwardt, C.; Barthelmy S.; Soldi, S.; Paizis, A.; Mowlavi, N.; Kennca, J. A.; Burrows, D. N.; Chester, M.

    2005-01-01

    We present the first combined study of the recently discovered source IGR J16283-4838 with Swift, INTEGRAL, and RXTE. The source, discovered by INTEGRAL on April 7, 2005, shows a highly absorbed (variable N(sub H) = 0.4-1.7 x 10(exp 23) /sq cm) and flat (Gamma approx. 1) spectrum in the Swift/XRT and RXTE/PCA data. No optical counterpart is detectable (V > 20 mag), but a possible infrared counterpart within the Swift/XRT error radius is detected in the 2MASS and Spitzer/GLIMPSE survey. The observations suggest that IGR J16283-4838 is a high mass X-ray binary containing a neutron star embedded in Compton thick material. This makes IGR J16283-4838 a member of the class of highly absorbed HMXBs, discovered by INTEGRAL.

  17. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    PubMed

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  18. Numerical Analysis in Fracture Mechanics.

    DTIC Science & Technology

    1983-01-20

    pressuriza- tion has also been solved [66] by the HEMP code. The advantage of such supercode, however, lies in its ability to analyze elastic- plastic ...analyzing the elasto-dynamic and elastic- plastic dynamic states In fracturing 2- and 3-D prob’ems. The use of a super finite difference code to study...the finite difference elastic- plastic result of Jacobs in 1950 [2J which was followed by others In the 1960’s [3 - 5). Swedlow et al [6], on the other a

  19. Influence of Natural Fractures Cohesive Properties on Geometry of Hydraulic Fracture Networks

    NASA Astrophysics Data System (ADS)

    Gonzalez-Chavez, M. A.; Dahi Taleghani, A.; Puyang, P.

    2014-12-01

    An integrated modeling methodology is proposed to analyze hydraulic fracturing jobs in the presence of the natural fracture network in the formation. A propagating hydraulic fracture may arrest, cross, or diverts into a preexisting natural crack depending on fracture properties of rock and magnitude and direction of principal rock stresses. Opening of natural fractures during fracturing treatment could define the effectiveness of the stimulation technique. Here, we present an integrated methodology initiated with lab scale fracturing properties using Double Cantilever Beam tests (DCB) to determine cohesive properties of rock and natural fractures. We used cohesive finite element models to reproduce laboratory results to verify the numerical model for the interaction of the hydraulic fracture and individual cemented natural fractures. Based on the initial investigations, we found out that distribution of pre-existing natural fractures could play a significant role in the final geometry of the induced fracture network; however in practice, there is not much information about the distribution of natural fractures in the subsurface due to the limited access. Hence, we propose a special optimization scheme to generate natural fracture geometry from the location of microseismic events. Accordingly, the criteria of evaluating the fitness of natural fracture realizations is defined as the total minimum distance squares of all microseismic events, which is the sum of minimum square distance for all microseismic events. Moreover, an additional constraint in this problem is that we need to set a minimum distance between fracture grids. Using generated natural fracture realizations, forward field-scale simulations are implemented using cohesive finite element analysis to find the best match with the recorded bottomhole pressure. To show the robustness of the proposed workflow for real field problem, we implemented this technique on available data from several well Chicontepec

  20. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes

    PubMed Central

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-01-01

    Background With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way. PMID:18460173

  1. Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2008-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.

  2. Fracture Analysis of Cast Steel Sling

    NASA Astrophysics Data System (ADS)

    Li, Xinghui

    2018-02-01

    The fracture reasons of ZG270-500 cast steel sling are analyzed through such means as macroscopic morphology analysis, chemical composition analysis, and microscopic metallography analysis. Results: coarse Widmanstatten structure and casting defects occurring in casting and subsequent heat treatment process reduce the strength, plasticity and toughness of the steel, which is the main reason of brittle fracture of the sling during work, and corresponding improvement suggestions are proposed herein.

  3. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  4. Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms

    PubMed Central

    Hohenwarter, A.; Pippan, R.

    2013-01-01

    The fracture behaviour of pure iron deformed by equal-channel angular pressing via route A was examined. The fracture toughness was determined for different specimen orientations and measured in terms of the critical plane strain fracture toughness, KIC, the critical J integral, JIC, and the crack opening displacement for crack initiation, CODi. The results demonstrate that the crack plane orientation has a pronounced effect on the fracture toughness. Different crack plane orientations lead to either crack deflection or delamination, resulting in increased fracture resistance in comparison to one remarkably weak specimen orientation. The relation between the microstructure typical for the applied deformation route and the enormous differences in the fracture toughness depending on the crack plane orientation will be analyzed in this paper. PMID:23645995

  5. TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M; Michael Tosten, M; Scott West, S

    2006-07-17

    The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritiummore » aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.« less

  6. Does C₁ fracture displacement correlate with transverse ligament integrity?

    PubMed

    Radcliff, Kristen E; Sonagli, Marcos A; Rodrigues, Luciano M; Sidhu, Gursukhman S; Albert, Todd J; Vaccaro, Alexander R

    2013-05-01

    The Rule of Spence states that displacement of the C₁ lateral masses by >6.9-8.1 mm suggests loss of transverse ligament integrity. The purpose of this study was to establish the thresholds of C₁ displacement on CT scans that correspond to transverse ligament disruption. Over four years, consecutive patients with acute C₁ fractures with at least three fracture lines were analyzed. CT measurements and MRI were assessed by blinded observers for bony displacement in the axial (internal and external lateral mass separation), coronal and sagittal planes and transverse ligament integrity. Eighteen patients were studied. Mean CT bony measurements were as follows: internal border lateral mass separation (ILM) 23.3 ± 3.4 mm, external border lateral mass separation (ELM) 50.3 ± 4.3 mm, total C₁ lateral mass overhang over the C₂ superior process (LMO) 5.4 ± 1.3 mm. Twelve patients were identified as having intact transverse ligament and six had transverse ligament disruption. There was no difference in mean normalized ILM, ELM, or LMO between patients with or without transverse ligament integrity (P > 0.05). There was no correlation between bony displacement and transverse ligament integrity. CT scans post-injury may not show the position of maximal displacement. If there is clinical concern about a possible transverse ligament injury, MRI should be performed. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  7. INTEGRAL observations of MAXI J1820+070

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Savchenko, V.; Ferrigno, C.; Ducci, L.; Kuulkers, E.; Ubertini, P.; Laurent, P.

    2018-03-01

    INTEGRAL observed the newly discovered blackhole candidate MAXI J1820+070 (ATel #11400, #11403, #11418, #11421, #11423, #11424, #11425, #11426, #11427, #11432, #11437, #11439, #11440, #11445, #11451, #11458) during a dedicated ToO campaign from 16 March 2018 at 11:07 to 18 March at 12:52 (UTC; satellite revolution 1931).

  8. Application of a Novel DCPD Adjustment Method for the J-R Curve Characterization: A study based on ORNL and ASTM Interlaboratory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A; Nanstad, Randy K

    Material fracture toughness in the fully ductile region can be described by a J-integral vs. crack growth resistance curve (J-R curve). As a conventional J-R curve measurement method, the elastic unloading compliance (EUC) method becomes impractical for elevated temperature testing due to relaxation of the material and friction induced back-up shape of the J-R curve. One alternative solution of J-R curve testing applies the Direct Current Potential Drop (DCPD) technique for measuring crack extension. However, besides crack growth, potential drop can also be influenced by plastic deformation, crack tip blunting, etc., and uncertainties exist in the current DCPD methodology especiallymore » in differentiating potential drop due to stable crack growth and due to material deformation. Thus, using DCPD for J-R curve determination remains a challenging task. In this study, a new adjustment procedure for applying DCPD to derive the J-R curve has been developed for conventional fracture toughness specimens, including compact tension, three-point bend, and disk-shaped compact specimens. Data analysis has been performed on Oak Ridge National Laboratory (ORNL) and American Society for Testing and Materials (ASTM) interlaboratory results covering different specimen thicknesses, test temperatures, and materials, to evaluate the applicability of the new DCPD adjustment procedure for J-R curve characterization. After applying the newly-developed procedure, direct comparison between the DCPD method and the normalization method on the same specimens indicated close agreement for the overall J-R curves, as well as the provisional values of fracture toughness near the onset of ductile crack extension, Jq, and of tearing modulus.« less

  9. Does integrity of the lesser trochanter influence the surgical outcome of intertrochanteric fracture in elderly patients?

    PubMed

    Liu, Xiaohui; Liu, Yueju; Pan, Shuo; Cao, Huijian; Yu, Dahai

    2015-03-05

    Most surgeons do not fix the lesser trochanter when managing femoral intertrochanteric fractures with intramedullary nails. We have not found any published clinical studies on the relationship between the integrity of the lesser trochanter and surgical outcomes of intertrochanteric fractures treated with intramedullary nails. The purpose of this study was to evaluate the impact of the integrity of the lesser trochanter on the surgical outcome of intertrochanteric fractures. A retrospective review of 85 patients aged more than 60 years with femoral intertrochanteric fractures from January 2010 to July 2012 was performed. The patients were allocated to two groups: those with (n = 37) and without (n = 48) preoperative integrity of the lesser trochanter. Relevant patient variables and medical comorbidities were collected. Medical comorbidities were evaluated according to the American Society of Anesthesiologists classification and medical records were also reviewed for age, sex, time from injury to operation, intraoperative blood loss, volume of transfusion, operative time, length of stay, time to fracture union, Harris Hip Score 1 year postoperatively, and incidence of postoperative complications. Postoperative complications included deep infection (beneath the fascia lata), congestive heart failure, pulmonary embolus, cerebrovascular accident, pneumonia, cardiac arrhythmia, urinary tract infection, wound hematoma, pressure sores, delirium, and deep venous thrombosis. Variables were statistically compared between the two groups, with statistical significance at P<0.05. Patients with and without preoperative integrity of the lesser trochanter were comparable for all assessed clinical variables except fracture type (P < 0.05). There were no statistically significant differences between these groups in time from injury to operation, volume of transfusion, length of stay, time to fracture union, Harris Hip Score at 1 year postoperatively, and incidence of postoperative

  10. Computational simulation of progressive fracture in fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.

  11. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.

  12. First-order Description of the Mechanical Fracture Behavior of Fine-Grained Surficial Marine Sediments During Gas Bubble Growth

    DTIC Science & Technology

    2010-01-01

    Mechanical analysis of idealized shallow hydraulic fracture, / Geotech . Geoenviron. Eng., 128, 488-495, doi:10.1061/ (ASCE) 1090-0241 (2002) 128:6(488...F. Chiu, and H.-J. Chai (2007), Experimental study on fracture behavior of a silty clay, Geotech . Test. J., 30, 1-9, doi: I0.1520/GTJI00715

  13. Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Lapene, A.; Pauget, L.

    2012-12-01

    During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible

  14. Improving hip fracture outcomes with integrated orthogeriatric care: a comparison between two accepted orthogeriatric models.

    PubMed

    Middleton, Mark; Wan, Bettina; da Assunçao, Ruy

    2017-05-01

    our orthopaedic trauma unit serves a large elderly population, admitting 400-500 hip fractures annually. A higher than expected mortality was detected amongst these patients, prompting a change in the hip fracture pathway. The aim of this study was to assess the impact of a change in orthogeriatric provision on hip fracture outcomes and care quality indicators. the hip fracture pathway was changed from a geriatric consultation service to a completely integrated service on a dedicated orthogeriatric ward. A total of 1,894 consecutive patients with hip fractures treated in the 2 years before and after this intervention were analysed. despite an increase in case complexity, the intervention resulted in a significant reduction in mean length of stay from 27.5 to 21 days (P < 0.001), a significant reduction in mean time to surgery from 41.8 to 27.2 h (P < 0.001) and a significant 22% reduction in 30-day mortality (13.2-10.3%, P = 0.04). After controlling for the effects of age, gender, American Society of Anesthesiology (ASA) Grade and abbreviated mental test score (AMTS), the effect of integrating orthogeriatric services into the hip fracture pathway significantly reduced the risk of mortality (odds ratio 0.68, P = 0.03). changing our hip fracture service from a geriatric consultation model of care to an integrated orthogeriatric model significantly improved mortality and performance indicators. This is the first study to directly compare two accepted models of orthogeriatric care in the same hospital. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  16. jORCA: easily integrating bioinformatics Web Services.

    PubMed

    Martín-Requena, Victoria; Ríos, Javier; García, Maximiliano; Ramírez, Sergio; Trelles, Oswaldo

    2010-02-15

    Web services technology is becoming the option of choice to deploy bioinformatics tools that are universally available. One of the major strengths of this approach is that it supports machine-to-machine interoperability over a network. However, a weakness of this approach is that various Web Services differ in their definition and invocation protocols, as well as their communication and data formats-and this presents a barrier to service interoperability. jORCA is a desktop client aimed at facilitating seamless integration of Web Services. It does so by making a uniform representation of the different web resources, supporting scalable service discovery, and automatic composition of workflows. Usability is at the top of the jORCA agenda; thus it is a highly customizable and extensible application that accommodates a broad range of user skills featuring double-click invocation of services in conjunction with advanced execution-control, on the fly data standardization, extensibility of viewer plug-ins, drag-and-drop editing capabilities, plus a file-based browsing style and organization of favourite tools. The integration of bioinformatics Web Services is made easier to support a wider range of users. .

  17. Failure analysis of fractured dental zirconia implants.

    PubMed

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  18. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    fractures. This provides new information on how much reaction induced fracturing might accelerate a volume expanding process. Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., ``Reaction induced fracturing during replacement processes,'' Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., ``Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage,'' Annu. Rev. Earth Planet. Sci. 2011. 39:545 - 76. Rudge, J. F., Kelemen, P. B., and Spiegelman, M., ``A simple model of reaction induced cracking applied to serpentinization and carbonation of peridotite,'' Earth Planet. Sc. Lett. 291, Issues 1-4, 2010, pp. 215 - 227. Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., ``Controls on rock weathering rates by reaction-induced hierarchial fracturing,'' Earth Planet. Sc. Lett. 275, 2008, pp. 364 - 369. Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. ``Fracture initiation during volume increasing reactions in rocks and applications for CO2 sequestration'', Earth Planet. Sc. Lett. 389C, 2014, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. Ulven, O. I., Jamtveit, B., and Malthe-Sørenssen, A., ``Reaction-driven fracturing of porous rock'', J. Geophys. Res. Solid Earth 119, 2014, doi:10.1002/2014JB011102.

  19. Origin of Permeability and Structure of Flows in Fractured Media

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    its consequence for crustal hydromechanics, Journal of Geophysical Research-Solid Earth, 115, 13. de Dreuzy, J.-R., et al. (2012a), Influence of fracture scale heterogeneity on the flow properties of three-dimensional Discrete Fracture Networks (DFN), J. Geophys. Res.-Earth Surf., 117(B11207), 21 PP. de Dreuzy, J.-R., et al. (2012b), Synthetic benchmark for modeling flow in 3D fractured media, Computers and Geosciences(0). Pichot, G., et al. (2010), A Mixed Hybrid Mortar Method for solving flow in Discrete Fracture Networks, Applicable Analysis, 89(10), 1729-1643. Pichot, G., et al. (2012), Flow simulation in 3D multi-scale fractured networks using non-matching meshes, SIAM Journal on Scientific Computing (SISC), 34(1). Figure: (a) Fracture network with a broad-range of fracture lengths. (b) Flows (log-scale) with homogeneous fractures. (c) Flows (log-scale) with heterogeneous fractures [de Dreuzy et al., 2012a]. The impact of the fracture apertures (c) is illustrated on the organization of flows.

  20. Multiscale Multifunctional Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  1. Quantitative analysis of fracture surface by roughness and fractal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.W.; Tian, J.F.; Kang, Y.

    1995-09-01

    In recent years there has been extensive research and great development in Quantitative Fractography, which acts as an integral part of fractographic analysis. A prominent technique for studying the fracture surface is based on fracture profile generation and the major means for characterizing the profile quantitatively are roughness and fractal methods. By this way, some quantitative indexes such as the roughness parameters R{sub L} for profile and R{sub S} for surface, fractal dimensions D{sub L} for profile and D{sub S} for surface can be measured. Given the relationships between the indexes and the mechanical properties of materials, it is possiblemore » to achieve the goal of protecting materials from fracture. But, as the case stands, the theory and experimental technology of quantitative fractography are still imperfect and remain to be studied further. Recently, Gokhale and Underwood et al have proposed an assumption-free method for estimating the surface roughness by vertically sectioning the fracture surface with sections at an angle of 120 deg with each other, which could be expressed as follows: R{sub S} = {ovr R{sub L}{center_dot}{Psi}} where {Psi} is the profile structure factor. This method is based on the classical sterological principles and verified with the aid of computer simulations for some ruled surfaces. The results are considered to be applicable to fracture surfaces with any arbitrary complexity and anisotropy. In order to extend the detail applications to this method in quantitative fractography, the authors made a study on roughness and fractal methods dependent on this method by performing quantitative measurements on some typical low-temperature impact fractures.« less

  2. Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C-550 °C

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Liang, Mengtian; Zhang, Zhenyu; Jiang, Man; Liu, Shaojun

    2018-04-01

    In order to analyze the fracture toughness and fracture behavior (J-R curves) of China Low Activation Martensitic (CLAM) steel under the design service temperature of Test Blanket Module of the International Thermonuclear Experimental Reactor, the quasi-static fracture experiment of CLAM steel was carried out under the temperature range of 450 °C-550 °C. The results indicated that the fracture behavior of CLAM steel was greatly influenced by test temperature. The fracture toughness increased slightly as the temperature increased from 450 °C to 500 °C. In the meanwhile, the fracture toughness at 550 °C could not be obtained due to the plastic deformation near the crack tip zone. The microstructure analysis based on the fracture topography and the interaction between dislocations and lath boundaries showed two different sub-crack propagation modes: growth along 45° of the main crack direction at 450 °C and growth perpendicular to the main crack at 500 °C.

  3. Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module

    NASA Technical Reports Server (NTRS)

    Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian

    2003-01-01

    The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.

  4. Planning and Analysis of Fractured Rock Injection Tests in the Cerro Brillador Underground Laboratory, Northern Chile

    NASA Astrophysics Data System (ADS)

    Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.

    2015-12-01

    Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.

  5. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  6. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    NASA Astrophysics Data System (ADS)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 < Mw < -6.8, which is consistent with other laboratory AE results, and stress drops were within the range commonly observed for induced seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 < Mw < -6.7 and as with the in situ data, stress release was within the expected range of 0.1 - 10 MPa. We identified four major challenges to quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2

  7. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    As fracture mechanics material testing evolves, the governing test standards continue to be refined to better reflect the latest understanding of the physics of the fracture processes involved. The traditional format of ASTM fracture testing standards, utilizing equations expressed directly in the text of the standard to assess the experimental result, is self-limiting in the complexity that can be reasonably captured. The use of automated analysis techniques to draw upon a rich, detailed solution database for assessing fracture mechanics tests provides a foundation for a new approach to testing standards that enables routine users to obtain highly reliable assessments of tests involving complex, non-linear fracture behavior. Herein, the case for automating the analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example of how such a database can be generated and implemented for use in the ASTM standards framework. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  8. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  9. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    USGS Publications Warehouse

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring

  10. Correlation analysis of fracture arrangement in space

    NASA Astrophysics Data System (ADS)

    Marrett, Randall; Gale, Julia F. W.; Gómez, Leonel A.; Laubach, Stephen E.

    2018-03-01

    We present new techniques that overcome limitations of standard approaches to documenting spatial arrangement. The new techniques directly quantify spatial arrangement by normalizing to expected values for randomly arranged fractures. The techniques differ in terms of computational intensity, robustness of results, ability to detect anti-correlation, and use of fracture size data. Variation of spatial arrangement across a broad range of length scales facilitates distinguishing clustered and periodic arrangements-opposite forms of organization-from random arrangements. Moreover, self-organized arrangements can be distinguished from arrangements due to extrinsic organization. Traditional techniques for analysis of fracture spacing are hamstrung because they account neither for the sequence of fracture spacings nor for possible coordination between fracture size and position, attributes accounted for by our methods. All of the new techniques reveal fractal clustering in a test case of veins, or cement-filled opening-mode fractures, in Pennsylvanian Marble Falls Limestone. The observed arrangement is readily distinguishable from random and periodic arrangements. Comparison of results that account for fracture size with results that ignore fracture size demonstrates that spatial arrangement is dominated by the sequence of fracture spacings, rather than coordination of fracture size with position. Fracture size and position are not completely independent in this example, however, because large fractures are more clustered than small fractures. Both spatial and size organization of veins here probably emerged from fracture interaction during growth. The new approaches described here, along with freely available software to implement the techniques, can be applied with effect to a wide range of structures, or indeed many other phenomena such as drilling response, where spatial heterogeneity is an issue.

  11. The statistical theory of the fracture of fragile bodies. Part 2: The integral equation method

    NASA Technical Reports Server (NTRS)

    Kittl, P.

    1984-01-01

    It is demonstrated how with the aid of a bending test, the Weibull fracture risk function can be determined - without postulating its analytical form - by resolving an integral equation. The respective solutions for rectangular and circular section beams are given. In the first case the function is expressed as an algorithm and in the second, in the form of series. Taking into account that the cumulative fracture probability appearing in the solution to the integral equation must be continuous and monotonically increasing, any case of fabrication or selection of samples can be treated.

  12. Analysis of Vertebral Bone Strength, Fracture Pattern, and Fracture Location: A Validation Study Using a Computed Tomography-Based Nonlinear Finite Element Analysis

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476

  13. Caprock integrity susceptibility to permeable fracture creation

    DOE PAGES

    Frash, Luke; Carey, James William; Ickes, Timothy Lee; ...

    2017-07-14

    Caprock leakage is of crucial concern for environmentally and economically sustainable development of carbon dioxide sequestration and utilization operations. One potential leakage pathway is through fractures or faults that penetrate the caprock. In this study, we investigate the permeability induced by fracturing initially intact Marcellus shale outcrop specimens at stressed conditions using a triaxial direct-shear method. Measurements of induced permeability, fracture geometry, displacement, and applied stresses were all obtained at stressed conditions to investigate the coupled processes of fracturing and fluid flow as may occur in the subsurface. Fracture geometry was directly observed at stressed conditions using X-ray radiography video.more » Numerical simulation was performed to evaluate the stress distribution developed in the experiments. Our experiments show that permeability induced by fracturing is strongly dependent on the stresses at which the fractures are created, the magnitude of shearing displacement, and the duration of flow. The strongest permeability contrast was observed when comparing specimens fractured at low stress to others fractured at higher stress. Measureable fracture permeability decreased by up to 7 orders of magnitude over a corresponding triaxial confining stress range of 3.5 MPa to 30 MPa. These results show that increasing stress, depth, and time are all significant permeability inhibitors that may limit potential leakage through fractured caprock.« less

  14. Caprock integrity susceptibility to permeable fracture creation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frash, Luke; Carey, James William; Ickes, Timothy Lee

    Caprock leakage is of crucial concern for environmentally and economically sustainable development of carbon dioxide sequestration and utilization operations. One potential leakage pathway is through fractures or faults that penetrate the caprock. In this study, we investigate the permeability induced by fracturing initially intact Marcellus shale outcrop specimens at stressed conditions using a triaxial direct-shear method. Measurements of induced permeability, fracture geometry, displacement, and applied stresses were all obtained at stressed conditions to investigate the coupled processes of fracturing and fluid flow as may occur in the subsurface. Fracture geometry was directly observed at stressed conditions using X-ray radiography video.more » Numerical simulation was performed to evaluate the stress distribution developed in the experiments. Our experiments show that permeability induced by fracturing is strongly dependent on the stresses at which the fractures are created, the magnitude of shearing displacement, and the duration of flow. The strongest permeability contrast was observed when comparing specimens fractured at low stress to others fractured at higher stress. Measureable fracture permeability decreased by up to 7 orders of magnitude over a corresponding triaxial confining stress range of 3.5 MPa to 30 MPa. These results show that increasing stress, depth, and time are all significant permeability inhibitors that may limit potential leakage through fractured caprock.« less

  15. Subtask 12D3: Fracture properties of V-5Cr-5Ti Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Hamilton, M.L.; Jones, R.H.

    1995-03-01

    The purpose of this research is to investigate the effect of heat treatment on microstructure and fracture toughness of a V-5Cr-5Ti alloy in the range -50-100{degrees}C. Fracture toughness and impact tests were performed on a V-5Cr-5Ti alloy. Specimens annealed at 1125{degrees}C for 1 h and furnace cooled in a vacuum of 1.33 x 10{sup -5} Pa were brittle at room temperature (RT) and experienced a mixture of intergranular and cleavage fracture. Fracture toughness (J{sub IQ}) at RT was 52 kJ/m{sup 2} and the impact fracture energy (IFE) was 6 J. The IFE at -100{degrees}C was only 1 J. While specimensmore » exhibited high fracture toughness at 100{degrees}C (J{sub IQ} is 485 kj/m{sup 2}), fracture was a mixture of dimple and intergranular failure, with intergranular fracture making up 40% of the total fracture surface. The ductile to brittle transition temperature (DBTT) was estimated to be about 20{degrees}C. When some specimens were given an additional annealing at 890{degrees}C for 24 h, they became very ductile at RT and fractured by microvoid coalescence. The J{sub IQ} value increased from 52 kJ/m{sup 2} to {approximately}1100 kJ/m{sup 2}. The impact test failed to fracture specimens at RT due to a large amount of plastic deformation. 7 refs., 1 fig., 6 tabs.« less

  16. The Applications of Finite Element Analysis in Proximal Humeral Fractures.

    PubMed

    Ye, Yongyu; You, Wei; Zhu, Weimin; Cui, Jiaming; Chen, Kang; Wang, Daping

    2017-01-01

    Proximal humeral fractures are common and most challenging, due to the complexity of the glenohumeral joint, especially in the geriatric population with impacted fractures, that the development of implants continues because currently the problems with their fixation are not solved. Pre-, intra-, and postoperative assessments are crucial in management of those patients. Finite element analysis, as one of the valuable tools, has been implemented as an effective and noninvasive method to analyze proximal humeral fractures, providing solid evidence for management of troublesome patients. However, no review article about the applications and effects of finite element analysis in assessing proximal humeral fractures has been reported yet. This review article summarized the applications, contribution, and clinical significance of finite element analysis in assessing proximal humeral fractures. Furthermore, the limitations of finite element analysis, the difficulties of more realistic simulation, and the validation and also the creation of validated FE models were discussed. We concluded that although some advancements in proximal humeral fractures researches have been made by using finite element analysis, utility of this powerful tool for routine clinical management and adequate simulation requires more state-of-the-art studies to provide evidence and bases.

  17. Patient factors associated with increased acute care costs of hip fractures: a detailed analysis of 402 patients.

    PubMed

    Aigner, R; Meier Fedeler, T; Eschbach, D; Hack, J; Bliemel, C; Ruchholtz, S; Bücking, B

    2016-12-01

    The aim of the present study was to identify patient factors associated with higher costs in hip fracture patients. The mean costs of a prospectively observed sample of 402 patients were 8853 €. The ASA score, Charlson comorbidity index, and fracture location were associated with increased costs. Fractures of the proximal end of the femur (hip fractures) are of increasing incidence due to demographic changes. Relevant co-morbidities often present in these patients cause high complication rates and prolonged hospital stays, thus leading to high costs of acute care. The aim of this study was to perform a precise cost analysis of the actual hospital costs of hip fractures and to identify patient factors associated with increased costs. The basis of this analysis was a prospectively observed single-center trial, which included 402 patients with fractures of the proximal end of the femur. All potential cost factors were recorded as accurately as possible for each of the 402 patients individually, and statistical analysis was performed to identify associations between pre-existing patient factors and acute care costs. The mean total acute care costs per patient were 8853 ± 5676 € with ward costs (5828 ± 4294 €) and costs for surgical treatment (1972 ± 956 €) representing the major cost factors. The ASA score, Charlson comorbidity index, and fracture location were identified as influencing the costs of acute care for hip fracture treatment. Hip fractures are associated with high acute care costs. This study underlines the necessity of sophisticated risk-adjusted payment models based on specific patient factors. Economic aspects should be an integral part of future hip fracture research due to limited health care resources.

  18. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  19. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities.

    PubMed

    Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.

  20. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities

    PubMed Central

    Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617

  1. Uncertainty Analysis of Simulated Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.

    2012-12-01

    among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Damage, crack growth and fracture characteristics of nuclear grade graphite using the Double Torsion technique

    NASA Astrophysics Data System (ADS)

    Becker, T. H.; Marrow, T. J.; Tait, R. B.

    2011-07-01

    The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.

  3. A proposed approach to the application of nonlinear irreversible thermodynamics to fracture in composite materials

    NASA Technical Reports Server (NTRS)

    Lindenmeyer, P. H.

    1983-01-01

    The fracture criteria upon which most fracture mechanics is based involves an energy balance that is not appropriate for the fracture mechanics of viscoelastic materials such as polymer matrix composites. A more appropriate criterion based upon nonequilibrium thermodynamics and involving a power balance rather than an energy balance is proposed. This crierion is based upon a reformulation of the second law of thermodynamics which focuses attention on the total Legendre transform of energy expressed as a functional over time and space. This excess energy functional can be shown to be equivalent to the Rice J integral if the only irreversible process is the propogation of a single crack completely through the thickness of the specimen and if the crack propogation is assured to be independent of time. For the more general case of more than one crack in a viscoelastic medium integration over both time and space is required. Two experimentally measurable parameters are proposed which should permit the evaluation of this more general fracture criterion.

  4. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  5. Proton-pump inhibitors and risk of fractures: an update meta-analysis.

    PubMed

    Zhou, B; Huang, Y; Li, H; Sun, W; Liu, J

    2016-01-01

    To identify the relationship between proton-pump inhibitors (PPIs) and the risk of fracture, we conducted an update meta-analysis of observational studies. Results showed that PPI use was associated with a modestly increased risk of hip, spine, and any-site fracture. Many studies have investigated the association of proton-pump inhibitors (PPIs) with fracture risk, but the results have been inconsistent. To evaluate this question, we performed a meta-analysis of relevant observational studies. A systematic literature search up to February 2015 was performed in PubMed. We combined relative risks (RRs) for fractures using random-effects models and conducted subgroup and stratified analyses. Eighteen studies involving a total of 244,109 fracture cases were included in this meta-analysis. Pooled analysis showed that PPI use could moderately increase the risk of hip fracture [RR = 1.26, 95 % confidence intervals (CIs) 1.16–1.36]. There was statistically significant heterogeneity among studies (p < 0.001; I 2 = 71.9 %). After limiting to cohort studies, there was also a moderate increase in hip fracture risk without evidence of study heterogeneity. Pooling revealed that short-term use (<1 year) and longer use (>1 year) were similarly associated with increased risk of hip fracture. Furthermore, a moderately increased risk of spine (RR = 1.58, 95 % CI 1.38–1.82) and any-site fracture (RR = 1.33, 95 % CI 1.15–1.54) was also found among PPI users. In this update meta-analysis of observational studies, PPI use modestly increased the risk of hip, spine, and any-site fracture, but no evidence of duration effect in subgroup analysis.

  6. New software for 3D fracture network analysis and visualization

    NASA Astrophysics Data System (ADS)

    Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.

    2013-12-01

    This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  7. jAMVLE, a New Integrated Molecular Visualization Learning Environment

    ERIC Educational Resources Information Center

    Bottomley, Steven; Chandler, David; Morgan, Eleanor; Helmerhorst, Erik

    2006-01-01

    A new computer-based molecular visualization tool has been developed for teaching, and learning, molecular structure. This java-based jmol Amalgamated Molecular Visualization Learning Environment (jAMVLE) is platform-independent, integrated, and interactive. It has an overall graphical user interface that is intuitive and easy to use. The…

  8. The dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1993-08-01

    The extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied to one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks, and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elastoplastic behavior is modeled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral, and/or triangular cells. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analyzed and the results are compared with others available in the literature. J-type integrals are calculated.

  9. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum

  10. Analysis of delamination related fracture processes in composites

    NASA Technical Reports Server (NTRS)

    Armanios, Erian A.

    1988-01-01

    Delamination related fracture processes in composite materials are discussed. Thermal and moisture influences on the free-edge delamination of laminated composites, fracture analysis of local delaminations in laminated composites, and strain energy release rates in belts are among the topics covered.

  11. Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter

    PubMed Central

    Dicken, A. J.; Evans, J. P. O.; Rogers, K. D.; Stone, N.; Greenwood, C.; Godber, S. X.; Clement, J. G.; Lyburn, I. D.; Martin, R. M.; Zioupos, P.

    2016-01-01

    Osteoporotic fractures present a significant social and economic burden, which is set to rise commensurately with the aging population. Greater understanding of the physicochemical differences between osteoporotic and normal conditions will facilitate the development of diagnostic technologies with increased performance and treatments with increased efficacy. Using coherent X-ray scattering we have evaluated a population of 108 ex vivo human bone samples comprised of non-fracture and fracture groups. Principal component fed linear discriminant analysis was used to develop a classification model to discern each condition resulting in a sensitivity and specificity of 93% and 91%, respectively. Evaluating the coherent X-ray scatter differences from each condition supports the hypothesis that a causal physicochemical change has occurred in the fracture group. This work is a critical step along the path towards developing an in vivo diagnostic tool for fracture risk prediction. PMID:27363947

  12. Coffee consumption and risk of fractures: a meta-analysis

    PubMed Central

    Liu, Huifang; Yao, Ke; Zhang, Wenjie; Zhou, Jun; Wu, Taixiang

    2012-01-01

    Introduction Recent studies have indicated higher risk of fractures among coffee drinkers. To quantitatively assess the association between coffee consumption and the risk of fractures, we conducted this meta-analysis. Material and methods We searched MEDLINE and EMBASE for prospective studies reporting the risk of fractures with coffee consumption. Quality of included studies was assessed with the Newcastle Ottawa scale. We conducted a meta-analysis and a cumulative meta-analysis of relative risk (RR) for an increment of one cup of coffee per day, and explored the potential dose-response relationship. Sensitivity analysis was performed where statistical heterogeneity existed. Results We included 10 prospective studies covering 214,059 participants and 9,597 cases. There was overall 3.5% higher fracture risk for an increment of one cup of coffee per day (RR = 1.035, 95% CI: 1.019-1.052). Pooled RRs were 1.049 (95% CI: 1.022-1.077) for women and 0.910 (95% CI: 0.873-0.949) for men. Among women, RR was 1.055 (95% CI: 0.999-1.114) for younger participants, and 1.047 (95% CI: 1.016-1.080) for older ones. Cumulative meta-analysis indicated that risk estimates reached a stabilization level (RR = 1.035, 95% CI: 1.019-1.052), and it revealed a positive dose-response relationship between coffee consumption and risk of fractures either for men and women combined or women specifically. Conclusions This meta-analysis suggests an overall harm of coffee intake in increasing the risk of fractures, especially for women. But current data are insufficient to reach a convincing conclusion and further research needs to be conducted. PMID:23185185

  13. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2012-05-01

    Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone

  14. Diabetes mellitus and risk of hip fractures: a meta-analysis.

    PubMed

    Fan, Y; Wei, F; Lang, Y; Liu, Y

    2016-01-01

    This meta-analysis revealed that diabetic adults had a twofold greater risk of hip fractures compared with non-diabetic populations, and this association was more pronounced in type 1 diabetes. The relationship between diabetes mellitus and risk of hip fracture yielded conflicting results. We conducted a meta-analysis to investigate the association between diabetes mellitus and the risk of hip fractures based on observational studies. We conducted a systematic literature search of PubMed and Embase databases through May 2015. We selected cohort and case-control studies providing at least age-adjusted risk ratio (RR) and corresponding 95 % confidence intervals (CI) of hip fractures among diabetic and non-diabetic subjects. Moreover, we pooled the female-to-male RR of hip fractures from studies that reported gender-specific risk estimate in a single study. Twenty-one studies involving 82,293 hip fracture events among 6,995,272 participants were identified. Diabetes mellitus was associated with an increased risk of hip fractures (RR 2.07; 95 % CI 1.83-2.33) in a random effects model. Subgroup analysis indicated that excess risk of hip fracture was more pronounced in type 1 diabetes (RR 5.76; 95 % CI 3.66-9.07) than that in type 2 diabetes (RR 1.34; 95 % CI 1.19-1.51). The pooled female-to-male RR of hip fractures was 1.09 (95 % CI 0.93-1.28). Individuals with diabetes mellitus have an excessive risk of hip fractures, and this relationship is more pronounced in type 1 diabetes. The association between diabetes and hip fracture risk is similar in men and women.

  15. Clock Scan Protocol for Image Analysis: ImageJ Plugins.

    PubMed

    Dobretsov, Maxim; Petkau, Georg; Hayar, Abdallah; Petkau, Eugen

    2017-06-19

    The clock scan protocol for image analysis is an efficient tool to quantify the average pixel intensity within, at the border, and outside (background) a closed or segmented convex-shaped region of interest, leading to the generation of an averaged integral radial pixel-intensity profile. This protocol was originally developed in 2006, as a visual basic 6 script, but as such, it had limited distribution. To address this problem and to join similar recent efforts by others, we converted the original clock scan protocol code into two Java-based plugins compatible with NIH-sponsored and freely available image analysis programs like ImageJ or Fiji ImageJ. Furthermore, these plugins have several new functions, further expanding the range of capabilities of the original protocol, such as analysis of multiple regions of interest and image stacks. The latter feature of the program is especially useful in applications in which it is important to determine changes related to time and location. Thus, the clock scan analysis of stacks of biological images may potentially be applied to spreading of Na + or Ca ++ within a single cell, as well as to the analysis of spreading activity (e.g., Ca ++ waves) in populations of synaptically-connected or gap junction-coupled cells. Here, we describe these new clock scan plugins and show some examples of their applications in image analysis.

  16. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  17. Improved 1-year mortality in elderly patients with a hip fracture following integrated orthogeriatric treatment.

    PubMed

    Folbert, E C; Hegeman, J H; Vermeer, M; Regtuijt, E M; van der Velde, D; Ten Duis, H J; Slaets, J P

    2017-01-01

    To improve the quality of care and reduce the healthcare costs of elderly patients with a hip fracture, surgeons and geriatricians collaborated intensively due to the special needs of these patients. After treatment at the Centre for Geriatric Traumatology (CvGT), we found a significant decrease in the 1-year mortality rate in frail elderly patients compared to the historical control patients who were treated with standard care. The study aimed to evaluate the effect of an orthogeriatric treatment model on elderly patients with a hip fracture on the 1-year mortality rate and identify associated risk factors. This study included patients, aged 70 years and older, who were admitted with a hip fracture and treated in accordance with the integrated orthogeriatric treatment model of the CvGT at the Hospital Group Twente (ZGT) between April 2008 and October 2013. Data registration was carried out by several disciplines using the clinical pathways of the CvGT database. A multivariate logistic regression analysis was used to identify independent risk factors for 1-year mortality. The outcome measures for the 850 patients were compared with those of 535 historical control patients who were managed under standard care between October 2002 and March 2008. The analysis demonstrated that the 1-year mortality rate was 23.2 % (n = 197) in the CvGT group compared to 35.1 % (n = 188) in the historical control group (p < 0.001). Independent risk factors for 1-year mortality were male gender (odds ratio (OR) 1.68), increasing age (OR 1.06), higher American Society of Anesthesiologists (ASA) score (ASA 3 OR 2.43, ASA 4-5 OR 7.05), higher Charlson Comorbidity Index (CCI) (CCI 1-2 OR 1.46, CCI 3-4 OR 1.59, CCI 5 OR 2.71), malnutrition (OR 2.01), physical limitations in activities of daily living (OR 2.35), and decreasing Barthel Index (BI) (OR 0.96). After integrated orthogeriatric treatment, a significant decrease was seen in the 1-year mortality rate in the frail

  18. Inelastic and Dynamic Fracture and Stress Analyses

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.

  19. Development of Fracture Mechanics Maps for Composite Materials. Volume 4.

    DTIC Science & Technology

    1985-12-01

    CONSTITUENTS, ETC.) ON NOTCH SENSITIVITY. A LIST OF FRACTURE MODELS AUTHORS REF, ABBRV. CRITERION HOLE SLITS M.E. WADDOUPS J.R. EISENMANN 3 WEK LEFM / / B.E...fracture model) SCF Stress Concentration Factor SIF Stress Intensity Factor WEK Waddoups- Eisenmann -Kaminski (-fracture model) 9 WN Whitney-Nuismer...Technomic Pub. Co., Inc., Stamford, Conn., 1968, pp. 20-43. 3. M.E. Waddoups, J.R. Eisenmann and B.E. Kaminski, "Macroscopic Fracture Mechanics of

  20. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  1. Biomechanical analysis on fracture risk associated with bone deformity

    NASA Astrophysics Data System (ADS)

    Kamal, Nur Amalina Nadiah Mustafa; Som, Mohd Hanafi Mat; Basaruddin, Khairul Salleh; Daud, Ruslizam

    2017-09-01

    Osteogenesis Imperfecta (OI) is a disease related to bone deformity and is also known as `brittle bone' disease. Currently, medical personnel predict the bone fracture solely based on their experience. In this study, the prediction for risk of fracture was carried out by using finite element analysis on the simulated OI bone of femur. The main objective of this research was to analyze the fracture risk of OI-affected bone with respect to various loadings. A total of 12 models of OI bone were developed by applying four load cases and the angle of deformation for each of the models was calculated. The models were differentiated into four groups, namely standard, light, mild and severe. The results show that only a small amount of load is required to increase the fracture risk of the bone when the model is tested with hopping conditions. The analysis also shows that the torsional load gives a small effect to the increase of the fracture risk of the bone.

  2. Increased fracture toughness of graphite-epoxy composites through intermittent interlaminar bonding. [Mylar interlayer

    NASA Technical Reports Server (NTRS)

    Felbeck, D. K.; Jea, L. C.

    1980-01-01

    Intermittent interlaminar bonding, which can lead to a large increase in the fracture surface area, was achieved through the introduction of thin perforated Mylar between the layers of a multi-layer continuous-filament graphite-epoxy composite. For the best optimum condition included in this study, fracture toughness was increased from about 100 kJ/sq m for untreated specimens to an average of about 500 kJ/sq m, while tensile strength dropped from 500 MPa to 400 MPa, and elastic modulus remained the same at about 75 GPa. An approximate analysis is presented to explain the observed improvement in toughness.

  3. Acoustic emission analysis of crack resistance and fracture behavior of 20GL steel having the gradient microstructure and strength

    NASA Astrophysics Data System (ADS)

    Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.

    2017-07-01

    The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.

  4. A review of the effect of a/W ratio on fracture toughness (I) —Experimental investigation in EPFM

    NASA Astrophysics Data System (ADS)

    Li, Qing-Fen; Zheng, Wei; Shu, Hai-Sheng

    2005-03-01

    Many experimental investigations have previously been performed and recently done on different shipbuilding structural steels where the specimens size and crack depth/specimen width ( a/W) were varied. A series of interesting results have been gained. It is worthwhile to have a review on the effect of a/W ratio on fracture toughness, and further theoretical analysis is necessary. In this paper, experimental work in elasticplastic fracture mechanics (EPFM) was discussed. Tests had been carried out on 10 kinds of strength steels. Results showed that J i and δ1 values increased with decreasing a/W when a/W<0.3 for three-point bend specimens and that shallow crack specimens which have less constrained flow field give markedly higher values of toughness than deeply notched specimens. However, for a/W>0.3, the toughness was found to be independent of a/W. Slip line field analysis shows that for shallow cracks, the hydrostatic stress is lower than that from standard deeply cracked bend specimen which develops a high level of crack tip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservative approach when applied to structure defects especially if initiation values of COD/ J-integral are used.

  5. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    NASA Astrophysics Data System (ADS)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that

  6. A decision analysis framework for estimating the potential hazards for drinking water resources of chemicals used in hydraulic fracturing fluids.

    PubMed

    Yost, Erin E; Stanek, John; Burgoon, Lyle D

    2017-01-01

    Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one

  7. A stereological analysis of ductile fracture by microvoid coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, J.H., Jr.

    A stereological analysis for ductile fracture by microvoid coalescence is presented based upon the model of Widgery and Knott which postulates that microvoids link with a propagating crack if they lie within a certain interaction distance of its plane. A 3- dimensional analytical expression for dimple density and shape is developed from this model using projected image relationships for a thin slab. Void nucleation and growth are incorporated into the analysis using numerical integration of the Rice-Tracey growth equation over the appropriate strain range. An evaluation of the stereological approach is given using tensile data from a spheroidized 1045 steelmore » to predict the effect of hydrostatic pressure upon the dimple density. The analysis, which is consistent with observed correlations between dimple density and second phase particle density, is shown to provide an estimate of dimple size and microroughness parameter used in local stain models for microvoid coalescence. 24 refs., 10 figs.« less

  8. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-05-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  9. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-01-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  10. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    NASA Technical Reports Server (NTRS)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  11. Scanning electron microscopy fractography analysis of fractured hollow implants.

    PubMed

    Sbordone, Ludovico; Traini, Tonino; Caputi, Sergio; Scarano, Antonio; Bortolaia, Claudia; Piattelli, Adriano

    2010-01-01

    Fracture of the implant is one of the possible complications affecting dental implants; it is a rare event but of great clinical relevance. The aim of the present study was to perform a scanning electron microscopy (SEM) fractography evaluation of 7 International Team for oral Implantology (ITI) hollow implants removed because of fracture. The most common clinical risk factors, such as malocclusion, bruxism, and cantilevers on the prosthesis, were absent. Seven fractured ITI hollow implants were retrieved from 5 patients and were analyzed with the use of SEM. SEM analysis showed typical signs of a cleavage-type fracture. Fractures could be due to an association of multiple factors such as fatigue, inner defects, material electrochemical problems, and tensocorrosion.

  12. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  13. A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity

    NASA Astrophysics Data System (ADS)

    Runkel, Anthony C.; Tipping, Robert G.; Meyer, Jessica R.; Steenberg, Julia R.; Retzler, Andrew J.; Parker, Beth L.; Green, Jeff A.; Barry, John D.; Jones, Perry M.

    2018-06-01

    A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.

  14. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  15. Cost-effectiveness analysis of fixation options for intertrochanteric hip fractures.

