Science.gov

Sample records for j-j heisenberg model

  1. Heisenberg necklace model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.; Zaliznyak, I. A.

    2016-08-01

    We study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J . We consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I =3 /2 ) present on the same sites. We find that the resulting necklace model has a characteristic energy scale, Λ ˜J1 /3(γI ) 2 /3 , at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. This energy scale is insensitive to a magnetic field B . For μBB >Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, √{2 }+1 .

  2. Explaining the CMS e e j j and e pTj j excess and leptogenesis in superstring inspired E6 models

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Hati, Chandan; Rangarajan, Raghavan; Sarkar, Utpal

    2015-03-01

    We show that superstring-inspired E6 models can explain both the recently detected excess e e j j and e pTj j signals at CMS and also allow for leptogenesis. Working in an R -parity conserving, low-energy supersymmetric effective model, we show that the excess CMS events can be produced via the decay of exotic sleptons in Alternative Left-Right Symmetric Model of E6, which can also accommodate leptogenesis at a high scale. On the other hand, either the e e j j excess or the e pTj j excess can be produced via the decays of right-handed gauge bosons, but some of these scenarios may not accommodate letptogenesis as there will be strong B -L violation at low energy, which, along with the anomalous fast electroweak B +L violation, will wash out all baryon asymmetry. Baryogenesis below the electroweak scale may then need to be implemented in these models.

  3. Integrable higher order deformations of Heisenberg supermagnetic model

    SciTech Connect

    Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong

    2009-11-15

    The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S{sup 2}=3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S{sup 2}=S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.

  4. Gapless chiral spin liquid in a kagome Heisenberg model

    NASA Astrophysics Data System (ADS)

    Bieri, Samuel; Messio, Laura; Bernu, Bernard; Lhuillier, Claire

    2015-08-01

    Motivated by recent experiments on the Heisenberg S =1 /2 quantum spin liquid candidate material kapellasite, we classify all possible chiral (time-reversal symmetry breaking) spin liquids with fermionic spinons on the kagome lattice. We obtain the phase diagram for the physically relevant extended Heisenberg model, comparing the energies of a wide range of microscopic variational wave functions. We propose that, at low temperature, kapellasite exhibits a gapless chiral spin liquid phase with spinon Fermi surfaces. This two-dimensional state inherits many properties of the nearby one-dimensional phase of decoupled antiferromagnetic spin chains, but also shows some remarkable differences. We discuss the spin structure factors and other physical properties.

  5. EDITORIAL: J J Thomson's Electron

    NASA Astrophysics Data System (ADS)

    Adams, Steve

    1997-07-01

    Westminster School, London, UK A few weeks ago David Thomson, J J Thomson's grandson, presented a Friday evening discourse at the Royal Institution. In it he traced the development of JJT's life from his early studies at Owen's College in Manchester, on to Trinity College Cambridge, his work under Rayleigh at the Cavendish, and his succession as Professor of Experimental Physics in 1884 (a post he passed on to Rutherford in 1919). These were years of heroic discoveries that shaped 20th century physics. Looking around the lecture theatre at all the bow-ties and dinner jackets, it must have been rather similar on 30 April 1897 when JJT delivered his famous discourse on 'Cathode Rays' in which he cautiously but confidently announced that his own results together with those of other experimenters (Lenard in particular):

    `....seem to favour the hypothesis that the carriers of the charges are smaller than the atoms of hydrogen.'
    In this issue articles by Leif Gerward and Christopher Cousins, and by Isobel Falconer explore the historical and philosophical context of that discovery. The sound-bites to history in many A-level courses have JJT as both the hero who single-handedly discovered the electron and the rather naive Victorian scientist who thought the atom was a plum pudding. It is valuable to see how Thomson's work pulled the threads of many experiments together and to realize that he may have been first to the post because of a difference in the philosophical approach to cathode rays in Britain compared to Europe. Experimental data must always be interpreted, and divergent philosophies can lead to quite different conclusions. The electron was, of course, the first subatomic particle to be identified. Christine Sutton's article looks at how 20th century discoveries reveal Nature's mysterious habit of repeating successful patterns---electrons for example have very close relations, the muon and the tau---but why? Perhaps the answer will come

  6. Type-I integrable quantum impurities in the Heisenberg model

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia

    2013-12-01

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  7. Global phase diagram of a doped Kitaev-Heisenberg model

    SciTech Connect

    Okamoto, Satoshi

    2013-01-01

    The global phase diagram of a doped Kitaev-Heisenberg model is studied using an $SU(2)$ slave-boson mean-field method. Near the Kitaev limit, $p$-wave superconducting states which break the time-reversal symmetry are stabilized as reported by You {\\it et al.} [Phys. Rev. B {\\bf 86}, 085145 (2012)] irrespective of the sign of the Kitaev interaction. By further doping, a $d$-wave superconducting state appears when the Kitaev interaction is antiferromagnetic, while another $p$-wave superconducting state appears when the Kitaev interaction is ferromagnetic. This $p$-wave superconducting state does not break the time-reversal symmetry as reported by Hyart {\\it et al.} [Phys. Rev. B {\\bf 85}, 140510 (2012)], and such a superconducting state also appears when the antiferromagnetic Kitaev interaction and the ferromagnetic Heisenberg interaction compete. This work, thus, demonstrates the clear difference between the antiferromagnetic Kitaev model and the ferromagnetic Kitaev model when carriers are doped while these models are equivalent in the undoped limit, and how novel superconducting states emerge when the Kitaev interaction and the Heisenberg interaction compete.

  8. Decay of transverse correlations in quantum Heisenberg models

    SciTech Connect

    Björnberg, Jakob E. E-mail: daniel@ueltschi.org; Ueltschi, Daniel E-mail: daniel@ueltschi.org

    2015-04-15

    We study a class of quantum spin systems that include the S=1/2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.

  9. Spin transport in a one-dimensional anisotropic Heisenberg model.

    PubMed

    Znidarič, Marko

    2011-06-01

    We analytically and numerically study spin transport in a one-dimensional Heisenberg model in linear-response regime at infinite temperature. It is shown that as the anisotropy parameter Δ is varied spin transport changes from ballistic for Δ<1 to anomalous at the isotropic point Δ=1, to diffusive for finite Δ>1, ending up as a perfect isolator in the Ising limit of infinite Δ. Using perturbation theory for large Δ a quantitative prediction is made for the dependence of diffusion constant on Δ. PMID:21702588

  10. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.

    2016-10-01

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. In agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003), 10.1103/PhysRevLett.90.216403], the resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations. The system undergoes a phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.

  11. Two Spin Liquid phases in the anisotropic triangular Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sorella, Sandro

    2005-03-01

    Recently there have been rather clean experimental realizations of the quantum spin 1/2 Heisenberg Hamiltonian on a 2D triangular lattice geometry in systems like Cs2Cu Cl4 and organic compounds like k-(ET)2Cu2(CN)3. These materials are nearly two dimensional and are characterized by an anisotropic antiferromagnetic superexchange. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize the magnetically ordered state leading to non conventional spin liquid phases. In order to understand these interesting phenomena we have studied, by Quantum Monte Carlo methods, the triangular lattice Heisenberg model as a function of the strength of this anisotropy, represented by the ratio r between the intra-chain nearest neighbor coupling J' and the inter-chain one J. We have found evidence of two spin liquid regions, well represented by projected BCS wave functions[1,2] of the type proposed by P. W. Anderson at the early stages of High temperature superconductivity [3]. The first spin liquid phase is stable for small values of the coupling r 0.6 and appears gapless and fractionalized, whereas the second one is a more conventional spin liquid, very similar to the one realized in the quantum dimer model in the triangular lattice[4]. It is characterized by a spin gap and a finite correlation length, and appears energetically favored in the region 0.6 r 0.9. The various phases are in good agreement with the experimental findings and supports the existence of spin liquid phases in 2D quantum spin-half systems. %%%%%%%%%%%%%%%%%% 1cm *[1] L. Capriotti F. Becca A. Parola and S. Sorella , Phys. Rev. Letters 87, 097201 (2001). *[2] S. Yunoki and S. Sorella Phys. Rev. Letters 92, 15003 (2004). *[3] P. W. Anderson, Science 235, 1186 (1987). *[4] P. Fendley, R. Moessner, and S. L. Sondhi Phys. Rev. B 66, 214513 (2002).

  12. Density matrix renormalization group study of triangular Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sota, Shigetoshi; Sjinjo, Kazuya; Shirakawa, Tomonori; Tohyama, Takami; Yunoki, Seiji

    2015-03-01

    Topological insulator has been one of the most active subjects in the current condensed matter physics. For most of topological insulators electron correlations are considered to be not essential. However, in the case where electron correlations are strong, novel phases such as a spin liquid phase can emerge in competition with a spin-orbit coupling. Here, using the density matrix renormalization group method, we investigate magnetic phase of a triangular Kitaev-Heisenberg (quantum compass) model that contains a spin-orbital interaction and spin frustration in the antiferromagnetic region. The triangular Kitaev-Heisenberg model is regarded as a dual model of the honeycomb Kitaev-Heisenberg model that is usually employed to discuss A2CuO3 (A=Na, K). Systematically calculating ground state energy, entanglement entropy, entanglement spectrum, and spin-spin correlation functions, we discuss the duality between the triangular and the honeycomb Kitaev-Heisenberg model as well as the ground state magnetic phases.

  13. Stapp's quantum dualism: The James and Heisenberg model of consciousness

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1994-02-01

    Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James' description of conscious events and for matter from Werner Heisenberg's ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author's opinion fails to establish a monistic, scientific theory. The author traces Stapp's failure to his adamant rejection of arbitrariness, or 'randomness.' This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin's explanation of biology, let alone the triumphs of modern 'neo-Darwinism.' The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp's views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.

  14. Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models

    NASA Astrophysics Data System (ADS)

    Degrazia, G. A.; Rizza, U.; Puhales, F. S.; Welter, G. S.; Acevedo, O. C.; Maldaner, S.

    2012-02-01

    A turbulent subfilter viscosity for Large Eddy Simulation (LES) based on the Taylor statistical diffusion theory is proposed. This viscosity is described in terms of a velocity variance and a time scale, both associated to the inertial subrange. This new subfilter viscosity contains a cutoff wavenumber kc, presenting an identical form (differing by a constant) to the Heisenberg subfilter viscosity. Therefore, both subfilter viscosities are described in terms of a sharp division between large and small wavenumbers of a turbulent flow and, henceforth, Taylor and Heisenberg subfilter viscosities are in agreement with the sharp Fourier filtering operation, frequently employed in LES models. Turbulent statistics of different orders, generated from atmospheric boundary layer simulations employing both Taylor and Heisenberg subfilter viscosities have been compared with observations and results provided by other simulations. The comparison shows that the LES model utilizing the approaches of Taylor and Heisenberg reproduces these turbulent statistics correctly in different vertical regions of a planetary convective boundary layer (CBL).

  15. J. J. Thomson goes to America.

    PubMed

    Downard, Kevin M

    2009-11-01

    Joseph John (J. J.) Thomson was an accomplished scientist who helped lay the foundations of nuclear physics. A humble man of working class roots, Thomson went on to become one of the most influential physicists of the late 19th century. He is credited with the discovery of the electron, received a Nobel Prize in physics in 1906 for investigations into the conduction of electricity by gases, was knighted in 1908, and served as a Cavendish Professor and Director of the laboratory for over 35 years from 1884. His laboratory attracted some of the world's brightest minds; Francis W. Aston, Niels H. D. Bohr, Hugh L. Callendar, Charles T. R. Wilson, Ernest Rutherford, George F. C. Searle, Geoffrey I. Taylor, and John S. E. Townsend all worked under him. This article recounts J. J. Thomson's visits to North America in 1896, 1903, 1909, and finally 1923. It presents his activities and his personal impressions of the people and society of the U.S.A. and Canada, and the science of atomic physics and chemistry in the late 1800s and early 1900s.

  16. Fractional magnetization plateaus of the spin-1/2 Heisenberg orthogonal-dimer chain: Strong-coupling approach developed from the exactly solved Ising-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Verkholyak, Taras; Strečka, Jozef

    2016-10-01

    The spin-1/2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach, which is developed from the exactly solved spin-1/2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg intradimer and the Ising interdimer couplings. Although the spin-1/2 Ising-Heisenberg orthogonal-dimer chain exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art numerical data obtained for the spin-1/2 Heisenberg orthogonal-dimer chain within the exact diagonalization and density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively studied within the developed perturbation theory.

  17. Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model.

    PubMed

    Yao, Xiaoyan; Dong, Shuai

    2016-01-01

    The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings. PMID:27229486

  18. Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model

    PubMed Central

    Yao, Xiaoyan; Dong, Shuai

    2016-01-01

    The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings. PMID:27229486

  19. Long-range order for the spin-1 Heisenberg model with a small antiferromagnetic interaction

    SciTech Connect

    Lees, Benjamin

    2014-09-15

    We look at the general SU(2) invariant spin-1 Heisenberg model. This family includes the well-known Heisenberg ferromagnet and antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious staggered-nematic interaction. Long range order is proved using the method of reflection positivity and infrared bounds on a purely nematic interaction. This is achieved through the use of a type of matrix representation of the interaction making clear several identities that would not otherwise be noticed. Using the reflection positivity of the antiferromagnetic interaction one can then show that the result is maintained if we also include an antiferromagnetic interaction that is sufficiently small.

  20. Thermal and magnetic quantum discord in Heisenberg models

    SciTech Connect

    Werlang, T.; Rigolin, Gustavo

    2010-04-15

    We investigate how quantum correlations [quantum discord (QD)] of a two-qubit one-dimensional XYZ Heisenberg chain in thermal equilibrium depend on the temperature T of the bath and also on an external magnetic field B. We show that the behavior of thermal QD differs in many unexpected ways from thermal entanglement. For example, we show situations where QD increases with T when entanglement decreases, cases where QD increases with T even in regions with zero entanglement, and that QD signals a quantum phase transition even at finite T. We also show that by properly tuning B or the interaction between the qubits we get nonzero QD for any T and we present an effect not seen for entanglement, the 'regrowth' of thermal QD.

  1. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice.

    PubMed

    Huang, Yi-Zhen; Xi, Bin; Chen, Xi; Li, Wei; Wang, Zheng-Chuan; Su, Gang

    2016-06-01

    The quantum phase transition, scaling behaviors, and thermodynamics in the spin-1/2 quantum Heisenberg model with antiferromagnetic coupling J>0 in the armchair direction and ferromagnetic interaction J^{'}<0 in the zigzag direction on a honeycomb lattice are systematically studied using the continuous-time quantum Monte Carlo method. By calculating the Binder ratio Q_{2} and spin stiffness ρ in two directions for various coupling ratios α=J^{'}/J under different lattice sizes, we found that a quantum phase transition from the dimerized phase to the stripe phase occurs at the quantum critical point α_{c}=-0.93. Through the finite-size scaling analysis on Q_{2}, ρ_{x}, and ρ_{y}, we determined the critical exponent related to the correlation length ν to be 0.7212(8), implying that this transition falls into a classical Heisenberg O(3) universality. A zero magnetization plateau is observed in the dimerized phase, whose width decreases with increasing α. A phase diagram in the coupling ratio α-magnetic field h plane is obtained, where four phases, including dimerized, stripe, canted stripe, and polarized, are identified. It is also unveiled that the temperature dependence of the specific heat C(T) for different α's intersects precisely at one point, similar to that of liquid ^{3}He under different pressures and several magnetic compounds under various magnetic fields. The scaling behaviors of Q_{2}, ρ, and C(T) are carefully analyzed. The susceptibility is compared with the experimental data to give the magnetic parameters of both compounds. PMID:27415211

  2. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Zhen; Xi, Bin; Chen, Xi; Li, Wei; Wang, Zheng-Chuan; Su, Gang

    2016-06-01

    The quantum phase transition, scaling behaviors, and thermodynamics in the spin-1/2 quantum Heisenberg model with antiferromagnetic coupling J >0 in the armchair direction and ferromagnetic interaction J'<0 in the zigzag direction on a honeycomb lattice are systematically studied using the continuous-time quantum Monte Carlo method. By calculating the Binder ratio Q2 and spin stiffness ρ in two directions for various coupling ratios α =J'/J under different lattice sizes, we found that a quantum phase transition from the dimerized phase to the stripe phase occurs at the quantum critical point αc=-0.93 . Through the finite-size scaling analysis on Q2, ρx, and ρy, we determined the critical exponent related to the correlation length ν to be 0.7212(8), implying that this transition falls into a classical Heisenberg O(3) universality. A zero magnetization plateau is observed in the dimerized phase, whose width decreases with increasing α . A phase diagram in the coupling ratio α -magnetic field h plane is obtained, where four phases, including dimerized, stripe, canted stripe, and polarized, are identified. It is also unveiled that the temperature dependence of the specific heat C (T ) for different α 's intersects precisely at one point, similar to that of liquid 3He under different pressures and several magnetic compounds under various magnetic fields. The scaling behaviors of Q2, ρ , and C (T ) are carefully analyzed. The susceptibility is compared with the experimental data to give the magnetic parameters of both compounds.

  3. A nonlinear lattice model for Heisenberg helimagnet and spin wave instabilities

    NASA Astrophysics Data System (ADS)

    Ludvin Felcy, A.; Latha, M. M.; Christal Vasanthi, C.

    2016-10-01

    We study the dynamics of a Heisenberg helimagnet by presenting a square lattice model and proposing the Hamiltonian associated with it. The corresponding equation of motion is constructed after averaging the Hamiltonian using a suitable wavefunction. The stability of the spin wave is discussed by means of Modulational Instability (MI) analysis. The influence of various types of inhomogeneities in the lattice is also investigated by improving the model.

  4. Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang

    2015-04-01

    In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.

  5. Nontrivial ferrimagnetism of the Heisenberg model on the Union Jack strip lattice

    NASA Astrophysics Data System (ADS)

    Shimokawa, Tokuro; Nakano, Hiroki

    2013-08-01

    We study the ground-state properties of the S = 1/2 antiferromagnetic Heisenberg model on the Union Jack strip lattice by using the exact-diagonalization and density matrix renormalization group methods. We confirm a region of a magnetization state intermediate between the Néel-like spin liquid state and the conventional ferrimagnetic state of a Lieb-Mattis type. In the intermediate state, we find that the spontaneous magnetization changes gradually with respect to the strength of the inner interaction. In addition, the local magnetization clearly shows an incommensurate modulation with long-distance periodicity in the intermediate magnetization state. These characteristic behaviors lead to the conclusion that the intermediate magnetization state is a non-Lieb-Mattis ferrimagnetic one. We also discuss the relationship between the ground-state properties of the S = 1/2 antiferromagnetic Heisenberg model on the original Union Jack lattice and those on our strip lattice.

  6. Zigzag order and phase competition in expanded Kitaev-Heisenberg model on honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Yao, Xiaoyan

    2015-07-01

    The Kitaev-Heisenberg model on the honeycomb lattice is investigated in two cases: (I) with the Kitaev interaction between the nearest neighbors, and (II) with the Kitaev interaction between the next nearest neighbors. In the full parameter range, the ground states are searched by Monte Carlo simulation and identified by evaluating the correlation functions. The energies of different phases are calculated and compared with the simulated result to show the phase competition. It is observed from both energy calculation and the density of states that the zigzag order shows a symmetric behavior to the stripy phase in the pure Kitaev-Heisenberg model. By considering more interactions in both cases, the energy of zigzag order can be reduced lower than the energies of other states. Thus the zigzag phase may be stabilized in more parameter region and even extended to the whole parameter range.

  7. Correlation functions of the antiferromagnetic Heisenberg model using a modified Lanczos method

    NASA Astrophysics Data System (ADS)

    Gagliano, Eduardo R.; Dagotto, Elbio; Moreo, Adriana; Alcaraz, Francisco C.

    1986-08-01

    Using a modified Lanczos algorithm, we study the correlation functions in the ground state of the one-dimensional antiferromagnetic Heisenberg model. We obtain numerical results for rings up to 24 sites. There are no indications of the anomalous behavior of these correlation functions recently observed in chains with 16 sites. We also present a pedagogical description of the hashing technique which is an efficient algorithm for searching and storage purposes.

  8. Extension of Lieb-Schupp theorem to Heisenberg models with higher-order interactions

    NASA Astrophysics Data System (ADS)

    Tanaka, Kengo

    2016-10-01

    We extend the Lieb-Schupp theorem to Heisenberg models with higher-order interactions on nonfrustrated or frustrated finite lattices. These lattices are constructed by even-numbered rings with or without crossing bonds and have reflection symmetry. The results show that the ground state has total spin zero in wide interaction parameter regions which are not covered by the results of Marshall-Lieb-Mattis-type arguments.

  9. {\\varvec{Φ -Ψ }} model for electrodynamics in dielectric media: exact quantisation in the Heisenberg representation

    NASA Astrophysics Data System (ADS)

    Belgiorno, Francesco; Cacciatori, Sergio L.; Dalla Piazza, Francesco; Doronzo, Michele

    2016-06-01

    We investigate the quantisation in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field φ and the role of the polarisation field is played by a further scalar field ψ . The model, which is quadratic in the fields, is still characterised by a non-trivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered.

  10. Magnetic order and spin excitations in layered Heisenberg antiferromagnets with compass-model anisotropies

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. A.; Ihle, D.; Plakida, N. M.

    2015-02-01

    The spin-wave excitation spectrum, magnetization, and Néel temperature for the quasi-two-dimensional spin-1/2 antiferromagnetic Heisenberg model with the compass-model interaction in the plane proposed for iridates are calculated in the random phase approximation. The spin-wave spectrum agrees well with data of Lanczos diagonalization. We find that the Néel temperature is enhanced by the compass-model interaction and is close to the experimental value for Ba2IrO4.

  11. Unconventional pairing and electronic dimerization instabilities in the doped Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Scherer, Daniel D.; Scherer, Michael M.; Khaliullin, Giniyat; Honerkamp, Carsten; Rosenow, Bernd

    2014-07-01

    We study the quantum many-body instabilities of the t-JK-JH Kitaev-Heisenberg Hamiltonian on the honeycomb lattice as a minimal model for a doped spin-orbit Mott insulator. This spin-1/2 model is believed to describe the magnetic properties of the layered transition-metal oxide Na2IrO3. We determine the ground state of the system with finite charge-carrier density from the functional renormalization group (fRG) for correlated fermionic systems. To this end, we derive fRG flow equations adapted to the lack of full spin-rotational invariance in the fermionic interactions, here represented by the highly frustrated and anisotropic Kitaev exchange term. Additionally employing a set of the Ward identities for the Kitaev-Heisenberg model, the numerical solution of the flow equations suggests a rich phase diagram emerging upon doping charge carriers into the ground-state manifold (Z2 quantum spin liquids and magnetically ordered phases). We corroborate superconducting triplet p-wave instabilities driven by ferromagnetic exchange and various singlet pairing phases. For filling δ >1/4, the p-wave pairing gives rise to a topological state with protected Majorana edge modes. For antiferromagnetic Kitaev and ferromagnetic Heisenberg exchanges, we obtain bond-order instabilities at van Hove filling supported by nesting and density-of-states enhancement, yielding dimerization patterns of the electronic degrees of freedom on the honeycomb lattice. Further, our flow equations are applicable to a wider class of model Hamiltonians.

  12. Cathode Ray Research Leading to J.J. Thomson's Discovery

    NASA Astrophysics Data System (ADS)

    Mulligan, Joseph

    1997-04-01

    This paper reviews the research on the properties and nature of cathode rays that led to the discovery of the electron by J. J. Thomson in the years 1897 - 1899. During the period from about 1870 to 1897 important research on cathode rays was carried out by William Crookes and Arthur Schuster in England, by Eugen Goldstein, Heinrich Hertz, Philipp Lenard, Emil Wiechert and Walter Kaufman in Germany, and by Jean Perrin in France. This research was always tedious and often inexact because fast vacuum pumps and convenient vacuum gauges did not yet exist. Still a few of these earlier researchers narrowly missed beating J. J. Thomson to the discover of the electron.

  13. Random exchange interaction effects on the phase transitions in frustrated classical Heisenberg model

    SciTech Connect

    Li, W. C.; Song, X.; Feng, J. J.; Zeng, M.; Gao, X. S.; Qin, M. H.; Jia, X. T.

    2015-07-07

    In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors.

  14. Chiral spin liquid in the extended Heisenberg model on the Kagome lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wenjun; Zhu, Wei; Zhang, Yi; Gong, Shoushu; Becca, Federico; Sheng, Dongning; Donna Sheng Team

    2015-03-01

    We investigate the extended Heisenberg model on the Kagome lattice by using Gutzwiller projected fermionic states and the variational Monte Carlo technique. In particular, when both second- and third-neighbor super-exchanges are considered, we find that a gapped spin liquid described by non-trivial magnetic fluxes and long-range chiral-chiral correlations is energetically favored compared to the gapless U(1) Dirac state. Furthermore, the topological Chern number, obtained by integrating the Berry curvature, and the degeneracy of the ground state, by constructing linearly independent states, lead us to identify this flux state as the chiral spin liquid with C = 1 / 2 fractionalized Chern number.

  15. A Numerical Study of Entanglement Entropy of the Heisenberg Model on a Bethe Cluster

    NASA Astrophysics Data System (ADS)

    Friedman, Barry; Levine, Greg

    Numerical evidence is presented for a nearest neighbor Heisenberg spin model on a Bethe cluster, that by bisecting the cluster, the generalized Renyi entropy scales as the number of sites in the cluster. This disagrees with spin wave calculations and a naive application of the area law but agrees with previous results for non interacting fermions on the Bethe cluster. It seems this scaling is not an artifact of non interacting particles. As a consequence, the area law in greater then one dimension is more subtle then generally thought and applications of the density matrix renormalization group to Bethe clusters face difficulties at least as a matter of principle.

  16. The Design of Control Pulses for Heisenberg Always-On Qubit Models

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph

    2015-03-01

    One model for a universal quantum computer is a spin array with constant nearest neighbor interactions and a controlled unidirectional site-specific magnetic field to generate unitary transformations. This system can be described by a Heisenberg spin Hamiltonian and can be simulated for on the order of 50 spins. It has recently been shown that time-dependent density functional inspired methods may be used to relate various spin models of qubits to ones that may be easier to compute numerically allowing potentially the efficient simulation of greater numbers of spins. One of the challenges of such an agenda is the identification of control pulses that produce desired gate operations (CNOT and single qubit phase gates). We apply control theory to design a universal set of pulses for a Heisenberg always-on model Hamiltonian for a few qubits and compare to known pulses when available. We suggest how this approach may be useful to design control pulses in other realistic designs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  17. Modified Heisenberg model for the zig-zag structure in multiferroic RMn2O5

    NASA Astrophysics Data System (ADS)

    Bahoosh, Safa Golrokh; Wesselinowa, Julia M.; Trimper, Steffen

    2015-08-01

    The class of RMn2O5 (R = Ho, Tb, Y, Eu) compounds offers multiferroic properties where the refined magnetic zig-zag order breaks the inversion symmetry. Varying the temperature, the system undergoes a magnetic and a subsequent ferroelectric phase transition where the ferroelectricity is magnetically induced. We propose a modified anisotropic Heisenberg model that can be used as a tractable analytical model studying the properties of those antiferromagnetic zig-zag spin chains. Based on a finite temperature Green's function method, it is shown that the polarization is induced solely by different exchange couplings of the two different Mn4+ and Mn3+ magnetic ions. We calculate the excitation energy of the spin system for finite temperatures, which for its part determines the temperature dependent magnetization and polarization. The ferroelectric phase transition is manifested as a kink in the excitation energy. The variation of the polarization by an external magnetic field depends strongly on the direction of that field. Whereas, the polarization in b-direction increases with an external magnetic field as well in b-direction it can be switched for strong fields in a-direction. The results based on that modified Heisenberg model are in qualitative agreement with experimental data.

  18. Stapp`s quantum dualism: The James/Heisenberg model of consciousness

    SciTech Connect

    Noyes, H.P.

    1994-02-18

    Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James` description of conscious events and for matter from Werner Heisenberg`s ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author`s opinion fails to establish a monistic, scientific theory. The author traces Stapp`s failure to his adamant rejection of arbitrariness, or `randomness`. This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin`s explanation of biology, let along the triumphs of modern `neo-Darwinism`. The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp`s views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.

  19. Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model

    PubMed Central

    Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2014-01-01

    The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids. PMID:25204626

  20. Spontaneous plaquette dimerization in the J_1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Capriotti, Luca; Sorella, Sandro

    2000-03-01

    The nature of the non magnetic phases of a quantum antiferromagnet is a topic of great interest and has been a subject of intense theoretical investigation since Anderson's suggestion [1] about the possible connections with the mechanism of high-Tc superconductivity. Within the Heisenberg model the simplest way in which the antiferromagnetism can be destabilized is by introducing a next-nearest-neighbor frustrating interaction leading to the so called J_1-J2 Hamiltonian. We have investigated the zero temperature properties the spin-half J_1-J2 Heisenberg antiferromagnet on the square lattice using exact diagonalization and the recently developed Green Function Monte Carlo with Stochastic Reconfiguration technique [2]. The spin gap and the susceptibilities for the most important crystal symmetry breaking operators have been computed. A genuine and somehow unexpected ``plaquette RVB'', with spontaneously broken translation symmetry and no broken rotation symmetry, comes out from our numerical simulations as the most plausible ground state for J_2/J1 ~= 0.5 [3]. ^1 P. W. Anderson, Science 235, 1196 (1987). ^2 S. Sorella, Phys. Rev. Lett. 80, 4558 (1998); S. Sorella and L. Capriotti, Phys. Rev. B (in press). ^3 L. Capriotti and S. Sorella, cond-mat/9911161

  1. Nonequilibrium behaviors of the three-dimensional Heisenberg model in the Swendsen-Wang algorithm.

    PubMed

    Nonomura, Yoshihiko; Tomita, Yusuke

    2016-01-01

    Recently, it was shown [Y. Nonomura, J. Phys. Soc. Jpn. 83, 113001 (2014)JUPSAU0031-901510.7566/JPSJ.83.113001] that the nonequilibrium critical relaxation of the two-dimensional (2D) Ising model from a perfectly ordered state in the Wolff algorithm is described by stretched-exponential decay, and a universal scaling scheme was found to connect nonequilibrium and equilibrium behaviors. In the present study we extend these findings to vector spin models, and the 3D Heisenberg model could be a typical example. To evaluate the critical temperature and critical exponents precisely using the above scaling scheme, we calculate nonequilibrium ordering from the perfectly disordered state in the Swendsen-Wang algorithm, and we find that the critical ordering process is described by stretched-exponential growth with a comparable exponent to that of the 3D XY model. The critical exponents evaluated in the present study are consistent with those in previous studies. PMID:26871018

  2. Nonequilibrium behaviors of the three-dimensional Heisenberg model in the Swendsen-Wang algorithm

    NASA Astrophysics Data System (ADS)

    Nonomura, Yoshihiko; Tomita, Yusuke

    2016-01-01

    Recently, it was shown [Y. Nonomura, J. Phys. Soc. Jpn. 83, 113001 (2014), 10.7566/JPSJ.83.113001] that the nonequilibrium critical relaxation of the two-dimensional (2D) Ising model from a perfectly ordered state in the Wolff algorithm is described by stretched-exponential decay, and a universal scaling scheme was found to connect nonequilibrium and equilibrium behaviors. In the present study we extend these findings to vector spin models, and the 3D Heisenberg model could be a typical example. To evaluate the critical temperature and critical exponents precisely using the above scaling scheme, we calculate nonequilibrium ordering from the perfectly disordered state in the Swendsen-Wang algorithm, and we find that the critical ordering process is described by stretched-exponential growth with a comparable exponent to that of the 3D X Y model. The critical exponents evaluated in the present study are consistent with those in previous studies.

  3. Multicanonical Monte Carlo simulations of anisotropic SU(3) and SU(4) Heisenberg models

    NASA Astrophysics Data System (ADS)

    Harada, Kenji; Kawashima, Naoki; Troyer, Matthias

    2009-03-01

    We present the results of multicanonical Monte Carlo simulations on two-dimensional anisotropic SU(3) and SU(4) Heisenberg models. In our previous study [K. Harada, et al., J. Phys. Soc. Jpn. 76, 013703 (2007)], we found evidence for a direct quantum phase transition from the valence-bond-solid(VBS) phase to the SU(3) symmetry breaking phase on the SU(3) model and we proposed the possibility of deconfined critical phenomena (DCP) [T. Senthil, et al., Science 303, 1490 (2004); T. Grover and T. Senthil, Phys. Rev. Lett. 98, 247202 (2007)]. Here we will present new results with an improved algorithm, using a multicanonical Monte Carlo algorithm. Using a flow method-like technique [A.B. Kuklov, et al., Annals of Physics 321, 1602 (2006)], we discuss the possibility of DCP in both models.

  4. Plaquette order in the SU(6) Heisenberg model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Nataf, Pierre; Lajkó, Miklós; Corboz, Philippe; Läuchli, Andreas M.; Penc, Karlo; Mila, Frédéric

    2016-05-01

    We revisit the SU(6) Heisenberg model on the honeycomb lattice, which has been predicted to be a chiral spin liquid by mean-field theory [G. Szirmai et al., Phys. Rev. A 84, 011611(R) (2011), 10.1103/PhysRevA.84.011611]. Using exact diagonalizations of finite clusters, infinite projected entangled pair state simulations, and variational Monte Carlo simulations based on Gutzwiller projected wave functions, we provide strong evidence that the model with one particle per site and nearest-neighbor exchange actually develops plaquette order. This is further confirmed by the investigation of the model with a ring-exchange term, which shows that there is a transition between the plaquette state and the chiral state at a finite value of the ring-exchange term.

  5. Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin

    2016-01-01

    In this study, the global quantum correlation, monogamy relation and quantum phase transition of the Heisenberg XXZ model are investigated by the method of quantum renormalization group. We obtain, analytically, the expressions of the global negativity, the global measurement-induced disturbance and the monogamy relation for the system. The result shows that for a three-site block state, the partial transpose of an asymmetric block can get stronger entanglement than that of the symmetric one. The residual entanglement and the difference of the monogamy relation of measurement-induced disturbance show a scaling behavior with the size of the system becoming large. Moreover, the monogamy nature of entanglement measured by negativity exists in the model, while the nonclassical correlation quantified by measurement-induced disturbance violates the monogamy relation and demonstrates polygamy.

  6. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  7. Magnetic order in the two-dimensional compass-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Vladimirov, Artem A.; Ihle, Dieter; Plakida, Nikolay M.

    2015-06-01

    A Green-function theory for the dynamic spin susceptibility in the square-lattice spin-1/2 antiferromagnetic compass-Heisenberg model employing a generalized mean-field approximation is presented. The theory describes magnetic long-range order (LRO) and short-range order (SRO) at arbitrary temperatures. The magnetization, Néel temperature TN, specific heat, and uniform static spin susceptibility χ are calculated self-consistently. As the main result, we obtain LRO at finite temperatures in two dimensions, where the dependence of TN on the compass-model interaction is studied. We find that TN is close to the experimental value for Ba2IrO4. The effects of SRO are discussed in relation to the temperature dependence of χ.

  8. Matrix Product State, Quantum Entanglement, and Criticality in the One-Dimensional Dimerized Antiferromagnetic Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Tian, Guang-Shan

    2012-08-01

    The matrix product state (MPS) is utilized to investigate the ground state properties and quantum phase transitions (QPTs) of the dimerized antiferromagnetic Heisenberg (DAH) model. The ground state MPS wavefunctions determined by the infinite time-evolving block decimation (iTEBD) algorithm are shown to be very efficient descriptions of DAH model. In the thermodynamic limit, the quantum entanglement, the bond energy, and the nearest-neighbor correlations are calculated. It is revealed that the singular behavior of the bipartite entanglement can detect the QPTs directly. The critical point Jc2 = 1.0 is determined evidently, and the quantum phase transition is argued to belong to the second-order category. At the critical point, logarithmic divergent character of the block entanglement is observed, and the system can be described by a free bosonic field theory.

  9. Spin conductivity of the two-dimensional anisotropic frustrated Heisenberg model in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-07-01

    We use the SU(3) Schwinger's boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents a single-ion anisotropy and J1 and J2 exchange interactions. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = < tz† > = t. Our results show a metallic spin transport for ω > 0 and a superconductor spin transport in the limit of DC conductivity, ω → 0, where σ(ω) tends to infinity in this limit of ω.

  10. Enhancing the Trace Norm and Bures Norm Measurement-Induced Nonlocality in the Heisenberg XYZ Model

    NASA Astrophysics Data System (ADS)

    Xie, Yu-Xia; Liu, Jing; Ma, Hong

    2016-07-01

    Nonlocality is one unique characteristic of quantum mechanics and an essential resource for quantum communication and computation. We investigate two measures of the well-defined geometric measurement-induced nonlocality (MIN) in the Heisenberg XYZ model, and found that considerable enhancement of the MINs can be achieved by tuning strength of the anisotropic parameter, the J z coupling, and the Dzyaloshinsky-Moriya (DM) interaction of the model. Particularly, the maxima of the two MINs can be obtained when the strength of the J z coupling or the DM interaction approaches infinity. We have also demonstrated the singular behaviors of the two MINs such as the nonunique states ordering and the sudden change behaviors.

  11. A quantum fidelity study of the anisotropic next-nearest-neighbour triangular lattice Heisenberg model

    NASA Astrophysics Data System (ADS)

    Thesberg, Mischa; Sørensen, Erik S.