    PubMed

    Swart, Eric; Makhni, Eric C; Macaulay, William; Rosenwasser, Melvin P; Bozic, Kevin J

    2014-10-01

    Intertrochanteric hip fractures are a major source of morbidity and financial burden, accounting for 7% of osteoporotic fractures and costing nearly $6 billion annually in the United States. Traditionally, "stable" fracture patterns have been treated with an extramedullary sliding hip screw whereas "unstable" patterns have been treated with the more expensive intramedullary nail. The purpose of this study was to identify parameters to guide cost-effective implant choices with use of decision-analysis techniques to model these common clinical scenarios. An expected-value decision-analysis model was constructed to estimate the total costs and health utility based on the choice of a sliding hip screw or an intramedullary nail for fixation of an intertrochanteric hip fracture. Values for critical parameters, such as fixation failure rate, were derived from the literature. Three scenarios were evaluated: (1) a clearly stable fracture (AO type 31-A1), (2) a clearly unstable fracture (A3), or (3) a fracture with questionable stability (A2). Sensitivity analysis was performed to test the validity of the model. The fixation failure rate and implant cost were the most important factors in determining implant choice. When the incremental cost for the intramedullary nail was set at the median value ($1200), intramedullary nailing had an incremental cost-effectiveness ratio of $50,000/quality-adjusted life year when the incremental failure rate of sliding hip screws was 1.9%. When the incremental failure rate of sliding hip screws was >5.0%, intramedullary nails dominated with lower cost and better health outcomes. The sliding hip screw was always more cost-effective for A1 fractures, and the intramedullary nail always dominated for A3 fractures. As for A2 fractures, the sliding hip screw was cost-effective in 70% of the cases, although this was highly sensitive to the failure rate. Sliding hip screw fixation is likely more cost-effective for stable intertrochanteric fractures

  16. Directional semivariogram analysis to identify and rank controls on the spatial variability of fracture networks

    NASA Astrophysics Data System (ADS)

    Hanke, John R.; Fischer, Mark P.; Pollyea, Ryan M.

    2018-03-01

    In this study, the directional semivariogram is deployed to investigate the spatial variability of map-scale fracture network attributes in the Paradox Basin, Utah. The relative variability ratio (R) is introduced as the ratio of integrated anisotropic semivariogram models, and R is shown to be an effective metric for quantifying the magnitude of spatial variability for any two azimuthal directions. R is applied to a GIS-based data set comprising roughly 1200 fractures, in an area which is bounded by a map-scale anticline and a km-scale normal fault. This analysis reveals that proximity to the fault strongly influences the magnitude of spatial variability for both fracture intensity and intersection density within 1-2 km. Additionally, there is significant anisotropy in the spatial variability, which is correlated with trends of the anticline and fault. The direction of minimum spatial correlation is normal to the fault at proximal distances, and gradually rotates and becomes subparallel to the fold axis over the same 1-2 km distance away from the fault. We interpret these changes to reflect varying scales of influence of the fault and the fold on fracture network development: the fault locally influences the magnitude and variability of fracture network attributes, whereas the fold sets the background level and structure of directional variability.

  17. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation.

    PubMed

    Rafiei, Arash; Hakky, Tariq S; Martinez, Daniel; Parker, Justin; Carrion, Rafael

    2014-12-01

    Conditions mimicking penile fracture are extremely rare and have been seldom described. To describe a patient with false penile fracture who presented with superficial dorsal vein injury/thrombosis managed with ligation. A 33-year-old male presented with penile swelling and ecchymosis after intercourse. A penile ultrasound demonstrated a thrombosed superficial dorsal vein but also questionable fracture of the tunica albuginea. As the thrombus was expanding, he was emergently taken to the operating room for exploration and required only dorsal venous ligation. Postoperatively, patient's Sexual Health Inventory for Men score was 23, and he had no issues with erections or sexual intercourse. Early exploration of patients with suspected penile fracture provides excellent results with maintenance of erectile function. Also, in the setting of dorsal vein thrombosis, ligation preserves the integrity of the penile tissues and avoids unnecessary complications from conservative management. Rafiei A, Hakky TS, Martinez D, Parker J, and Carrion R. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation.

  18. TRITIUM AND DECAY HELIUM EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL WELDMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M; Scott West, S; Michael Tosten, M

    2007-08-31

    J-Integral fracture toughness tests were conducted on tritium-exposed-and-aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in {approx}1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greater inmore » weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite interfaces were embrittled by tritium and decay helium. Fracture toughness values decreased for both base metals and weldments with increasing decay helium content in the range tested (50-200 appm).« less

  19. An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bisdom, K.; Nick, H. M.; Bertotti, G.

    2017-06-01

    Fluid flow in naturally fractured reservoirs is often controlled by subseismic-scale fracture networks. Although the fracture network can be partly sampled in the direct vicinity of wells, the inter-well scale network is poorly constrained in fractured reservoir models. Outcrop analogues can provide data for populating domains of the reservoir model where no direct measurements are available. However, extracting relevant statistics from large outcrops representative of inter-well scale fracture networks remains challenging. Recent advances in outcrop imaging provide high-resolution datasets that can cover areas of several hundred by several hundred meters, i.e. the domain between adjacent wells, but even then, data from the high-resolution models is often upscaled to reservoir flow grids, resulting in loss of accuracy. We present a workflow that uses photorealistic georeferenced outcrop models to construct geomechanical and fluid flow models containing thousands of discrete fractures covering sufficiently large areas, that does not require upscaling to model permeability. This workflow seamlessly integrates geomechanical Finite Element models with flow models that take into account stress-sensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix permeabilities shows that conventional upscaling to effective grid properties leads to potential underestimation of the true permeability and the orientation of principal permeabilities. The presented workflow yields the full permeability tensor model of discrete fracture networks with stress-induced apertures, instead of relying on effective properties as most conventional flow models do.

  20. Fracture behavior of glass fiber reinforced polymer composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avci, A.; Arikan, H.; Akdemir, A

    2004-03-01

    Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such asmore » initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.« less

  1. Men's health-seeking behaviours regarding bone health after a fragility fracture: a secondary analysis of qualitative data.

    PubMed

    Sale, J E M; Ashe, M C; Beaton, D; Bogoch, E; Frankel, L

    2016-10-01

    In our qualitative study, men with fragility fractures described their spouses as playing an integral role in their health behaviours. Men also described taking risks, preferring not to dwell on the meaning of the fracture and/or their bone health. Communication strategies specific to men about bone health should be developed. We examined men's experiences and behaviours regarding bone health after a fragility fracture. We conducted a secondary analysis of five qualitative studies. In each primary study, male and female participants were interviewed for 1-2 h and asked to describe recommendations they had received for bone health and what they were doing about those recommendations. Maintaining the phenomenological approach of the primary studies, the transcripts of all male participants were re-analyzed to highlight experiences and behaviours particular to men. Twenty-two men (50-88 years old) were identified. Sixteen lived with a wife, male partner, or family member and the remaining participants lived alone. Participants had sustained hip fractures (n = 7), wrist fractures (n = 5), vertebral fractures (n = 2) and fractures at other locations (n = 8). Fourteen were taking antiresorptive medication at the time of the interview. In general, men with a wife/female partner described these women as playing an integral role in their health behaviours, such as removing tripping hazards and organizing their medication regimen. While participants described giving up activities due to their bone health, they also described taking risks such as drinking too much alcohol and climbing ladders or deliberately refusing to adhere to bone health recommendations. Finally, men did not dwell on the meaning of the fracture and/or their bone health. Behaviours consistent with those shown in other studies on men were described by our sample. We recommend that future research address these findings in more detail so that communication strategies specific to men about

  2. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  3. INTEGRAL detection of continued hard X-ray emission from MAXI J0911-655

    NASA Astrophysics Data System (ADS)

    Victor, J.-G.; Kuulkers, E.; Sidoli, L.; Sanchez-Fernandez, C.; Watanabe, K.; Pavan, L.; Bozzo, E.

    2017-05-01

    During the observations performed in the direction of the Carina Region and IGR J11014-6103 between 2017 May 8 at 04:50 and May 24 at 17:39, INTEGRAL detected activity from the accreting millisecond X-ray pulsar (AMXP) MAXI J0911-655 (Sanna et al., 2017, A & A, 598, 34; Atel #8872, #8884, #8914, #8971, #8986, #9738, #9740).

  4. biochem4j: Integrated and extensible biochemical knowledge through graph databases.

    PubMed

    Swainston, Neil; Batista-Navarro, Riza; Carbonell, Pablo; Dobson, Paul D; Dunstan, Mark; Jervis, Adrian J; Vinaixa, Maria; Williams, Alan R; Ananiadou, Sophia; Faulon, Jean-Loup; Mendes, Pedro; Kell, Douglas B; Scrutton, Nigel S; Breitling, Rainer

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and-crucially-the relationships between them. Such a resource should be extensible, such that newly discovered relationships-for example, those between novel, synthetic enzymes and non-natural products-can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists.

  5. biochem4j: Integrated and extensible biochemical knowledge through graph databases

    PubMed Central

    Batista-Navarro, Riza; Dunstan, Mark; Jervis, Adrian J.; Vinaixa, Maria; Ananiadou, Sophia; Faulon, Jean-Loup; Kell, Douglas B.

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and–crucially–the relationships between them. Such a resource should be extensible, such that newly discovered relationships–for example, those between novel, synthetic enzymes and non-natural products–can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists. PMID:28708831

  6. Penile Fracture: A Meta-Analysis.

    PubMed

    Amer, Tarik; Wilson, Rebekah; Chlosta, Piotr; AlBuheissi, Salah; Qazi, Hasan; Fraser, Michael; Aboumarzouk, Omar M

    2016-01-01

    To review the causes and management of penile fracture and to compare between surgical and conservative management as well as immediate and delayed interventions in terms of overall and specific complications. A search of all reported literature was conducted for all articles reporting on the management and outcomes of penile fractures. Full texts of relevant articles were obtained and screened according to the inclusion criteria. Outcomes measures were numbers of patients receiving surgical or conservative management, aetiology of fracture, length of admission, complications as well as the specifics of diagnostic approaches and operative management. Data was collated and where possible meta-analysed using Revman software. A total of 58 relevant studies involving 3,213 patients demonstrated that intercourse accounts for only 48% of cases with masturbation and forced flexion accounting for 39%. Meta-analysis shows that surgical intervention was associated with significantly fewer complications vs. conservative management (p < 0.000001). Surgical intervention results in significantly less erectile dysfunction (ED), curvature and painful erection than conservative management. There was no significant difference in the number of patients developing plaques/nodules (p = 0.94). Meta-analysis shows that overall early surgery is preferable to delayed surgery but that rates of ED are not significantly different. Early surgical intervention is associated with significantly fewer complications than conservative management or delayed surgery. The combined outcome of rapid diagnosis by history and clinical examination and swift surgical intervention is key for reconstruction with minimal long-term complications. © 2016 S. Karger AG, Basel.

  7. Rock fracture skeleton tracing by image processing and quantitative analysis by geometry features

    NASA Astrophysics Data System (ADS)

    Liang, Yanjie

    2016-06-01

    In rock engineering, fracture measurement is important for many applications. This paper proposes a novel method for rock fracture skeleton tracing and analyzing. As for skeleton localizing, the curvilinear fractures are multiscale enhanced based on a Hessian matrix, after image binarization, and clutters are post-processed by image analysis; subsequently, the fracture skeleton is extracted via ridge detection combined with a distance transform and thinning algorithm, after which gap sewing and burrs removal repair the skeleton. In regard to skeleton analyzing, the roughness and distribution of a fracture network are respectively described by the fractal dimensions D s and D b; the intersection and fragmentation of a fracture network are respectively characterized by the average number of ends and junctions per fracture N average and the average length per fracture L average. Three rock fracture surfaces are analyzed for experiments and the results verify that both the fracture tracing accuracy and the analysis feasibility are satisfactory using the new method.

  8. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.

    PubMed

    Cole, Jantzen C; Lemons, Jack E; Eberhardt, Alan W

    2002-01-01

    Pitting and delamination remain causative factors of polyethylene failure in total knee replacement. Gamma irradiation induces cross linking in ultra-high-molecular-weight polyethylene, which has been shown to improve wear resistance. Irradiation may reduce fracture toughness and fatigue strength, however, and the effects of irradiation are dependent upon the resin, processing technique, and radiation dose. The effects of varying levels of gamma irradiation (0, 33, 66, and 100 kGy) on the fracture toughness and fatigue-crack resistance of UHMWPE, isostatically molded from 1900H and GUR 1050 resins, were examined. Paris law regressions were performed to quantify fatigue-crack propagation rates as functions of change in stress intensity, and J-integral methods were used to quantify the elastic-plastic fracture toughness. The results indicated that gamma irradiation reduced the resistance of both materials to fatigue-crack growth, and that the reductions were radiation dosage and resin dependent. Irradiation at any level was detrimental to the fracture toughness of the 1900H specimens. Irradiation at 33 kGy increased fracture toughness for the GUR 1050 specimens, and substantial reductions were observed only at the highest irradiation level. Scanning electron microscopy of the fracture surface revealed diamond-like fracture patterns of the nonirradiated specimens indicative of ductile, multilevel fracture. Pronounced striations were apparent on these fracture surfaces, oriented perpendicular to the direction of crack growth. The striations appeared as folds in surface layers of the GUR 1050 specimens. At the highest irradiation levels, the striations were nearly eliminated on the fracture surfaces of the 1900H specimens, and were markedly less severe for the GUR 1050. These results demonstrated that at higher irradiation levels the materials became more brittle in fatigue, with less ductile folding and tearing of the fracture surfaces. Copyright 2002 Wiley Periodicals

  9. Ceramic-on-ceramic bearing fractures in total hip arthroplasty: an analysis of data from the National Joint Registry.

    PubMed

    Howard, D P; Wall, P D H; Fernandez, M A; Parsons, H; Howard, P W

    2017-08-01

    Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used, but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR) for England, Wales, Northern Ireland and the Isle of Man. We analysed data on 223 362 bearings from 111 681 primary CoC THAs and 182 linked revisions for bearing fracture recorded in the NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. A total of 222 852 bearings (99.8%) were CeramTec Biolox products. Revisions for fracture were linked to seven of 79 442 (0.009%) Biolox Delta heads, 38 of 31 982 (0.119%) Biolox Forte heads, 101 of 80 170 (0.126%) Biolox Delta liners and 35 of 31 258 (0.112%) Biolox Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (chi-squared 68.0, p < 0.001). The highest fracture risk was observed in the 28 mm Biolox Forte subgroup (0.382%). There were no fractures in the 40 mm head group for either ceramic type. Liner thickness was not predictive of fracture (p = 0.67). Body mass index (BMI) was independently associated with revision for both head fractures (odds ratio (OR) 1.09 per unit increase, p = 0.031) and liner fractures (OR 1.06 per unit increase, p = 0.006). We report the largest independent study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low but previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased

  10. Effect of tritium and decay helium on the fracture toughness properties of stainless steel weldments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M. J.; West, S.; Tosten, M. H.

    2008-07-15

    J-Integral fracture toughness tests were conducted on tritium-exposed-and- aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in {approx}1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greatermore » in weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite phase was embrittled by tritium and decay helium. For both base metals and weldments, fracture toughness values decreased with increasing decay helium content in the range tested (50-800 appm). (authors)« less

  11. Hydraulic Fracturing Fluid Analysis for Regulatory Parameters - A Progress Report

    EPA Pesticide Factsheets

    This presentation is a progress report on the analysis of Hydraulic Fracturing Fluids for regulatory compounds outlined in the various US EPA methodologies. Fracturing fluids vary significantly in consistency and viscosity prior to fracturing. Due to the nature of the fluids the analytical challenges will have to be addressed. This presentation also outlines the sampling issues associated with the collection of dissolved gas samples.

  12. Influence of natural fractures on hydraulic fracture propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L.W.; Warpinski, N.R.

    Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principal in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found and to provide guidelines for predicting when this complex fracturing will occur.« less

  13. Influence of natural fractures on hydraulic fracture propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L.W.; Warpinski, N.R.

    Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principle in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found to an provide guidelines for predicting when this complex fracturing occurs.« less

  14. Fracturing and brittleness index analyses of shales

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    candidate for hydraulic fracturing while if we would rely on stress-strain data (BI2) the Whitby mudstone would be a very good candidate. We are aiming to perform these kind of measurements on a wide variety of shales with varying compositions and origins etc. and compare all results and come up with a better brittleness index, as well as link the brittleness indices to the fracturing behaviour seen in the samples. References: Holt, R., Fjaer, E., Nes, O. & Alassi, H., 2011. A shaly look at brittleness. 45th U.S. Rock Mechanics / Geomechanics Symposium, ARMA-11-366 Jarvie, D., Hill, J., Ruble, T. & Pollastro, R., 2007. Unconventional shale-gas system: The Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment. AAPG, 91(doi: 10.1306/12190606068), pp. 475-499. Jin, X., Shah, S. N., Rogiers, J.-C. & Zhang, B., 2014. Fraccability Evaluation in Shale Reservoirs - An Integrated Petrophysics and Geomechanics Approach. Woodlands, Texas, SPE.

  15. Carotenoids and risk of fracture: a meta-analysis of observational studies.

    PubMed

    Xu, Jiuhong; Song, Chunli; Song, Xiaochao; Zhang, Xi; Li, Xinli

    2017-01-10

    To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture.

  16. Fracture penis: an analysis of 26 cases.

    PubMed

    Pandyan, G V Soundra; Zaharani, Ahmed Bakeet; Al Rashid, Mohammed

    2006-01-29

    The aim of this study was to review the pattern of penile fracture occurrence, its clinical presentation, diagnosis, management, and outcome at our center. A retrospective analysis of 26 patients with penile fractures treated at our hospital from January 1997 to January 2005 was carried out. We noted an incidence of 3.5 cases per year, occurring more commonly in unmarried men. Of our study group, 28 episodes of penile fractures occurred in 26 patients. Hospital presentation after trauma varied from 2 h to 21 days. Masturbation was the main initiating causative factor and penile hematoma was the most common clinical finding. Nearly 81% noticed the characteristic click prior to the fracture. Clinical diagnosis was adequate in a majority of the cases. Midshaft fractures with right-sided laterality were more frequent in this series. The tear size ranged from 0.5-2.5 cm with a mean of 1.1 cm. All cases, but one, were treated by surgical repair using absorbable sutures. Out of three cases treated conservatively, two failed to respond and had to be treated surgically. False fracture with dorsal vein tear was present in two cases. Involvement of bilateral corpora was seen in one patient. Infection was the most common early complication, while pain with deviation was the late complication. In our experience, clinical findings are adequate enough to diagnose fracture penis in a majority of cases. Surgical exploration with repair of the tear is recommended both in early and delayed presentations. There was no noticeable relationship to the time of initial presentation or with the size and site of tear to the final outcome.

  17. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  18. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  19. Finite element analysis of history-dependent damage in time-dependent fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswamy, P.; Brust, F.W.; Ghadiali, N.D.

    1993-11-01

    The demands for structural systems to perform reliably under both severe and changing operating conditions continue to increase. Under these conditions time-dependent straining and history-dependent damage become extremely important. This work focuses on studying creep crack growth using finite element (FE) analysis. Two important issues, namely, (1) the use of history-dependent constitutive laws, and (2) the use of various fracture parameters in predicting creep crack growth, have both been addressed in this work. The constitutive model used here is the one developed by Murakami and Ohno and is based on the concept of a creep hardening surface. An implicit FEmore » algorithm for this model was first developed and verified for simple geometries and loading configurations. The numerical methodology developed here has been used to model stationary and growing cracks in CT specimens. Various fracture parameters such as the C[sub 1], C[sup *], T[sup *], J were used to compare the numerical predictions with experimental results available in the literature. A comparison of the values of these parameters as a function of time has been made for both stationary and growing cracks. The merit of using each of these parameters has also been discussed.« less

  20. Fracture overprinting history using Markov chain analysis: Windsor-Kennetcook subbasin, Maritimes Basin, Canada

    NASA Astrophysics Data System (ADS)

    Snyder, Morgan E.; Waldron, John W. F.

    2018-03-01

    The deformation history of the Upper Paleozoic Maritimes Basin, Atlantic Canada, can be partially unraveled by examining fractures (joints, veins, and faults) that are well exposed on the shorelines of the macrotidal Bay of Fundy, in subsurface core, and on image logs. Data were collected from coastal outcrops and well core across the Windsor-Kennetcook subbasin, a subbasin in the Maritimes Basin, using the circular scan-line and vertical scan-line methods in outcrop, and FMI Image log analysis of core. We use cross-cutting and abutting relationships between fractures to understand relative timing of fracturing, followed by a statistical test (Markov chain analysis) to separate groups of fractures. This analysis, previously used in sedimentology, was modified to statistically test the randomness of fracture timing relationships. The results of the Markov chain analysis suggest that fracture initiation can be attributed to movement along the Minas Fault Zone, an E-W fault system that bounds the Windsor-Kennetcook subbasin to the north. Four sets of fractures are related to dextral strike slip along the Minas Fault Zone in the late Paleozoic, and four sets are related to sinistral reactivation of the same boundary in the Mesozoic.

  1. Fractures of the Tibial Plateau Involve Similar Energies as the Tibial Pilon but Greater Articular Surface Involvement

    PubMed Central

    Dibbern, Kevin; Kempton, Laurence B.; Higgins, Thomas F.; Morshed, Saam; McKinley, Todd O.; Marsh, J. Lawrence; Anderson, Donald D.

    2016-01-01

    Patients with tibial pilon fractures have a higher incidence of post-traumatic osteoarthritis than those with fractures of the tibial plateau. This may indicate that pilon fractures present a greater mechanical insult to the joint than do plateau fractures. We tested the hypothesis that fracture energy and articular fracture edge length, two independent indicators of severity, are higher in pilon than plateau fractures. We also evaluated if clinical fracture classification systems accurately reflect severity. Seventy-five tibial plateau fractures and fifty-two tibial pilon fractures from a multi-institutional study were selected to span the spectrum of severity. Fracture severity measures were calculated using objective CT-based image analysis methods. The ranges of fracture energies measured for tibial plateau and pilon fractures were 3.2 to 33.2 Joules (J) and 3.6 to 32.2 J, respectively, and articular fracture edge lengths were 68.0 to 493.0 mm and 56.1 to 288.6 mm, respectively. There were no differences in the fracture energies between the two fracture types, but plateau fractures had greater articular fracture edge lengths (p<0.001). The clinical fracture classifications generally reflected severity, but there was substantial overlap of fracture severity measures between different classes. Clinical Significance Similar fracture energies with different degrees of articular surface involvement suggest a possible explanation for dissimilar rates of post-traumatic osteoarthritis for fractures of the tibial plateau compared to the tibial pilon. The substantial overlap of severity measures between different fracture classes may well have confounded prior clinical studies relying on fracture classification as a surrogate for severity. PMID:27381653

  2. Dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1995-01-01

    In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elasto-plastic behavior is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.

  3. Carotenoids and risk of fracture: a meta-analysis of observational studies

    PubMed Central

    Song, Xiaochao; Zhang, Xi; Li, Xinli

    2017-01-01

    To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture. PMID:27911854

  4. Radionuclide migration: laboratory experiments with isolated fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, R.S.; Thompson, J.L.; Maestas, S.

    Laboratory experiments examining flow and element migration in rocks containing isolated fractures have been initiated at the Los Alamos National Laboratory. Techniques are being developed to establish simple fracture flow systems which are appropriate to models using analytical solutions to the matrix diffusion-flow equations, such as those of I. Neretnieks [I. Neretnieks, Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation? J. Geophys. Res. 85, 4379 (1980).] These experiments are intended to be intermediate steps toward larger scale field experiments where it may become more difficult to establish and control the parameters important to nuclide migration in fracturedmore » media. Laboratory experiments have been run on fractures ranging in size from 1 to 20 cm in length. The hydraulic flow in these fractures was studied to provide the effective apertures. The flows established in these fracture systems are similar to those in the granite fracture flow experiments of Witherspoon et al. [P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Lawrence Berkeley Laboratory report LBL-9557 (October 1979).] Traced solutions containing {sup 85}Sr and {sup 137}Cs were flowed through fractures in Climax Stock granite and welded tuff (Bullfrog and Tram members, Yucca Mountain, Nevada Test Site). The results of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of K/sub d/. The results of the elutions through tuff, however, agree only if the K/sub d/ values used in the calculations are lower than the K/sub d/ values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff. 5 figures, 3 tables.« less

  5. Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers

    DTIC Science & Technology

    2016-01-01

    USER’S GUIDE Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in...Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers F.D. Day-Lewis, C.D. Johnson, J.H. Williams, C.L...are doomed to failure. DNAPL biodegradation charactrization and monitoring, remediation, fractured rock aquifers. Unclassified Unclassified UU UL 6

  6. Analysis of PITFL injuries in rotationally unstable ankle fractures.

    PubMed

    Warner, Stephen J; Garner, Matthew R; Schottel, Patrick C; Hinds, Richard M; Loftus, Michael L; Lorich, Dean G

    2015-04-01

    Reduction and stabilization of the syndesmosis in unstable ankle fractures is important for ankle mortise congruity and restoration of normal tibiotalar contact forces. Of the syndesmotic ligaments, the posterior inferior tibiofibular ligament (PITFL) provides the most strength for maintaining syndesmotic stability, and previous work has demonstrated the significance of restoring PITFL function when it remains attached to a posterior malleolus fracture fragment. However, little is known regarding the nature of a PITFL injury in the absence of a posterior malleolus fracture. The goal of this study was to describe the PITFL injury pattern based on magnetic resonance imaging (MRI) and intraoperative observation. A prospective database of all operatively treated ankle fractures by a single surgeon was used to identify all supination-external rotation (SER) types III and IV ankle fracture patients with complete preoperative orthogonal ankle radiographs and MRI. All patients with a posterior malleolus fracture were excluded. Using a combination of preoperative imaging and intraoperative findings, we analyzed the nature of injuries to the PITFL. In total, 185 SER III and IV operatively treated ankle fractures with complete imaging were initially identified. Analysis of the preoperative imaging and operative reports revealed 34% (63/185) had a posterior malleolus fracture and were excluded. From the remaining 122 ankle fractures, the PITFL was delaminated from the posterior malleolus in 97% (119/122) of cases. A smaller proportion (3%; 3/122) had an intrasubstance PITFL rupture. Accurate and stable syndesmotic reduction is a significant component of restoring the ankle mortise after unstable ankle fractures. In our large cohort of rotationally unstable ankle fractures without posterior malleolus fractures, we found that most PITFL injuries occur as a delamination off the posterior malleolus. This predictable PITFL injury pattern may be used to guide new methods for

  7. Effects of irradiation to 4 dpa at 390 C on the fracture toughness of vanadium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, E.E.; Galvin, T.M.; Chopra, O.K.

    Fracture toughness J-R curve tests were conducted at room temperature on disk-shaped compact-tension DC(T) specimens of three vanadium alloys having a nominal composition of V-4Cr-4Ti. The alloys in the nonirradiated condition showed high fracture toughness; J{sub IC} could not be determined but is expected to be above 600 kJ/m{sup 2}. The alloys showed very poor fracture toughness after irradiation to 4 dpa at 390 C, e.g., J{sub IC} values of {approx}10 kJ/m{sup 2} or lower.

  8. Analysis of stress fractures in athletes based on our clinical experience

    PubMed Central

    Iwamoto, Jun; Sato, Yoshihiro; Takeda, Tsuyoshi; Matsumoto, Hideo

    2011-01-01

    AIM: To analyze stress fractures in athletes based on experience from our sports medicine clinic. METHODS: We investigated the association between stress fractures and age, sex, sports level, sports activity, and skeletal site in athletes seen at our sports medicine clinic between September 1991 and April 2009. Stress fractures of the pars interarticularis were excluded from this analysis. RESULTS: During this period (18 years and 8 mo), 14276 patients (9215 males and 5061 females) consulted our clinic because of sports-related injuries, and 263 patients (1.8%) [171 males (1.9%) and 92 females (1.8%)] sustained stress fractures. The average age of the patients with stress fractures was 20.2 years (range 10-46 years); 112 patients (42.6%) were 15-19 years of age and 90 (34.2%) were 20-24 years of age. Altogether, 90 patients (34.2%) were active at a high recreational level and 173 (65.8%) at a competitive level. The highest proportion of stress fractures was seen in basketball athletes (21.3%), followed by baseball (13.7%), track and field (11.4%), rowing (9.5%), soccer (8.4%), aerobics (5.3%), and classical ballet (4.9%). The most common sites of stress fractures in these patients were the tibia (44.1%), followed by the rib (14.1%), metatarsal bone (12.9%), ulnar olecranon (8.7%) and pelvis (8.4%). The sites of the stress fractures varied from sport to sport. The ulnar olecranon was the most common stress fracture site in baseball players, and the rib was the most common in rowers. Basketball and classical ballet athletes predominantly sustained stress fractures of the tibia and metatarsal bone. Track and field and soccer athletes predominantly sustained stress fractures of the tibia and pubic bone. Aerobics athletes predominantly sustained stress fractures of the tibia. Middle and long distance female runners who sustained multiple stress fractures had the female athlete triad. CONCLUSION: The results of this analysis showed that stress fractures were seen in high

  9. Superficial Dorsal Vein Injury/Thrombosis Presenting as False Penile Fracture Requiring Dorsal Venous Ligation

    PubMed Central

    Rafiei, Arash; Hakky, Tariq S; Martinez, Daniel; Parker, Justin; Carrion, Rafael

    2014-01-01

    Introduction Conditions mimicking penile fracture are extremely rare and have been seldom described. Aim To describe a patient with false penile fracture who presented with superficial dorsal vein injury/thrombosis managed with ligation. Methods A 33-year-old male presented with penile swelling and ecchymosis after intercourse. A penile ultrasound demonstrated a thrombosed superficial dorsal vein but also questionable fracture of the tunica albuginea. As the thrombus was expanding, he was emergently taken to the operating room for exploration and required only dorsal venous ligation. Results Postoperatively, patient's Sexual Health Inventory for Men score was 23, and he had no issues with erections or sexual intercourse. Conclusion Early exploration of patients with suspected penile fracture provides excellent results with maintenance of erectile function. Also, in the setting of dorsal vein thrombosis, ligation preserves the integrity of the penile tissues and avoids unnecessary complications from conservative management. Rafiei A, Hakky TS, Martinez D, Parker J, and Carrion R. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation. PMID:25548650

  10. Integrated System Health Management (ISHM) for Test Stand and J-2X Engine: Core Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Schmalzel, John L.; Aguilar, Robert; Shwabacher, Mark; Morris, Jon

    2008-01-01

    ISHM capability enables a system to detect anomalies, determine causes and effects, predict future anomalies, and provides an integrated awareness of the health of the system to users (operators, customers, management, etc.). NASA Stennis Space Center, NASA Ames Research Center, and Pratt & Whitney Rocketdyne have implemented a core ISHM capability that encompasses the A1 Test Stand and the J-2X Engine. The implementation incorporates all aspects of ISHM; from anomaly detection (e.g. leaks) to root-cause-analysis based on failure mode and effects analysis (FMEA), to a user interface for an integrated visualization of the health of the system (Test Stand and Engine). The implementation provides a low functional capability level (FCL) in that it is populated with few algorithms and approaches for anomaly detection, and root-cause trees from a limited FMEA effort. However, it is a demonstration of a credible ISHM capability, and it is inherently designed for continuous and systematic augmentation of the capability. The ISHM capability is grounded on an integrating software environment used to create an ISHM model of the system. The ISHM model follows an object-oriented approach: includes all elements of the system (from schematics) and provides for compartmentalized storage of information associated with each element. For instance, a sensor object contains a transducer electronic data sheet (TEDS) with information that might be used by algorithms and approaches for anomaly detection, diagnostics, etc. Similarly, a component, such as a tank, contains a Component Electronic Data Sheet (CEDS). Each element also includes a Health Electronic Data Sheet (HEDS) that contains health-related information such as anomalies and health state. Some practical aspects of the implementation include: (1) near real-time data flow from the test stand data acquisition system through the ISHM model, for near real-time detection of anomalies and diagnostics, (2) insertion of the J-2X

  11. Investigation of Weibull statistics in fracture analysis of cast aluminum

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.; Zaretsky, Erwin V.

    1989-01-01

    The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. The applicability of three-parameter Weibull analysis was also investigated. A design methodology based on the combination of elementary stress analysis and Weibull statistical analysis is advanced and applied to the design of a spherical pressure vessel shell. The results from this design methodology are compared with results from the applicable ASME pressure vessel code.

  12. Elevated temperature fracture of RS/PM alloy 8009; Part 1: Fracture mechanics behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porr, W.C. Jr.; Gangloff, R.P.

    1994-02-01

    Increasing temperature and decreasing loading rate degrade the planes strain initiation (K[sub ICi] from the J integral) and growth (tearing modulus, T[sub R]) fracture toughnesses of RS/PM 8009 (Al-8.5Fe-1.3V-1.7Si, wt pct). K[sub ICi] decreases with increasing temperature from 25[degree]C to 175[degree]C (33 to 15 MPa[radical]m at 316[degree]C) without a minimum. T[sub R] is greater than zero at all temperatures and is minimized at 200[degree]C. A four order-of-magnitude decrease in loading rate, at 175[degree]C, results in a 2.5-fold decrease in K[sub ICi] and a 5-fold reduction in T[sub R]. K[sub ICi] and T[sub R] are anisotropic for extruded 8009 but aremore » isotropic for cross-rolled plate. Cross rolling does not improve the magnitude or adverse temperature dependence of toughness. Delamination occurs along oxide-decorated particle boundaries for extruded but not cross-rolled 8009. Delamination toughening plays no role in the temperature dependence of K[sub ICi], however, T[sub R] is increased by this mechanism. Macroscopic work softening and flow localization do not occur for notch-root deformation; such uniaxial tensile phenomena may not be directly relevant to crack-tip fracture. Micromechanical modeling, employing temperature-dependent flow strength, modulus, and constrained fracture strain, reasonably predicts the temperature dependencies of K[sub ICi] and T[sub R] for 8009.« less

  13. Risk Factors for Respiratory Failure Following Operative Stabilization of Thoracic and Lumbar Spine Fractures

    DTIC Science & Technology

    2006-05-01

    I LU RE FO L LOW IN G OP ER AT IVE ST A BI LI Z A T IO N OF TH OR A CI C A N D LUM BA R SP I N E FR A CT U RE S fat embolism in fracture patients. J...femoral shaft fractures : a cause of fat embolism syndrome. Am J Surg. 1983;146:107-11. 17. Johnson KD, Cadambi A, Seibert GB. Incidence of adult...Trauma. 1970;10:307-21. 13. Renne J, Wuthier R, House E, Cancro JC, Hoaglund FT. Fat macroglobulemia caused by fractures or total hip replacement. J

  14. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  15. Effect of B Vitamin (Folate, B6, and B12) Supplementation on Osteoporotic Fracture and Bone Turnover Markers: A Meta-Analysis

    PubMed Central

    Ruan, Jianwei; Gong, Xiaokang; Kong, Jinsong; Wang, Haibao; Zheng, Xin; Chen, Tao

    2015-01-01

    Background B vitamins (including folate, B6, and B12) supplementation can effectively and easily modify high plasma homocysteine (Hcy). However, the role of Hcy in the pathogenesis of osteoporotic fracture and bone turnover is still controversial. This meta-analysis aimed to assess the impact of B vitamin supplementation on occurrence of any osteoporotic fracture and bone turnover by pooling the results of previous studies. Material/Methods Relevant randomized controlled trials (RCTs) were searched in databases. Data integration and analysis were done by using Review Manager 5.3 (the Cochrane Collaboration). The risk ratio (RR) and corresponding 95% confidence intervals (CI) of fracture (intervention vs. control) were estimated. Changes in bone turnover indicators (continuous data), weighted mean difference (WMD), and corresponding 95% (CI) were pooled for estimation. Results Based on the results of 4 RCTs, this meta-analysis failed to identify a risk-reducing effect of daily supplementation of B vitamins on osteoporotic fracture in patients with vascular disease and with relatively normal plasma Hcy. In addition, we also did not find any positive effects of B vitamin supplementation on bone turnover. Conclusions B vitamin supplementation might not be effective in preventing fracture and improving bone turnover. However, the possible benefits in selective populations, such as populations with very high plasma Hcy and from regions without B vitamin fortification should be explored in the future. PMID:25805360

  16. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections

    NASA Astrophysics Data System (ADS)

    Li, Bo; Liu, Richeng; Jiang, Yujing

    2016-07-01

    Fluid flow tests were conducted on two crossed fracture models for which the geometries of fracture segments and intersections were measured by utilizing a visualization technique using a CCD (charged coupled device) camera. Numerical simulations by solving the Navier-Stokes equations were performed to characterize the fluid flow at fracture intersections. The roles of hydraulic gradient, surface roughness, intersecting angle, and scale effect in the nonlinear fluid flow behavior through single fracture intersections were investigated. The simulation results of flow rate agreed well with the experimental results for both models. The experimental and simulation results showed that with the increment of the hydraulic gradient, the ratio of the flow rate to the hydraulic gradient, Q/J, decreases and the relative difference of Q/J between the calculation results employing the Navier-Stokes equations and the cubic law, δ, increases. When taking into account the fracture surface roughness quantified by Z2 ranging 0-0.42 for J = 1, the value of δ would increase by 0-10.3%. The influences of the intersecting angle on the normalized flow rate that represents the ratio of the flow rate in a segment to the total flow rate, Ra, and the ratio of the hydraulic aperture to the mechanical aperture, e/E, are negligible when J < 10-3, whereas their values change significantly when J > 10-2. Based on the regression analysis on simulation results, a mathematical expression was proposed to quantify e/E, involving variables of J and Rr, where Rr is the radius of truncating circles centered at an intersection. For E/Rr > 10-2, e/E varies significantly and the scale of model has large impacts on the nonlinear flow behavior through intersections, while for E/Rr < 10-3, the scale effect is negligibly small. Finally, a necessary condition to apply the cubic law to fluid flow through fracture intersections is suggested as J < 10-3, E/Rr < 10-3, and Z2 = 0.

  17. Integrated Experimental and Computational Study of Hydraulic Fracturing and the Use of Alternative Fracking Fluids

    NASA Astrophysics Data System (ADS)

    Viswanathan, H.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Zhang, D.; Makedonska, N.; Middleton, R. S.; Currier, R.; Gupta, R.; Lei, Z.; Kang, Q.; O'Malley, D.; Hyman, J.

    2014-12-01

    Shale gas is an unconventional fossil energy resource that is already having a profound impact on US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydrofracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. This project uses innovative high-pressure microfluidic and triaxial core flood experiments on shale to explore fracture-permeability relations and the extraction of hydrocarbon. These data are integrated with simulations including lattice Boltzmann modeling of pore-scale processes, finite-element/discrete element models of fracture development in the near-well environment, discrete-fracture modeling of the reservoir, and system-scale models to assess the economics of alternative fracturing fluids. The ultimate goal is to make the necessary measurements to develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  18. INTEGRAL observation of SWIFT J1756.9-2508 in outburst

    NASA Astrophysics Data System (ADS)

    Mazzola, S.; Bozzo, E.; Kuulkers, E.; Ferrigno, C.; Savchenko, V.; Ducci, L.

    2018-04-01

    Following the discovery of a new outburst from the accreting millisecond X-ray pulsar SWIFT J1756.9-2508 (ATel #11497, #11502, #11505), a dedicated target of opportunity observation with INTEGRAL was carried out from 2018 April 1 at 08:30 to 23:15 (UTC; total exposure time 85 ks). The source was detected in the 20-40 keV IBIS/ISGRI mosaic at a significance level of 20 sigma.

  19. Determination of the Fracture Parameters in a Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Lin, Chung-Yi

    2000-01-01

    A modified J-integral, namely the equivalent domain integral, is derived for a three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along the crack front using the finite element method. Based on the equivalent domain integral method with auxiliary fields, an interaction integral is also derived to extract the second fracture parameter, the T-stress, from the finite element results. The auxiliary fields are the two-dimensional plane strain solutions of monoclinic materials with the plane of symmetry at x(sub 3) = 0 under point loads applied at the crack tip. These solutions are expressed in a compact form based on the Stroh formalism. Both integrals can be implemented into a single numerical procedure to determine the distributions of stress intensity factor and T-stress components, T11, T13, and thus T33, along a three-dimensional crack front. The effects of plate thickness and crack length on the variation of the stress intensity factor and T-stresses through the thickness are investigated in detail for through-thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened panels under pure mode-I loading conditions. For all the cases studied, T11 remains negative. For plates with the same dimensions, a larger size of crack yields larger magnitude of the normalized stress intensity factor and normalized T-stresses. The results in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the thicker panels, the fracture parameters evaluated through the thickness, except the region near the free surfaces, approach two-dimensional plane strain solutions. In summary, the numerical methods presented in this research demonstrate their high computational effectiveness and good numerical accuracy in extracting these fracture parameters from the finite element results in three-dimensional cracked solids.

  20. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  1. An integrated study of seismic anisotropy and the natural fracture system at the Conoco Borehole Test Facility, Kay County, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queen, J.H.; Rizer, W.D.

    1990-07-10

    A significant body of published work has developed establishing fracture-related seismic anisotropy as an observable effect. To further the understanding of seismic birefringence techniques in characterizing natural fracture systems at depth, an integrated program of seismic and geologic measurements has been conducted at Conoco's Borehole Test Facility in Kay County, Oklahoma. Birefringence parameters inferred from the seismic data are consistent with a vertical fracture model of density 0.04 striking east-northeast. That direction is subparallel to a fracture set mapped both on the surface and from subsurface data, to the in situ maximum horizontal stress, and to the inferred microfabric.

  2. IGR J12319-0749: Evidence for Another Extreme Blazar Found with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Bassani, L.; Landi, R.; Marshall, F. E.; Malizia, A.; Bazzano, A.; Bird, A. J.; Gehrels, N.; Ubertini, P.; Masetti, N.

    2012-01-01

    We report on the identification of a new soft gamma-ray source, IGR J12319 C0749, detected with the IBIS imager on board the INTEGRAL satellite. The source, which has an observed 20 C100 keV flux of 8.3 10.12 erg cm.2 s.1, is spatially coincident with an AGN at redshift z = 3.12. The broad-band continuum, obtained by combining XRT and IBIS data, is flat ( =1.3) with evidence for a spectral break around 25 keV (100 keV in the source rest frame). X-ray observations indicate flux variability which is further supported by a comparison with a previous ROSAT measurement. IGR J12319 C0749 is also a radio emitting object likely characterized by a flat spectrum and high radio loudness; optically it is a broad-line emitting object with a massive black hole (2.8 109 solar masses) at its center. The source Spectral Energy Distribution is similar to another high redshift blazar, 225155+2217 at z = 3.668: both objects are bright, with a large accretion disk luminosity and a Compton peak located in the hard X-ray/soft gamma-ray band. IGR J12319 C0749 is likely the second most distant blazar detected so far by INTEGRAL.

  3. Fatigue crack growth and fracture behavior of bainitic rail steels.

    DOT National Transportation Integrated Search

    2011-08-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  4. Fatigue crack growth and fracture behavior of bainitic rail steels.

    DOT National Transportation Integrated Search

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  5. J-SHIS - an integrated system for knowing seismic hazard information in Japan

    NASA Astrophysics Data System (ADS)

    Azuma, H.; Fujiwara, H.; Kawai, S.; Hao, K. X.; Morikawa, N.

    2015-12-01

    An integrated system of Japan seismic hazard information station (J-SHIS) was established in 2005 for issuing and exchanging information of the National Seismic Hazard Maps for Japan that are based on seismic hazard assessment (SHA). A simplified app, also named J-SHIS, for smartphones is popularly used in Japan based on the integrated system of http://www.j-shis.bosai.go.jp/map/?lang=en. "Smartphone tells hazard" is realized on a cellphone, a tablet and/or a PC. At a given spot, the comprehensive information of SHA map can be easily obtained as below: 1) A SHA probability at given intensity (JMA=5-, 5+, 6-, 6+) within 30 years. 2) A site amplification factor varies within 0.5 ~ 3.0 and expectation is 1 based on surface geology map information. 3) A depth of seismic basement down to ~3,000m based on deeper borehole and geological structure. 4) Scenario earthquake maps: By choosing an active fault, one got the average case for different parameters of the modeling. Then choose a case, you got the shaking map of intensity with color scale. "Seismic Hazard Karte tells more hazard" is another app based on website of http://www.j-shis.bosai.go.jp/labs/karte/. (1) For every mesh of 250m x 250m, professional service SHA information is provided over national-world. (2) With five ranks for eight items, comprehensive SHA information could be delivered. (3) Site amplification factor with an average index is given. (4) Deeper geologic structure modeling is provided with borehole profiling. (5) A SHA probability is assessed within 30 and/or 50 years for the given site. (6) Seismic Hazard curves are given for earthquake sources from inland active fault, subduction zone, undetermined and their summarization. (7) The JMA seismic intensities are assessed in long-term averaged periods of 500-years to ~100,000 years. The app of J-SHIS can be downloaded freely from http://www.j-shis.bosai.go.jp/app-jshis.

  6. In vitro study of fracture load and fracture pattern of ceramic crowns: a finite element and fractography analysis.

    PubMed

    Campos, Roberto Elias; Soares, Carlos José; Quagliatto, Paulo S; Soares, Paulo Vinícius; de Oliveira, Osmir Batista; Santos-Filho, Paulo Cesar Freitas; Salazar-Marocho, Susana M

    2011-08-01

    This in vitro study investigated the null hypothesis that metal-free crowns induce fracture loads and mechanical behavior similar to metal ceramic systems and to study the fracture pattern of ceramic crowns under compressive loads using finite element and fractography analyses. Six groups (n = 8) with crowns from different systems were compared: conventional metal ceramic (Noritake) (CMC); modified metal ceramic (Noritake) (MMC); lithium disilicate-reinforced ceramic (IPS Empress II) (EMP); leucite-reinforced ceramic (Cergogold) (CERG); leucite fluoride-apatite reinforced ceramic (IPS d.Sign) (SIGN); and polymer crowns (Targis) (TARG). Standardized crown preparations were performed on bovine roots containing NiCr metal dowels and resin cores. Crowns were fabricated using the ceramics listed, cemented with dual-cure resin cement, and submitted to compressive loads in a mechanical testing machine at a 0.5-mm/min crosshead speed. Data were submitted to one-way ANOVA and Tukey tests, and fractured specimens were visually inspected under a stereomicroscope (20×) to determine the type of fracture. Maximum principal stress (MPS) distributions were calculated using finite element analysis, and fracture origin and the correlation with the fracture type were determined using fractography. Mean values of fracture resistance (N) for all groups were: CMC: 1383 ± 298 (a); MMC: 1691 ± 236 (a); EMP: 657 ± 153 (b); CERG: 546 ± 149 (bc); SIGN: 443 ± 126 (c); TARG: 749 ± 113 (b). Statistical results showed significant differences among groups (p < 0.05) represented by different lowercase letters. Metal ceramic crowns presented fracture loads significantly higher than the others. Ceramic specimens presented high incidence of fractures involving either the core or the tooth, and all fractures of polymer crown specimens involved the tooth in a catastrophic way. Based on stress and fractographic analyses it was determined that fracture occurred from the occlusal to the cervical

  7. Analysis of 213 currently used rehabilitation protocols in foot and ankle fractures.

    PubMed

    Pfeifer, Christian G; Grechenig, Stephan; Frankewycz, Borys; Ernstberger, Antonio; Nerlich, Michael; Krutsch, Werner

    2015-10-01

    Fractures of the ankle, hind- and midfoot are amongst the five most common fractures. Besides initial operative or non-operative treatment, rehabilitation of the patients plays a crucial role for fracture union and long term functional outcome. Limited evidence is available with regard to what a rehabilitation regimen should include and what guidelines should be in place for the initial clinical course of these patients. This study therefore investigated the current rehabilitation concepts after fractures of the ankle, hind- and midfoot. Written rehabilitation protocols provided by orthopedic and trauma surgery institutions in terms of recommendations for weight bearing, range of motion (ROM), physiotherapy and choice of orthosis were screened and analysed. All protocols for lateral ankle fractures type AO 44A1, AO 44B1 and AO 44C1, for calcaneal fractures and fractures of the metatarsal as well as other not specific were included. Descriptive analysis was carried out and statistical analysis applied where appropriate. 209 rehabilitation protocols for ankle fractures type AO 44B1 and AO 44C1, 98 for AO 44A1, 193 for metatarsal fractures, 142 for calcaneal fractures, 107 for 5(th) metatarsal base fractures and 70 for 5(th) metatarsal Jones fractures were evaluated. The mean time recommended for orthosis treatment was 6.04 (SD 0.04) weeks. While the majority of protocols showed a trend towards increased weight bearing and increased ROM over time, the best consensus was noted for weight bearing recommendations. Our study shows that there exists a huge variability in rehabilitation of fractures of the ankle-, hind- and midfoot. This may be contributed to a lack of consensus (e.g. missing publication of guidelines), individualized patient care (e.g. in fragility fractures) or lack of specialization. This study might serve as basis for prospective randomized controlled trials in order to optimize rehabilitation for these common fractures. Copyright © 2015 Elsevier Ltd

  8. Fracture mechanics methodology: Evaluation of structural components integrity

    NASA Astrophysics Data System (ADS)

    Sih, G. C.; de Oliveira Faria, L.

    1984-09-01

    The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.

  9. Integration of computer-assisted fracture reduction system and a hybrid 3-DOF-RPS mechanism for assisting the orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Irwansyah; Sinh, N. P.; Lai, J. Y.; Essomba, T.; Asbar, R.; Lee, P. Y.

    2018-02-01

    In this paper, we present study to integrate virtual fracture bone reduction simulation tool with a novel hybrid 3-DOF-RPS external fixator to relocate back bone fragments into their anatomically original position. A 3D model of fractured bone was reconstructed and manipulated using 3D design and modeling software, PhysiGuide. The virtual reduction system was applied to reduce a bilateral femoral shaft fracture type 32-A3. Measurement data from fracture reduction and fixation stages were implemented to manipulate the manipulator pose in patient’s clinical case. The experimental result presents that by merging both of those techniques will give more possibilities to reduce virtual bone reduction time, improve facial and shortest healing treatment.

  10. Stress analysis of implant-bone fixation at different fracture angle

    NASA Astrophysics Data System (ADS)

    Izzawati, B.; Daud, R.; Afendi, M.; Majid, MS Abdul; Zain, N. A. M.; Bajuri, Y.

    2017-10-01

    Internal fixation is a mechanism purposed to maintain and protect the reduction of a fracture. Understanding of the fixation stability is necessary to determine parameters influence the mechanical stability and the risk of implant failure. A static structural analysis on a bone fracture fixation was developed to simulate and analyse the biomechanics of a diaphysis shaft fracture with a compression plate and conventional screws. This study aims to determine a critical area of the implant to be fractured based on different implant material and angle of fracture (i.e. 0°, 30° and 45°). Several factors were shown to influence stability to implant after surgical. The stainless steel, (S. S) and Titanium, (Ti) screws experienced the highest stress at 30° fracture angle. The fracture angle had a most significant effect on the conventional screw as compared to the compression plate. The stress was significantly higher in S.S material as compared to Ti material, with concentrated on the 4th screw for all range of fracture angle. It was also noted that the screws closest to the intense concentration stress areas on the compression plate experienced increasing amounts of stress. The highest was observed at the screw thread-head junction.

  11. Clavicle fractures.

    PubMed

    Ropars, M; Thomazeau, H; Huten, D

    2017-02-01

    Management of clavicle fracture has progressed over the last decade, notably with wider use of surgery in midshaft fracture, and new techniques for lateral fracture. Midshaft clavicle fracture treatment needs to be personalized and adapted to the patient's activity level. Whichever the segment involved, treatment for non-displaced fracture is functional; elbow-to-body sling immobilization seems the best tolerated. Apart from regular surgical indications (shoulder impaction, floating shoulder, open fracture or fracture with neurovascular complications), surgery is recommended in case of bone shortening exceeding 1.5cm in young active patients. The technique needs to take account of clavicle anatomy: notably periosteal vascularization in midshaft fracture and acromioclavicular ligament integrity and location in case of lateral fracture. Plate osteosynthesis should take account of bone diameter and 3D curvature; intramedullary fixation should take account of intramedullary canal morphology. Although iatrogenic vascular complications are rare, vessel relations and variants need to be known, especially in the medial end of the clavicle and midshaft. Lateral segment fractures are a particular entity. Large-scale randomized studies are needed to assess indications and results for the various possible internal fixation techniques: isolated or associated to ligament reconstruction, rigid or flexible, and open or arthroscopic. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Structural Analysis of Composite Flywheels: an Integrated NDE and FEM Approach

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George; Trudell, Jeffrey

    2001-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake-like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48,000 rpm for rotor A and 34,000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  13. DXA and pQCT predict pertrochanteric and not femoral neck fracture load in a human side-impact fracture model.

    PubMed

    Gebauer, Matthias; Stark, Olaf; Vettorazzi, Eik; Grifka, Joachim; Püschel, Klaus; Amling, Michael; Beckmann, Johannes

    2014-01-01

    The validity of dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) measurements as predictors of pertrochanteric and femoral neck fracture loads was compared in an experimental simulation of a fall on the greater trochanter. 65 proximal femora were harvested from patients at autopsy. All specimens were scanned with use of DXA for areal bone mineral density and pQCT for volumetric densities at selected sites of the proximal femur. A three-point bending test simulating a side-impact was performed to determine fracture load and resulted in 16 femoral neck and 49 pertrochanteric fractures. Regression analysis revealed that DXA BMD trochanter was the best variable at predicting fracture load of pertrochanteric fractures with an adjusted R(2) of 0.824 (p < 0.0001). There was no correlation between densitometric parameters and the fracture load of femoral neck fractures. A significant correlation further was found between body weight, height, femoral head diameter, and neck length on the one side and fracture load on the other side, irrespective of the fracture type. Clinically, the DXA BMD trochanter should be favored and integrated routinely as well as biometric and geometric parameters, particularly in elderly people with known osteoporosis at risk for falls. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Use of antipsychotics increases the risk of fracture: a systematic review and meta-analysis.

    PubMed

    Lee, S-H; Hsu, W-T; Lai, C-C; Esmaily-Fard, A; Tsai, Y-W; Chiu, C-C; Wang, J; Chang, S-S; Lee, C C

    2017-04-01

    Our systematic review and meta-analysis of observational studies indicated that the use of antipsychotics was associated with a nearly 1.5-fold increase in the risk of fracture. First-generation antipsychotics (FGAs) appeared to carry a higher risk of fracture than second-generation antipsychotics (SGAs). The risk of fractures associated with the use of antipsychotic medications has inconsistent evidence between different drug classes. A systematic review and meta-analysis was conducted to evaluate whether there is an association between the use of antipsychotic drugs and fractures. Searches were conducted through the PubMed and EMBASE databases to identify observational studies that had reported a quantitative estimate of the association between use of antipsychotics and fractures. The summary risk was derived from random effects meta-analysis. The search yielded 19 observational studies (n = 544,811 participants) with 80,835 fracture cases. Compared with nonuse, use of FGAs was associated with a significantly higher risk for hip fractures (OR 1.67, 95% CI, 1.45-1.93), and use of second generation antipsychotics (SGAs) was associated with an attenuated but still significant risk for hip fractures (OR 1.33, 95% CI, 1.11-1.58). The risk of fractures associated with individual classes of antipsychotic users was heterogeneous, and odds ratios ranged from 1.24 to 2.01. Chlorpromazine was associated with the highest risk (OR 2.01, 95% CI 1.43-2.83), while Risperidone was associated with the lowest risk of fracture (OR 1.24, 95% CI 0.95-1.83). FGA users were at a higher risk of hip fracture than SGA users. Both FGAs and SGAs were associated with an increased risk of fractures, especially among the older population. Therefore, the benefit of the off-label use of antipsychotics in elderly patients should be weighed against any risks for fracture.

  15. 3D Modeling and Characterization of Hydraulic Fracture Efficiency Integrated with 4D/9C Time-Lapse Seismic Interpretations in the Niobrara Formation, Wattenberg Field, Denver Basin

    NASA Astrophysics Data System (ADS)

    Alfataierge, Ahmed

    Hydrocarbon recovery rates within the Niobrara Shale are estimated as low as 2-8%. These recovery rates are controlled by the ability to effectively hydraulic fracture stimulate the reservoir using multistage horizontal wells. Subsequent to any mechanical issues that affect production from lateral wells, the variability in production performance and reserve recovery along multistage lateral shale wells is controlled by the reservoir heterogeneity and its consequent effect on hydraulic fracture stimulation efficiency. Using identical stimulation designs on a number of wells that are as close as 600ft apart can yield variable production and recovery rates due to inefficiencies in hydraulic fracture stimulation that result from the variability in elastic rock properties and in-situ stress conditions. As a means for examining the effect of the geological heterogeneity on hydraulic fracturing and production within the Niobrara Formation, a 3D geomechanical model is derived using geostatistical methods and volumetric calculations as an input to hydraulic fracture stimulation. The 3D geomechanical model incorporates the faults, lithological facies changes and lateral variation in reservoir properties and elastic rock properties that best represent the static reservoir conditions pre-hydraulic fracturing. Using a 3D numerical reservoir simulator, a hydraulic fracture predictive model is generated and calibrated to field diagnostic measurements (DFIT) and observations (microseismic and 4D/9C multicomponent time-lapse seismic). By incorporating the geological heterogeneity into the 3D hydraulic fracture simulation, a more representative response is generated that demonstrate the variability in hydraulic fracturing efficiency along the lateral wells that will inevitability influence production performance. Based on the 3D hydraulic fracture simulation results, integrated with microseismic observations and 4D/9C time-lapse seismic analysis (post-hydraulic fracturing & post

  16. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing.

    PubMed

    Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki

    2008-10-01

    The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (< or =6 h or >6 h), method of soft-tissue management, skin closure time (< or =1 week or >1 week), existence of polytrauma (ISS< 18 or ISS> or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (P< 0.0001). In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with

  17. IGR J12319-0749: Evidence for Another Extreme Blazar Found with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Bassani, L.; Landi, R.; Marshall, F. E.; Malizia, A.; Bazzano, A.; Bird, A. J.; Gehrels, N.; Ubertini, P.; Masetti, N.

    2012-01-01

    We report on the identification of a new soft gamma-ray source, IGR J12319-0749, detected with the IBIS imager on board the INTEGRAL satellite. The source, which has an observed 20-100 keV flux of approx 8.3 × 10(exp -12) erg/sq. cm/ s, is spatially coincident with an active galactic nucleus (AGN) at redshift z = 3.12. The broad-band continuum, obtained by combining XRT and IBIS data, is flat (Gamma = 1.3) with evidence for a spectral break around 25 keV (100 keV in the source restframe). X-ray observations indicate flux variability, which is also supported by a comparison with a previous ROSAT measurement. IGR J12319-0749 is also a radio-emitting object likely characterised by a flat spectrum and high radio loudness; optically it is a broad-line emitting object with a massive black hole (2.8 × 10(exp 9) solar masses) at its centre. The source spectral energy distribution is similar to another high-redshift blazar, 225155+2217 at z = 3.668: both objects are bright, with a high accretion disk luminosity and a Compton peak located in the hard X-ray/soft gamma-ray band. IGR J12319-0749 is likely the second-most distant blazar detected so far by INTEGRAL.

  18. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This reportmore » serves as a summary of those experiments, and provides a guide to references for detailed information.« less

  19. Mechanisms of hydrogen-assisted fracture in austenitic stainless steel welds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balch, Dorian K.; Sofronis, Petros; Somerday, Brian P.

    2005-03-01

    The objective of this study was to quantify the hydrogen-assisted fracture susceptibility of gas-tungsten arc (GTA) welds in the nitrogen-strengthened, austenitic stainless steels 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5). In addition, mechanisms of hydrogen-assisted fracture in the welds were identified using electron microscopy and finite-element modeling. Elastic-plastic fracture mechanics experiments were conducted on hydrogen-charged GTA welds at 25 C. Results showed that hydrogen dramatically lowered the fracture toughness from 412 kJ/m{sup 2} to 57 kJ/m{sup 2} in 21-6-9 welds and from 91 kJ/m{sup 2} to 26 kJ/m{sup 2} in 22-13-5 welds. Microscopy results suggested that hydrogen served two roles in themore » fracture of welds: it promoted the nucleation of microcracks along the dendritic structure and accelerated the link-up of microcracks by facilitating localized deformation. A continuum finite-element model was formulated to test the notion that hydrogen could facilitate localized deformation in the ligament between microcracks. On the assumption that hydrogen decreased local flow stress in accordance with the hydrogen-enhanced dislocation mobility argument, the finite-element results showed that deformation was localized in a narrow band between two parallel, overlapping microcracks. In contrast, in the absence of hydrogen, the finite-element results showed that deformation between microcracks was more uniformly distributed.« less

  20. Stress Analysis and Fracture in Nanolaminate Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2008-01-01

    A stress analysis is performed on a nanolaminate subjected to bending. A composite mechanics computer code that is based on constituent properties and nanoelement formulation is used to evaluate the nanolaminate stresses. The results indicate that the computer code is sufficient for the analysis. The results also show that when a stress concentration is present, the nanolaminate stresses exceed their corresponding matrix-dominated strengths and the nanofiber fracture strength.

  1. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  2. Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds

    NASA Astrophysics Data System (ADS)

    Dutt, B. Shashank; Babu, M. Nani; Shanthi, G.; Moitra, A.; Sasikala, G.

    2018-03-01

    The effect of thermal aging and test temperatures on fracture toughness (J 0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J 0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.

  3. Using decision analysis to assess comparative clinical efficacy of surgical treatment of unstable ankle fractures.

    PubMed

    Michelson, James D

    2013-11-01

    The development of a robust treatment algorithm for ankle fractures based on well-established stability criteria has been shown to be prognostic with respect to treatment and outcomes. In parallel with the development of improved understanding of the biomechanical rationale of ankle fracture treatment has been an increased emphasis on assessing the effectiveness of medical and surgical interventions. The purpose of this study was to investigate the use of using decision analysis in the assessment of the cost effectiveness of operative treatment of ankle fractures based on the existing clinical data in the literature. Using the data obtained from a previous structured review of the ankle fracture literature, decision analysis trees were constructed using standard software. The decision nodes for the trees were based on ankle fracture stability criteria previously published. The outcomes were assessed by calculated Quality-Adjusted Life Years (QALYs) assigned to achieving normal ankle function, developing posttraumatic arthritis, or sustaining a postoperative infection. Sensitivity analysis was undertaken by varying the patient's age, incidence of arthritis, and incidence or infection. Decision analysis trees captured the essential aspects of clinical decision making in ankle fracture treatment in a clinically useful manner. In general, stable fractures yielded better outcomes with nonoperative treatment, whereas unstable fractures had better outcomes with surgery. These were consistent results over a wide range of postoperative infection rates. Varying the age of the patient did not qualitatively change the results. Between the ages of 30 and 80 years, surgery yielded higher expected QALYs than nonoperative care for unstable fractures, and generated lower QALYs than nonoperative care for stable fractures. Using local cost estimates for operative and nonoperative treatment, the incremental cost of surgery for unstable fractures was less than $40,000 per QALY (the

  4. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated

  5. Fracture Analyses of Cracked Delta Eye Plates in Ship Towing

    NASA Astrophysics Data System (ADS)

    Huang, Xiangbing; Huang, Xingling; Sun, Jizheng

    2018-01-01

    Based on fracture mechanics, a safety analysis approach is proposed for cracked delta eye plates in ship towing. The static analysis model is presented when the delta eye plate is in service, and the fracture criterion is introduced on basis of stress intensity factor, which is estimated with domain integral method. Subsequently, three-dimensional finite element analyses are carried out to obtain the effective stress intensity factors, and a case is studied to demonstrate the reasonability of the approach. The results show that the classical strength theory is not applicable to evaluate the cracked plate while fracture mechanics can solve the problem very well, and the load level, which a delta eye plate can carry on, decreases evidently when it is damaged.

  6. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    Using automated and standardized computer tools to calculate the pertinent test result values has several advantages such as: 1. allowing high-fidelity solutions to complex nonlinear phenomena that would be impractical to express in written equation form, 2. eliminating errors associated with the interpretation and programing of analysis procedures from the text of test standards, 3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, numerical methods, and/or finite element modeling, to achieve sound results, 4. and providing one computer tool and/or one set of solutions for all users for a more "standardized" answer. In summary, this approach allows a non-expert with rudimentary training to get the best practical solution based on the latest understanding with minimum difficulty.Other existing ASTM standards that cover complicated phenomena use standard computer programs: 1. ASTM C1340/C1340M-10- Standard Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant Barriers by Use of a Computer Program 2. ASTM F 2815 - Standard Practice for Chemical Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer Program 3. ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 1.0 The verification, validation, and round-robin processes required of a computer tool closely parallel the methods that are used to ensure the solution validity for equations included in test standard. The use of automated analysis tools allows the creation and practical implementation of advanced fracture mechanics test standards that capture the physics of a nonlinear fracture mechanics problem without adding undue burden or expense to the user. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  7. An improved two-dimensional depth-integrated flow equation for rough-walled fractures

    NASA Astrophysics Data System (ADS)

    Mallikamas, Wasin; Rajaram, Harihar

    2010-08-01

    We present the development of an improved 2-D flow equation for rough-walled fractures. Our improved equation accounts for the influence of midsurface tortuosity and the fact that the aperture normal to the midsurface is in general smaller than the vertical aperture. It thus improves upon the well-known Reynolds equation that is widely used for modeling flow in fractures. Unlike the Reynolds equation, our approach begins from the lubrication approximation applied in an inclined local coordinate system tangential to the fracture midsurface. The local flow equation thus obtained is rigorously transformed to an arbitrary global Cartesian coordinate system, invoking the concepts of covariant and contravariant transformations for vectors defined on surfaces. Unlike previously proposed improvements to the Reynolds equation, our improved flow equation accounts for tortuosity both along and perpendicular to a flow path. Our approach also leads to a well-defined anisotropic local transmissivity tensor relating the representations of the flux and head gradient vectors in a global Cartesian coordinate system. We show that the principal components of the transmissivity tensor and the orientation of its principal axes depend on the directional local midsurface slopes. In rough-walled fractures, the orientations of the principal axes of the local transmissivity tensor will vary from point to point. The local transmissivity tensor also incorporates the influence of the local normal aperture, which is uniquely defined at each point in the fracture. Our improved flow equation is a rigorous statement of mass conservation in any global Cartesian coordinate system. We present three examples of simple geometries to compare our flow equation to analytical solutions obtained using the exact Stokes equations: an inclined parallel plate, and circumferential and axial flows in an incomplete annulus. The effective transmissivities predicted by our flow equation agree very well with values

  8. A theory for the fracture of thin plates subjected to bending and twisting moments

    NASA Technical Reports Server (NTRS)

    Hui, C. Y.; Zehnder, Alan T.

    1993-01-01

    Stress fields near the tip of a through crack in an elastic plate under bending and twisting moments are reviewed assuming both Kirchhoff and Reissner plate theories. The crack tip displacement and rotation fields based on the Reissner theory are calculated. These results are used to calculate the J-integral (energy release rate) for both Kirchhoff and Reissner plate theories. Invoking Simmonds and Duva's (1981) result that the value of the J-integral based on either theory is the same for thin plates, a universal relationship between the Kirchhoff theory stress intensity factors and the Reissner theory stress intensity factors is obtained for thin plates. Calculation of Kirchhoff theory stress intensity factors from finite elements based on energy release rate is illustrated. It is proposed that, for thin plates, fracture toughness and crack growth rates be correlated with the Kirchhoff theory stress intensity factors.

  9. Fracture toughness testing on ferritic alloys using the electropotential technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, F.H.; Wire, G.L.

    1981-06-11

    Fracture toughness measurements as done conventionally require large specimens (5 x 5 x 2.5 cm) which would be prohibitively expensive to irradiate over the fluence and temperature ranges required for first wall design. To overcome this difficulty a single specimen technique for J intergral fracture toughness measurements on miniature specimens (1.6 cm OD x 0.25 cm thick) was developed. Comparisons with specimens three times as thick show that the derived J/sub 1c/ is constant, validating the specimen for first wall applications. The electropotential technique was used to obtain continuous crack extension measurements, allowing a ductile fracture resistence curve to bemore » constructed from a single specimen. The irradiation test volume required for fracture toughness measurements using both miniature specimens and single specimen J measurements was reduced a factor of 320, making it possible to perform a systematic exploration of irradiation temperature and dose variables as required for qualification of HT-9 and 9Cr-1Mo base metal and welds for first wall application. Fracture toughness test results for HT-9 and 9Cr-1Mo from 25 to 539/sup 0/C are presented to illustrate the single specimen technique.« less

  10. The subsurface impact of hydraulic fracturing in shales- Perspectives from the well and reservoir

    NASA Astrophysics Data System (ADS)

    ter Heege, Jan; Coles, Rhys

    2017-04-01

    It has been identified that the main risks of subsurface shale gas operations in the U.S.A. and Canada are associated with (1) drilling and well integrity, (2) hydraulic fracturing, and (3) induced seismicity. Although it is unlikely that hydraulic fracturing operations result in direct pathways of enhanced migration between stimulated fracture disturbed rock volume and shallow aquifers, operations may jeopardize well integrity or induce seismicity. From the well perspective, it is often assumed that fluid injection leads to the initiation of tensile (mode I) fractures at different perforation intervals along the horizontal sections of shale gas wells if pore pressure exceeds the minimum principal stress. From the reservoir perspective, rise in pore pressure resulting from fluid injection may lead to initiation of tensile fractures, reactivation of shear (mode II) fractures if the criterion for failure in shear is exceeded, or combinations of different fracturing modes. In this study, we compare tensile fracturing simulations using conventional well-based models with shear fracturing simulations using a fractured shale model with characteristic fault populations. In the fractured shale model, stimulated permeability is described by an analytical model that incorporates populations of reactivated faults and that combines 3D permeability tensors for layered shale matrix, damage zone and fault core. Well-based models applied to wells crosscutting the Posidonia Shale Formation are compared to generic fractured shale models, and fractured shale models are compared to micro-seismic data from the Marcellus Shale. Focus is on comparing the spatial distribution of permeability, stimulated reservoir volume and seismicity, and on differences in fracture initiation pressure and fracture orientation for tensile and shear fracturing end-members. It is shown that incorporation of fault populations (for example resulting from analysis of 3D seismics or outcrops) in hydraulic

  11. Fracture surface analysis of a quenched (α+β)-metastable titanium alloy

    NASA Astrophysics Data System (ADS)

    Illarionov, A. G.; Stepanov, S. I.; Demakov, S. L.

    2017-12-01

    Fracture surface analysis is conducted by means of SEM for VT16 titanium alloy specimens solution-treated at temperatures ranging from 700 to 875 °C, water-quenched and subjected to tensile testing. A cup and cone shape failure and dimple microstructure of the fracture surface indicates the ductile behavior of the alloy. Dimple dimensions correlated with the β-grain size of the alloy in quenched condition. The fracture area (namely, the size; the cup and cone shape) depends on the volume fraction of the primary α-phase in the quenched sample. However, the fracture surface changes considerably when the strain-induced β-αʺ-transformation takes place during tensile testing, resulting in the increase of alloy ductility.

  12. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales

    DOE PAGES

    Chon, Michael J.; Daly, Matthew; Wang, Bin; ...

    2017-06-10

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less

  13. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales.

    PubMed

    Chon, Michael J; Daly, Matthew; Wang, Bin; Xiao, Xianghui; Zaheri, Alireza; Meyers, Marc A; Espinosa, Horacio D

    2017-12-01

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this study, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration, reaching up to ~ 25kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. The results of this study are expected to be useful as design principles for high performance biomimetic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chon, Michael J.; Daly, Matthew; Wang, Bin

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less

  15. A time step criterion for the stable numerical simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    within the crack rises. The fluid flow within the crack and in the porous medium are simulated using the mass balance for water and Darcy's law for flow. The equations for flow and deformation in the rock and that for flow in the fracture are solved in a staggered manner. The two sets of equations are coupled via Lagrange multipliers. We present a time step criterion for the stability of the scheme and illustrate this criterion with test examples of crack propagation. [1] T. Boone and A. Ingraffea. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Met. 14, 27-47, (1990) [2] T. Mohammadnejad and A. Khoei. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design. 73, 77-95, (2013) [3] E.W. Remij, J.J.C. Remmers, J.M. Huyghe, D.M.J. Smeulders. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Engrg. 286, 293-312, (2015)

  16. Transient pressure analysis of a volume fracturing well in fractured tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Wang, Jiahang; Zhang, Cong; Cheng, Minhua; Wang, Xiaodong; Dong, Wenxiu; Zhou, Yingfang

    2017-12-01

    This paper presents a semi-analytical model to simulate transient pressure curves for a vertical well with a reconstructed fracture network in fractured tight oil reservoirs. In the proposed model, the reservoir is a composite system and contains two regions. The inner region is described as a formation with a finite conductivity hydraulic fracture network and the flow in the fracture is assumed to be linear, while the outer region is modeled using the classical Warren-Root model where radial flow is applied. The transient pressure curves of a vertical well in the proposed reservoir model are calculated semi-analytically using the Laplace transform and Stehfest numerical inversion. As shown in the type curves, the flow is divided into several regimes: (a) linear flow in artificial main fractures; (b) coupled boundary flow; (c) early linear flow in a fractured formation; (d) mid radial flow in the semi-fractures of the formation; (e) mid radial flow or pseudo steady flow; (f) mid cross-flow; (g) closed boundary flow. Based on our newly proposed model, the effects of some sensitive parameters, such as elastic storativity ratio, cross-flow coefficient, fracture conductivity and skin factor, on the type curves were also analyzed extensively. The simulated type curves show that for a vertical fractured well in a tight reservoir, the elastic storativity ratios and crossflow coefficients affect the time and the degree of crossflow respectively. The pressure loss increases with an increase in the fracture conductivity. To a certain extent, the effect of the fracture conductivity is more obvious than that of the half length of the fracture on improving the production effect. With an increase in the wellbore storage coefficient, the fluid compressibility is so large that it might cover the early stage fracturing characteristics. Linear or bilinear flow may not be recognized, and the pressure and pressure derivative gradually shift to the right. With an increase in the skin

  17. Bone Repair on Fractures Treated with Osteosynthesis, ir Laser, Bone Graft and Guided Bone Regeneration: Histomorfometric Study

    NASA Astrophysics Data System (ADS)

    dos Santos Aciole, Jouber Mateus; dos Santos Aciole, Gilberth Tadeu; Soares, Luiz Guilherme Pinheiro; Barbosa, Artur Felipe Santos; Santos, Jean Nunes; Pinheiro, Antonio Luiz Barbosa

    2011-08-01

    The aim of this study was to evaluate, through the analysis of histomorfometric, the repair of complete tibial fracture in rabbits fixed with osteosynthesis, treated or not with infrared laser light (λ780 nm, 50 mW, CW) associated or not to the use of hydroxyapatite and guided bone regeneration (GBR). Surgical fractures were created, under general anesthesia (Ketamina 0,4 ml/Kg IP and Xilazina 0,2 ml/Kg IP), on the dorsum of 15 Oryctolagus rabbits that were divided into 5 groups and maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libidum. On groups II, III, IV and V the fracture was fixed with wire osteosynthesis. Animals of groups III and V were grafted with hydroxyapatite and GBR technique used. Animals of groups IV and V were irradiated at every other day during two weeks (16 J/cm2, 4×4 J/cm2). Observation time was that of 30 days. After animal death (overdose of general anesthetics) the specimes were routinely processed to wax and underwent histological analysis by light microscopy. The histomorfometric analysis showed an increased bone neoformation, increased collagen deposition, less reabsorption and inflammation when laser was associated to the HATCP. It is concluded that IR laser light was able to accelerate fracture healing and the association with HATCP and GBR resulted on increased deposition of CHA.

  18. A Clinically Realistic Large Animal Model of Intra-Articular Fracture

    DTIC Science & Technology

    2014-12-01

    pendulum system for measuring energy absorption during fracture insult to large animal joints in vivo. J Biomech Eng. 2014 Jun;136(6):064502. PMID:24760051...Model 4. Yucatan Minipig 5. Impact 6. Pendulum 7. Mankin Scoring 8. Inflammatory Cytokines 9. Gait Analysis 10. Incongruity 3. OVERALL...primarily hardware upgrades and ex-vivo experimentation of the pendulum . 3.2.a Device Upgrades The primary hardware upgrade was to instrument the

  19. Failure analysis of eleven Gates Glidden drills that fractured intraorally during post space preparation. A retrieval analysis study.

    PubMed

    Al Jabbari, Youssef S; Fournelle, Raymond; Al Taweel, Sara M; Zinelis, Spiros

    2017-07-19

    The purpose of this study was to determine the failure mechanism of clinically failed Gates Glidden (GG) drills. Eleven retrieved GG drills (sizes #1 to #3) which fractured during root canal preparation were collected and the fracture location was recorded based on macroscopic observation. All fracture surfaces were investigated by a SEM. Then the fractured parts were embedded in acrylic resin and after metallographic preparation, the microstructure and elemental composition was evaluated by SEM and EDS. The Vickers hardness (HV) of all specimens was also determined. Macroscopic examination and SEM analysis showed that the drills failed near the hand piece end by torsional fatigue with fatigue cracks initiating at several locations around the circumference and propagating toward the center. Final fracture followed by a tensile overloading at the central region of cross section. Microstructural analysis, hardness measurements and EDS show that the drills are made of a martensitic stainless steel like AISI 440C. Based on the findings of this study, clinicians should expect fatigue fracture of GG drills that have small size during root canal preparation. Selection of a more fatigue resistant stainless steel alloy and enhancing the instrument design might reduce the incidence of quasi-cleavage fracture on GG drills.

  20. Association between metabolic syndrome and bone fractures: a meta-analysis of observational studies.

    PubMed

    Sun, Kan; Liu, Jianmin; Lu, Nan; Sun, Hanxiao; Ning, Guang

    2014-02-09

    Emerging epidemiological evidence suggest an association between metabolic syndrome and fractures. However, whether metabolic syndrome is an independent risk or protective factor of fractures remains controversial. Our goal is to provide a quantitative assessment of the association between metabolic syndrome and bone fractures by conducting a meta-analysis of observational studies. The PubMed and Embase database were searched through to March 2013 to identify studies that met pre-established inclusion criteria. Reference lists of retrieved articles were also reviewed. Summary effect estimates with 95% confidence intervals (CI) were derived using a fixed or random effects model, depending on the heterogeneity of the included studies. Eight epidemiologic studies involving 39,938 participants were included in the meta-analysis. In overall analysis, metabolic syndrome was not associated with prevalent fractures [pooled odds ratio (OR) 0.93, 95% CI 0.84 - 1.03] in cross-sectional studies or incident fractures [pooled relative risk (RR) 0.88, 95% CI 0.37 - 2.12] in prospective cohort studies. No evidence of heterogeneity was found in cross-sectional studies (p = 0.786, I2 = 0.0%). A substantial heterogeneity was detected in cohort studies (p = 0.001, I2 = 85.7%). No indication of significant publication bias was found either from Begg's test or Egger's test. Estimates of total effects were substantially consistent in the sensitivity and stratification analyses. The present meta-analysis of observational studies suggests that the metabolic syndrome has no explicit effect on bone fractures.

  1. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis.

    PubMed

    Song, Dawei; Meng, Bin; Gan, Minfeng; Niu, Junjie; Li, Shiyan; Chen, Hao; Yuan, Chenxi; Yang, Huilin

    2015-08-01

    Percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP) are minimally invasive and effective vertebral augmentation techniques for managing osteoporotic vertebral compression fractures (OVCFs). Recent meta-analyses have compared the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques or conservative treatment; however, the inclusions were not thorough and rigorous enough, and the effects of each technique on the incidence of secondary vertebral fractures remain unclear. To perform an updated systematic review and meta-analysis of the studies with more rigorous inclusion criteria on the effects of vertebral augmentation techniques and conservative treatment for OVCF on the incidence of secondary vertebral fractures. PubMed, MEDLINE, EMBASE, SpringerLink, Web of Science, and the Cochrane Library database were searched for relevant original articles comparing the incidence of secondary vertebral fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. Randomized controlled trials (RCTs) and prospective non-randomized controlled trials (NRCTs) were identified. The methodological qualities of the studies were evaluated, relevant data were extracted and recorded, and an appropriate meta-analysis was conducted. A total of 13 articles were included. The pooled results from included studies showed no statistically significant differences in the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques and conservative treatment. Subgroup analysis comparing different study designs, durations of symptoms, follow-up times, races of patients, and techniques were conducted, and no significant differences in the incidence of secondary fractures were identified (P > 0.05). No obvious publication bias was detected by either Begg's test (P = 0.360 > 0.05) or Egger's test (P = 0.373 > 0.05). Despite current thinking in the

  2. Variational formulation for dissipative continua and an incremental J-integral

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.

    2018-01-01

    Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.

  3. DEVELOPMENT AND APPLICATION OF MATERIALS PROPERTIES FOR FLAW STABILITY ANALYSIS IN EXTREME ENVIRONMENT SERVICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelar, R; Ps Lam, P; Andrew Duncan, A

    Discovery of aging phenomena in the materials of a structure may arise after its design and construction that impact its structural integrity. This condition can be addressed through a demonstration of integrity with the material-specific degraded conditions. Two case studies of development of fracture and crack growth property data, and their application in development of in-service inspection programs for nuclear structures in the defense complex are presented. The first case study covers the development of fracture toughness properties in the form of J-R curves for rolled plate Type 304 stainless steel with Type 308 stainless steel filler in the applicationmore » to demonstrate the integrity of the reactor tanks of the heavy water production reactors at the Savannah River Site. The fracture properties for the base, weld, and heat-affected zone of the weldments irradiated at low temperatures (110-150 C) up to 6.4 dpa{sub NRT} and 275 appm helium were developed. An expert group provided consensus for application of the irradiated properties for material input to acceptance criteria for ultrasonic examination of the reactor tanks. Dr. Spencer H. Bush played a lead advisory role in this work. The second case study covers the development of fracture toughness for A285 carbon steel in high level radioactive waste tanks. The approach in this case study incorporated a statistical experimental design for material testing to address metallurgical factors important to fracture toughness. Tolerance intervals were constructed to identify the lower bound fracture toughness for material input to flaw disposition through acceptance by analysis.« less

  4. Fracture Mechanics Analysis for Short Cracks.

    DTIC Science & Technology

    1987-08-27

    McClintock (Ref. 3), Rice (Ref. 4) and Hutchinson (Ref. 5). EPFM is applicable and needed especially for high toughness and low strength materials wherein...The development of LEFM has been followed by the development of elastic- plastic fracture mechanics ( EPFM ) with the pioneering work of Hult and...predict growth of these short cracks, as application of long crack fatigue growth analysis will not be applicable and failures may not be predicted. In

  5. Temperature effects on the deformation and fracture of Al-Li-Cu-In alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1991-01-01

    The crack initiation and growth fracture resistance of Al-Cu-Li and Al-Cu-Li-In alloys were characterized and optimized for cryogenic tank applications. Presently, the effects of stress state and temperature is being determined on the fracture toughness and fracture mechanisms of commercially available Vintage 3 2090-T81 and experimental 2090+In-T6. Precracked J-integral specimens of both alloys were tested at ambient and cryogenic temperatures in the plane stress and plane strain conditions. Considering ambient temperature, results showed that 2090-T81 exhibited the highest toughness in both plane strain and plane stress conditions. For the plane strain condition, reasonable crack initiation and growth toughness of 1090-T81 are associated with a significant amount of delamination and transgranular fracture. Plane stress toughnesses were higher and fracture was characterized by shear cracking with minimal delaminations. In comparisons, the fracture behavior of 2090+In-T6 is significantly degraded by subgrain boundary precipitation. Toughness is low and characterized by intersubgranular fracture with no delamination in the plane stress or plane strain conditions. Intersubgranular cracking is a low energy event which presumably occurs prior to the onset of slip band cracking. Copious grain boundary precipitation is atypical of commercially available 2090. At cryogenic temperatures, both alloys exhibit increased yield strength, toughness, and amount of delamination and shear cracking. The change in fracture mode of 2090+In-T6 from intersubgranular cracking at ambient temperature to a combination of intersubgranular cracking, shear cracking, and delamination at cryogenic temperature is the subject of further investigation.

  6. Fracture mechanics analysis of the dentine-luting cement interface.

    PubMed

    Ryan, A K; Mitchell, C A; Orr, J F

    2002-01-01

    The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji 1), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 microm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial K(IC) results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p <0.05) than those of FP or D, and all were significantly lower than values for monolithic cement specimens. Scanning electron microscopy of the specimens suggested crack propagation along the interface. However, energy dispersive X-ray analysis indicated that failure was cohesive within the cement. It is concluded that the fracture toughness of luting cement was lowered by cement-dentine interactions.

  7. Clinical Analysis of Midfacial Fractures

    PubMed Central

    Yamamoto, Kazuhiko; Matsusue, Yumiko; Horita, Satoshi; Murakami, Kazuhiro; Sugiura, Tsutomu; Kirita, Tadaaki

    2014-01-01

    Purpose: To analyze the features of midfacial fractures. Methods: Data of 320 patients treated for midfacial fractures during the past 10 years were retrospectively analyzed. Results: Patients were 192 male and 128 female. Their age ranged from 1 to 96 years old with the average of 42.1. Injury most frequently occurred by traffic accidents in 168 patients, followed by falls in 78, assaults in 31 and sports in 25. Pattern of the fractures was classified into zygoma in 159 patients, alveolus in 60, multiple sites in 54, maxilla in 45 and nasal bone in 2. Facial injury severity scale ranged from 1 to 12 with the average of 1.52. Injuries to other sites of the body were found in 90 patients. Fractures of multiple sites showed higher facial injury severity scale and were associated with injuries to other sites of the body at a higher rate. Observation was most frequently chosen in 153 patients, followed by open reduction and internal fixation in 72, intramaxillary fixation in 43 and transcutaneous reduction in 26. Conclusions: Midfacial fractures showed a variety of features in terms of the site and severity and associated injuries. Understanding these features is important to manage these patients properly. PMID:24757396

  8. The Relationship Between Constraint and Ductile Fracture Initiation as Defined by Micromechanical Analyses

    NASA Technical Reports Server (NTRS)

    Panontin, Tina L.; Sheppard, Sheri D.

    1994-01-01

    The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack

  9. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  10. Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae.

    PubMed

    Xie, Fang; Li, Gang; Zhang, Wanjiang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai

    2016-02-01

    The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. On the nature of the SWIFT/INTEGRAL source SWIFT J1508.6-4953 (also PMN J1508-4953)

    NASA Astrophysics Data System (ADS)

    Landi, R.; Bassani, L.; Masetti, N.; Bazzano, A.; Parisi, P.; Drave, S.; Goossens, M.

    2012-06-01

    This source is listed in the recent INTEGRAL/IBIS 9-year Galactic Hard X-ray Survey (Krivonos et al. 2012, arXiv:1205.3941) and also appears in the BAT 58-month catalogue (http://heasarc.nasa.gov/docs/swift/results/bs58mon/). It has been associated with the radio source PMN J1508-4953, also reported as a GeV emitter in the 2nd Fermi catalogue (Nolan et al. 2012, ApJS, 199, 31). We use archival Swift/XRT data to investigate its nature.

  12. Tritium and 36Cl as constraints on fast fracture flow and percolation flux in the unsaturated zone at Yucca Mountain.

    PubMed

    Guerin, M

    2001-10-01

    An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.

  13. Tritium and 36Cl as constraints on fast fracture flow and percolation flux in the unsaturated zone at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Guerin, Marianne

    2001-10-01

    An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.

  14. Identification of candidate genes in osteoporosis by integrated microarray analysis.

    PubMed

    Li, J J; Wang, B Q; Fei, Q; Yang, Y; Li, D

    2016-12-01

    In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and bone formation.Cite this article: J. J

  15. [Effect factors analysis of knee function recovery after distal femoral fracture operation].

    PubMed

    Bei, Chaoyong; Wang, Ruiying; Tang, Jicun; Li, Qiang

    2009-09-01

    To investigate the effect factors of knee function recovery after operation in distal femoral fractures. From January 2001 to May 2007, 92 cases of distal femoral fracture were treated. There were 50 males and 42 females, aged 20-77 years old (average 46.7 years old). Fracture was caused by traffic accident in 48 cases, by falling from height in 26 cases, by bruise in 12 cases and by tumble in 6 cases. According to Müller's Fracture classification, there were 29 cases of type A, 12 cases of type B and 51 cases of type C. According to American Society of Anesthesiologists (ASA) classification, there were 21 cases of grade I, 39 cases of grade II, 24 cases of grade III, and 8 cases of grade IV. The time from injury to operation was 4 hours to 24 days with an average of 7 days. Anatomical plate was used in 43 cases, retrograde interlocking intramedullary nail in 37 cases, and bone screws, bolts and internal fixation with Kirschner pins in 12 cases. After operation, the HSS knee function score was used to evaluate efficacy. Ten related factors were applied for statistical analysis, to knee function recovery after operation in distal femoral fractures, such as age, sex, preoperative ASA classification, injury to surgery time, fracture type, treatment, reduction quality, functional exercise after operation, whether or not CPM functional training and postoperative complications. Wound healed by first intention in 88 cases, infection occurred in 4 cases. All patients followed up 16-32 months with an average of 23.1 months. Clinical union of fracture was achieved within 3-7 months after operation. Extensor device adhesions and the scope of activities of <80 degrees occurred in 29 cases, traumatic arthritis in 25 cases, postoperative fracture displacement in 6 cases, mild knee varus or valgus in 7 cases and implant loosening in 6 cases. According to HSS knee function score, the results were excellent in 52 cases, good in 15 cases, fair in 10 cases and poor in 15 cases with

  16. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  17. EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M; Scott West, S; Michael Tosten, M

    2006-09-26

    The fracture toughness data collected in this study are needed to assess the long-term effects of tritium and its decay product on tritium reservoirs. The results show that tritium and decay helium have negative effects on the fracture toughness properties of stainless steel and its weldments. The data and report from this study has been included in a material property database for use in tritium reservoir modeling efforts like the Technology Investment Program ''Lifecycle Engineering for Tritium Reservoirs''. A number of conclusions can be drawn from the data: (1) For unexposed Type 304L stainless steel, the fracture toughness of weldmentsmore » was two to three times higher than the base metal toughness. (2) Tritium exposure lowered the fracture toughness properties of both base metals and weldments. This was characterized by lower J{sub Q} values and lower J-da curves. (3) Tritium-exposed-and-aged base metals and weldments had lower fracture toughness values than unexposed ones but still retained good toughness properties.« less

  18. Natural fracture systems studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.; Warpinski, N.R.

    The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing amore » structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.« less

  19. Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice.

    PubMed

    van der Lugt, Benthe; Rusli, Fenni; Lute, Carolien; Lamprakis, Andreas; Salazar, Ethel; Boekschoten, Mark V; Hooiveld, Guido J; Müller, Michael; Vervoort, Jacques; Kersten, Sander; Belzer, Clara; Kok, Dieuwertje E G; Steegenga, Wilma T

    2018-05-16

    The aging process is associated with diminished colonic health. In this study, we applied an integrative approach to reveal potential interactions between determinants of colonic health in aging C57BL/6J mice. Analysis of gut microbiota composition revealed an enrichment of various potential pathobionts, including Desulfovibrio spp . , and a decline of the health-promoting Akkermansia spp . and Lactobacillus spp. during aging. Intraluminal concentrations of various metabolites varied between ages and we found evidence for an increased gut permeability at higher age. Colonic gene expression analysis suggested that during the early phase of aging (between 6 and 12 months), expression of genes involved in epithelial-to-mesenchymal transition and (re)organization of the extracellular matrix were increased. Differential expression of these genes was strongly correlated with Bifidobacterium spp. During the later phase of aging (between 12 and 28 months), gene expression profiles pointed towards a diminished antimicrobial defense and were correlated with an uncultured Gastranaerophilales spp. This study demonstrates that aging is associated with pronounced changes in gut microbiota composition and colonic gene expression. Furthermore, the strong correlations between specific bacterial genera and host gene expression may imply that orchestrated interactions take place in the vicinity of the colonic wall and potentially mediate colonic health during aging.

  20. Facial Fractures.

    PubMed

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  1. Tritium and decay helium effects on the fracture toughness properties of types 316L, 304L and 21Cr-6Ni-9Mn stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M.J.; Tosten, M.H

    1994-10-01

    J-integral fracture mechanics techniques and electron microscopy observations were used to investigate the effects of tritium and its radioactive decay product, {sup 3}He, on Types 316L, 304L and 21Cr-6Ni-9Mn stainless steels. Tritium-exposed-and-aged steels had lower fracture-toughness values and shallower sloped crack-growth-resistance curves than unexposed steels. Both fracture-toughness parameters decreased with increasing concentrations of {sup 3}He. The fracture-toughness reductions were accompanied by a change in fracture mode from microvoid-nucleation-and-growth processes in control samples to grain-and-twin-boundary fracture in tritium-charged-and-aged samples. Type 316L stainless steel had the highest fracture-toughness values and Type 21Cr-6Ni-9Mn had the lowest. Samples containing {sup 3}He but degassed ofmore » tritium had fracture toughness properties that were similar to uncharged samples. The results indicate that helium bubbles enhance the embrittlement effects of hydrogen by affecting the deformation properties and by increasing localized hydrogen concentrations through trapping effects.« less

  2. Continuum mechanics analysis of fracture progression in the vitrified cryoprotective agent DP6

    PubMed Central

    Steif, Paul S.; Palastro, Matthew C.; Rabin, Yoed

    2008-01-01

    As part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on the prediction of fracture formation in cryoprotective agents. Fractures had been previously observed in 1 mℓ samples of the cryoprotective agent cocktail DP6, contained in a standard 15 mℓ glass vial, and subjected to various cooling rates. These experimental observations were obtained by means of a cryomacroscope, which has been recently presented by the current research team. High and low cooling rates were found to produce very distinct patterns of cracking. The current study seeks to explain the observed patterns on the basis of stresses predicted from finite element analysis, which relies on a simple viscoelastic constitutive model and on estimates of the critical stress for cracking. The current study demonstrates that the stress which results in instantaneous fracture at low cooling rates is consistent with the stress to initiate fracture at high cooling rate. This consistency supports the credibility of the proposed constitutive model and analysis, and the unified criterion for fracturing, that is, a critical stress threshold. PMID:18412493

  3. An equivalent domain integral for analysis of two-dimensional mixed mode problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Shivakumar, K. N.