    2014-10-01

    Ground- and excited-state quantum fidelities in combination with generalized quantum fidelity susceptibilites, obtained from exact diagonalizations, are used to explore the phase diagram of the anisotropic next-nearest-neighbour triangular Heisenberg model. Specifically, the J‧ - J2 plane of this model, which connects the J1 - J2 chain and the anisotropic triangular lattice Heisenberg model, is explored using these quantities. Through the use of a quantum fidelity associated with the first excited-state, in addition to the conventional ground-state fidelity, the BKT-type transition and Majumdar-Ghosh point of the J1 - J2 chain (J‧ = 0) are found to extend into the J‧ - J2 plane and connect with points on the J2 = 0 axis thereby forming bounded regions in the phase diagram. These bounded regions are then explored through the generalized quantum fidelity susceptibilities χρ, χ120\\circ , χD and χCAF which are associated with the spin stiffness, 120° spiral order parameter, dimer order parameter and collinear antiferromagnetic order parameter respectively. These quantities are believed to be extremely sensitive to the underlying phase and are thus well suited for finite-size studies. Analysis of the fidelity susceptibilities suggests that the J‧, J2 ≪ J phase of the anisotropic triangular model is either a collinear antiferromagnet or possibly a gapless disordered phase that is directly connected to the Luttinger phase of the J1 - J2 chain. Furthermore, the outer region is dominated by incommensurate spiral physics as well as dimer order.

  12. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  13. Heisenberg's observability principle

    NASA Astrophysics Data System (ADS)

    Wolff, Johanna

    2014-02-01

    Werner Heisenberg's 1925 paper 'Quantum-theoretical re-interpretation of kinematic and mechanical relations' marks the beginning of quantum mechanics. Heisenberg famously claims that the paper is based on the idea that the new quantum mechanics should be 'founded exclusively upon relationships between quantities which in principle are observable'. My paper is an attempt to understand this observability principle, and to see whether its employment is philosophically defensible. Against interpretations of 'observability' along empiricist or positivist lines I argue that such readings are philosophically unsatisfying. Moreover, a careful comparison of Heisenberg's reinterpretation of classical kinematics with Einstein's argument against absolute simultaneity reveals that the positivist reading does not fit with Heisenberg's strategy in the paper. Instead the appeal to observability should be understood as a specific criticism of the causal inefficacy of orbital electron motion in Bohr's atomic model. I conclude that the tacit philosophical principle behind Heisenberg's argument is not a positivistic connection between observability and meaning, but the idea that a theory should not contain causally idle wheels.

  14. Phase transition of anisotropic frustrated Heisenberg model on the square lattice.

    PubMed

    Hu, Ai-Yuan; Wang, Huai-Yu

    2016-01-01

    We have investigated the J_{1}-J_{2} Heisenberg model with exchange anisotropy on a square lattice and focused on possible AF1-AF2 phase transition below the Néel point and its dependence on the exchange anisotropy, where AF1 and AF2 represent Néel state and collinear state, respectively. We use the double-time Green's-function method and adopt the random-phase approximation. The less the exchange anisotropy, the stronger the quantum fluctuation of the system will be. Both the Néel state and collinear state can exist and have the same Néel temperature for arbitrary anisotropy and spin quantum number S when J_{2}/J_{1}=0.5. Under such parameters, the calculated free energies show that there may occur a first-order phase transition between the Néel state and collinear state for an arbitrary S when anisotropy is not strong. PMID:26871025

  15. Sudden death of distillability in a two-qutrit anisotropic Heisenberg spin model

    NASA Astrophysics Data System (ADS)

    Guo, You-neng; Fang, Mao-fa; Zou, Hong-mei; Zhang, Shi-yang; Liu, Xiang

    2015-06-01

    Sudden death of distillability for a two-qutrit anisotropic Heisenberg XX chain with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous magnetic field is studied in detail. By using the negativity and realignment criterion, we show that certain initial prepared free entangled states may become bound entangled or separable states in a finite time. Moreover, the influences of the isotropic bilinear interaction parameter, the external magnetic field strength, the DM interaction parameter, as well as the intrinsic decoherence parameter on the possibility of distillability sudden death (DSD) have been studied. The results show, controlling the isotropic bilinear interaction parameter, the external magnetic field strength, the DM interaction parameter, as well as the intrinsic decoherence parameter, can accelerate the possibility of DSD in the present model.

  16. Phase diagram of the classical Heisenberg model in a trimodal random field distribution

    NASA Astrophysics Data System (ADS)

    Santos-Filho, A.; Albuquerque, D. F. de; Santos-Filho, J. B.; Batista, T. S. Araujo

    2016-11-01

    The classical spin 1 / 2 Heisenberg model on a simple cubic lattice, with fluctuating bond interactions between nearest neighbors and in the presence of a random magnetic field, is investigated by effective field theory based on two-spin cluster. The random field is drawn from the asymmetric and anisotropic trimodal probability distribution. The fluctuating bond is extracted from the symmetric and anisotropic bimodal probability. We estimate the transition temperatures, and the phase diagram in the Tc- h, Tc- p and Tc - α planes. We observe that the temperature of the tricritical point decreases with the increase of disorder in exchange interactions until the system ceases to display tricritical behavior. The disorder of the interactions and reentrant phenomena depends on the trimodal distribution of the random field.

  17. EuCo2P2 : A model molecular-field helical Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.

    2016-07-01

    The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the a b plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ , high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperature T ≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ˜T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2 , respectively. These values are enhanced by a factor of ˜2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the a b plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χa b(T ≤TN) .

  18. EuCo2P2: A Model Molecular-Field Helical Heisenberg Antiferromagnet

    DOE PAGES

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.

    2016-07-19

    The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperature T≤TNmore » with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. Additionally, the calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χab(T≤TN).« less

  19. EuCo2P2: A model molecular-field helical Heisenberg antiferromagnet

    DOE PAGES

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.

    2016-07-19

    Here, the metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperaturemore » T ≤ TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χab(T ≤ TN).« less

  20. Our Electron Model vindicates Schr"odinger's Incomplete Results and Require Restatement of Heisenberg's Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    McLeod, David; McLeod, Roger

    2008-04-01

    The electron model used in our other joint paper here requires revision of some foundational physics. That electron model followed from comparing the experimentally proved results of human vision models using spatial Fourier transformations, SFTs, of pincushion and Hermann grids. Visual systems detect ``negative'' electric field values for darker so-called ``illusory'' diagonals that are physical consequences of the lens SFT of the Hermann grid, distinguishing this from light ``illusory'' diagonals. This indicates that oppositely directed vectors of the separate illusions are discretely observable, constituting another foundational fault in quantum mechanics, QM. The SFT of human vision is merely the scaled SFT of QM. Reciprocal space results of wavelength and momentum mimic reciprocal relationships between space variable x and spatial frequency variable p, by the experiment mentioned. Nobel laureate physicist von B'ek'esey, physiology of hearing, 1961, performed pressure input Rect x inputs that the brain always reports as truncated Sinc p, showing again that the brain is an adjunct built by sight, preserves sign sense of EMF vectors, and is hard wired as an inverse SFT. These require vindication of Schr"odinger's actual, but incomplete, wave model of the electron as having physical extent over the wave, and question Heisenberg's uncertainty proposal.

  1. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field.

    PubMed

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-27

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  2. Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model

    NASA Astrophysics Data System (ADS)

    Coletta, Tommaso; Tóth, Tamás A.; Penc, Karlo; Mila, Frédéric

    2016-08-01

    Motivated by the numerous examples of 1/3 magnetization plateaux in the triangular-lattice Heisenberg antiferromagnet with spins ranging from 1/2 to 5/2, we revisit the semiclassical calculation of the magnetization curve of that model, with the aim of coming up with a simple method that allows one to calculate the full magnetization curve and not just the critical fields of the 1/3 plateau. We show that it is actually possible to calculate the magnetization curve including the first quantum corrections and the appearance of the 1/3 plateau entirely within linear spin-wave theory, with predictions for the critical fields that agree to order 1 /S with those derived a long time ago on the basis of arguments that required going beyond linear spin-wave theory. This calculation relies on the central observation that there is a kink in the semiclassical energy at the field where the classical ground state is the collinear up-up-down structure and that this kink gives rise to a locally linear behavior of the energy with the field when all semiclassical ground states are compared to each other for all fields. The magnetization curves calculated in this way for spin 1/2, 1, and 5/2 are shown to be in good agreement with available experimental data.

  3. Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Hui; Zhang, Bing-Bing; Li, Lei

    2015-06-01

    Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated by making use of concurrence C and quantum discord (QD). Firstly, we show that both the concurrence and QD exhibit oscillation with time whereas a remarkable difference between them is presented: there is an “entanglement intermittently sudden death” phenomenon in the concurrence but not in the QD, which is valid for all the initial states of this system. Also, the interval time of entanglement sudden death is found to be strongly dependent on the initial states, the inhomogeneous magnetic field b and the anisotropic parameter Δ. Then, it implies that the steady concurrence and QD can be obtained in the long-time limit, which means that the environmental decoherence cannot entirely destroy the quantum correlation, the variation of the uniform magnetic field B and the anisotropic parameter can change the magnitude of the steady concurrence and QD evidently whereas the parameter b cannot. In addition, based on the analysis of the steady concurrence and QD with t →∞, we give the reason why the magnitude of the steady concurrence and QD is so complicated with the change of the parameters B and Δ, whereas the parameter b is independent of the steady concurrence and QD. Project supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the Special Funds of the National Natural Science Foundation of China (Grant No. 11247247).

  4. Thermal entanglement of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain.

    PubMed

    Ananikian, N S; Ananikyan, L N; Chakhmakhchyan, L A; Rojas, Onofre

    2012-06-27

    The entanglement quantum properties of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain were analyzed. Due to the separable nature of the Ising-type exchange interactions between neighboring Heisenberg dimers, calculation of the entanglement can be performed exactly for each individual dimer. Pairwise thermal entanglement was studied in terms of the isotropic Ising-Heisenberg model and analytical expressions for the concurrence (as a measure of bipartite entanglement) were obtained. The effects of external magnetic field H and next-nearest neighbor interaction J(m) between nodal Ising sites were considered. The ground state structure and entanglement properties of the system were studied in a wide range of coupling constant values. Various regimes with different values of ground state entanglement were revealed, depending on the relation between competing interaction strengths. Finally, some novel effects, such as the two-peak behavior of concurrence versus temperature and coexistence of phases with different values of magnetic entanglement, were observed.

  5. Exact Realization of a Quantum-Dimer Model in Heisenberg Antiferromagnets on a Diamond-Like Decorated Lattice

    NASA Astrophysics Data System (ADS)

    Hirose, Yuhei; Oguchi, Akihide; Fukumoto, Yoshiyuki

    2016-09-01

    We study Heisenberg antiferromagnets on a diamond-like decorated square lattice perturbed by further neighbor couplings. The second-order effective Hamiltonian is calculated and the resultant Hamiltonian is found to be a square-lattice quantum-dimer model with a finite hopping amplitude and no repulsion, which suggests the stabilization of the plaquette phase. Our recipe for constructing quantum-dimer models can be adopted for other lattices and provides a route for the experimental realization of quantum-dimer models.

  6. Existence of Néel Order in the S=1 Bilinear-Biquadratic Heisenberg Model via Random Loops

    NASA Astrophysics Data System (ADS)

    Lees, Benjamin

    2016-10-01

    We consider the general spin-1 SU(2) invariant Heisenberg model with a two-body interaction. A random loop model is introduced and relation to quantum spin systems is proved. Using this relation it is shown that for dimensions 3 and above Néel order occurs for a large range of values of the relative strength of the bilinear (- J 1) and biquadratic (- J 2) interaction terms. The proof uses the method of reflection positivity and infrared bounds. Links between spin correlations and loop correlations are proved.

  7. Entanglement and teleportation through a two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Guo, J. L.; Song, H. S.

    2010-01-01

    We study the thermal entanglement in the two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya (DM) interaction, and teleport an unknown state using the model in thermal equilibrium state as a quantum channel. The effects of DM interaction, including Dx and Dz interaction, the anisotropy and temperature on the entanglement and fully entangled fraction are considered. What deserves mentioning here is that for the antiferromagnetic case, the Dx interaction can be more helpful for increasing the entanglement and critical temperature than Dz, but this cannot for teleportation.

  8. Impurity entanglement in the J-J2-δ quantum spin chain

    NASA Astrophysics Data System (ADS)

    Deschner, Andreas; Sørensen, Erik S.

    2011-10-01

    The contribution to the entanglement of an impurity attached to one end of a J-J2-δ quantum spin chain (S = 1/2) is studied. Two different measures of the impurity contribution to the entanglement have been proposed: the impurity entanglement entropy Simp and the negativity {N} . The first, Simp, is based on a subtractive procedure where the entanglement entropy in the absence of the impurity is subtracted from results with the impurity present. The other, {N} , is the negativity of a part of the system separated from the impurity and the impurity itself. In this paper we compare the two measures and discuss their similarities and the differences between them. In the J-J2-δ model it is possible to perform very precise variational calculations close to the Majumdar-Ghosh point (J2 = J/2 and δ = 0) where the system is gapped with a dimerized ground state. We describe in detail how such calculations are done and how they can be used to calculate {N} as well as Simp for any impurity coupling JK. We then study the complete crossover in the impurity entanglement as JK is varied between 0 and 1 close to the Majumdar-Ghosh point. In particular, we study the impurity entanglement when a staggered nearest neighbour interaction proportional to δ is introduced. In this case we observe a very rapid reduction in the impurity entanglement as δ is increased.

  9. Bichromatic magneto-optical trapping for J →J ,J -1 configurations

    NASA Astrophysics Data System (ADS)

    Cournol, Anne; Pillet, Pierre; Lignier, Hans; Comparat, Daniel

    2016-05-01

    A magneto-optical trap (MOT) of atoms or molecules is studied when two lasers of different detunings and polarization are used. Especially for J →J ,J -1 transitions, a scheme using more than one frequency per transition and different polarization is required to create a significant force. Calculations have been performed with the simplest forms of the J →J -1 case (i.e., J''=1 →J'=0 ) and J →J case (i.e., J''=1 /2 →J'=1 /2 ). A one-dimensional (1D) model is presented and a complete 3D simulation using rate equations confirms the results. Even in the absence of Zeeman effect in the excited state, where no force is expected in the single laser field configuration, we show that efficient cooling and trapping forces are restored in our configuration. We study this mechanism for the C2- molecular anion as a typical example of the interplay between the two simple transitions J →J ,J -1 .

  10. Magnetic correlations beyond the Heisenberg model in an Fe monolayer on Rh(0 0 1)

    NASA Astrophysics Data System (ADS)

    Deák, A.; Palotás, K.; Szunyogh, L.; Szabó, I. A.

    2015-04-01

    Motivated by a recent experimental observation of a complex magnetic structure (Takada et al 2013 J. Magn. Magn. Mater. 329 95) we present a theoretical study of the magnetic structure of an Fe monolayer deposited on Rh(0 0 1). We use a classical spin Hamiltonian with parameters obtained from ab initio calculations and go beyond the usual anisotropic Heisenberg model by including isotropic biquadratic interactions. Zero-temperature Landau-Lifshitz-Gilbert spin dynamics simulations lead to a complex collinear spin configuration that, however, contradicts experimental findings. We thus conclude that higher order multi-spin interactions are likely needed to account for the magnetic ordering of the system.

  11. Variational Monte Carlo study of a chiral spin liquid in the extended Heisenberg model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Zhu, Wei; Zhang, Yi; Gong, Shoushu; Becca, Federico; Sheng, D. N.

    2015-01-01

    We investigate the extended Heisenberg model on the kagome lattice by using Gutzwiller projected fermionic states and the variational Monte Carlo technique. In particular, when both second- and third-neighbor superexchanges are considered, we find that a gapped spin liquid described by nontrivial magnetic fluxes and long-range chiral-chiral correlations is energetically favored compared to the gapless U(1) Dirac state. Furthermore, the topological Chern number, obtained by integrating the Berry curvature, and the degeneracy of the ground state, by constructing linearly independent states, lead us to identify this flux state as the chiral spin liquid with a C =1 /2 fractionalized Chern number.

  12. Classification of magnons in rotated ferromagnetic Heisenberg model and their competing responses in transverse fields

    NASA Astrophysics Data System (ADS)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2016-07-01

    In this paper, we study the rotated ferromagnetic Heisenberg model (RFHM) in two different transverse fields, hx and hz, which can be intuitively visualized as studying spin-orbit coupling (SOC) effects in two-dimensional (2D) Ising or anisotropic X Y model in a transverse field. At a special SOC class, it was found in our previous work [Phys. Rev. A 92, 043609 (2015), 10.1103/PhysRevA.92.043609] that the RFHM at a zero field owns an exact spin-orbit coupled ground state called the Y -x state. It supports not only the commensurate magnons (called C -C0 and C -Cπ ), but also the incommensurate magnons (called C-IC). These magnons are nonrelativistic, not embedded in the exact ground state, so need to be thermally excited or generated by various external probes. Their dramatic response under a longitudinal hy field was recently worked out by Sun et al. [arXiv:1502.05338]. Here we find they respond very differently under the two transverse fields. Any hx (hz) introduces quantum fluctuations to the ground state and changes the collinear Y -x state to a canted coplanar Y X -x (Y Z -x ) state. The C -C0,C -Cπ , and C-IC magnons become relativistic and sneak into the quantum ground state. We determine the competing boundaries among the C -C0,C -Cπ , and C-IC magnons, especially the detailed dispersions of the C-IC magnons inside the canted phases, which can be mapped out by the transverse spin structure factors. As hx (hz) increases further, the C -C0 magnons always win the competition and emerge as the seeds to drive a transition from the Y X -x (or Y Z -x ) to the ferromagnetic along the X (orZ ) direction called the X -FM (or Z -FM) phase. We show that the transition is in the 3D Ising universality class and it becomes the 3D X Y transition at the two Abelian points. We evaluate these magnons' contributions to magnetization and specific heat at low temperatures which can be measured by various established experimental techniques. The nature of the finite

  13. Yangian symmetry in molecule {l_brace}V6{r_brace} and four-spin Heisenberg model

    SciTech Connect

    Peng Xubiao; Bai Chengming; Ge Molin

    2011-02-15

    The symmetry operator Q = Y{sup 2} is introduced to re-describe the Heisenberg spin triangles in the {l_brace}V6{r_brace} molecule, where Y stands for the Yangian operator which can be viewed as special form of Dzyaloshinsky-Moriya (DM) interaction for spin 1/2 systems. Suppose a parallelogram Heisenberg model that is comprised of four 1/2 -spins commutes with Q, which mean that it possesses Yangian symmetry, we show that the ground state of the Hamiltonian H{sub 4} for the model allows to take the total spin S = 1 by choosing some suitable exchange constants in H{sub 4}. In analogy to the molecule {l_brace}V6{r_brace} where the two triangles interact through Yangian operator we then give the magnetization for the theoretical molecule '{l_brace}V8{r_brace}' model which is comprised of two parallelograms. Following the example of molecule {l_brace}V15{r_brace}, we give another theoretical molecule model regarding the four 1/2 -spins system with total spin S = 1 and predict the local moments to be 9/(10) {mu}{sub B},1/(10) {mu}{sub B},1/(10) {mu}{sub B},9/(10) {mu}{sub B}, respectively.

  14. Presence or absence of order by disorder in a highly frustrated region of the spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices.

    PubMed

    Strečka, Jozef; Ekiz, Cesur

    2015-05-01

    The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three interconnected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes upon increasing the coordination number of the underlying Husimi lattice. PMID:26066155

  15. Modified Heisenberg model for the zig-zag structure in multiferroic RMn{sub 2}O{sub 5}

    SciTech Connect

    Bahoosh, Safa Golrokh; Wesselinowa, Julia M.; Trimper, Steffen

    2015-08-28

    The class of RMn{sub 2}O{sub 5} (R = Ho, Tb, Y, Eu) compounds offers multiferroic properties where the refined magnetic zig-zag order breaks the inversion symmetry. Varying the temperature, the system undergoes a magnetic and a subsequent ferroelectric phase transition where the ferroelectricity is magnetically induced. We propose a modified anisotropic Heisenberg model that can be used as a tractable analytical model studying the properties of those antiferromagnetic zig-zag spin chains. Based on a finite temperature Green's function method, it is shown that the polarization is induced solely by different exchange couplings of the two different Mn{sup 4+} and Mn{sup 3+} magnetic ions. We calculate the excitation energy of the spin system for finite temperatures, which for its part determines the temperature dependent magnetization and polarization. The ferroelectric phase transition is manifested as a kink in the excitation energy. The variation of the polarization by an external magnetic field depends strongly on the direction of that field. Whereas, the polarization in b-direction increases with an external magnetic field as well in b-direction it can be switched for strong fields in a-direction. The results based on that modified Heisenberg model are in qualitative agreement with experimental data.

  16. Comments on ""Lake Woebegone," Twenty Years Later" by J. J. Cannell, MD

    ERIC Educational Resources Information Center

    McRae, D. J.

    2006-01-01

    This article presents the author's comments on ""Lake Woebegone," Twenty Years Later" by J. J. Cannell, MD. J. J. Cannell's article on the so-called "Lake Woebegone" effect for K-12 educational testing systems is mostly an historical account of technical issues and policy considerations that led in part to development of new types of test…

  17. Phase structure of the anisotropic antiferromagnetic Heisenberg model on a layered triangular lattice: Spiral state and deconfined spin liquid

    SciTech Connect

    Nakane, Kazuya; Kamijo, Takeshi; Ichinose, Ikuo

    2011-02-01

    In the present paper, we study a spin-1/2 antiferromagnetic (AF) Heisenberg model on layered anisotropic triangular lattice and obtain its phase structure. We use the Schwinger bosons for representing spin operators and also a coherent-state path integral for calculating physical quantities. Finite-temperature properties of the system are investigated by means of the numerical Monte-Carlo simulations. A detailed phase diagram of the system is obtained by calculating internal energy, specific heat, spin correlation functions, etc. There are AF Neel, paramagnetic, and spiral states. Turning on the plaquette term (i.e., the Maxwell term on a lattice) of an emergent U(1) gauge field that flips a pair of parallel spin-singlet bonds, we found that there appears a phase that is regarded as a deconfined spin-liquid state, though 'transition' to this phase from the paramagnetic phase is not of second order but a crossover. In that phase, the emergent gauge boson is a physical gapless excitation coupled with spinons. These results support our previous study on an AF Heisenberg model on a triangular lattice at vanishing temperature.

  18. Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Belliard, Samuel; Crampé, Nicolas

    2013-11-01

    We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.

  19. Dissipative phases in the one-dimensional Kondo-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lobos, Alejandro; Cazalilla, Miguel A.; Chudzinski, Piotr

    2012-02-01

    Atomic-sized magnetic structures built on clean metallic surfaces are currently under intense investigation [1]. Besides their potential uses in quantum information storage and processing, these systems allow to ask fundamental questions in condensed matter physics. In particular, the interplay between the Kondo effect (i.e., the screening of the atomic magnetic moment by conduction electrons) and Heisenberg exchange interactions between magnetic impurities has been recently investigated with scanning tunneling microscopy (STM) [2]. Inspired by the above developments, we study an one-dimensional chain of S=1/2 Kondo impurities coupled by anisotropic Heisenberg-Ising exchange and embedded in a two-dimensional metallic substrate. Remarkably, in the case of easy-plane exchange, we find a novel quantum phase exhibiting long-range order at zero temperature. We discuss implications of the existence of this phase for possible experiments. References: [1] R. Wiesendanger, RMP 81, 1495 (2009). [2] P. Wahl et al, PRL 98, 056601 (2007) and references therein.

  20. Berry phase in Heisenberg representation

    NASA Technical Reports Server (NTRS)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  1. Phase transition in ultrathin magnetic films with long-range interactions: Monte Carlo simulation of the anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Rapini, M.; Dias, R. A.; Costa, B. V.

    2007-01-01

    Ultrathin magnetic films can be modeled as an anisotropic Heisenberg model with long-range dipolar interactions. It is believed that the phase diagram presents three phases: An ordered ferromagnetic phase (I), a phase characterized by a change from out-of-plane to in-plane in the magnetization (II), and a high-temperature paramagnetic phase (III). It is claimed that the border lines from phase I to III and II to III are of second order and from I to II is first order. In the present work we have performed a very careful Monte Carlo simulation of the model. Our results strongly support that the line separating phases II and III is of the BKT type.

  2. Effects of a space modulation on the behavior of a 1D alternating Heisenberg spin-1/2 model.

    PubMed

    Mahdavifar, Saeed; Abouie, Jahanfar

    2011-06-22

    The effects of a magnetic field (h) and a space modulation (δ) on the magnetic properties of a one-dimensional antiferromagnetic-ferromagnetic Heisenberg spin-1/2 model have been studied by means of numerical exact diagonalization of finite size systems, the nonlinear σ model, and a bosonization approach. The space modulation is considered on the antiferromagnetic couplings. At δ = 0, the model is mapped to a gapless Lüttinger liquid phase by increasing the magnetic field. However, the space modulation induces a new gap in the spectrum of the system and the system experiences different quantum phases which are separated by four critical fields. By opening the new gap, a magnetization plateau appears at ½M(sat). The effects of the space modulation are reflected in the emergence of a plateau in other physical functions such as the F-dimer and the bond-dimer order parameters, and the pair-wise entanglement. PMID:21613724

  3. Constructive interference between disordered couplings enhances multiparty entanglement in quantum Heisenberg spin glass models

    NASA Astrophysics Data System (ADS)

    Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R.; Sen(De, Aditi; Sen, Ujjwal

    2016-08-01

    Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities.

  4. Incommensurate phase of a triangular frustrated Heisenberg model studied via Schwinger-boson mean-field theory

    NASA Astrophysics Data System (ADS)

    Li, Peng; Su, Haibin; Dong, Hui-Ning; Shen, Shun-Qing

    2009-08-01

    We study a triangular frustrated antiferromagnetic Heisenberg model with nearest-neighbor interactions J1 and third-nearest-neighbor interactions J3 by means of Schwinger-boson mean-field theory. By setting an antiferromagnetic J3 and varying J1 from positive to negative values, we disclose the low-temperature features of its interesting incommensurate phase. The gapless dispersion of quasiparticles leads to the intrinsic T2 law of specific heat. The magnetic susceptibility is linear in temperature. The local magnetization is significantly reduced by quantum fluctuations. We address possible relevance of these results to the low-temperature properties of NiGa2S4. From a careful analysis of the incommensurate spin wavevector, the interaction parameters are estimated as J1≈-3.8755 K and J3≈14.0628 K, in order to account for the experimental data.

  5. Dynamics of non-planar vortices in the classical 2D anisotropic heisenberg model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kamppeter, T.; Mertens, F. G.; Sánchez, Angel; Gronbech-Jensen, N.; Bishop, A. R.; Dominguez-Adame, F.

    The 2-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry bears non-planar vortices which exhibit a localized structure of the z-components of the spins around the vortex center. In order to study the dynamics of these vortices under thermal fluctuations we use the Landau-Lifshitz equation and add white noise and Gilbert damping. Using a collective variable theory we derive an equation of motion with stochastic forces which are shown to represent white noise with an effective diffusion constant. We compare the results with Langevin dynamics simulations for the Landau-Lifshitz equation and find three temperature regimes: For low temperatures the dynamics is described by a 3rd-order equation of motion, for intermediate temperatures by a 1st-order equation. For higher temperatures, but still below the Kosterlitz-Thouless transition temperature, the spontaneous appearance of vortex-antivortex pairs does not allow a single-particle description.

  6. Field-Induced Quantum Phase Transitions in S = 1/2 J1-J2 Heisenberg Model on Square Lattice

    NASA Astrophysics Data System (ADS)

    Morita, Katsuhiro; Shibata, Naokazu

    2016-09-01

    We study the magnetic field dependence of the ground state of the S = 1/2 J1-J2 Heisenberg model on the square lattice by the density matrix renormalization group (DMRG) method. With the use of the sine-square deformation, we obtain eight different ground states including plaquette valence-bond crystal with a finite spin gap, transverse Néel, transverse stripe, 1/2 magnetization plateau with up-up-up-down (uuud), and three new states we named the Y-like, V-like, and Ψ states around J2/J1 = 0.55-0.6. The phase transitions from the transverse Néel (at J2/J1 = 0.55) and stripe (at J2/J1 = 0.6) states to the uuud and Y-like states, respectively, are discontinuous, as in the case of a spin flop.

  7. DETAIL OF CORNERSTONE, WHICH STATES "J.J. DANIELS, BUILDER 1861." NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNERSTONE, WHICH STATES "J.J. DANIELS, BUILDER 1861." NOTE ALSO IRON STRAP AT EAST CORNER OF ABUTMENT. - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  8. Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Orth, Peter P.

    2014-03-01

    In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.

  9. Mean Field Theory of a Coupled Heisenberg Model and Its Application to an Organic Antiferromagnet with Magnetic Anions

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhiro; Shimahara, Hiroshi

    2016-02-01

    We examine the mean field theory of a uniaxial coupled Heisenberg antiferromagnet with two subsystems, one of which consists of strongly interacting small spins and the other consists of weakly interacting large spins. We reanalyze the experimental data of specific heat and magnetic susceptibility obtained by previous authors for the organic compound λ-(BETS)2FeCl4 at low temperatures, where BETS stands for bis(ethylenedithio)tetraselenafulvalene. The model parameters for this compound are evaluated, where the applicability of the theory is checked. As a result, it is found that J1 ≫ J12 ≫ J2, where J1, J2, and J12 denote the exchange coupling constant between π spins, that between 3d spins, and that between π and 3d spins, respectively. At the low-temperature limit, both sublattice magnetizations of the 3d and π spins are saturated, and the present model is reduced to the Schottky model, which successfully explains experimental observations in previous studies. As temperature increases, fluctuations of 3d spins increase, while π spins remain almost saturated. Near the critical temperature, both spins fluctuate significantly, and thus the mean field approximation breaks down. It is revealed that the magnetic anisotropy, which may be crucial to the antiferromagnetic long-range order, originates from J12 rather than from J2 and that the angle between the magnetic easy-axis and the crystal c-axis is approximately 26-27° in the present effective model.

  10. Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3.

    PubMed

    Singh, Yogesh; Manni, S; Reuther, J; Berlijn, T; Thomale, R; Ku, W; Trebst, S; Gegenwart, P

    2012-03-23

    Combining thermodynamic measurements with theoretical calculations we demonstrate that the iridates A2IrO3 (A=Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S=1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from θ≈-125  K for Na2IrO3 to θ≈-33  K for Li2IrO3, while the ordering temperature remains roughly the same T(N)≈15  K. Using functional renormalization group calculations we show that this evolution of θ and T(N) as well as the low temperature zigzag magnetic order can be captured within this extended HK model. We estimate that Na2IrO3 is deep in a magnetically ordered regime, while Li2IrO3 appears to be close to a spin-liquid regime.

  11. Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates A2IrO3

    SciTech Connect

    Singh Y.; Berlijn T.; Singh, Y.; Manni, S.; Reuther, J.; Thomale, R.; Ku, W.; Trebst, S.; Gegenwart, P.

    2012-03-23

    Combining thermodynamic measurements with theoretical calculations we demonstrate that the iridates A{sub 2}IrO{sub 3} (A = Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S = 1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from {Theta} {approx} -125 K for Na{sub 2}IrO{sub 3} to {Theta} {approx} -33 K for Li{sub 2}IrO{sub 3}, while the ordering temperature remains roughly the same T{sub N} {approx} 15 K. Using functional renormalization group calculations we show that this evolution of {Theta} and T{sub N} as well as the low temperature zigzag magnetic order can be captured within this extended HK model. We estimate that Na{sub 2}IrO{sub 3} is deep in a magnetically ordered regime, while Li{sub 2}IrO{sub 3} appears to be close to a spin-liquid regime.

  12. Heisenberg's First Paper

    ERIC Educational Resources Information Center

    Cassidy, David C.

    1978-01-01

    Describes some of the discussion, correspondances and assumptions of Heisenberg. Includes clarifying and defending his explanation of the anomalous Zeeman Effect to the Quantum Physicists of his time. (GA)

  13. Multiple magnetization plateaus and magnetic structures in the S =1/2 Heisenberg model on the checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Morita, Katsuhiro; Shibata, Naokazu

    2016-10-01

    We study the ground state of the S =1/2 Heisenberg model on the checkerboard lattice in a magnetic field by the density matrix renormalization group method with the sine-square deformation. We obtain magnetization plateaus at M /Msat=0 ,1/4 ,3/8 ,1/2 , and 3/4 , where Msat is the saturated magnetization. The obtained 3/4 plateau state is consistent with the exact result, and the 1/2 plateau is found to have a four-spin resonating loop structure similar to the six-spin loop structure of the 1/3 plateau of the kagome lattice. Different four-spin loop structures are obtained in the 1/4 and 3/8 plateaus but no corresponding states exist in the kagome lattice. The 3/8 plateau has a unique magnetic structure of three types of four-spin local quantum states in a 4 √{2 }×2 √{2 } magnetic unit cell with a 16-fold degeneracy.

  14. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    NASA Astrophysics Data System (ADS)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  15. Phase transitions in a frustrated biquadratic Heisenberg model with coupled orbital degrees of freedom for iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhuo, W. Z.; Qin, M. H.; Dong, S.; Li, X. G.; Liu, J.-M.

    2016-03-01

    In this paper, we study a biquadratic Heisenberg model with coupled orbital degrees of freedom by using a Monte Carlo simulation to investigate the phase transitions in iron-based superconductors. The antiferroquadrupolar state, which may be related to the magnetism of FeSe [R. Yu and Q. Si, Phys. Rev. Lett. 115, 116401 (2015), 10.1103/PhysRevLett.115.116401], is stabilized by the anisotropic biquadratic interaction induced by a ferro-orbital-ordered state. It is revealed that the orbital and nematic transitions occur at the same temperature for all the cases, supporting the mechanism of the orbital-driven nematicity as revealed in most recent experiments [S. H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B. Büchner, Nat. Mater. 14, 210 (2015), 10.1038/nmat4138]. In addition, it is suggested that the orbital interaction may lead to the separation of the structural and magnetic phase transitions, as observed in many families of iron pnictides.

  16. 7. Detail view of 1866 cornerstone (J.J. Havis and M.F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of 1866 cornerstone (J.J. Havis and M.F. Echols, Builders). This cornerstone was moved to the third floor, west elevation of an addition built in 1899. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL

  17. Néel to spin-Peierls transition in a quasi-one-dimensional Heisenberg model coupled to bond phonons

    NASA Astrophysics Data System (ADS)

    Pillay, Jason Cornelius; Wierschem, Keola; Sengupta, Pinaki

    2013-08-01

    The zero and finite temperature spin-Peierls transitions in a quasi-one-dimensional spin-(1)/(2) Heisenberg model coupled to adiabatic bond phonons is investigated using the stochastic series expansion (SSE) quantum Monte Carlo (QMC) method. The quantum phase transition from a gapless Néel state to a spin-gapped Peierls state is studied in the parameter space spanned by spatial anisotropy, interchain coupling strength, and spin-lattice coupling strength. It is found that for any finite interchain coupling, the transition to a dimerized Peierls ground state only occurs when the spin-lattice coupling exceeds a finite, nonzero critical value. This is in contrast to the pure 1D model (zero interchain coupling), where adiabatic/classical phonons lead to a dimerized ground state for any nonzero spin-phonon interaction. The phase diagram in the parameter space shows that for a strong interchain coupling, the relation between the interchain coupling and the critical value of the spin-phonon interaction is linear whereas for weak interchain coupling, this behavior is found to have a natural logarithmlike relation. No region was found to have a long range magnetic order and dimerization occurring simultaneously. Instead, the Néel state order vanishes simultaneously with the setting in of the spin-Peierls state. For the thermal phase transition, a continuous heat capacity with a peak at the critical temperature Tc shows a second order phase transition. The variation of the equilibrium bond length distortion δeq with temperature showed a power law relation which decayed to zero as the temperature was increased to Tc, indicating a continuous transition from the dimerized phase to a paramagnetic phase with uniform bond length and zero antiferromagnetic susceptibility.

  18. Remarks towards the spectrum of the Heisenberg spin chain type models

    NASA Astrophysics Data System (ADS)

    Burdík, Č.; Fuksa, J.; Isaev, A. P.; Krivonos, S. O.; Navrátil, O.

    2015-05-01

    The integrable close and open chain models can be formulated in terms of generators of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for the XXX and the XXZ integrable close chain models. We find the Bethe vectors for two-component and inhomogeneous models. We also find the Bethe vectors for the fermionic realization of the integrable XXX and XXZ close chain models by means of the algebraic and coordinate Bethe ansatz. Special modification of the XXZ closed spin chain model ("small polaron model") is considered. Finally, we discuss some questions relating to the general open Hecke chain models.

  19. Phase transitions and critical properties of the frustrated Heisenberg model on a layer triangular lattice with next-to-nearest-neighbor interactions

    SciTech Connect

    Murtazaev, A. K.; Ramazanov, M. K. Badiev, V. K.

    2012-08-15

    The critical behavior of the three-dimensional antiferromagnetic Heisenberg model with nearest-neighbor (J) and next-to-nearest-neighbor (J{sub 1}) interactions is studied by the replica Monte Carlo method. The first-order phase transition and pseudouniversal critical behavior of this model are established for a small lattice in the interval R = vertical bar J{sub 1}/J vertical bar = 0-0.115. A complete set of the main static magnetic and chiral critical indices is calculated in this interval using the finite-dimensional scaling theory.

  20. Phase diagram of the spin-1/2 triangular J1-J2 Heisenberg model on a three-leg cylinder

    NASA Astrophysics Data System (ADS)

    Saadatmand, S. N.; Powell, B. J.; McCulloch, I. P.

    2015-06-01

    We study the phase diagram of the frustrated Heisenberg model on the triangular lattice with nearest- and next-nearest-neighbor spin-exchange coupling, on three-leg ladders. Using the density-matrix renormalization-group method, we obtain the complete phase diagram of the model, which includes quasi-long-range 120∘ and columnar order, and a Majumdar-Ghosh phase with short-ranged correlations. All these phases are nonchiral and planar. We also identify the nature of phase transitions.