    1989-01-01

    An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies subjected to mixed mode loading is presented. The total and product integrals consist of the sum of an area or domain integral and line integrals on the crack faces. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented. The procedure that uses the symmetric and antisymmetric components of the stress and displacement fields to calculate the individual modes gave accurate values of the integrals for all the problems analyzed.

  4. Biomechanical analysis of tension band fixation for olecranon fracture treatment.

    PubMed

    Kozin, S H; Berglund, L J; Cooney, W P; Morrey, B F; An, K N

    1996-01-01

    This study assessed the strength of various tension band fixation methods with wire and cable applied to simulated olecranon fractures to compare stability and potential failure or complications between the two. Transverse olecranon fractures were simulated by osteotomy. The fracture was anatomically reduced, and various tension band fixation techniques were applied with monofilament wire or multifilament cable. With a material testing machine load displacement curves were obtained and statistical relevance determined by analysis of variance. Two loading modes were tested: loading on the posterior surface of olecranon to simulate triceps pull and loading on the anterior olecranon tip to recreate a potential compressive loading on the fragment during the resistive flexion. All fixation methods were more resistant to posterior loading than to an anterior load. Individual comparative analysis for various loading conditions concluded that tension band fixation is more resilient to tensile forces exerted by the triceps than compressive forces on the anterior olecranon tip. Neither wire passage anterior to the K-wires nor the multifilament cable provided statistically significant increased stability.

  5. Assessing symmetry using the mirror stand device with manual and software-assisted methods in postoperative zygomatic fracture patients

    NASA Astrophysics Data System (ADS)

    Syarif, A. N.; Bangun, K.

    2017-08-01

    Zygomatic fractures are among the most common fractures to the facial skeleton. However, because no standard and reliable method of evaluation is available to assess postoperative patients, we often rely on photographs and subjective assessments. A portable mirror stand device (MiRS), which is a new method for the standardization of photography, was developed in our institution. Used with image analysis software, this device provides a new method for evaluating outcomes after the open reduction and internal fixation of zygomatic fractures. The portable mirror stand device was set up in our outpatient clinic at the Cleft Craniofacial Center at Cipto Mangunkusumo Hospital. Photographs of 11 postoperative patients were taken using the device, and they were analyzed both manually and using image analysis software (ImageJ 1.46) for symmetry. The two methods were then compared to assess the correlation and agreement of the results. The measurements taken using the manual method and the software-assisted method did not differ significantly, which indicated the good agreement between the two methods. The results of the symmetry achieved atour center were similar to other centers in the Asian region (ΔZy = 3.4±1.5 mm, ΔBc = 2.6±1.6 mm, ΔCh = 2.3±2.4 mm) compared with (ΔZy = 3.2±1.7 mm, ΔBc = 2.6±1.6 mm, ΔCh = 2.3±2.5 mm). The treatment of zygomatic fracture a tour center achieved good results. The portable mirror stand device assisted the image analysis software (ImageJ 1.46), which could be beneficial in assessing symmetry in postoperative zygomatic fracture patients.

  6. The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies

    PubMed Central

    Zhang, Xinge; Zhang, Rui; Wang, Yueqiao; Yan, Hanyi; Wu, Yingru; Tan, Anran; Fu, Jialin; Shen, Ziqiong; Qin, Guiyu; Li, Rui; Chen, Guoxun

    2017-01-01

    This meta-analysis evaluated the influence of dietary intake and blood level of vitamin A (total vitamin A, retinol or β-carotene) on total and hip fracture risk. Cohort studies published before July 2017 were selected through English-language literature searches in several databases. Relative risk (RR) with corresponding 95% confidence interval (CI) was used to evaluate the risk. Heterogeneity was checked by Chi-square and I2 test. Sensitivity analysis and publication bias were also performed. For the association between retinol intake and total fracture risk, we performed subgroup analysis by sex, region, case ascertainment, education level, age at menopause and vitamin D intake. R software was used to complete all statistical analyses. A total of 319,077 participants over the age of 20 years were included. Higher dietary intake of retinol and total vitamin A may slightly decrease total fracture risk (RR with 95% CI: 0.95 (0.91, 1.00) and 0.94 (0.88, 0.99), respectively), and increase hip fracture risk (RR with 95% CI: 1.40 (1.02, 1.91) and 1.29 (1.06, 1.57), respectively). Lower blood level of retinol may slightly increase total fracture risk (RR with 95% CI: 1.11 (0.94, 1.30)) and hip fracture risk (RR with 95% CI: 1.27 (1.05, 1.53)). In addition, higher β-carotene intake was weakly associated with the increased risk of total fracture (RR with 95% CI: 1.07 (0.97, 1.17)). Our data suggest that vitamin A intake and level may differentially influence the risks of total and hip fractures. Clinical trials are warranted to confirm these results and assess the clinical applicability. PMID:28891953

  7. Characterizing Fractures Across the Astronaut Corps: Preliminary Findings from Population-Level Analysis

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith M.; Charvat, Jacqueline; Sibonga, Jean; Sieker, Jeremy

    2017-01-01

    -selection fractures experienced those fractures following their first mission (mean 12.7 +/- 11.1 years following first mission; range 14.0 days - 50.6 years). Additional analyses are ongoing and include examination of fracture history, skeletal site, mechanism, and type of fracture, age at time of fracture, time from spaceflight to fracture, as well as multivariable analysis comparing fracture events to non-events. The results of such analyses may reveal trends in risk factors for fracture among the astronaut corps that have yet to be systematically described through a corps-wide approach.

  8. Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies.

    PubMed

    Wu, Q; Liu, B; Tonmoy, S

    2018-03-12

    This meta-analysis pooled results from 23 qualifying individual cohort studies and found that depression was significantly associated with an increased risk of fractures and bone loss. The association between depression and risk of fracture remains controversial. We conducted a comprehensive meta-analysis to examine the effect of depression on the risk of osteoporotic fractures and bone loss. We searched databases and reviewed citations in relevant articles for eligible cohort studies. Two investigators independently conducted study selection, appraisal, and data abstraction through the use of a standardized protocol. Random effect models were used for meta-analysis. Cochrane Q and I 2 statistics were used to assess heterogeneity. Funnel plots and rank correlation tests were used to evaluate publication bias. Twenty-three studies were included for meta-analysis. In studies that reported hazard ratio (HR) as the outcome (nine studies [n = 309,862]), depression was associated with 26% increase in fracture risk (HR = 1.26, 95% CI, 1.10-1.43, p < 0.001). Studies that reported risk ratio (RR) as the outcome (seven studies [n = 64,975]) suggested that depression was associated with 39% increase in fracture risk (RR = 1.39, 95% CI, 1.19-1.62, p < 0.001). Among studies that reported hip bone mineral density (BMD) as an outcome (eight studies [n = 15,442]), depression was associated with a reduced mean annual bone loss rate of 0.35% (0.18-0.53%, p < 0.001). The increased risk of fracture and bone loss associated with depression was consistent in all meta-analysis having modified inclusion criteria and in different subgroup analyses as well. Significant heterogeneity was observed in the meta-analysis; however, no significant publication bias was detected. Depression is associated with a significant increased risk in fracture and bone loss. Effective prevention may decrease such risk.

  9. Discrete Fracture Network Characterization of Fractured Shale Reservoirs with Implications to Hydraulic Fracturing Optimization

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2016-12-01

    REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.

  10. Microstructure-dependent fracture toughness (JIC) variations in dissimilar pipe welds for pressure vessel system of nuclear plants

    NASA Astrophysics Data System (ADS)

    Rathod, Dinesh W.; Pandey, Sunil; Singh, P. K.; Kumar, Suranjit

    2017-09-01

    In present study, dissimilar metal weld (DMW) joints between SA508Gr.3cl.1 ferritic steel and SS304LN pipes were prepared using Inconel 82/182, and Inconel 52/152 consumables. Metallurgical properties and their influence on fracture toughness of weldment regions and interfacial regions could play a significant role in integrity assessment of these joints. Ni-based consumables exhibit complex metallurgical properties at interfacial regions. The metallurgical characterization and fracture toughness studies of Inconel 82/182 and Inconel 52/152 joints have been carried out for determining the optimum consumable for DMW joint requirements and the effect of microstructure on fracture toughness in weldment regions. The present codes and procedures for integrity assessment of DMW joints have not given due considerations of metallurgical properties. The requirements for metallurgical properties by considering their effect on fracture toughness properties in integrity assessment have been discussed for reliable analysis. Inconel 82/182 is preferred over Inconel 52/152 joints owing to favorable metallurgical and fracture toughness properties across the interfacial and weldment regions.

  11. Surface Fractal Analysis for Estimating the Fracture Energy Absorption of Nanoparticle Reinforced Composites

    PubMed Central

    Pramanik, Brahmananda; Tadepalli, Tezeswi; Mantena, P. Raju

    2012-01-01

    In this study, the fractal dimensions of failure surfaces of vinyl ester based nanocomposites are estimated using two classical methods, Vertical Section Method (VSM) and Slit Island Method (SIM), based on the processing of 3D digital microscopic images. Self-affine fractal geometry has been observed in the experimentally obtained failure surfaces of graphite platelet reinforced nanocomposites subjected to quasi-static uniaxial tensile and low velocity punch-shear loading. Fracture energy and fracture toughness are estimated analytically from the surface fractal dimensionality. Sensitivity studies show an exponential dependency of fracture energy and fracture toughness on the fractal dimensionality. Contribution of fracture energy to the total energy absorption of these nanoparticle reinforced composites is demonstrated. For the graphite platelet reinforced nanocomposites investigated, surface fractal analysis has depicted the probable ductile or brittle fracture propagation mechanism, depending upon the rate of loading. PMID:28817017

  12. Correlation between high resolution sequence stratigraphy and mechanical stratigraphy for enhanced fracture characteristic prediction

    NASA Astrophysics Data System (ADS)

    Al Kharusi, Laiyyan M.

    Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight

  13. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    NASA Astrophysics Data System (ADS)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  14. Integrating a gender dimension into osteoporosis and fracture risk research.

    PubMed

    Geusens, Piet; Dinant, Geertjan

    2007-01-01

    Sex (referring to the strict biological sense) and gender (referring to the sociocultural dimension) are major determinants of health and disease. This review examines similarities and differences between the sexes in the prevalence of osteoporosis and fractures, bone- and fall-related risk factors for incident fractures, and the possibilities of fracture prevention, as well as gender differences in the perception of osteoporosis. We reviewed recent English-language publications on sex and gender differences in the context of osteoporosis and fracture risk. We refer to several reviews that provide extensive reference lists on the topics discussed. The incidence of fractures is higher in boys than in girls. The burden of fractures in adults increases with age, and it starts earlier and is higher in adult women than in adult men. With life expectancy increasing, the annual number of fractures is likely to increase substantially. Fractures in adults contribute to increased mortality (more in men than in women), increased morbidity (equal in men and women), and high costs (greater for women than for men). Adult men experience fewer fractures than women do. Men build larger bones with better microarchitecture while they are growing and thereafter have less increase in bone remodeling. Furthermore, they develop bone loss at a later age. Compared with their female counterparts, fewer older men are hypogonadic, and life expectancy is shorter for men than for women. There are multiple reasons for the differences in the incidences of fractures between men and women, related to the many factors associated with both bone and falls that influence fracture risk from the molecular and cellular level to the organ level. Sex hormones play a central and essential role in the physiology of bone by direct and indirect mechanisms (eg, by interfering with the growth hormone and insulin-like growth factor-1 axis). Case-finding strategies to identify patients at highest risk for fractures

  15. An Assessment of the Ductile Fracture Behavior of Hot Isostatically Pressed and Forged 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Smith, R. J.; Sherry, A. H.

    2017-05-01

    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.

  16. An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Fred; Tafti, Tayeb A.; Maity, Debotyam

    2013-04-01

    Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures provide porosity for fluid storage and permeability for fluid movement and play an important role in production from this kind of reservoirs. Hence, characterization of fractures has become a vitally important consideration in every aspect of exploration, development and production so as to provide additional energy resources for the world. During the injection or production of fluid, induced seismicity (micro-seismic events) can be caused by reactivated shears created fractures or the natural fractures in shear zones and faults. Monitoring these events can help visualize fracture growth during injection stimulation. Although the locations of microseismic events can be a useful characterization tool and have been used by many authors, we go beyond these locations to characterize fractures more reliably. Tomographic inversion, fuzzy clustering, and shear wave splitting are three methods that can be applied to microseismic data to obtain reliable characteristics about fractured areas. In this article, we show how each method can help us in the characterization process. In addition, we demonstrate how they can be integrated with each other or with other data for a more holistic approach. The knowledge gained might be used to optimize drilling targets or stimulation jobs to reduce costs and maximize production. Some of the concepts discussed in this paper are general in nature, and may be more applicable to unconventional hydrocarbon reservoirs than the metamorphic and igneous reservoir rocks at The Geysers geothermal field.

  17. Dynamic deformation and fracture of single crystal silicon: Fracture modes, damage laws, and anisotropy

    DOE PAGES

    Huang, J. Y.; E, J. C.; Huang, J. W.; ...

    2016-05-25

    Impact fracture of single-crystal Si is critical to long-term reliability of electronic devices and solar cells for its wide use as components or substrates in semiconductor industry. Single-crystal Si is loaded along two different crystallographic directions with a split Hopkinson pressure bar integrated with an in situ x-ray imaging and diffraction system. Bulk stress histories are measured, simultaneously with x-ray phase contrast imaging (XPCI) and Laue diffraction. Damage evolution is quantified with grayscale maps from XPCI. Single-crystal Si exhibits pronounced anisotropy in fracture modes, and thus fracture strengths and damage evolution. For loading along [11¯ 0] and viewing along [001],more » (1¯1¯0)[11¯ 0] cleavage is activated and induces horizontal primary cracks followed by perpendicular wing cracks. However, for loading along [011¯] and viewing along [111], random nucleation and growth of shear and tensile-splitting crack networks lead to catastrophic failure of materials with no cleavage. The primary-wing crack mode leads to a lower characteristic fracture strength due to predamage, but a more concentrated strength distribution, i.e., a higher Weibull modulus, compared to the second loading case. Furthermore, the sequential primary cracking, wing cracking and wing-crack coalescence processes result in a gradual increase of damage with time, deviating from theoretical predictions. Particle size and aspect ratios of fragments are discussed with postmortem fragment analysis, which verifies fracture modes observed in XPCI.« less

  18. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan

    2018-01-01

    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J < 10-3, where J is the hydraulic gradient. When the fluid flow is in a linear regime (i.e., J < 10-4), the relative deviation of equivalent permeability induced by shear, δ2, is linearly correlated with J with small variations, while for fluid flow in the nonlinear regime (J 〉 10-3), δ2 is nonlinearly correlated with J. A shear process would reduce the equivalent permeability significantly in the

  19. Biomechanical analysis using FEA and experiments of a standard plate method versus three cable methods for fixing acetabular fractures with simultaneous THA.

    PubMed

    Aziz, Mina S R; Dessouki, Omar; Samiezadeh, Saeid; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan

    2017-08-01

    Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface

    DOE PAGES

    Feigenbaum, Eyal; Raman, Rajesh N.; Cross, David; ...

    2016-05-16

    Laser-induced Hertzian fractures on the exit surface of silica glass are found to result from metal surface-bound micro particles. Two types of metal micro-spheres are studied (stainless-steel and Al) using ultraviolet laser light. The fracture initiation probability curve as a function of fluence is obtained, resulting in an initiation threshold fluence of 11.1 ± 4.7 J/cm 2 and 16.5 ± 4.5 J/cm 2 for the SS and Al particles, accordingly. The modified damage density curve is calculated based on the fracture probability. Here, the calculated momentum coupling coefficient linking incident laser fluence to the resulting plasma pressure is found tomore » be similar for both particles: 32.6 ± 15.4 KN/J and 28.1 ± 10.4 KN/J for the SS and Al cases accordingly.« less

  1. Delay in weight bearing in surgically treated tibial shaft fractures is associated with impaired healing: a cohort analysis of 166 tibial fractures.

    PubMed

    Houben, I B; Raaben, M; Van Basten Batenburg, M; Blokhuis, T J

    2018-04-09

    The relation between timing of weight bearing after a fracture and the healing outcome is yet to be established, thereby limiting the implementation of a possibly beneficial effect for our patients. The current study was undertaken to determine the effect of timing of weight bearing after a surgically treated tibial shaft fracture. Surgically treated diaphyseal tibial fractures were retrospectively studied between 2007 and 2015. The timing of initial weight bearing (IWB) was analysed as a predictor for impaired healing in a multivariate regression. Totally, 166 diaphyseal tibial fractures were included, 86 cases with impaired healing and 80 with normal healing. The mean age was 38.7 years (range 16-89). The mean time until IWB was significantly shorter in the normal fracture healing group (2.6 vs 7.4 weeks, p < 0.001). Correlation analysis yielded four possible confounders: infection requiring surgical intervention, fracture type, fasciotomy and open fractures. Logistic regression identified IWB as an independent predictor for impaired healing with an odds ratio of 1.13 per week delay (95% CI 1.03-1.25). Delay in initial weight bearing is independently associated with impaired fracture healing in surgically treated tibial shaft fractures. Unlike other factors such as fracture type or soft tissue condition, early resumption of weight bearing can be influenced by the treating physician and this factor therefore has a direct clinical relevance. This study indicates that early resumption of weight bearing should be the treatment goal in fracture fixation. 3b.

  2. QAPP for Hydraulic Fracturing (HF) Surface Spills Data Analysis

    EPA Pesticide Factsheets

    This QAPP provides information concerning the analysis of spills associated with hydraulic fracturing. This project is relevant to both the chemical mixing and flowback and produced water stages of the HF water cycle as found in the HF Study Plan.

  3. Fractography and estimates of fracture origin size from fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, G.D.; Swab, J.J.

    1996-12-31

    Fracture mechanics should be used routinely in fractographic analyses in order to verify that the correct feature has been identified as the fracture origin. This was highlighted in a recent Versailles Advanced Materials and Standards (VAMAS) fractographic analysis round robin. The practice of using fracture mechanics as an aid to fractographic interpretation is codified in a new ASTM Standard Practice. Conversely, very good estimates for fracture toughness often come from fractographic analysis of strength tested specimens. In many instances however, the calculated flaw size is different from the empirically-measured flaw size. This paper reviews the factors which may cause themore » discrepancies.« less

  4. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  5. Inverse problems in heterogeneous and fractured media using peridynamics

    DOE PAGES

    Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.

    2015-12-10

    The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less

  6. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines

    NASA Astrophysics Data System (ADS)

    Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai

    2018-04-01

    In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.

  7. Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.

    2013-12-01

    Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus

  8. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul P; DeVoto, Douglas J; Narumanchi, Sreekant V

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. Amore » fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.« less

  9. INTEGRAL observations of GRO J1008-57 in outburst

    NASA Astrophysics Data System (ADS)

    Leyder, J.-C.; Ferrigno, C.; Tuerler, M.; Walter, R.

    2009-03-01

    The Be X-ray binary GRO J1008-57 is known to display regular outburts, with a period of 248 days (ATel #940; Coe et al. 2007, MNRAS 378, 1427). In the past, it has been detected by INTEGRAL at a level of 30 mCrab in October 2005 (ATel #647; in the 18-45 keV energy range), but also in June 2004 (Coe et al. 2007). Swift/BAT detected a brighter than usual flare in November 2007 (ATel #1298), with a level of 100 mCrab up to 400 mCrab (in the 15-50 keV energy range; see the Swift/BAT lightcurve).

  10. Morbidity and Mortality Associated with Geriatric Ankle Fractures: A Medicare Part A Claims Database Analysis.

    PubMed

    Hsu, Raymond Y; Lee, Yoojin; Hayda, Roman; DiGiovanni, Christopher W; Mor, Vincent; Bariteau, Jason T

    2015-11-04

    The purpose of this study was to examine the incidence of adverse events in elderly patients who required inpatient admission after sustaining an ankle fracture and to consider these data in relation to geriatric hip fracture and other geriatric patient admissions. A retrospective cohort study of patients admitted with an ankle fracture, a hip fracture, or any other diagnosis was performed with the Medicare Part A database for 2008. The primary outcome measure was the one-year mortality rate, examined with multivariate analysis factoring for both patient age and preexisting comorbidity. Secondary outcome measures analyzed additional morbidity as reflected by length of stay, discharge disposition, readmissions, and medical complications. There were 19,648 patients with ankle fractures, 193,980 patients with hip fractures, and 5,801,831 patients with other admitting diagnoses. Significant differences (p < 0.001) were noted in both age and comorbidity status between the group with ankle fractures and the group with hip fractures. The one-year mortality after admission was 11.9% for patients with ankle fracture, 28.2% for patients with hip fracture, and 21.5% for patients with any other admission. Upon using multivariate analysis to account for both age and comorbidity, the hazard ratio for one-year mortality associated with fracture was 1.088 for patients with hip fracture and 0.557 for patients with ankle fracture. Even after selecting for admitted patients and accounting for both age and comorbidity, geriatric patients with ankle fractures were found to have a lower one-year morbidity compared with geriatric patients who had sustained a hip fracture or alternative admitting diagnoses. Geriatric patients with ankle fractures are likely healthier and more active in ways that are not captured by simply accounting for age and comorbidity. These findings may support more aggressive definitive management of such injuries in this population. Prognostic Level III. See

  11. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  12. Fractography, NDE, and fracture mechanics applications in failure analysis studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, C.R.; Shipley, R.J.; Wilkinson, J.A.

    1994-10-01

    While identification of the precise mode of a failure can lead logically to the underlying cause, a thorough failure investigation requires much more than just the identification of a specific metallurgical mechanism, for example, fatigue, creep, stress corrosion cracking, etc. Failures involving fracture provide good illustrations of this concept. An initial step in characterizing fracture surfaces is often the identification of an origin or origins. However, the analysis should not stop there. If the origin is associated with a discontinuity, the manner in which it was formed must also be addressed. The stresses that would have existed at the originmore » must be determined and compared with material properties to determine whether or not a crack should have initiated and propagated during normal operation. Many critical components are inspected throughout their lives by nondestructive methods. When a crack progresses to failure, its nondetection at earlier inspections must also be understood. Careful study of the fracture surface combined with crack growth analysis based on fracture mechanics can provide an estimate of the crack length at the times of previous inspections. An important issue often overlooked in such studies is how processing of parts during manufacture or rework affects the probability of detection of such cracks. The ultimate goal is to understand thoroughly the progression of the failure, to understand the root cause(s), and to design appropriate corrective action(s) to minimize recurrence.« less

  13. Adherence to a Mediterranean-style diet and incident fractures: pooled analysis of observational evidence.

    PubMed

    Kunutsor, Setor K; Laukkanen, Jari A; Whitehouse, Michael R; Blom, Ashley W

    2018-06-01

    The Mediterranean diet is associated with decreased morbidity and mortality from various chronic diseases. Adherence to a Mediterranean-style diet has been suggested to have protective effects on bone health and decreases the incidence of bone fractures, but the evidence is not clear. We conducted a systematic review and meta-analysis of available observational studies to quantify the association between adherence to a Mediterranean-style diet, as assessed by the Mediterranean Diet Score (MDS), and the risk of fractures in the general population. Relevant studies were identified in a literature search of MEDLINE, EMBASE, Web of Science, and reference lists of relevant studies to October 2016. Relative risks (RRS) with 95% confidence intervals (CIs) were aggregated using random-effects models. Five observational studies with data on 353,076 non-overlapping participants and 33,576 total fractures (including 6,881 hip fractures) were included. The pooled fully adjusted RR (95% CI) for hip fractures per 2-point increment in adherence to the MDS was 0.82 (0.71-0.96). Adherence to the MDS was not associated with the risk of any or total fractures based on pooled analysis of only two studies. Limited observational evidence supports a beneficial effect of adherence to a Mediterranean-style diet on the incidence of hip fractures. Well-designed intervention studies are needed to elucidate the relationship between adherence to a Mediterranean-style diet and the risk of adverse bone health outcomes such as fractures.

  14. Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: results from the Osteoporotic Fractures in Men (MrOs) Study.

    PubMed

    Yu, Ruby; Leung, Jason; Woo, Jean

    2014-08-01

    We examined whether sarcopenia is predictive of incident fractures among older men, whether the inclusion of sarcopenia in models adds any incremental value to bone mineral density (BMD), and whether sarcopenia is associated with a higher risk of fractures in elderly with osteoporosis. A cohort of 2000 community-dwelling men aged ≥65 years were examined for which detailed information regarding demographics, socioeconomic, medical history, clinical, and lifestyle factors were documented. Body composition and BMD were measured using dual energy X-ray absorptiometry. Sarcopenia was defined according to the Asian Working Group for Sarcopenia (AWGS) algorithm. Incident fractures were documented during the follow-up period from 2001 to 2013, and related to sarcopenia and its component measures using Cox proportional hazard regressions. The contribution of sarcopenia for predicting fracture risk was evaluated by receiver operating characteristic analysis, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). During an average of 11.3 years of follow-up, 226 (11.3%) men sustained at least 1 incident fracture, making the incidence of fractures 1200.6/100,000 person-years. After multivariate adjustments, sarcopenia was associated with increased fracture risk (hazard ratio [HR], 1.87, 95% confidence interval [CI], 1.26-2.79) independent of BMD and other clinical risk factors. The addition of sarcopenia did not significantly increase area under curve or IDI but significantly improved the predictive ability on fracture risk over BMD and other clinical risk factors by 5.12% (P < .05) using the NRI approach. In addition, the combination of osteoporosis and sarcopenia (sarco-osteoporosis) resulted in a significantly increased risk of fractures (HR, 3.49, 95% CI, 1.76-6.90) compared with those with normal BMD and without sarcopenia. This study confirms that sarcopenia is a predictor of fracture risk in this elderly men cohort, establishes that

  15. Fracture Analysis of Vessels. Oak Ridge FAVOR, v06.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P. T.; Dickson, T. L.; Yin, S.

    The current regulations to insure that nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to transients such as pressurized thermal shock (PTS) events were derived from computational models developed in the early-to-mid 1980s. Since that time, advancements and refinements in relevant technologies that impact RPV integrity assessment have led to an effort by the NRC to re-evaluate its PTS regulations. Updated computational methodologies have been developed through interactions between experts in the relevant disciplines of thermal hydraulics, probabilistic risk assessment, materials embrittlement, fracture mechanics, and inspection (flaw characterization). Contributors to the development of these methodologies include themore » NRC staff, their contractors, and representatives from the nuclear industry. These updated methodologies have been integrated into the Fracture Analysis of Vessels -- Oak Ridge (FAVOR, v06.1) computer code developed for the NRC by the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratory (ORNL). The FAVOR, v04.1, code represents the baseline NRC-selected applications tool for re-assessing the current PTS regulations. This report is intended to document the technical bases for the assumptions, algorithms, methods, and correlations employed in the development of the FAVOR, v06.1, code.« less

  16. Avalanche weak layer shear fracture parameters from the cohesive crack model

    NASA Astrophysics Data System (ADS)

    McClung, David

    2014-05-01

    .08 N/m (non-linear) to 0.18 N/m (LEFM) for median slab density around 200 kg/m3. Schulson and Duval (2009) estimated the fracture energy of solid ice (mode I) to be about 0.22-1 N/m which yields rough theoretical limits of about 0.05- 0.2 N/m for density 200 kg/m3 when the ice volume fraction is accounted for. Mode I results from lab tests (Sigrist, 2006) gave 0.1 N/m (200 kg/m3). The median effective mode II shear fracture toughness was calculated between 0.31 to 0.35 kPa(m)1/2 for the avalanche data. All the fracture energy results are much lower than previously calculated from propagation saw tests (PST) results for a weak layer collapse model (1.3 N/m) (Schweizer et al., 2011). The differences are related to model assumptions and estimates of the effective slab modulus. The calculations in this paper apply to quasi-static deformation and mode II weak layer fracture whereas the weak layer collapse model is more appropriate for dynamic conditions which follow fracture initiation (McClung and Borstad, 2012). References: Bažant, Z.P. et al. (2003) Size effect law and fracture mechanics of the triggering of dry snow slab avalanches, J. Geophys. Res. 108(B2): 2119, doi:10.1029/2002JB))1884.2003. McClung, D.M. and C.P. Borstad (2012) Deformation and energy of dry snow slabs prior to fracture propagation, J. Glaciol. 58(209), 2012 doi:10.3189/2012JoG11J009. Schulson, E.M and P. Duval (2009) Creep and fracture of ice, Cambridge University Press, 401 pp. Schweizer, J. et al. (2011) Measurements of weak layer fracture energy, Cold Reg. Sci. and Tech. 69: 139-144. Sigrist, C. (2006) Measurement of fracture mechanical properties of snow and application to dry snow slab avalanche release, Ph.D thesis: 16736, ETH, Zuerich: 139 pp.

  17. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    unsaturated zones [Pruess, 1999]. Lewis, M.A., H.K. Jones, D.M.J. Macdonald, M. Price, J.A. Barker, T.R. Shearer, A.J. Wesselink, and D.J. Evans (1993), Groundwater storage in British aquifers--Chalk, National Rivers Authority R&D Note, 169, Bristol, UK. Nimmo, J.R. (2010), Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow, Vadose Zone Journal, 9(2), 295-306, doi:10.2136/vzj2009.0085. Price, M., R.G. Low, and C. McCann (2000), Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer, Journal of Hydrology, 233(1-4), 54-71. Pruess, K. (1999), A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability, Water Resources Research, 35(4), 1039-1051.

  18. Fluid Production Induced Stress Analysis Surrounding an Elliptic Fracture

    NASA Astrophysics Data System (ADS)

    Pandit, Harshad Rajendra

    Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America. During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture. In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture. The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.

  19. DiversePathsJ: diverse shortest paths for bioimage analysis.

    PubMed

    Uhlmann, Virginie; Haubold, Carsten; Hamprecht, Fred A; Unser, Michael

    2018-02-01

    We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. http://bigwww.epfl.ch/algorithms/diversepathsj. michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  20. Experimental determination of sorption in fractured flow systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  1. A cost-utility analysis of a comprehensive orthogeriatric care for hip fracture patients, compared with standard of care treatment.

    PubMed

    Ginsberg, Gary; Adunsky, Abraham; Rasooly, Iris

    2013-01-01

    The economic burden associated with hip fractures calls for the investigation of innovative new cost-utility forms of organisation and integration of services for these patients. To carry out a cost-utility analysis integrating epidemiological and economic aspects for hip fracture patients treated within a comprehensive orthogeriatric model (COGM) of care, as compared with standard of care model (SOCM). A demonstration study conducted in a major tertiary medical centre, operating both a COGM ward and standard orthopaedic and rehabilitation wards. Data was collected on the clinical outcomes and health care costs of the two different treatment modalities, in order to calculate the absolute cost and disability-adjusted life years (DALY) ratio. The COGM model used 23% fewer resources per patient ($14,919 vs. $19,363) than the SOCM model and to avert 0.226 additional DALY per patient, mainly as a result of lower 1-year mortality rates among COGM patients (14.8% vs. 17.3%). A comprehensive ortho-geriatric care modality is more cost-effective, providing additional quality-adjusted life years (QALY) while using fewer resources compared with standard of care approach. The results should assist health policy-makers in optimising healthcare use and healthcare planning.

  2. Comparison of microCT and an inverse finite element approach for biomechanical analysis: Results in a MSC therapeutic system for fracture healing

    PubMed Central

    Weis, Jared A.; Granero-Moltó, Froilán; Myers, Timothy J.; Longobardi, Lara; Spagnoli, Anna; Miga, Michael I.

    2013-01-01

    An important concern in the study of fracture healing is the ability to assess mechanical integrity in response to candidate therapeutics in small-animal systems. In recent reports, it has been proposed that microCT image-derived densitometric parameters could be used as a surrogate for mechanical property assessment. Recently, we have proposed an inverse methodology that iteratively reconstructs the modulus of elasticity of the lumped soft callus/hard callus region by integrating both intrinsic mechanical property (from biomechanical testing) and geometrical information (from microCT) within an inverse finite element analysis (FEA) to define a callus quality measure. In this paper, data from a therapeutic system involving mesenchymal stem cells is analyzed within the context of comparing traditional microCT densitometric and mechanical property metrics. In addition, a novel multi-parameter regression microCT parameter is analyzed as well as our inverse FEA metric. The results demonstrate that the inverse FEA approach was the only metric to successfully detect both longitudinal and therapeutic responses. While the most promising microCT-based metrics were adequate at early healing states, they failed to track late-stage mechanical integrity. In addition, our analysis added insight to the role of MSCs by demonstrating accelerated healing and was the only metric to demonstrate therapeutic benefits at late-stage healing. In conclusion, the work presented here indicates that microCT densitometric parameters are an incomplete surrogate for mechanical integrity. Additionally, our inverse FEA approach is shown to be very sensitive and may provide a first-step towards normalizing the often challenging process of assessing mechanical integrity of healing fractures. PMID:22766379

  3. Mandibular fractures in India during the Second World War (1944 and 1945): analysis of the Snawdon series.

    PubMed

    Chambers, I G; Scully, C

    1987-10-01

    The records of Major J. W. E. Snawdon of the No. 2 Indian Maxillofacial Unit provide a rare and detailed insight into the treatment of mandibular fractures during the Second World War. Notable features were the high frequency of civilian-type injuries, the considerable delays between injury and definitive treatment, the lengthy periods of intermaxillary fixation required, the high incidence of infections and the common occurrence of delayed union. Despite these problems, only 12% of fractures resulted in non-union, usually when these were missile injuries with considerable destruction. Reporting of the details from Snawdon's records should be of interest particularly to young oral surgeons, whose experience of trauma belongs to an entirely different environment.

  4. History of the treatment of scapula fractures.

    PubMed

    Bartonícek, Jan; Cronier, Patrick

    2010-01-01

    The history of treatment of scapula fractures is closely connected with the history of the French surgery. Paré (Les œuvres d´Ambroise Paré, conseiller, et premier chirurgien du Roy, Gabriel Buon, Paris, p VCV, 1579), Petit (Traité des maladies des os. Tome second, Charles-Etienne Hochereau, Paris, pp 122–138, 1723), Du Verney (Traité des maladies des os. Tome I, de Burre, Paris, pp 220–231, 1751) and Desault (Œuvres chirurgicales, ou tableau de la doctrine et de la pratique dans le traitement des maladies externes par Xav. Bichat, Desault, Méquignon, Devilliers, Deroi, Paris, pp 98–106, 1798) were the first to point out the existence of these fractures. The first drawing of a scapula fracture was presented by Vogt (Dissertatio de ambarum scapularum dextroeque simul claviculae fractura rara, Dissertatione Universitae Vitembergensi, Wittenberg, 1799). This author was also the first to describe the scapula fracture associated with ipsilateral fracture of the clavicle. The first radiograph of scapula fracture (glenoid fossa fracture) was published by Struthers (Edinburgh Med J 4(3):147–149, 1910). The first internal fixation of scapula fracture using plate was done by Lambotte (1910) who was followed by Lane (The operative treatment of fractures, Medical Publishing Co, London, pp 99–101, 1914) and later by Lenormant (Sur l´ostéosynthèse dans certains fractures de l´omoplate Bulletins et mémoires de la Société de chirgie de Paris, pp 1501–1502, 1923), Dujarier (Fracture du col chirgical de l´omoplate. Ostéosynthèse par plaque en T. Bonne réduction. Bulletin et mémoires de la Société de chirurgie de Paris, pp 1492–1493, 1923) and Basset (Ostéosynthèse d´une fracture de l´omoplate. Bulletin et mémoires de la Société nationale de chirurgie. p 193, 1924). Dupont and Evrard (J Chir (Paris) 39:528–534, 1932) presented the first detailed description of the surgical approach along the lateral border of the scapula including two

  5. Analysis of thin fractures with GPR: from theory to practice

    NASA Astrophysics Data System (ADS)

    Arosio, Diego; Zanzi, Luigi; Longoni, Laura; Papini, Monica

    2017-04-01

    Whenever we perform a GPR survey to investigate a rocky medium, being the ultimate purpose of the survey either to study the stability of a rock slope or to determine the soundness of a quarried rock block, we would like mainly to detect any fracture within the investigated medium and, possibly, to estimate the parameters of the fractures, namely thickness and filling material. In most of the practical cases, rock fracture thicknesses are very small when compared to the wavelength of the electromagnetic radiation generated by the GPR systems. In such cases, fractures are to be considered as thin beds, i.e. two interfaces whose distance is smaller than GPR resolving capability, and the reflected signal is the sum of the electromagnetic reverberation within the bed. According to this, fracture parameters are encoded in the thin bed complex response and in this work we propose a methodology based on deterministic deconvolution to process amplitude and phase information in the frequency domain to estimate fracture parameters. We first present some theoretical aspects related to thin bed response and a sensitivity analysis concerning fracture thickness and filling. Secondly, we deal with GPR datasets collected both during laboratory experiments and in the facilities of quarrying activities. In the lab tests fractures were simulated by placing materials with known electromagnetic parameters and controlled thickness in between two small marble blocks, whereas field GPR surveys were performed on bigger quarried ornamental stone blocks before they were submitted to the cutting process. We show that, with basic pre-processing and the choice of a proper deconvolving signal, results are encouraging although an ambiguity between thickness and filling estimates exists when no a-priori information is available. Results can be improved by performing CMP radar surveys that are able to provide additional information (i.e., variation of thin bed response versus offset) at the expense

  6. Hybrid external fixation in the treatment of tibial pilon fractures: A retrospective analysis of 162 fractures.

    PubMed

    Galante, Vito N; Vicenti, Giovanni; Corina, Gianfranco; Mori, Claudio; Abate, Antonella; Picca, Girolamo; Conserva, Vito; Speciale, Domenico; Scialpi, Lorenzo; Tartaglia, Nicola; Caiaffa, Vincenzo; Moretti, Biagio

    2016-10-01

    To determine the efficacy of hybrid external fixation in the treatment of tibial pilon fractures. Retrospective, multicentre study. Adult patients with tibial pilon fractures treated with hybrid external fixation. Fracture reduction with ligamentotaxis and fixation with XCaliber hybrid external fixator. Fracture union, complications, functional outcome (Mazur Ankle Score). Union was obtained in 159 fractures at an average of 125days; there were three delayed unions and three non-unions. The most frequent complication was superficial pin-track infections (48), all of which responded to local wound care and antibiotics. There were no deep infections and no DVT. Only one fracture had loss of reduction that required frame revision. The overall functional scores were 91 (excellent) for AO/OTA type A fractures, 89 (good) for type B fractures, and 75 (satisfactory) for type C fractures. Hybrid external fixation is an effective method of stabilising tibial pilon fractures, particularly those with marked comminution. The minimally-invasive technique and stable fixation enable early mobilisation, with good functional results and minimal complications. Level IV Case series. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Trigonometry-Integrated 'Lift' Technique (TILT) for Restoring Volar Tilt in Distal Radius Fractures: Description of Technique and Preliminary Results.

    PubMed

    Sechachalam, Sreedharan; Satku, Mala; Wong, Jian Hao Kevin; Tan, Lester Teong Jin; Yong, Fok Chuan

    2017-03-01

    Restoration of extra-articular and intra-articular parameters are important considerations during operative fixation of distal radius fractures. Restoration of volar tilt by using visual estimation and the 'lift' technique has previously been described. The aim of our study was to describe a mathematical technique for accurately restoring the volar tilt of the distal radius to acceptable anatomic values. A retrospective review of cases performed using the trigonometry-integrated ' lift' technique (TILT) was performed. This technique uses the pre-operative volar tilt angle as well as the dimensions of the implant to calculate the 'lift' required to restore volar tilt. Intra-operative angles were measured using a marked transparency overlay on fluoroscopic images. Pre-operative and post-operative volar tilt were measured and analysed. Twenty-seven fractures were included in the study, with 20 being classified as Arbeitsgemeinschaft für Osteosynthesefragen (AO) C-type. Pre-'lift' volar tilt ranged from 0° to -20°. Post-'lift' volar tilt ranged from 2° to 16°, with all but three cases ranging from 5° to 15°. The mean volar tilt achieved was 10.2°. The trigonometry-integrated 'lift' technique resulted in reliable intra-operative restoration of anatomic volar tilt in distal radius fractures.

  8. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...

    2017-09-05

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  9. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  10. Characterization of Midface Fractures Incurred in Recent Wars

    DTIC Science & Technology

    2012-11-01

    reconstruction . Key Words: Maxillofacial, facial fractures, early rigid fixation, blast injury (J Craniofac Surg 2012;23: 1587 1591) The percentage of...evaluated by a facial trauma expert that some of these findings are made. Conversely, it is not uncommon to find fractures that are incorrectly...þ Robert G. Hale, DDS,þ and Rodney K. Chan, MDþ Background: Facial injuries sustained by US military personnel during the wars in Iraq and

  11. Fracture analysis of radial scientific instrument module registration fittings of the space telescope

    NASA Technical Reports Server (NTRS)

    Springfield, C. W., Jr.

    1985-01-01

    The space telescope contains various scientific instrument (SI) modules which are mounted to the Focal Plane Structure (FPS) in a statically determinate manner. This is accomplished by using three registration fittings per SI module, one resisting three translations, another resisting two and the third resisting only one. Due to thermal insulating requirements these fittings are complex devices composed of numerous pieces. The structural integrity of these fittings is of great importance to the safety of the orbiter transporting the telescope, so in addition to the stress analyses performed during the design of these components, fracture susceptibility also needs to be considered. The pieces of the registration fittings for the Radial SI Module containing the Wide Field Planetary Camera are examined to determine which would endanger the orbiter if they fractured and what is the likelihood of their fracture. The latter is stated in terms of maximum allowable initial flaw sizes in these pieces.

  12. Selection of finite-element mesh parameters in modeling the growth of hydraulic fracturing cracks

    NASA Astrophysics Data System (ADS)

    Kurguzov, V. D.

    2016-12-01

    The effect of the mesh geometry on the accuracy of solutions obtained by the finite-element method for problems of linear fracture mechanics is investigated. The guidelines have been formulated for constructing an optimum mesh for several routine problems involving elements with linear and quadratic approximation of displacements. The accuracy of finite-element solutions is estimated based on the degree of the difference between the calculated stress-intensity factor (SIF) and its value obtained analytically. In problems of hydrofracturing of oil-bearing formation, the pump-in pressure of injected water produces a distributed load on crack flanks as opposed to standard fracture mechanics problems that have analytical solutions, where a load is applied to the external boundaries of the computational region and the cracks themselves are kept free from stresses. Some model pressure profiles, as well as pressure profiles taken from real hydrodynamic computations, have been considered. Computer models of cracks with allowance for the pre-stressed state, fracture toughness, and elastic properties of materials are developed in the MSC.Marc 2012 finite-element analysis software. The Irwin force criterion is used as a criterion of brittle fracture and the SIFs are computed using the Cherepanov-Rice invariant J-integral. The process of crack propagation in a linearly elastic isotropic body is described in terms of the elastic energy release rate G and modeled using the VCCT (Virtual Crack Closure Technique) approach. It has been found that the solution accuracy is sensitive to the mesh configuration. Several parameters that are decisive in constructing effective finite-element meshes, namely, the minimum element size, the distance between mesh nodes in the vicinity of a crack tip, and the ratio of the height of an element to its length, have been established. It has been shown that a mesh that consists of only small elements does not improve the accuracy of the solution.

  13. j5 DNA assembly design automation.

    PubMed

    Hillson, Nathan J

    2014-01-01

    Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost-benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.

  14. Integration of seismic interpretation and petrophysical studies on Hawaz Formation in J-field NC-186 concession, Northwest Murzuq basin, Libya

    NASA Astrophysics Data System (ADS)

    Mohamed, A. K.; Selim, E. I.; Kashlaf, A.

    2016-12-01

    This study has been carried out by the integration of seismic interpretations and the well-logging analysis of ten wells distributed in J-field of concession NC-186, Murzuq basin, Libya. Twenty (3D) seismic lines and ten wells have been analyzed. The results of this study indicated that, the main reservoir in this concession is Hawaz Formation. Hawaz has been split into 8 units with a subdivision of Hawaz H4 into three subunits with the objective of better characterization of the three general fine upward intervals. The lower interval of H4 zone presents the better reservoir properties. The depth of reflector H4 ranges from 4100 ft in the northwestern part of the study area and increases to 4600 ft in the southeastern part of the study area. In this study, the outline of the Hawaz paleohighs which is NC-186 Field ;J; is generally trending in the NW-SE direction. The well logging analysis particularly quick look interpretation indicates that Hawaz Formation in the studied wells is mainly oil-bearing with some water-bearing sand levels at the horizons from H4 to and H6 which are potentially the main reservoirs. The water bearing zones are beyond these horizons starting from the sub-horizon H6c and the oil water contact is probably at depth 4495 ft. The crossplot of porosity-saturation for H5 and H6b indicates firmly that these horizons are indeed at irreducible state and will produce mainly oil as indicated in J4-NC186 well, while the crossplot of H8 shows wide scattering of points which is the main characteristic for water producing horizon. The depth of Hawaz Formation H4 is more than 4160 ft in J4, J12 and J16 wells in the northwestern parts of this field and increases to 4400 in the central part of the concession at well J1.

  15. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  16. J-resistance curves for Inconel 690 and Incoloy 800 nuclear steam generators tubes at room temperature and at 300 °C

    NASA Astrophysics Data System (ADS)

    Bergant, Marcos A.; Yawny, Alejandro A.; Perez Ipiña, Juan E.

    2017-04-01

    The structural integrity of steam generator tubes is a relevant issue concerning nuclear plant safety. In the present work, J-resistance curves of Inconel 690 and Incoloy 800 nuclear steam generator tubes with circumferential and longitudinal through wall cracks were obtained at room temperature and 300 °C using recently developed non-standard specimens' geometries. It was found that Incoloy 800 tubes exhibited higher J-resistance curves than Inconel 690 for both crack orientations. For both materials, circumferential cracks resulted into higher fracture resistance than longitudinal cracks, indicating a certain degree of texture anisotropy introduced by the tube fabrication process. From a practical point of view, temperature effects have found to be negligible in all cases. The results obtained in the present work provide a general framework for further application to structural integrity assessments of cracked tubes in a variety of nuclear steam generator designs.