  1. Generalized hard-core dimer model approach to low-energy Heisenberg frustrated antiferromagnets: General properties and application to the kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Schwandt, David; Mambrini, Matthieu; Poilblanc, Didier

    2010-06-01

    We propose a general nonperturbative scheme that quantitatively maps the low-energy sector of spin-1/2 frustrated Heisenberg antiferromagnets to effective generalized quantum dimer models. We develop the formal lattice-independent frame and establish some important results on (i) the locality of the generated Hamiltonians, (ii) how full resummations can be performed in this renormalization scheme. The method is then applied to the much debated kagome antiferromagnet for which a fully resummed effective Hamiltonian—shown to capture the essential properties and provide deep insights on the microscopic model [D. Poilblanc, M. Mambrini, and D. Schwandt, Phys. Rev. B 81, 180402(R) (2010)]—is derived.

  2. Generalized hard-core dimer model approach to low-energy Heisenberg frustrated antiferromagnets: General properties and application to the kagome antiferromagnet

    SciTech Connect

    Schwandt, David; Mambrini, Matthieu; Poilblanc, Didier

    2010-06-01

    We propose a general nonperturbative scheme that quantitatively maps the low-energy sector of spin-1/2 frustrated Heisenberg antiferromagnets to effective generalized quantum dimer models. We develop the formal lattice-independent frame and establish some important results on (i) the locality of the generated Hamiltonians, (ii) how full resummations can be performed in this renormalization scheme. The method is then applied to the much debated kagome antiferromagnet for which a fully resummed effective Hamiltonian - shown to capture the essential properties and provide deep insights on the microscopic model [D. Poilblanc, M. Mambrini, and D. Schwandt, Phys. Rev. B 81, 180402(R) (2010)] - is derived.

  3. Chirality and Z2 vortices in a Heisenberg spin model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Domenge, J.-C.; Lhuillier, C.; Messio, L.; Pierre, L.; Viot, P.

    2008-05-01

    The phase diagram of the classical J1-J2 model on the kagome lattice is investigated by using extensive Monte Carlo simulations. In a realistic range of parameters, this model has a low-temperature chiral-ordered phase without long-range spin order. We show that the critical transition marking the destruction of the chiral order is preempted by the first-order proliferation of Z2 point defects. The core energy of these vortices appears to vanish when approaching the T=0 phase boundary, where both Z2 defects and gapless magnons contribute to disordering the system at very low temperatures. This situation might be typical of a large class of frustrated magnets. Possible relevance for real materials is also discussed.

  4. Novel local symmetries and chiral-symmetry-broken phases in S = 1/2 triangular-lattice Heisenberg model

    NASA Technical Reports Server (NTRS)

    Baskaran, G.

    1989-01-01

    Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.

  5. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t–J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t–J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  6. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  7. High precision determination of the low-energy constants for the two-dimensional quantum Heisenberg model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Jiang, F. J.

    2012-12-01

    The low-energy constants, namely the staggered magnetization density M˜ s per spin, the spin stiffness ρ s , and the spinwave velocity c of the two-dimensional (2-d) spin-1/2 Heisenberg model on the honeycomb lattice are calculated using first principles Monte Carlo method. The spinwave velocity c is determined first through the winding numbers squared. M˜ s and ρ s are then obtained by employing the relevant volume- and temperature-dependence predictions from magnon chiral perturbation theory. The periodic boundary conditions (PBCs) implemented in our simulations lead to a honeycomb lattice covering both a rectangular and a parallelogram-shaped region. Remarkably, by appropriately utilizing the predictions of magnon chiral perturbation theory, the numerical values of M˜ s , ρ s , and c we obtain for both the considered periodic honeycomb lattice of different geometries are consistent with each other quantitatively. The numerical accuracy reached here is greatly improved. Specifically, by simulating the 2-d quantum Heisenberg model on the periodic honeycomb lattice overlaying a rectangular area, we arrive at M˜ s = 0.26882(3), ρ s = 0.1012(2) J, and c = 1.2905(8) Ja. The results we obtain provide a useful lesson for some studies such as simulating fermion actions on hyperdiamond lattice and investigating second order phase transitions with twisted boundary conditions.

  8. The Heisenberg-Weyl algebra on the circle and a related quantum mechanical model for hindered rotation.

    PubMed

    Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G

    2009-07-01

    We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.

  9. Dynamic creation of a topologically-ordered Hamiltonian using spin-pulse control in the Heisenberg model

    PubMed Central

    Tanamoto, Tetsufumi; Ono, Keiji; Liu, Yu-xi; Nori, Franco

    2015-01-01

    Hamiltonian engineering is an important approach for quantum information processing, when appropriate materials do not exist in nature or are unstable. So far there is no stable material for the Kitaev spin Hamiltonian with anisotropic interactions on a honeycomb lattice, which plays a crucial role in the realization of both Abelian and non-Abelian anyons. Here, we show two methods to dynamically realize the Kitaev spin Hamiltonian from the conventional Heisenberg spin Hamiltonian using pulse-control techniques based on the Baker-Campbell-Hausdorff (BCH) formula. In the first method, the Heisenberg interaction is changed into Ising interactions in the first process of the pulse sequence. In the next process of the first method, we transform them to a desirable anisotropic Kitaev spin Hamiltonian. In the second more efficient method, we show that if we carefully design two-dimensional pulses that vary depending on the qubit location, we can obtain the desired Hamiltonian in only one step of applying the BCH formula. As an example, we apply our methods to spin qubits based on quantum dots, in which the effects of both the spin-orbit interaction and the hyperfine interaction are estimated. PMID:26081899

  10. Variational Monte Carlo method in the presence of spin-orbit interaction and its application to Kitaev and Kitaev-Heisenberg models

    NASA Astrophysics Data System (ADS)

    Kurita, Moyuru; Yamaji, Youhei; Morita, Satoshi; Imada, Masatoshi

    2015-07-01

    We propose an accurate variational Monte Carlo method applicable in the presence of the strong spin-orbit interactions. The algorithm is applicable even in a wider class of Hamiltonians that do not have the spin-rotational symmetry. Our variational wave functions consist of generalized Pfaffian-Slater wave functions that involve mixtures of singlet and triplet Cooper pairs, Jastrow-Gutzwiller-type projections, and quantum number projections. The generalized wave functions allow describing states including a wide class of symmetry-broken states, ranging from magnetic and/or charge ordered states to superconducting states and their fluctuations, on equal footing without any ad hoc ansatz for variational wave functions. We detail our optimization scheme for the generalized Pfaffian-Slater wave functions with complex-number variational parameters. Generalized quantum number projections are also introduced, which imposes the conservation of not only the momentum quantum number but also Wilson loops. As a demonstration of the capability of the present variational Monte Carlo method, the accuracy and efficiency is tested for the Kitaev and Kitaev-Heisenberg models, which lack the SU(2) spin-rotational symmetry except at the Heisenberg limit. The Kitaev model serves as a critical benchmark of the present method: The exact ground state of the model is a typical gapless quantum spin liquid far beyond the reach of simple mean-field wave functions. The newly introduced quantum number projections precisely reproduce the ground state degeneracy of the Kitaev spin liquids, in addition to their ground state energy. An application to a closely related itinerant model described by a multiorbital Hubbard model with the spin-orbit interaction also shows promising benchmark results. The strong-coupling limit of the multiorbital Hubbard model is indeed described by the Kitaev model. Our framework offers accurate solutions for the systems where strong electron correlation and spin

  11. 3D Ordering in 2D Quantum Heisenberg Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Landee, C. P.; Woodward, F. M.; Giantsidis, J.; Turnbull, M. M.

    2000-03-01

    The family of 2D quantum Heisenberg antiferromagnets (5-ZAP)_2CuX4 consists of CuX_4^2- dianions packed together in magnetically square layers, interacting through X\\cdotsX contacts (X = Cl, Br). The strength of both the intralayer interaction J and interlayer interaction J^' are controlled by the substituent Z in the 5-position of 5-Z, 2-aminopyridine. The 3D critical temperature TN is a function of the J^'/J ratio and consequently is also subject to control by the Z-substituent. Previously we have reported on the compounds with Z = Cl (5-CAP), and Z = methyl (5-MAP). We have now prepared the isomorphous 5-bromo analogue (5-BAP)_2CuX4 and will discuss the T_N/J ratios for all three compounds in terms of the structural parameters.

  12. Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear-biquadratic Heisenberg model and implications for the magnetism of FeSe.

    PubMed

    Yu, Rong; Si, Qimiao

    2015-09-11

    Motivated by the properties of the iron chalcogenides, we study the phase diagram of a generalized Heisenberg model with frustrated bilinear-biquadratic interactions on a square lattice. We identify zero-temperature phases with antiferroquadrupolar and Ising-nematic orders. The effects of quantum fluctuations and interlayer couplings are analyzed. We propose the Ising-nematic order as underlying the structural phase transition observed in the normal state of FeSe, and discuss the role of the Goldstone modes of the antiferroquadrupolar order for the dipolar magnetic fluctuations in this system. Our results provide a considerably broadened perspective on the overall magnetic phase diagram of the iron chalcogenides and pnictides, and are amenable to tests by new experiments. PMID:26406842

  13. Heisenberg Groups and their Automorphisms over Algebras with Central Involution

    NASA Astrophysics Data System (ADS)

    Johnson, Robert W.

    2015-08-01

    Heisenberg groups over algebras with central involution and their automorphism groups are constructed. The complex quaternion group algebra over a prime field is used as an example. Its subspaces provide finite models for each of the real and complex quadratic spaces with dimension 4 or less. A model for the representations of these Heisenberg groups and automorphism groups is constructed. A pseudo-differential operator enables a parallel treatment of spaces defined over finite and real fields.

  14. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2009-02-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  15. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2011-09-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  16. Heisenberg symmetry and hypermultiplet manifolds

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Derendinger, Jean-Pierre; Marios Petropoulos, P.; Siampos, Konstantinos

    2016-04-01

    We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry - as opposed to Heisenberg ⋉ U (1). We finally discuss the realization of the latter by gauging appropriate Sp (2 , 4) generators in N = 2 conformal supergravity.

  17. SUGRA new inflation with Heisenberg symmetry

    SciTech Connect

    Antusch, Stefan; Cefalà, Francesco E-mail: stefan.antusch@unibas.ch

    2013-10-01

    We propose a realisation of ''new inflation'' in supergravity (SUGRA), where the flatness of the inflaton potential is protected by a Heisenberg symmetry. Inflation can be associated with a particle physics phase transition, with the inflaton being a (D-flat) direction of Higgs fields which break some symmetry at high energies, e.g. of GUT Higgs fields or of Higgs fields for flavour symmetry breaking. This is possible since compared to a shift symmetry, which is usually used to protect a flat inflaton potential, the Heisenberg symmetry is compatible with a (gauge) non-singlet inflaton field. In contrast to conventional new inflation models in SUGRA, where the predictions depend on unknown parameters of the Kaehler potential, the model with Heisenberg symmetry makes discrete predictions for the primordial perturbation parameters which depend only on the order n at which the inflaton appears in the effective superpotential. The predictions for the spectral index n{sub s} can be close to the best-fit value of the latest Planck 2013 results.

  18. Heisenberg Model Analysis on Inelastic Powder Neutron Scattering Data Using Pure and K doped BaMn2 As2 samples

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Mehmet; Sapkota, A.; Pandey, A.; Johnston, D.; Goldman, Alan; Kreyssig, A.; Abernathy, D.; Niedziela, J.; Stone, M.; McQueeney, R. J.

    Low temperature powder inelastic neutron scattering measurements (INS) were performed on powders of Ba(1-x)KxMn2As2 with x=0(BMA),0.125 and 0.25. BMA is a G type antiferromagnet (AFM) which has local magnetic modulations bridging between the pnictide and cuprate superconductors. Hole doping (K) introduces more metallic behavior. The magnetic contribution to the intensities were retrieved by subtracting the estimated phonon background obtained at high momentum transfers from the raw. The resultant estimated magnetic intensities were analyzed by using damped harmonic oscillator model. The K doping effects create a broadening in the magnetic peak profiles consistent with expected weak FM fluctuations. We also analyzed the INS data using a powder integration routine which is based on J1-J2-Jz Heisenberg Model. The Monte Carlo integration technique is used to obtain the powder-averaged S(Q,E) for a series of Js. The representative values (with lowest chi-squared) obtained for BMA are in agreement with previous results. The values obtained for K doped samples were found in the close proximity to the parent ones. Overall we conclude that the original AFM structure seen in BMA retained its character even in the K doped samples with minimal differences. Work at Ames Laboratory is supported by USDOE under Contract No. DE-AC02-07CH11358 and Work at ITU is supported by TUBITAK 2232.

  19. Spin-1 J1 -J2 -J3 ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice: A bosonic approach

    NASA Astrophysics Data System (ADS)

    Carvalho, D. C.; Pires, A. S. T.; Mól, L. A. S.

    2016-06-01

    We examine the phase diagram of the spin-1 J1 -J2 -J3 ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice, in which J1 is the ferromagnetic exchange interaction between nearest neighbors, J2 is the antiferromagnetic exchange interaction between next-nearest neighbors and J3 is the antiferromagnetic exchange interaction between next-next-nearest neighbors. Using the bond-operator formalism, we investigate the phase transitions between the disordered paramagnetic phase and the ordered ones. We show that the nature of the quantum phase transitions changes as the frustration parameters (J2/J1, J3/J1) are varied. The zero-temperature phase diagram exhibits second- and first-order transitions, depending on the energy gap behavior. Remarkably, we find a disordered nonmagnetic phase, even in the absence of a crystal field, which is suggested to be a quantum spin liquid candidate. We also depict the phase diagram at finite temperature for some values of crystal field and frustration parameters.

  20. Numerical evidence for a chiral spin liquid in the XXZ antiferromagnetic Heisenberg model on the kagome lattice at m =2/3 magnetization

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Changlani, Hitesh J.; Clark, Bryan K.; Fradkin, Eduardo

    2016-10-01

    We perform an exact-diagonalization study of the spin-1/2 XXZ Heisenberg antiferromagnet on the kagome lattice at finite magnetization m =2/3 with an emphasis on the X Y point (Jz=0 ) and in the presence of a small chiral term. Recent analytic work by Kumar et al. [K. Kumar, K. Sun, and E. Fradkin, Phys. Rev. B 90, 174409 (2014), 10.1103/PhysRevB.90.174409] on the same model, using a newly developed flux attachment transformation, predicts a plateau at this value of the magnetization described by a chiral spin liquid (CSL) with a spin Hall conductance of σx y=1/2 . Such a state is topological in nature, has a ground-state degeneracy, and exhibits fractional excitations. We analyze the degeneracy structure in the low-energy manifold, identify the candidate topological states, and use them to compute the modular matrices and Chern numbers, all of which strongly agree with expected theoretical behavior for the σx y=1/2 CSL. In the limit of zero chirality, we find on most (not all) clusters that the topological invariants are still those of a CSL.

  1. Sub-Heisenberg phase uncertainties

    NASA Astrophysics Data System (ADS)

    Pezzé, Luca

    2013-12-01

    Phase shift estimation with uncertainty below the Heisenberg limit, ΔϕHL∝1/N¯T, where N¯T is the total average number of particles employed, is a mirage of linear quantum interferometry. Recently, Rivas and Luis, [New J. Phys.NJOPFM1367-263010.1088/1367-2630/14/9/093052 14, 093052 (2012)] proposed a scheme to achieve a phase uncertainty Δϕ∝1/N¯Tk, with k an arbitrary exponent. This sparked an intense debate in the literature which, ultimately, does not exclude the possibility to overcome ΔϕHL at specific phase values. Our numerical analysis of the Rivas and Luis proposal shows that sub-Heisenberg uncertainties are obtained only when the estimator is strongly biased. No violation of the Heisenberg limit is found after bias correction or when using a bias-free Bayesian analysis.

  2. Static and dynamical spin correlations of the S =1/2 random-bond antiferromagnetic Heisenberg model on the triangular and kagome lattices

    NASA Astrophysics Data System (ADS)

    Shimokawa, Tokuro; Watanabe, Ken; Kawamura, Hikaru

    2015-10-01

    Inspired by the recent theoretical suggestion that the random-bond S =1 /2 antiferromagnetic Heisenberg model on the triangular and the kagome lattices might exhibit a randomness-induced quantum spin liquid (QSL) behavior when the strength of the randomness exceeds a critical value, and that this "random-singlet state" might be relevant to the QSL behaviors experimentally observed in triangular organic salts κ -(ET) 2Cu2(CN) 3 and EtMe3Sb [Pd(dmit)2] 2 and in kagome herbertsmithite ZnCu3(OH) 6Cl2 , we further investigate the nature of the static and the dynamical spin correlations of these models. We compute the static and the dynamical spin structure factors, S (q ) and S (q ,ω ) , by means of an exact diagonalization method. In both triangular and kagome models, the computed S (q ,ω ) in the random-singlet state depends on the wave vector q only weakly, robustly exhibiting gapless behaviors accompanied by the broad distribution extending to higher energy ω . Especially in the strongly random kagome model, S (q ,ω ) hardly depends on q , and exhibits an almost flat distribution for a wide range of ω , together with a ω =0 peak. These features agree semiquantitatively with the recent neutron-scattering data on a single-crystal herbertsmithite. Furthermore, the computed magnetization curve agrees almost quantitatively with the experimental one recently measured on a single-crystal herbertsmithite. These results suggest that the QSL state observed in herbertsmithite might indeed be the randomness-induced QSL state, i.e., the random-singlet state.

  3. Tensor-product state approach to spin-1/2 square J1-J2 antiferromagnetic Heisenberg model: Evidence for deconfined quantum criticality

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiao-Gang

    2016-08-01

    The ground state phase of a spin-1/2 J1-J2 antiferromagnetic Heisenberg model on a square lattice around the maximally frustrated regime (J2˜0.5 J1 ) has been debated for decades. Here we study this model using the cluster update algorithm for tensor-product states (TPSs). The ground state energies at finite sizes and in the thermodynamic limit (with finite size scaling) are in good agreement with exact diagonalization study. Through finite size scaling of the spin correlation function, we find the critical point J2c1=0.572 (5 ) J1 and critical exponents ν =0.50 (8 ) ,ηs=0.28 (6 ) . In the range of 0.572 model.

  4. Discrete flavour symmetries from the Heisenberg group

    NASA Astrophysics Data System (ADS)

    Floratos, E. G.; Leontaris, G. K.

    2016-04-01

    Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular, on the PSL2 (p) groups which contain the phenomenologically interesting cases.

  5. Heisenberg and the critical mass

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    2002-09-01

    An elementary treatment of the critical mass used in nuclear weapons is presented and applied to an analysis of the wartime activities of the German nuclear program. In particular, the work of Werner Heisenberg based on both wartime and postwar documents is discussed.

  6. The topological basis expression of Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Ren, Hang; Xue, Kang

    2013-11-01

    In this paper, it is shown that the Heisenberg XY, XXZ, XXX, and Ising model all can be constructed from the Braid group algebra generator and the Temperley-Lieb algebra generator. And a new set of topological basis expression is presented. Through acting on the different subspaces, we get the new nontrivial six-dimensional and four-dimensional Braid group matrix representations and Temperley-Lieb matrix representations. The eigenstates of Heisenberg model can be described by the combination of the set of topological bases. It is worth mentioning that the ground state is closely related to parameter q which is the meaningful topological parameter.

  7. Theory of disordered Heisenberg ferromagnets

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.

    1973-01-01

    A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.

  8. Conjugacy classes in discrete Heisenberg groups

    SciTech Connect

    Budylin, R Ya

    2014-08-01

    We study an extension of a discrete Heisenberg group coming from the theory of loop groups and find invariants of conjugacy classes in this group. In some cases, including the case of the integer Heisenberg group, we make these invariants more explicit. Bibliography: 4 titles.

  9. A Study of Low-Dimensional S=1/2 Quantum Heisenberg Antiferromagnets; Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Keith, Brian C.

    We have simulated and analyzed the susceptibility of a series of two-dimensional (2D) spin-½ rectangular Heisenberg antiferromagnetic (as well as mixed exchange antiferromagnetic/ferromagnetic) lattices as a function of J,J' and temperature, where J is the dominant magnetic exchange interaction and J', the orthogonal interaction, is related to J by J' = alpha J, where alpha can vary from 0 to 1. Previous studies of the compounds pyrazineformatocopper(II) nitrate [Cu(pz)( HCO2)](NO3), catena-2-aminopyrimidinedichlorocopper(II) [Cu(2 - apm)Cl 2], and catena-pyrazinediazidocopper(II) [Cu( pz)(N3)2] indicated that these systems had 2D magnetic spin-spin interactions. However, there were no 2D models that could capture the behavior of any measurable bulk properties of the compounds. The previous authors fit the susceptibility data of the respective compounds to a 1D antiferromagnetic chain with a mean field correction, or did not fit the data at all. We use the simulations to create this fit function in order to test the 2D model proposed for these spin systems. The quantum phase transitions of a family of spin ladders, corresponding to the closure of the gap and the polarization of all spins, have been explored through high pulsed field magnetization techniques. Modeling the susceptibility data yields values which were used to simulate the high field magnetization data. The simulations confirm the upper and lower critical fields, with minor discrepancies between data and simulation that probably have to do with the peculiar background subtraction. Also, calculations of the critical fields are within 10% of the observed critical fields. Furthermore, randomness was introduced into the family of spin ladders and interesting effects arose from this doping. For Cu( qnx)(Cl1-xBr x)2, the energy gaps were found to vary little with dopant concentration while the paramagnetic susceptibility at low temperature appeared to be suppressed with increased dopant level. Again, for Cd

  10. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Collider Physics: Yesterday, Today and Tomorrow

    NASA Astrophysics Data System (ADS)

    Eichten, Estia

    2011-04-01

    More than a quarter century ago, theoretical issues with the Standard Model scalar boson sector inspired theorists to develop alternative models of electroweak symmetry breaking. The goal of the EHLQ study of hadron collider physics was to help determine the basic parameters of a supercollider that could distinguish these alternatives. Now we await data from the CMS and ATLAS experiments at CERN's Large Hadron Collider to solve this mystery. Does the Standard Model survive or, as theorists generally expect, does new physics appear (Strong Dynamics, SUSY, Extra Dimensions,...)? Even well into the LHC era it is likely that questions about the origin of fermion mass and mixings will remain and new physics will bring new puzzles. This time, the associated new scales are unknown. The opportunity to address new physics at a future multi-TeV lepton collider is briefly addressed.

  11. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Hard scattering factorization in QCD

    NASA Astrophysics Data System (ADS)

    Collins, John

    2009-05-01

    Many important cross sections in high-energy collisions are analyzed using factorization properties. I review the nature of factorization, how it arose from the parton model, and current issues in its development. This talk will be coordinated with the one by Soper.

  12. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Partons, QCD, and Factorization

    NASA Astrophysics Data System (ADS)

    Soper, Davison

    2009-05-01

    Many important cross sections in high-energy collisions are analyzed using factorization properties. I review the nature of factorization, how it arose from the parton model, and current issues in its development. This talk will be coordinated with the one by Collins.

  13. J. J. Sakurai Prize for Theoretical Particle Physics Lecture: Particle physics after the first LHC results

    NASA Astrophysics Data System (ADS)

    Altarelli, Guido

    2012-03-01

    The LHC results released so far have very much restricted the possible range for the Standard Model Higgs boson mass. Moreover some indications for a signal at a mass around 125 GeV have been found. At the same time, no clear evidence for new physics has emerged from the LHC data. We discuss the impact of these results on our understanding of particle physics. The presently allowed window for the Higgs mass and the negative results for exotic particles are compatible with both the Standard model and its Supersymmetric extensions but imply considerable restrictions and need a substantial amount of fine tuning in all cases. We discuss the options that remain open and the perspectives for the near future.

  14. J.J. Sakurai Prize Talk: Precision measurements and New Physics

    NASA Astrophysics Data System (ADS)

    Marciano, William

    2002-04-01

    The Standard Model of strong and electroweak interactions is a renormalizable quantum field theory. In that framework, quantum corrections to observables can be calculated with extraordinary accuracy. Comparison of those predictions with precision experimental measurements tests the theory and probes for small deviations from new physics effects. Recent examples of such tests and their implications will be described and the outlook for future advances will be discussed.

  15. J.J. Sakurai Prize for Theoretical Particle Physics: 40 Years of Lattice QCD

    NASA Astrophysics Data System (ADS)

    Lepage, Peter

    2016-03-01

    Lattice QCD was invented in 1973-74 by Ken Wilson, who passed away in 2013. This talk will describe the evolution of lattice QCD through the past 40 years with particular emphasis on its first years, and on the past decade, when lattice QCD simulations finally came of age. Thanks to theoretical breakthroughs in the late 1990s and early 2000s, lattice QCD simulations now produce the most accurate theoretical calculations in the history of strong-interaction physics. They play an essential role in high-precision experimental studies of physics within and beyond the Standard Model of Particle Physics. The talk will include a non-technical review of the conceptual ideas behind this revolutionary development in (highly) nonlinear quantum physics, together with a survey of its current impact on theoretical and experimental particle physics, and prospects for the future. Work supported by the National Science Foundation.

  16. Did Heisenberg Spit at Max Born?

    NASA Astrophysics Data System (ADS)

    Lustig, Harry

    2005-04-01

    In his 1985 book ``The Griffin,'' Arnold Kramish quotes an unnamed ``associate'' of Max Born that when Heisenberg ''was . . . a professor in Göttingen and when the Borns went to visit him, they were met with anti-Jewish sneers and obscenities, and in the end Heisenberg spat on the floor at Max Born's feet!". Kramish, in his own words, states that Heisenberg spat at Born and that the incident took place in 1933. Paul Lawrence Rose places the incident in 1953 and, on the basis of a fuller account from Kramish than the one published, identifies the associate as Born's secretary at Edinburgh University. One may be critical of Heisenberg's character and his behavior under the Nazis, and still be highly skeptical of the Kramish-Rose allegation. The life-long friendship between Born and Heisenberg and the respect which they displayed for each other before, during, and after the Nazi regime, has hardly been challenged by anyone. No known biography of Heisenberg mentions the alleged episode, and none of his obituaries alludes to it. There is no reference to it in Born's autobiography. None of the historians of science, German and American, whom I have consulted credit it. Although it is difficult to prove a negative, it is highly unlikely that Heisenberg spit at Born or on the floor on which they stood.

  17. Werner Heisenberg (1901-1976)

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Werner Heisenberg was one of the greatest physicists of all times. When he started out as a young research worker, the world of physics was in a very confused and frustrating state, which Abraham Pais has described1 as: It was the spring of hope, it was the winter of despair using Charles Dickens' words in A Tale of Two Cities. People were playing a guessing game: There were from time to time great triumphs in proposing, through sheer intuition, make-shift schemes that amazingly explained some regularities in spectral physics, leading to joy. But invariably such successes would be followed by further work which reveal the inconsistency or inadequacy of the new scheme, leading to despair...

  18. Quantum states for Heisenberg-limited interferometry

    SciTech Connect

    Uys, H.; Meystre, P.

    2007-07-15

    The phase sensitivity of interferometers is limited by the so-called Heisenberg limit, which states that the optimum phase sensitivity is inversely proportional to the number of interfering particles N, a 1/{radical}(N) improvement over the standard quantum limit. We have used simulated annealing, a global optimization strategy, to systematically search for quantum interferometer input states that approach the Heisenberg-limited uncertainty in estimates of the interferometer phase shift. We compare the performance of these states to that of other nonclassical states already known to yield Heisenberg-limited uncertainty.

  19. 100 Years Werner Heisenberg: Works and Impact

    NASA Astrophysics Data System (ADS)

    Papenfuß, Dietrich; Lüst, Dieter; Schleich, Wolfgang P.

    2003-09-01

    Over 40 renowned scientists from all around the world discuss the work and influence of Werner Heisenberg. The papers result from the symposium held by the Alexander von Humboldt-Stiftung on the occasion of the 100th anniversary of Heisenberg's birth, one of the most important physicists of the 20th century and cofounder of modern-day quantum mechanics. Taking atomic and laser physics as their starting point, the scientists illustrate the impact of Heisenberg's theories on astroparticle physics, high-energy physics and string theory right up to processing quantum information.

  20. Spin dynamics simulations for a nanoscale Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Hou, Zhuofei; Landau, D. P.; Brown, G.; Stocks, G. M.

    2010-03-01

    Thermoinduced magnetization(TiM) is a novel response which was predicted to occur in nanoscale antiferromagnetic materials. Extensive Monte Carlo simulations footnotetextG. Brown, A. Janotti, M. Eisenbach, and G. M. Stocks, Phys.Rev.B 72, 140405(2005) have shown that TiM is an intrinsic property of the antiferromagnetic classical Heisenberg model below the Neel temperature. To obtain a fundamental understanding of TiM, spin dynamics(SD) simulations are performed to study the spin wave behavior, which seems to be the cause of TiM. A classical Heisenberg model with an antiferromagnetic nearest-neighbor exchange interaction and uniaxial single-site anisotropy is studied. Simple-cubic lattices with free boundary conditions are used. We employed the fast spin dynamics algorithms with fourth-order Suzuki-Trotter decompositions of the exponential operator. Additional small excitation peaks due to surface effects are found in transverse S(q,w).

  1. Archaeology and archaeomagnetism in Wallonia (South Belgium); 30 years of partnership thanks to Prof. Dr.J.J.Hus

    NASA Astrophysics Data System (ADS)

    Plumier, J.

    2009-04-01

    Amongst the multiple scientific activities of Prof. J.J. Hus one cannot deny major centres of interest in archaeology and our cultural heritage: in the footsteps of Prof. E. Thellier in France he applied to archaeology the principles of palaeomagnetism. His main objective was to establish reference curves for the secular variation of inclination and declination of the geomagnetic field during archaeological periods of time for a limited area that is Belgium: in order to improve our knowledge of the geomagnetic field but also for archaeomagnetic dating. He was the first to propose archaeomagnetic dates for kilns discovered in Belgium, based on the master secular variation curves for France and the United Kingdom. He insisted on the importance of the fidelity of archaeomagnetic field records by studying the influence of magnetic anisotropy, magnetic refraction and interaction on the magnetization direction of baked and burnt structures. Due to field recurrence archaeomagnetic dating yields several dates. In order to limit the number of solutions he examined together with Dr. Simo Spassov in the frame of the European project AARCH, the suitability of burnt materials of different nature for field intensity determinations. For the Belgian archaeologists who had the pleasure to collaborate with Prof. J.J. Hus in many excavation and rescue sites (about 350 structures sampled in 85 localities in Wallonia) the objective now is to provide independent datings for the structures sampled and hence of the corresponding occupation levels. Besides archaeomagnetism he promoted the use of geophysical prospection methods in archaeology as a non-destructive aid for a better comprehension of the overall pattern of occupation and history of a site and to orient excavations towards these zones likely to give the most important information. He implemented successfully many electrical resistivity and magnetic prospections with archaeologists and the "Centre Interdisciplinaire de Recherches

  2. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  3. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041

  4. Heisenberg picture approach to the stability of quantum Markov systems

    SciTech Connect

    Pan, Yu E-mail: zibo.miao@anu.edu.au; Miao, Zibo E-mail: zibo.miao@anu.edu.au; Amini, Hadis; Gough, John; Ugrinovskii, Valery; James, Matthew R.

    2014-06-15

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

  5. Open timelike curves violate Heisenberg's uncertainty principle.

    PubMed

    Pienaar, J L; Ralph, T C; Myers, C R

    2013-02-01

    Toy models for quantum evolution in the presence of closed timelike curves have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived, as they require nontrivial interactions between the future and past that lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the closed timelike curve, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenberg's uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time dilation suggests that OTCs provide a novel alternative to existing proposals for the behavior of quantum systems under gravity.

  6. Nonlinear phonon interferometry at the Heisenberg limit

    NASA Astrophysics Data System (ADS)

    Cheung, Hil F. H.; Patil, Yogesh Sharad; Chang, Laura; Chakram, Srivatsan; Vengalattore, Mukund

    2016-05-01

    Interferometers operating at or close to quantum limits of precision have found wide application in tabletop searches for physics beyond the standard model, the study of fundamental forces and symmetries of nature and foundational tests of quantum mechanics. The limits imposed by quantum fluctuations and measurement backaction on conventional interferometers (δϕ 1 /√{ N}) have spurred the development of schemes to circumvent these limits through quantum interference, multiparticle interactions and entanglement. Here, we realize a prominent example of such schemes, the so-called SU(1,1) interferometer, in a fundamentally new platform in which the interfering arms are distinct flexural modes of a millimeter-scale mechanical resonator. We realize up to 15.4(3) dB of noise squeezing and demonstrate the Heisenberg scaling of interferometric sensitivity (δϕ 1 / N), corresponding to a 6-fold improvement in measurement precision over a conventional interferometer. We describe how our work extends the optomechanical toolbox and how it presents new avenues for studies of optomechanical sensing and studies of nonequilibrium dynamics of multimode optomechanical systems. This work was supported by the DARPA QuASAR program through a grant from the ARO, the ARO MURI on non-equilibrium manybody dynamics and an NSF INSPIRE award.

  7. Finite-temperature scaling of spin correlations in a partially magnetized Heisenberg S =1/2 chain

    NASA Astrophysics Data System (ADS)

    Hälg, M.; Hüvonen, D.; Butch, N. P.; Demmel, F.; Zheludev, A.

    2015-09-01

    Inelastic neutron scattering is employed to study transverse spin correlations of a Heisenberg S =1 /2 chain compound in a magnetic field of 7.5 T. The target compound is the antiferromagnetic Heisenberg S =1 /2 chain material 2(1,4-dioxane).2 (H2O ).CuCl2, or CuDCl for short. The validity and the limitations of the scaling relation for the transverse dynamic structure factor are tested, discussed, and compared to the Tomonaga-Luttinger spin liquid theory and to Bethe-ansatz results for the Heisenberg model.

  8. Partition functions of classical Heisenberg spin chains with arbitrary and different exchange

    NASA Astrophysics Data System (ADS)

    Cregg, P. J.; García-Palacios, J. L.; Svedlindh, P.

    2008-10-01

    The classical Heisenberg model has been effective in modelling exchange interactions in molecular magnets. In this model, the partition function is important as it allows the calculation of the magnetization and susceptibility. For an ensemble of N-spin sites, this typically involves integrals in 2N dimensions. Here, for two-, three- and four-spin nearest neighbour open linear Heisenberg chains these integrals are reduced to sums of known functions, using a result due to Gegenbauer. For the case of the three- and four-spin chains, the sums are equivalent in form to the results of Joyce. The general result for an N-spin chain is also obtained.

  9. Covalent bonding and J-J mixing effects on the EPR parameters of Er3 + ions in GaN crystal

    NASA Astrophysics Data System (ADS)

    Rui-Peng, Chai; Long, Li; Liang, Liang; Qing, Pang

    2016-07-01

    The EPR parameters of trivalent Er3+ ions doped in hexagonal GaN crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er3+ ion and the replaced Ga3+ ion apart from the intrinsic covalency of host GaN. Furthermore, the J-J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J-J mixing contribution is from the manifold 2K15/2, which accounts for about 2.5%. The next important J-J contribution arises from the crystal-field mixture between the ground state 4I15/2 and the first excited state 4I13/2, and is usually less than 0.2%. The contributions from the rest states may be ignored. Project supported by the Foundation of Education Department of Shaanxi Province, China (Grant No. 16JK1461).

  10. Quantum correlations and coherence in spin-1 Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Malvezzi, A. L.; Karpat, G.; ćakmak, B.; Fanchini, F. F.; Debarba, T.; Vianna, R. O.

    2016-05-01

    We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.

  11. J. J. Sakurai Prize for Theoretical Particle Physics Lecture: Some QCD aspects of physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Sjostrand, Torbjorn

    2012-03-01

    The nature of observable events at the LHC is mainly determined by QCD physics, i.e. strong interactions. The search for new physics obviously implies a desire to go beyond QCD. Nevertheless, also in cases where non-QCD processes are studied, new aspects of QCD physics may enter the back door. We here give three examples: decays with R-parity violation in SUSY, the formation of long-lived R-hadrons in SUSY, and parton showers and hadronization in Hidden Valley scenarios. These three possibilities have been implemented in the general-purpose PYTHIA event generator, so that detailed studies of consequences can be performed.

  12. Integrable hierarchies of Heisenberg ferromagnet equation

    NASA Astrophysics Data System (ADS)

    Nugmanova, G.; Azimkhanova, A.

    2016-08-01

    In this paper we consider the coupled Kadomtsev-Petviashvili system. From compatibility conditions we obtain the form of matrix operators. After using a gauge transformation, obtained a new type of Lax representation for the hierarchy of Heisenberg ferromagnet equation, which is equivalent to the gauge coupled Kadomtsev-Petviashvili system.

  13. Heisenberg: Paralleling Scientific and Historical Methods

    NASA Astrophysics Data System (ADS)

    Cofield, Calla

    2007-04-01

    Werner Heisenberg is an important historical subject within the physics community partly because his actions as a human being are discussed nearly as often as his work as a physicist. But does the scientific community establish it's historical ideas with the same methods and standards as it's scientific conclusions? I interviewed Heisenberg's son, Jochen Heisenberg, a professor of physics at UNH. Despite a great amount of literature on Werner Heisenberg, only one historian has interviewed Jochen about his father and few have interviewed Werner's wife. Nature is mysterious and unpredictable, but it doesn't lie or distort like humans, and we believe it can give ``honest'' results. But are we keeping the same standards with history that we do with science? Are we holding historians to these standards and if not, is it up to scientists to not only be keepers of scientific understanding, but historical understanding as well? Shouldn't we record history by using the scientific method, by weighing the best sources of data differently than the less reliable, and are we right to be as stubborn about changing our views on history as we are about changing our views on nature?

  14. Naturalistic Misunderstanding of the Heisenberg Uncertainty Principle.

    ERIC Educational Resources Information Center

    McKerrow, K. Kelly; McKerrow, Joan E.