  17. Fractal Analysis of Permeability of Unsaturated Fractured Rocks

    PubMed Central

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746

  18. Fractal analysis of permeability of unsaturated fractured rocks.

    PubMed

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.

  19. Analysis of mechanical strength to fixing the femoral neck fracture in synthetic bone type Asnis

    PubMed Central

    Freitas, Anderson; Lula, Welder Fernandes; de Oliveira, Jonathan Sampaio; Maciel, Rafael Almeida; Souto, Diogo Ranier de Macedo; Godinho, Patrick Fernandes

    2014-01-01

    OBJECTIVE: To analyze the results of biomechanical assays of fixation of Pauwels type III femoral neck fracture in synthetic bone, using 7.5mm cannulated screws in inverted triangle formation, in relation to the control group. METHODS: Ten synthetic bones were used, from a domestic brand, divided into two groups: test and control. In the test group, a 70° tilt osteotomy of the femoral neck was fixated using three cannulated screws in inverted triangle formation. The resistance of this fixation and its rotational deviation were analyzed at 5mm displacement (phase 1) and 10mm displacement (phase 2). The control group was tested in its integrity until the fracture of the femoral neck occurred. The Mann-Whitney test was used for group analysis and comparison. RESULTS: The values in the test group in phase 1, in samples 1-5, showed a mean of 579N and SD =77N. Rotational deviations showed a mean of 3.33°, SD = 2.63°. In phase 2, the mean was 696N and SD =106N. The values of the maximum load in the control group had a mean of 1329N and SD=177N. CONCLUSION: The analysis of mechanical strength between the groups determined a statistically significant lower value in the test group. Level of Evidence III, Control Case. PMID:25246851

  20. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial.

    PubMed

    Katzman, W B; Vittinghoff, E; Kado, D M; Lane, N E; Ensrud, K E; Shipp, K

    2016-03-01

    Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. We used data from the Fracture Intervention Trial among 3038 women 55-81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Mean baseline kyphosis was 48° (SD = 12) (range 7-83). At baseline, 962 (32%) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95% CI 2.8-4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22% increase (95% CI 8-38%, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8% per 10° kyphosis (95% CI -4 to 22%, p = 0.18). While greater kyphosis increased the rate of incident vertebral fractures, our analysis does not

  1. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial

    PubMed Central

    Vittinghoff, E.; Kado, D. M.; Lane, N. E.; Ensrud, K. E.; Shipp, K.

    2016-01-01

    Summary Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Introduction Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. Methods We used data from the Fracture Intervention Trial among 3038 women 55–81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Results Mean baseline kyphosis was 48° (SD = 12) (range 7–83). At baseline, 962 (32 %) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95 % CI 2.8–4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22 % increase (95 % CI 8–38 %, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8 % per 10° kyphosis (95 % CI −4 to 22 %, p = 0.18). Conclusions While greater kyphosis increased the rate of

  2. [Mechanics analysis of fracture of orthodontic wires].

    PubMed

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  3. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems

    EPA Pesticide Factsheets

    Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.

  4. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  5. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  6. Fracture risk and bone mineral density in metabolic syndrome: a meta-analysis.

    PubMed

    Esposito, Katherine; Chiodini, Paolo; Capuano, Annalisa; Colao, Annamaria; Giugliano, Dario

    2013-08-01

    The risk of bone fractures in subjects with the metabolic syndrome is unknown. We did a meta-analysis to assess the association between metabolic syndrome, risk of fractures, and bone mineral density (BMD). We did searches on electronic databases (Medline, Scopus, and ISI Web of Knowledge) until December 2012 and searched reports to identify studies in humans on bone fractures and BMD at different sites. Two independent reviewers collected the relevant reports. We did random-effects meta-analyses to determine the risk of fractures and BMD values associated with metabolic syndrome. A total of 17 studies, with 35 datasets, were included. In 10 articles (14 datasets) including 1350 incident and 1628 prevalent fractures, metabolic syndrome was associated with a reduced fracture risk (risk ratio = 0.85, 95% confidence interval, 0.71-1.00; high heterogeneity: I(2) = 55%, P = .006). Omission of 2 outlier studies resulted in a significant negative association (risk ratio = 0.85, P = .012; I(2) = 34%, P = .130). Most of the reduced fracture risk was seen in cohort studies (18% reduced risk), suggesting a direction of causality; sex, site of fracture, and definition of the syndrome did not affect the estimates. In 16 articles, including 29 341 subjects, there was no difference in spine, femoral neck, or calcaneus BMD values between subjects with or without metabolic syndrome; mean differences ranged from 0.001 to 0.012 g/cm(2) (P > .10). This article shows a reduced risk of bone fractures associated with metabolic syndrome, without modification of BMD. The clinical significance of these findings remains uncertain and should be addressed in future prospective studies.

  7. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    NASA Astrophysics Data System (ADS)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  8. A systematic review of current osteoporotic metaphyseal fracture animal models.

    PubMed

    Wong, R M Y; Choy, M H V; Li, M C M; Leung, K-S; K-H Chow, S; Cheung, W-H; Cheng, J C Y

    2018-01-01

    The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted. Fracture techniques included drill hole defects (3 of 19), bone defects (3 of 19), partial osteotomy (1 of 19), and complete osteotomies (12 of 19). Drill hole models and incomplete osteotomy models are easy to perform and allow the study of therapeutic agents but do not represent the usual clinical setting. Additionally, biomaterials can be filled into drill hole defects for analysis. Complete osteotomy models are most commonly used and are best suited for the investigation of therapeutic drugs or noninvasive interventions. The metaphyseal defect models allow the study of biomaterials, which are associated with complex and comminuted osteoporotic fractures. For a clinically relevant model, we propose that an animal model should satisfy the following criteria to study osteoporotic fracture healing: 1) induction of osteoporosis, 2) complete osteotomy or defect at the metaphysis unilaterally, and 3) internal fixation. Cite this article : R. M. Y. Wong, M. H. V. Choy, M. C. M. Li, K-S. Leung, S. K-H. Chow, W-H. Cheung, J. C. Y. Cheng. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res 2018;7:6-11. DOI: 10.1302/2046-3758.71.BJR-2016-0334.R2. © 2018 Wong et al.

  9. Experimental determination of J-Q in the two-parameter characterization of fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Chiang, F.P.

    1995-11-01

    It is well recognized that using a single parameter to characterize crack tip deformation is no long adequate if constraint is present. Several approaches of two-parameter characterization scheme have been proposed. There are the J-T approach, the J-Q approach of Shih et al and the J-Q approach of Sharma and Aravas. The authors propose a scheme to measure the J and Q of the J-Q theory of Sharma and Aravas. They find that with the addition of Q term the experimentally measured U-field displacement component agrees well with the theoretical prediction. The agreement increases as the crack tip constraint increases.more » The results of a SEN and a CN specimen are presented.« less

  10. Understanding hydraulic fracturing: a multi-scale problem

    PubMed Central

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  11. Analysis of two different surgical approaches for fractures of the mandibular condyle.

    PubMed

    Kumaran, S; Thambiah, L J

    2012-01-01

    Fractures of the condyle account for one third of all the mandibular fractures. Different surgical approaches to the condyle described hitherto testify to the advantages and disadvantages of the different surgical techniques used for approaching the condyle in such cases of fractures. We have described and compared two of such surgical techniques in this study. The aim of this study is to compare the outcome of dealing with condylar fractures by two different surgical techniques: the mini retromandibular approach, and the preauricular approach. A prospective study of 31 patients who had suffered with mandibular condylar fractures was carried out. Of these, 26 patients had unilateral condylar fractures, and 5 patients had a bilateral fracture. Further, 19 of these patients were treated by the mini retromandibular approach and 12 by the preauricular approach. The treated patients were followed up and evaluated for a minimum period of 1 year and assessed for parameters such as the maximum mouth opening, lateral movement on the fractured side, mandibular movements such as protrusion, dental occlusion, scar formation, facial nerve weakness, salivary fistula formation and time taken for the completion of the surgical procedure. t- test was used for statistical analysis of the data obtained in the study. Dental occlusion was restored in all the cases, and good anatomical reduction was achieved. The mean operating time was higher 63.53 (mean) ± 18.12 minutes standard deviation (SD) in the preauricular approach compared to 45.22 (mean) ± 18.86 minutes SD in the mini retromandibular approach. Scar formation was satisfactory in almost all the cases.

  12. AN INTEGRATED VIEW OF GROUNDWATER FLOW CHARACTERIZATION AND MODELING IN FRACTURED GEOLOGIC MEDIA

    EPA Science Inventory

    The particular attributes of fractured geologic media pertaining to groundwater flow characterization and modeling are presented. These cover the issues of fracture network and hydraulic control of fracture geometry parameters, major and minor fractures, heterogeneity, anisotrop...

  13. The ImageJ ecosystem: an open platform for biomedical image analysis

    PubMed Central

    Schindelin, Johannes; Rueden, Curtis T.; Hiner, Mark C.; Eliceiri, Kevin W.

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available – from commercial to academic, special-purpose to Swiss army knife, small to large–but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts life science, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. PMID:26153368

  14. Pediatric Hip Fractures in California: Results from a Community-Based Hip Fracture Registry.

    PubMed

    Prentice, Heather A; Paxton, Elizabeth W; Hunt, Jessica J; Grimsrud, Christopher D; Weiss, Jennifer M

    2017-01-01

    Hip fracture registries offer an opportunity to identify and to monitor patients with rare conditions and outcomes, including hip fractures in pediatric patients. To report patient demographics and surgical outcomes of pediatric patients treated surgically for hip fractures in a large integrated health care system. Pediatric patients (< 21 years old at the time of fracture) with hip fractures were identified between 2009 and 2012 using our health care system's hip fracture registry. Patient characteristics, type of fracture, surgical treatment, and short-term complications. Among 39 patients identified, 31 (79.5%) were male, and the median age was 15 years old (interquartile range: 11-17 years). Most patients were Hispanic (n = 17, 43.6%) or white (n = 14, 35.9%). There were 8 patients (20.5%) with 15 comorbidities. Delbet Type IV (intertrochanteric) fractures were the most common fracture type (n = 22, 56.4%), and fixation method was equally distributed between intramedullary, screw and sideplate, and screws (n = 12, 30.8% for each). Most surgeries were performed by medium-volume surgeons (n = 22, 56.4%) at medium- and high-volume hospitals (n = 37, 94.9%). Three 90-day readmissions (7.7%), 1 infection (2.6%), 1 malunion (2.6%), and 1 revision (2.6%) were observed in this cohort during the study period. In our series using registry data, hip fractures younger than age 21 years were more common in boys and Hispanic patients. Intertrochanteric fractures (Delbet Type IV) were the most frequently observed type in our community-based hip fracture registry. Short-term complications were infrequent.

  15. Enhanced hip fracture management: use of statistical methods and dataset to evaluate a fractured neck of femur fast track pathway-pilot study.

    PubMed

    Gilchrist, Nigel; Dalzell, Kristian; Pearson, Scott; Hooper, Gary; Hoeben, Kit; Hickling, Jeremy; McKie, John; Yi, Ma; Chamberlain, Sandra; McCullough, Caroline; Gutenstein, Marc

    2017-05-12

    The increasing elderly population and subsequent rise in total hip fracture(s) in this group means more effective management strategies are necessary to improve efficiency. We have changed our patient care strategy from the emergency department (ED), acute orthopaedic wards, operating theatre, post-operation and rehabilitation, and called it Fracture Neck of Femur Fast Track Pathway. All clinical data and actions were captured, integrated and displayed on a weekly basis using 'signalfromnoise' (SFN) software. The initial four months analysis of this project showed significant improvement in patient flow within the hospitals. The overall length of stay was reduced by four days. Time in ED was reduced by 30 minutes, and the wait for rehabilitation reduced by three days. Overall time in rehabilitation reduced by 3-7 days depending on facility. On average, fast track patients spent 95 less hours in hospital, resulting in 631 bed days saved in this period, with projected savings of NZD700,000. No adverse effects were seen in mortality, readmission and functional improvement status. Fractured neck of femur has increasing clinical demand in a busy tertiary hospital. Length of stay, co-morbidities and waiting time for theatres are seen as major barriers to treatment for these conditions. Wait for rehabilitation can significantly lengthen hospital stay; also poor communication between the individual hospital management facets of this condition has been an ongoing issue. Lack of instant and available electronic information on this patient group has also been seen as a major barrier to improvement. This paper demonstrates how integration of service components that are involved in fractured neck of femur can be achieved. It also shows how the use of electronic data capture and analysis can give a very quick and easily interpretable data trend that will enable change in practice. This paper indicates that cooperation between health professionals and practitioners can

  16. Challenges and Solutions for the Integration of Structural and Hydrogeological Understanding of Fracture Systems - Insights from the Olkiluoto Site, Finland

    NASA Astrophysics Data System (ADS)

    Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.

    2017-12-01

    A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to

  17. A Systematic Review and Meta-Analysis Examining the Differences Between Nonsurgical Management and Percutaneous Fixation of Minimally and Nondisplaced Scaphoid Fractures.

    PubMed

    Alnaeem, Hassan; Aldekhayel, Salah; Kanevsky, Johnathan; Neel, Omar Fouda

    2016-12-01

    The optimal management of undisplaced scaphoid fractures remains controversial. A systematic review was conducted to assess the outcomes of acute, undisplaced scaphoid fractures managed with cast immobilization versus percutaneous or miniopen screw fixation in terms of time to return to work (RTW), time to union, and morbidity. PubMed MEDLINE, Ovid MEDLINE, EMBASE, SCOPUS, and Cochrane electronic databases were searched over the period 1974 to 2015. Key words included "scaphoid fracture," "navicular fracture," "hand," "immobilization," "cast," "conservative," "percutaneous," "screw fixation," "mini open," and "minimally invasive." A 2-step review process was done by 2 independent reviewers (H.A. and J.K.) using the following criteria: (1) acute undisplaced scaphoid fracture, (2) English language, (3) RTW duration objectively reported, (5) age older than 15 years, and (5) studies with more than 10 patients. Patient demographics, duration of immobilization, time to RTW, time to union, and complications were extracted. The methodological quality of each study included was assessed independently. Meta-analysis was performed for comparative trials. Ten studies met the inclusion criteria: 6 comparative studies and 4 case series. Patients were divided into 2 groups: cast immobilization (group 1) and percutaneous fixation (group 2). Average time to RTW was 77 days for group 1 versus 46 days for group 2. Average time to radiographic union was 79 days for group 1 versus 44 days for group 2. There was no significant difference in complication rate between the groups (7% in group 1 vs 14% in group 2). Percutaneous fixation of acute undisplaced scaphoid fractures has union rates comparable with those of nonsurgical cast immobilization but with faster RTW and time to union without a significant difference in complication rate. Therapeutic II. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Probabilistic finite elements for fatigue and fracture analysis

    NASA Astrophysics Data System (ADS)

    Belytschko, Ted; Liu, Wing Kam

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  19. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1993-01-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  20. Use of acid-suppressive drugs and risk of fracture: a meta-analysis of observational studies.

    PubMed

    Eom, Chun-Sick; Park, Sang Min; Myung, Seung-Kwon; Yun, Jae Moon; Ahn, Jeong-Soo

    2011-01-01

    Previous studies have reported inconsistent findings regarding the association between the use of acid-suppressive drugs such as proton pump inhibitors (PPIs) and histamine 2 receptor antagonists (H(2)RAs) and fracture risk. We investigated this association using meta-analysis. We searched MEDLINE (PubMed), EMBASE, and the Cochrane Library from inception through December 2010 using common key words. We included case-control, nested case-control, and cohort studies. Two evaluators independently reviewed and selected articles. We determined pooled effect estimates by using random-effects meta-analysis, because of heterogeneity. Of 1,809 articles meeting our initial inclusion criteria, 5 case-control studies, 3 nested case-control studies, and 3 cohort studies were included in the final analyses. The pooled odds ratio (OR) for fracture was 1.29 (95% confidence interval [CI], 1.18-1.41) with use of PPIs and 1.10 (95% CI, 0.99-1.23) with use of H(2)RAs when compared with nonuse of the respective medications. Long-term use of PPIs increased the risk of any fracture (adjusted OR = 1.30; 95% CI, 1.15-1.48) and hip fracture risk (adjusted OR = 1.34; 95% CI, 1.09-1.66), whereas long-term H(2)RA use was not significantly associated with fracture risk. We found possible evidence linking PPI use to an increased risk of fracture, but no association between H(2)RA use and fracture risk. Widespread use of PPIs with the potential risk of fracture is of great importance to public health. Clinicians should carefully consider their decision to prescribe PPIs for patients already having an elevated risk of fracture because of age or other factors.

  1. Why do nickel-titanium archwires fracture intraorally? Fractographic analysis and failure mechanism of in-vivo fractured wires.

    PubMed

    Zinelis, Spiros; Eliades, Theodore; Pandis, Nikolaos; Eliades, George; Bourauel, Christoph

    2007-07-01

    The aim of this study was to characterize intraorally fractured nickel-titanium (Ni-Ti) archwires, determine the type of fracture, assess changes in the alloy's hardness and structure, and propose a mechanism of failure. Eleven Ni-Ti SE 200 and 19 copper-Ni-Ti (both, Ormco, Glendora, Calif) intraorally fractured archwires were collected. The location of fracture (anterior or posterior), wire type, cross section, and period of service before fracture were recorded. The retrieved wires and brand-, type-, and size-matched specimens of unused wires were subjected to scanning electron microscopy to assess the fracture type and morphological variation of fracture site of retrieved specimens, and to Vickers hardness (HV200) testing to investigate the hardness of as-received and in-vivo fractured specimens. Fracture site distribution was statistically analyzed with the chi-square test (alpha = 0.05), whereas the results of the hardness testing were analyzed with 2-way ANOVA with state (control vs in-vivo fractured) and composition (Ni-Ti SE vs copper-Ni-Ti) serving as discriminating variables and the Student-Newman-Keuls test at the 95% confidence level. The fracture site distribution showed a preferential location at the midspan between the premolar and the molar, suggesting that masticatory forces and complex loading during engagement of the wire to the bracket slot and potential intraoral aging might account for fracture incidence. All retrieved wires had the distinct features of brittle fracture without plastic deformation or crack propagation, whereas no increase in hardness was observed for the retrieved specimens. Most fractures sites were in the posterior region of the arch, probably because of the high-magnitude masticatory forces. Brittle fracture without plastic deformation was observed in most Ni-Ti wires regardless of archwire composition. There was no increase in the hardness of the intraorally exposed specimens regardless of wire type. This contradicts

  2. An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Shivakumar, K. N.

    1990-01-01

    An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented.

  3. A Possible Magnetar Nature for IGR J16358-4726

    NASA Technical Reports Server (NTRS)

    Patel, S.; Zurita, J.; DelSanto, M.; Finger, M.; Koueliotou, C.; Eichler, D.; Gogus, E.; Ubertini, P.; Walter, R.; Woods, P.

    2006-01-01

    We present detailed spectral and timing analysis of the hard x-ray transient IGR J16358-4726 using multi-satellite archival observations. A study of the source flux time history over 6 years, suggests that this transient outbursts can be occurring in intervals of at most 1 year. Joint spectral fits using simultaneous Chandra/ACIS and INTEGRAL/ISGRI data reveal a spectrum well described by an absorbed cut-off power law model plus an Fe line. We detected the pulsations initially reported using Chandra/ACIS also in the INTEGRAL/ISGRI light curve and in subsequent XMM-Newton observations. Using the INTEGRAL data we identified a pulse spin up of 94 s (P = 1.6 x 10(exp -4), which strongly points to a neutron star nature for IGR J16358-4726. Assuming that the spin up is due to disc accretion, we estimate that the source magnetic field ranges between 10(sup 13) approximately 10(sup 15) depending on its distance, possibly supporting a magnetar nature for IGR J16358-4726.

  4. A Possible Magnetar Nature for IGR J16358-4726

    NASA Technical Reports Server (NTRS)

    Patel, S. K.; Zurita, J.; DelSanto, M.; Finger, M.; Kouveliotou, C.; Eichler, D.; Gogus, E.; Ubertini, P.; Walter, R.; Woods, P.; hide

    2007-01-01

    We present detailed spectral and timing analysis of the hard X-ray transient IGR J16358-4726 using multisatellite archival observations. A study of the source flux time history over 6 yr suggests that lower luminosity transient outbursts can be occurring in intervals of at most 1 yr. Joint spectral fits of the higher luminosity outburst using simultaneous Chandra ACIS and INTEGRAL ISGRI data reveal a spectrum well described by an absorbed power-law model with a high-energy cutoff plus an Fe line. We detected the 1.6 hr pulsations initially reported using Chandra ACIS also in the INTEGRAL ISGRI light curve and in subsequent XMM-Newton observations. Using the INTEGRAL data, we identified a spin-up of 94 s (P(sup(.)) = 1.6 x 10(exp -4), which strongly points to a neutron star nature for IGR J16358-4726. Assuming that the spin-up is due to disk accretion, we estimate that the source magnetic field ranges between 10(exp 13) and 10(exp 15) G, depending on its distance, possibly supporting a magnetar nature for IGR J16358-4726.

  5. Understanding Hydraulic Fracturing: A Multi-Scale Problem

    DOE PAGES

    Hyman, Jeffrey De'Haven; Gimenez Martinez, Joaquin; Viswanathan, Hari S.; ...

    2016-09-05

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nano-meters to kilo-meters. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical, and experimental efforts. At the field scale, we use discrete fracture network modeling to simulate production at a well site whose fracture network is based on a site characterization of a shale formation. At the core scale, we use triaxial fracture experiments and a finite-element discrete-elementmore » fracture propagation model with a coupled fluid solver to study dynamic crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and real micromodels to study pore-scale flow phenomenon such as multiphase flow and mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs.« less

  6. Use of Intraoperative Temporary Invasive Distraction to Reduce a Chronic Talar Neck Fracture-Dislocation

    DTIC Science & Technology

    2011-04-01

    tures. J Orthop Trauma. 2004;18(5):265-270. 2. Metzger M, Levin J, Clancy J. Talar neck frac- tures and rates of avascular necrosis . J Foot Ankle Surg...of the talus.4 Given the risk for osteo- necrosis with talar neck fractures, early operative intervention is con- sidered the standard of care.5

  7. Characterisation and monitoring of the Excavation Disturbed Zone (EDZ) in fractured gneisses of the Roselend underground laboratory: permeability measurements, transport property changes and related radon bursts

    NASA Astrophysics Data System (ADS)

    Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric

    2010-05-01

    pressure measurements between an obturated borehole and the tunnel is conducted to monitor the possible modifications of the transport properties of the EDZ due to hydraulical and/or mechanical sollicitations of the nearby Roselend reservoir lake. As radon level is controlled by emanation and transport path through the medium. The observed bursts of radon should be due to changes of the radon transport properties (Trique et al. 1999) of the EDZ. A correlation between the differential pressure variations and radon bursts is clearly observed. Radon bursts seem to be related to overpressure events that take place in the instrumented borehole. Which external sollicitations, hydraulical or mechanical, or both, induce such a behaviour? References Bossart, P., Meier, P. M., Moeri, A., Trick, T., and J.-C. Mayor (2002). Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory, Engineering Geology, 66, 19-38. Dezayes, C., and T. Villemin (2002). Etat de la fracturation dans la galerie CEA de Roselend et analyse de la déformation cassante dans le massif du Méraillet, technical report, Lab. de Geodyn. de Chaisnes Alp., Univ. de Savoie, Savoie, France. Jakubick, A. T., and T. Franz (1993). Vacuum testing of the permeability of the excavation damaged zone, Rock Mech. Rock Engng., 26(2), 165-182. Patriarche, D., Pili, E., Adler, P. M., and J.-F. Thovert (2007). Stereological analysis of fractures in the Roselend tunnel and permeability determination, Water Resour. Res., 43, W09421. Richon, P., Perrier, F., Sabroux, J.-C., Trique, M., Ferry, C., Voisin, V., and E. Pili (2004). Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel, J. Environ. Radioact., 78, 179-198. Richon, P., Perrier, F., Pili, E., and J.-C. Sabroux (2009). Detectability and significance of the 12hr barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide

  8. Approaching a universal scaling relationship between fracture stiffness and fluid flow

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, Laura J.; Nolte, David D.

    2016-02-01

    A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.

  9. Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerberich, W.W.

    1997-01-01

    The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin filmmore » fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.« less

  10. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials.

    PubMed

    Hald, Jannie D; Evangelou, Evangelos; Langdahl, Bente L; Ralston, Stuart H

    2015-05-01

    Bisphosphonates are widely used off-label in the treatment of patients with osteogenesis imperfecta (OI) with the intention of reducing the risk of fracture. Although there is strong evidence that bisphosphonates increase bone mineral density in osteogenesis imperfecta, the effects on fracture occurrence have been inconsistent. The aim of this study was to gain a better insight into the effects of bisphosphonate therapy on fracture risk in patients with osteogenesis imperfecta by conducting a meta-analysis of randomized controlled trials in which fractures were a reported endpoint. We searched Medline, Embase, and the Cochrane Central Register of Controlled Trials in which the effects of bisphosphonates on fracture risk in osteogenesis imperfecta were compared with placebo and conducted a meta-analysis of these studies using standard methods. Heterogeneity was assessed using the I2 statistic. Six eligible studies were identified involving 424 subjects with 751 patient-years of follow-up. The proportion of patients who experienced a fracture was not significantly reduced by bisphosphonate therapy (Relative Risk [RR] = 0.83 [95% confidence interval 0.69-1.01], p = 0.06) with no heterogeneity between studies (I2  = 0). The fracture rate was reduced by bisphosphonate treatment when all studies were considered (RR = 0.71 [0.52-0.96], p = 0.02), but with considerable heterogeneity (I2  = 36%) explained by one study where a small number of patients in the placebo group experienced a large number of fractures. When this study was excluded, the effects of bisphosphonates on fracture rate was not significant (RR = 0.79 [0.61-1.02], p = 0.07, I2  = 0%). We conclude that the effects of bisphosphonates on fracture prevention in osteogenesis imperfecta are inconclusive. Adequately powered trials with a fracture endpoint are needed to further investigate the risks and benefits of bisphosphonates in this condition. © 2014 American Society for

  11. Real frequency of ordinary and atypical sub-trochanteric and diaphyseal fractures in France based on X-rays and medical file analysis.

    PubMed

    Beaudouin-Bazire, Constance; Dalmas, Noémie; Bourgeois, Julie; Babinet, Antoine; Anract, Philippe; Chantelot, Christophe; Farizon, Frédéric; Chopin, Florence; Briot, Karine; Roux, Christian; Cortet, Bernard; Thomas, Thierry

    2013-03-01

    Atypical sub-trochanteric and femoral shaft fractures have been reported in patients treated with bisphosphonates. Their incidence has been determined from registered data analysis using international codes. Therefore, the aim of our study was to estimate the real frequency of typical and atypical sub-trochanteric or diaphyseal fractures, based on radiological and clinical data compared to registered data. In the registers of three large French University Hospitals, patients identified with International Classification of Diseases, 10th Revision diagnosis codes for sub-trochanteric or diaphyseal fracture were selected. Frequencies of ordinary and atypical fractures were calculated after both registered data, radiological and clinical files analysis. Among the 4592 patients hospitalized for a femoral fracture over 5 years, 574 were identified to have had a sub-trochanteric or femoral shaft fracture. 47.7% of the sub-trochanteric and femoral shaft fractures were misclassified, predominantly in the sub-trochanteric fractures subset. 12 patients had an atypical fracture (4% of the sub-trochanteric and femoral shaft fractures) and 11 fractures presented radiological features of atypical fractures, whereas clinical files analysis revealed they were pathological or traumatic fractures. Atypical fractures frequency is very low. Because of their low frequency and the unreliability of registered databases, the risk of atypical fractures is very difficult to estimate retrospectively. A prospective study is needed to clarify the risk factors associated with these fractures. Copyright © 2012 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  12. Fracture Analysis of 40Cr Steel Pin Roll

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jia, Youlu; Xie, Xianjiao

    2018-01-01

    Fracture of 40Cr steel pin roll happened along the cross-section at the spot of filling aperture. By the use of analysis of optical microscopy and microhardness, it can be known that filling aperture and its nitration case (ε phase) and large amounts of non-metal inclusions (bulk obscure inclusions) in steel were the main reasons which led to the facture of 40Cr steel pin roll.

  13. Implementation of secondary fracture prevention services after hip fracture: a qualitative study using extended Normalization Process Theory.

    PubMed

    Drew, Sarah; Judge, Andrew; May, Carl; Farmer, Andrew; Cooper, Cyrus; Javaid, M Kassim; Gooberman-Hill, Rachael

    2015-04-23

    National and international guidance emphasizes the need for hospitals to have effective secondary fracture prevention services, to reduce the risk of future fractures in hip fracture patients. Variation exists in how hospitals organize these services, and there remain significant gaps in care. No research has systematically explored reasons for this to understand how to successfully implement these services. The objective of this study was to use extended Normalization Process Theory to understand how secondary fracture prevention services can be successfully implemented. Forty-three semi-structured interviews were conducted with healthcare professionals involved in delivering secondary fracture prevention within 11 hospitals that receive patients with acute hip fracture in one region in England. These included orthogeriatricians, fracture prevention nurses and service managers. Extended Normalization Process Theory was used to inform study design and analysis. Extended Normalization Process Theory specifies four constructs relating to collective action in service implementation: capacity, potential, capability and contribution. The capacity of healthcare professionals to co-operate and co-ordinate their actions was achieved using dedicated fracture prevention co-ordinators to organize important processes of care. However, participants described effective communication with GPs as challenging. Individual potential and commitment to operationalize services was generally high. Shared commitments were promoted through multi-disciplinary team working, facilitated by fracture prevention co-ordinators. Healthcare professionals had capacity to deliver multiple components of services when co-ordinators 'freed up' time. As key agents in its intervention, fracture prevention coordinators were therefore indispensable to effective implementation. Aside from difficulty of co-ordination with primary care, the intervention was highly workable and easily integrated into practice

  14. The ImageJ ecosystem: An open platform for biomedical image analysis.

    PubMed

    Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. © 2015 Wiley Periodicals, Inc.

  15. Defect Initiation/Growth and Energy Dissipation Induced by Deformation and Fracture

    DTIC Science & Technology

    1993-01-01

    deformation in MgO single crystals . 4 III. Molecular CO emission accompanying fracture of polycarbonate: evidence for chain cleavage J. T. Dickinson, L. C... Crystal MgO Although not a polymer, we wish to point out that the fracture-induced phE and EE from the fracture of single crystal MgQ 17 (Fig. 7) is...long times. This is a good qualitative description of the behavior exhibited by EE from in some systems. C. Single Crystal MgO Williams et al. have

  16. Analysis of impact energy to fracture un-notched charpy specimens made from railroad tank car steel

    DOT National Transportation Integrated Search

    2007-09-11

    This paper describes a nonlinear finite element analysis : (FEA) framework that examines the impact energy to fracture : unnotched Charpy specimens by an oversized, nonstandard : pendulum impactor called the Bulk Fracture Charpy Machine : (BFCM). The...

  17. Understanding hydraulic fracturing: a multi-scale problem.

    PubMed

    Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N

    2016-10-13

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  18. Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Jarrahi, Miad; Holländer, Hartmut

    2017-04-01

    The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to

  19. [Analysis of 163 rib fractures by imaging examination].

    PubMed

    Song, Tian-fu; Wang, Chao-chao

    2014-12-01

    To explore the applications of imaging examination on rib fracture sites in forensic identification. Features including the sites, numbers of the processed imaging examination and the first radiological technology at diagnosis in 56 cases of rib fractures from 163 injuries were retrospectively analyzed. The detection rate of the rib fractures within 14 days was 65.6%. The initial detection rate of anterior rib fracture proceeded by X-ray was 76.2%, then 90.5% detected at a second time X-ray, while the detection rate of CT was 66.7% and 80.0%, respectively. The initial detec- tion rate of rib fracture in axillary section proceeded by X-ray was 27.6%, then 58.6% detected at a second time X-ray, while the detection rate of CT was 54.3% and 80.4%, respectively. The initial detection rate of posterior rib fracture proceeded by X-ray was 63.6%, then 81.8% detected at a second time X-ray, while the detection rate of CT was 50.0% and 70.0%, respectively. It is important to pay attention to the use of combined imaging examinations and the follow-up results. In the cases of suspicious for rib fracture in axillary section, CT examination is suggested in such false X-ray negative cases.

  20. Role of Fas and Treg Cells in Fracture Healing as Characterized in the Fas-Deficient (lpr) Mouse Model of Lupus†

    PubMed Central

    Al-Sebaei, Maisa O; Daukss, Dana M; Belkina, Anna C; Kakar, Sanjeev; Wigner, Nathan A; Cusher, Daniel; Graves, Dana; Einhorn, Thomas; Morgan, Elise; Gerstenfeld, Louis C

    2014-01-01

    Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Faslpr/J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Faslpr/J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Faslpr/J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Faslpr/J mice had elevated Treg cells in both spleens and bones of B6.MRL/Faslpr/J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Faslpr/J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Faslpr/J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention

  1. Permeability evolution due to dissolution of natural shale fractures reactivated by fracking

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Kwiatkowski, Tomasz; Szymczak, Piotr

    2015-04-01

    Investigation of cores drilled from gas-bearing shale formations reveals a relatively large number of calcite-cemented fractures. During fracking, some of these fractures will be reactivated [1-2] and may become important flow paths in the resulting fracture system. In this communication, we investigate numerically the effect of low-pH reactive fluid on such fractures. The low-pH fluids can either be pumped during the initial fracking stage (as suggested e.g. by Grieser et al., [3]) or injected later, as part of enhanced gas recovery (EGR) processes. In particular, it has been suggested that CO2 injection can be considered as a method of EGR [4], which is attractive as it can potentially be combined with simultaneous CO2 sequestration. However, when mixed with brine, CO2 becomes acidic and thus can be a dissolving agent for the carbonate cement in the fractures. The dissolution of the cement leads to the enhancement of permeability and interconnectivity of the fracture network and, as a result, increases the overall capacity of the reservoir. Importantly, we show that the dissolution of such fractures proceeds in a highly non-homogeneous manner - a positive feedback between fluid transport and mineral dissolution leads to the spontaneous formation of pronounced flow channels, frequently referred to as "wormholes". The wormholes carry the chemically active fluid deeper inside the system, which dramatically speeds up the overall permeability increase. If the low-pH fluids are used during fracking, then the non-uniform dissolution becomes important for retaining the fracture permeability, even in the absence of the proppant. Whereas a uniformly etched fracture will close tightly under the overburden once the fluid pressure is removed, the nonuniform etching will tend to maintain the permeability since the less dissolved regions will act as supports to keep more dissolved regions open. [1] Gale, J. F., Reed, R. M., Holder, J. (2007). Natural fractures in the Barnett

  2. J-Earth: An Essential Resource for Terrestrial Remote Sensing and Data Analysis

    NASA Astrophysics Data System (ADS)

    Dunn, S.; Rupp, J.; Cheeseman, S.; Christensen, P. R.; Prashad, L. C.; Dickenshied, S.; Anwar, S.; Noss, D.; Murray, K.

    2011-12-01

    There is a need for a software tool that has the ability to display and analyze various types of earth science and social data through a simple, user-friendly interface. The J-Earth software tool has been designed to be easily accessible for download and intuitive use, regardless of the technical background of the user base. This tool does not require courses or text books to learn to use, yet is powerful enough to allow a more general community of users to perform complex data analysis. Professions that will benefit from this tool range from geologists, geographers, and climatologists to sociologists, economists, and ecologists as well as policy makers. J-Earth was developed by the Arizona State University Mars Space Flight Facility as part of the JMARS (Java Mission-planning and Analysis for Remote Sensing) suite of open-source tools. The program is a Geographic Information Systems (GIS) application used for viewing and processing satellite and airborne remote sensing data. While the functionality of JMARS has historically focused on the research needs of the planetary science community, J-Earth has been designed for a much broader Earth-based user audience. NASA instrument products accessible within J-Earth include data from ASTER, GOES, Landsat, MODIS, and TIMS. While J-Earth contains exceptionally comprehensive and high resolution satellite-derived data and imagery, this tool also includes many socioeconomic data products from projects lead by international organizations and universities. Datasets used in J-Earth take the form of grids, rasters, remote sensor "stamps", maps, and shapefiles. Some highly demanded global datasets available within J-Earth include five levels of administrative/political boundaries, climate data for current conditions as well as models for future climates, population counts and densities, land cover/land use, and poverty indicators. While this application does share the same powerful functionality of JMARS, J-Earth's apperance is

  3. Fault-Slip Data Analysis and Cover Versus Basement Fracture Patterns - Implications for Subsurface Technical Processes in Thuringia, Germany

    NASA Astrophysics Data System (ADS)

    Kasch, N.; Kley, J.; Navabpour, P.; Siegburg, M.; Malz, A.

    2014-12-01

    Recent investigations in Thuringia, Central Germany, focus on the potential for carbon sequestration, groundwater supply and geothermal energy. We report on the results of an integrated fault-slip data analysis to characterize the geometries and kinematics of systematic fractures in contrasting basement and cover rock lithologies. The lithostratigraphy of the area comprises locally exposed crystalline rocks and intermittently overlying Permian volcanic and clastic sedimentary rocks, together referred to as basement. A Late Permian sequence of evaporites, carbonates and shale constitutes the transition to the continuous sedimentary cover of Triassic age. Major NW-SE-striking fault zones and minor NNE-SSW-striking faults affect this stratigraphic succession. These characteristic narrow deforming areas (< 3 km width) build a dense network of individual fault strands with a close juxtaposition to wider (> 15 km) non-deforming areas suggesting localized zones of mechanical weakness, which can be confirmed by the frequent reactivation of single fault strands. Along the major fault zones, the basement and cover contain dominant inclined to sub-vertical NW-SE-striking fractures. These fractures indicate successive normal, dextral strike-slip and reverse senses of slip, evidencing events of NNE-SSW extension and contraction. Another system of mostly sub-vertical NNW-SSE- and NE-SW-striking conjugate strike-slip faults mainly developed within the cover implies NNE-SSW contraction and WNW-ESE extension. Earthquake focal mechanisms and in-situ stress measurements reveal a NW-SE trend for the modern SHmax. Nevertheless, fractures and fault-slip indicators are rare in the non-deforming areas, which characterizes Thuringia as a dual domain of (1) large unfractured areas and (2) narrow zones of high potential for technical applications. Our data therefore provide a basis for estimation of slip and dilation tendency of the contrasting fractures in the basement and cover under the

  4. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Potirakis, S. M.; Karadimitrakis, A.; Eftaxias, K.

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  5. Natural time analysis of critical phenomena: the case of pre-fracture electromagnetic emissions.

    PubMed

    Potirakis, S M; Karadimitrakis, A; Eftaxias, K

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  6. Video analysis of the biomechanics of a bicycle accident resulting in significant facial fractures.

    PubMed

    Syed, Shameer H; Willing, Ryan; Jenkyn, Thomas R; Yazdani, Arjang

    2013-11-01

    This study aimed to use video analysis techniques to determine the velocity, impact force, angle of impact, and impulse to fracture involved in a video-recorded bicycle accident resulting in facial fractures. Computed tomographic images of the resulting facial injury are presented for correlation with data and calculations. To our knowledge, such an analysis of an actual recorded trauma has not been reported in the literature. A video recording of the accident was split into frames and analyzed using an image editing program. Measurements of velocity and angle of impact were obtained from this analysis, and the force of impact and impulse were calculated using the inverse dynamic method with connected rigid body segments. These results were then correlated with the actual fracture pattern found on computed tomographic imaging of the subject's face. There was an impact velocity of 6.25 m/s, impact angles of 14 and 6.3 degrees of neck extension and axial rotation, respectively, an impact force of 1910.4 N, and an impulse to fracture of 47.8 Ns. These physical parameters resulted in clinically significant bilateral mid-facial Le Fort II and III pattern fractures. These data confer further understanding of the biomechanics of bicycle-related accidents by correlating an actual clinical outcome with the kinematic and dynamic parameters involved in the accident itself and yielding a concrete evidence of the velocity, force, and impulse necessary to cause clinically significant facial trauma. These findings can aid in the design of protective equipment for bicycle riders to help avoid this type of injury.

  7. A structural analysis of the Minas da Panasqueira vein network and related fracture generations

    NASA Astrophysics Data System (ADS)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    and tip lines, we try to sort out if a dominant σ2 propagation direction, typical for hydrofractures, exists within the vein network. By doing so, we can evaluate whether the subhorizontal vein network formed under a compressive stress regime, or was mainly dictated by the strength anisotropy of the rocks under near-isotropic stress conditions of σhmax ≡ σhmin. The regional dominance of subhorizontal aplites, pegmatites and hydrothermal veins, exploiting subhorizontal fracture networks, occurs over a wide area of more than 100 km2 along the Serra de Estrela granitic massif (Derré et al., 1986). This orientation contrasts with the more common vertical attitude of granite-related hydrothermal veins, observed throughout the Iberian massif. A detailed orientation analysis of the fracture sets should allow to explore the possible causes of this particular late orogenic, flat-lying fracture network related to the granitic intrusion. References Derré, C., Lecolle, M., Roger, G., Tavares de Freitas Carvalho, J., 1986. Tectonics, magmatism, hydrothermalism and sets of flat joints locally filled by Sn-W, aplite-pegmatite and quartz veins, southeastern border of the Serra de Estrela granitic massif (Beira Baixa, Portugal). Ore Geology Reviews 1, 43-56. Foxford, K. A., Nicholson, R., Polya, D. A., and Hebblethwaite, R. P. B., 2000. Extensional failure and hydraulic valving at Minas da Panasqueira, Portugal; evidence from vein spatial distributions, displacements and geometries. Journal of Structural Geology 22, 1065-1086.

  8. Fracture heuristics: surgical decision for approaches to distal radius fractures. A surgeon's perspective.

    PubMed

    Wichlas, Florian; Tsitsilonis, Serafim; Kopf, Sebastian; Krapohl, Björn Dirk; Manegold, Sebastian

    2017-01-01

    Introduction: The aim of the present study is to develop a heuristic that could replace the surgeon's analysis for the decision on the operative approach of distal radius fractures based on simple fracture characteristics. Patients and methods: Five hundred distal radius fractures operated between 2011 and 2014 were analyzed for the surgeon's decision on the approach used. The 500 distal radius fractures were treated with open reduction and internal fixation through palmar, dorsal, and dorsopalmar approaches with 2.4 mm locking plates or underwent percutaneous fixation. The parameters that should replace the surgeon's analysis were the fractured palmar cortex, and the frontal and the sagittal split of the articular surface of the distal radius. Results: The palmar approach was used for 422 (84.4%) fractures, the dorsal approach for 39 (7.8%), and the combined dorsopalmar approach for 30 (6.0%). Nine (1.8%) fractures were treated percutaneously. The correlation between the fractured palmar cortex and the used palmar approach was moderate (r=0.464; p<0.0001). The correlation between the frontal split and the dorsal approach, including the dorsopalmar approach, was strong (r=0.715; p<0.0001). The sagittal split had only a weak correlation for the dorsal and dorsopalmar approach (r=0.300; p<0.0001). Discussion: The study shows that the surgical decision on the preferred approach is dictated through two simple factors, even in the case of complex fractures. Conclusion: When the palmar cortex is displaced in distal radius fractures, a palmar approach should be used. When there is a displaced frontal split of the articular surface, a dorsal approach should be used. When both are present, a dorsopalmar approach should be used. These two simple parameters could replace the surgeon's analysis for the surgical approach.

  9. Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Foreêts, France

    NASA Astrophysics Data System (ADS)

    Genter, Albert; Traineau, Hervé

    1996-07-01

    An exhaustive analysis of 3000 macroscopic fractures encountered in the geothermal Hot Dry Rock borehole, EPS-1, located inside the Rhine graben (Soultz-sous-Foreˆts, France), was done on a continuous core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are grouped in two principal fractures sets striking N005 and N170 °, and dipping 70 °W and 70 °E, respectively. This average attitude is closely related to the past tectonic rifting activity of the graben during the Tertiary, and is consistent with data obtained from nearby boreholes and from neighbouring crystalline outcrops. Fractures are distributed in clusters of hydrothermally altered and fractured zones. They constitute a complex network of fault strands dominated by N-S trends, except within some of the most fractured depth intervals (1650 m, 2170 m), where an E-W-striking fracture set occurs. The geometry of the pre-existing fracture system strikes in a direction nearly parallel to the maximum horizontal stress. In this favorable situation, hydraulic injections will tend both to reactivate natural fractures at low pressures, and to create a geothermal reservoir.

  10. Integrated Sensitivity Analysis Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest J.; Hoffman, Edward L.; Gibson, Marcus J.

    2014-08-01

    Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.

  11. Early Weightbearing After Operatively Treated Ankle Fractures: A Biomechanical Analysis.

    PubMed

    Tan, Eric W; Sirisreetreerux, Norachart; Paez, Adrian G; Parks, Brent G; Schon, Lew C; Hasenboehler, Erik A

    2016-06-01

    No consensus exists regarding the timing of weightbearing after surgical fixation of unstable traumatic ankle fractures. We evaluated fracture displacement and timing of displacement with simulated early weightbearing in a cadaveric model. Twenty-four fresh-frozen lower extremities were assigned to Group 1, bimalleolar ankle fracture (n=6); Group 2, trimalleolar ankle fracture with unfixed small posterior malleolar fracture (n=9); or Group 3, trimalleolar ankle fracture with fixed large posterior malleolar fracture (n=9) and tested with axial compressive load at 3 Hz from 0 to 1000 N for 250 000 cycles to simulate 5 weeks of full weightbearing. Displacement was measured by differential variable reluctance transducer. The average motion at all fracture sites in all groups was significantly less than 1 mm (P < .05). Group 1 displacement of the lateral and medial malleolus fracture was 0.1±0.1 mm and 0.4±0.4 mm, respectively. Group 2 displacement of the lateral, medial, and posterior malleolar fracture was 0.6±0.4 mm, 0.5±0.4 mm, and 0.5±0.6 mm, respectively. Group 3 displacement of the lateral, medial, and posterior malleolar fracture was 0.1±0.1 mm, 0.5±0.7 mm, and 0.5±0.4 mm, respectively. The majority of displacement (64.0% to 92.3%) occurred in the first 50 000 cycles. There was no correlation between fracture displacement and bone mineral density. No significant fracture displacement, no hardware failure, and no new fractures occurred in a cadaveric model of early weightbearing in unstable ankle fracture after open reduction and internal fixation. This study supports further investigation of early weightbearing postoperative protocols after fixation of unstable ankle fractures. © The Author(s) 2016.