    1991-01-01

    The Heisenberg Uncertainty Principle, which concerns the effect of observation upon what is observed, is proper to the field of quantum physics, but has been mistakenly adopted and wrongly applied in the realm of naturalistic observation. Discusses the misuse of the principle in the current literature on naturalistic research. (DM)

  15. Experimental violation and reformulation of the Heisenberg's error-disturbance uncertainty relation

    PubMed Central

    Baek, So-Young; Kaneda, Fumihiro; Ozawa, Masanao; Edamatsu, Keiichi

    2013-01-01

    The uncertainty principle formulated by Heisenberg in 1927 describes a trade-off between the error of a measurement of one observable and the disturbance caused on another complementary observable such that their product should be no less than the limit set by Planck's constant. However, Ozawa in 1988 showed a model of position measurement that breaks Heisenberg's relation and in 2003 revealed an alternative relation for error and disturbance to be proven universally valid. Here, we report an experimental test of Ozawa's relation for a single-photon polarization qubit, exploiting a more general class of quantum measurements than the class of projective measurements. The test is carried out by linear optical devices and realizes an indirect measurement model that breaks Heisenberg's relation throughout the range of our experimental parameter and yet validates Ozawa's relation. PMID:23860715

  16. The Role of Logic and Mathematics in the Heisenberg Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Venezia, Antonio

    2006-06-01

    In this paper, by means of a logical and linguistic analysis of Heisenberg's work, the properties of a logical model suitable for quantum mechanics are obtained. This model is an alternative to traditional quantum logic, because it uses an intuitionist negation. It is able to justify the passage from the problem of conjugate variables measurement to the mathematical formalization (commutation rules) of matrix mechanics.

  17. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice.

    PubMed

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-29

    We study the low-temperature physics of the SU(2)-symmetric spin-1/2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T/J=1/6. The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T/J=1/6. The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points. PMID:27176537

  18. Low-temperature Spin-Ice State of Quantum Heisenberg Magnets on Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    We establish that the isotropic spin-1/2 Heisenberg antiferromagnet on pyrochlore lattice enters a spin-ice state at low, but finite, temperature. Our conclusions are based on results of the bold diagrammatic Monte Carlo simulations that demonstrate good convergence of the skeleton series down to temperature T = J/6. The ``smoking gun'' identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for static spin-spin correlation function between the quantum Heisenberg and classical Heisenberg/Ising models at all accessible temperatures. In particular, at T/J = 1/6, the momentum dependence shows a characteristic bow-tie pattern with pinch points. By numerical analytical continuation method, we also obtain the dynamic structure factor at real frequencies, showing a diffusive spinon dynamics at pinch points and spin wave continuum along the nodal lines.?

  19. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-01

    We study the low-temperature physics of the SU(2)-symmetric spin-1 /2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T /J =1 /6 . The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T /J =1 /6 . The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points.

  20. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment

    NASA Astrophysics Data System (ADS)

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.

    2015-10-01

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.

  1. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment.

    PubMed

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P

    2015-10-23

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z(6) order.

  2. Antiferromagnetic Heisenberg spin-1 chain: Magnetic susceptibility of the Haldane chain described using scaling

    NASA Astrophysics Data System (ADS)

    Souletie, Jean; Drillon, Marc; Rabu, Pierre; Pati, Swapan K.

    2004-08-01

    The phenomenological expression χT/(Ng2μB2/k)=C1nexp(-W1n/T)+C2nexp(-W2n/T) describes very accurately the temperature dependence of the magnetic susceptibility computed for antiferromagnetic rings of Heisenberg spins S=1 , whose size n is even and ranges from 6 to 20. This expression has been obtained through a strategy justified by scaling considerations together with finite size numerical calculations. For n large, the coefficients of the expression converge towards C1=0.125 , W1=0.451J , C2=0.564 , W2=1.793J ( J is the exchange constant), which are appropriate for describing the susceptibility of the spin-1 Haldane chain. The Curie constant, the paramagnetic Curie-Weiss temperature, the correlation length at T=0 and the Haldane gap are found to be closely related to these coefficients. With this expression, a very good description of the magnetic behavior of Y2BaNiO5 and of Ni(C2H8N2)2NO2ClO4 (NENP), the archetype of the Haldane gap systems, is achieved over the whole temperature range.

  3. Stabilization of Long-Range Order by Additional Anisotropic Spins in Two-Dimensional Isotropic Heisenberg Antiferromagnets —A Possible Model of an Organic Compound with Magnetic Anions—

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi; Ito, Kazuhiro

    2014-11-01

    We examine a two-dimensional (2D) coupled antiferromagnetic (AF) Heisenberg model that consists of two subsystems: an isotropic S = 1/2 spin subsystem with strong AF exchange interactions (main system), and a uniaxial S = 5/2 spin subsystem with weak exchange interactions. This model is an example in which additional semiclassical degrees of freedom affect a quantum system; it also describes a possible stabilization mechanism of AF long-range order (LRO) in the 2D organic compound λ-(BETS)2FeCl4, where BETS stands for bis(ethylenedithio)tetraselenafulvalene. Previous experimental studies have revealed that 3d spins on FeCl4 anions passively follow the AF LRO of the π-electron system in the BETS layers, although the AF LRO is stabilized by the 3d spins themselves. To explain this paradoxical behavior, we examine a scenario in which the uniaxial anisotropy of the 3d spins stabilizes the AF LRO on an isotropic 2D π-spin system. We extend Green's function theory, called the Tyablikov approximation, to the present system, which describes spin-wave excitations and is consistent with the Mermin-Wagner theorem. It is shown that even extremely weak interactions with the uniaxial subsystem efficiently stabilize the AF LRO in the main system, even in the absence of AF exchange interactions in the uniaxial subsystem. The AF LRO is triggered by the uniaxial subsystem, but the sublattice magnetization remains smaller than that of the main system in the high-temperature region. These results are consistent with experimental data for λ-(BETS)2FeCl4 and λ-(BETS)2GaCl4; the latter does not have the 3d spins and does not exhibit the AF LRO.

  4. Chirality operators for Heisenberg spin systems

    SciTech Connect

    Subrahmanyam, V. )

    1994-09-01

    The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a twofold Kramers degeneracy. A nonzero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators.

  5. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  6. Correlation length of the isotropic quantum Heisenberg antiferromagnet

    SciTech Connect

    Cuccoli, A.; Tognetti, V.; Vaia, R.

    1997-04-01

    The quantum Heisenberg antiferromagnet on the square lattice is known to model the magnetic interactions in the copper ion planes of many high-{ital T{sub c}} superconductors and their parent compounds. The thermodynamics of the model is approached by the {ital pure-quantum self-consistent harmonic approximation}, that reduces the quantum problem to the study of an effective classical antiferromagnetic system. The effective exchange, weakened by quantum fluctuations, enters as a temperature scale the classical-like expressions for the thermal averages, and the quantum spin correlation length is then obtained from its classical counterpart in a simple way. The theory compares very well, for any value of the spin and without need for adjustable parameters, with high temperature expansions, quantum Monte Carlo simulations, and recent neutron and nuclear quadrupole relaxation (NQR) experiments. {copyright} {ital 1997 American Institute of Physics.}

  7. Frustrated 3×3 Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Moustanis, P. N.

    2016-08-01

    The full energy spectrum and the exact thermodynamic results of the antiferromagnetic Heisenberg Hamiltonian of the 3×3 triangular and the frustrated square lattice with periodic boundary conditions and s=1/2 are obtained. To this end the method of hierarchy of algebras is employed. It was found that the ground state of the 3×3 frustrated square lattice is a Resonating Valence Bond (RVB) state. Thermodynamic properties, like the specific heat, magnetic susceptibility, the thermal average of the square of the total Sz and entropy, for these two lattices are presented.

  8. Heisenberg scaling in Gaussian quantum metrology

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai; Skotiniotis, Michalis; Fuentes, Ivette; Dür, Wolfgang

    2015-08-01

    We address the issue of precisely estimating small parameters encoded in a general linear transformation of the modes of a bosonic quantum field. Such Bogoliubov transformations frequently appear in the context of quantum optics. We provide a set of instructions for computing the quantum Fisher information for arbitrary pure initial states. We show that the maximally achievable precision of estimation is inversely proportional to the squared average particle number and that such Heisenberg scaling requires nonclassical but not necessarily entangled states. Our method further allows us to quantify losses in precision arising from being able to monitor only finitely many modes, for which we identify a lower bound.

  9. Thermodynamic properties of Heisenberg magnetic systems

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Wang, Huai-Yu; Long, Gui-Lu

    2014-03-01

    In this paper, we present a comprehensive investigation of the effects of the transverse correlation function (TCF) on the thermodynamic properties of Heisenberg antiferromagnetic (AFM) and ferromagnetic (FM) systems with cubic lattices. The TCF of an FM system is positive and increases with temperature, while that of an AFM system is negative and decreases with temperature. The TCF lowers internal energy, entropy and specific heat. It always raises the free energy of an FM system but raises that of an AFM system only above a specific temperature when the spin quantum number is S >= 1. Comparisons between the effects of the TCFs on the FM and AFM systems are made where possible.

  10. Heisenberg groups and noncommutative fluxes

    SciTech Connect

    Freed, Daniel S. . E-mail: dafr@math.utexas.edu; Moore, Gregory W.; Segal, Graeme

    2007-01-15

    We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z{sub 2}-graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured.

  11. q-bosons and the Lie-deformed Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Pan, Hui-yun; Zhao, Zu Sen

    1998-02-01

    It is shown that the non-Hermitian realization of a Lie-deformed Heisenberg algebra given by Jannussis et al. is closely related with the q-Heisenberg-Weyl algebra of Biedenharn and Macfarlane with q being a phase ( q = eiθ, with θ real). The physical implications of this result are stressed.

  12. Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2016-01-01

    Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…

  13. Thermal entanglement and sharp specific-heat peak in an exactly solved spin-1/2 Ising-Heisenberg ladder with alternating Ising and Heisenberg inter-leg couplings

    NASA Astrophysics Data System (ADS)

    Rojas, Onofre; Strečka, J.; de Souza, S. M.

    2016-11-01

    The spin-1/2 Ising-Heisenberg two-leg ladder accounting for alternating Ising and Heisenberg inter-leg couplings in addition to the Ising intra-leg coupling is rigorously mapped onto to a mixed spin-(3/2,1/2) Ising-Heisenberg diamond chain with the nodal Ising spins S = 3 / 2 and the interstitial spin-1/2 Heisenberg dimers. The latter effective model with higher-order interactions between the nodal and interstitial spins is subsequently exactly solved within the transfer-matrix method. The model under investigation exhibits five different ground states: ferromagnetic, antiferromagnetic, superantiferromagnetic and two types of frustrated ground states with a non-zero residual entropy. A detailed study of thermodynamic properties reveals an anomalous specific-heat peak at low enough temperatures, which is strongly reminiscent because of its extraordinary height and sharpness to an anomaly accompanying a phase transition. It is convincingly evidenced, however, that the anomalous peak in the specific heat is finite and it comes from vigorous thermal excitations from a two-fold degenerate ground state towards a macroscopically degenerate excited state. Thermal entanglement between the nearest-neighbor Heisenberg spins is also comprehensively explored by taking advantage of the concurrence. The threshold temperature delimiting a boundary between the entangled and disentangled parameter space may show presence of a peculiar temperature reentrance.

  14. The elusive Heisenberg limit in quantum-enhanced metrology.

    PubMed

    Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin

    2012-01-01

    Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss. PMID:22990859

  15. The Human Mind As General Problem Solver, Is Observed To Find ``Best'' Solutions, That Correspond To Highest Mental Coherence: Will Discuss ``sing Glass Type Theory'' of Princeton Physicist J J Hopfield, Points To How Best Use Our Own Human Mind!!

    NASA Astrophysics Data System (ADS)

    Gurr, Henry

    2014-03-01

    Princeton Physicist J. J. Hopfield's Mathematical Model of the Mammalian Brain, (Similar To Ising Glass Model of a crystal of magnetic spin particles) says our Brain-Work for Memory, Perception, Language, Thinking, etc, (Even the AHA-EUREKA-Flash Of Insight Type Problem Solving), is achieved by our massively inter-connected CNS Neurons ... working together ... MINIMIZING an analog of physical energy ... thus yielding Optimal Solutions: These ``best'' answers, correspond to highest mental coherence, for most facets organism response, beit mental (eg: perception, memory, ideas, thinking, etc) or physical-muscular-actions (eg speaking, tool using, trail following, etc). Our brain is this way, because living creature, MUST be evolved, so they will find & use the best actions, for survival!!! Our human heritage, is to instantly compute near optimal future plans, (mental & physical-muscular), and be able to accomplish plans reliably & efficiently. If you know of book or articles in these topic areas, please email to HenryG--USCA.edu How to work well, with your own ``self'', called mind-body, will follow!! Conjectures: Who is the ``I'' that appears to make decisions? Am ``I'' the master of my domain? Is there an ``I'' or am ``I'' merely an illusion of reality.

  16. J. J. Sakurai Prize for Theoretical Particle Physics Lectgure: Improving the precision of high-energy simulation and analysis tools

    NASA Astrophysics Data System (ADS)

    Webber, Bryan

    2012-03-01

    Comparing theoretical predictions with experimental data on particle collisions like those at the Large Hadron Collider is far from straightforward. The predictions usually concern fundamental objects (quarks, gluons, leptons, ) whereas the colliding hadrons are complicated bound states. Furthermore, final states of interest often contain high-energy jets of many hadrons, together with underlying lower-energy hadron production. The jets may come from primary interactions producing energetic quarks and gluons, or from the decays of heavy or highly boosted objects, possibly new forms of matter. I will discuss the development of computer simulations of jet production in hard collisions, and of jet-finding algorithms that aim to reconstruct the fundamental collision and decay dynamics from hadronic final states. In both cases, improvements in the underlying theoretical framework have led to a better description of Standard Model processes at the LHC, and better tools for the discovery of any new processes that may lie within its reach.

  17. Heisenberg-Weyl Observables: Bloch vectors in phase space

    NASA Astrophysics Data System (ADS)

    Asadian, Ali; Erker, Paul; Huber, Marcus; Klöckl, Claude

    2016-07-01

    We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions. Furthermore, we derive bounds on the sum of expectation values of any set of anticommuting observables. Such bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first nontrivial example beyond the dichotomic case.

  18. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    NASA Astrophysics Data System (ADS)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-11-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve.

  19. In re J.J.

    PubMed

    1990-05-01

    The Ohio Court of Appeals, Butler County, held that the state may compel a 14-year-old to undergo medical treatment for gonorrhea, even though such treatment would violate his religious beliefs. The juvenile's belief in faith healing prohibited him from accepting medical help. Based on this refusal, the court found the juvenile to be a "dependent child," noting that his condition and environment warranted that the state assume his guardianship. Although minors have constitutional rights, including the right to freedom of religion, states have broader authority to regulate the activities of children than of adults. The state has an interest in the protection of society, and the juvenile's sexual activity created a risk to himself and to the community. The juvenile's mother was responsible for his medical expenses, despite her assertion that she was not at fault and that the state had not considered her ability to pay.

  20. High Field Magnetization Studies of Low Dimensional Heisenberg S = 1/2 Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Landee, C. P.; Albrecht, A. S.; Turnbull, M. M.

    1997-03-01

    The magnetization curves of a number of new 2D S=1/2 Heisenberg antiferromagnets have been determined in fields up to 30 tesla at low temperatures at the National High Magnetic Fields Laboratory. Magnets studied include (2-amino-5-methylpyridinium)_2CuBr4 (2-amino-5-chloropyridinium)_2CuBr_4, and [Cu(pz)_2(NO_3)](PF_6), where pz = pyrazine. All of the magnetization curves show upward curvature, a previously unknown effect for this model system. The magnetization curves are qualitatively similar to the theoretical prediction for the linear chain Heisenberg antiferromagnet. The saturation fields are consistent with those predicted from a molecular-field model, using exchange strengths obtained from susceptibility studies. Slight anisotropy has been observed in the single crystal studies of (2-amino-5-methylpyridinium)_2CuBr_4.

  1. Stable mean-field solution of a short-range interacting SO(3) quantum Heisenberg spin glass.

    PubMed

    da Conceição, C M S; Marino, E C

    2008-07-18

    We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an antiferromagnetic (AF) coupling J[over ]>0, and which, for weak disorder, can be treated as a perturbation of the pure AF Heisenberg system. The phase diagram contains, apart from a Néel phase at T=0, spin-glass and paramagnetic phases whose thermodynamic stability is demonstrated by an analysis of the Hessian matrix of the free-energy. The magnetic susceptibilities exhibit the typical cusp of a spin-glass transition.

  2. String limit of the isotropic Heisenberg chain in the four-particle sector

    SciTech Connect

    Antipov, A. G. Komarov, I. V.

    2008-05-15

    The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.

  3. Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain

    SciTech Connect

    Yeo Ye

    2002-12-01

    Recently, entanglement teleportation has been investigated by Lee and Kim [Phys. Rev. Lett. 84, 4236 (2000)]. In this paper we study entanglement teleportation via two separate thermally entangled states of a two-qubit Heisenberg XX chain. We established the condition under which the parameters of the model have to satisfy in order to teleport entanglement. The necessary minimum amount of thermal entanglement for some fixed strength of exchange coupling is a function of the magnetic field and the temperature.

  4. Fourier optics from the perspective of the Heisenberg group

    NASA Astrophysics Data System (ADS)

    Raszillier, Hans; Schempp, Walter

    Introduction The quantization problem The Heisenberg group Description of the wave field Examples from quantum mechanics The phase space of geometrical optics Peculiarities of geometrical optics Phase discontinuities Systems with symmetry Summary and comments References

  5. Whittaker modules for the twisted Heisenberg-Virasoro algebra

    SciTech Connect

    Liu Dong; Wu Yuezhu; Zhu Linsheng

    2010-02-15

    We define Whittaker modules for the twisted Heisenberg-Virasoro algebra and obtain several results from the classical setting, including a classification of simple Whittaker modules by central characters.

  6. Heisenberg's Uncertainty Principle and Interpretive Research in Science Education.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    1993-01-01

    Heisenberg's uncertainty principle and the derivative notions of interdeterminacy, uncertainty, precision, and observer-observed interaction are discussed and their applications to social science research examined. Implications are drawn for research in science education. (PR)

  7. The Natural Selection of the Chemical Elements (by R. J. P. Williams and J. J. R. Fraústo da Silva)

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.

    1998-12-01

    Clarendon: New York, 1996. xxvi + 646 pp. Figs., tables. 20.5 x 25.6 cm. ISBN 0-19-855843-0. $80.00. R. J. P. Williams, Royal Society Research Professor Emeritus at Wadham College, Oxford University, and J. J. R. Fraústo da Silva, Professor of Analytical Chemistry at the Instituto Superior Técnico, Universidade Técnica de Lisboa, have collaborated on two previous volumes: New Trends in Bio-inorganic Chemistry (1978) and The Biological Chemistry of the Elements (3rd printing, 1994). Their latest collaborative effort is a book whose ambitious objective is "to show the relationship of every kind of material around us, living and nonliving, to the properties of the chemical elements of the periodic table." The "natural selection" of the chemical elements results from a number of factors, all of which are described in detail. Among these are chemical affinity related to the electronic configuration of their atoms, thermodynamic and kinetic stability, and "functional value to an organisation such as a living system". The physicist's approach to material through phase structure and the phase rule is stressed rather than the chemist's approach through bonding theories. The entire book possesses a strong environmental and interdisciplinary emphasis.

  8. Quasi-Linear Algebras and Integrability (the Heisenberg Picture)

    NASA Astrophysics Data System (ADS)

    Vinet, Luc; Zhedanov, Alexei

    2008-02-01

    We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution) interpretation of the corresponding integrable systems.

  9. Exactly solved mixed spin-(1,1/2) Ising-Heisenberg distorted diamond chain

    NASA Astrophysics Data System (ADS)

    Lisnyi, Bohdan; Strečka, Jozef

    2016-11-01

    The mixed spin-(1,1/2) Ising-Heisenberg model on a distorted diamond chain with the spin-1 nodal atoms and the spin-1/2 interstitial atoms is exactly solved by the transfer-matrix method. An influence of the geometric spin frustration and the parallelogram distortion on the ground state, magnetization, susceptibility and specific heat of the mixed-spin Ising-Heisenberg distorted diamond chain are investigated in detail. It is demonstrated that the zero-temperature magnetization curve may involve intermediate plateaus just at zero and one-half of the saturation magnetization. The temperature dependence of the specific heat may have up to three distinct peaks at zero magnetic field and up to four distinct peaks at a non-zero magnetic field. The origin of multipeak thermal behavior of the specific heat is comprehensively studied.

  10. Heisenberg Uncertainty and the Allowable Masses of the Up Quark and Down Quark

    NASA Astrophysics Data System (ADS)

    Orr, Brian

    2004-05-01

    A possible explanation for the inability to attain deterministic measurements of an elementary particle's energy, as given by the Heisenberg Uncertainty Principle, manifests itself in an interesting anthropic consequent of Andrei Linde's Self-reproducing Inflationary Multiverse model. In Linde's model, the physical laws and constants that govern our universe adopt other values in other universes, due to variable Higgs fields. While the physics in our universe allow for the advent of life and consciousness, the physics necessary for life are not likely to exist in other universes -- Linde demonstrates this through a kind of Darwinism for universes. Our universe, then, is unique. But what are the physical laws and constants that make our universe what it is? Craig Hogan identifies five physical constants that are not bound by symmetry. Fine-tuning these constants gives rise to the basic behavior and structures of the universe. Three of the non-symmetric constants are fermion masses: the up quark mass, the down quark mass, and the electron mass. I will explore Linde's and Hogan's works by comparing the amount of uncertainty in quark masses, as calculated from the Heisenberg Uncertainty Principle, to the range of quark mass values consistent with our observed universe. Should the fine-tuning of the up quark and down quark masses be greater than the range of Heisenberg uncertainties in their respective masses (as I predict, due to quantum tunneling), then perhaps there is a correlation between the measured Heisenberg uncertainty in quark masses and the fine-tuning of masses required for our universe to be as it is. Hogan; "Why the Universe is Just So;" Reviews of Modern Physics; Issue 4; Vol. 72; pg. 1149-1161; Oct. 2000 Linde, "The Self-Reproducing Inflationary Universe;" Scientific American; No. 5; Vol. 271; pg. 48-55; Nov. 1994

  11. Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe.

    PubMed

    Kvashnin, Y O; Cardias, R; Szilva, A; Di Marco, I; Katsnelson, M I; Lichtenstein, A I; Nordström, L; Klautau, A B; Eriksson, O

    2016-05-27

    By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E_{g} and T_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the E_{g} states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among E_{g} states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions. PMID:27284671

  12. Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe

    NASA Astrophysics Data System (ADS)

    Kvashnin, Y. O.; Cardias, R.; Szilva, A.; Di Marco, I.; Katsnelson, M. I.; Lichtenstein, A. I.; Nordström, L.; Klautau, A. B.; Eriksson, O.

    2016-05-01

    By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3 d orbitals of Eg and T2 g symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T2 g orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the Eg states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among Eg states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions.

  13. Variational Monte Carlo investigation of SU (N ) Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Dufour, Jérôme; Nataf, Pierre; Mila, Frédéric

    2015-05-01

    Motivated by recent experimental progress in the context of ultracold multicolor fermionic atoms in optical lattices, we have investigated the properties of the SU (N) Heisenberg chain with totally antisymmetric irreducible representations, the effective model of Mott phases with m models have been studied for arbitrary N and m with non-Abelian bosonization [I. Affleck, Nucl. Phys. B 265, 409 (1986), 10.1016/0550-3213(86)90167-7; I. Affleck, Nucl. Phys. B 305, 582 (1988), 10.1016/0550-3213(88)90117-4], leading to predictions about the nature of the ground state (gapped or critical) in most but not all cases. Using exact diagonalization and variational Monte Carlo based on Gutzwiller projected fermionic wave functions, we have been able to verify these predictions for a representative number of cases with N ≤10 and m ≤N /2 , and we have shown that the opening of a gap is associated to a spontaneous dimerization or trimerization depending on the value of m and N . We have also investigated the marginal cases where Abelian bosonization did not lead to any prediction. In these cases, variational Monte Carlo predicts that the ground state is critical with exponents consistent with conformal field theory.

  14. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  15. Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains.

    PubMed

    Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun

    2016-05-18

    A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor [Formula: see text], which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field [Formula: see text] and the dislocation [Formula: see text], or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates. PMID:27092428

  16. Valence bond distribution and correlation in bipartite Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Schwandt, David; Alet, Fabien; Oshikawa, Masaki

    2014-03-01

    Every singlet state of a quantum spin-1/2 system can be decomposed into a linear combination of valence bond basis states. The range of valence bonds within this linear combination as well as the correlations between them can reveal the nature of the singlet state and are key ingredients in variational calculations. In this work, we study the bipartite valence bond distributions and their correlations within the ground state of the Heisenberg antiferromagnet on bipartite lattices. In terms of field theory, this problem can be mapped to correlation functions near a boundary. In dimension d ≥2, a nonlinear σ model analysis reveals that at long distances the probability distribution P (r) of valence bond lengths decays as |r|-d-1 and that valence bonds are uncorrelated. By a bosonization analysis, we also obtain P(r )∝|r|-d-1 in d =1 despite the different mechanism. On the other hand, we find that correlations between valence bonds are important even at large distances in d =1, in stark contrast to d ≥2. The analytical results are confirmed by high-precision quantum Monte Carlo simulations in d =1, 2, and 3. We develop a single-projection loop variant of the valence bond projection algorithm, which is well designed to compute valence bond probabilities and for which we provide algorithmic details.

  17. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  18. Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun

    2016-05-01

    A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor {θk}≤ft(Δ x,B\\right) , which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field B and the dislocation Δ x , or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates.

  19. Approaching the Heisenberg Limit Without Single-Particle Detection

    NASA Astrophysics Data System (ADS)

    Bentsen, Gregory; Davis, Emily; Schleier-Smith, Monika

    2016-05-01

    Achieving Heisenberg-limited measurements with ensembles of more than a few particles remains a major outstanding challenge. The problem is two-fold: one must not only prepare a sufficiently sensitive state, but also be able to detect it. While it is commonly assumed that Heisenberg-limited measurement demands single-particle-resolved detection, we propose an alternative approach that bypasses this requirement. We show that the ``one-axis twisting'' interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Even in the presence of dissipation, the protocol significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit, and achieves near-Heisenberg-limited precision in a √{ N}-times shorter evolution than is required to reach the GHZ state. AFOSR, NSF.

  20. Lipschitz control of geodesics in the Heisenberg group.

    SciTech Connect

    Berry, Robert Dan

    2010-12-01

    Monge first posed his (L{sup 1}) optimal mass transfer problem: to find a mapping of one distribution into another, minimizing total distance of transporting mass, in 1781. It remained unsolved in R{sup n} until the late 1990's. This result has since been extended to Riemannian manifolds. In both cases, optimal mass transfer relies upon a key lemma providing a Lipschitz control on the directions of geodesics. We will discuss the Lipschitz control of geodesics in the (subRiemannian) Heisenberg group. This provides an important step towards a potential theoretic proof of Monge's problem in the Heisenberg group.

  1. Heisenberg-scaled magnetometer with dipolar spin-1 condensates

    NASA Astrophysics Data System (ADS)

    Xing, Haijun; Wang, Anbang; Tan, Qing-Shou; Zhang, Wenxian; Yi, Su

    2016-04-01

    We propose a scheme to realize a Heisenberg-scaled magnetometer using dipolar spin-1 condensates. The input state of magnetometer is prepared by slowly sweeping a transverse magnetic field to zero, which yields a highly entangled spin state of N atoms. We show that this process is protected by a parity symmetry such that the state preparation time is within the reach of the current experiment. We also propose a parity measurement with a Stern-Gerlach apparatus which is shown to approach the optimal measurement in the large atom number limit. Finally, we show that the phase estimation sensitivity of the proposed scheme roughly follows the Heisenberg scaling.

  2. A quaternionic map for the steady states of the Heisenberg spin-chain

    NASA Astrophysics Data System (ADS)

    Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu

    2014-01-01

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  3. Systoles on Heisenberg groups with Carnot-Caratheodory metrics

    SciTech Connect

    Dontsov, V V

    2001-04-30

    The systolic properties of the nilmanifolds N{sup 2n+1} associated with the higher Heisenberg groups H{sub 2n+1} are studied. Effective estimates of the systolic constants {sigma}(N{sup 2n+1}) in the Carnot-Caratheodory geometry, as functions of the parameters defining a uniform lattice on H{sub 2n+1}, are obtained.

  4. Thermodynamics of the Heisenberg ferromagnet in an applied magnetic field.

    NASA Technical Reports Server (NTRS)

    Flax, L.

    1972-01-01

    The anisotropic-Heisenberg-ferromagnet formalism developed previously is examined to include an applied magnetic field for the isotropic case in the random-phase approximation. Thermodynamic quantities such as magnetization, susceptibility, and the derivative of magnetization with respect to temperature are studied near the Curie point.

  5. Phase diagrams of a classical two-dimensional Heisenberg antiferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Leidl, R.; Selke, W.

    2004-11-01

    A classical variant of the two-dimensional anisotropic Heisenberg model reproducing inelastic neutron scattering experiments on La5Ca9Cu24O41 [M. Matsuda , Phys. Rev. B 68, 060406(R) (2003)] is analyzed using mostly Monte Carlo techniques. Phase diagrams with external fields parallel and perpendicular to the easy axis of the anisotropic interactions are determined, including antiferromagnetic and spin-flop phases. Mobile spinless defects, or holes, are found to form stripes which bunch, debunch, and break up at a phase transition. A parallel field can lead to a spin-flop phase.

  6. Phase diagram of the frustrated spin-1/2 Heisenberg antiferromagnet in two dimensions

    NASA Technical Reports Server (NTRS)

    Dagotto, Elbio; Moreo, Adriana

    1989-01-01

    A Lanczos technique is used to study the frustrated spin-1/2 Heisenberg model on square lattices of 16 and 20 sites. Frustration is introduced by an interaction along the diagonals of the plaquettes with coupling J2 greater than or equal to 0. For large J2, the ground state breaks (spontaneously) the lattice rotational symmetry. For intermediate values of J2, the squares of order parameters associated with spin-Peierls and 'twisted'states have a peak, while a similar quantity for a chiral state shows no interesting structure.

  7. Spectrum, symmetries, and dynamics of Heisenberg spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Joel, Kira; Kollmar, Davida; Santos, Lea

    2013-03-01

    Quantum spin chains are prototype quantum many-body systems. They are employed in the description of various complex physical phenomena. Here we provide an introduction to the subject by focusing on the time evolution of Heisenberg spin-1/2 chains with couplings between nearest-neighbor sites only. We study how the anisotropy parameter and the symmetries of the model affect its time evolution. Our predictions are based on the analysis of the eigenvalues and eigenstates of the system and then confirmed with actual numerical results.

  8. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice.

    PubMed

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-24

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2,1/2,1/2) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed. PMID:27391746

  9. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-01

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  10. New Universality Class in Spin-One-Half Fibonacci Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2004-07-01

    Low energy properties of the S=1/2 antiferromagnetic Heisenberg chains with Fibonacci exchange modulation are studied using the real space renormalization group method for strong exchange modulation. Using the analytical solution of the recursion equation, the true asymptotic behavoir is revealed, which was veiled by the finite size effect in the previous numerical works. It is found that the ground state of this model belongs to a new universality class with a logarithmically divergent dynamical exponent which is neither like Fibonacci XY chains nor like XY chains with relevant aperiodicity.

  11. New universality class in spin-one-half Fibonacci Heisenberg chains.

    PubMed

    Hida, Kazuo

    2004-07-16

    Low energy properties of the S=1/2 antiferromagnetic Heisenberg chains with Fibonacci exchange modulation are studied using the real space renormalization group method for strong exchange modulation. Using the analytical solution of the recursion equation, the true asymptotic behavoir is revealed, which was veiled by the finite size effect in the previous numerical works. It is found that the ground state of this model belongs to a new universality class with a logarithmically divergent dynamical exponent which is neither like Fibonacci XY chains nor like XY chains with relevant aperiodicity. PMID:15323863

  12. Approaching the Heisenberg Limit without Single-Particle Detection.

    PubMed

    Davis, Emily; Bentsen, Gregory; Schleier-Smith, Monika

    2016-02-01

    We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the "one-axis twisting" interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in dissipative implementations-e.g., employing light-mediated interactions in an optical cavity or Rydberg dressing-the method significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit. PMID:26894711

  13. q-graded Heisenberg algebras and deformed supersymmetries

    SciTech Connect

    Ben Geloun, Joseph; Hounkonnou, Mahouton Norbert

    2010-02-15

    The notion of q-grading on the enveloping algebra generated by products of q-deformed Heisenberg algebras is introduced for q complex number in the unit disk. Within this formulation, we consider the extension of the notion of supersymmetry in the enveloping algebra. We recover the ordinary Z{sub 2} grading or Grassmann parity for associative superalgebra and a modified version of the usual supersymmetry. As a specific problem, we focus on the interesting limit q{yields}-1 for which the Arik and Coon deformation [J. Math. Phys. 17, 524 (1976)] of the Heisenberg algebra allows one to map fermionic modes to bosonic ones in a modified sense. Different algebraic consequences are discussed.

  14. Far-from-equilibrium spin transport in Heisenberg quantum magnets.

    PubMed

    Hild, Sebastian; Fukuhara, Takeshi; Schauß, Peter; Zeiher, Johannes; Knap, Michael; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2014-10-01

    We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral pattern with an adjustable wave vector, we measure the decay of the initial spin correlations through single-site resolved detection. On the experimentally accessible time scale of several exchange times, we find a profound dependence of the decay rate on the wave vector. In one-dimensional systems, we observe diffusionlike spin transport with a dimensionless diffusion coefficient of 0.22(1). We show how this behavior emerges from the microscopic properties of the closed quantum system. In contrast to the one-dimensional case, our transport measurements for two-dimensional Heisenberg systems indicate anomalous superdiffusion. PMID:25325657

  15. The role of phase space geometry in Heisenberg's uncertainty relation

    NASA Astrophysics Data System (ADS)

    Anastopoulos, Charis; Savvidou, Ntina

    2003-11-01

    Aiming towards a geometric description of quantum theory, we study the coherent states-induced metric on the phase space, which provides a geometric formulation of the Heisenberg uncertainty relations (both the position-momentum and the time-energy ones). The metric also distinguishes the original uncertainty relations of Heisenberg from the ones that are obtained from non-commutativity of operators. Conversely, the uncertainty relations can be written in terms of this metric only, hence they can be formulated for any physical system, including ones with non-trivial phase space. Moreover, the metric is a key ingredient of the probability structure of continuous-time histories on phase space. This fact allows a simple new proof the impossibility of the physical manifestation of the quantum Zeno and anti-Zeno paradoxes. Finally, we construct the coherent states for a spinless relativistic particle, as a non-trivial example by which we demonstrate our results.

  16. Heisenberg-limited sensitivity with decoherence-enhanced measurements.

    PubMed

    Braun, Daniel; Martin, John

    2011-01-01

    Quantum-enhanced measurements use quantum mechanical effects to enhance the sensitivity of the measurement of classical quantities, such as the length of an optical cavity. The major goal is to beat the standard quantum limit (SQL), that is, an uncertainty of order , where N is the number of quantum resources (for example, the number of photons or atoms used), and to achieve a scaling 1/N, known as the Heisenberg limit. So far very few experiments have demonstrated an improvement over the SQL. The required quantum states are generally highly entangled, difficult to produce, and very prone to decoherence. Here, we show that Heisenberg-limited measurements can be achieved without the use of entangled states by coupling the quantum resources to a common environment that can be measured at least in part. The method is robust under decoherence, and in fact the parameter dependence of collective decoherence itself can be used to reach a 1/N scaling.

  17. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Surungan, Tasrief; Bansawang B., J.; Tahir, Dahlang

    2016-03-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  18. Chern-Simons theory for Heisenberg spins on the Kagome Lattice

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Sun, Kai; Fradkin, Eduardo

    2015-03-01

    We study the problem of Heisenberg spins on the frustrated Kagome lattice using a 2D Jordan-Wigner transformation that maps the spins (hard-core bosons) onto a system of (interacting) fermions coupled to a Chern-Simons gauge field. This mapping requires us to define a discretized version of the Chern-Simons term on the lattice. Using a recently developed result on how to define Chern-Simons theories on a class of planar lattices, we can consistently study spin models beyond the mean-field level and include the effects of fluctuations, which are generally strong in frustrated systems. Here, we apply these results to study magnetization plateau type states on the Kagome lattice in the regime of XY anisotropy. We find that the 1/3 and 2/3 magnetization plateaus are chiral spin liquid states equivalent to a primary Laughlin fractional quantum Hall state of bosons with (spin) Hall conductivity 1/2 1/4 π and semionic excitations. The 5/9 plateau is a chiral spin liquid equivalent to the first Jain descendant. We also consider the spin-1/2 Heisenberg model on the Kagome lattice with a chirality-breaking term on the triangular plaquettes. This situation also leads to a primary Laughlin bosonic fractional quantum Hall type state with filling fraction 1 / 2 .

  19. Magnetization Process of Spin-1/2 Heisenberg Antiferromagnets on a Layered Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daisuke; Marmorini, Giacomo; Danshita, Ippei

    2016-02-01

    We study the magnetization process of the spin-1/2 antiferromagnetic Heisenberg model on a layered triangular lattice by means of a numerical cluster mean-field method with a scaling scheme (CMF+S). It has been known that antiferromagnetic spins on a two-dimensional (2D) triangular lattice with quantum fluctuations exhibit a one-third magnetization plateau in the magnetization curve under magnetic field. We demonstrate that the CMF+S quantitatively reproduces the magnetization curve including the stabilization of the plateau. We also discuss the effects of a finite interlayer coupling, which is unavoidable in real quasi-2D materials. It has been recently argued for a model of the layered-triangular-lattice compound Ba3CoSb2O9 that such interlayer coupling can induce an additional first-order transition at a strong field. We present the detailed CMF+S results for the magnetization and susceptibility curves of the fundamental Heisenberg Hamiltonian in the presence of magnetic field and weak antiferromagnetic interlayer coupling. The extra first-order transition appears as a quite small jump in the magnetization curve and a divergence in the susceptibility at a strong magnetic field ˜0.712 of the saturation field.