  12. Fracture Behavior of Boron Aluminum Composites at Room and Elevated Temperatures.

    DTIC Science & Technology

    1985-04-01

    listed in Table I. TABLE I: LIST OF FRACTURE MODELS REVIEWED Authors Ref. Abbrv. Criterion Hole Slits M.E. Waddoups J.R. Eisenmann 3 WEK LEFM V/ SB.E...Laminates: Predictions and Experiemtns - A Review", NASA CR , 1985, (to be published). 3. M.E. Waddoups, J.R. Eisenmann and B.E. Kaminski

  13. Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study

    NASA Astrophysics Data System (ADS)

    Lacidogna, Giuseppe; Accornero, Federico

    2018-01-01

    In this work a comparison is presented between elastic, plastic, and fracture analysis of the monumental arch bridge of Porta Napoli, Taranto (Italy). By means of a FEM model and applying the Mery's Method, the behavior of the curved structure under service loads is verified, while considering the Safe Theorem approach byHeyman, the ultimate carrying capacity of the structure is investigated. Moreover, by using Fracture Mechanics concepts, the damage process which takes place when the conditions assessed through linear elastic analysis are no longer valid, and before the set-in of the conditions established by means of the plastic limit analysis, is numerically analyzed. The study of these transitions returns an accurate and effective whole service life assessment of the Porta Napoli masonry arch bridge.

  14. Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Advani (Deceased), S. H.; Lee, T. S.; Dean, R. H.; Pak, C. K.; Avasthi, J. M.

    1997-04-01

    Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).

  15. Analysis of severely fractured glenoid components: clinical consequences of biomechanics, design, and materials selection on implant performance.

    PubMed

    Ansari, Farzana; Lee, Taylor; Malito, Louis; Martin, Audrey; Gunther, Stephen B; Harmsen, Samuel; Norris, Tom R; Ries, Mike; Van Citters, Douglas; Pruitt, Lisa

    2016-07-01

    The longevity of total shoulder replacement is primarily limited by the performance of the ultrahigh-molecular-weight polyethylene (UHMWPE) glenoid component in vivo. Variations in glenoid design (conformity, thickness), biomechanics (joint kinematics), and UHMWPE material selection (sterilization, cross-linking) distinguish total shoulder replacements from hip and knee arthroplasty devices. These variables can lead to severe mechanical failures, including gross fracture. Sixteen retrieved glenoids with severe fracture were analyzed. The explant cohort included 3 material groups (gamma-sterilized Hylamer; gamma-sterilized UHMWPE; and gas plasma-sterilized, remelted, highly cross-linked UHMWPE [HXL]) and a range of conformities (0- to 10-mm radial mismatch). Analysis included fractography (optical and scanning electron microscopy) and Fourier transform infrared spectroscopy for oxidative analysis. Fracture primarily occurred along the exterior rim for all 16 explants. Fourier transform infrared analysis and fractography revealed significant oxidative embrittlement for all gamma-sterilized glenoids. Fatigue striations and internal flaws were evident on the fracture surface of the HXL glenoid, with little oxidation detected. Fracture initiated at the external rim of all devices. Elevated oxidation levels and visible material distortion for representative gamma-sterilized conventional and Hylamer devices suggest oxidative embrittlement as a driving force for crack inception and subsequent fracture. Brittle fracture of theHXL glenoid resulted from a combination of elevated contact stress due to a nonconforming surface, an internal flaw, and reduced resistance to fatigue crack growth. This demonstrates that glenoid fracture associated with oxidation has not been eliminated with the advent of modern materials (HXL) in the shoulder domain. Basic Science Study; Implant Retrieval Study. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by

  16. Sensitivity Analysis of the Bone Fracture Risk Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane

    2017-01-01

    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including

  17. Duration of Administration of Antibiotic Agents for Open Fractures: Meta-Analysis of the Existing Evidence.

    PubMed

    Messner, Juergen; Papakostidis, Costas; Giannoudis, Peter V; Kanakaris, Nikolaos K

    Surgical site infection remains a significant concern in treating patients with open fractures. In prevention of such, current guidelines support the immediate administration of antibiotic agents. The duration of antibiotic treatment is still controversial. A maximum of 72 hours, even in the absence of definitive soft tissue coverage, is recommended in a number of recent guidelines and consensus reports. The aim of this meta-analysis was to review and analyze all published literature evidence with regard to antibiotic duration in open fracture treatment. We conducted a comprehensive review of the available literature from the 1970s until the present, including five comparative (1284 open fractures) and 27 observational (5408 open fractures) studies. A subgroup analysis was further performed, based on the Gustilo type of open injury and the anatomic location of the fracture. In addition, we investigated the effect of antibiotic regimes shorter than 72 hours on infection rates. In the comparative studies, the summarized estimate of infection rate favored less than a 72-hour duration of antibiotic treatment, because prolongation of antibiotic treatment more than 72 hours did not seem to offer any protective effect against septic complications of open fractures (odds ratio: 0.85, 95% confidence interval [CI]: 0.60-1.21). The same trend was also documented in the observational studies, where the overall pooled estimate of infection rate was 10% (95% CI: 6.8%-14%) when antibiotic treatment did not exceed 72 hours and 9.2% (95% CI: 6.6%-12.2%) for more than 72 hours of antibiotic treatment (p = 0.53). In Gustilo I and II open fractures, the calculated pooled estimate of infection rate did not differ significantly when antibiotic treatment exceeded 72 hours (6%, 95% CI: 3.3%-9%) compared with shorter (up to 72 h) antibiotic protocols (4%, 95% CI: 1.8%-7%) (p = 0.52). In Gustilo III open fractures also, the calculated pooled estimate of infection rate (21.3%, 95

  18. [Association between hip fractures and risk factors for osteoporosis. Multivariate analysis].

    PubMed

    Masoni, Ana; Morosano, Mario; Tomat, María Florencia; Pezzotto, Stella M; Sánchez, Ariel

    2007-01-01

    In this observational, case-control study, 376 inpatients were evaluated in order to determine the association of risk factors (RF) and hip fracture; 151 patients had osteoporotic hip fracture (cases); the remaining were controls. Data were obtained from medical charts, and through a standardized questionnaire about RF. Mean age of the sample (+/- SD) was 80.6 +/- 8.1 years, without statistically significant difference between cases and controls; the female:male ratio was 3:1 in both groups. Fractured women were older than men (82.5 +/- 8.1 vs. 79.7 +/- 7.2 years, respectively; p < 0.01). Physical activity, intake of alcohol and tobacco, and sun exposure were low in all patients. Falls among cases happened predominantly at home (p < 0.001). Among female cases, time spent in household duties was a RF (p = 0.007), which was absent in males. In multivariate analysis, the following RF were significantly more frequent: Cognitive impairment (p = 0.001), and previous falls (p < 0.0001); whereas the following protective factors were significantly different from controls: Calcium intake during youth (p < 0.0001), current calcium intake (p < 0.0001), and mechanical aid for walking (p < 0.0001). Evaluation of RF and protective factors may contribute to diminish the probability of hip fracture, through a modification of personal habits, and measures to prevent falls among elderly adults. Present information can help to develop local and national population-based strategies to diminish the burden of hip fractures for the health system.

  19. Finite element analysis of functionally graded bone plate at femur bone fracture site

    NASA Astrophysics Data System (ADS)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  20. Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics

    PubMed Central

    Yaghoobi, Amin; Chorzepa, Mi G.; Kim, S. Sonny; Durham, Stephan A.

    2017-01-01

    Concrete is a complex heterogeneous material, and thus, it is important to develop numerical modeling methods to enhance the prediction accuracy of the fracture mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates, interfacial transition zones, air voids and cementitious matrix is characterized as particle points in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform probability distributions, while a statistical study is provided to comprise the effect of random distributions of constituent materials. In obtaining the steady-state response, an incremental and iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage patterns are compared with available experimental and finite element analysis (FEA) results. Although the proposed model uses much simpler material damage models and discretization schemes, the load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of the proposed mesoscale model. PMID:28772518

  1. Second hip fractures at Chiang Mai University Hospital.

    PubMed

    Wongtriratanachai, Prasit; Chiewchantanakit, Siripong; Vaseenon, Tanawat; Rojanasthien, Sattaya; Leerapun, Taninnit

    2015-02-01

    Hip fractures are a major public health problem. Patients who have suffered a hip fracture have an increased risk of a subsequent hip fracture. This study examines the incidence ofsecondhip fractures and attempts to identify underlying risk factors. To examine the incidence ofsecond hip fractures in osteoporotic patients at Chiang Mai University Hospital and to identify risk factors related to second hip fractures. A retrospective review was conducted of all low-energy mechanism hip fracture patients admitted during 2008 and 2009. Analysis of second hip fractures was conducted using survival analysis and logistic regression analysis. A total of 191 patients were observed for 391.68 person-years (mean 2.05 person-years per patient). Among that group, nine second hip fractures were identified, an overall incidence rate of 0.023 second fractures per person-year. Second hip fractures tended to occur within the first year following an initial hip fracture. There were no significant differences related to either gender or comorbid medical conditions. Logistic regression analysis revealed that increased risk of a second hip fracture was associated with age (highest between 80 to 89 years) and patients who were not treated for osteoporosis following their initial fracture. The incidence of second hip fractures at Chiang Mai University Hospital was 0.023 per person-year Careful follow-up of older patients, especially those over 80, and treatment ofosteoporosis with bisphosphonate plus vitamin D and calcium supplements was correlated with a reduction in the incidence of second hip fractures.

  2. State Transition and Flaring Activity of IGR J17464-3213/H1743-322 with INTEGRAL SPI

    NASA Astrophysics Data System (ADS)

    Joinet, A.; Jourdain, E.; Malzac, J.; Roques, J. P.; Schönfelder, V.; Ubertini, P.; Capitanio, F.

    2005-08-01

    IGR J17464-3213, already known as the HEAO 1 transient source H1743-322, has been detected during a state transition by INTEGRAL SPI. We describe the spectral evolution and flaring activity of IGR J17464-3213/H1743-322 from 2003 March 21 to 2003 April 22. During the first part, the source followed a continuous spectral softening, with the peak of the spectral energy distribution shifting from 100 keV down to ~a few keV. However, the thermal disk and the hard X-ray components had a similar intensity, indicating that the source was in an intermediate state throughout our observations and evolving toward the soft state. In the second part of our observations, the RXTE ASM and INTEGRAL SPI light curves showed a strong flaring activity. Two flare events lasting about 1 day each have been detected with SPI and are probably due to instabilities in the accretion disk associated with the state transition. During these flares, the low (1.5-12 keV) and high (20-200 keV) energy fluxes monitored with the RXTE ASM and INTEGRAL SPI are correlated, and the spectral shape (above 20 keV) remains unchanged while the luminosity increases by a factor greater than 2.

  3. Applicability of Fracture Mechanics Methodology to Cracking and Fracture of Concrete.

    DTIC Science & Technology

    1986-02-01

    Magazine of Concrete Research, Vol. 24. 1972. pp. * 185-196 - 100.0 Chir R. K. and C. M. Sangha. A Study of the Relations Between Time. Strength. Deformation...R. Clifton and E. Anderson, The Fracture Mechanics of Mortars, Cement and Concrete Researach, Vol. 6, 1976. pp. 535-548 195.0 Higgins , D. D. and J. E...Proceedings of a Conference at University of Sheffield, 1976, Cement and Concrete Association. Wexham Springs, 1976. pp. 283-296 196.0 "-’’ Higgins D. D

  4. Pneumatic fractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    experiments, where we aim to localize acoustic events and correlate them with the optical observations. [1] Niebling M.J., Toussaint R., Flekkøy E.G. and Måløy K.J. (2012) Dynamic aerofracture of dense granular packings. Phys. Rev. E86, 061315. doi:10.1103/PhysRevE.86.061315 [2] Niebling M.J., Toussaint R., Flekkøy E.G. and Måløy K.J. (2012) Numerical studies of aerofractures in porous media. Rev. Cub. Fis. 29, 1E66 [3] Turkaya S., Toussaint R., Eriksen F.K., Zecevic M., Daniel G., Flekkøy E.G. and Måløy K.J. (2015)Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium. Front. Phys. 3:70. doi: 10.3389/fphy.2015.00070

  5. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  6. Fracture analysis of tube boiler for physical explosion accident.

    PubMed

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns

    NASA Astrophysics Data System (ADS)

    Koestel, John

    2016-04-01

    3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected

  8. Prospective Computed Tomographic Analysis of Osteochondral Lesions of the Ankle Joint Associated With Ankle Fractures.

    PubMed

    Nosewicz, Tomasz L; Beerekamp, M Suzan H; De Muinck Keizer, Robert-Jan O; Schepers, Tim; Maas, Mario; Niek van Dijk, C; Goslings, J Carel

    2016-08-01

    Osteochondral lesions (OCLs) associated with ankle fracture correlate with unfavorable outcome. The goals of this study were to detect OCLs following ankle fracture, to associate fracture type to OCLs and to investigate whether OCLs affect clinical outcome. 100 ankle fractures requiring operative treatment were prospectively included (46 men, 54 women; mean age 44 ± 14 years, range 20-77). All ankle fractures (conventional radiography; 71 Weber B, 22 Weber C, 1 Weber A, 4 isolated medial malleolus and 2 isolated posterior malleolus fractures) were treated by open reduction and internal fixation. Multidetector computed tomography (CT) was performed postoperatively. For each OCL, the location, size, and Loomer OCL classification (CT modified Berndt and Harty classification) were determined. The subjective Foot and Ankle Outcome Scoring (FAOS) was used for clinical outcome at 1 year. OCLs were found in 10/100 ankle fractures (10.0%). All OCLs were solitary talar lesions. Four OCLs were located posteromedial, 4 posterolateral, 1 anterolateral, and 1 anteromedial. There were 2 type I OCLs (subchondral compression), 6 type II OCLs (partial, nondisplaced fracture) and 2 type IV OCLs (displaced fracture). Mean OCL size (largest diameter) was 4.4 ± 1.7 mm (range, 1.7 mm to 6.2 mm). Chi-square analysis showed no significant association between ankle fracture type and occurrence of OCLs. OCLs did occur only in Lauge-Hansen stage III/IV ankle fractures. There were no significant differences in FAOS outcome between patients with or without OCLs. Ten percent of investigated ankle fractures had associated OCLs on CT. Although no significant association between fracture type and OCL was found, OCLs only occurred in Lauge-Hansen stage III/IV ankle fractures. With the numbers available, OCLs did not significantly affect clinical outcome at 1 year according to FAOS. Level IV, observational study. © The Author(s) 2016.

  9. Comparison of femoral strength and fracture risk index derived from DXA-based finite element analysis for stratifying hip fracture risk: A cross-sectional study.

    PubMed

    Yang, Shuman; Luo, Yunhua; Yang, Lang; Dall'Ara, Enrico; Eastell, Richard; Goertzen, Andrew L; McCloskey, Eugene V; Leslie, William D; Lix, Lisa M

    2018-05-01

    Dual-energy X-ray absorptiometry (DXA)-based finite element analysis (FEA) has been studied for assessment of hip fracture risk. Femoral strength (FS) is the maximum force that the femur can sustain before its weakest region reaches the yielding limit. Fracture risk index (FRI), which also considers subject-specific impact force, is defined as the ratio of von Mises stress induced by a sideways fall to the bone yield stress over the proximal femur. We compared risk stratification for prior hip fracture using FS and FRI derived from DXA-based FEA. The study cohort included women aged ≥65years undergoing baseline hip DXA, with femoral neck T-scores <-1 and no osteoporosis treatment; 324 cases had prior hip fracture and 655 controls had no prior fracture. Using anonymized DXA hip scans, we measured FS and FRI. Separate multivariable logistic regression models were used to estimate odds ratios (ORs), c-statistics and their 95% confidence intervals (95% CIs) for the association of hip fracture with FS and FRI. Increased hip fracture risk was associated with lower FS (OR per SD 1.36, 95% CI: 1.15, 1.62) and higher FRI (OR per SD 1.99, 95% CI: 1.63, 2.43) after adjusting for Fracture Risk Assessment Tool (FRAX) hip fracture probability computed with bone mineral density (BMD). The c-statistic for the model containing FS (0.69; 95% CI: 0.65, 0.72) was lower than the c-statistic for the model with FRI (0.77; 95% CI: 0.74, 0.80) or femoral neck BMD (0.74; 95% CI: 0.71, 0.77; all P<0.05). FS and FRI were independently associated with hip fracture, but there were differences in performance characteristics. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Fracture modes in notched angleplied composite laminates

    NASA Technical Reports Server (NTRS)

    Irvine, T. B.; Ginty, C. A.

    1984-01-01

    The Composite Durability Structural Analysis (CODSTRAN) computer code is used to determine composite fracture. Fracture modes in solid and notched, unidirectional and angleplied graphite/epoxy composites were determined by using CODSTRAN. Experimental verification included both nondestructive (ultrasonic C-Scanning) and destructive (scanning electron microscopy) techniques. The fracture modes were found to be a function of ply orientations and whether the composite is notched or unnotched. Delaminations caused by stress concentrations around notch tips were also determined. Results indicate that the composite mechanics, structural analysis, laminate analysis, and fracture criteria modules embedded in CODSTRAN are valid for determining composite fracture modes.

  11. Fractures of the cervical spine

    PubMed Central

    Marcon, Raphael Martus; Cristante, Alexandre Fogaça; Teixeira, William Jacobsen; Narasaki, Douglas Kenji; Oliveira, Reginaldo Perilo; de Barros Filho, Tarcísio Eloy Pessoa

    2013-01-01

    OBJECTIVES: The aim of this study was to review the literature on cervical spine fractures. METHODS: The literature on the diagnosis, classification, and treatment of lower and upper cervical fractures and dislocations was reviewed. RESULTS: Fractures of the cervical spine may be present in polytraumatized patients and should be suspected in patients complaining of neck pain. These fractures are more common in men approximately 30 years of age and are most often caused by automobile accidents. The cervical spine is divided into the upper cervical spine (occiput-C2) and the lower cervical spine (C3-C7), according to anatomical differences. Fractures in the upper cervical spine include fractures of the occipital condyle and the atlas, atlanto-axial dislocations, fractures of the odontoid process, and hangman's fractures in the C2 segment. These fractures are characterized based on specific classifications. In the lower cervical spine, fractures follow the same pattern as in other segments of the spine; currently, the most widely used classification is the SLIC (Subaxial Injury Classification), which predicts the prognosis of an injury based on morphology, the integrity of the disc-ligamentous complex, and the patient's neurological status. It is important to correctly classify the fracture to ensure appropriate treatment. Nerve or spinal cord injuries, pseudarthrosis or malunion, and postoperative infection are the main complications of cervical spine fractures. CONCLUSIONS: Fractures of the cervical spine are potentially serious and devastating if not properly treated. Achieving the correct diagnosis and classification of a lesion is the first step toward identifying the most appropriate treatment, which can be either surgical or conservative. PMID:24270959

  12. Dairy product consumption and risk of hip fracture: a systematic review and meta-analysis.

    PubMed

    Bian, Shanshan; Hu, Jingmin; Zhang, Kai; Wang, Yunguo; Yu, Miaohui; Ma, Jie

    2018-01-22

    Dairy product consumption may affect the risk of hip fracture, but previous studies have reported inconsistent findings. The primary aim of our meta-analysis was to examine and quantify the potential association of dairy product consumption with risk of hip fracture. We searched the databases of PubMed and EMBASE for relevant articles from their inception through April 17, 2017. The final analysis included 10 cohort studies and 8 case-control studies. Random-effects models were used to estimate the pooled risk. Subgroup and dose-response analyses were conducted to explore the relationships between the consumption of milk and the risk of hip fracture. After pooling the data from the included studies, the summary relative risk (RR) for hip fracture for highest versus lowest consumption were 0.91 (95% CI: 0.74-1.12), 0.75 (95% CI: 0.66-0.86), 0.68 (95% CI: 0.61-0. 77), 1.02 (95% CI: 0.93-1.12) for milk, yogurt, cheese, and total dairy products in cohort studies, respectively. Higher milk consumption [Odds ratio (OR), 0.71, 95% CI: 0.55-0. 91] was associated with lower risk of hip fracture for highest versus lowest consumption in case-control studies. After quantifying the specific dose of milk, the summary RR/OR for an increased milk consumption of 200 g/day was 1.00 (95% CI: 0.94-1.07), and 0.89 (95%CI: 0.64-1.24) with significant heterogeneity for cohort and case-control studies, respectively; There was a nonlinear association between milk consumption and hip fracture risk in cohort, and case-control studies. Our findings indicate that consumption of yogurt and cheese was associated with lower risk of hip fracture in cohort studies. However, the consumption of total dairy products and cream was not significantly associated with the risk of hip fracture. There was insufficient evidence to deduce the association between milk consumption and risk of hip fracture. A lower threshold of 200 g/day milk intake may have beneficial effects, whereas the effects of a higher

  13. [Effect of 3D printing technology on pelvic fractures:a Meta-analysis].

    PubMed

    Zhang, Yu-Dong; Wu, Ren-Yuan; Xie, Ding-Ding; Zhang, Lei; He, Yi; Zhang, Hong

    2018-05-25

    To evaluate the effect of 3D printing technology applied in the surgical treatment of pelvic fractures through the published literatures by Meta-analysis. The PubMed database, EMCC database, CBM database, CNKI database, VIP database and Wanfang database were searched from the date of database foundation to August 2017 to collect the controlled clinical trials in wich 3D printing technology was applied in preoperative planning of pelvic fracture surgery. The retrieved literatures were screened according to predefined inclusion and exclusion criteria, and quality evaluation were performed. Then, the available data were extracted and analyzed with the RevMan5.3 software. Totally 9 controlled clinical trials including 638 cases were chosen. Among them, 279 cases were assigned to the 3D printing technology group and 359 cases to the conventional group. The Meta-analysis results showed that the operative time[SMD=-2.81, 95%CI(-3.76, -1.85)], intraoperative blood loss[SMD=-3.28, 95%CI(-4.72, -1.85)] and the rate of complication [OR=0.47, 95%CI(0.25, 0.87)] in the 3D printing technology were all lower than those in the conventional group;the excellent and good rate of pelvic fracture reduction[OR=2.09, 95%CI(1.32, 3.30)] and postoperative pelvic functional restoration [OR=1.94, 95%CI(1.15, 3.28) in the 3D printing technology were all superior to those in the conventional group. 3D printing technology applied in the surgical treatment of pelvic fractures has the advantage of shorter operative time, less intraoperative blood loss and lower rate of complication, and can improve the quality of pelvic fracture reduction and the recovery of postoperative pelvic function. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  14. Feasibility of Using Fluorescent Materials in Product Assurance Applications and for Locating Adhesive Bond Fractures

    DTIC Science & Technology

    1978-03-01

    IN PRODUCT ASSURANCE APPLICATIONS AND FOR LOCATING ADHESIVE BOND FRACTURES CAROLYN A. L. WESTERDAHL J. RICHARD HALL MARCH 1978 US ARMY ARMAMENT...AUTHORfc) Carolyn A. L. Westerdahl J. Richard Hall 8. CONTRACT OR GRANT NUMBERfaJ AMCMS Code 6121.05.I1H8.4 9. PERFORMING ORGANIZATION

  15. Image Analysis of Proppant Performance in Pressurized Fractures

    NASA Astrophysics Data System (ADS)

    Crandall, D.; Smith, M. M.; Carroll, S.; Walsh, S. D.; Gill, M.; Moore, J.; Tennant, B.; Aines, R. D.

    2014-12-01

    Proppants are small particles used to prop or hold open subsurface fractures to permit fluid flow through these pathways. In many oil and gas well applications, the most common proppant materials are sand, ceramic particles, resin-coated sands, glass beads or even walnut shells. More dense proppants require additives to create viscous fluids which can transport them further along wells and into fractures, but are generally preferred over neutrally buoyant options due to their increased strength. Currently, proppant strength and generation of broken fragments ("fines") is analyzed via a standardized crush test between parallel plates. To augment this type of information, we present here the results of various experiments involving resin-coated proppants held at increasing pressures in fractured samples of Marcellus shale. The shale/proppant samples were imaged continuously with an industrial tomography scanner during pressurization up to 10,000psi. This technique allows for in situ characterization of fracture/proppant interactions and fracture void volume and average aperture with varying confining pressures.

  16. Fracture Surface Analysis of Clinically Failed Fixed Partial Dentures

    PubMed Central

    Taskonak, B.; Mecholsky, J.J.; Anusavice, K.J.

    2008-01-01

    Ceramic systems have limited long-term fracture resistance, especially when they are used in posterior areas or for fixed partial dentures. The objective of this study was to determine the site of crack initiation and the causes of fracture of clinically failed ceramic fixed partial dentures. Six Empress 2® lithia-disilicate (Li2O·2SiO2)-based veneered bridges and 7 experimental lithia-disilicate-based non-veneered ceramic bridges were retrieved and analyzed. Fractography and fracture mechanics methods were used to estimate the stresses at failure in 6 bridges (50%) whose fracture initiated from the occlusal surface of the connectors. Fracture of 1 non-veneered bridge (8%) initiated within the gingival surface of the connector. Three veneered bridges fractured within the veneer layers. Failure stresses of the all-core fixed partial dentures ranged from 107 to 161 MPa. Failure stresses of the veneered fixed partial dentures ranged from 19 to 68 MPa. We conclude that fracture initiation sites are controlled primarily by contact damage. PMID:16498078

  17. Effects of exercise on fracture reduction in older adults: a systematic review and meta-analysis.

    PubMed

    Kemmler, W; Häberle, L; von Stengel, S

    2013-07-01

    In this meta-analysis, we evaluated the effect of exercise on fracture reduction in the elderly. Our results determined a significantly positive effect on overall fractures, whereas the possibility of a publication bias indicates the need for well-designed (multi-center) trials that generate enough power to focus on osteoporotic fractures. The preventive effect of exercise on fracture incidence has not been clearly determined yet. Thus, the purpose of this study is to evaluate the effectiveness of exercise in preventing overall and vertebral fractures in older adults by meta-analyses technique. This study followed the PRISMA recommendations for systematic reviews and meta-analyses. A systematic review of English articles between 1980 and March 2012 was performed. Terms used were: "exercise", "fractures", "bone", "falls", "osteoporosis", "BMD", "BMC", "bone turnover", while the search was limited to "clinical trial" and "humans". Controlled exercise trials that reported fracture number as endpoint or observation in subjects 45 years and older were included. Ten controlled exercise trials that reported overall fractures and three exercise trials that reported vertebral fractures met our inclusion criteria. Overall fracture number in the exercise group was 36 (n = 754) compared with 73 fractures in the CG (n = 670) (relative risk [RR] = 0.49; 95 % confidence interval [CI], 0.31-0.76). No significant heterogeneity of trial results (p = 0.28; I (2) = 17) was determined; however, there was some evidence to suggest a publication bias. The overall RR for vertebral fracture number (0.56; 95 % CI, 0.30-1.04) (EG: 19 fractures/103 subjects vs. CG: 31 fractures/102 subjects) was borderline non-significant while the heterogeneity of trial results also cannot be ruled out. Although there is evidence that exercise reduces overall and, to a lesser degree, vertebral fractures in the elderly, the possibility of publication bias weakens our result and demonstrates

  18. Pressure vessel fracture, fatigue, and life management: PVP-Volume 233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, S.; Milella, P.P.; Pennell, W.E.

    1992-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on the effects of aging. The papers are organized in the following five areas: (1) pressure vessel life management; (2) fracture characterization using local and dual-parameter approaches; (3) stratification and thermal fatigue; (4) creep, fatigue, and fracture; and (5) integrated approach to integrity assessment of pressure components. Separate abstracts were prepared for 39 papers in this conference.

  19. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-01-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  20. Analysis of flow in an observation well intersecting a single fracture

    USGS Publications Warehouse

    Lapcevic, P.A.; Novakowski, K.S.; Paillet, Frederick L.

    1993-01-01

    A semi-analytical model is developed to determine transmissivity and storativity from the interpretation of transient flow in an observation well due to pumping in a source well where the two wells are connected by a single fracture. Flow rate can be determined using a heat-pulse flowmeter located above the intersection of the fracture in the observation well. The results of a field experiment were interpreted using the new model and compared with drawdown data from the same test. Good agreement between the transmissivity estimates was observed whereas estimates of storativity were found to be better determined from the analysis of flow rate. ?? 1993.

  1. High prevalence of simultaneous rib and vertebral fractures in patients with hip fracture.

    PubMed

    Lee, Bong-Gun; Sung, Yoon-Kyoung; Kim, Dam; Choi, Yun Young; Kim, Hunchul; Kim, Yeesuk

    2017-02-01

    The purpose was to evaluate the prevalence and location of simultaneous fracture using bone scans in patients with hip fracture and to determine the risk factors associated with simultaneous fracture. One hundred eighty two patients with hip fracture were reviewed for this study. Clinical parameters and bone mineral density (BMD) of the lumbar vertebra and femoral neck were investigated. To identify acute simultaneous fracture, a bone scan was performed at 15.4±4.1days after hip fracture. The prevalence and location of simultaneous fracture were evaluated, and multivariate logistic regression analysis was performed to determine the risk factors. Simultaneous fracture was observed in 102 of 182 patients, a prevalence of 56.0%. Rib fracture was the most common type of simultaneous fracture followed by rib with vertebral fracture. The BMD of the lumbar vertebra was significantly lower in patients with simultaneous fracture (p=0.044) and was identified as an independent risk factor (odds ratio: OR 0.05, 95% confidence interval: CI 0.01-0.57). The prevalence of simultaneous fracture was relatively high among patients with hip fracture, and BMD was significantly lower in patients with simultaneous fracture than in patients without it. Surgeons should be aware of the possibility of simultaneous fracture in patients with hip fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fractographic Analysis of a Split Tooth Presenting Radiographically as a Horizontal Root Fracture in an Unrestored Mandibular Second Molar.

    PubMed

    Krishnan, Unni; Moule, Alex; Michael, Shaji; Swain, Michael

    2018-02-01

    Spontaneously catastrophic fracture of intact unrestored molar teeth is not common. Nevertheless, cracks do occur that progress apically, resulting in the complete splitting of the tooth and root. This report describes a catastrophic fracture that occurred in an unrestored mandibular second molar resulting in a previously unreported combination of a longitudinal and horizontal root fracture, appearing radiographically as a single horizontal root fracture. Tooth fragments were examined clinically, stereoscopically, and by scanning electron microscopy. Fractographic analysis was used to investigate the dynamics involved in fracture initiation, structural resistances encountered during progression of the fracture, and reasons for direction changes culminating in the unusual radiographic appearance. The uniqueness of this report is that it describes fractographic evidence of factors contributing to the initiation and progression of an in vivo crack. It shows fracture markings that are evidence of the energy dissipation mechanisms. The topographic location of these markings confirmed that cracks occur in vivo in stages with different rates of progression. This analysis helps to explain why split teeth are uncommon and highlights some of the multitude of factors that have to coincide for a tooth to catastrophically fracture. The report describes the mechanism of fracture and should stimulate clinicians and researchers to investigate cracking of teeth by undertaking fractographic analysis of extracted cracked teeth. Copyright © 2017 American Association of Endodontists. All rights reserved.

  3. Multiscale analysis of the fracture pattern in granite, example of Tamariu's granite, Catalunya.

    NASA Astrophysics Data System (ADS)

    Bertrand, L.; LeGarzic, E.; Géraud, Y.; Diraison, M.

    2012-04-01

    Crystalline rocks can be the host of important fluid flow and therefore they can provide a good reservoir potential. In this kind of rocks, the matrice porosity is in general low and a large part of the permeability is governed by the fracture pattern. Thus, they are the first interest of studies in order to characterize and model the fluid flows. Actual reservoirs are underground, and the only access to the fracture pattern is with boreholes and seismic lines. Those methods are investigating different scales and dimensions: seismic is in 3D at a global scale whereas boreholes are 1D at a localized scale. To make the link between the different data, it is necessary to study field analogues where such fractured rocks are outcropping. Tamariu's granite, in Catalunya, has recently been studied as a field analogue of a fractured reservoir. The previous studies have lead to define structural blocks at different scales, linked to the regional deformation. This study's aim is to characterize the internal fracturation of a single structural block with a statistical analysis. We used one dimension scan lines at the scale of a block and 2 dimensions mapping at a more precise scale until the grain scale. The data highlighted that the fracture and fault lengths have a power law relation in 8 orders of scales. So this power law is stretching between seismic and borehole scales. Therefore, the data fit with a very good trust in the power law exponent, which is very well defined. The link between the reservoir scale faults and the internal block fracturation has also been defined in term of the structures orientation. Finally, a comparison between the 1D and 2D measurement could be done. The 1D scan lines show correctly the different fractures families but samples incompletely a part the fracture pattern, whereas the 2D maps which show more the global trends of the fractures and could lose some minor trends orientations.

  4. [Clinal analysis of 202 nasal bone fractures cases].

    PubMed

    Zhong, Zhenhua; Fan, Xihui; Lian, Zhuang; Cheng, Zexing; Zhuang, Yuanling

    2014-12-01

    To evaluate the age, sex, etiology, diagnosis and treatment time of nasal bone fractures. Clinical data of 202 cases with nasal bone fractures treated in the hospital were retrospectively analysed. A total of 202 cases,163 men (80. 7%) and 39 women (19. 3%). Fifty-two patients had a relationship with alcohol consumption, and all of them were males. The most frequent reasons of the injury were fight 46. 5% (94 cases) followed by falling-down 21. 3% (43 cases), traffic accidents 19. 3% (39 cases), works related 6. 5% (13 cases), sport injuries 5. 9% (12 cases) and others 0. 5% (1 cases). Patients distribution in seasons were: spring 54 cases (26.7%), summer 42 cases (20.8%), autumn 58 cases (28.7%), winter 48 cases (23. 8%). Diagnosis of nasal bone fractures were made positively by x-ray films in 79. 7% of cases, but 100% by CT. Positive predictive value of CT was superior to that of X-ray films in the diagnosis of nasal bone fracture. High morbidity of nasal bone fracture was seen in the age group of 20-29 years, and predominantly in male. Fight was found to be the main etiologic factor. We think that CT is necessary for diagnosing nasal bone fracture.

  5. A comparison of stereology, structural rigidity and a novel 3D failure surface analysis method in the assessment of torsional strength and stiffness in a mouse tibia fracture model.

    PubMed

    Wright, David A; Nam, Diane; Whyne, Cari M

    2012-08-31

    In attempting to develop non-invasive image based measures for the determination of the biomechanical integrity of healing fractures, traditional μCT based measurements have been limited. This study presents the development and evaluation of a tool for assessment of fracture callus mechanical properties through determination of the geometric characteristics of the fracture callus, specifically along the surface of failure identified during destructive mechanical testing. Fractures were created in tibias of ten male mice and subjected to μCT imaging and biomechanical torsion testing. Failure surface analysis, along with previously described image based measures was calculated using the μCT image data, and correlated with mechanical strength and stiffness. Three-dimensional measures along the surface of failure, specifically the surface area and torsional rigidity of bone, were shown to be significantly correlating with mechanical strength and stiffness. It was also shown that surface area of bone along the failure surface exhibits stronger correlations with both strength and stiffness than measures of average and minimum torsional rigidity of the entire callus. Failure surfaces observed in this study were generally oriented at 45° to the long axis of the bone, and were not contained exclusively within the callus. This work represents a proof of concept study, and shows the potential utility of failure surface analysis in the assessment of fracture callus stability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cleavage fracture in pearlitic eutectoid steel

    NASA Astrophysics Data System (ADS)

    Alexander, D. J.; Bernstein, I. M.

    1989-11-01

    The effect of microstructure on flow and fracture properties of fully pearlitic steel has been studied by independently varying the prior austenite grain size and the pearlite interlamellar spacing through appropriate heat treatments. The yield strength is independent of the prior austenite grain size but increases as the interlamellar spacing or the temperature decreases. The microstructural dependence can be explained by using a model which assumes that yielding is controlled by dislocation motion in the ferrite lamellae. The critical tensile stress for cleavage fracture is found to be independent of prior austenite grain size, increasing as the interlamellar spacing decreases. The cleavage fracture stress is independent of temperature for fine pearlite but increases as the temperature decreases for coarse pearlite. The associated fracture in blunt notch specimens initiates at inclusions beneath notch surface near the location of maximum tensile stress. From the size of such inclusions, the effective surface energy for cleavage fracture can be directly calculated and is found to be independent of temperature and prior austenite grain size but to increase as the interlamellar spacing decreases, from about 5 to 13 J/m2 for the range of microstructures and temperatures used in this study. Additional measurements of the effective surface energy and further theoretical analyses of the cleavage process are needed.

  7. Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-03-01

    Herein, we have performed J- Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP'd) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (- 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J 0.2BL, when compared to equivalently graded forged 304L, which is relatively constant across the tested temperature range.

  8. Development of Fracture Mechanics Maps for Composite Materials. Volume 3.

    DTIC Science & Technology

    1985-12-01

    RD-At69 W4 DEVELOPMENT OF FRCTURE ECHNICS NPS FOR COMPOSITE V3jMATERIALS VOLUME 3( ) DEUTSCHE FORSCHUNOS- UND YERSUCHSANSTALT FUER LUFT- UND RAUMF...DEVELOPMENT OF FRACTURE MECHANICS MAPS I FOR COMPOSITE MATERIALS Dr. H. W. Bergmann DFVLR - Institute for Structural Mechanics Braunschweig, West Germany...Brussels, Belgium ELEMENT NO . NO. NO. NO. 11. TITLE (Include Security Classification) Development of N/A N/A N/A N/A Fracture MechanicsMaps for Composite

  9. Bioinformatics and Microarray Analysis of miRNAs in Aged Female Mice Model Implied New Molecular Mechanisms for Impaired Fracture Healing

    PubMed Central

    He, Bing; Zhang, Zong-Kang; Liu, Jin; He, Yi-Xin; Tang, Tao; Li, Jie; Guo, Bao-Sheng; Lu, Ai-Ping; Zhang, Bao-Ting; Zhang, Ge

    2016-01-01

    Impaired fracture healing in aged females is still a challenge in clinics. MicroRNAs (miRNAs) play important roles in fracture healing. This study aims to identify the miRNAs that potentially contribute to the impaired fracture healing in aged females. Transverse femoral shaft fractures were created in adult and aged female mice. At post-fracture 0-, 2- and 4-week, the fracture sites were scanned by micro computed tomography to confirm that the fracture healing was impaired in aged female mice and the fracture calluses were collected for miRNA microarray analysis. A total of 53 significantly differentially expressed miRNAs and 5438 miRNA-target gene interactions involved in bone fracture healing were identified. A novel scoring system was designed to analyze the miRNA contribution to impaired fracture healing (RCIFH). Using this method, 11 novel miRNAs were identified to impair fracture healing at 2- or 4-week post-fracture. Thereafter, function analysis of target genes was performed for miRNAs with high RCIFH values. The results showed that high RCIFH miRNAs in aged female mice might impair fracture healing not only by down-regulating angiogenesis-, chondrogenesis-, and osteogenesis-related pathways, but also by up-regulating osteoclastogenesis-related pathway, which implied the essential roles of these high RCIFH miRNAs in impaired fracture healing in aged females, and might promote the discovery of novel therapeutic strategies. PMID:27527150

  10. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image

  11. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of

  12. Abdominal Obesity and Risk of Hip Fracture: A Systematic Review and Meta-Analysis of Prospective Studies.

    PubMed

    Sadeghi, Omid; Saneei, Parvaneh; Nasiri, Morteza; Larijani, Bagher; Esmaillzadeh, Ahmad

    2017-09-01

    Data on the association between general obesity and hip fracture were summarized in a 2013 meta-analysis; however, to our knowledge, no study has examined the association between abdominal obesity and the risk of hip fracture. The present systematic review and meta-analysis of prospective studies was undertaken to summarize the association between abdominal obesity and the risk of hip fracture. We searched online databases for relevant publications up to February 2017, using relevant keywords. In total, 14 studies were included in the systematic review and 9 studies, with a total sample size of 295,674 individuals (129,964 men and 165,703 women), were included in the meta-analysis. Participants were apparently healthy and aged ≥40 y. We found that abdominal obesity (defined by various waist-hip ratios) was positively associated with the risk of hip fracture (combined RR: 1.24, 95% CI: 1.05, 1.46, P = 0.01). Combining 8 effect sizes from 6 studies, we noted a marginally significant positive association between abdominal obesity (defined by various waist circumferences) and the risk of hip fracture (combined RR: 1.36; 95% CI: 0.97, 1.89, P = 0.07). This association became significant in a fixed-effects model (combined effect size: 1.40, 95% CI: 1.25, 1.58, P < 0.001). Based on 5 effect sizes, we found that a 0.1-U increase in the waist-hip ratio was associated with a 16% increase in the risk of hip fracture (combined RR: 1.16, 95% CI: 1.04, 1.29, P = 0.007), whereas a 10-cm increase in waist circumference was not significantly associated with a higher risk of hip fracture (combined RR: 1.13, 95% CI: 0.94, 1.36, P = 0.19). This association became significant, however, when we applied a fixed-effects model (combined effect size: 1.21, 95% CI: 1.15, 1.27, P < 0.001). We found that abdominal obesity was associated with a higher risk of hip fracture in 295,674 individuals. Further studies are needed to test whether there are associations between abdominal obesity and

  13. Bone and fall-related fracture risks in women and men with a recent clinical fracture.

    PubMed

    van Helden, Svenhjalmar; van Geel, Antonia C M; Geusens, Piet P; Kessels, Alfons; Nieuwenhuijzen Kruseman, Arie C; Brink, Peter R G

    2008-02-01

    the presence of osteoporosis. Risk factors were overlapping, heterogeneous, and found in multiple combinations. This was the case regardless of the patient's age, fracture location, or gender. These findings suggest that an integrated bone and fall-related risk-factor assessment is a preferable means for identifying elderly subjects at risk for fracture. Integrated bone and fall-related risk assessment and treatment studies are needed to document this proposal.

  14. Has the Reform of the Japanese Healthcare Provision System Improved the Value in Healthcare? A Cost-Consequence Analysis of Organized Care for Hip Fracture Patients.

    PubMed

    Fukuda, Haruhisa; Shimizu, Sayuri; Ishizaki, Tatsuro

    2015-01-01

    To assess the value of organized care by comparing the clinical outcomes and healthcare expenditure between the conventional Japanese "integrated care across specialties within one hospital" mode of providing healthcare and the prospective approach of "organized care across separate facilities within a community". Retrospective cohort study. Two groups of hospitals were categorized according to healthcare delivery approach: the first group included 3 hospitals autonomously providing integrated care across specialties, and the second group included 4 acute care hospitals and 7 rehabilitative care hospitals providing organized care across separate facilities. Patients aged 65 years and above who had undergone hip fracture surgery. Regression models adjusting for patient characteristics and clinical variables were used to investigate the impact of organized care on the improvements to the mobility capability of patients before and after hospitalization and the differences in healthcare resource utilization. The sample for analysis included 837 hip fracture surgery cases. The proportion of patients with either unchanged or improved mobility capability was not statistically associated with the healthcare delivery approaches. Total adjusted mean healthcare expenditure for integrated care and organized care were US$28,360 (95% confidence interval: 27,787-28,972) and US$21,951 (21,511-22,420), respectively, indicating an average increase of US$6,409 in organized care. Our cost-consequence analysis underscores the need to further investigate the actual contribution of organized care to the provision of efficient and high-quality healthcare.

  15. Has the Reform of the Japanese Healthcare Provision System Improved the Value in Healthcare? A Cost-Consequence Analysis of Organized Care for Hip Fracture Patients

    PubMed Central

    Fukuda, Haruhisa; Shimizu, Sayuri; Ishizaki, Tatsuro

    2015-01-01

    Objectives To assess the value of organized care by comparing the clinical outcomes and healthcare expenditure between the conventional Japanese “integrated care across specialties within one hospital” mode of providing healthcare and the prospective approach of “organized care across separate facilities within a community”. Design Retrospective cohort study. Setting Two groups of hospitals were categorized according to healthcare delivery approach: the first group included 3 hospitals autonomously providing integrated care across specialties, and the second group included 4 acute care hospitals and 7 rehabilitative care hospitals providing organized care across separate facilities. Participants Patients aged 65 years and above who had undergone hip fracture surgery. Measurements Regression models adjusting for patient characteristics and clinical variables were used to investigate the impact of organized care on the improvements to the mobility capability of patients before and after hospitalization and the differences in healthcare resource utilization. Results The sample for analysis included 837 hip fracture surgery cases. The proportion of patients with either unchanged or improved mobility capability was not statistically associated with the healthcare delivery approaches. Total adjusted mean healthcare expenditure for integrated care and organized care were US$28,360 (95% confidence interval: 27,787-28,972) and US$21,951 (21,511-22,420), respectively, indicating an average increase of US$6,409 in organized care. Conclusion Our cost-consequence analysis underscores the need to further investigate the actual contribution of organized care to the provision of efficient and high-quality healthcare. PMID:26208322

  16. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx

    NASA Astrophysics Data System (ADS)

    Baston, Daniel P.; Kueper, Bernard H.

    2009-02-01

    A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green's function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx ( q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.

  17. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  18. Self organized spatio-temporal structure within the fractured Vadose Zone: The influence of dynamic overloading at fracture intersections

    NASA Astrophysics Data System (ADS)

    LaViolette, Randall A.; Glass, Robert J.

    2004-09-01

    Under low flow conditions (where gravity and capillary forces dominate) within an unsaturated fracture network, fracture intersections act as capillary barriers to integrate flow from above and then release it as a pulse below. Water exiting a fracture intersection is often thought to enter the single connected fracture with the lowest invasion pressure. When the accumulated volume varies between intersections, the smaller volume intersections can be overloaded to cause all of the available fractures exiting an intersection to flow. We included the dynamic overloading process at fracture intersections within our previously discussed model where intersections were modeled as tipping buckets connected within a two-dimensional diamond lattice. With dynamic overloading, the flow behavior transitioned smoothly from diverging to converging flow with increasing overload parameter, as a consequence of a heterogeneous field, and they impose a dynamic structure where additional pathways activate or deactivate in time.

  19. Comparative biomechanical evaluation of mono-cortical osteosynthesis systems for condylar fractures using photoelastic stress analysis.

    PubMed

    Christopoulos, Panos; Stathopoulos, Panagiotis; Alexandridis, Constantinos; Shetty, Vivek; Caputo, Angelo

    2012-10-01

    Fractures of the condyle account for 20-30% of all mandibular fractures, and are therefore one of the most common facial injuries. Precise evaluation of the mechanical stresses that develop in a fractured mandible is essential, particularly for the testing of systems currently used for stabilisation of the condylar fragment. Photoelastic stress analysis can be used to visualise alterations in the strain that is induced in the mandible by a fracture, and in the osteosynthesis materials used to stabilise it. This method, used on currently used osteosynthesis materials, showed that stabilisation of a subcondylar fracture with a single miniplate does not provide enough stability, whereas the use of two miniplates - properly positioned - offers sufficient stability in all loading conditions. A microplate may be used as a tension-resisting plate with equally good results. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Marzieh; Tomkovic, Tanja; Liu, Guochang; Doufas, Antonios A.; Hatzikiriakos, Savvas G.