  20. Field driven phases in the geometrically frustrated dipolar Heisenberg pyrochlore antiferromagnet Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Enjalran, Matthew; Del Maestro, Adrian; Gingras, Michel J. P.

    2008-03-01

    The rare-earth pyrochlore gadolinium titanate, Gd2Ti2O7, represents an excellent experimental realization of a Heisenberg antiferromagnet (AFM) in a frustrated geometry with weak long-range dipole-dipole interactions (approximately 20% of nearest neighbor AFM exchange). Experiments on Gd2Ti2O7 in a magnetic field reveal a complex phase diagram associated with the breaking of spatial symmetries of the pyrochlore lattice as the field is applied along select symmetry directions. We study a model of classical Heisenberg spins (O(3) symmetry) on a pyrochlore lattice with exchange and dipolar interactions within mean-field theory. Using parameters relevant to the material system, we develop phase diagrams in finite magnetic fields. Our results our compared to experiments on Gd2Ti2O7 (and Gd2Sn2O7).

  1. Entanglement in a four qubit J1-J2 Heisenberg XXZ system with Dzialoshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Şahintaş, Alev; Akyüz, Cenk

    2016-04-01

    In this study, we investigate the entanglement properties of a four qubit anisotropic Heisenberg XXZ system which has the nearest neighboring (NN), the next nearest neighboring (NNN) and Dzialoshinskii-Moriya (DM) interactions. Calculations of the ground state and thermal entanglement are carried out in terms of concurrence for selected ranges of control parameters such as DM interaction, anisotropy and frustration. From the results obtained, we see that DM interaction and the frustration play an active role on the ground state entanglement between NN and NNN qubits, respectively. We also see that frustration parameter α exhibits positive effects on the thermal entanglement especially between NNN qubits. Consequently, we show that effective control of entanglement can be obtained by employing competing effects of the control parameters in this general Heisenberg model which is constructed by considering not only NN interaction but also NNN and DM interactions.

  2. Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

    SciTech Connect

    Zhang, Guo-Feng

    2007-03-15

    Thermal entanglement of a two-qubit Heisenberg chain in the presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as the quantum channel are investigated. It is found that the DM interaction can excite entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of the input; its dependences on the temperature, DM interaction, and spin coupling constant are given in detail. Entanglement teleportation will be better realized via an antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of the DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of whether the spin chains are antiferromagnetic or ferromagnetic.

  3. Spatially frustrated S = 1 Heisenberg antiferromagnet with single ion anisotropy

    NASA Astrophysics Data System (ADS)

    Pires, A. S. T.

    2016-10-01

    Using the SU(3) Schwinger boson formalism, I study the S = 1 square lattice Heisenberg antiferromagnet, at zero temperature, with spatially anisotropic nearest-neighbor couplings frustrated by a next-nearest neighbor interaction and single ion anisotropy. The phase diagram at zero temperature is presented. My calculations show two magnetically ordered phases separated by a quantum-disordered region for all values of the anisotropy.

  4. Partition function zeros and magnetization plateaus of the spin-1 Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Ananikian, N. S.; Kenna, R.

    2016-07-01

    We study the properties of the generalized spin-1 Ising-Heisenberg model on a diamond chain, which can be considered as a theoretical model for the homometallic magnetic complex [Ni3(C4H2O4)2 -(μ3 - OH) 2(H2O)4 ] n ṡ(2H2 O) n. The model possesses a large variety of ground-state phases due to the presence of biquadratic and single-ion anisotropy parameters. Magnetization and quadrupole moment plateaus are observed at one- and two-thirds of the saturation value. The distributions of Yang-Lee and Fisher zeros are studied numerically for a variety of values of the model parameters. The usual value σ = -1/2 alongside an unusual value σ = -2/3 ​is determined for the Yang-Lee edge singularity exponents.

  5. Classical ground states of Heisenberg and X Y antiferromagnets on the windmill lattice

    NASA Astrophysics Data System (ADS)

    Jeevanesan, Bhilahari; Orth, Peter P.

    2014-10-01

    We investigate the classical Heisenberg and planar (X Y ) spin models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination of iterative minimization, heat-bath Monte Carlo simulations, and analytical calculations, we determine the complete ground-state phase diagram of both models and find the exact energies of the phases. The phase diagram shows a rich phenomenology due to competing interactions and hosts, in addition to collinear and various coplanar phases, also intricate noncoplanar phases. We briefly outline different paths to an experimental realization of these spin models. Our extensive study provides a starting point for the investigation of quantum and thermal fluctuation effects.

  6. Magnetic Properties of a Heisenberg Coupled-Trimer Molecular Magnet: General

    SciTech Connect

    Haraldsen, Jason T; Barnes, Ted {F E }; Sinclair IV, John W; Thompson, James R; Sacci, Robert L.; Turner, John F. C.

    2009-01-01

    We report predictions for the energy eigenstates and inelastic neutron scattering excitations of an isotropic Heisenberg hexamer consisting of general spin S and S′ trimers. Specializing to spin-1/2 ions, we give analytic results for the energy excitations, magnetic susceptibility, and inelastic neutron scattering intensities for this hexamer system. To examine this model further, we compare these calculations to the measured magnetic susceptibility of a vanadium material, which is considered to be well defined magnetically as an isolated S = 1/2 V4+ trimer model. Using our model, we determine the amount of inter-trimer coupling that can be accommodated by the measured susceptibility, and predict the inelastic neutron scattering spectrum for comparison with future measurements.

  7. Solving the {eta}-problem in hybrid inflation with Heisenberg symmetry and stabilized modulus

    SciTech Connect

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.; Bastero-Gil, Mar; King, Steve F. E-mail: mbg@ugr.es E-mail: sfk@hep.phys.soton.ac.uk

    2009-01-15

    We propose a class of models in which the {eta}-problem of supersymmetric hybrid inflation is resolved using a Heisenberg symmetry, where the associated modulus field is stabilized and made heavy with the help of the large vacuum energy during inflation without any fine-tuning. The proposed class of models is well motivated both from string theory considerations, since it includes the commonly encountered case of no-scale supergravity Kaehler potential, and from the perspective of particle physics since a natural candidate for the inflaton in this class of models is the right-handed sneutrino which is massless during the inflationary epoch, and subsequently acquires a large mass at the end of inflation. We study a specific example motivated by sneutrino hybrid inflation with no-scale supergravity in some detail, and show that the spectral index may lie within the latest WMAP range, while the tensor-to-scalar ratio is very small.

  8. Spin frustration of a spin-1/2 Ising-Heisenberg three-leg tube as an indispensable ground for thermal entanglement

    NASA Astrophysics Data System (ADS)

    Strečka, Jozef; Alécio, Raphael Cavalcante; Lyra, Marcelo L.; Rojas, Onofre

    2016-07-01

    The spin-1/2 Ising-Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles.

  9. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  10. Influence of dilution in the spin transport in the quantum anisotropic two-dimensional Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-08-01

    We study the influence of the site disorder in the long range order and in the spin transport in the two-dimensional Heisenberg antiferromagnet with ion-single anisotropy, in the square lattice in T=0 using the SU(3) Schwinger boson theory. We analyze these properties in the regime of Bose-Einstein condensation, where the bosons tz are condensed: = < tz† > = t. In particular, we discuss the influence of the site disorder in the spin transport of this model and in the critical properties, where Dc separates Néel's phase, D Dc, in the spin conductivity. We find that the behavior of the long-range order for D model without impurities with the concentration of nonmagnetic impurities does not affect the spin conductivity.

  11. Q-operators for the open Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Szécsényi, István M.

    2015-12-01

    We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.

  12. Spin transport of weakly disordered Heisenberg chain at infinite temperature

    NASA Astrophysics Data System (ADS)

    Khait, Ilia; Gazit, Snir; Yao, Norman Y.; Auerbach, Assa

    2016-06-01

    We study the disordered Heisenberg spin chain, which exhibits many-body localization at strong disorder, in the weak to moderate disorder regime. A continued fraction calculation of dynamical correlations is devised, using a variational extrapolation of recurrents. Good convergence for the infinite chain limit is shown. We find that the local spin correlations decay at long times as C ˜t-β , whereas the conductivity exhibits a low-frequency power law σ ˜ωα . The exponents depict subdiffusive behavior β <1 /2 ,α >0 at all finite disorders and convergence to the scaling result α +2 β =1 at large disorders.

  13. Quantification of quantum discord in a antiferromagnetic Heisenberg compound

    SciTech Connect

    Singh, H. Chakraborty, T. Mitra, C.

    2014-04-24

    An experimental quantification of concurrence and quantum discord from heat capacity (C{sub p}) measurement performed over a solid state system has been reported. In this work, thermodynamic measurements were performed on copper nitrate (CN, Cu(NO{sub 3}){sub 2}⋅2.5H{sub 2}O) single crystals which is an alternating antiferromagnet Heisenberg spin 1/2 system. CN being a weak dimerized antiferromagnet is an ideal system to investigate correlations between spins. The theoretical expressions were used to obtain concurrence and quantum discord curves as a function of temperature from heat capacity data of a real macroscopic system, CN.

  14. Quasiparticle interactions in frustrated Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Vanderstraeten, Laurens; Haegeman, Jutho; Verstraete, Frank; Poilblanc, Didier

    2016-06-01

    Interactions between elementary excitations in quasi-one-dimensional antiferromagnets are of experimental relevance and their quantitative theoretical treatment has been a theoretical challenge for many years. Using matrix product states, one can explicitly determine the wave functions of the one- and two-particle excitations, and, consequently, the contributions to dynamical correlations. We apply this framework to the (nonintegrable) frustrated dimerized spin-1/2 chain, a model for generic spin-Peierls systems, where low-energy quasiparticle excitations are bound states of topological solitons. The spin structure factor involving two quasiparticle scattering states is obtained in the thermodynamic limit with full momentum and frequency resolution. This allows very subtle features in the two-particle spectral function to be revealed which, we argue, could be seen, e.g., in inelastic neutron scattering of spin-Peierls compounds under a change of the external pressure.

  15. Darboux transformation and exact solutions of the integrable Heisenberg ferromagnetic equation with self-consistent potentials

    NASA Astrophysics Data System (ADS)

    Yersultanova, Z. S.; Zhassybayeva, M.; Yesmakhanova, K.; Nugmanova, G.; Myrzakulov, R.

    2016-10-01

    Integrable Heisenberg ferromagnetic equations are an important subclass of integrable systems. The M-XCIX equation is one of a generalizations of the Heisenberg ferromagnetic equation and are integrable. In this paper, the Darboux transformation of the M-XCIX equation is constructed. Using the DT, a 1-soliton solution of the M-XCIX equation is presented.

  16. Magnetic behavior of the giant Heisenberg molecular magnet Mo_72Fe_30: Classical theory and experiment

    NASA Astrophysics Data System (ADS)

    Luban, Marshall; Modler, Robert; Axenovich, Maria; Canfield, Paul; Bud'Ko, Sergey; Schröder, Christian; Schnack, Jürgen; Müller, Achim; Kögerler, Paul; Harrison, Neil

    2001-03-01

    The Keplerate species Mo_72Fe_30 containing 30 high-spin Fe^3+ ions, is by far the largest paramagnetic molecule synthesized to date, and it serves as an effective building block and prototype for a new class of diverse molybdenum-oxygen based compounds. These substances are of importance for identifying the most pertinent criteria for the passage from microscopic to macroscopic magnetism, and for their potential as molecular-based electronic and magnetic devices. We report excellent agreement, from room temperature down to 0.1 K, and for magnetic fields up to 60 Tesla between our theoretical results based on the classical Heisenberg model and our measurements of its magnetic properties.

  17. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Champion, J. D. M.; Wills, A. S.; Fennell, T.; Bramwell, S. T.; Gardner, J. S.; Green, M. A.

    2001-10-01

    The rare-earth pyrochlore material Gd2Ti2O7 is considered to be an ideal model frustrated Heisenberg antiferromagnet with additional dipolar interactions. For this system there are several untested theoretical predictions of the ground state ordering pattern. Here we establish the magnetic structure of isotopically enriched 160Gd2Ti2O7, using powder neutron diffraction at a temperature of 50 mK. The magnetic structure at this temperature is a partially ordered, noncollinear antiferromagnetic structure, with propagation vector k=121212. It can be described as a set of ``q=0'' ordered kagomé planes separated by zero interstitial moments. This magnetic structure agrees with theory only in part, leaving an interesting problem for future research.

  18. Einstein-Heisenberg consistency condition interplay with cosmological constant prediction in resummed quantum gravity

    NASA Astrophysics Data System (ADS)

    Ward, B. F. L.

    2015-10-01

    We argue that our recent success in using our resummed quantum gravity (RQG) approach to Einstein’s general theory of relativity, in the context of the Planck scale cosmology formulation of Bonanno and Reuter, to estimate the value of the cosmological constant Λ supports the use of quantum mechanical consistency requirements to constrain the main uncertainty in that very promising result. This main uncertainty, which is due to the uncertainty in the value of the time ttr at which the transition from the Planck scale cosmology to the FRW model occurs, is shown to be reduced, by requiring consistency between the Heisenberg uncertainty principle and the known properties of the solutions of Einstein’s equations, from four orders of magnitude to the level of a factor of 𝒪(10). This lends more credibility to the overall RQG approach itself, in general, and to our estimate of Λ in particular.

  19. Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled cavities

    SciTech Connect

    Chen Zhixin; Zhou Zhengwei; Zhou Xingxiang; Zhou Xiangga; Guo Guangcan

    2010-02-15

    We propose a scheme to simulate one-dimensional XXZ-type Heisenberg spin models with competing interactions between nearest neighbors (NNs) and next NNs in photon-coupled microcavities. Our scheme exploits the rich resources and flexible controls available in such a system to realize arbitrarily adjustable ratios between the effective NN and next-NN coupling strengths. Such a powerful capability allows us to simulate frustration phenomena and disorder behaviors in one-dimensional systems arising from next-NN interactions, a large class of problems of great importance in condensed-matter physics. Our scheme is robust due to the lack of atomic excitations, which suppresses spontaneous emission and cavity decay strongly.

  20. Simulated nuclear spin-lattice relaxation in Heisenberg ferrimagnets: Indirect observation of quadratic dispersion relations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji

    2000-01-01

    In response to recent proton spin-relaxation time measurements on NiCu(pba)(H2O)3.2H2O with pba=1,3-propylenebis(oxamato), which is an excellent one-dimensional ferrimagnetic Heisenberg model system of spin (1,12), we study the Raman relaxation process in spin-(S,s) quantum ferrimagnets on the assumption of predominantly dipolar hyperfine interactions between protons and magnetic ions. The relaxation time T1 is formulated within the spin-wave theory and is estimated as a function of temperature and an applied field H by a quantum Monte Carlo method. The low-temperature behavior of the relaxation rate T-11 qualitatively varies with (S,s), while T-11 is almost proportional to H-1/2 due to the characteristic dispersion relations.

  1. Determination of the W W polarization fractions in p p →W±W±j j using a deep machine learning technique

    NASA Astrophysics Data System (ADS)

    Searcy, Jacob; Huang, Lillian; Pleier, Marc-André; Zhu, Junjie

    2016-05-01

    The unitarization of the longitudinal vector boson scattering (VBS) cross section by the Higgs boson is a fundamental prediction of the Standard Model which has not been experimentally verified. One of the most promising ways to measure VBS uses events containing two leptonically decaying same-electric-charge W bosons produced in association with two jets. However, the angular distributions of the leptons in the W boson rest frame, which are commonly used to fit polarization fractions, are not readily available in this process due to the presence of two neutrinos in the final state. In this paper we present a method to alleviate this problem by using a deep machine learning technique to recover these angular distributions from measurable event kinematics and demonstrate how the longitudinal-longitudinal scattering fraction could be studied. We show that this method doubles the expected sensitivity when compared to previous proposals.

  2. THE 2D HEISENBERG ANTIFERROMAGNET IN HIGH-Tc SUPERCONDUCTIVITY:. A Review of Numerical Techniques and Results

    NASA Astrophysics Data System (ADS)

    Barnes, T.

    In this article we review numerical studies of the quantum Heisenberg antiferromagnet on a square lattice, which is a model of the magnetic properties of the undoped “precursor insulators” of the high temperature superconductors. We begin with a brief pedagogical introduction and then discuss zero and nonzero temperature properties and compare the numerical results to analytical calculations and to experiment where appropriate. We also review the various algorithms used to obtain these results, and discuss algorithm developments and improvements in computer technology which would be most useful for future numerical work in this area. Finally we list several outstanding problems which may merit further investigation.

  3. Quantum spin transistor with a Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-10-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  4. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  5. Fitting magnetic field gradient with Heisenberg-scaling accuracy

    PubMed Central

    Zhang, Yong-Liang; Wang, Huan; Jing, Li; Mu, Liang-Zhu; Fan, Heng

    2014-01-01

    The linear function is possibly the simplest and the most used relation appearing in various areas of our world. A linear relation can be generally determined by the least square linear fitting (LSLF) method using several measured quantities depending on variables. This happens for such as detecting the gradient of a magnetic field. Here, we propose a quantum fitting scheme to estimate the magnetic field gradient with N-atom spins preparing in W state. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cramér-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. Our scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements. PMID:25487218

  6. Heisenberg-limited atom clocks based on entangled qubits.

    PubMed

    Kessler, E M; Kómár, P; Bishof, M; Jiang, L; Sørensen, A S; Ye, J; Lukin, M D

    2014-05-16

    We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.

  7. Werner Heisenberg zum 100. Geburtstag: Pionier der Quantenmechanik

    NASA Astrophysics Data System (ADS)

    Jacobi, Manfred

    2001-11-01

    Werner Heisenberg war eine der prägendsten Gestalten der Physik des 20. Jahrhunderts. Zu seinen wichtigsten Verdiensten gehören die Grundlegung der Quantenmechanik, die Formulierung der Unschärferelationen sowie die Beteiligung an der Ausarbeitung der Kopenhagener Deutung der Quantenmechanik. Darüber hinaus lieferte er Arbeiten von fundamentalem Charakter zur Theorie des Atomkerns, zur kosmischen Strahlung und zur Quantenfeldtheorie. Während des Krieges war er an den Arbeiten des Uranvereins beteiligt, der die Möglichkeit einer Entwicklung von Kernwaffen untersuchte, jedoch über Vorarbeiten zur Reaktorphysik nicht hinauskam. Wegen dieser Tätigkeit wurde er bei Kriegsende für einige Monate in England interniert. Nach seiner Rückkehr widmete er sich vor allem dem Aufbau der Physik in Deutschland, die während der NS-Zeit nahezu ihrer gesamten Substanz beraubt worden war.

  8. Heisenberg-limited atom clocks based on entangled qubits.

    PubMed

    Kessler, E M; Kómár, P; Bishof, M; Jiang, L; Sørensen, A S; Ye, J; Lukin, M D

    2014-05-16

    We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time. PMID:24877919

  9. Energy dynamics in the Heisenberg-Kitaev spin chain

    NASA Astrophysics Data System (ADS)

    Steinigeweg, Robin; Brenig, Wolfram

    2016-06-01

    We study the Heisenberg-Kitaev spin chain in order to uncover the interplay between two qualitatively different integrable points in the physics of heat transport in one dimension. Focusing on high temperatures and using analytical as well as numerical approaches within linear response theory, we explore several directions in parameter space including exchange-coupling ratios, anisotropies, and external magnetic fields. We show the emergence of purely ballistic energy transport at all integrable points, manifest in pronounced Drude weights and low-frequency suppression of regular-conductivity contributions. Moreover, off integrability, we find extended quantum chaotic regions with vanishing Drude weights and well-defined dc conductivities. In the vicinity of the Kitaev point, we observe clear signatures of the topological gap in the response function. This gap coexists with a nonzero Drude weight in the Kitaev chain.

  10. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    SciTech Connect

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TN in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.

  11. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    DOE PAGES

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TNmore » in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.« less

  12. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2015-02-01

    A unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Ji j between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Ji j values and TN in terms of the Ji j values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S . For collinear ordering these properties are the reduced temperature t =T /TN , the ratio f =θp/TN , and S . For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ (T ≤TN) of noncollinear 120∘ spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S , and the reduced perpendicular field versus reduced temperature phase diagram is constructed.

  13. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    NASA Astrophysics Data System (ADS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-05-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6.

  14. Werner Heisenberg and Carl Friedrich Freiherr von Weizsäcker: A Fifty-Year Friendship*

    NASA Astrophysics Data System (ADS)

    Cassidy, David C.

    2015-03-01

    This paper follows Werner Heisenberg and Carl Friedrich von Weizsäcker during their fifty-year friendship from 1926, when they first met in Copenhagen, to Heisenberg's death in Munich in 1976. The relationship underwent profound changes during that period, as did physics, philosophy, and German society and politics, all of which exerted important influences on their lives, work, and interactions with each other. The nature of these developments and their impact are explored in this paper.

  15. The Heisenberg-Euler Lagrangian as an example of an effective field theory

    NASA Astrophysics Data System (ADS)

    Dittrich, Walter

    2014-10-01

    We review the beginning of the effective Lagrangian in QED that was first introduced in the literature by W. Heisenberg and H. Euler in 1936. Deviating from their way of calculating the one-loop effective correction to the classical Maxwell Lagrangian, we use Green's functions and adopt the Fock-Schwinger proper-time method. The important role of the Heisenberg-Euler effective Lagrangian is explicitly demonstrated for low-energy photon-photon processes.

  16. Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg; Richter, Johannes; Maksymenko, Mykola

    2015-05-01

    On a large class of lattices (such as the sawtooth chain, the kagome and the pyrochlore lattices), the quantum Heisenberg and the repulsive Hubbard models may host a completely dispersionless (flat) energy band in the single-particle spectrum. The flat-band states can be viewed as completely localized within a finite volume (trap) of the lattice and allow for construction of many-particle states, roughly speaking, by occupying the traps with particles. If the flat-band happens to be the lowest-energy one, the manifold of such many-body states will often determine the ground-state and low-temperature physics of the models at hand even in the presence of strong interactions. The localized nature of these many-body states makes possible the mapping of this subset of eigenstates onto a corresponding classical hard-core system. As a result, the ground-state and low-temperature properties of the strongly correlated flat-band systems can be analyzed in detail using concepts and tools of classical statistical mechanics (e.g., classical lattice-gas approach or percolation approach), in contrast to more challenging quantum many-body techniques usually necessary to examine strongly correlated quantum systems. In this review, we recapitulate the basic features of the flat-band spin systems and briefly summarize earlier studies in the field. The main emphasis is made on recent developments which include results for both spin and electron flat-band models. In particular, for flat-band spin systems, we highlight field-driven phase transitions for frustrated quantum Heisenberg antiferromagnets at low temperatures, chiral flat-band states, as well as the effect of a slight dispersion of a previously strictly flat-band due to nonideal lattice geometry. For electronic systems, we discuss the universal low-temperature behavior of several flat-band Hubbard models, the emergence of ground-state ferromagnetism in the square-lattice Tasaki-Hubbard model and the related Pauli

  17. Phase diagram of the alternating-spin Heisenberg chain with extra isotropic three-body exchange interactions

    NASA Astrophysics Data System (ADS)

    Ivanov, Nedko B.; Ummethum, Jörg; Schnack, Jürgen

    2014-10-01

    For the time being isotropic three-body exchange interactions are scarcely explored and mostly used as a tool for constructing various exactly solvable one-dimensional models, although, generally speaking, such competing terms in generic Heisenberg spin systems can be expected to support specific quantum effects and phases. The Heisenberg chain constructed from alternating S = 1 and σ = 1/2 site spins defines a realistic prototype model admitting extra three-body exchange terms. Based on numerical density-matrix renormalization group (DMRG) and exact diagonalization (ED) calculations, we demonstrate that the additional isotropic three-body terms stabilize a variety of partially-polarized states as well as two specific non-magnetic states including a critical spin-liquid phase controlled by two Gaussinal conformal theories as well as a critical nematic-like phase characterized by dominant quadrupolar S-spin fluctuations. Most of the established effects are related to some specific features of the three-body interaction such as the promotion of local collinear spin configurations and the enhanced tendency towards nearest-neighbor clustering of the spins. It may be expected that most of the predicted effects of the isotropic three-body interaction persist in higher space dimensions.

  18. Studies on a frustrated Heisenberg spin chain with alternating ferromagnetic and antiferromagnetic exchanges.

    PubMed

    Sahoo, Shaon; Durga Prasad Goli, V M L; Sen, Diptiman; Ramasesha, S

    2014-07-01

    We study Heisenberg spin-1/2 and spin-1 chains with alternating ferromagnetic (J(F)(1)) and antiferromagnetic (J(A)(1)) nearest-neighbor interactions and a ferromagnetic next-nearest-neighbor interaction (J(F)(2)). In this model frustration is present due to the non-zero J(F)(2). The model with site spin s behaves like a Haldane spin chain, with site spin 2s in the limit of vanishing J(F)(2)and large J(F)(1)/J(A)(1). We show that the exact ground state of the model can be found along a line in the parameter space. For fixed J(F)(1), the phase diagram in the space of J(A)(1)-J(F)(2) is determined using numerical techniques complemented by analytical calculations. A number of quantities, including the structure factor, energy gap, entanglement entropy and zero temperature magnetization, are studied to understand the complete phase diagram. An interesting and potentially important feature of this model is that it can exhibit a macroscopic magnetization jump in the presence of a magnetic field; we study this using an effective Hamiltonian. PMID:24935169

  19. Soft Heisenberg hair on black holes in three dimensions

    NASA Astrophysics Data System (ADS)

    Afshar, Hamid; Detournay, Stephane; Grumiller, Daniel; Merbis, Wout; Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2016-05-01

    Three-dimensional Einstein gravity with a negative cosmological constant admits stationary black holes that are not necessarily spherically symmetric. We propose boundary conditions for the near-horizon region of these black holes that lead to a surprisingly simple near-horizon symmetry algebra consisting of two affine u ^(1 ) current algebras. The symmetry algebra is essentially equivalent to the Heisenberg algebra. The associated charges give a specific example of "soft hair" on the horizon, as defined by Hawking, Perry and Strominger. We show that soft hair does not contribute to the Bekenstein-Hawking entropy of Bañados-Teitelboim-Zanelli black holes and "black flower" generalizations. From the near-horizon perspective the conformal generators at asymptotic infinity appear as composite operators, which we interpret in the spirit of black hole complementarity. Another remarkable feature of our boundary conditions is that they are singled out by requiring that the whole spectrum is compatible with regularity at the horizon, regardless of the value of the global charges like mass or angular momentum. Finally, we address black hole microstates and generalizations to cosmological horizons.

  20. Ordering of the Heisenberg spin glass in two dimensions

    NASA Astrophysics Data System (ADS)

    Kawamura, Hikaru; Yonehara, Hitoshi

    2003-10-01

    The spin and the chirality orderings of the Heisenberg spin glass in two dimensions with the nearest-neighbour Gaussian coupling are investigated by equilibrium Monte Carlo simulations. Particular attention is paid to the behaviour of the spin and the chirality correlation lengths. In order to observe the true asymptotic behaviour, a fairly large system size L gap 20 (L the linear dimension of the system) appears to be necessary. It is found that both the spin and the chirality order only at zero temperature. At high temperatures, the chiral correlation length stays shorter than the spin correlation length, whereas at lower temperatures below the crossover temperature T×, the chiral correlation length exceeds the spin correlation length. The spin and the chirality correlation-length exponents are estimated above T× to be ngrSG = 0.9 ± 0.2 and ngrCG = 2.1 ± 0.3, respectively. These values are close to the previous estimates on the basis of the domain-wall-energy calculation. Discussion is given about the asymptotic critical behaviour realized below T×.

  1. Semiclassical initial value representation for the quantum propagator in the Heisenberg interaction representation

    SciTech Connect

    Petersen, Jakob; Pollak, Eli

    2015-12-14

    One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler and cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the “standard” SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk’s frozen Gaussian and Heller’s thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.

  2. High Field Magnetization Studies of Low Dimensional Heisenberg S = 1/2 Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Landee, C. P.; Turnbull, M. M.

    1998-03-01

    The magnetization curves of a number of low dimensional S=1/2 Heisenberg antiferromagnets have been determined in fields up to 30 tesla at low temperatures at the National High Magnetic Fields Laboratory. Materials studied include a family of 1D materials, based upon Cu(pyrazine)(NO_3)_2, 2D magnets consisting of pyrazine-bridged copper layers, and several spin ladders with singlet ground states. All of the magnetization data show upward curvature and are well described by T = 0 calculations based upon finite cluster models(Bonner and Fisher, Phys. Rev. A135, 640 (1964); Yang and Mutter, NANL cond-mat/9610092.). Chemical substitution on the pyrazine rings permits the variation of exchange constants by more than 25 percent for the family of well isolated chains. The spin ladder systems consist of ferromagnetic dimers weakly connected by antiferromagnetic intradimer interactions. Field induced transitions are seen at fields of less than one tesla for each of the three compounds.

  3. Spin-1/2 Heisenberg J1-J2 antiferromagnet on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Iqbal, Yasir; Poilblanc, Didier; Becca, Federico

    2015-01-01

    We report variational Monte Carlo calculations for the spin-1/2 Heisenberg model on the kagome lattice in the presence of both nearest-neighbor J1 and next-nearest-neighbor J2 antiferromagnetic superexchange couplings. Our approach is based upon Gutzwiller projected fermionic states that represent a flexible tool to describe quantum spin liquids with different properties (e.g., gapless and gapped). We show that, on finite clusters, a gapped Z2 spin liquid can be stabilized in the presence of a finite J2 superexchange, with a substantial energy gain with respect to the gapless U (1 ) Dirac spin liquid. However, this energy gain vanishes in the thermodynamic limit, implying that, at least within this approach, the U (1 ) Dirac spin liquid remains stable in a relatively large region of the phase diagram. For J2/J1≳0.3 , we find that a magnetically ordered state with q =0 overcomes the magnetically disordered wave functions, suggesting the end of the putative gapless spin-liquid phase.

  4. Near-Heisenberg-limited atomic clocks in the presence of decoherence.

    PubMed

    Borregaard, J; Sørensen, A S

    2013-08-30

    The ultimate stability of atomic clocks is limited by the quantum noise of the atoms. To reduce this noise it has been suggested to use entangled atomic ensembles with reduced atomic noise. Potentially this can push the stability all the way to the limit allowed by the Heisenberg uncertainty relation, which is denoted the Heisenberg limit. In practice, however, entangled states are often more prone to decoherence, which may prevent reaching this performance. Here we present an adaptive measurement protocol that in the presence of a realistic source of decoherence enables us to get near-Heisenberg-limited stability of atomic clocks using entangled atoms. The protocol may thus realize the full potential of entanglement for quantum metrology despite the detrimental influence of decoherence.

  5. Near-Heisenberg-limited atomic clocks in the presence of decoherence.

    PubMed

    Borregaard, J; Sørensen, A S

    2013-08-30

    The ultimate stability of atomic clocks is limited by the quantum noise of the atoms. To reduce this noise it has been suggested to use entangled atomic ensembles with reduced atomic noise. Potentially this can push the stability all the way to the limit allowed by the Heisenberg uncertainty relation, which is denoted the Heisenberg limit. In practice, however, entangled states are often more prone to decoherence, which may prevent reaching this performance. Here we present an adaptive measurement protocol that in the presence of a realistic source of decoherence enables us to get near-Heisenberg-limited stability of atomic clocks using entangled atoms. The protocol may thus realize the full potential of entanglement for quantum metrology despite the detrimental influence of decoherence. PMID:24033016

  6. Off the Beat. An Appreciation of Werner Heisenberg and Some Talk About How Physics Was in the Good Old Days

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1976-01-01

    Presented is an insight into man's idea about physics and being a physicist in the days when Heisenberg, P. A. M. Dirac, Louis de Broglic and other famous physicists were young men. Heisenberg is compared to Newton, inventing new math as he needed it. Emphasis is placed on the fact that he was not a Nazi sympathizer. (EB)

  7. Heisenberg-limited interferometry with pair coherent states and parity measurements

    SciTech Connect

    Gerry, Christopher C.; Mimih, Jihane

    2010-07-15

    After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.

  8. Valence-bond crystal in the extended kagome spin-(1)/(2) quantum Heisenberg antiferromagnet: A variational Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Iqbal, Yasir; Becca, Federico; Poilblanc, Didier

    2011-03-01

    The highly frustrated spin-(1)/(2) quantum Heisenberg model with both nearest (J1) and next-nearest (J2) neighbor exchange interactions is revisited by using an extended variational space of projected wave functions that are optimized with state-of-the-art methods. Competition between modulated valence-bond crystals (VBCs) proposed in the literature and the Dirac spin liquid (DSL) is investigated. We find that the addition of a small ferromagnetic next-nearest-neighbor exchange coupling |J2|>0.09J1 leads to stabilization of a 36-site unit cell VBC, although the DSL remains a local minimum of the variational parameter landscape. This implies that the VBC is not trivially connected to the DSL; instead it possesses a nontrivial flux pattern and large dimerization.

  9. Exactly solvable spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins.

    PubMed

    Hovhannisyan, V V; Strečka, J; Ananikian, N S

    2016-03-01

    The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. PMID:26836749

  10. Influence of the nonmagnetic impurities on the spin-1 Heisenberg chain SrNi2V2O8 system

    NASA Astrophysics Data System (ADS)

    Giapintzakis, J.; Androulakis, J.; Syskakis, E.; Papageorgiou, Th. P.; Apostolopoulos, G.; Thanos, S.; Papastaikoudis, C.

    Dc-magnetization and heat capacity measurements on polycrystalline samples of SrNi2-x Mgx V2O8 (x = 0 and 0.05) are reported. The magnetization data suggest that both compounds are S = 1 quasi one-dimensional Heisenberg antiferromagnets. The substitution of non-magnetic impurity Mg2+ ions for Ni2+ induces a magnetic phase transition at ?3.7 K. A simple Hamiltonian model is proposed for these systems giving good quantitative agreement with the experimental magnetization data. The intrachain magnetic exchange constant (J 1/k B) and the Haldane gap (? ) for both compounds are estimated to be ?105 K and ?58.3 K (5.02 meV), respectively.

  11. Exactly solvable spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Strečka, J.; Ananikian, N. S.

    2016-03-01

    The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure.

  12. Spin liquid nature in the Heisenberg J1-J2 triangular antiferromagnet

    NASA Astrophysics Data System (ADS)

    Iqbal, Yasir; Hu, Wen-Jun; Thomale, Ronny; Poilblanc, Didier; Becca, Federico

    2016-04-01

    We investigate the spin-1/2 Heisenberg model on the triangular lattice in the presence of nearest-neighbor J1 and next-nearest-neighbor J2 antiferromagnetic couplings. Motivated by recent findings from density-matrix renormalization group (DMRG) claiming the existence of a gapped spin liquid with signatures of spontaneously broken lattice point group symmetry [Zhu and White, Phys. Rev. B 92, 041105 (2015), 10.1103/PhysRevB.92.041105 and Hu, Gong, Zhu, and Sheng, Phys. Rev. B 92, 140403 (2015), 10.1103/PhysRevB.92.140403], we employ the variational Monte Carlo (VMC) approach to analyze the model from an alternative perspective that considers both magnetically ordered and paramagnetic trial states. We find a quantum paramagnet in the regime 0.08 ≲J2/J1≲0.16 , framed by 120∘ coplanar (stripe collinear) antiferromagnetic order for smaller (larger) J2/J1 . By considering the optimization of spin-liquid wave functions of a different gauge group and lattice point group content as derived from Abrikosov mean-field theory, we obtain the gapless U(1 ) Dirac spin liquid as the energetically most preferable state in comparison to all symmetric or nematic gapped Z2 spin liquids so far advocated by DMRG. Moreover, by the application of few Lanczos iterations, we find the energy to be the same as the DMRG result within error bars. To further resolve the intriguing disagreement between VMC and DMRG, we complement our methodological approach by the pseudofermion functional renormalization group (PFFRG) to compare the spin structure factors for the paramagnetic regime calculated by VMC, DMRG, and PFFRG. This model promises to be an ideal test bed for future numerical refinements in tracking the long-range correlations in frustrated magnets.

  13. The Taylor spectrum and transversality for a Heisenberg algebra of operators

    NASA Astrophysics Data System (ADS)

    Dosi, Anar A.

    2010-05-01

    A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra. Bibliography: 25 titles.

  14. Phase diagrams of the Ising-Heisenberg chain with S = 1/2 triangular XXZ clusters

    SciTech Connect

    Ohanyan, V.

    2010-03-15

    The one-dimensional spin system consisted of triangular S = 1/2 XXZ Heisenberg clusters alternating with single Ising spins is considered. Partition function of the system is calculated exactly within the transfer-matrix formalism. T = 0 ground state phase diagrams, corresponding to different regions of the values of system parameters, are obtained.

  15. The Taylor spectrum and transversality for a Heisenberg algebra of operators

    SciTech Connect

    Dosi, Anar A

    2010-05-11

    A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra. Bibliography: 25 titles.

  16. Heisenberg-like and Fisher-information-based uncertainty relations for N -electron d -dimensional systems

    NASA Astrophysics Data System (ADS)

    Toranzo, I. V.; López-Rosa, S.; Esquivel, R. O.; Dehesa, J. S.

    2015-06-01

    Heisenberg-like and Fisher-information-based uncertainty relations which extend and generalize previous similar expressions are obtained for N -fermion d -dimensional systems. The contributions of both spatial and spin degrees of freedom are taken into account. The accuracy of some of these generalized spinned uncertainty-like relations is numerically examined for a large number of atomic and molecular systems.