    2018-05-01

    The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extrudate appearance using optical microscopy. It is found that the onset of flow instabilities (melt fracture phenomena) is significantly affected by die geometry and molecular weight characteristics of the polymers. Use of annular die eliminates the stick-slip transition (oscillating melt fracture) and delays the onset of sharkskin to higher values of shear rate and shear stress. Moreover, it is shown that the molecular weight characteristics of the polymers are well correlated with critical conditions for the onset of flow instabilities based on a criterion proposed in the literature [A. Allal et al., "Relationships between molecular structure and sharkskin defect for linear polymers," J. Non-Newtonian Fluid Mech. 134, 127-135 (2006) and A. Allal and B. Vergnes, "Molecular design to eliminate sharkskin defect for linear polymers," J. Non-Newtonian Fluid Mech. 146, 45-50 (2007)].

  1. FracPaQ: a MATLAB™ Toolbox for the Quantification of Fracture Patterns

    NASA Astrophysics Data System (ADS)

    Healy, D.; Rizzo, R. E.; Cornwell, D. G.; Timms, N.; Farrell, N. J.; Watkins, H.; Gomez-Rivas, E.; Smith, M.

    2016-12-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying the fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The method presented is inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. Planned future releases will incorporate multi-scale analyses based on a wavelet method to look for scale transitions, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern.

  2. Optimizing hydraulic fracture design in the diatomite formation, Lost Hills Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, D.G.; Klins, M.A.; Manrique, J.F.

    1996-12-31

    Since 1988, over 1.3 billion pounds of proppant have been placed in the Lost Hills Field of Kern County. California in over 2700 hydraulic fracture treatments involving investments of about $150 million. In 1995, systematic reevaluation of the standard, field trial-based fracture design began. Reservoir, geomechanical, and hydraulic fracture characterization; production and fracture modeling; sensitivity analysis; and field test results were integrated to optimize designs with regard to proppant volume, proppant ramps, and perforating strategy. The results support a reduction in proppant volume from 2500 to 1700 lb/ft which will save about $50,000 per well, totalling over $3 million permore » year. Vertical coverage was found to be a key component of fracture quality which could be optimized by eliminating perforations from lower stress intervals, reducing the total number of perforations, and reducing peak slurry loading from 16 to 12 ppa. A relationship between variations in lithology, pore pressure, and stress was observed. Point-source, perforating strategies were investigated and variable multiple fracture behavior was observed. The discussed approach has application in areas where stresses are variable; pay zones are thick; hydraulic fracture design is based primarily on empirical, trial-and-error field test results; and effective, robust predictive models involving real-data feedback have not been incorporated into the design improvement process.« less

  3. Effect of temperature on the fracture toughness in the nuclear reactor pressure vessel steel (SA508-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, S.W.; Lim, M.B.; Yoon, H.K.

    1994-12-31

    The elastic-plastic fracture toughness J{sub IC} of the Nuclear Reactor Pressure Vessel Steel (SA508-3) which has high toughness was obtained at three temperatures (room temperature, {minus}20 C, 200 C) using a 1/2 CT specimen. Especially the two methods recommended in ASTM and JSME were compared. It was found that difficulty exists in obtaining J{sub IC} by ASTM R-curve method, while JSME R-curve method yielded good results. The stretched zone width method gave slightly larger J{sub IC} values than those by the R-curve method for SA508-3 steel and the blunting line was not affected by the test temperatures. The relation betweenmore » SZW and J, SZW and J/E and SZW and J/{sigma}{sub ys} before initiation of a stable crack growth in the fracture toughness test at three temperatures is described.« less

  4. Optical method of caustics applied in viscoelastic fracture analysis

    NASA Astrophysics Data System (ADS)

    Gao, Guiyun; Li, Zheng; Xu, Jie

    2011-05-01

    The optical method of caustics is developed here to study the fracture of viscoelastic materials. By adopting a distribution of viscoelastic stress fields near the crack tip, the method of caustics is used to determine the viscoelastic fracture parameters from the caustic patterns near the crack tip. Two viscoelastic materials are studied. These are PMMA and ternary composites of HDPE/POE-g-MA/CaCO 3. The transmitted and reflective methods of caustics are performed separately to investigate viscoelastic fracture behaviors. The stress intensity factors (SIFs) versus time is determined by a series of shadow spot patterns combined with viscoelastic parameters evaluated by creep tests. In order to understand the viscoelastic fracture mechanisms of HDPE/POE-g-MA/CaCO 3 composites, their fracture surfaces are observed by a Scanning Electron Microscope (SEM). The results indicate that the method of caustics can be used to characterize the fracture behaviors of viscoelastic materials and further to optimize the design of polymer composites.

  5. Pediatric mandibular fractures.

    PubMed

    Thaller, S R; Mabourakh, S

    1991-06-01

    In spite of curiosity, facial fractures, particularly mandibular fractures, in the pediatric age group embrace only a modest proportion of facial fractures that occur within the general population. Several large series report an overall incidence of approximately 1% of all facial bone fractures. A considerable volume of literature has been generated describing the pattern of injury and treatment modalities for pediatric facial bone fractures. At our institution, which is an extremely busy university-based regional trauma center, we have witnessed a persistent escalation in the number of patients requiring repair of their facial bone fractures. During the period of January 1989 through January 1990, we treated a total of 204 patients for repair of mandible fractures. An analysis of the records of this group revealed only 3 patients who were younger than 4 years of age and 2 additional patients younger than 8 years. There were another 10 patients 17 years and younger, for a total incidence of 0.08%. Additionally, we found that within this seemingly small group, there was a surprisingly high incidence of severe, associated injuries.

  6. ImageJ-MATLAB: a bidirectional framework for scientific image analysis interoperability.

    PubMed

    Hiner, Mark C; Rueden, Curtis T; Eliceiri, Kevin W

    2017-02-15

    ImageJ-MATLAB is a lightweight Java library facilitating bi-directional interoperability between MATLAB and ImageJ. By defining a standard for translation between matrix and image data structures, researchers are empowered to select the best tool for their image-analysis tasks. Freely available extension to ImageJ2 ( http://imagej.net/Downloads ). Installation and use instructions available at http://imagej.net/MATLAB_Scripting. Tested with ImageJ 2.0.0-rc-54 , Java 1.8.0_66 and MATLAB R2015b. eliceiri@wisc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Recent developments in analysis of crack propagation and fracture of practical materials. [stress analysis in aircraft structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.

    1978-01-01

    The limitations of linear elastic fracture mechanics in aircraft design and in the study of fatigue crack propagation in aircraft structures are discussed. NASA-Langley research to extend the capabilities of fracture mechanics to predict the maximum load that can be carried by a cracked part and to deal with aircraft design problems are reported. Achievements include: (1) improved stress intensity solutions for laboratory specimens; (2) fracture criterion for practical materials; (3) crack propagation predictions that account for mean stress and high maximum stress effects; (4) crack propagation predictions for variable amplitude loading; and (5) the prediction of crack growth and residual stress in built-up structural assemblies. These capabilities are incorporated into a first generation computerized analysis that allows for damage tolerance and tradeoffs with other disciplines to produce efficient designs that meet current airworthiness requirements.

  8. Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures.

    PubMed

    Petfield, Joseph L; Hayeck, Garry T; Kopperdahl, David L; Nesti, Leon J; Keaveny, Tony M; Hsu, Joseph R

    2017-04-01

    Virtual stress testing (VST) provides a non-invasive estimate of the strength of a healing bone through a biomechanical analysis of a patient's computed tomography (CT) scan. We asked whether VST could improve management of patients who had a tibia fracture treated with external fixation. In a retrospective case-control study of 65 soldier-patients who had tibia fractures treated with an external fixator, we performed VST utilizing CT scans acquired prior to fixator removal. The strength of the healing bone and the amount of tissue damage after application of an overload were computed for various virtual loading cases. Logistic regression identified computed outcomes with the strongest association to clinical events related to nonunion within 2 months after fixator removal. Clinical events (n = 9) were associated with a low tibial strength for compression loading (p < 0.05, AUC = 0.74) or a low proportion of failed cortical bone tissue for torsional loading (p < 0.005, AUC = 0.84). Using post-hoc thresholds of a compressive strength of four times body-weight and a proportional of failed cortical bone tissue of 5%, the test identified all nine patients who failed clinically (100% sensitivity; 40.9% positive predictive value) and over three fourths of those (43 of 56) who progressed to successful healing (76.8% specificity; 100% negative predictive value). In this study, VST identified all patients who progressed to full, uneventful union after fixator removal; thus, we conclude that this new test has the potential to provide a quantitative, objective means of identifying tibia-fracture patients who can safely resume weight bearing. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:805-811, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. A multiscale model of distributed fracture and permeability in solids in all-round compression

    NASA Astrophysics Data System (ADS)

    De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna

    2017-07-01

    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.

  10. Determining when a fracture occurred: Does the method matter? Analysis of the similarity of three different methods for estimating time since fracture of juvenile long bones.

    PubMed

    Drury, Anne; Cunningham, Craig

    2018-01-01

    Radiographic fracture date estimation is a critical component of skeletal trauma analysis in the living. Several timetables have been proposed for how the appearance of radiographic features can be interpreted to provide a likely time frame for fracture occurrence. This study compares three such timetables for pediatric fractures, by Islam et al. (2000), Malone et al. (2011), and Prosser et al. (2012), in order to determine whether the fracture date ranges produced by using these methods are in agreement with one another. Fracture date ranges were estimated for 112 long bone fractures in 96 children aged 1-17 years, using the three different timetables. The extent of similarity of the intervals was tested by statistically comparing the overlap between the ranges. Results showed that none of the methods were in perfect agreement with one another. Differences seen included the size of the estimated date range for when a fracture occurred, and the specific dates given for both the upper and lower ends of the fracture date range. There was greater similarity between the ranges produced by Malone et al. (2011) and both the other two studies than there was between Islam et al. (2000) and Prosser et al. (2012). The greatest similarity existed between Malone et al. (2011) and Islam et al. (2000). The extent of differences between methods can vary widely, depending on the fracture analysed. Using one timetable gives an average earliest possible fracture date of less than 2 days before another, but the range was extreme, with one method estimating minimum time since fracture as 25 days before another method for a given fracture. In most cases, one method gave maximum time since fracture as a week less than the other two methods, but range was extreme and some estimates were nearly two months different. The variability in fracture date estimates given by these timetables indicates that caution should be exercised when estimating the timing of a juvenile fracture if relying

  11. Prevalence of Temporal Bone Fractures in Patients with Mandibular Fractures Using Multidetector-Row CT.

    PubMed

    Ogura, I; Kaneda, T; Sasaki, Y; Buch, K; Sakai, O

    2015-06-01

    Temporal bone fracture after mandibular trauma is thought to be rare, and its prevalence has not been reported in the literature. The purpose of this study was to investigate the prevalence of temporal bone fractures in patients with mandibular fractures and the relationship between temporal bone fractures and the mandibular fracture location using multidetector-row computed tomography (MDCT). A prospective study was performed in 201 patients with mandibular fractures who underwent 64-MDCT scans. The mandibular fracture locations were classified as median, paramedian, angle, and condylar types. Statistical analysis for the relationship between prevalence of temporal bone fractures and mandibular fracture locations was performed using χ(2) test with Fisher's exact test. A P-value < 0.05 was considered statistically significant. The percentage of cases with temporal bone fracture was 3.0 % of all patients with mandibular fractures and 19.0 % of those with multiple mandibular fractures of paramedian and condylar type. There was a significant relationship between the incidence of temporal bone fracture and the paramedian- and condylar-type mandibular fracture (P = 0.001). Multiple mandibular fractures of paramedian and condylar type may be a stronger indicator for temporal bone fractures. This study suggests that patients with mandibular fracture, especially the paramedian and condylar type, should be examined for coexisting temporal bone fracture using MDCT.

  12. HEP data analysis using jHepWork and Java.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S.; High Energy Physics

    2009-03-23

    A role of Java in high-energy physics (HEP) and recent progress in development of a platform-independent data-analysis framework, jHepWork, is discussed. The framework produces professional graphics and has many libraries for data manipulation.

  13. A Year of Fractures: a snapshot analysis of the logistics, problems and outcomes of a hospital-based fracture liaison service.

    PubMed

    Vaile, J H; Sullivan, L; Connor, D; Bleasel, J F

    2013-10-01

    Our fracture liaison service identifies patients with low trauma fractures, determines the need for osteoporosis therapy and instigates therapy if necessary. We describe the tracking and outcome of 768 patients attending our emergency department over 1 year and discuss the problems we encountered and potential solutions. Osteoporotic fractures result in substantial morbidity, mortality and economic cost, and patients sustaining a first fracture are known to be at higher risk of sustaining future fracture. Treatment of at-risk patients has been shown to assist in prevention of future fracture including hip fracture. We established a "First Fracture Project" to identify and treat these patients in 2003. We assessed "A Year of Fractures": the logistics, outcome and problems in tracking patients presenting to our emergency department with a low trauma fracture by our fracture liaison service, over 1 year from July 2008 to June 2009. Patients were tracked by our osteoporosis nurse and offered assessment, and treatment where necessary. In 1 year, 768 patients aged 50 or over were identified from emergency department records as attending with a low trauma fracture. About 84 % of patients eventually received assessment. Of the162 patients progressing through the entire process, 74 % had osteoporosis treatment planned and/or commenced. Our fracture liaison service was effective at identifying most low trauma fracture patients at risk of further fracture and providing access to osteoporosis assessment. There were many difficulties: we outline logistic and practical issues in delivering our service and suggest potential improvements.

  14. Esthetic rehabilitation of complicated crown fractures utilizing rapid orthodontic extrusion and two different restoration modalities.

    PubMed

    Milardovic Ortolan, Sladana; Strujic, Mihovil; Aurer, Andrej; Viskic, Josko; Bergman, Lana; Mehulic, Ketij

    2012-01-01

    This case report describes the management of a crown-root fractured maxillary right central incisor and a crown fractured maxillary left central incisor using two different techniques. A complex procedure was designed to manage this case including orthodontic extrusion to move the fracture line above the alveolar bone and surgical recontouring of the altered gingival margin. Finally, the right incisor was restored prosthodontically. Prosthetic treatment was based on performing a post and core, and all-ceramic crown on the extruded tooth. The left, less-damaged incisor was restored directly using composite resin. The treatment resulted in good esthetics and secured periodontal health. This case report demonstrates that a multidisciplinary treatment approach is a reliable and predictable option to save a tooth. How to cite this article: Ortolan SM, Strujic M, Aurer A, Viskic J, Bergman L, Mehulic K. Esthetic Rehabilitation of Complicated Crown Fractures Utilizing Rapid Orthodontic Extrusion and Two Different Restoration Modalities. Int J Clin Pediatr Dent 2012;5(1):64-67.

  15. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  16. Association between third molar and mandibular angle fracture: A systematic review and meta-analysis.

    PubMed

    Giovacchini, Francesco; Paradiso, Daniele; Bensi, Caterina; Belli, Stefano; Lomurno, Giuseppe; Tullio, Antonio

    2018-04-01

    The aim of this study was to investigate the risk of mandibular angle fracture associated with the presence of a mandibular third molar and its position when the mandibular fracture occurs. A systematic literary search was performed in Pubmed, Scopus, and the Cochrane Library for observational studies with at least 250 patients that included frequency of mandibular angle fracture, presence of third molar, and its position. A total of seven studies were included in the review, from an initial search of 622 titles. The relative risk of mandibular angle fracture with third molar was 1.90 (95% CI = 1.47-2.46). The relative risk of mandibular angle fracture related to third molar position (according to the Pell and Gregory classification) was 1.18 (95% CI = 0.62-2.25), 1.98 (95% CI = 0.95-4.10), 2.72 (95% CI = 1.78-4.16), 1.31 (95% CI = 0.80-2.14), 2.21 (95% CI = 1.69-2.87) and 2.99 (95% CI = 2.12-4.22) for Class A, Class B, Class C, Class I, Class II, and Class III, respectively. Our meta-analysis reported a two-fold increased risk of mandibular angle fracture with the presence of a third molar in patients who presented with mandibular fractures. Even the third molar position seemed to influence mandibular angle fracture, especially Class C, Class II, and Class III. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; Wang, Cong; Winterfeld, Philip

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less

  18. Pre-operative indicators for mortality following hip fracture surgery: a systematic review and meta-analysis.

    PubMed

    Smith, Toby; Pelpola, Kelum; Ball, Martin; Ong, Alice; Myint, Phyo Kyaw

    2014-07-01

    hip fracture is a common and serious condition associated with high mortality. This study aimed to identify pre-operative characteristics which are associated with an increased risk of mortality after hip fracture surgery. systematic search of published and unpublished literature databases, including EMBASE, MEDLINE, AMED, CINAHL, PubMed and the Cochrane Library, was undertaken to identify all clinical studies on pre-operative predictors of mortality after surgery in hip fracture with at least 3-month follow-up. Data pertaining to the study objectives was extracted by two reviewers independently. Where study homogeneity was evidence, a meta-analysis of pooled relative risk and 95% confidence intervals was performed for mortality against pre-admission characteristics. fifty-three studies including 544,733 participants were included. Thirteen characteristics were identified as possible pre-operative indicators for mortality. Following meta-analysis, the four key characteristics associated with the risk of mortality up to 12 months were abnormal ECG (RR: 2.00; 95% CI: 1.45, 2.76), cognitive impairment (RR: 1.91; 95% CI: 1.35, 2.70), age >85 years (RR: 0.42; 95% CI: 0.20, 0.90) and pre-fracture mobility (RR: 0.13; 95% CI: 0.05, 0.34). Other statistically significant pre-fracture predictors of increased mortality were male gender, being resident in a care institution, intra-capsular fracture type, high ASA grade and high Charlson comorbidity score on admission. this review has identified the characteristics of patients with a high risk of mortality after a hip fracture surgery beyond the peri-operative period who may benefit from comprehensive assessment and appropriate management. CRD42012002107. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Fracture bone healing and biodegradation of AZ31 implant in rats.

    PubMed

    Iglesias, C; Bodelón, O G; Montoya, R; Clemente, C; Garcia-Alonso, M C; Rubio, J C; Escudero, M L

    2015-04-17

    The ideal temporary implant should offer enough mechanical support to allow healing of the fracture and then biodegrade and be resorbed by metabolic mechanisms without causing any toxic effect. The aim of this research has been to simultaneously study in situ bone healing and the biodegradation of AZ31 Mg alloy as an osteosynthesis material. The in vivo study was carried out in AZ31 implants with and without Mg-fluoride coating inserted in un-fractured and fractured femurs of Wistar rats for long experimentation time, from 1 to 13 months, by means of computed tomography, histological and histomorphometric analysis. Tomography analysis showed the bone healing and biodegradation of AZ31 implants. The fracture is healed in 100% of the animals, and AZ31 maintains its mechanical integrity throughout the healing process. Biodegradation was monitored, quantifying the evolution of gas over time by 3D composition of tomography images. In all the studied groups, gas pockets disappear with time as a result of the diffusion process through soft tissues. Histomorphometric studies reveal that after 13 months the 46.32% of AZ31 alloy has been resorbed. The resorption of the coated and uncoated AZ31 implants inserted in fractured femurs after 1, 9 and 13 months does not have statistically significant differences. There is a balance between the biodegradation of AZ31 and bone healing which allows the use of AZ31 to be proposed as an osteosynthesis material.

  20. Fracture toughness of fiber-reinforced glass ceramic and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Stull, Kevin R.; Parvizi-Majidi, A.

    1991-01-01

    A fracture mechanics investigation of 2D woven Nicalon SiC/SiC and Nicalon SiC/LAS has been undertaken. An energy approach has been adopted to characterize and quantify the fracture properties of these materials. Chevron-notched bend specimens were tested in an edgewise configuration in which the crack propagated perpendicular to the ply direction. R-curves were obtained from repeated loading and unloading of specimens using several methods of data reduction. Values correconding to the plateau regions of the R-curves were taken as steady-state crack-growth resistance. These ranged from 37 to 63 kJ/sq m for 2D-SiC/LAS and 2.6 to 2.8 kJ/sq m for 2D-SiC/SiC composites.

  1. The Influence of Notch Root Radius and Austenitizing Temperature on Fracture Appearance of As-Quenched Charpy-V Type AISI4340 Steel Specimens

    NASA Astrophysics Data System (ADS)

    Firrao, D.; Begley, J. A.; Silva, G.; Roberti, R.; de Benedetti, B.

    1982-06-01

    Charpy-V type samples either step-quenched from 1200 °C or directly quenched from the usual 870 °C temperature, fractured by a slow bend test procedure, have been fractographically examined. Their notch root radius, ρ, ranged from almost zero (fatigue precrack) up to 2.0 mm. The fracture initiation process at the notch differs according to root radius and heat treatment. Conventionally austenitized samples with ρ values larger than 0.07 mm approximately ( ρ eff) always display a continuous shear lip formation along the notch surface, whereas specimens with smaller notches do not exhibit a similar feature. Moreover, shear lip width in specimens with ρ > ρ eff is linearly related to the applied J-integral at fracture. In high temperature austenitized samples similar shear lips are almost nonexistent. The above findings, as well as overall fractographic features, are combined to explain why blunt notch AISI 4340 steel specimens display a better fracture resistance if they are conventionally heat treated, whereas fatigue precracked samples show a superior fracture toughness when they are step-quenched from 1200 °C. Variations of fracture morphologies with the notch root radius and heat treating procedures are associated with a shift toward higher Charpy transition temperatures under the combined influence of decreasing root radii and coarsening of the prior austenitic grain size at high austenitizing temperatures.

  2. Measurement of the Ratio of Branching Fractions B (Bc+→J /ψ τ+ντ)/B (Bc+→J /ψ μ+νμ)

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2018-03-01

    A measurement is reported of the ratio of branching fractions R (J /ψ ) =B (Bc+→J /ψ τ+ντ)/B (Bc+→J /ψ μ+νμ) , where the τ+ lepton is identified in the decay mode τ+→μ+νμν¯τ. This analysis uses a sample of proton-proton collision data corresponding to 3.0 fb-1 of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay Bc+→J /ψ τ+ντ at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R (J /ψ ) =0.71 ±0.17 (stat ) ±0.18 (syst ) . This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.

  3. Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Hua

    2015-10-01

    Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.

  4. Plate fixation versus intramedullary fixation for midshaft clavicle fractures: Meta-analysis of complications and functional outcomes.

    PubMed

    Xiao, Hao; Gao, Hengbo; Zheng, Tuokang; Zhao, Jianhui; Tian, Yingping

    2016-04-01

    This analysis critically compares publications discussing complications and functional outcomes of plate fixation (PF) versus intramedullary fixation (IF) for midshaft clavicle fractures. Relevant studies published between January 1990 and October 2014, without language restrictions, were identified in database searches of PubMed®, Medline®, Embase and the Chinese National Knowledge Infrastructure (CNKI). Studies that compared postoperative complications and functional outcomes between PF and IF for midshaft clavicle fractures, and provided sufficient data for analysis, were included in this meta-analysis. After strict evaluation, 12 studies were included in this meta-analysis. Studies encompassed 462 participants in the PF group and 440 in the IF group. Study participants were followed up for ≥1 year. Outcomes were superior with IF compared with PF in terms of shoulder constant score at 6-month follow-up, fewer symptomatic hardware complications, lower rate of refracture after hardware removal and less hypertrophic scarring. In other aspects, such as functional recovery at 12-months and 24-months, Disability of Arm, Shoulder and Hand (DASH) questionnaire results at 12-month follow-up, shoulder motion range, rates of superficial infection, temporary brachial plexus lesion, nonunion, malunion, delayed union, implant failure and need for major revision, both techniques were similar. Findings of this meta-analysis suggest that, in many respects, IF was superior to PF for the management of midshaft clavicle fractures. This finding could aid surgeons in making decisions on the optimum internal fixation pattern for midshaft clavicular fractures. © The Author(s) 2016.

  5. The floating knee: a review on ipsilateral femoral and tibial fractures

    PubMed Central

    Muñoz Vives, Josep; Bel, Jean-Christophe; Capel Agundez, Arantxa; Chana Rodríguez, Francisco; Palomo Traver, José; Schultz-Larsen, Morten; Tosounidis, Theodoros

    2016-01-01

    In 1975, Blake and McBryde established the concept of ‘floating knee’ to describe ipsilateral fractures of the femur and tibia.1 This combination is much more than a bone lesion; the mechanism is usually a high-energy trauma in a patient with multiple injuries and a myriad of other lesions. After initial evaluation patients should be categorised, and only stable patients should undergo immediate reduction and internal fixation with the rest receiving external fixation. Definitive internal fixation of both bones yields the best results in almost all series. Nailing of both bones is the optimal fixation when both fractures (femoral and tibial) are extra-articular. Plates are the ‘standard of care’ in cases with articular fractures. A combination of implants are required by 40% of floating knees. Associated ligamentous and meniscal lesions are common, but may be irrelevant in the case of an intra-articular fracture which gives the worst prognosis for this type of lesion. Cite this article: Muñoz Vives K, Bel J-C, Capel Agundez A, Chana Rodríguez F, Palomo Traver J, Schultz-Larsen M, Tosounidis, T. The floating knee. EFORT Open Rev 2016;1:375-382. DOI: 10.1302/2058-5241.1.000042. PMID:28461916

  6. Analysis of the quantum numbers J(PC) of the X(3872) particle.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-30

    We present an analysis of angular distributions and correlations of the X(3872) particle in the exclusive decay mode X(3872)-->J/psipi+ pi- with J/psi-->mu+ mu-. We use 780 pb-1 of data from pp[over ] collisions at sqrt[s]=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We derive constraints on spin, parity, and charge conjugation parity of the X(3872) particle by comparing measured angular distributions of the decay products with predictions for different J(PC) hypotheses. The assignments J(PC)=1++ and 2-+ are the only ones consistent with the data.

  7. The Integrated Hazard Analysis Integrator

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Massie, Michael J.

    2009-01-01

    Hazard analysis addresses hazards that arise in the design, development, manufacturing, construction, facilities, transportation, operations and disposal activities associated with hardware, software, maintenance, operations and environments. An integrated hazard is an event or condition that is caused by or controlled by multiple systems, elements, or subsystems. Integrated hazard analysis (IHA) is especially daunting and ambitious for large, complex systems such as NASA s Constellation program which incorporates program, systems and element components that impact others (International Space Station, public, International Partners, etc.). An appropriate IHA should identify all hazards, causes, controls and verifications used to mitigate the risk of catastrophic loss of crew, vehicle and/or mission. Unfortunately, in the current age of increased technology dependence, there is the tendency to sometimes overlook the necessary and sufficient qualifications of the integrator, that is, the person/team that identifies the parts, analyzes the architectural structure, aligns the analysis with the program plan and then communicates/coordinates with large and small components, each contributing necessary hardware, software and/or information to prevent catastrophic loss. As viewed from both Challenger and Columbia accidents, lack of appropriate communication, management errors and lack of resources dedicated to safety were cited as major contributors to these fatalities. From the accident reports, it would appear that the organizational impact of managers, integrators and safety personnel contributes more significantly to mission success and mission failure than purely technological components. If this is so, then organizations who sincerely desire mission success must put as much effort in selecting managers and integrators as they do when designing the hardware, writing the software code and analyzing competitive proposals. This paper will discuss the necessary and

  8. Fracture Micromechanics of Intermetallic and Ceramic Matrix Continuous Fiber Composites

    DTIC Science & Technology

    1991-05-01

    mechanical properties of titanium matrix composites, but much less information has been published. Only data in the published literature is referenced in...1984, pp. 1931-1940. 18. C.J. Yang, S.M. Jeng and J.-M. Yang " Interfacial properties measurements for SiC fiber-reinforced titanium alloy composites...Analyses of these parameters allowed a determination of interfacial shear strength. Fracture mechanics was used to correlate the micromechanical

  9. Are Carotid Stent Fractures Clinically Significant?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Toca, Manuel; Rodriguez, Heron E.; Naughton, Peter A.

    2012-04-15

    Purpose: Late stent fatigue is a known complication after carotid artery stenting (CAS) for cervical carotid occlusive disease. The purpose of this study was to determine the prevalence and clinical significance of carotid stent fractures. Materials and Methods: A single-center retrospective review of 253 carotid bifurcation lesions treated with CAS and mechanical embolic protection from April 2001 to December 2009 was performed. Stent integrity was analyzed by two independent observers using multiplanar cervical plain radiographs with fractures classified into the following types: type I = single strut fracture; type II = multiple strut fractures; type III = transverse fracture; andmore » type IV = transverse fracture with dislocation. Mean follow-up was 32 months. Results: Follow-up imaging was completed on 106 self-expanding nitinol stents (26 closed-cell and 80 open-cell stents). Eight fractures (7.5%) were detected (type I n = 1, type II n = 6, and type III n = 1). Seven fractures were found in open-cell stents (Precise n = 3, ViVEXX n = 2, and Acculink n = 2), and 1 fracture was found in a closed-cell stent (Xact n = 1) (p = 0.67). Only a previous history of external beam neck irradiation was associated with fractures (p = 0.048). No associated clinical sequelae were observed among the patients with fractures, and only 1 patient had an associated significant restenosis ({>=}80%) requiring reintervention. Conclusions: Late stent fatigue after CAS is an uncommon event and rarely clinically relevant. Although cell design does not appear to influence the occurrence of fractures, lesion characteristics may be associated risk factors.« less

  10. The fracture properties and mechanical design of human fingernails.

    PubMed

    Farren, L; Shayler, S; Ennos, A R

    2004-02-01

    Fingernails are a characteristic feature of primates, and are composed of three layers of the fibrous composite keratin. This study examined the structure and fracture properties of human fingernails to determine how they resist bending forces while preventing fractures running longitudinally into the nail bed. Nail clippings were first torn manually to examine the preferred crack direction. Next, scissor cutting tests were carried out to compare the fracture toughness of central and outer areas in both the transverse and longitudinal direction. The fracture toughness of each of the three isolated layers was also measured in this way to determine their relative contributions to the toughness. Finally, the structure was examined by carrying out scanning electron microscopy of free fracture surfaces and polarized light microscopy of nail sections. When nails were torn, cracks were always diverted transversely, parallel to the free edge of the nail. Cutting tests showed that this occurred because the energy to cut nails transversely, at approximately 3 kJ m(-2), was about half that needed (approx. 6 kJ m(-2)) to cut them longitudinally. This anisotropy was imparted by the thick intermediate layer, which comprises long, narrow cells that are oriented transversely; the energy needed to cut this layer transversely was only a quarter of that needed to cut it longitudinally. In contrast the tile-like cells in the thinner dorsal and ventral layers showed isotropic behaviour. They probably act to increase the nail's bending strength, and as they wrap around the edge of the nail, they also help prevent cracks from forming. These results cast light on the mechanical behaviour and care of fingernails.

  11. Risk Factors for Open Malleolar Fractures: An Analysis of the National Trauma Data Bank (2007 to 2011).

    PubMed

    Shibuya, Naohiro; Liu, George T; Davis, Matthew L; Grossman, Jordan P; Jupiter, Daniel C

    2016-01-01

    A limited number of studies have described the epidemiology of open fractures, and the epidemiology of open ankle fractures is not an exception. Therefore, the risk factors associated with open ankle fractures have not been extensively evaluated. The frequencies and proportions of open ankle fractures among all the recorded malleolar fractures in the US National Trauma Data Bank data set from January 2007 to December 2011 were analyzed. Clinically relevant variables captured in the data set were also used to evaluate the risk factors associated with open ankle fractures, adjusting for other covariates. The entire cohort was further subdivided into "lower" and "higher" energy trauma groups and the same analysis performed for each group separately. We found that a body mass index of >40 kg/m(2) and farm location were risk factors for open ankle fractures and impaired sensorium was protective against open ankle fractures. In the "lower energy" group, male gender, alcohol use, peripheral vascular disease, other injuries, and injury occurring at a farm location were risk factors for open fractures. In the "higher energy" group, female gender, work-related injury, and injury at a farm or industry location demonstrated statistically significantly associations with open fractures. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Vertical root fractures and their management

    PubMed Central

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  13. Progressive fracture of fiber composites

    NASA Technical Reports Server (NTRS)

    Irvin, T. B.; Ginty, C. A.

    1983-01-01

    Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.

  14. Osteoporosis and fractures in HIV/hepatitis C virus coinfection: a systematic review and meta-analysis.

    PubMed

    Dong, Huan V; Cortés, Yamnia I; Shiau, Stephanie; Yin, Michael T

    2014-09-10

    There is growing evidence that fracture risk is increased in individuals with HIV and/or hepatitis C virus (HCV) infection. We systematically reviewed the literature to determine whether prevalence of osteoporosis and incidence of fracture is increased in HIV/HCV-coinfected individuals. A systematic review and meta-analysis. A search was performed of Medline, Scopus and the Cochrane Library databases, as well as of abstracts from annual retroviral, liver and bone meetings (up to 2013) for studies with bone mineral density (BMD) or bone fracture data for HIV/ HCV-coinfected individuals. Osteoporosis odds ratios (ORs) and fracture incidence rate ratios (IRRs) were estimated from studies with data on HIV-monoinfected or HIV/HCV uninfected comparison groups. Of 15 included studies, nine reported BMD data and six reported fracture data. For HIV/HCV-coinfected, the estimated osteoporosis prevalence was 22% [95% confidence interval (95% CI) 12–31] and the crude OR for osteoporosis compared with HIV-monoinfected was 1.63 (95% CI 1.27-2.11). The pooled IRR of overall fracture risk for HIV/HCV-coinfected individuals was 1.77 (95% CI 1.44-2.18) compared with HIV-monoinfected and 2.95 (95% CI 2.17-4.01) compared with uninfected individuals. In addition to HIV/HCV-coinfection, older age, lower BMI, smoking, alcohol and substance use were significant predictors of osteoporosis and fractures across studies. HIV/HCV coinfection is associated with a greater risk of osteoporosis and fracture than HIV monoinfection; fracture risk is even greater than uninfected controls. These data suggest that HIV/HCV-coinfected individuals should be targeted for fracture prevention through risk factor modification at all ages and DXA screening at age 50.

  15. AtomicJ: An open source software for analysis of force curves

    NASA Astrophysics Data System (ADS)

    Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina

    2014-06-01

    We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.

  16. 14 CFR Appendix J to Part 417 - Ground Safety Analysis Report

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...

  17. 14 CFR Appendix J to Part 417 - Ground Safety Analysis Report

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...

  18. 14 CFR Appendix J to Part 417 - Ground Safety Analysis Report

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...

  19. 14 CFR Appendix J to Part 417 - Ground Safety Analysis Report

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...

  20. 14 CFR Appendix J to Part 417 - Ground Safety Analysis Report

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...

  1. Hip fractures are risky business: an analysis of the NSQIP data.

    PubMed

    Sathiyakumar, Vasanth; Greenberg, Sarah E; Molina, Cesar S; Thakore, Rachel V; Obremskey, William T; Sethi, Manish K

    2015-04-01

    Hip fractures are one of the most common types of orthopaedic injury with high rates of morbidity. Currently, no study has compared risk factors and adverse events following the different types of hip fracture surgeries. The purpose of this paper is to investigate the major and minor adverse events and risk factors for complication development associated with five common surgeries for the treatment of hip fractures using the NSQIP database. Using the ACS-NSQIP database, complications for five forms of hip surgeries were selected and categorized into major and minor adverse events. Demographics and clinical variables were collected and an unadjusted bivariate logistic regression analyses was performed to determine significant risk factors for adverse events. Five multivariate regressions were run for each surgery as well as a combined regression analysis. A total of 9640 patients undergoing surgery for hip fracture were identified with an adverse events rate of 25.2% (n=2433). Open reduction and internal fixation of a femoral neck fracture had the greatest percentage of all major events (16.6%) and total adverse events (27.4%), whereas partial hip hemiarthroplasty had the greatest percentage of all minor events (11.6%). Mortality was the most common major adverse event (44.9-50.6%). For minor complications, urinary tract infections were the most common minor adverse event (52.7-62.6%). Significant risk factors for development of any adverse event included age, BMI, gender, race, active smoking status, history of COPD, history of CHF, ASA score, dyspnoea, and functional status, with various combinations of these factors significantly affecting complication development for the individual surgeries. Hip fractures are associated with significantly high numbers of adverse events. The type of surgery affects the type of complications developed and also has an effect on what risk factors significantly predict the development of a complication. Concerted efforts from

  2. Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria

    NASA Technical Reports Server (NTRS)

    Chow, W-T.; Wang, L.; Atluri, S. N.

    1998-01-01

    This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.

  3. Swift/XRT detection of the hard X-ray source IGR J14549-6459

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Bazzano, A.; Landi, R.; Bassani, L.; Gehrels, N.; Kennea, J.; Bird, A. J.

    2010-04-01

    We report the result of a short (900 sec) Swift/XRT observation of the field containing IGR J14549-6459, a new INTEGRAL source recently reported in the 4th IBIS catalogue (Bird et al. 2010, ApJS, 186, 1). The XRT data analysis is performed using the standard procedure described in details in Landi et al. 2010 (MNRAS, 403, 945). The XRT observation locates the X-ray counterpart of IGR J14549-6459 at RA(J2000)= 14h 55m 23.9s, Dec(J2000)= -65d 00m 03.2s with an error of 6".

  4. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  5. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    PubMed

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are

  6. Ultrasound for Distal Forearm Fracture: A Systematic Review and Diagnostic Meta-Analysis

    PubMed Central

    Douma-den Hamer, Djoke; Blanker, Marco H.; Edens, Mireille A.; Buijteweg, Lonneke N.; Boomsma, Martijn F.; van Helden, Sven H.; Mauritz, Gert-Jan

    2016-01-01

    Study Objective To determine the diagnostic accuracy of ultrasound for detecting distal forearm fractures. Methods A systematic review and diagnostic meta-analysis was performed according to the PRISMA statement. We searched MEDLINE, Web of Science and the Cochrane Library from inception to September 2015. All prospective studies of the diagnostic accuracy of ultrasound versus radiography as the reference standard were included. We excluded studies with a retrospective design and those with evidence of verification bias. We assessed the methodological quality of the included studies with the QUADAS-2 tool. We performed a meta-analysis of studies evaluating ultrasound to calculate the pooled sensitivity and specificity with 95% confidence intervals (CI95%) using a bivariate model with random effects. Subgroup and sensitivity analysis were used to examine the effect of methodological differences and other study characteristics. Results Out of 867 publications we included 16 studies with 1,204 patients and 641 fractures. The pooled test characteristics for ultrasound were: sensitivity 97% (CI95% 93–99%), specificity 95% (CI95% 89–98%), positive likelihood ratio (LR) 20.0 (8.5–47.2) and negative LR 0.03 (0.01–0.08). The corresponding pooled diagnostic odds ratio (DOR) was 667 (142–3,133). Apparent differences were shown for method of viewing, with the 6-view method showing higher specificity, positive LR, and DOR, compared to the 4-view method. Conclusion The present meta-analysis showed that ultrasound has a high accuracy for the diagnosis of distal forearm fractures in children when used by proper viewing method. Based on this, ultrasound should be considered a reliable alternative, which has the advantages of being radiation free. PMID:27196439

  7. The Effect of fluid buoyancy and fracture orientation on CaCO3 Formation in a Fracture

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Li, Q.; Sheets, J.; Kneafsey, T. J.; Jun, Y. S.; Cole, D. R.; Pyrak-Nolte, L. J.

    2016-12-01

    Sealing fractures through mineral precipitation is a potential way for improving caprock integrity in subsurface reservoirs. We investigated the effect of buoyancy and fracture orientation on the amount and spatial distribution of calcium carbonate (CaCO3) precipitates in a fracture. To monitor mineral precipitation during reactive flow, transparent acrylic casts of an induced fracture in Austin chalk were used. To trigger CaCO3 precipitates, 1M CaCl2 with either 0.6M NaHCO3 solution (for surface adhering precipitation), or 0.3M Na2CO3 solution (for pore filling precipitation) were injected simultaneously into a saturated fracture. Experiments were performed with the fracture plane oriented either parallel or perpendicular to gravity. Acoustic wave transmission (compressional wave, 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. For the vertical fractures, the denser CaCl2 almost completely displaced the carbonate solution in the fracture and caused strong localization of the precipitates. The width of the precipitated region grew slowly over time. The horizontal fracture caused the less dense carbonate to flow over the CaCl2 solution thus resulting in more mixing and a more even distribution of precipitates throughout the fracture. The acoustic signatures depended on the type of precipitation that occurred. For pore filling experiments, the compressional wave amplitude increased by 5-20% and the velocity increased for both the vertical and horizontal fractures. However, the acoustic responses differed between the vertical and horizontal fractures for surface adhering experiments. Based on the acoustic response, surface adhering precipitation increased fracture specific stiffness more in the horizontal fracture than in the vertical fracture. The horizontal

  8. Fracture Forces of Dentin after Surface Treatment with High Speed Drill Compared to Er:YAG and Er,Cr:YSGG Laser Irradiation

    PubMed Central

    Franzen, Rene; Kianimanesh, Nasrin; Marx, Rudolf; Ahmed, Asma; Gutknecht, Norbert

    2016-01-01

    Dental tooth restorative procedures may weaken the structural integrity of the tooth, with the possibility of leading to fracture. In this study we present findings of coronal dentin strength after different techniques of surface modification. The fracture strength of dentin beams after superficial material removal with a fine diamond bur high speed drill hand piece, Er:YAG (2.94 μm, 8 J/cm2), and Er,Cr:YSGG (2.78 μm, 7.8 J/cm2) laser irradiation slightly above the ablation threshold was measured by a four-point bending apparatus. Untreated dentin beams served as a control. A total of 58 dentin beams were manufactured from sterilized human extracted molars using the coronal part of the available dentin. Mean values of fracture strength were calculated as 82.0 ± 27.3 MPa for the control group (n = 10), 104.5 ± 26.3 MPa for high speed drill treatment (n = 10), 96.1 ± 28.1 MPa for Er,Cr:YSGG laser irradiation (n = 20), and 89.1 ± 36.3 MPa for Er:YAG laser irradiation (n = 18). Independent Student's t-tests showed no significant difference between each two groups (p > 0.05). Within the parameter settings and the limits of the experimental setup used in this study, both lasers systems as well as the high speed drill do not significantly weaken coronal dentin after surface treatment. PMID:26962473

  9. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    PubMed Central

    Joseph, Olufunmilayo O.; Loto, Cleophas A.; Sivaprasad, Seetharaman; Ajayi, John A.; Tarafder, Soumitra

    2016-01-01

    In this study, micro-alloyed steel (MAS) material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE) environment and its degradation mechanism in the presence of sodium chloride (NaCl) was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness. PMID:28773601

  10. Retrospective analysis of two hundred thirty-five pediatric mandibular fracture cases.

    PubMed

    Eskitascioglu, Teoman; Ozyazgan, Irfan; Coruh, Atilla; Gunay, Galip K; Yuksel, Esabil

    2009-11-01

    Maxillofacial fractures are encountered less commonly during childhood period due to anatomic, social, cultural, and environmental factors. Although the incidence of all maxillofacial fractures is 1% to 15% among pediatric and adolescent patients, this rate drops to less than 1% in children below 5 years age. Two hundred thirty-five cases (fracture were evaluated retrospectively. Patients records were examined in terms of age, gender, cause of fracture, fracture localization, number of fractures, fracture pattern, accompanying injuries, applied treatment methods, and complications. Mean age of cases was 9.2 years and 165 cases were male, 70 were female. Traffic accidents as the most common etiologic cause in all ages. Falls is the second most common cause which particularly affects children above age of 2 years. All cases had 333 fractures and the most common fracture localization was parasymphysis region (34%). The other most common fracture localizations were as follows: condyle (19%), corpus (13%), dentoalveolar region (12%), angulus (11%), symphysis region (9%), and ramus (2%). There was only a single fracture line in 145 cases, 40 cases had unilateral multiple and 50 cases had bilateral fracture lines. We applied symptomatic (conservative) treatment in 20 (8%) of our cases; fracture fixation with interdental wires or closed reduction methods were employed in 122 patients. Internal fixation with open reduction (OR) was performed on 51 (22%) patients. Both closed and OR techniques were carried out in 30 (13%) patients. Pediatric mandibular fractures, which are seen less frequently compared with those of adults, require a specific and different treatment. Although mostly less invasive methods are preferred, we believe that ORs should be considered when required.

  11. Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes

    PubMed Central

    Bais, Manish; McLean, Jody; Sebastiani, Paola; Young, Megan; Wigner, Nathan; Smith, Temple; Kotton, Darrell N.; Einhorn, Thomas A.; Gerstenfeld, Louis C.

    2009-01-01

    Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture

  12. Slide Set: Reproducible image analysis and batch processing with ImageJ.

    PubMed

    Nanes, Benjamin A

    2015-11-01

    Most imaging studies in the biological sciences rely on analyses that are relatively simple. However, manual repetition of analysis tasks across multiple regions in many images can complicate even the simplest analysis, making record keeping difficult, increasing the potential for error, and limiting reproducibility. While fully automated solutions are necessary for very large data sets, they are sometimes impractical for the small- and medium-sized data sets common in biology. Here we present the Slide Set plugin for ImageJ, which provides a framework for reproducible image analysis and batch processing. Slide Set organizes data into tables, associating image files with regions of interest and other relevant information. Analysis commands are automatically repeated over each image in the data set, and multiple commands can be chained together for more complex analysis tasks. All analysis parameters are saved, ensuring transparency and reproducibility. Slide Set includes a variety of built-in analysis commands and can be easily extended to automate other ImageJ plugins, reducing the manual repetition of image analysis without the set-up effort or programming expertise required for a fully automated solution.

  13. Three-dimensional computer simulation of radiostereometric analysis (RSA) in distal radius fractures.

    PubMed

    Madanat, Rami; Moritz, Niko; Aro, Hannu T

    2007-01-01

    Physical phantom models have conventionally been used to determine the accuracy and precision of radiostereometric analysis (RSA) in various orthopaedic applications. Using a phantom model of a fracture of the distal radius it has previously been shown that RSA is a highly accurate and precise method for measuring both translation and rotation in three-dimensions (3-D). The main shortcoming of a physical phantom model is its inability to mimic complex 3-D motion. The goal of this study was to create a realistic computer model for preoperative planning of RSA studies and to test the accuracy of RSA in measuring complex movements in fractures of the distal radius using this new model. The 3-D computer model was created from a set of tomographic scans. The simulation of the radiographic imaging was performed using ray-tracing software (POV-Ray). RSA measurements were performed according to standard protocol. Using a two-part fracture model (AO/ASIF type A2), it was found that for simple movements in one axis, translations in the range of 25microm-2mm could be measured with an accuracy of +/-2microm. Rotations ranging from 16 degrees to 2 degrees could be measured with an accuracy of +/-0.015 degrees . Using a three-part fracture model the corresponding values of accuracy were found to be +/-4microm and +/-0.031 degrees for translation and rotation, respectively. For complex 3-D motion in a three-part fracture model (AO/ASIF type C1) the accuracy was +/-6microm for translation and +/-0.120 degrees for rotation. The use of 3-D computer modelling can provide a method for preoperative planning of RSA studies in complex fractures of the distal radius and in other clinical situations in which the RSA method is applicable.