  17. Numerical calculations for Heisenberg ferromagnet on honeycomb lattice using Oguchi’s method

    SciTech Connect

    Mert, Gülistan; Mert, H. Şevki

    2015-03-10

    Magnetic properties such as the magnetization, internal energy and specific heat for Heisenberg ferromagnet with spin - 1/2 on honeycomb lattice are have been calculated using Oguchi’s method. We have found that the magnetic specific heat exhibits two peaks.

  18. Fick's law, green-kubo formula, and Heisenberg's equation of motion

    PubMed

    Lee

    2000-09-18

    Fick's law is important in transport theory and nonequilibrium statistical mechanics. The Heisenberg equation of motion for density is examined to see how it could be reduced to the diffusion equation, which is exactly equivalent to Fick's law. Conditions that are required have been noted and their implications explored.

  19. While Heisenberg Is Not Looking: The Strength of "Weak Measurements" in Educational Research

    ERIC Educational Resources Information Center

    Geelan, David R.

    2015-01-01

    The concept of "weak measurements" in quantum physics is a way of "cheating" the Uncertainty Principle. Heisenberg stated (and 85 years of experiments have demonstrated) that it is impossible to know both the position and momentum of a particle with arbitrary precision. More precise measurements of one decrease the precision…

  20. Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1 /2 Chain

    NASA Astrophysics Data System (ADS)

    Ilievski, Enej; Medenjak, Marko; Prosen, Tomaž

    2015-09-01

    Composing higher auxiliary-spin transfer matrices and their derivatives, we construct a family of quasilocal conserved operators of isotropic Heisenberg spin-1 /2 chain and rigorously establish their linear independence from the well-known set of local conserved charges.

  1. Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation

    SciTech Connect

    Yeo, Ye

    2003-08-01

    We consider quantum teleportation as a tool to investigate the thermally entangled state of a three-qubit Heisenberg XX ring. Our investigation reveals interesting aspects of quantum entanglement not reflected by the pairwise thermal concurrence of the state. In particular, two mixtures of different pairs of W states, which result in the same concurrence, could yield very different average teleportation fidelities.

  2. Friction factor for turbulent flow in rough pipes from Heisenberg's closure hypothesis.

    PubMed

    Calzetta, Esteban

    2009-05-01

    We show that the main results of the analysis of the friction factor for turbulent pipe flow reported by Gioia and Chakraborty [Phys. Rev. Lett. 96, 044502 (2006)] can be recovered by assuming the Heisenberg closure hypothesis for the turbulent spectrum. This highlights the structural features of the turbulent spectrum underlying the analysis of Gioia and Chakraborty.

  3. On the action of Heisenberg's uncertainty principle in discrete linear methods for calculating the components of the deflection of the vertical

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Lapshin, Aleksey

    2013-04-01

    precisely, what frequency is present in the signal at the current moment of time: it is possible to speak only about the range of frequencies. Besides, it is impossible to specify precisely the time moment of the presence of this or that frequency: it is possible to speak only about the time frame. It is this feature that imposes major constrains on the applicability of the STFT. In spite of the fact that the problems of resolution in time and frequency result from a physical phenomenon (Heisenberg's uncertainty principle) and exist independent of the transform applied, there is a possibility to analyze any signal, using the alternative approach - the multiresolutional analysis (MRA). The wavelet-transform is one of the methods for making a MRA-type analysis. Thanks to it, low frequencies can be shown in a more detailed form with respect to time, and high ones - with respect to frequency. The paper presents the results of calculating of the components of the deflection of the vertical, done by the SFT, STFT and WT. The results are presented in the form of 3-d models that visually show the action of Heisenberg's uncertainty principle in the specified algorithms. The research conducted allows us to recommend the application of wavelet-transform to calculate of the components of the deflection of the vertical in the near-field zone. Keywords: Standard Fourier Transform, Short-Time Fourier Transform, Wavelet Transform, Heisenberg's uncertainty principle.

  4. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    DOE PAGES

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with themore » magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less

  5. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    PubMed

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-01

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap. PMID:26542565

  6. Observability, Anschaulichkeit and Abstraction: A Journey into Werner Heisenberg's Science and Philosophy

    NASA Astrophysics Data System (ADS)

    Lacki, Jan

    2003-09-01

    Werner Heisenberg was one of the greatest physicists of the 20th century. He participated as a front rank actor in the shaping of a good part of XXth century physics and directly witnessed most of the intellectual struggles which led to what he called “Wandlungen in den Grundlagen der exakten Naturwissenschaft”. This expression is borrowed from one of the many talks and writings he devoted to the analysis of the scientific and philosophical implications of his, and his fellows physicists, findings. Indeed, Heisenberg's scientific activity increasingly reflected his more general intellectual views. This makes him another magnificent representative of a glorious linage going from the remote times of modern science to Einstein, Bohr and the like. This “philosophical” vein started early in his scientific life, and got stronger with time, prompted by the highly demanding scientific, but also social and political context of his mature years.

  7. Three-qubit thermal entanglement via entanglement swapping on two-qubit Heisenberg XY chains

    SciTech Connect

    Kao, Zi Chong; Ng, Jezreel; Yeo, Ye

    2005-12-15

    In this paper, we consider the generation of a three-qubit Greenberger-Horne-Zeilinger-like thermal state by applying the entanglement swapping scheme of Zukowski et al. [Ann. N. Y. Acad. Sci. 755, 91 (1995)] to three pairs of two-qubit Heisenberg XY chains. The quality of the resulting three-qubit entanglement is studied by analyzing the teleportation fidelity, when it is used as a resource in the teleportation protocol of Karlsson et al. [Phys. Rev. A 58, 4394 (1998)]. We show that even though thermal noise in the original two-qubit states is amplified by the entanglement swapping process, we are still able to achieve nonclassical fidelities for the anisotropic Heisenberg XY chains at finitely higher and higher temperatures by adjusting the strengths of an external magnetic field. This has a positive implication on the solid-state realization of a quantum computer.

  8. Aharonov-Bohm effect in quantum-to-classical correspondence of the Heisenberg principle

    SciTech Connect

    Lin, D.-H.; Chang, J.-G.; Hwang, C.-C.

    2003-04-01

    The exact energy spectrum and wave function of a charged particle moving in the Coulomb field and Aharonov-Bohm's magnetic flux are solved by the nonintegrable phase factor. The universal formula for the matrix elements of the radial operator r{sup {alpha}} of arbitrary power {alpha} is given by an analytical solution. The difference between the classical limit of matrix elements of inverse radius in quantum mechanics and the Fourier components of the corresponding quantity for the pure Coulomb system in classical mechanics is examined in reference to the correspondence principle of Heisenberg. Explicit calculation shows that the influence of nonlocal Aharonov-Bohm effect exists even in the classical limit. The semiclassical quantization rule for systems containing the topological effect is presented in the light of Heisenberg's corresponding principle.

  9. Chiral-glass transition in a diluted dipolar-interaction Heisenberg system

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Cheng; Liu, Gui-Bin; Zhu, Yan

    2011-05-01

    Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature.

  10. An introduction to the spectrum, symmetries, and dynamics of spin-1/2 Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Joel, Kira; Kollmar, Davida; Santos, Lea F.

    2013-06-01

    Quantum spin chains are prototype quantum many-body systems that are employed in the description of various complex physical phenomena. We provide an introduction to this subject by focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based on the analysis of the eigenvalues, eigenstates, and symmetries of the system. We make available online all computer codes used to obtain our data.

  11. Heat kernel asymptotic expansions for the Heisenberg sub-Laplacian and the Grushin operator

    PubMed Central

    Chang, Der-Chen; Li, Yutian

    2015-01-01

    The sub-Laplacian on the Heisenberg group and the Grushin operator are typical examples of sub-elliptic operators. Their heat kernels are both given in the form of Laplace-type integrals. By using Laplace's method, the method of stationary phase and the method of steepest descent, we derive the small-time asymptotic expansions for these heat kernels, which are related to the geodesic structure of the induced geometries. PMID:25792966

  12. A discussion on the Heisenberg uncertainty principle from the perspective of special relativity

    NASA Astrophysics Data System (ADS)

    Nanni, Luca

    2016-09-01

    In this note, we consider the implications of the Heisenberg uncertainty principle (HUP) when computing uncertainties that affect the main dynamical quantities, from the perspective of special relativity. Using the well-known formula for propagating statistical errors, we prove that the uncertainty relations between the moduli of conjugate observables are not relativistically invariant. The new relationships show that, in experiments involving relativistic particles, limitations of the precision of a quantity obtained by indirect calculations may affect the final result.

  13. Genome wide expression profiling of angiogenic signaling and the Heisenberg uncertainty principle.

    PubMed

    Huber, Peter E; Hauser, Kai; Abdollahi, Amir

    2004-11-01

    Genome wide DNA expression profiling coupled with antibody array experiments using endostatin to probe the angiogenic signaling network in human endothelial cells were performed. The results reveal constraints on the measuring process that are of a similar kind as those implied by the uncertainty principle of quantum mechanics as described by Werner Heisenberg. We describe this analogy and argue for its heuristic utility in the conceptualization of angiogenesis as an important step in tumor formation.

  14. The Krichever map, vector bundles over algebraic curves, and Heisenberg algebras

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Bergvelt, M. J.

    1993-06-01

    We study the Grassmannian Gr {/x n } consisting of equivalence classes of rank n algebraic vector bundles over a Riemann surface X with an holomorphic trivialization at a fixed point p. Commutative subalgebras of gl(n, H λ), H λ being the ring of functions holomorphic on a punctured disc about p, define flows on the Grassmannian, giving rise to classes of solutions to multi-component KP hierarchies. These commutative subalgebras correspond to Heisenberg algebras in the Kac-Moody algebra associated to gl(n, H λ). One can obtain, by the Krichever map, points of Gr {/x n } (and solutions of mcKP) from coverings f: Y→X and other geometric data. Conversely for every point of Gr {/x n } and for every choice of Heisenberg algebra we construct, using the cotangent bundle of Gr {/x n }, an algebraic curve covering X and other data, thus inverting the Krichever map. We show the explicit relation between the choice of Heisenberg algebra and the geometry of the covering space.

  15. Proportionality of the interfacial Dzyaloshinskii-Moriya interaction and the Heisenberg exchange

    NASA Astrophysics Data System (ADS)

    Nembach, Hans; Shaw, Justin; Weiler, Mathias; Jué, Emilie; Silva, Tom

    The Dzyaloshinkii-Moriya interaction (DMI) gives rise to chiral magnetic ordering and a shift of spin-wave frequencies, depending on their propagation direction. We employed Brillouin-Light-Scattering spectroscopy to measure this nonreciprocal frequency shift, which allowed us to directly determine the magnitude of the DMI in a series of Ni80Fe20(t)/Pt thin film bilayers where the thickness t ranged from 1 to 13 nm. It has also been predicted by theory that the DMI is proportional to the Heisenberg exchange for bulk magnetic oxides and metallic spin-glasses. We tested this prediction for our metallic system by independently determining the Heisenberg exchange via fitting the Bloch T3/2-law to the temperature dependence of the magnetization obtained from SQUID magnetometry. We find that the Ni80Fe20 thickness dependence of the DMI and the Heisenberg exchange are identical, which is consistent with the notion that both effects share the same underlying physics. This result will lead us to a deeper understanding of the DMI and related spin-orbitronic effects.-/

  16. Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain

    2015-03-01

    We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).

  17. Ba2Cu2Te2P2O13: A new telluro-phosphate with S=1/2 Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Xia, Mingjun; Shen, Shipeng; Lu, Jun; Sun, Young; Li, R. K.

    2015-10-01

    A new telluro-phosphate compound Ba2Cu2Te2P2O13 with S=1/2 Heisenberg chain has been successfully synthesized by solid state reaction and grown by flux method. Single crystal X-ray diffraction reveals that Ba2Cu2Te2P2O13 crystallizes into a monoclinic space group C2/c and cell parameters of a=17.647(3) Å, b=7.255(2) Å, c=9.191(2) Å and β=100.16 (3)°. In the structure of Ba2Cu2Te2P2O13, one dimensional [CuTePO7]3- chains are formed by tetrahedral PO4 and trigonal bi-pyramidal TeO4 joining square planar CuO4 groups. Those [CuTePO7]3- chains are inter-connected by sharing one oxygen atom from the TeO4 group to form two dimensional layers. Magnetic susceptibility and specific heat measurements confirm that the title compound is a model one dimensional Heisenberg antiferromagnetic chain system.

  18. DMRG Study of the S >= 1 quantum Heisenberg Antiferromagnet on a Kagome-like lattice without loops

    NASA Astrophysics Data System (ADS)

    Lamberty, R. Zach; Changlani, Hitesh J.; Henley, Christopher L.

    2013-03-01

    The Kagome quantum Heisenberg antiferromagnet, for spin up to S = 1 and perhaps S = 3 / 2 , is a prime candidate to realize a quantum spin liquid or valence bond crystal state, but theoretical or computational studies for S > 1 / 2 are difficult and few. We consider instead the same interactions and S >= 1 on the Husimi Cactus, a graph of corner sharing triangles whose centers are vertices of a Bethe lattice, using a DMRG procedure tailored for tree graphs. Since both lattices are locally identical, properties of the Kagome antiferromagnet dominated by nearest-neighbor spin correlations should also be exhibited on the Cactus, whereas loop-dependent effects will be absent on the loopless Cactus. Our study focuses on the possible transition(s) that must occur with increasing S for the Cactus antiferromagnet. (It has a disordered valence bond state at S = 1 / 2 but a 3-sublattice coplanar ordered state in the large S limit). We also investigate the phase diagram of the S = 1 quantum XXZ model with on-site anisotropy, which we expect to have three-sublattice and valence-bond-crystal phases similar to the kagome case. This work is supported by the National Science Foundation through a Graduate Research Fellowship to R. Zach Lamberty, as well as grant DMR-

  19. Improving the Quality of Heisenberg Back-Action of Qubit Measurements made with Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Sliwa, Katrina

    The quantum back-action of the measurement apparatus arising from the Heisenberg uncertainty principle is both a fascinating phenomenon and a powerful way to apply operations on quantum systems. Unfortunately, there are other effects which may overwhelm the Heisenberg back-action. This thesis focuses on two effects arising in the dispersive measurement of superconducting qubits made with two ultra-low-noise parametric amplifiers, the Josephson bifurcation amplifier (JBA) and the Josephson parametric converter (JPC). The first effect is qubit dephasing due to excess photons in the cavity coming from rogue radiation emitted by the first amplifier stage toward the system under study. This problem arises primarily in measurements made with the JBA, where a strong resonant pump tone is traditionally used to provide the energy for amplification. Replacing the single strong pump tone with two detuned pump tones minimized this dephasing to the point where the Heisenberg back-action of measurements made with the JBA could be observed. The second effect is reduced measurement efficiency arising from losses between the qubit and the parametric amplifier. Most commonly used parametric amplifiers operate in reflection, requiring additional lossy, magnetic elements known as circulators both to separate input from output, and to protect the qubits from dephasing due to the amplified reflected signal. This work presents two alternative directional elements, the Josephson circulator, which is both theoretically loss-less and does not rely upon the strong magnetic fields needed for traditional circulators, and the Josephson directional amplifier which does not send any amplified signal back toward the qubit. Both of these elements achieve directionality by interfering multiple parametric processes inside a single JPC, allowing for in-situ switching between the two modes of operation. This brings valuable experimental flexibility, and also makes these devices strong candidates for

  20. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems.

    PubMed

    Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip

    2014-01-01

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology.

  1. Study on isotropic Heisenberg interaction for the realization of SWAP {sup ±α} gates

    SciTech Connect

    Muthuganesan, R.; Sankaranarayanan, R.; Balakrishnan, S.

    2015-06-24

    It is known that nonlocal two-qubit gates are geometrically represented by tetrahedron called as Weyl chamber. Two edges of the Weyl chamber are formed by SWAP{sup ±α} family gates with 0 ≤ α ≤ 1. In this work SWAP{sup ±α} are being realized as two spin system with isotropic Heisenberg exchange interaction. The real parameter α is shown to be the function of duration and strength of interaction. Entanglement of the states generated by these two families of gates is studied with concurrence. Significance of time scale in realizing CNOT using SWAP{sup ±1/2} is highlighted.

  2. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  3. Emergent Interacting Spin Islands in a Depleted Strong-Leg Heisenberg Ladder

    NASA Astrophysics Data System (ADS)

    Schmidiger, D.; Povarov, K. Yu.; Galeski, S.; Reynolds, N.; Bewley, R.; Guidi, T.; Ollivier, J.; Zheludev, A.

    2016-06-01

    Properties of the depleted Heisenberg spin ladder material series (C7 H10 N )2Cu1 -zZnz Br4 have been studied by the combination of magnetic measurements and neutron spectroscopy. Disorder-induced degrees of freedom lead to a specific magnetic response, described in terms of emergent strongly interacting "spin island" objects. The structure and dynamics of the spin islands is studied by high-resolution inelastic neutron scattering. This allows us to determine their spatial shape and to observe their mutual interactions, manifested by strong spectral in-gap contributions.

  4. Emergent Interacting Spin Islands in a Depleted Strong-Leg Heisenberg Ladder.

    PubMed

    Schmidiger, D; Povarov, K Yu; Galeski, S; Reynolds, N; Bewley, R; Guidi, T; Ollivier, J; Zheludev, A

    2016-06-24

    Properties of the depleted Heisenberg spin ladder material series (C_{7}H_{10}N)_{2}Cu_{1-z}Zn_{z}Br_{4} have been studied by the combination of magnetic measurements and neutron spectroscopy. Disorder-induced degrees of freedom lead to a specific magnetic response, described in terms of emergent strongly interacting "spin island" objects. The structure and dynamics of the spin islands is studied by high-resolution inelastic neutron scattering. This allows us to determine their spatial shape and to observe their mutual interactions, manifested by strong spectral in-gap contributions. PMID:27391748

  5. Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.

    PubMed

    Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A

    2015-08-28

    We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics. PMID:26371653

  6. Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Li, Yan-Biao; Wu, Fang-Ping

    2014-07-01

    Quantifying and understanding quantum correlations may give a direct reply for many issues regarding the interesting behaviors of quantum system. To explore the quantum correlations in quantum teleportation, we have used a two-qubit Heisenberg XYZ system with spin-orbit interaction as a quantum channel to teleport an unknown state. By using different measures and standard teleportation protocols, we have derived the analytical expressions for quantum discord, entanglement of formation, purity, and maximal teleportation fidelity of the system. We compare their different characteristics and analyze the relationships between these quantities.

  7. Simple pulses for universal quantum computation with a Heisenberg ABAB chain

    NASA Astrophysics Data System (ADS)

    Benjamin, Simon C.

    2001-11-01

    Recently, Levy has shown that quantum computation may be performed using an ABAB... chain of spin-1/2 systems with nearest-neighbor Heisenberg interactions. Levy notes that all necessary elementary computational ``gates'' may be achieved purely by manipulating the spin-spin interaction: he proposes using ``spin-resonance'' techniques involving modulating the interaction strength at high frequency. Here, we establish an alternative: it is possible to perform the elementary gates via simple, nonoscillatory switching of the interaction strength. This approach removes a time ``bottle neck'' in Levy's scheme, so that all elementary operations may now be performed within a time scale of order ħ/(EA-EB).

  8. Properties of the first excited state of nonbipartite Heisenberg spin rings

    NASA Astrophysics Data System (ADS)

    Schnack, J.

    2000-12-01

    Systematic properties of the first excited state are presented for various ring sizes and spin quantum numbers which are only partly covered by the theorem of Lieb, Schultz, and Mattis. For odd ring sizes the first excited energy eigenvalue shows unexpected degeneracy and related shift quantum numbers. As a byproduct the ground state energy as well as the energy of the first excited state of infinite chains are calculated by extrapolating the properties of only a few, finite, antiferromagnetically coupled Heisenberg rings using the powerful Levin sequence acceleration method.

  9. Geometrical frustration in the spin liquid β'-Me3EtSb[Pd(dmit)2]2 and the valence-bond solid Me3EtP[Pd(dmit)2]2.

    PubMed

    Scriven, E P; Powell, B J

    2012-08-31

    We show that the electronic structures of the title compounds predicted by density functional theory are well described by tight binding models. We determine the frustration ratio, J'/J, of the Heisenberg model on the anisotropic triangular lattice, which describes the spin degrees of freedom in the Mott insulating phase for a range of Pd(dmit)2 salts. All of the antiferromagnetic materials studied have J'/J is < or approximately equal to 0.5 or J'/J > or approximately equal to 0.9, and all salts with 0.5 < or approximately equal to J'/J < or approximately equal to 0.9 are known, experimentally, to be charge ordered valence-bond solids or spin liquids. PMID:23002879

  10. Exact diagonalization of Heisenberg SU (N ) chains in the fully symmetric and antisymmetric representations

    NASA Astrophysics Data System (ADS)

    Nataf, Pierre; Mila, Frédéric

    2016-04-01

    Motivated by recent experimental progress in the context of ultracold multicolor fermionic atoms in optical lattices, we have developed a method to exactly diagonalize the Heisenberg SU (N ) Hamiltonian with several particles per site living in a fully symmetric or antisymmetric representation of SU (N ) . The method, based on the use of standard Young tableaux, takes advantage of the full SU (N ) symmetry, allowing one to work directly in each irreducible representation of the global SU (N ) group. Since the SU (N ) singlet sector is often much smaller than the full Hilbert space, this enables one to reach much larger system sizes than with conventional exact diagonalizations. The method is applied to the study of Heisenberg chains in the symmetric representation with two and three particles per site up to N =10 and up to 20 sites. For the length scales accessible to this approach, all systems except the Haldane chain [SU (2 ) with two particles per site] appear to be gapless, and the central charge and scaling dimensions extracted from the results are consistent with a critical behavior in the SU (N ) level k Wess-Zumino-Witten universality class, where k is the number of particles per site. These results point to the existence of a crossover between this universality class and the asymptotic low-energy behavior with a gapped spectrum or a critical behavior in the SU (N ) level 1 WZW universality class.

  11. The effect of magnetic field on the susceptibility maximum in the spatially anisotropic Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Xiang, Ying; Chen, Yuan; Chen, Qi-Zhou; Zhang, Jun; Liu, Yi-Kun

    2008-12-01

    The effect of magnetic field h on the longitudinal susceptibility in a spin S=1/2 exchange anisotropic three-dimensional Heisenberg antiferromagnet, is studied by the double-time Green's function method within Tyablikov approximation. The calculation results indicated that the height χ(Tm) and position Tm of the maximum of the longitudinal susceptibility display different behaviors related to the magnetic fields and exchange anisotropic parameters. These behaviors are very different from that in the exchange anisotropic Heisenberg ferromagnet in the magnetic field. The results are: (1) When the field h is weak, in a antiferromagnet, the height χ(Tm) is a constant χ0 which is independent of field and exchange anisotropy, but the position Tm is only a function of the exchange anisotropy. While in a ferromagnet, both χ(Tm) and Tm are a function of field and the exchange anisotropy. (2) When the field h is strong, in a antiferromagnet, χ(Tm) becomes dependent of field and the exchange anisotropy, and χ(Tm) and Tm are fitted satisfactory to power laws: χ(Tm)-χ0∝hd and TN-Tm∝hc, respectively. Here TN is the Neel temperature. On the contrary, in a ferromagnet, χ(Tm) and Tm are fitted to power laws: χ(Tm)∝h and Tm-Tc∝h, where Tc is the Curie temperature. The above results are very useful in studying the magnetic property of coordination polymers.

  12. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    SciTech Connect

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  13. RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.

    2016-03-01

    We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.

  14. Heisenberg-like uncertainty measures for D-dimensional hydrogenic systems at large D

    NASA Astrophysics Data System (ADS)

    Toranzo, I. V.; Martínez-Finkelshtein, A.; Dehesa, J. S.

    2016-08-01

    The radial expectation values of the probability density of a quantum system in position and momentum spaces allow one to describe numerous physical quantities of the system as well as to find generalized Heisenberg-like uncertainty relations and to bound entropic uncertainty measures. It is known that the position and momentum expectation values of the main prototype of the D-dimensional Coulomb systems, the D-dimensional hydrogenic system, can be expressed in terms of some generalized hypergeometric functions of the type p+1Fp(z) evaluated at unity with p = 2 and p = 3, respectively. In this work we determine the position and momentum expectation values in the limit of large D for all hydrogenic states from ground to very excited (Rydberg) ones in terms of the spatial dimensionality and the hyperquantum numbers of the state under consideration. This is done by means of two different approaches to calculate the leading term of the special functions 3 F 2 (" separators=" 1 ) and 5 F 4 (" separators=" 1 ) involved in the large D limit of the position and momentum quantities. Then, these quantities are used to obtain the generalized Heisenberg-like and logarithmic uncertainty relations, and some upper and lower bounds to the entropic uncertainty measures (Shannon, Rényi, Tsallis) of the D-dimensional hydrogenic system.

  15. Spin-wave and electromagnon dispersions in multiferroic MnWO4 as observed by neutron spectroscopy: Isotropic Heisenberg exchange versus anisotropic Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; Kumar, C. M. N.; Nandi, S.; Su, Y.; Jin, W. T.; Fu, Z.; Faulhaber, E.; Schneidewind, A.; Brückel, Th.

    2016-06-01

    High-resolution inelastic neutron scattering reveals that the elementary magnetic excitations in multiferroic MnWO4 consist of low-energy dispersive electromagnons in addition to the well-known spin-wave excitations. The latter can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1) meV. Two electromagnon branches appear at lower energies of 0.07(1) and 0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric coupling and persist in both the collinear magnetic and paraelectric AF1 phase and the spin spiral ferroelectric AF2 phase. These excitations are associated with the Dzyaloshinskii-Moriya exchange interaction, which is significant due to the rather large spin-orbit coupling.

  16. Valence-bond crystal in the extended Kagomé spin- 1 / 2 quantum Heisenberg antiferromagnet: A variational Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Becca, Federico; Iqbal, Yasir; Poilblanc, Didier

    2011-03-01

    The highly-frustrated spin- 1 / 2 quantum Heisenberg model with both nearest (J1) and next-nearest (J2) neighbor exchange interactions is revisited by using an extended variational space of projected wave functions that are optimized with state-of-the-art methods. Competition between modulated valence-bond crystals (VBC) proposed in the literature and the Dirac spin liquid (DSL) is investigated. We find that the addition of a small ferromagnetic next-nearest-neighbor exchange coupling |J2 | > 0.09J1 leads to stabilization of a 36-site unit cell VBC, although the DSL remains a local minimum of the variational parameter landscape. This implies that the VBC is not trivially connected to the DSL: instead it possesses a non-trivial flux pattern and large dimerization.

  17. Coordinate Bethe ansatz computation for low temperature behavior of a triangular lattice of a spin-1 Heisenberg antiferromagnet

    SciTech Connect

    Shuaibu, A.; Rahman, M. M.

    2014-03-05

    We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results.

  18. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  19. Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain

    NASA Astrophysics Data System (ADS)

    Fagotti, Maurizio; Collura, Mario; Essler, Fabian H. L.; Calabrese, Pasquale

    2014-03-01

    We consider the time evolution after quantum quenches in the spin-1/2 Heisenberg XXZ quantum spin chain with Ising-type anisotropy. The time evolution of short-distance spin-spin correlation functions is studied by numerical tensor network techniques for a variety of initial states, including Néel and Majumdar-Ghosh states and the ground state of the XXZ chain at large values of the anisotropy. The various correlators appear to approach stationary values, which are found to be in good agreement with the results of exact calculations of stationary expectation values in appropriate generalized Gibbs ensembles. In particular, our analysis shows how symmetries of the post-quench Hamiltonian that are broken by particular initial states are restored at late times.

  20. Heisenberg spin exchange effects in powder spectra of weakly perturbed triplet states

    NASA Astrophysics Data System (ADS)

    Chesnut, D. B.; Meinholtz, Dore C.

    1985-12-01

    Heisenberg spin exchange effects on the powder spectra of weakly perturbed triplet states have been studied by simulation techniques. From very small exchange frequencies on, the derivative powder spectrum is dominated by a sharp, essentially constant width, central line whose amplitude exhibits very close to a square-root dependence on the exchange frequency. The derivative powder edge lines are shown to behave according to the single crystal limiting exchange width equation and it is shown that the frequency dependence of the central dominating line provides yet another measure of exchange parameters in physical systems. Application of these methods to the (φ3AsCH+3) (TCNQ)-2 ion radical salt yields results in good agreement with those obtained by other methods.

  1. Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances.

    PubMed

    Ma, Wenchao; Ma, Zhihao; Wang, Hengyan; Chen, Zhihua; Liu, Ying; Kong, Fei; Li, Zhaokai; Peng, Xinhua; Shi, Mingjun; Shi, Fazhan; Fei, Shao-Ming; Du, Jiangfeng

    2016-04-22

    Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously.

  2. Strong equivalence principle in polymer quantum mechanics and deformed Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Kajuri, Nirmalya

    2016-10-01

    The strong equivalence principle (SEP) states that the description of a physical system in a gravitational field is indistinguishable from the description of the same system at rest in an accelerating frame. While this statement holds true in both general relativity and ordinary quantum mechanics, one expects it to fail when quantum gravity corrections are taken into account. In this paper we investigate the possible failure of the SEP in two quantum gravity inspired modifications of quantum mechanics—polymer quantum mechanics and deformed Heisenberg algebra. We find that the SEP fails to hold in both these theories. We estimate the deviation from SEP and find in both cases that it is too small to be measured in present day experiments.

  3. Low-energy singlet excitations in spin-1/2 Heisenberg antiferromagnet on square lattice

    NASA Astrophysics Data System (ADS)

    Aktersky, A. Yu.; Syromyatnikov, A. V.

    2016-05-01

    We present an approach based on a dimer expansion which describes low-energy singlet excitations (singlons) in spin-1/2 Heisenberg antiferromagnet on simple square lattice. An operator ("effective Hamiltonian") is constructed whose eigenvalues give the singlon spectrum. The "effective Hamiltonian" looks like a Hamiltonian of a spin-1/2 magnet in strong external magnetic field and it has a gapped spectrum. It is found that singlet states lie above triplet ones (magnons) in the whole Brillouin zone except in the vicinity of the point (π , 0), where their energies are slightly smaller. Based on this finding, we suggest that a magnon decay is possible near (π , 0) into another magnon and a singlon which may contribute to the dip of the magnon spectrum near (π , 0) and reduce the magnon lifetime. It is pointed out that the singlon-magnon continuum may contribute to the continuum of excitations observed recently near (π , 0).

  4. Absence of Néel order in Heisenberg chains: Long-range antiferromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Pacobahyba, J. T.; Nunes, Wagner; de Sousa, J. Ricardo

    2004-03-01

    We have studied the Heisenberg chain with long-range antiferromagnetic interactions proportional to (-1)n/np (n=1,2,…,∞) by the method of a double-time-temperature Green’s function within Tyablikov’s decoupling approximation. Using the two-sublattice approach developed by Hewson and ter Haar, and solving the equation of motion for the Green’s function, we obtain the Néel temperature TN as a function of p. We have conjectured that for all p>1 the present approach predicts orientational disorder at all finite temperatures (i.e., TN=0). Our results are in accordance with spin-wave arguments and disagreement with renormalization group that predicts a phase transition at p≃1.85 at T=0.

  5. Werner states and the two-spinors Heisenberg anti-ferromagnet

    NASA Astrophysics Data System (ADS)

    Batle, J.; Casas, M.; Plastino, A.; Plastino, A. R.

    2005-08-01

    We ascertain, following ideas of Arnesen, Bose, and Vedral concerning thermal entanglement [Phys. Rev. Lett. 87 (2001) 017901] and using the statistical tool called entropic non-triviality [P.W. Lamberti, M.T. Martin, A. Plastino, O.A. Rosso, Physica A 334 (2004) 119], that there is a one-to-one correspondence between (i) the mixing coefficient x of a Werner state, on the one hand, and (ii) the temperature T of the one-dimensional Heisenberg two-spin chain with a magnetic field B along the z-axis, on the other one. This is true for each value of B below a certain critical value B. The pertinent mapping depends on the particular B-value one selects within such a range.

  6. A note for Riesz transforms associated with Schrödinger operators on the Heisenberg Group

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Tang, Guobin

    2016-03-01

    Let {{H}^n} be the Heisenberg group and Q=2n+2 be its homogeneous dimension. The Schrödinger operator is denoted by - {Δ _{{{H}^n}}} + V , where {Δ _{{{H}^n}}} is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class {B_{{q_1}}} for {q_1} ≥ Q/2 . Let H^p_L({H}^n) be the Hardy space associated with the Schrödinger operator for Q/Q+δ _0

  7. Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Paul, Susobhan; Ghosh, Asim Kumar

    2016-05-01

    Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.

  8. Determination of Boundary Scattering, Intermagnon Scattering, and the Haldane Gap in Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroshi; Kusakabe, Koichi

    2012-02-01

    Low-lying magnon dispersion in a S=1 Heisenberg antiferromagnetic (AF) chain with boundary S/2 spins coupling antiferromagnetically (Jend> 0) is analyzed by use of the non-Abelian DMRG method. The Haldane gap δ, the magnon velocity v, the inter-magnon scattering length a, and the scattering length ab of the boundary coupling are evaluated. The length ab, which represents the contribution of boundary effects, depends on Jend drastically, while δ, v, and a are constant irrespective of Jend. Our method estimates the gap of the S=2 AF chain as δ= 0.0891623(9) using a chain length up to 2048, which is longer than the correlation length.

  9. Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances.

    PubMed

    Ma, Wenchao; Ma, Zhihao; Wang, Hengyan; Chen, Zhihua; Liu, Ying; Kong, Fei; Li, Zhaokai; Peng, Xinhua; Shi, Mingjun; Shi, Fazhan; Fei, Shao-Ming; Du, Jiangfeng

    2016-04-22

    Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously. PMID:27152779

  10. Compression of Hamiltonian matrix: Application to spin-1/2 Heisenberg square lattice

    NASA Astrophysics Data System (ADS)

    Choi, Seongsoo; Kim, Woohyun; Kim, Jongho

    2016-09-01

    We introduce a simple algorithm providing a compressed representation (∈ℝNorbits×Norbits×ℕNorbits ) of an irreducible Hamiltonian matrix (number of magnons M constrained, dimension: N/spins!M ! (N spins-M ) ! >Norbits ) of the spin-1/2 Heisenberg antiferromagnet on the L ×L non-periodic lattice, not looking for a good basis. As L increases, the ratio of the matrix dimension to Norbits converges to 8 (order of the symmetry group of square) for the exact ground state computation. The sparsity of the Hamiltonian is retained in the compressed representation. Thus, the computational time and memory consumptions are reduced in proportion to the ratio.

  11. Low-temperature magnetic measurements of an [ital S]=1 linear-chain Heisenberg antiferromagnet

    SciTech Connect

    Avenel, O.; Xu, J.; Xia, J.S.; Xu, M.; Andraka, B.; Lang, T.; Moyland, P.L.; Ni, W.; Signore, P.J.C.; van Woerkens, C.M.C.M.; Adams, E.D.; Ihas, G.G.; Meisel, M.W.; Nagler, S.E.; Sullivan, N.S.; Takano, Y. ); Talham, D.R. ); Goto, T. ); Fujiwara, N. )

    1992-10-01

    The temperature-dependent magnetic susceptibility, [chi]([ital T]), of two pure samples of the [ital S]=1 linear-chain Heisenberg antiferromagnet Ni(C[sub 2]H[sub 8]N[sub 2])[sub 2]NO[sub 2](ClO[sub 4]), commonly known as NENP, has been measured from approximately 300 K to 300 [mu]K. Our measurements of [chi]([ital T]) are in agreement with existing results of other researchers who worked above 1.2 K. Below 1.2 K, [chi]([ital T]) increases with decreasing temperature. The results suggest that the low-temperature increase of [chi]([ital T]) is not a consequence of a single source of paramagnetic impurities in the samples but may arise from [ital S]=1/2 end-chain interactions.

  12. Controlling frustrated liquids and solids with an applied field in a kagome Heisenberg antiferromagnet.

    PubMed

    Nishimoto, Satoshi; Shibata, Naokazu; Hotta, Chisa

    2013-01-01

    Quantum spin-1/2 kagome Heisenberg antiferromagnet is the representative frustrated system possibly hosting a spin liquid. Clarifying the nature of this elusive topological phase is a key challenge in condensed matter; however, even identifying it still remains unsettled. Here we apply a magnetic field and discover a series of spin-gapped phases appearing at five different fractions of magnetization by means of a grand canonical density matrix renormalization group, an unbiased state-of-the-art numerical technique. The magnetic field dopes magnons and first gives rise to a possible Z₃ spin liquid plateau at 1/9 magnetization. Higher field induces a self-organized super-lattice unit, a six-membered ring of quantum spins, resembling an atomic orbital structure. Putting magnons into this unit one by one yields three quantum solid plateaus. We thus find that the magnetic field could control the transition between various emergent phases by continuously releasing the frustration.

  13. Heisenberg behavior of some carbon-beryllium compounds: How well truncated-CI approaches work.

    PubMed

    Calzado, Carmen J; Monari, A; Evangelisti, S

    2011-01-30

    This works tries to establish the performance of truncated CI calculations on the evaluation of magnetic coupling parameters with respect to available FCI estimates on a set of carbon-beryllium clusters. First-, second- and third-neighbor magnetic coupling constants have been evaluated and many body effective parameters as the cyclic terms. They result from the fitting of the low-lying states to the eigenvalues of an extended Heisenberg Hamiltonian, involving not only two-body isotropic terms but also cyclic terms. SDCI and DDCI calculations have been carried out and their performance compared with FCI ones. The impact of the basis set choice and size-consistency errors have been explored.