  14. Predictive value of clinical scoring and simplified gait analysis for acetabulum fractures.

    PubMed

    Braun, Benedikt J; Wrona, Julian; Veith, Nils T; Rollman, Mika; Orth, Marcel; Herath, Steven C; Holstein, Jörg H; Pohlemann, Tim

    2016-12-01

    Fractures of the acetabulum show a high, long-term complication rate. The aim of the present study was to determine the predictive value of clinical scoring and standardized, simplified gait analysis on the outcome after these fractures. Forty-one patients with acetabular fractures treated between 2008 and 2013 and available, standardized video recorded aftercare were identified from a prospective database. A visual gait score was used to determine the patients walking abilities 6-m postoperatively. Clinical (Merle d'Aubigne and Postel score, visual analogue scale pain, EQ5d) and radiological scoring (Kellgren-Lawrence score, postoperative computed tomography, and Matta classification) were used to perform correlation and multivariate regression analysis. The average patient age was 48 y (range, 15-82 y), six female patients were included in the study. Mean follow-up was 1.6 y (range, 1-2 y). Moderate correlation between the gait score and outcome (versus EQ5d: r s  = 0.477; versus Merle d'Aubigne: r s  = 0.444; versus Kellgren-Lawrence: r s  = -0.533), as well as high correlation between the Merle d'Aubigne score and outcome were seen (versus EQ5d: r s  = 0.575; versus Merle d'Aubigne: r s  = 0.776; versus Kellgren-Lawrence: r s  = -0.419). Using a multivariate regression model, the 6 m gait score (B = -0.299; P < 0.05) and early osteoarthritis development (B = 1.026; P < 0.05) were determined as predictors of final osteoarthritis. A good fit of the regression model was seen (R 2  = 904). Easy and available clinical scoring (gait score/Merle d'Aubigne) can predict short-term radiological and functional outcome after acetabular fractures with sufficient accuracy. Decisions on further treatment and interventions could be based on simplified gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Hydraulic fracture and resilience of epithelial monolayers under stretch

    NASA Astrophysics Data System (ADS)

    Arroyo, Marino; Lucantonio, Alessandro; Noselli, Giovanni; Casares, Laura; Desimone, Antonio; Trepat, Xavier

    Epithelial monolayers are very simple and prevalent tissues. Their functions include delimiting distinct physicochemical containers and protecting us from pathogens. Epithelial fracture disrupts the mechanical integrity of this barrier, and hence compromises these functions. Here, we show that in addition to the conventional fracture resulting from excessive tissue tension, epithelia can hydraulically fracture under stretch as a result of the poroelastic nature of the matrix. We will provide experimental evidence of this counterintuitive mechanism of fracture, in which cracks appear under compression. Intriguingly, unlike tensional fracture, which is localized and catastrophic, hydraulic epithelial fracture is distributed and reversible. We will also describe the active mechanisms responsible for crack healing, and the physical principles by which the poroelastic matrix contributes to this resilient behavior.

  16. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis

    PubMed Central

    Moayeri, Ardeshir; Mohamadpour, Mahmoud; Mousavi, Seyedeh Fatemeh; Shirzadpour, Ehsan; Mohamadpour, Safoura; Amraei, Mansour

    2017-01-01

    Aim Patients with type 2 diabetes mellitus (T2DM) have an increased risk of bone fractures. A variable increase in fracture risk has been reported depending on skeletal site, diabetes duration, study design, insulin use, and so on. The present meta-analysis aimed to investigate the association between T2DM with fracture risk and possible risk factors. Methods Different databases including PubMed, Institute for Scientific Information, and Scopus were searched up to May 2016. All epidemiologic studies on the association between T2DM and fracture risk were included. The relevant data obtained from these papers were analyzed by a random effects model and publication bias was assessed by funnel plot. All analyses were done by R software (version 3.2.1) and STATA (version 11.1). Results Thirty eligible studies were selected for the meta-analysis. We found a statistically significant positive association between T2DM and hip, vertebral, or foot fractures and no association between T2DM and wrist, proximal humerus, or ankle fractures. Overall, T2DM was associated with an increased risk of any fracture (summary relative risk =1.05, 95% confidence interval: 1.04, 1.06) and increased with age, duration of diabetes, and insulin therapy. Conclusion Our findings strongly support an association between T2DM and increased risk of overall fracture. These findings emphasize the need for fracture prevention strategies in patients with diabetes. PMID:28442913

  17. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs

    PubMed Central

    Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM. PMID:29621295

  18. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.

    PubMed

    Zhang, Fan; Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM.

  19. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces

  20. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  1. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  2. Direct Observations of Fracture and the Damage Mechanics of Ceramics

    DTIC Science & Technology

    1988-10-31

    microplasticity up to the fracture load. d. It shculd have low enough strength in tension and compression to enable strength measurements at easily accessible...15jm. SEM examination of the grains after large amounts of deformation indicated that the grains are brittle without any evidence of microplasticity . In...and microplasticity in polycrystalline alumina", J.Mater.Sci., 12(1977)791-796. 93. J Lankford, "Compressive microfracture and indentation damage in A1

  3. Duplex stainless steel fracture surface analysis using X-ray fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajanna, K.; Pathiraj, B.; Kolster, B.H.

    1997-02-01

    The fatigue fracture surface of a duplex stainless steel was analyzed using x-ray fractography. A lower than average austenite content was observed at the fracture surface due to the transformation of austenite into deformation-induced martensite. The influence of fatigue cycling on the transformation was confined to a depth of about 30 {micro}m below the fracture surface. X-ray analyses of both the ferrite-martensite and the austenite phases indicated residual stresses ({sigma}{sub r}) increasing with depth from the fracture surface and reaching a maximum some tens of microns below the fracture surface. The lower {sigma}{sub r} observed at the fracture surface hasmore » been attributed to the stress relaxation effects caused by the new fracture surfaces created in the crack growth process. The observed decrease in full width at half maximum (FWHM) in the ferrite-martensite phase was presumed to be due to the dynamic recovery effect that was likely to occur within the material close to the crack tip as a consequence of fatigue cycling.« less

  4. An Equivalent Fracture Modeling Method

    NASA Astrophysics Data System (ADS)

    Li, Shaohua; Zhang, Shujuan; Yu, Gaoming; Xu, Aiyun

    2017-12-01

    3D fracture network model is built based on discrete fracture surfaces, which are simulated based on fracture length, dip, aperture, height and so on. The interesting area of Wumishan Formation of Renqiu buried hill reservoir is about 57 square kilometer and the thickness of target strata is more than 2000 meters. In addition with great fracture density, the fracture simulation and upscaling of discrete fracture network model of Wumishan Formation are very intense computing. In order to solve this problem, a method of equivalent fracture modeling is proposed. First of all, taking the fracture interpretation data obtained from imaging logging and conventional logging as the basic data, establish the reservoir level model, and then under the constraint of reservoir level model, take fault distance analysis model as the second variable, establish fracture density model by Sequential Gaussian Simulation method. Increasing the width, height and length of fracture, at the same time decreasing its density in order to keep the similar porosity and permeability after upscaling discrete fracture network model. In this way, the fracture model of whole interesting area can be built within an accepted time.

  5. Analysis of Fractured Teeth Utilizing Digital Microscopy: A Pilot Study

    DTIC Science & Technology

    2016-06-01

    ANALYSIS OF FRACTURED TEETH UTILIZING DIGITAL MICROSCOPY: A PILOT STUDY by Thomas Gene Cooper, D.M.D., M.P.H. Lieutenant Commander, Dental Corps...United States Navy A thesis submitted to the Faculty of the Endodontic Graduate Program Naval Postgraduate Dental School Uniformed Services...Postgraduate Dental School Uniformed Services University of the Health Sciences Bethesda, Maryland CERTIFICATE OF APPROVAL MASTER’S THESIS This is to

  6. Plate fixation versus intramedullary fixation for midshaft clavicle fractures: Meta-analysis of complications and functional outcomes

    PubMed Central

    Xiao, Hao; Gao, Hengbo; Zheng, Tuokang; Zhao, Jianhui

    2016-01-01

    Objective This analysis critically compares publications discussing complications and functional outcomes of plate fixation (PF) versus intramedullary fixation (IF) for midshaft clavicle fractures. Methods Relevant studies published between January 1990 and October 2014, without language restrictions, were identified in database searches of PubMed®, Medline®, Embase and the Chinese National Knowledge Infrastructure (CNKI). Studies that compared postoperative complications and functional outcomes between PF and IF for midshaft clavicle fractures, and provided sufficient data for analysis, were included in this meta-analysis. Results After strict evaluation, 12 studies were included in this meta-analysis. Studies encompassed 462 participants in the PF group and 440 in the IF group. Study participants were followed up for ≥1 year. Outcomes were superior with IF compared with PF in terms of shoulder constant score at 6-month follow-up, fewer symptomatic hardware complications, lower rate of refracture after hardware removal and less hypertrophic scarring. In other aspects, such as functional recovery at 12-months and 24-months, Disability of Arm, Shoulder and Hand (DASH) questionnaire results at 12-month follow-up, shoulder motion range, rates of superficial infection, temporary brachial plexus lesion, nonunion, malunion, delayed union, implant failure and need for major revision, both techniques were similar. Conclusions Findings of this meta-analysis suggest that, in many respects, IF was superior to PF for the management of midshaft clavicle fractures. This finding could aid surgeons in making decisions on the optimum internal fixation pattern for midshaft clavicular fractures. PMID:26880791

  7. [Minimally invasive percutaneous plate osteosynthesis versus open reduction and internal fixation for distal tibial fractures in adults: a meta-analysis].

    PubMed

    Zhang, Qing-xi; Gao, Fu-qiang; Sun, Wei; Wang, Yun-ting; Yang, Yu-run; Li, Zirong

    2015-08-01

    To perform a meta-analysis on clinical outcomes of minimally invasive percutaneous plate osteosynthesis (MIPPO) or open reduction and internal fixation (ORIF) for distal tibial fractures in adults. Pubmed database (from 1968 to March 2014), Cochrane library and CNKI database (from 1998 to March 2014) were searched. Case-control study on minimally invasive percutaneous plate osteosynthesis (MIPPO) or open reduction and internal fixation (ORIF) for distal tibial fractures in adults were chosen,and postoperative infection, operative time, blood loss, fracture nonunion rate, delayed union,fracture malunion rate were seen as evaluation index for meta analysis. The system review was performed using the method recommended by the Cochrane Collaboration. Totally 5 studies (366 patients) were enrolled. Meta-analysis showed that there were significant meaning in postoperative infection between MIPPO and ORIF [OR = 0.23,95% CI (0.06,0.92), P = 0.04]; fracture nonunion rate in MIPPO was lower than in ORIF group [OR = 0.16, 95% CI (0.03,0.76), P = 0.02]; operative time in MIPPO was shorter than in ORIF group, and had significant difference [MD = -14.42, 95% CI (-27.79, -1.05), P < 0.05]; blood loss in MIPPO was less than in ORIF group [MD= -87.17,95%CI (-99.20, -75.15), P < 0.05]; there was no obviously meaning in delayed union between two groups. For distal tibial fractures in adults, MIPPO has, advantages of short operative time, less blood loss, lower incidence of infection and fracture non-uniom, but with high fracture malunion rate. MIPPO for distal tibial fractures in adults is better than ORIF, and the best treatment should choose according to patient's condition.

  8. Post-injection Multiphase Flow Modeling and Risk Assessments for Subsurface CO2 Storage in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2015-12-01

    Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant

  9. Crack instability analysis methods for leak-before-break program in piping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattar Neto, M.; Maneschy, E.; Nobrega, P.G.B. da

    1995-11-01

    The instability evaluation of cracks in piping systems is a step that is considered when a high-energy line is investigated in a leak-before-break (LBB) program. Different approaches have been used to assess stability of cracks: (a) local flow stress (LFS); (b) limit load (LL); (c) elastic-plastic fracture mechanics (EPFM) as J-integral versus tearing modulus (J-T) analysis. The first two methods are used for high ductile materials, when it is assumed that remaining ligament of the cracked pipe section becomes fully plastic prior to crack extension. EPFM is considered for low ductile piping when the material reaches unstable ductile tearing priormore » to plastic collapse in the net section. In this paper the LFS, LL and EPFM J-T methodologies were applied to calculate failure loads in circumferential through-wall cracked pipes with different materials, geometries and loads. It presents a comparison among the results obtained from the above three formulations and also compares them with experimental data available in the literature.« less

  10. Calcium plus vitamin D supplementation and risk of fractures: an updated meta analysis from the National Osteoporosis Foundation

    USDA-ARS?s Scientific Manuscript database

    Introduction: Calcium plus vitamin D supplementation has been widely recommended to prevent osteoporosis and subsequent fractures; however, considerable controversy exists regarding the association of such supplementation and fracture risk. The aim was to conduct a meta-analysis of randomized contr...

  11. Association of lactase 13910 C/T polymorphism with bone mineral density and fracture risk: a meta-analysis.

    PubMed

    Wu, Yougen; Li, Yinghua; Cui, Yunqing; Zhou, Yunjiao; Qian, Qingqing; Hong, Yang

    2017-12-01

    A number of studies have investigated the association of lactase (LCT,C/T-13910) gene polymorphismwith bonemineral density (BMD) and fracture risk, but previous results were inconclusive. In this study, a meta-analysis was performed to quantify the association of LCT (C/T-13910) polymorphism with BMD and fracture risk. Eligible publications were searched in the PubMed, Web of Science, Embase databases, Google Scholar, Yahoo and Baidu. Pooled weighed mean difference (WMD) or odds ratio (OR) with their 95% confidence interval (CI) were calculated using a fixed-effects or random-effects model. A total of nine articles with 8871 subjects were investigated in the presentmeta-analysis. Overall, the TT/TC genotypes of LCT 13910 C/T polymorphism showed significantly higher BMD than those with the CC genotype at femur neck (FN) (WMD = 0.011 g/cm 2 , 95% CI = 0.004-0.018, P = 0.003). Besides, LCT 13910 C/T polymorphism may decrease the risk of any site fractures (for TT versus TC+CC, OR = 0.813, 95% CI = 0.704-0.938, P = 0.005; for T allele versus C allele, OR = 0.885, 95% CI = 0.792-0.989, P = 0.032). However, there was no significant association of LCT 13910 C/T polymorphism with BMD at lumbar spine and risk of vertebral fractures under all genetic contrast models (all P values were >0.05). The meta-analysis suggests that there are significant effects of LCT 13910 C/T polymorphism on BMD and fracture risk. Large-scale studies with different ethnic populations will be needed to further investigate the possible race-specific effect of LCT 13910 C/T polymorphism on BMD and fracture risk.

  12. Infrared monitoring of hydrothermal echanges occurring in a fracture

    NASA Astrophysics Data System (ADS)

    Neuville, Amélie; Flekkøy, Eirik; Galland, Olivier; Gundersen, Olav; Jørgen Måløy, Knut

    2014-05-01

    temperature variations with the topography. Preliminary comparisons with simulations from a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three-dimensions are also presented. N. Heuer, T. Küpper and D. Windelberg, Mathematical model of a Hot Dry Rock system, Geophys. J. Int. 105, 659-664 (1991). O. Kolditz and C. Clauser, Numerical simulation of flow and heat transefer in fractured cristalline rocks: application to the hot dry rock site in Rosemanowes (U.K.), Geothermics, 27, 1, p 1-23, (1998). MicMac, IGN: sofware developed by the French Institut Géographique National (IGN) A. Neuville, R. Toussaint, and J. Schmittbuhl, Hydro-thermal flows in a self-affine rough fracture, Phys. Rev. E, 82, 036,317, (2010). A. Neuville, E.G. Flekkøy, R. Toussaint, Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study. Journal of Geophysical Research, 118, 7, 3394-3407, (2013).

  13. FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto E.; Cornwell, David G.; Farrell, Natalie J. C.; Watkins, Hannah; Timms, Nick E.; Gomez-Rivas, Enrique; Smith, Michael

    2017-02-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, and spatial distributions often exhibit some kind of order. In detail, relationships may exist among the different fracture attributes, e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture attributes and patterns. This paper describes FracPaQ, a new open source, cross-platform toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on previously published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales, rock types and tectonic settings. The implemented methods presented are inherently scale independent, and a key task where applicable is analysing and integrating quantitative fracture pattern data from micro-to macro-scales. The toolbox was developed in MATLAB™ and the source code is publicly available on GitHub™ and the Mathworks™ FileExchange. The code runs on any computer with MATLAB installed, including PCs with Microsoft Windows, Apple Macs with Mac OS X, and machines running different flavours of Linux. The application, source code and sample input files are available in open repositories in the hope that other developers and researchers will optimise and extend the

  14. Onset of density-driven instabilities in fractured aquifers

    NASA Astrophysics Data System (ADS)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  15. Dissolution of cemented fractures in gas bearing shales in the context of CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Szymczak, Piotr

    2016-04-01

    varying from 0.2 x 0.2 m2 up to 4 x 4 m2, together with discussion of a further upscaling, make the study relevant to the industrial applications. While the results of this study should be applicable to different shale formations throughout the world, we discuss them in the context of preparation to gas-production from Pomeranian shale basin, located in the northern Poland. [1] Mosher, K., He, J., Liu, Y., Rupp, E., & Wilcox, J. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. International Journal of Coal Geology, 109, 36-44 (2013) [2] Grieser, W. V., Wheaton, W. E., Magness, W. D., Blauch, M. E., & Loghry, R, "Surface Reactive Fluid's Effect on Shale." Proceedings of the Production and Operations Symposium, 31 March-3 April 2007, Oklahoma City (SPE-106815-MS) [3] Tao, Z. and Clarens, A., Estimating the carbon sequestration capacity of shale formations using methane production rates, Environmental Science and Technology, 47, 11318-11325 (2013). [4] Zhang, X., Jeffrey, R. G., & Thiercelin, M. (2009). Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. Journal of Geophysical Research: Solid Earth, 114, B12406 (2009) [5] Gale, J.F., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A. Natural fractures in shale: A review and new observations. AAPG Bulletin 98(11):2165-2216 (2014)

  16. Mineralogical and microstructural investigations of fractures in Permian z2 potash seam and surrounding salt rocks

    NASA Astrophysics Data System (ADS)

    Mertineit, Michael; Grewe, Wiebke; Schramm, Michael; Hammer, Jörg; Blanke, Hartmut; Patzschke, Mario

    2017-04-01

    Fractures occur locally in the z2 potash seam (Kaliflöz Staßfurt). Most of them extend several centimeter to meter into the surrounding salt rocks. The fractures are distributed on all levels in an extremely deformed area of the Morsleben salt mine, Northern Germany. The sampling site is located within a NW-SE trending synclinal structure, which was reverse folded (Behlau & Mingerzahn 2001). The samples were taken between the -195 m and - 305 m level at the field of Marie shaft. In this area, more than 200 healed fractures were mapped. Most of them show opening widths of only a few millimeters to rarely 10 cm. The fractures in rock salt are filled with basically polyhalite, halite and carnallite. In the potash seam, the fractures are filled with kainite, halite and minor amounts of carnallite and polyhalite. In some cases the fracture infill changes depending on the type of surrounding rocks. There are two dominant orientations of the fractures, which can be interpreted as a conjugated system. The main orientation is NE-SW trending, the dip angles are steep (ca. 70°, dip direction NW and SE, respectively). Subsequent deformation of the filled fractures is documented by a strong grain shape fabric of kainite, undulatory extinction and subgrain formation in kainite, and several mineral transformations. Subgrain formation in halite occurred in both, the fracture infill and the surrounding salt rocks. The results correlate in parts with investigations which were carried out at the close-by rock salt mine Braunschweig-Lüneburg (Horn et al. 2016). The development of the fractures occurred during compression of clayey salt rocks. However, the results are only partly comparable due to different properties (composition, impurities) of the investigated stratigraphic units. Further investigations will focus on detailed microstructural and geochemical analyses of the fracture infill and surrounding salt rocks. Age dating of suitable minerals, e.g. polyhalite (Leitner et al

  17. Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.

    1986-01-01

    The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.

  18. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  19. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    PubMed

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  20. Percolation and permeability of heterogeneous fracture networks

    NASA Astrophysics Data System (ADS)

    Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François

    2013-04-01

    for transmissivity are presented. A simple parallel flow model is introduced. The flow properties of the medium vary with the distance z from the wall. However, the macroscopic pressure gradient does not depend on z, and the flow lines are in average parallel to the wall. Hence, the overall transmissivity is tentatively estimated by a parallel flow model, where a layer at depth z behaves as a fractured medium with uniform properties corresponding to the state at this position in the medium. It yields an explicit analytical expression for the transmissivity as a function of the heterogeneity and anisotropy parameters, and it successfully accounts for all the numerical data. Graphical tools are provided from which first estimates can be quickly and easily obtained. A short overview of the second class of heterogeneous media will be given. [1] Barton C.A., Zoback M.D., J. Geophys. Res., 97B, 5181-5200 (1992). [2] Bossart P. et al, Eng. Geol., vol. 66, 19-38 (2002). [3] Thovert J.-F. et al, Eng. Geol., 117, 39-51 (2011). [4] Adler P.M. et al, Fractured porous media, Oxford U. Press, 2012.

  1. Survival times of patients with a first hip fracture with and without subsequent major long-bone fractures.

    PubMed

    Angthong, Chayanin; Angthong, Wirana; Harnroongroj, Thos; Naito, Masatoshi; Harnroongroj, Thossart

    2013-01-01

    Survival rates are poorer after a second hip fracture than after a first hip fracture. Previous survival studies have included in-hospital mortality. Excluding in-hospital deaths from the analysis allows survival times to be evaluated in community-based patients. There is still a lack of data regarding the effects of subsequent fractures on survival times after hospital discharge following an initial hip fracture. This study compared the survival times of community-dwelling patients with hip fracture who had or did not have a subsequent major long-bone fracture. Hazard ratios and risk factors for subsequent fractures and mortality rates with and without subsequent fractures were calculated. Of 844 patients with hip fracture from 2000 through 2008, 71 had a subsequent major long-bone fracture and 773 did not. Patients who died of other causes, such as perioperative complications, during hospitalization were excluded. Such exclusion allowed us to determine the effect of subsequent fracture on the survival of community-dwelling individuals after hospital discharge or after the time of the fracture if they did not need hospitalization. Demographic data, causes of death, and mortality rates were recorded. Differences in mortality rates between the patient groups and hazard ratios were calculated. Mortality rates during the first year and from 1 to 5 years after the most recent fracture were 5.6% and 1.4%, respectively, in patients with subsequent fractures, and 4.7% and 1.4%, respectively, in patients without subsequent fractures. These rates did not differ significantly between the groups. Cox regression analysis and calculation of hazard ratios did not show significant differences between patients with subsequent fractures and those without. On univariate and multivariate analyses, age <75 years and male sex were risk factors for subsequent fracture. This study found that survival times did not differ significantly between patients with and without subsequent major

  2. Geometric Analysis of Vein Fracture Networks From the Awibengkok Core, Indonesia

    NASA Astrophysics Data System (ADS)

    Khatwa, A.; Bruhn, R. L.; Brown, S. R.

    2003-12-01

    Fracture network systems within rocks are important features for the transportation and remediation of hazardous waste, oil and gas production, geothermal energy extraction and the formation of vein fillings and ore deposits. A variety of methods, including computational and laboratory modeling have been employed to further understand the dynamic nature of fractures and fracture systems (e.g. Ebel and Brown, this session). To substantiate these studies, it is also necessary to analyze the characteristics and morphology of naturally occurring vein systems. The Awibengkok core from a geothermal system in West Java, Indonesia provided an excellent opportunity to study geometric and petrologic characteristics of vein systems in volcanic rock. Vein minerals included chlorite, calcite, quartz, zeolites and sulphides. To obtain geometric data on the veins, we employed a neural net image processing technique to analyze high-resolution digital photography of the veins. We trained a neural net processor to map the extent of the vein using RGB pixel training classes. The resulting classification image was then converted to a binary image file and processed through a MatLab program that we designed to calculate vein geometric statistics, including aperture and roughness. We also performed detailed petrographic and microscopic geometric analysis on the veins to determine the history of mineralization and fracturing. We found that multi-phase mineralization due to chemical dissolution and re-precipitation as well as mechanical fracturing was a common feature in many of the veins and that it had a significant role for interpreting vein tortuosity and history of permeability. We used our micro- and macro-scale observations to construct four hypothetical permeability models that compliment the numerical and laboratory modeled data reported by Ebel and Brown. In each model, permeability changes, and in most cases fluctuates, differently over time as the tortuosity and aperture of

  3. Review of literature of radial nerve injuries associated with humeral fractures-an integrated management strategy.

    PubMed

    Li, YuLin; Ning, GuangZhi; Wu, Qiang; Wu, QiuLi; Li, Yan; Feng, ShiQing

    2013-01-01

    Radial nerve palsy associated with fractures of the shaft of the humerus is the most common nerve lesion complicating fractures of long bones. However, the management of radial nerve injuries associated with humeral fractures is debatable. There was no consensus between observation and early exploration. The PubMed, Embase, Cochrane Central Register of Controlled Trials, Google Scholar, CINAHL, International Bibliography of the Social Sciences, and Social Sciences Citation Index were searched. Two authors independently searched for relevant studies in any language from 1966 to Jan 2013. Thirty studies with 2952 humeral fractures participants were identified. Thirteen studies favored conservative strategy. No significant difference between early exploration and no exploration groups (OR, 1.03, 95% CI 0.61, 1.72; I(2) = 0.0%, p = 0.918 n.s.). Three studies recommend early radial nerve exploration in patients with open fractures of humerus with radial nerve injury. Five studies proposed early exploration was performed in high-energy humeral shaft fractures with radial nerve injury. The conservative strategy was a good choice for patients with low-energy closed fractures of humerus with radial nerve injury. We recommend early radial nerve exploration (within the first 2 weeks) in patients with open fractures or high-energy closed fractures of humerus with radial nerve injury.

  4. Analysis of the fractures of metallic materials using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hutiu, Gh.; Duma, V.-F.; Demian, D.; Bradu, A.; Podoleanu, A. Gh.

    2017-06-01

    Forensic in situ investigations, for example for aviation, maritime, road, or rail accidents would benefit from a method that may allow to distinguish ductile from brittle fractures of metals - as material defects are one of the potential causes of such accidents. Currently, the gold standard in material studies is represented by scanning electron microscopy (SEM). However, SEM are large, lab-based systems, therefore in situ measurements are excluded. In addition, they are expensive and time-consuming. We have approached this problem and propose the use of Optical Coherence Tomography (OCT) in such investigations in order to overcome these disadvantages of SEM. In this respect, we demonstrate the capability to perform such fracture analysis by obtaining the topography of metallic surfaces using OCT. Different materials have been analyzed; in this presentation a sample of low soft carbon steel with the chemical composition of C 0.2%, Mn 1.15%, S 0.04%, P 0.05 % and Fe for the rest has been considered. An in-house developed Swept Source (SS) OCT system has been used, and height profiles have been generated for the sample surface. This profile allowed for concluding that the carbon steel sample was subjected to a ductile fracture. A validation of the OCT images obtained with a 10 microns resolution has been made with SEM images obtained with a 4 nm resolution. Although the OCT resolution is much lower than the one of SEM, we thus demonstrate that it is sufficient in order to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures. This study analysis opens avenues for a range of applications, including: (i) to determine the causes that have generated pipe ruptures, or structural failures of metallic bridges and buildings, as well as damages of machinery parts; (ii) to optimize the design of various machinery; (iii) to obtain data regarding the structure of metallic alloys); (iv) to improve the

  5. Influence of Microstructural Disorder and Wavefield in Dynamic Fracture

    NASA Astrophysics Data System (ADS)

    Alizee, D.; Bonamy, D.

    2017-12-01

    Dynamic fracture and its instabilities have been widely studied but the influence of the finite sample size and subsequent 3D aspects are generally neglected. However, a sample of a few centimeter is a waveguide for the elastodynamic field emitted by the propagating crack front (from 100kHz to a few GHz): It excites the sample's free oscillations (or normal modes), and creates a fluctuating landscape of elastic energy. This may be seen as an effective noise, with an amplitude proportional to the frequency of a given mode, which can reach the same order of magnitude as that of the fracture toughness (In PMMA: 103 J.m-2 for f ˜ MHz). We designed an experiment to evidence this effect in a homogeneous brittle material (PMMA) and subsequently to characterize the possible coupling between the fracture front and its wavefield. Dynamic cracks are driven by means of a wedge splitting geometry which allow us to modulate, over a wide range, the velocity of the crack tip. Spatial geometry and frequency content of the emitted wavefield are modulated by adjusting the geometry of the sample and the loading conditions. Hints of the wavefield are looked in the high-frequency fluctuations of the crack speed, measured on both sides of the specimen via a state-of-the art potential drop method. Fractography and statistical analysis of the post-mortem fracture surfaces are used to characterize the mesoscale/microstructure scale response of the crack front to the wavefield. Experiments performed in PMMA will finally be compared to others performed on heterogeneous materials with controlled defects size (40 - 500µm). This study will permit (i) to shed light on the key role of elastic wavefield in dynamic fracture, and how those are selected by the sample geometry and microstructure and finally and (ii) to give some leads on how to account for these effects by adapting the paradigm of interface growth model to the case of dynamic fracture.

  6. Metabolic syndrome and the risk of bone fractures: A Meta-analysis of prospective cohort studies.

    PubMed

    Yang, Libo; Lv, Xiaohong; Wei, Dailin; Yue, Feng; Guo, Jinying; Zhang, Tie

    2016-03-01

    Increasing evidence has suggested an association between metabolic syndrome (MetS) and bone fractures. However, because of controversial results it is still not clear whether this effect is protective or detrimental. Therefore, we conducted a meta-analysis of prospective studies to assess the association between them. Pertinent studies were identified by searching PubMed and EMBASE databases until the end of July 2015. Summary relative risks (RRs) and 95% confidence intervals (CIs) for associations between MetS and fracture risk were estimated with random effects models. Our meta-analysis included five prospective studies. The summarized RRs of any type of fractures for MetS were 0.76 (95%CI: 0.59-0.97, P = 0.026) with moderate heterogeneity (I(2) = 63.80%, P = 0.064). Notably, subgroup analyses by gender showed that significant inverse associations were observed only in men (summarized RR = 0.66; 95%CI = 0.51-0.86, P = 0.002; I(2) = 27.90%, P = 0.235; n = 5) but not in women (summarized RR = 0.96, 95%CI: 0.60-1.54, P = 0.866; I(2) = 83.40%, P = 0.002; n = 3). However, the difference of the pooled RRs from the two subgroups did not reach statistical significance with a test of interaction (p = 0.179 for the interaction test). When pooling the RRs of non-vertebral fractures, significant inverse associations were similarly observed in men (RR = 0.72, 95%CI: 0.52-0.99, P = 0.048) but not in women (RR = 0.99, 95%CI: 0.60-1.64, P = 0.969). There was no evidence of publication bias. Our findings demonstrated that MetS was significantly associated with a lower fracture risk. There might be gender differences in the relationship of MetS with fractures, but further confirmation is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Probabilistic finite elements for fatigue and fracture analysis

    NASA Astrophysics Data System (ADS)

    Belytschko, Ted; Liu, Wing Kam

    Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.

  8. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1992-01-01

    Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.

  9. Integrated Analysis of Flow, Temperature, and Specific-Conductance Logs and Depth-Dependent Water-Quality Samples from Three Deep Wells in a Fractured-Sandstone Aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Knutson, Kevin D.

    2009-01-01

    Analysis of flow, temperature, and specific-conductance logs and depth-dependent water-quality samples collected under ambient and pumped conditions provided a preliminary delineation of flow zones and water quality in three deep abandoned water-supply wells. The integrated analysis was completed as part of the characterization of a fractured-sandstone aquifer in the mountainous setting of the Santa Susana Field Laboratory in southern Ventura County, California. In the deepest well, which was 1,768 feet deep and had the highest specific capacity (120 gallons per minute per foot), flow zones were detected at 380 feet (base of casing) and at 440, 595, and 770 feet in the open hole. Under ambient conditions, measured flow was downward from the 380- and 440-foot zones to the 595- and 770-foot zones. Under pumped conditions, most of flow was contributed by the 595-foot zone. Flow from the 380- and 440-foot zones appeared to have lower specific conductance and higher trichloroethylene concentrations than that from the 595-foot zone. In the shallowest well, which was reportedly 940 feet deep but only logged to 915 feet due to blockage, flow zones were detected behind the perforated casing and at 867 feet in the open hole. Under ambient conditions, downward and upward flows appeared to exit at a zone behind the perforated casing at 708 feet. Most of the pumped flow was contributed from zones behind the perforated casing between 565 and 708 feet. Pumped flow also was contributed by zones at 867 feet and below the logged depth. Volatile organic compounds were not detected in the ambient and pumped flows. In the third well, which was 1,272 feet deep and had the lowest specific capacity (3.6 gallons per minute per foot), flow zones were detected in the open hole above and just below the water level near 337 feet and at 615, 785, 995, and 1,070 feet. Under ambient conditions, measured flow in well was downward from the shallowmost zones to the 995-foot zone. Fracture zones at

  10. Evaluation of rock/fracture interactions during steam injection through vertical hydraulic fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.

    1997-05-01

    The design, results, and analysis of a steamdrive pilot in the South Belridge diatomite, Kern County, California, are reviewed. Pilot results demonstrate that steam can be injected across a 1,000-ft-tall diatomite column using hydraulically fractured wells and that significant oil is produced in response to steaming. A computationally simple numerical model is proposed and used to analyze reservoir heating and volumetric sweep by steam. Results from the analysis show that hydraulic fractures undergoing steam injection can be dynamic and asymmetrical.

  11. Influence of long-time stress relief treatments on the dynamic fracture toughness properties of ASME SA508 C1 2a and ASME SA533 GR B C12 pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logsdon, W.A.

    1982-03-01

    Dynamic fracture toughness tests were performed on materials which had been subjected to one of three long-time post weld type stress relief heat treatments: 48 hours at 1000/degree/F (538/degree/C), 24 hours at 1125/degree/F (607/degree/C), and 48 hours at 1125/degree/F (607/degree/C). Linear elastic K/sub Id/ results were obtained at low temperatures while J-integral techniques were utilized to evaluate dynamic fracture toughness over the transition and upper shelf temperature ranges. Tensile, Charpy impact, and drop weight nil-ductility transition tests as well as room temperature, air environment fatigue crack growth rate tests (SA508 Cl 2a only) were also performed. The fracture toughness ofmore » both materials exceeded the ASME specified minimum reference toughness K/sub IR/ curve. 17 refs.« less

  12. Analysis of the associations among Helicobacter pylori infection, adiponectin, leptin, and 10-year fracture risk using the fracture risk assessment tool: A cross-sectional community-based study

    PubMed Central

    Chen, Fang-Ping; Hsieh, Chia-Wen; Kuo, Sheng-Fong; Chien, Rong-Nan

    2017-01-01

    Helicobacter pylori (H. pylori) infection may induce inflammatory cytokines or adipokines that influence bone turnover and bone fracture risk. This study aimed to evaluate the association among H. pylori infection, adipokines, and 10-year fracture risk using the Fracture Risk Assessment Tool scale. From August 2013 to February 2016, a community-based cohort was surveyed by Keelung Chang-Gung Memorial Hospital. Subjects were included if they were older than 40 years and not pregnant. All participants underwent a standardized questionnaire survey, physical examination, urea breath test, and blood tests. A total of 2,689 participants (1,792 women) were included in this cross-sectional study. In both sexes, participants with a high fracture risk were older and had higher adiponectin values than participants without a high fracture risk (mean age, female: 72.9 ± 5.6 vs. 55.8 ± 7.3 years, P < 0.0001; male: 78.9 ± 4.7 vs. 58.1 ± 8.9 years, P < 0.001) (adiponectin, female: 10.8 ± 6.3 vs. 8.7 ± 5.2 ng/ml, P < 0.001; male: 9.7 ± 6.1 vs. 5.5 ± 3.8 ng/ml, P < 0.001). Adiponectin was correlated with high fracture risk in both sexes, but H. pylori infection and leptin was not. In logistic regression analysis, adiponectin could not predict high fracture risk when adjusting the factor of body mass index (BMI) in men group. In conclusion, H. pylori infection and leptin could not predict 10-year fracture risk in either sex. Adiponectin was correlated with bone fracture risk in both sexes and the correlation might be from the influence of BMI. PMID:28388631

  13. [Periprosthetic knee fractures].

    PubMed

    Mittlmeier, T; Beck, M; Bosch, U; Wichelhaus, A

    2016-01-01

    The cumulative incidence of periprosthetic fractures around the knee is increasing further because of an extended indication for knee replacement, previous revision arthroplasty, rising life expectancy and comorbidities. The relevance of local parameters such as malalignment, osseous defects, neighbouring implants, aseptic loosening and low-grade infections may sometimes be hidden behind the manifestation of a traumatic fracture. A differentiated diagnostic approach before the treatment of a periprosthetic fracture is of paramount importance, while the physician in-charge should also have particular expertise in fracture treatment and in advanced techniques of revision endoprosthetics. The following work gives an overview of this topic. Valid classifications are available for categorising periprosthetic fractures of the femur, the tibia and the patella respectively, which are helpful for the selection of treatment. With the wide-ranging modern treatment portfolio bearing in mind the substantial rate of complications and the heterogeneous functional outcome, the adequate analysis of fracture aetiology and the corresponding transformation into an individualised treatment concept offer the chance of an acceptable functional restoration of the patient at early full weight-bearing and prolonged implant survival. The management of complications is crucial to the final outcome.

  14. Serum 25-Hydroxyvitamin D Levels and Stress Fractures in Military Personnel: A Systematic Review and Meta-analysis.

    PubMed

    Dao, Dyda; Sodhi, Sukhmani; Tabasinejad, Rasam; Peterson, Devin; Ayeni, Olufemi R; Bhandari, Mohit; Farrokhyar, Forough

    2015-08-01

    Low serum 25-hydroxyvitamin D (25(OH)D) levels have been associated with stress fractures in various physically active populations such as the military. To examine the association between serum 25(OH)D levels and stress fractures in the military. Systematic review and meta-analysis. Relevant studies were identified through searching multiple databases and manually screening reference lists. Two reviewers independently selected the included studies by applying the eligibility criteria to the title, abstract, and/or full text of the articles yielded in the search. Two reviewers also independently conducted the methodological quality assessment and data extraction. A random-effects model was used to calculate the mean difference (MD) with 95% CI in serum 25(OH)D levels between stress fracture cases and controls. Nine observational studies on lower extremity stress fractures were eligible, and 1 was excluded due to inadequate data. A total of 2634 military personnel (age, 18-30 years; 44% male) with 761 cases (16% male) and 1873 controls (61% male) from 8 studies were included in the analysis. Three of the 8 studies measured serum 25(OH)D levels at the time of stress fracture diagnosis, and the 5 remaining studies measured serum 25(OH)D levels at the time of entry into basic training. The mean serum 25(OH)D level was lower in stress fracture cases than in controls at the time of entry into basic training (MD, -2.63 ng/mL; 95% CI, -5.80 to 0.54; P = .10; I(2) = 65%) and at the time of stress fracture diagnosis (MD, -2.26 ng/mL; 95% CI, -3.89 to -0.63; P = .007; I(2) = 42%). Despite the inherent limitations of the included studies, the study results suggest some association between low serum 25(OH)D levels and lower extremity stress fractures in military personnel. Given the rigorous training of military personnel, implementing strategies to ensure sufficient 25(OH)D levels may be beneficial for reducing the risk of stress fractures. © 2014 The Author(s).

  15. Exposure to fluoride in drinking water and hip fracture risk: a meta-analysis of observational studies.

    PubMed

    Yin, Xin-Hai; Huang, Guang-Lei; Lin, Du-Ren; Wan, Cheng-Cheng; Wang, Ya-Dong; Song, Ju-Kun; Xu, Ping

    2015-01-01

    Many observational studies have shown that exposure to fluoride in drinking water is associated with hip fracture risk. However, the findings are varied or even contradictory. In this work, we performed a meta-analysis to assess the relationship between fluoride exposure and hip fracture risk. PubMed and EMBASE databases were searched to identify relevant observational studies from the time of inception until March 2014 without restrictions. Data from the included studies were extracted and analyzed by two authors. Summary relative risks (RRs) with corresponding 95% confidence intervals (CIs) were pooled using random- or fixed-effects models as appropriate. Sensitivity analyses and meta-regression were conducted to explore possible explanations for heterogeneity. Finally, publication bias was assessed. Fourteen observational studies involving thirteen cohort studies and one case-control study were included in the meta-analysis. Exposure to fluoride in drinking water does not significantly increase the incidence of hip fracture (RRs, 1.05; 95% CIs, 0.96-1.15). Sensitivity analyses based on adjustment for covariates, effect measure, country, sex, sample size, quality of Newcastle-Ottawa Scale scores, and follow-up period validated the strength of the results. Meta-regression showed that country, gender, quality of Newcastle-Ottawa Scale scores, adjustment for covariates and sample size were not sources of heterogeneity. Little evidence of publication bias was observed. The present meta-analysis suggests that chronic fluoride exposure from drinking water does not significantly increase the risk of hip fracture. Given the potential confounding factors and exposure misclassification, further large-scale, high-quality studies are needed to evaluate the association between exposure to fluoride in drinking water and hip fracture risk.

  16. Exposure to Fluoride in Drinking Water and Hip Fracture Risk: A Meta-Analysis of Observational Studies

    PubMed Central

    Yin, Xin-Hai; Huang, Guang-Lei; Lin, Du-Ren; Wan, Cheng-Cheng; Wang, Ya-Dong; Song, Ju-Kun; Xu, Ping

    2015-01-01

    Background Many observational studies have shown that exposure to fluoride in drinking water is associated with hip fracture risk. However, the findings are varied or even contradictory. In this work, we performed a meta-analysis to assess the relationship between fluoride exposure and hip fracture risk. Methods PubMed and EMBASE databases were searched to identify relevant observational studies from the time of inception until March 2014 without restrictions. Data from the included studies were extracted and analyzed by two authors. Summary relative risks (RRs) with corresponding 95% confidence intervals (CIs) were pooled using random- or fixed-effects models as appropriate. Sensitivity analyses and meta-regression were conducted to explore possible explanations for heterogeneity. Finally, publication bias was assessed. Results Fourteen observational studies involving thirteen cohort studies and one case-control study were included in the meta-analysis. Exposure to fluoride in drinking water does not significantly increase the incidence of hip fracture (RRs, 1.05; 95% CIs, 0.96–1.15). Sensitivity analyses based on adjustment for covariates, effect measure, country, sex, sample size, quality of Newcastle–Ottawa Scale scores, and follow-up period validated the strength of the results. Meta-regression showed that country, gender, quality of Newcastle–Ottawa Scale scores, adjustment for covariates and sample size were not sources of heterogeneity. Little evidence of publication bias was observed. Conclusion The present meta-analysis suggests that chronic fluoride exposure from drinking water does not significantly increase the risk of hip fracture. Given the potential confounding factors and exposure misclassification, further large-scale, high-quality studies are needed to evaluate the association between exposure to fluoride in drinking water and hip fracture risk. PMID:26020536

  17. Numerical analysis of standard and modified osteosynthesis in long bone fractures treatment.

    PubMed

    Sisljagić, Vladimir; Jovanović, Savo; Mrcela, Tomislav; Radić, Radivoje; Selthofer, Robert; Mrcela, Milanka

    2010-03-01

    The fundamental problem in osteoporotic fracture treatment is significant decrease in bone mass and bone tissue density resulting in decreased firmness and elasticity of osteoporotic bone. Application of standard implants and standard surgical techniques in osteoporotic bone fracture treatment makes it almost impossible to achieve stable osteosynthesis sufficient for early mobility, verticalization and load. Taking into account the form and the size of the contact surface as well as distribution of forces between the osteosynthetic materials and the bone tissue numerical analysis showed advantages of modified osteosynthesis with bone cement filling in the screw bed. The applied numerical model consisted of three sub-models: 3D model from solid elements, 3D cross section of the contact between the plate and the bone and the part of 3D cross section of the screw head and body. We have reached the conclusion that modified osteosynthesis with bone cement resulted in weaker strain in the part of the plate above the fracture fissure, more even strain on the screws, plate and bone, more even strain distribution along all the screws' bodies, significantly greater strain in the part of the screw head opposite to the fracture fissure, firm connection of the screw head and neck and the plate hole with the whole plate and more even bone strain around the screw.

  18. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  19. Fractography: determining the sites of fracture initiation.

    PubMed

    Mecholsky, J J

    1995-03-01

    Fractography is the analysis of fracture surfaces. Here, it refers to quantitative fracture surface analysis (FSA) in the context of applying the principles of fracture mechanics to the topography observed on the fracture surface of brittle materials. The application of FSA is based on the principle that encoded on the fracture surface of brittle materials is the entire history of the fracture process. It is our task to develop the skills and knowledge to decode this information. There are several motivating factors for applying our knowledge of FSA. The first and foremost is that there is specific, quantitative information to be obtained from the fracture surface. This information includes the identification of the size and location of the fracture initiating crack or defect, the stress state at failure, the existence, or not, of local or global residual stress, the existence, or not, of stress corrosion and a knowledge of local processing anomalies which affect the fracture process. The second motivating factor is that the information is free. Once a material is tested to failure, the encoded information becomes available. If we decide to observe the features produced during fracture then we are rewarded with much information. If we decide to ignore the fracture surface, then we are left to guess and/or reason as to the cause of the failure without the benefit of all of the possible information available. This paper addresses the application of quantitative fracture surface analysis to basic research, material and product development, and "trouble-shooting" of in-service failures. First, the basic principles involved will be presented. Next, the methodology necessary to apply the principles will be presented. Finally, a summary of the presentation will be made showing the applicability to design and reliability.

  20. Integration of Research Studies: Meta-Analysis of Research. Methods of Integrative Analysis; Final Report.

    ERIC Educational Resources Information Center

    Glass, Gene V.; And Others

    Integrative analysis, or what is coming to be known as meta-analysis, is the integration of the findings of many empirical research studies of a topic. Meta-analysis differs from traditional narrative forms of research reviewing in that it is more quantitative and statistical. Thus, the methods of meta-analysis are merely statistical methods,…