  14. Controlling frustrated liquids and solids with an applied field in a kagome Heisenberg antiferromagnet.

    PubMed

    Nishimoto, Satoshi; Shibata, Naokazu; Hotta, Chisa

    2013-01-01

    Quantum spin-1/2 kagome Heisenberg antiferromagnet is the representative frustrated system possibly hosting a spin liquid. Clarifying the nature of this elusive topological phase is a key challenge in condensed matter; however, even identifying it still remains unsettled. Here we apply a magnetic field and discover a series of spin-gapped phases appearing at five different fractions of magnetization by means of a grand canonical density matrix renormalization group, an unbiased state-of-the-art numerical technique. The magnetic field dopes magnons and first gives rise to a possible Z₃ spin liquid plateau at 1/9 magnetization. Higher field induces a self-organized super-lattice unit, a six-membered ring of quantum spins, resembling an atomic orbital structure. Putting magnons into this unit one by one yields three quantum solid plateaus. We thus find that the magnetic field could control the transition between various emergent phases by continuously releasing the frustration. PMID:23912842

  15. Time-local Heisenberg-Langevin equations and the driven qubit

    NASA Astrophysics Data System (ADS)

    Whalen, S. J.; Carmichael, H. J.

    2016-06-01

    The time-local master equation for a driven boson system interacting with a boson environment is derived by way of a time-local Heisenberg-Langevin equation. Extension to the driven qubit fails—except for weak excitation—due to the lost linearity of the system-environment interaction. We show that a reported time-local master equation for the driven qubit is incorrect. As a corollary to our demonstration, we also uncover odd asymptotic behavior in the "repackaged" time-local dynamics of a system driven to a far-from-equilibrium steady state: the density operator becomes steady while time-dependent coefficients oscillate (with periodic singularities) forever.

  16. On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality

    PubMed Central

    Putz, Mihai V.

    2010-01-01

    Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR) is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor 1-n2, in terms of magnitude n∈[0,1]. of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function. PMID:21152325

  17. Cat-states in the framework of Wigner-Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Dehghani, A.; Mojaveri, B.; Shirin, S.; Saedi, M.

    2015-11-01

    A one-parameter generalized Wigner-Heisenberg algebra (WHA) is reviewed in detail. It is shown that WHA verifies the deformed commutation rule [ x ˆ ,pˆλ ] = i(1 + 2 λ R ˆ) and also highlights the dynamical symmetries of the pseudo-harmonic oscillator (PHO). The present article is devoted to the study of new cat-states built from λ-deformed Schrödinger coherent states, which according to the Barut-Girardello scheme are defined as the eigenstates of the generalized annihilation operator. Particular attention is devoted to the limiting case where the Schrödinger cat states are obtained. Nonclassical features and quantum statistical properties of these states are studied by evaluation of Mandel's parameter and quadrature squeezing with respect to the λ-deformed canonical pairs (x ˆ ,pˆλ) . It is shown that these states minimize the uncertainty relations of each pair of the su(1 , 1) components.

  18. Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances

    NASA Astrophysics Data System (ADS)

    Ma, Wenchao; Ma, Zhihao; Wang, Hengyan; Chen, Zhihua; Liu, Ying; Kong, Fei; Li, Zhaokai; Peng, Xinhua; Shi, Mingjun; Shi, Fazhan; Fei, Shao-Ming; Du, Jiangfeng

    2016-04-01

    Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously.

  19. On Heisenberg Uncertainty Relationship, its extension, and the quantum issue of wave-particle duality.

    PubMed

    Putz, Mihai V

    2010-01-01

    Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR) is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor 1-n2, in terms of magnitude n∈[0,1]. of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.

  20. J=0,J=J{sub max}, and quadrupole pairing

    SciTech Connect

    Hertz-Kintish, Daniel; Zamick, Larry

    2014-12-15

    We consider 2 neutrons and 2 protons in the g{sub 9/2} shell. Wave functions and energy levels are obtained for various interactions. The wavefunctions for states with total angular momentum I greater than or equal to 10 are not affected by what the pairing interaction (J=0T=1) is. Other parts of the interaction are therefore of increased importance. Furthermore, states with I greater than or equal to 12 are not affected by the J=2 interaction.

  1. Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}: A new telluro-phosphate with S=1/2 Heisenberg chain

    SciTech Connect

    Xia, Mingjun; Shen, Shipeng; Lu, Jun; Sun, Young; Li, R.K.

    2015-10-15

    A new telluro-phosphate compound Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} with S=1/2 Heisenberg chain has been successfully synthesized by solid state reaction and grown by flux method. Single crystal X-ray diffraction reveals that Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} crystallizes into a monoclinic space group C2/c and cell parameters of a=17.647(3) Å, b=7.255(2) Å, c=9.191(2) Å and β=100.16 (3)°. In the structure of Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, one dimensional [CuTePO{sub 7}]{sup 3−} chains are formed by tetrahedral PO{sub 4} and trigonal bi-pyramidal TeO{sub 4} joining square planar CuO{sub 4} groups. Those [CuTePO{sub 7}]{sup 3−} chains are inter-connected by sharing one oxygen atom from the TeO{sub 4} group to form two dimensional layers. Magnetic susceptibility and specific heat measurements confirm that the title compound is a model one dimensional Heisenberg antiferromagnetic chain system. - Graphical abstract: Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, containing (CuTePO{sub 7}){sup 3−} chains formed by PO{sub 4} and TeO{sub 4} joining CuO{sub 4} groups, shows typical 1D Heisenberg antiferromagnetic chain model behavior as confirmed by magnetic measurements. - Highlights: • New telluro-phosphate Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} has been grown. • It features layered structure composed of [CuTePO{sub 7}]{sup 3−} chains and TeO{sub 4} groups. • It shows the Heisenberg antiferromagnetic chain behavior. • It is transparent in the range of 1000–2500 nm with a UV absorption edge of 393 nm.

  2. The Hydrogen Atom: The Rutherford Model

    NASA Astrophysics Data System (ADS)

    Tilton, Homer Benjamin

    1996-06-01

    Early this century Ernest Rutherford established the nuclear model of the hydrogen atom, presently taught as representing the best visual model after modification by Niels Bohr and Arnold Sommerfeld. It replaced the so-called "plum pudding" model of J. J. Thomson which held sway previously. While the Rutherford model represented a large step forward in our understanding of the hydrogen atom, questions remained, and still do.

  3. Plaquette-triplon analysis of magnetic disorder and order in a trimerized spin-1 kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratyay; Verma, Akhilesh Kumar; Kumar, Brijesh

    2016-01-01

    A spin-1 Heisenberg model on trimerized kagome lattice is studied by doing a low-energy bosonic theory in terms of plaquette triplons defined on its triangular unit cells. The model considered has an intratriangle antiferromagnetic exchange interaction J (set to 1) and two intertriangle couplings J'>0 (nearest neighbor) and J″ (next nearest neighbor; of both signs). The triplon analysis performed on this model investigates the stability of the trimerized singlet ground state (which is exact in the absence of intertriangle couplings) in the J'-J″ plane. It gives a quantum phase diagram that has two gapless antiferromagnetically ordered phases separated by the spin-gapped trimerized singlet phase. The trimerized singlet ground state is found to be stable on J″=0 line (the nearest-neighbor case), and on both sides of it for J″≠0 , in an extended region bounded by the critical lines of transition to the gapless antiferromagnetic phases. The gapless phase in the negative J″ region has a coplanar 120∘ antiferromagnetic order with √{3 }×√{3 } structure. In this phase, all the magnetic moments are of equal length, and the angle between any two of them on a triangle is exactly 120∘. The magnetic lattice in this case has a unit cell consisting of three triangles. The other gapless phase, in the positive J″ region, is found to exhibit a different coplanar antiferromagnetic order with ordering wave vector q =(0 ,0 ) . Here, two magnetic moments in a triangle are of the same magnitude, but shorter than the third. While the angle between two short moments is 120∘-2 δ , it is 120∘+δ between a short and the long one. Only when J″=J' , their magnitudes become equal and the relative angles 120∘. The magnetic lattice in this q =(0 ,0 ) phase has the translational symmetry of the kagome lattice with triangular unit cells of reduced (isosceles) symmetry. This reduction in the point-group symmetry is found to show up as a difference in the intensities of

  4. Heisenberg Probably Slept Here: The Lives, Times, and Ideas of the Great Physicists of the 20th Century

    NASA Astrophysics Data System (ADS)

    Brennan, Richard P.

    1998-09-01

    "Here is a book I wish I had when taking physics my senior year in high school!" -Book Report A lively illumination of modern physics' marquee players, featuring: * Albert Einstein * Max Planck * Ernest Rutherford * Niels Bohr * Werner Heisenberg * Richard Feynman * Murray Gell-Mann "Brennan has a knack for explaining difficult technicalities simply. His essays give a useful summary of twentieth-century science." -Financial Times "Highly recommended to expert and layperson alike." -Choice

  5. Homotopy of the classical configuration space for the two-magnon sector of a magnetic Heisenberg ring

    NASA Astrophysics Data System (ADS)

    Lulek, Barbara; Jakubczyk, Dorota

    2003-03-01

    A finite Heisenberg magnetic ring with an arbitrary single-node spin and two spin deviations from the ferromagnetic saturation is considered as the system of two Bethe pseudoparticles. The set of all relevant magnetic configurations spans a surface which can be recognised as a Mőbius strip. The dynamics of the system imposes the double twist of all regular orbits of the translation symmetry group.

  6. Magnon energy renormalization and low-temperature thermodynamics of O(3) Heisenberg ferromagnets

    SciTech Connect

    Radošević, Slobodan M. Pantić, Milan R.; Pavkov-Hrvojević, Milica V.; Kapor, Darko V.

    2013-12-15

    We present the perturbation theory for lattice magnon fields of the D-dimensional O(3) Heisenberg ferromagnet. The effective Hamiltonian for the lattice magnon fields is obtained starting from the effective Lagrangian, with two dominant contributions that describe magnon–magnon interactions identified as a usual gradient term for the unit vector field and a part originating in the Wess–Zumino–Witten term of the effective Lagrangian. Feynman diagrams for lattice scalar fields with derivative couplings are introduced, on the basis of which we investigate the influence of magnon–magnon interactions on magnon self-energy and ferromagnet free energy. We also comment appearance of spurious terms in low-temperature series for the free energy by examining magnon–magnon interactions and internal symmetry of the effective Hamiltonian (Lagrangian). -- Highlights: •Lattice magnon Hamiltonian constructed from the effective Lagrangian. •New Feynman diagrams with colored propagators and vertices for lattice scalar fields. •Influence of magnon–magnon interactions from the WZW term on magnon energies and free energy of O(3) HFM.

  7. Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state.

    PubMed

    Atanasov, Victor; Saxena, Avadh

    2011-05-01

    Adopting a purely two-dimensional relativistic equation for graphene's carriers contradicts the Heisenberg uncertainty principle since it requires setting the off-the-surface coordinate of a three-dimensional wavefunction to zero. Here we present a theoretical framework for describing graphene's massless relativistic carriers in accordance with this most fundamental of all quantum principles. A gradual confining procedure is used to restrict the dynamics onto a surface and normal to the surface parts, and in the process the embedding of this surface into the three-dimensional world is accounted for. As a result an invariant geometric potential arises in the surface part which scales linearly with the mean curvature and shifts the Fermi energy of the material proportional to bending. Strain induced modification of the electronic properties or 'straintronics' is clearly an important field of study in graphene. This opens an avenue to producing electronic devices: micro- and nano-electromechanical systems (MEMS and NEMS), where the electronic properties are controlled by geometric means and no additional alteration of graphene is necessary. The appearance of this geometric potential also provides us with clues as to how quantum dynamics looks in the curved space-time of general relativity. In this context we explore a two-dimensional cross-section of the wormhole geometry, realized with graphene as a solid state thought experiment.

  8. Magnetic phase diagram of quasi-2D quantum Heisenberg antiferromagnets with XY anisotropy

    NASA Astrophysics Data System (ADS)

    Xiao, Fan; Landee, Christopher; Turnbull, Mark; Fortune, Nathanael; Hannahs, Scott

    2012-02-01

    The magnetic phase diagram of a quasi-2D quantum Heisenberg antiferromagnetic compound Cu(pz)2(ClO4)2 [1] has been determined by experimental measurements; TN shows a strong field dependence. The data reveal the presence of a small (0.5%) amount of XY anisotropy. QMC simulations have been performed to examine the role of the anisotropy and the interlayer exchange (') upon the phase diagram [2,3]. Comparison of the QMC results with the experimental phase diagram will be presented. [4pt] [1] F. Xiao, F. M. Woodward, C. P. Landee, M. M. Turnbull, C. Mielke, N. Harrison, T. Lancaster, S. J. Blundell, P. J. Baker, P. Babkevich, and F. L. Pratt. Phys. Rev. B, 79(13): 134412 (2009) [0pt] [2] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi. Phys. Rev. B, 68(6):060402 (2003). [0pt] [3] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi. Phys. Rev. Lett., 90(16): 167205 (2003).

  9. Application of state-multipole Heisenberg equations to Raman excitation dynamics

    SciTech Connect

    Shore, B.W.; Sacks, R.; Dixit, S.N.

    1987-09-10

    Description of detailed temporal excitation dyanmics for coherent excitation, such as is produced by idealized laser radiation, contrasts with evaluation of rate coefficients by means of generalized Golden Rule procedures; it requires an appropriate time-dependent Schroedinger equation. When the atom undergoing excitation is also affected by incoherent processes, such as collisions, this equation no longer suffices. The Heisenberg equations, or equivalent density-matrix equations, permit treatment in which coherence and incoherence play comparable roles in the excitation dynamics. Unlike rate equations, such equations must incorporate complexities that originate in the orientation degeneracy expressed by magnetic quantum numbers. In simple cases of coherent excitation, both for single-photon and multiphoton excitation, the sublevels merely require an average of 2J+1 independent Schroedinger equations. Relaxation couples the independent equations. It has been known for some time that appropriate state-multipole operators can simplify the description of many phenomena connected with optical pumping. This memo discusses application of these multipole operators to the description of Raman (or more general multiphoton) coherent excitation. In some simple limiting cases the equations simplify, but in general one has a hierarchy of coupled multipole polarizations and coherences in place of the populations and coherences that occur as variables in nondegenerate systems. 28 refs., 4 figs.

  10. Heisenberg antiferromagnet on Cayley trees: Low-energy spectrum and even/odd site imbalance

    NASA Astrophysics Data System (ADS)

    Changlani, Hitesh J.; Ghosh, Shivam; Henley, Christopher L.; Läuchli, Andreas M.

    2013-02-01

    To understand the role of local sublattice imbalance in low-energy spectra of s=(1)/(2) quantum antiferromagnets, we study the s=(1)/(2) quantum nearest neighbor Heisenberg antiferromagnet on the coordination 3 Cayley tree. We perform many-body calculations using an implementation of the density matrix renormalization group (DMRG) technique for generic tree graphs. We discover that the bond-centered Cayley tree has a quasidegenerate set of a low-lying tower of states and an “anomalous” singlet-triplet finite-size gap scaling. For understanding the construction of the first excited state from the many-body ground state, we consider a wave function ansatz given by the single-mode approximation, which yields a high overlap with the DMRG wave function. Observing the ground-state entanglement spectrum leads us to a picture of the low-energy degrees of freedom being “giant spins” arising out of sublattice imbalance, which helps us analytically understand the scaling of the finite-size spin gap. The Schwinger-boson mean-field theory has been generalized to nonuniform lattices, and ground states have been found which are spatially inhomogeneous in the mean-field parameters.

  11. Using the ground state of an antiferromagnetic spin-1 atomic condensate for Heisenberg-limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, L.

    2016-03-01

    We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.

  12. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  13. Heisenberg antiferromagnetic chain with multiple spin 1/2 particles of different flavors per site

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Yu, Yi-Kuo

    Motivated by the discoveries of quasi-1D magnetic systems, we studied a quantum mechanical spin lattice system consisting of a one-dimensional antiferromagnetic Heisenberg chain. In this system we considered M spin 1/2 particles of different flavors per site, and the low-lying states, ground state included, of the Hamiltonian was solved numerically using the exact diagonalization method for finite cluster sizes. We have also obtained the corresponding solutions for systems of the same chain length but with one spin M/2 particle per site. The low energy spectra of both systems are then compared. For M = 2 and M =3, our result shows that the two spin chain systems (one spin M/2 per site vs. M spin 1/2 of different flavors per site) have the same excitation spectra at low energy and the number of overlapped states increases as the size of the cluster increases. The observed overlap also indicates that low energy excitations of the M flavored spin 1/2 chain system selects the high spin states, effectively satisfying the Hund's Rule even though the system does not possess the orbital angular momentum. This work was supported by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health.

  14. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    SciTech Connect

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-10-07

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S{sup ^}{sub z}, M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed.

  15. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    NASA Astrophysics Data System (ADS)

    Mi, Bin-Zhou

    2016-09-01

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green's function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  16. The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains

    SciTech Connect

    Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar; Evangelisti, Stefano; Leininger, Thierry

    2015-12-28

    The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum is associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.

  17. Entanglement dynamics in Heisenberg spin chains coupled to a dissipative environment at finite temperature

    NASA Astrophysics Data System (ADS)

    Sadiek, Gehad; Almalki, Samaher

    2016-07-01

    We consider a finite one-dimensional Heisenberg XYZ spin chain under the influence of a dissipative Lindblad environment obeying the Born-Markovian constraint in presence of an external magnetic field with closed and open boundary conditions. We present an exact numerical solution for the Lindblad master equation of the system in the Liouville space. The dynamics and asymptotic behavior of the nearest-neighbor and beyond-nearest-neighbor pairwise entanglements in the system are investigated under the effect of spatial anisotropy, temperature, system size, and different initial states. The entanglements in the free spin system exhibit nonuniform oscillatory behavior that varies significantly depending on the system size, anisotropy, and initial state. The x y spatial anisotropy dictates the asymptotic behavior of the different entanglements in the system under the influence of the environment regardless of the initial state. Higher anisotropy yields higher steady-state value of the nearest-neighbor entanglement whereas a complete isotropy wipes it out. The longer range entanglements respond differently to the anisotropy variation. The anisotropy in the z direction may enhance the entanglements depending on the interplay with the magnetic field applied in the same direction. As the temperature is raised, the steady state of the short-range entanglements is found to be robust within very small nonzero temperature range that depends critically on the spatial anisotropy. Moreover, the end to end entanglement transfer time and speed through the open boundary chain vary considerably based on the degree of anisotropy and temperature of the environment.

  18. Low-temperature specific heat and possible gap to magnetic excitations in the Heisenberg pyrochlore antiferromagnet Gd2Sn2O7

    NASA Astrophysics Data System (ADS)

    Del Maestro, Adrian; Gingras, Michel J. P.

    2007-08-01

    The Gd2Sn2O7 pyrochlore Heisenberg antiferromagnet displays a phase transition to a four sublattice Néel ordered state at a critical temperature Tc˜1K . The low-temperature state found via neutron scattering corresponds to that predicted by a classical model that considers nearest-neighbor antiferromagnetic exchange and long-range dipolar interactions. Despite the seemingly conventional nature of the ordered state, the specific heat Cv has been found to be described in the temperature range 350mK⩽T⩽800mK by an anomalous power law Cv˜T2 . A similar temperature dependence of Cv has also been reported for Gd2Ti2O7 , another pyrochlore Heisenberg material. Such behavior is to be contrasted with the typical T3 behavior expected for a three-dimensional antiferromagnet with conventional long-range order which is then generally accompanied by an exp(-Δ/T) behavior at lower temperature where anisotropy effects induce a gap Δ to collective spin excitations. Such anomalous T2 behavior in Cv has been argued to be correlated to an unusual energy dependence of the density of states which also seemingly manifests itself in low-temperature spin fluctuations found in muon spin relaxation experiments. In this paper, we report calculations of Cv that consider spin-wave-like excitations out of the Néel order observed in Gd2Sn2O7 via neutron scattering. We argue that the parametric Cv∝T2 does not reflect the true low-energy excitations of Gd2Sn2O7 . Rather, we find that the low-energy excitations of this material are antiferromagnetic magnons gapped by single-ion and dipolar anisotropy effects, and that the lowest temperature of 350mK considered in previous specific heat measurements accidentally happens to coincide with a crossover temperature below which magnons become thermally activated and Cv takes an exponential form. We argue that further specific heat measurements that extend down to at least 100mK are required in order to ascribe an unconventional description of

  19. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    PubMed

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  20. 1 /f α noise and generalized diffusion in random Heisenberg spin systems

    NASA Astrophysics Data System (ADS)

    Agarwal, Kartiek; Demler, Eugene; Martin, Ivar

    2015-11-01

    We study the "flux-noise" spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq(f ) , at finite wave vector q , exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T =0 and T =∞ . The low-frequency power-law behavior of the structure factor is inherited by any generic probe with a finite bandwidth and is of the form 1 /fα with 0.5 <α <1 . An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings. More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusion which directly follows from a generalized spin-diffusion propagator. We also argue that 1 /f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1 /fα behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1 /fα noise in SQUIDs.

  1. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction.

    PubMed

    Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang

    2015-04-29

    Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually. PMID:25817273

  2. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring.

    PubMed

    Cattes, Stefanie M; Gubbins, Keith E; Schoen, Martin

    2016-05-21

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases. PMID:27208962

  3. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction.

    PubMed

    Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang

    2015-04-29

    Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.

  4. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring.

    PubMed

    Cattes, Stefanie M; Gubbins, Keith E; Schoen, Martin

    2016-05-21

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  5. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring

    NASA Astrophysics Data System (ADS)

    Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin

    2016-05-01

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  6. Three-dimensional Heisenberg critical behavior in the highly disordered dilute ferromagnetic semiconductor (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Wang, M.; Marshall, R. A.; Edmonds, K. W.; Rushforth, A. W.; Campion, R. P.; Gallagher, B. L.

    2016-05-01

    We present detailed studies of critical behavior in the strongly site-disordered dilute ferromagnetic semiconductor (Ga,Mn)As. (Ga,Mn)As has a low saturation magnetization and relatively strong magnetocrystalline anisotropy. This combination of properties inhibits domain formation, thus removing a principal experimental difficulty in determining the critical coefficients β and γ . We find that there are still a large number of problems to overcome in terms of measurement procedures and methods of analysis. In particular, the combined effects of disorder and inhomogeneity limit the accessible critical region. However, we find that accurate and reproducible values of the critical exponents β and γ can be obtained from Kouvel-Fisher plots of remanent magnetization and magnetic susceptibility for our (Ga,Mn)As samples. The values of β and γ obtained are consistent with those of the three-dimensional Heisenberg class, despite the very strong disorder present in this system, and they are inconsistent with mean field behavior. Log-log plots of M (H ) data for our samples are consistent with the three-dimensional Heisenberg value of the critical exponent δ , but accurate values of δ could not be obtained for our samples from these plots. We also find that accurate values of the critical exponent α could not be obtained by fitting to the measured temperature derivative of resistivity for our samples. We find that modified Arrott plots and scaling plots are not a practical way to determine the universality class or critical exponents, though they are found to be in better agreement with three-dimensional Heisenberg values than mean field values. Below the critical temperature range, we find that the magnetization shows power-law behavior down to a reduced temperature of t ˜0.5 , with a critical exponent β ˜0.4 , a value appreciably lower than the mean field value of β =0.5 . At lower temperatures, Bloch 3/2 law behavior is observed due to magnons.

  7. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  8. Thermal entanglement between alternate qubits of a four-qubit Heisenberg XX chain in a magnetic field

    SciTech Connect

    Cao Min; Zhu Shiqun

    2005-03-01

    The concurrence of two alternate qubits in a four-qubit Heisenberg XX chain is investigated when a uniform magnetic field B is included. It is found that there is no thermal entanglement between alternate qubits if B is close to zero. A magnetic field can induce entanglement in a certain range both for the antiferromagnetic and ferromagnetic cases. Near zero temperature, the entanglement undergoes two sudden changes with increasing value of the magnetic field B. This is due to the changes in the ground state. This novel property may be used as a quantum entanglement switch. The anisotropy in the system can also induce the entanglement between two alternate qubits.

  9. LETTER TO THE EDITOR: Magnetic ordering in Gd2Sn2O7: the archetypal Heisenberg pyrochlore antiferromagnet

    NASA Astrophysics Data System (ADS)

    Wills, A. S.; Zhitomirsky, M. E.; Canals, B.; Sanchez, J. P.; Bonville, P.; Dalmas de Réotier, P.; Yaouanc, A.

    2006-01-01

    Low-temperature powder neutron diffraction measurements are performed in the ordered magnetic state of the pyrochlore antiferromagnet Gd2Sn2O7. Symmetry analysis of the diffraction data indicates that this compound has the ground state predicted theoretically for a Heisenberg pyrochlore antiferromagnet with dipolar interactions. The difference in the magnetic structure of Gd2Sn2O7 andof nominally analogous Gd2Ti2O7 is found to be determined by a specific type of third-neighbour superexchange interaction on the pyrochlore lattice between spins across empty hexagons.

  10. Flux 1/fα noise in two-dimensional Heisenberg spin glasses: Effects of weak anisotropic interactions

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan; Clarke, John; Schön, Gerd; Shnirman, Alexander

    2014-07-01

    We study the dynamics of a two-dimensional ensemble of randomly distributed classical Heisenberg spins with isotropic RKKY and weaker anisotropic dipole-dipole couplings. Such ensembles may give rise to the flux noise observed in SQUIDs with a 1/fα power spectrum with α ≲1. We solve numerically the Landau-Lifshitz-Gilbert equations of motion in the dissipationless limit. We find that Ising-type fluctuators, which arise from spin clustering close to a spin-glass critical behavior with Tc=0, give rise to 1/fα noise. Even weak anisotropic interactions lead to a crossover from the Heisenberg-type criticality to the much stronger Ising-type criticality. The temperature-dependent exponent α (T)≲1 increases and approaches unity when the temperature is lowered. This mechanism acts in parallel to the spin diffusion mechanism. Whereas the latter is sensitive to the device geometry, the spin-clustering mechanism is largely geometry independent.

  11. Simultaneous observation of super-Heisenberg scaling and spin squeezing in a nonlinear measurement of atomic spins

    NASA Astrophysics Data System (ADS)

    Sewell, Robert; Napolitano, Mario; Behbood, Naeimeh; Colangelo, Giorgio; Martin Ciurana, Ferran; Mitchell, Morgan; Quantum Information With Cold Atoms and Non-Classical Light Team

    2013-05-01

    We report a nonlinear alignment-to-orientation conversion (AOC) [PRL 85, 2088 (2000)] measurement of atomic spins that simultaneously shows super-Heisenberg scaling and achieves projection-noise limited sensitivity. Using this technique, we have recently demonstrated conditional spin squeezing of the atomic ensemble, and entanglement-enhanced measurement sensitivity useful for optical magnetometry [PRL 109, 253605 (2012)]. In addition, we use a novel technique to explicitly certify that the measurement fulfills all the conditions required for quantum non-demolition measurement [NJP 14, 085021 (2012)], which is non-trivial in large spin (J > 1/2) systems. Lastly, we demonstrate that the measurement shows super-Heisenberg scaling with photon number due to the nonlinearity of the AOC technique. This scaling was recently demonstrated in a proof-of-principle experiment [Nature 471, 486-489 (2011)], however in this experiment the measurement sensitivity was more than an order of magnitude worse than the projection noise limit. Here we achieve a sensitivity (observed read-out noise) of 990 spins, competitive with the best observed sensitivity in an equivalent linear measurement [PRL 104, 093602 (2010)], and 20 dB more sensitive than the previous best nonlinear measurement. ICREA-Institució Catalana de Recerca i Estudis Avançats.

  12. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger: the origins of the principles of uncertainty and complementarity

    SciTech Connect

    Mehra, J.

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.

  13. A Behavioral Evaluation of Sex Differences in a Mouse Model of Severe Neuronal Migration Disorder

    PubMed Central

    Truong, Dongnhu T.; Bonet, Ashley; Rendall, Amanda R.; Rosen, Glenn D.; Fitch, Roslyn H.

    2013-01-01

    Disruption of neuronal migration in humans is associated with a wide range of behavioral and cognitive outcomes including severe intellectual disability, language impairment, and social dysfunction. Furthermore, malformations of cortical development have been observed in a number of neurodevelopmental disorders (e.g. autism and dyslexia), where boys are much more commonly diagnosed than girls (estimates around 4 to 1). The use of rodent models provides an excellent means to examine how sex may modulate behavioral outcomes in the presence of comparable abnormal neuroanatomical presentations. Initially characterized by Rosen et al. 2012, the BXD29- Tlr4lps−2J/J mouse mutant exhibits a highly penetrant neuroanatomical phenotype that consists of bilateral midline subcortical nodular heterotopia with partial callosal agenesis. In the current study, we confirm our initial findings of a severe impairment in rapid auditory processing in affected male mice. We also report that BXD29- Tlr4lps−2J/J (mutant) female mice show no sparing of rapid auditory processing, and in fact show deficits similar to mutant males. Interestingly, female BXD29- Tlr4lps−2J/J mice do display superiority in Morris water maze performance as compared to wild type females, an affect not seen in mutant males. Finally, we report new evidence that BXD29- Tlr4lps−2J/J mice, in general, show evidence of hyper-social behaviors. In closing, the use of the BXD29- Tlr4lps−2J/J strain of mice – with its strong behavioral and neuroanatomical phenotype – may be highly useful in characterizing sex independent versus dependent mechanisms that interact with neural reorganization, as well as clinically relevant abnormal behavior resulting from aberrant neuronal migration. PMID:24039873

  14. Entanglement in the Majumdar-Ghosh model

    SciTech Connect

    Chhajlany, Ravindra W.; Tomczak, Piotr; Wojcik, Antoni; Richter, Johannes

    2007-03-15

    We present an analysis of the entanglement characteristics in the Majumdar-Ghosh (MG) or J{sub 1}-J{sub 2} Heisenberg model. For a system consisting of up to 28 spins, there is a deviation from the scaling behavior of the entanglement entropy characterizing the unfrustrated Heisenberg chain above J{sub 2}{approx_equal}0.25. This feature can be used as an indicator of the dimer phase transition occurring in this model. Additionally, we also consider entanglement at the MG point J{sub 2}=0.5J{sub 1}.

  15. Small-dilution correction to the spin-wave dispersion in the Heisenberg ferromagnet with first-, second-, and third-neighbor exchange coupling

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, R. A.

    1984-02-01

    An exact expression for the small-dilution correction to the long-wavelength spin-wave dispersion in Heisenberg ferromagnets at low temperatures is derived by the transcription of the analysis of the preceding paper. Numerical results to six decimal places are presented for a variety of exchange integrals extending up to the third-neighbor shell.

  16. Kristian Camilleri: Heisenberg and the Interpretation of Quantum Mechanics—The Physicist as Philosopher. Cambridge University Press, 2009, ISBN-13:9780521884846, 211 pp.

    NASA Astrophysics Data System (ADS)

    Kleemans, Machiel

    2010-11-01

    The book Heisenberg and the Interpretation of Quantum Mechanics—The Physicist as Philosopher, by Kristian Camilleri is critically reviewed. The work details Heisenberg’s philosophical development from an early positivist commitment towards a later philosophy of language. It is of interest to researchers and graduate students in the history and philosophy of quantum mechanics.

  17. The Heisenberg Microscope: A Powerful Instructional Tool for Promoting Meta-Cognitive and Meta-Scientific Thinking on Quantum Mechanics and the "Nature of Science"

    ERIC Educational Resources Information Center

    Hadzidaki, Pandora

    2008-01-01

    In this paper, we present a multi-dimensional study concerning Heisenberg's "gamma ray microscope", a thought experiment, which is intimately connected with the historical development of quantum mechanics (QM), and also with the most disputed interpretations of quantum theory. In this study: (a) we investigate how philosophers of science read and…

  18. The "Heisenberg's Microscope" as an Example of Using Thought Experiments in Teaching Physics Theories to Students of the Upper Secondary School

    ERIC Educational Resources Information Center

    Velentzas, Athanasios; Halkia, Krystallia

    2011-01-01

    In this work an attempt is made to explore the possible value of using Thought Experiments (TEs) in teaching physics to upper secondary education students. Specifically, a qualitative research project is designed to investigate the extent to which the Thought Experiment (TE) called "Heisenberg's Microscope", as it has been transformed by Gamow for…

  19. Quantum decoration transformation for spin models

    NASA Astrophysics Data System (ADS)

    Braz, F. F.; Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre

    2016-09-01

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the "classical" limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising-Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  20. Memory effects in Heisenberg spin glasses: Spontaneous restoration of the original spin configuration rather than preservation in a frozen state

    SciTech Connect

    Mamiya, Hiroaki; Nimori, Shigeki

    2012-04-01

    Universality of spin configuration restoration is studied in Heisenberg spin glasses: a dilute magnetic semiconductor Cd{sub 55}Mn{sub 45}Te as well as a dilute magnetic alloy Cu{sub 97}Mn{sub 3}. Reversions of the relaxations of magnetization were observed in both systems undergoing positive/negative temperature cycling under a constant magnetic field. Because the magnetization mirrors evolution of the spin configuration, these reversions indicate that the spin configurations are spontaneously restored to the initially stabilized states when the temperature is returned to the original. Whereas such spin restoration does not occur if the spin glasses are simply frozen, it is possible in the alternative ghost domain scenario of the droplet picture. This finding thus provides fresh insight into the nature of glassy systems.

  1. Compensation temperature of the two-dimension mixed spin-1 and spin-3/2 anisotropic Heisenberg ferrimagnet

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Hu, Ai-Yuan; Wang, Huai-Yu

    2016-08-01

    We study a two-dimensional Heisenberg ferrimagnet composed of spin-1 and spin-3/2 sublattices considering both exchange and single-ion anisotropies. The adjoint effects of the two anisotropies on the possible compensation point are investigated. It is concluded that a primary condition for the compensation point to appear is that the single-ion anisotropy of the smaller spins should be nonzero and be greater than a certain value which depends on other parameters. The exchange anisotropy can raise the compensation point slightly. The thermodynamic functions are evaluated. All the thermodynamic functions with various parameter values are smooth no matter whether there is a compensation point or not. Thus, from the thermodynamic functions, one is unable to judge if the compensation occurs.

  2. Magnetic phase diagram of a spatially anisotropic, frustrated spin-¹/₂ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-02-01

    The magnetic phase diagram of a spatially anisotropic, frustrated spin-[Formula: see text] Heisenberg antiferromagnet on a stacked square lattice is investigated using a second-order spin-wave expansion. The effects of interlayer coupling and the spatial anisotropy on the magnetic ordering of two ordered ground states are explicitly studied. It is shown that with increase in next nearest neighbor frustration the second-order corrections play a significant role in stabilizing the magnetization. We obtain two ordered magnetic phases (Néel and stripe) separated by a paramagnetic disordered phase. Within the second-order spin-wave expansion we find that the width of the disordered phase diminishes with increase in the interlayer coupling or with decrease in spatial anisotropy but it does not disappear. Our obtained phase diagram differs significantly from the phase diagram obtained using linear spin-wave theory.

  3. Exact asymptotic correlation functions of bilinear spin operators of the Heisenberg antiferromagnetic spin-1/2 chain

    NASA Astrophysics Data System (ADS)

    Vekua, T.; Sun, G.

    2016-07-01

    Exact asymptotic expressions of the uniform parts of the two-point correlation functions of bilinear spin operators in the Heisenberg antiferromagnetic spin-1/2 chain are obtained. Apart from the algebraic decay, the logarithmic contribution is identified, and the numerical prefactor is determined. We also confirm numerically the multiplicative logarithmic correction of the staggered part of the bilinear spin operators < > =(-1) rd /(r ln3/2r ) +(3 δa ,b-1 ) ln2r /(12 π4r4) , and estimate the numerical prefactor as d ≃0.067 . The relevance of our results for ground-state fidelity susceptibility at the Berezinskii-Kosterlitz-Thouless quantum phase transition points in one-dimensional systems is discussed at the end of our work.

  4. GENERAL: Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    NASA Astrophysics Data System (ADS)

    Huang, Li-Yuan; Fang, Mao-Fa

    2008-07-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  5. Quantum theory of the far-off-resonance continuous-wave Raman laser: Heisenberg-Langevin approach

    SciTech Connect

    Roos, P. A.; Murphy, S. K.; Meng, L. S.; Carlsten, J. L.; Ralph, T. C.; White, A. G.; Brasseur, J. K.

    2003-07-01

    We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump {r_reversible} pump, Stokes {r_reversible} signal, and Raman coherence {r_reversible} idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

  6. Quantum phase diagram of distorted J 1 - J 2 Heisenberg S  =  1/2 antiferromagnet in honeycomb lattice: a modified spin wave study.

    PubMed

    Ghorbani, Elaheh; Shahbazi, Farhad; Mosadeq, Hamid

    2016-10-12

    Using the modified spin wave method, we study the [Formula: see text] Heisenberg model with first and second neighbor antiferromagnetic exchange interactions. For a symmetric S  =  1/2 model, with the same couplings for all the equivalent neighbors, we find three phases in terms of the frustration parameter [Formula: see text]: (1) a commensurate collinear ordering with staggered magnetization (Néel.I state) for [Formula: see text], (2) a magnetically gapped disordered state for [Formula: see text], preserving all the symmetries of the Hamiltonian and lattice, which by definition is a quantum spin liquid (QSL) state and (3) a commensurate collinear ordering in which two out of the three nearest neighbor magnetizations are antiparallel and the remaining pair are parallel (Néel.II state), for [Formula: see text]. We also explore the phase diagram of a distorted [Formula: see text] model with S  =  1/2. Distortion is introduced as an inequality of one nearest neighbor coupling with the other two. This yields a richer phase diagram by the appearance of a new gapped QSL, a gapless QSL and also a valence bond crystal phase in addition to the previous three phases found for the undistorted model. PMID:27518832

  7. Quantum phase diagram of distorted J 1 - J 2 Heisenberg S  =  1/2 antiferromagnet in honeycomb lattice: a modified spin wave study.

    PubMed

    Ghorbani, Elaheh; Shahbazi, Farhad; Mosadeq, Hamid

    2016-10-12

    Using the modified spin wave method, we study the [Formula: see text] Heisenberg model with first and second neighbor antiferromagnetic exchange interactions. For a symmetric S  =  1/2 model, with the same couplings for all the equivalent neighbors, we find three phases in terms of the frustration parameter [Formula: see text]: (1) a commensurate collinear ordering with staggered magnetization (Néel.I state) for [Formula: see text], (2) a magnetically gapped disordered state for [Formula: see text], preserving all the symmetries of the Hamiltonian and lattice, which by definition is a quantum spin liquid (QSL) state and (3) a commensurate collinear ordering in which two out of the three nearest neighbor magnetizations are antiparallel and the remaining pair are parallel (Néel.II state), for [Formula: see text]. We also explore the phase diagram of a distorted [Formula: see text] model with S  =  1/2. Distortion is introduced as an inequality of one nearest neighbor coupling with the other two. This yields a richer phase diagram by the appearance of a new gapped QSL, a gapless QSL and also a valence bond crystal phase in addition to the previous three phases found for the undistorted model.

  8. Quantum phase diagram of distorted J 1 - J 2 Heisenberg S  =  1/2 antiferromagnet in honeycomb lattice: a modified spin wave study

    NASA Astrophysics Data System (ADS)

    Ghorbani, Elaheh; Shahbazi, Farhad; Mosadeq, Hamid

    2016-10-01

    Using the modified spin wave method, we study the {{J}1}-{{J}2} Heisenberg model with first and second neighbor antiferromagnetic exchange interactions. For a symmetric S  =  1/2 model, with the same couplings for all the equivalent neighbors, we find three phases in terms of the frustration parameter \\barα={{J}2}/{{J}1} : (1) a commensurate collinear ordering with staggered magnetization (Néel.I state) for 0≤slant \\barα≲ 0.207 , (2) a magnetically gapped disordered state for 0.207≲ \\barα≲ 0.369 , preserving all the symmetries of the Hamiltonian and lattice, which by definition is a quantum spin liquid (QSL) state and (3) a commensurate collinear ordering in which two out of the three nearest neighbor magnetizations are antiparallel and the remaining pair are parallel (Néel.II state), for 0.396≲ \\barα≤slant 1 . We also explore the phase diagram of a distorted {{J}1}-{{J}2} model with S  =  1/2. Distortion is introduced as an inequality of one nearest neighbor coupling with the other two. This yields a richer phase diagram by the appearance of a new gapped QSL, a gapless QSL and also a valence bond crystal phase in addition to the previous three phases found for the undistorted model.

  9. Effect of Dzyaloshinskii-Moriya interaction on phase diagrams of spin-1 Heisenberg-Ising alternating chains

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Dou, Jun-Ya; Lu, Peng

    2016-03-01

    The effect of the Dzyaloshinskii-Moriya interaction (DMI) on ground-state phase diagrams of spin-1 Heisenberg-Ising alternating chains is investigated by the infinite time-evolving block decimation method. Three rich phase diagrams for three cases with different DMIs are obtained and discussed systematically. The DMI on even bonds plays a key role in the ground-state phase diagram, especially the appearance of the Haldane phase. However, the DMI on odd bonds seems to have very weak effect on the phase diagram. Both the odd- and even-string orders become nonzero in the Haldane phase, and have their maximum values at θ = π. For the odd-dimer phase, the even-string correlator vanishes absolutely despite varying θ, but a double-peak structure of the odd-string correlator is observed. Odd-string correlator becomes maximum at θ = π / 2 and 3 π / 2, but vanishes at θ = π. It indicates that the generalized string correlator can be used to distinguish the odd-dimer from the Haldane phase. Doubly degenerate entanglement spectrum is observed in the Haldane phase, which can be regarded as a clear signature of the existence of topological orders. Strong enough transverse nearest-neighbor correlations are found to be very important for the appearance of the Haldane and the odd-dimer phases.

  10. Recollections of Physics and of Physicists During the 1920's

    ERIC Educational Resources Information Center

    Dennison, David M.

    1974-01-01

    Presents the author's recollections of the emergence of the new quantum theory and his associations with such men as Oskar Klein, Niels Bohr, Frederick Hund, Werner Heisenberg, J. J. Thomson, and others. (GS)

  11. Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach

    NASA Astrophysics Data System (ADS)

    Spirin, D. V.; Fridman, Yu. A.

    2003-03-01

    We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4 J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories.

  12. Thermodynamics of the frustrated J1-J2 Heisenberg ferromagnet on the body-centered cubic lattice with arbitrary spin

    NASA Astrophysics Data System (ADS)

    Müller, Patrick; Richter, Johannes; Hauser, Andreas; Ihle, Dieter

    2015-06-01

    We use the spin-rotation-invariant Green's function method as well as the high-temperature expansion to discuss the thermodynamic properties of the frustrated spin-SJ1-J2 Heisenberg magnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighbor bonds J1< 0 and antiferromagnetic next-nearest-neighbor bonds J2 ≥ 0 and arbitrary spin S. We find that the transition point J_2^c between the ferromagnetic ground state and the antiferromagnetic one is nearly independent of the spin S, i.e., it is very close to the classical transition point J_2c,clas = 2/3|J_1|. At finite temperatures we focus on the parameter regime J_2

  13. Combined analysis of ferromagnetic materials using the Heisenberg Green functions and Ising EFT methods

    NASA Astrophysics Data System (ADS)

    Moujaes, Elie A.; Khater, A.; Abou Ghantous, M.

    2015-10-01

    Ferromagnetic phase diagrams were, for a long time, unsuccessfully determined theoretically, despite the important Callen's 1963 [21] theoretical model. A great variety of experimental data for the magnetization over the entire range of temperature defining the ordered phase compared well with an empirical formula recently determined by Kuz'min (2005) [22]. Nonetheless, the Ising effective field theory (EFT), which can be of enormous support to both methods, was never given attention. The present work intends to show how the Ising EFT technique, when combined with the Green functions in Callen's work, is able to reconcile theoretical work with experimental data. The ratio kTc / JZS(S + 1) plays an important role in finding values for the exchange parameter J, whose first-principles calculation, often depending on the package used, is not properly done. J can be determined for a variety of ferromagnetic materials represented by general spin systems S with a number of nearest neighbours Z and critical temperature Tc, even for models including a percolative feature, characteristic of diluted interactive systems. We demonstrate that EFT is capable of estimating a value of J, which can substitute the use of more complex theoretical models or the performance of ab initio/DFT calculations.

  14. Destruction of Magnetic Long-Range Order by Hole-Induced Skyrmions in Two-Dimensional Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Suda, Tomoharu; Morinari, Takao

    2016-11-01

    Motivated by the rapid destruction of antiferromagnetic long-range order in hole-doped cuprate high-temperature superconductors, we study the effect of skyrmions on the magnetic long-range order (MLRO). Here we assume that either a skyrmion or antiskyrmion is introduced by a doped hole. Our numerical simulation indicates that in the case of isolated skyrmions, there is an abrupt disappearance of MLRO for doping concentration x < 1.0 × 10-4. In the case of skyrmion-antiskyrmion pairs, the critical doping concentration xc for the suppression of MLRO is given as a function of the separation of the pairs. For a moderate separation of 3-4 lattice constants, we find that the critical doping is consistent with the experimental value.

  15. Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Cheng; Liu, Yong; Chi, Feng

    2014-02-01

    Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature.

  16. Superconductivity. Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet.

    PubMed

    Kim, Y K; Krupin, O; Denlinger, J D; Bostwick, A; Rotenberg, E; Zhao, Q; Mitchell, J F; Allen, J W; Kim, B J

    2014-07-11

    High-temperature superconductivity in cuprates arises from an electronic state that remains poorly understood. We report the observation of a related electronic state in a noncuprate material, strontium iridate (Sr2IrO4), in which the distinct cuprate fermiology is largely reproduced. Upon surface electron doping through in situ deposition of alkali-metal atoms, angle-resolved photoemission spectra of Sr2IrO4 display disconnected segments of zero-energy states, known as Fermi arcs, and a gap as large as 80 millielectron volts. Its evolution toward a normal metal phase with a closed Fermi surface as a function of doping and temperature parallels that in the cuprates. Our result suggests that Sr2IrO4 is a useful model system for comparison to the cuprates. PMID:24925913

  17. Contrasting distributions of pairwise entanglement and mutual information in Heisenberg spin systems

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, V.

    2016-08-01

    The correlations between a pair of spins in a many-spin state encoded in the diagonal and off-diagonal spin-spin correlation functions. These spin functions determine the quantum correlation measures, like pair-wise concurrence, quantum discord and other measures of quantum information. We show that for isotropic and translationally invariant states, the quantum correlations depend only on the diagonal spin correlation function. The pair concurrence shows a strict short-ranged behavior. The distribution of concurrence for a random W-like state exhibits a long tail for both time-reversal invariant states and for states that break the time reversal. The quantum discord can be related to the diagonal spin correlation function. As the spin function is long range close to a critical point, analogously the quantum discord exhibits a long range behavior. For the isotropic state, the conditional entropy distribution is a Dirac delta function, whereas it has a twin-peak structure for the anisotropic model.

  18. Semi-Classical Models for Virtual Antiparticle Pairs

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Virtual particle-antiparticle pairs of massive elementary particle& are predicted in Quantum Field Theory (QFT) to appear from the vacuum and annihilate each other again within their Heisenberg lifetimes h/4mc(exp 2). In this work, semiclassical models of this process - for the cases of massive leptons, quarks, and the massive weak bosons W and Z - are constructed. It is shown that the dynamical lifetime of the particle- antiparticle system in each case equals the Heisenberg lifetime to good approximation, and obeys appropriate quantization conditions on the field fluctuation action. In other words, the dynamical lifetime of the semiclassical model agrees with QED and QCD to good approximation. But the formula for the dynamical lifetime in each model includes the force strength coupling constant (e in the lepton case, alpha(sup s) (q(exp 2)) in the quark cases), while the Heisenberg lifetime formula does not. Observing the agreement of the Heisenberg and dynamical lifetimes, we may derive the QED and QCD coupling constants in terms of h, c, and numerical factors only.

  19. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger: The origins of the principles of uncertainty and complementarity

    NASA Astrophysics Data System (ADS)

    Mehra, Jagdish

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger during 1920 1927 are treated. From the formulation of quantum mechanics in 1925 1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory—formulated in fall 1926 by Dirac, London, and Jordan—Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of qnautum mechanics and of physical theory as such—formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930—were continued during the next decades. All these aspects are briefly summarized.

  20. Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on (CH3)4NMnxCd1-xCl3

    NASA Astrophysics Data System (ADS)

    Paduan-Filho, A.; Oliveira, N. F.; Bindilatti, V.; Foner, S.; Shapira, Y.

    2003-12-01

    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. Only the nearest-neighbor (NN) exchange interaction is included, and the distribution of the magnetic ions is assumed to be random. Values of the magnetic fields Bi at the magnetization steps (MST’s) from finite chains with two to five spins (pairs, triplets, quartets, and quintets) are given for chains composed of spins S=5/2. The magnitudes of these MST’s as a function of the fraction, x, of cations that are magnetic are given for any S. An expression for the apparent saturation value of M is derived. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with one to five spins, and the “rise and ramp approximation” for longer chains. An expression for the low-temperature saturation magnetic field Bs(n) of a finite chain with n spins is given. Some nonequilibrium effects that occur in a rapidly changing B are also considered. Some of these result from the absence of thermal equilibrium within the sample itself, whereas others are caused by the absence of thermal equilibrium between the sample and its environment (e.g., liquid-helium bath). Specific nonequilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings (anticrossings), are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH3)4NMnxCd1-xCl3, with 0.16⩽x⩽0.50] were measured at 0.55 K in 18-T superconducting magnets. The field B1 at the first MST from pairs is used to determine the NN exchange constant J. This J/kB changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. A reasonably good agreement is found. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic

  1. The origins of quantum interference and uncertainty broadening. A linear ribbon model approach

    SciTech Connect

    Tang, J.

    1996-02-01

    As an alternative to the orthodox Schroedinger wave mechanics or Heisenberg matrix mechanics approach, a simple linear ribbon model for quantum theory is presented. A different perspective and better physical insights into the origins of quantum interference and the mechanisms for uncertainty broadening are offered. Quantum interference in the atomic scale and superconducting behaviour in the macroscopic scale are compared.

  2. Form factors in quantum integrable models with GL(3)-invariant R-matrix

    NASA Astrophysics Data System (ADS)

    Pakuliak, S.; Ragoucy, E.; Slavnov, N. A.

    2014-04-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.

  3. From ugly fish to conquer death: J J R Macleod's fish insulin research, 1922-24.

    PubMed

    Wright, James R

    2002-04-01

    Fish insulin research had a very short heyday. Throughout most of 1922, production of insulin from livestock was difficult, erratic, and expensive. Although fish insulin was easy to extract and seemed to be a brilliant and logical solution to the shortage of insulin, collection of fish islets was a logistical nightmare. By the end of 1922, a scientist at the pharmaceutical company Eli Lilly in Indianapolis, IN, USA had developed a way to concentrate and purify insulin by isoelectric precipitation. As a result of this breakthrough, the scales began to tip heavily in favour of livestock insulin. Nevertheless, research on commercial production of fish insulin continued for another 18 months but was finally abandoned.

  4. J. J. Sakurai Prize: Scattering Amplitudes - the Story of Loops and Legs

    NASA Astrophysics Data System (ADS)

    Dixon, Lance

    2014-03-01

    Scattering amplitudes are at the interface between quantum field theory and particle experiment. Precise predictions for reactions at energy frontier machines such as the Large Hadron Collider (LHC) rely on quantum corrections to scattering amplitudes involving multiple quarks and gluons, as well as other particles. For decades, theorists used Feynman diagrams for this job. However, Feynman diagrams are just too slow, even on fast computers, to allow adequate precision for complicated events with many jets of hadrons in the final state. Such events are produced copiously at the LHC, and constitute formidable backgrounds to many searches for new physics. Over the past two decades, alternative methods to Feynman diagrams have come to fruition. The new ``on-shell'' methods are based on the old principle of unitarity. They can be much more efficient because they exploit the underlying simplicity of scattering amplitudes, and recycle lower-loop information. The same methods have also enabled new insight into the structure of gauge theory and gravity at the quantum level, especially in highly supersymmetric theories where they maintain all of the symmetries. I'll give a brief motivation for and introduction to the new methods, which will be followed by descriptions of their phenomenological and formal applications by David Kosower and Zvi Bern.

  5. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Physics with Hadron colliders

    NASA Astrophysics Data System (ADS)

    Hinchliffe, Ian

    2011-04-01

    After many years of sustained effort, The LHC has started operation and physics results have started to be released. This marks the beginning of a new era in High Energy Physics during which the fundamental mechanism underlying the source of masses for the elextro-weak gauge bosons will be probed exhaustively. These results will, over the next decade, enable questions such as ``Does the Higgs boson exist?'' ``Are there extra space time dimensions,'' ``Is there supersymmetry?'' ``can dark matter be produced at a particle accelerator?'' to be addressed, and the large variety of theoretical ideas developed over the last 20 years to be ``weighed in the balance.'' My presentation will discuss some of the physics program of the ATLAS experiment, the discoveries that we expect to make in the next few years and their role in the ``weighing'' that will occur.

  6. J. J. Sakurai Prize for Theoretical Particle Physics Talk: The Boundless Horizons of Supercollider Physics

    NASA Astrophysics Data System (ADS)

    Quigg, Chris

    2011-04-01

    The Large Hadron Collider at CERN is moving the experimental frontier of particle physics to the domain of electroweak symmetry breaking, reaching energies around one trillion electron volts for collisions among the basic constituents of matter. We do not know what the new wave of exploration will find, but the discoveries we make and the new puzzles we encounter are certain to change the face of particle physics and echo through neighboring sciences. In this new world, we confidently expect to learn what sets electromagnetism apart from the weak interactions, with profound implications for deceptively simple questions: Why are there atoms? Why chemistry? What makes stable structures possible? A pivotal step will be finding the Higgs boson-or whatever takes its place -and exploring its properties. But we hope for much more. More predictive extensions of the electroweak theory, including dynamical symmetry breaking and supersymmetry, imply new kinds of matter that would be within reach of LHC experiments. We suspect that candidates for the dark matter of the Universe could also await discovery on the TeV scale. The strong interactions may hold their own surprises. As we unravel the riddle of electroweak symmetry breaking, prospects arise for other new insights: into the different forms of matter, the unity of quarks and leptons, and the nature of spacetime. The questions in play all seem linked to one another-and to the kinship of the weak and electromagnetic interactions. I will speak of the evolving dialogue between theory and experiment, highlighting the work before us. Fermilab is operated by the Fermi Research Alliance under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy.

  7. The Centrally Extended Heisenberg Algebra and Its Connection with the Schroedinger, Galilei and Renormalized Higher Powers of Quantum White Noise Lie Algebras

    SciTech Connect

    Accardi, Luigi; Boukas, Andreas

    2010-06-17

    In previous papers we have shown that the one mode Heisenberg algebra Heis(1) admits a unique non-trivial central extensions CeHeis(1) which can be realized as a sub-Lie-algebra of the Schroedinger algebra, in fact the Galilei Lie algebra. This gives a natural family of unitary representations of CeHeis(1) and allows an explicit determination of the associated group by exponentiation. In contrast with Heis(1), the group law for CeHeis(1) is given by nonlinear (quadratic) functions of the coordinates. The vacuum characteristic and moment generating functions of the classical random variables canonically associated to CeHeis(1) are computed. The second quantization of CeHeis(1) is also considered.

  8. Magnetization Jump in the Magnetization Process of the Spin-1/2 Heisenberg Antiferromagnet on a Distorted Square-Kagome Lattice

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroki; Hasegawa, Yasumasa; Sakai, Tôru

    2015-11-01

    We study the magnetization process of the spin-1/2 Heisenberg antiferromagnet on a distorted square-kagome lattice by the numerical-diagonalization method. The magnetization jump at one-third of the height of the saturation is examined in detail; we find that the jump becomes larger when a small distortion is switched on and that it is accompanied by an abrupt change in lines along microscopic spin directions. Our finite-size results successfully confirm that the magnetization jump in a spin-isotropic system is a macroscopic jump that survives in the thermodynamic limit and that the changes in spin directions are common to a spin-flop phenomenon observed in spin-anisotropic systems.

  9. Dynamic structure factor [S(Q,ω)] of the S=1 quasi-one-dimensional Heisenberg antiferromagnet: Neutron-scattering study on AgVP2S6

    NASA Astrophysics Data System (ADS)

    Mutka, H.; Payen, C.; Molinié, P.; Soubeyroux, J. L.; Colombet, P.; Taylor, A. D.

    1991-07-01

    The spin correlations of the S=1 Heisenberg antiferromagnetic chains in AgVP2S6 have been studied by neutron scattering at temperatures of the order of T~10-2 J/kB. On the polycrystalline samples, with a careful choice of experimental conditions, we have observed a Haldane gap of Eg=26 meV at the antiferromagnetic point at q=π. The excitation spectra are consistent with a mode that has a spin-wave velocity C=150 meV and a correlation length ξ~=5.5, close to C/Eg. These results are in quantitative agreement with the predictions and numerical results on the Haldane state.

  10. Large-s expansions for the low-energy parameters of the honeycomb-lattice Heisenberg antiferromagnet with spin quantum number s

    NASA Astrophysics Data System (ADS)

    Bishop, R. F.; Li, P. H. Y.

    2016-06-01

    The coupled cluster method (CCM) is employed to very high orders of approximation to study the ground-state (GS) properties of the spin-s Heisenberg antiferromagnet (with isotropic interactions, all of equal strength, between nearest-neighbour pairs only) on the honeycomb lattice. We calculate with high accuracy the complete set of GS parameters that fully describes the low-energy behaviour of the system, in terms of an effective magnon field theory, viz., the energy per spin, the magnetic order parameter (i.e., the sublattice magnetization), the spin stiffness and the zero-field (uniform, transverse) magnetic susceptibility, for all values of the spin quantum numbers in the range 1/2 ≤ s ≤ 9/2. The CCM data points are used to calculate the leading quantum corrections to the classical (s → ∞) values of these low-energy parameters, considered as large-s asymptotic expansions.

  11. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    PubMed

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  12. [Two traditions in the scientific learning of the world. A case study of creation and reception of quantum mechanics over the period 1925-1927, on the bases of discussion between Werner Heisenberg and Albert Einstein].

    PubMed

    Krajniak, Wiktor

    2014-01-01

    The purpose of this article is the analyses of discussion between Albert Einstein and Werner Heisenberg in the period 1925-1927. Their disputes, relating to the sources of scientific knowledge, its methods and the value of knowledge acquired in this way, are part of the characteristic for the European science discourse between rationalism and empirism. On the basis of some sources and literature on the subject, the epistemological positions of both scholars in the period were reconstructed. This episode, yet poorly known, is a unique example of scientific disputes, whose range covers a broad spectrum of methodological problems associated with the historical development of science. The conducted analysis sheds some light on the source of popularity of logical empirism in the first half of the 20th century. A particular emphasis is placed on the impact of the neopositivist ideas which reflect Heisenberg's research program, being the starting point for the Copenhagen interpretation of quantum mechanics. The main assumption of logical empirism, concerning acquisition of scientific knowledge only by means of empirical procedures and logical analysis of the language of science, in view of the voiced by Einstein arguments, bears little relationship with actual testing practices in the historical aspect of the development of science. The criticism of Heisenberg's program, carried out by Einstein, provided arguments for the main critics of the neopositivist ideal and contributed to the bankruptcy of the idea of logical empirism, thereby starting a period of critical rationalism prosperity, arising from criticism of neopositivism and alluding to Einstein's ideas.

  13. Thermodynamic properties of frustrated arbitrary spin-S J1-J2 quantum Heisenberg antiferromagnet on the body-centered-cubic lattice in random phase approximation

    NASA Astrophysics Data System (ADS)

    Mi, Bin-Zhou

    2016-07-01

    The thermodynamic properties of the frustrated arbitrary spin-S J1-J2 Heisenberg antiferromagnet on the body-centered-cubic lattice for Néel phase are systematically calculated by use of the double-time Green's function method within the random phase approximation (RPA). The role of spin quantum number and frustration strength on sublattice magnetization, Néel temperature, internal energy, and free energy are carefully analyzed. The curve of zero-temperature sublattice magnetization / S versus frustration strength J2/J1 values are almost flat at the larger spin quantum number S=10. With the increase of normalized temperature T/TN, the larger the spin quantum number S, the faster the / S drops, and the smaller influence of J2/J1 on the / S versus T/TN curve. Under the RPA approach, the Néel temperature TN /Sp and the internal energy E/Sp at the Néel point are independent of spin quantum number S. The numerical results show that the internal energy E/Sp at the Néel point seems independent of the frustration strength J2/J1. This indicates that thermodynamic quantities have universal characteristics for large spin quantum number.

  14. Analytical Derivations of Single-Particle Matrix Elements in Nuclear Shell Model

    NASA Astrophysics Data System (ADS)

    Fatah, Aziz H.; Radhi, R. A.; Abdullah, Nzar R.

    2016-07-01

    We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)dr m where f(r) = rμ, rμ jJ(qr), V(r) corresponding to the Gaussian and the Yukawa potentials used in nuclear shell models and nuclear structure. In addition, we take into account a general integral formula of the matrix element that covers all seven matrix elements obtained analytically.

  15. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    SciTech Connect

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  16. Analysis of quantum spin models on hyperbolic lattices and Bethe lattice

    NASA Astrophysics Data System (ADS)

    Daniška, Michal; Gendiar, Andrej

    2016-04-01

    The quantum XY, Heisenberg, and transverse field Ising models on hyperbolic lattices are studied by means of the tensor product variational formulation algorithm. The lattices are constructed by tessellation of congruent polygons with coordination number equal to four. The calculated ground-state energies of the XY and Heisenberg models and the phase transition magnetic field of the Ising model on the series of lattices are used to estimate the corresponding quantities of the respective models on the Bethe lattice. The hyperbolic lattice geometry induces mean-field-like behavior of the models. The ambition to obtain results on the non-Euclidean lattice geometries has been motivated by theoretical studies of the anti-de Sitter/conformal field theory correspondence.

  17. Coarse-grained modeling of DNA curvature

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Hinckley, Daniel M.; Lequieu, Joshua P.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    The interaction of DNA with proteins occurs over a wide range of length scales, and depends critically on its local structure. In particular, recent experimental work suggests that the intrinsic curvature of DNA plays a significant role on its protein-binding properties. In this work, we present a coarse grained model of DNA that is capable of describing base-pairing, hybridization, major and minor groove widths, and local curvature. The model represents an extension of the recently proposed 3SPN.2 description of DNA [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys. 139, 144903 (2013)], into which sequence-dependent shape and mechanical properties are incorporated. The proposed model is validated against experimental data including melting temperatures, local flexibilities, dsDNA persistence lengths, and minor groove width profiles.

  18. An analytic solution to the Monod-Wyman-Changeux model and all parameters in this model.

    PubMed Central

    Zhou, G; Ho, P S; van Holde, K E

    1989-01-01

    Starting from the Monod-Wyman-Changeux (MWC) model (Monod, J., J. Wyman, and J. P. Changeux. 1965. J. Mol. Biol. 12:88-118), we obtain an analytical expression for the slope of the Hill plot at any ligand concentration. Furthermore, we derive an equation satisfied by the ligand concentration at the position of maximum slope. From these results, we derive a set of formulas which allow determination of the parameters of the MWC model (kR, C, and L) from the value of the Hill coefficient, nH, the ligand concentration at the position of maximum slope [( A]0), and the value of nu/(n-nu) at this point. We then outline procedures for utilizing these equations to provide a "best fit" of the MWC model to the experimental data, and to obtain a refined set of the parameters. Finally, we demonstrate the applicability of the technique by analysis of oxygen binding data for Octopus hemocyanin. PMID:2713440

  19. The effective half-filled band model is inappropriate for the dimerized 2D organic superconductors

    NASA Astrophysics Data System (ADS)

    Gomes, Niladri; Clay, R. Torsten; Mazumdar, Sumit

    2013-03-01

    The antiferromagnetism in κ-(ET)2X can be understood within the effective 1/2-filled band anisotropic triangular lattice Hubbard Hamiltonian for strong anisotropy. DMFT theories have claimed antiferromagnetic-to-superconductor transition within the same model, as the anistropy is reduced. In previous work we have shown the absence of superconductivity within the triangular lattice 1/2-filled band Hubbard model for any Hubbard U and any anisotropy. Other DMFT approaches theories have claimed superconductivity within the so-called Hubbard-Heisenberg model, which incorporates an additional antiferromagnetic spin-exchange over and above that due to the Hubbard U. Very recent work has also claimed a valence-bond solid (VBS) phase within the Hubbard-Heisenberg model, which would seemingly explain the observed VBS phase in EtMe3P[Pd(dmit)2]2. We report exact calculations that show that neither the VBS nor the superconducting phase occur within the Hubbard-Heisenberg model, showing clearly that the effective 1/2-filled band model is unsuitable for describing the complete phase space of the κ-(ET)2X. Our work raises serious doubts about the DMFT theories of superconductivity of metal intercalated C60 and picene. Supported by DOE Grant Number: DE-FG02-06ER46315

  20. Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3

    NASA Astrophysics Data System (ADS)

    Chaloupka, Jiří; Khaliullin, Giniyat

    2016-08-01

    We study the ordered moment direction in the extended Kitaev-Heisenberg model relevant to honeycomb lattice magnets with strong spin-orbit coupling. We utilize numerical diagonalization and analyze the exact cluster ground states using a particular set of spin-coherent states, obtaining thereby quantum corrections to the magnetic anisotropy beyond conventional perturbative methods. It is found that the quantum fluctuations strongly modify the moment direction obtained at a classical level and are thus crucial for a precise quantification of the interactions. The results show that the moment direction is a sensitive probe of the model parameters in real materials. Focusing on the experimentally relevant zigzag phases of the model, we analyze the currently available neutron-diffraction and resonant x-ray-diffraction data on Na2IrO3 and RuCl3 and discuss the parameter regimes plausible in these Kitaev-Heisenberg model systems.

  1. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  2. OPTICAL PROPERTIES OF ARCTIC MIXED PHASE BOUNDARY LAYER CLOUDS OBSERVED FROM A TETHERED BALLOON INSTRUMENT PLATFORM: PART II a M. Sikand, a J. Koskulics, a K. Stamnes, b B. Hamre, b J.J. Stamnes, c R.P. Lawson a Department of Physics, Stevens Institute of Technology, 1 Castle point, Hoboken, NJ 07030, USA b Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen, Norway c SPEC Incorporated, 3022 Sterling Circle, Suite 200, Boulder, CO 80301, USA

    NASA Astrophysics Data System (ADS)

    Sikand, M. V.; Stamnes, K. H.; Koskulics, J.; Stamnes, J.; Hamre, B.; Lawson, P.

    2011-12-01

    Tethered balloon microphysical and radiative measurements in boundary-layer mixed phase clouds, consisting of ice crystals and liquid droplets, observed in the Arctic have been analyzed. The cloud microphysical and radiometric measurements were collected during a May-June 2008 experimental campaign in Ny Ålesund, Norway, located high in the Arctic at 78.9° N. A state of the art radiative transfer model DISORT is used to analyze the radiometric measurements in order to understand the cloud microphysical properties in mixed phase clouds. The instruments deployed on the tethered balloon system including a radiometer, a cloud particle imager and a meteorological package provide information about the optical properties of mixed phase clouds in the Arctic. These measurements can, therefore, be used to investigate the vertical distribution of the mixed phase arctic clouds. This information will be useful to improve the description of mixed phase clouds in climate models, and thereby reduce the large uncertainty in such models associated with the current lack of data on mixed-phase clouds. The time evolution of cloud optical properties such as cloud optical depth is estimated by using a two layer cloud model based on cloud particle images. Our results show a unique vertical profile of mixed phase clouds as observed on 16 May, 2008 and 29 May, 2008. These results, derived from radiative transfer simulations, show how the vertical distribution of the mixed phase clouds evolves with time. This kind of unique information is difficult to retrieve from satellite observations, which are hampered by low visible contrast between cloud and snow-ice covered surfaces and temperature inversions in the infrared region as well as aircrafts limited by the time of flight. We have found that the mean intensity measured at the balloon is sensitive to the vertical structure of the cloud optical depth. We use the measured mean intensity to estimate the cloud optical depths at 500nm and 800nm

  3. Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing

    NASA Astrophysics Data System (ADS)

    Schilling, R.; Schütz, H.; Ghadimi, A. H.; Sudhir, V.; Wilson, D. J.; Kippenberg, T. J.

    2016-05-01

    Placing a nanomechanical object in the evanescent near field of a high-Q optical microcavity gives access to strong gradient forces and quantum-limited displacement readout, offering an attractive platform for both precision sensing technology and basic quantum optics research. Robustly implementing this platform is challenging, however, as it requires integrating optically smooth surfaces separated by ≲λ /10 . Here we describe an exceptionally high-cooperativity, single-chip optonanomechanical transducer based on a high-stress Si3N4 nanobeam monolithically integrated into the evanescent near field of SiO2 microdisk cavity. Employing a vertical integration technique based on planarized sacrificial layers, we realize beam-disk gaps as little as 25 nm while maintaining mechanical Q f >1012 Hz and intrinsic optical Q ˜107. The combination of low loss, small gap, and parallel-plane geometry results in radio-frequency flexural modes with vacuum optomechanical coupling rates of 100 kHz, single-photon cooperativities in excess of unity, and large zero-point frequency (displacement) noise amplitudes of 10 kHz (fm )/√ Hz . In conjunction with the high power-handling capacity of SiO2 and low extraneous substrate noise, the transducer performs particularly well as a sensor, with recent deployment in a 4-K cryostat realizing a displacement imprecision 40 dB below that at the standard quantum limit (SQL) and an imprecision-backaction product <5 ℏ [Wilson et al., Nature (London) 524, 325 (2015)]. In this report, we provide a comprehensive description of device design, fabrication, and characterization, with an emphasis on extending Heisenberg-limited readout to room temperature. Towards this end, we describe a room-temperature experiment in which a displacement imprecision 32 dB below that at the SQL and an imprecision-backaction product <60 ℏ is achieved. Our results extend the outlook for measurement-based quantum control of nanomechanical oscillators and suggest an

  4. Correlation functions of integrable models: A description of the ABACUS algorithm

    NASA Astrophysics Data System (ADS)

    Caux, Jean-Sébastien

    2009-09-01

    Recent developments in the theory of integrable models have provided the means of calculating dynamical correlation functions of some important observables in systems such as Heisenberg spin chains and one-dimensional atomic gases. This article explicitly describes how such calculations are generally implemented in the ABACUS C++ library, emphasizing the universality in treatment of different cases coming as a consequence of unifying features within the Bethe ansatz.

  5. The Landau-Lifshitz equation in atomistic models

    NASA Astrophysics Data System (ADS)

    Ellis, M. O. A.; Evans, R. F. L.; Ostler, T. A.; Barker, J.; Atxitia, U.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2015-09-01

    The Landau-Lifshitz (LL) equation, originally proposed at the macrospin level, is increasingly used in Atomistic Spin Dynamic (ASD) models. These models are based on a spin Hamiltonian featuring atomic spins of fixed length, with the exchange introduced using the Heisenberg formalism. ASD models are proving a powerful approach to the fundamental understanding of ultrafast magnetization dynamics, including the prediction of the thermally induced magnetization switching phenomenon in which the magnetization is reversed using an ultra-fast laser pulse in the absence of an externally applied field. This paper outlines the ASD model approach and considers the role and limitations of the LL equation in this context.

  6. Strict site-occupation constraint in two-dimensional Heisenberg models and dynamical mass generation in QED{sub 3} at finite temperature

    SciTech Connect

    Dillenschneider, Raoul; Richert, Jean

    2006-06-01

    We study the effect of site occupation in two-dimensional quantum spin systems at finite temperature in a {pi}-flux state description at the mean-field level. We impose each lattice site to be occupied by a single SU(2) spin. This is realized by means of a specific prescription. We consider the low-energy Hamiltonian which is mapped into a QED{sub 3} Lagrangian of spinons. We compare the dynamically generated mass to the one obtained by means of an average site occupation constraint.

  7. Generalized Heisenberg theory of turbulence

    NASA Technical Reports Server (NTRS)

    Uberoi, M. S.; Narain, J. P.

    1974-01-01

    Solutions of the generalized theory are obtained which are consistent with the previous work on energy transfer measurements. They also agree with the measurements of turbulent energy spectrum for wave numbers in the universal equilibrium range.

  8. EPR Line Shifts and Line Shape Changes Due to Heisenberg Spin Exchange and Dipole–Dipole Interactions of Nitroxide Free Radicals in Liquids: 9. An Alternative Method to Separate the Effects of the Two Interactions Employing 15N and 14N

    PubMed Central

    2015-01-01

    A method to separate the effects of Heisenberg spin exchange (HSE) and dipole–dipole (DD) interactions on EPR spectra of nitroxide spin probes in solution by employing 15N and 14N nitroxide spin probes in parallel experiments is developed theoretically and tested experimentally. Comprehensive EPR measurements are reported of 4-oxo-2,2,6,6-tetramethylpiperidine-d16;1-15N-1-oxyl (perdeuterated 15N Tempone; 15pDT), in 70 wt % aqueous glycerol as functions of concentration and temperature. The method, termed the relative broadening constant method (RBCM), is demonstrated by using the present results together with those in the literature that employed perdeuterated 14N Tempone (14pDT) under identical conditions. In principle, the separation of DD and HSE is dependent on the model of diffusion and molecular-kinetic parameters; however, within present day experimental uncertainties, the RBCM method turns out to be insensitive to the model. The earlier methods to separate DD and HSE by measuring the dispersion component introduced by the two interactions shows general agreement with the RBCM; however, there are discrepancies larger than estimated uncertainties due to random errors. Thus, further support is found for Salikhov’s recent theory of the effects of DD and HSE on EPR spectra (Appl. Magn. Reson.2010, 38, 237); however, detailed confirmation is still lacking. The RBCM affords a possible approach to separate HSE and DD in spectra complicated by slow motion and/or overlap with other resonance lines, allowing the method to be used in situations more complicated than low-viscosity simple liquids. PMID:25035905

  9. Variational Monte Carlo study of a gapless spin liquid in the spin-1/2 XXZ antiferromagnetic model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Gong, Shou-Shu; Becca, Federico; Sheng, D. N.

    2015-11-01

    By using the variational Monte Carlo technique, we study the spin-1/2 XXZ antiferromagnetic model (with easy-plane anisotropy) on the kagome lattice. A class of Gutzwiller projected fermionic states with a spin Jastrow factor is considered to describe either spin liquids [with U (1 ) or Z2 symmetry] or magnetically ordered phases [with q =(0 ,0 ) or q =(4 π /3 ,0 ) ]. We find that the magnetic states are not stable in the thermodynamic limit. Moreover, there is no energy gain to break the gauge symmetry from U (1 ) to Z2 within the spin-liquid states, as previously found in the Heisenberg model. The best variational wave function is therefore the U (1 ) Dirac state, supplemented by the spin Jastrow factor. Furthermore, a vanishing S =2 spin gap is obtained at the variational level, in the whole regime from the X Y to the Heisenberg model.

  10. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Perturbative QCD: from the Tevatron to the LHC

    NASA Astrophysics Data System (ADS)

    Ellis, R. Keith

    2009-05-01

    Recent progress in perturbative QCD is described, with special emphasis on one-loop corrections to processes with large numbers of jets. These processes constitute important backgrounds for new physics searches at hadron colliders.

  11. Generic model for the hyperkagome iridate Na4Ir3O8 in the local-moment regime

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tomonari; Hwang, Kyusung; Lee, Eric Kin-Ho; Kim, Yong Baek

    2016-08-01

    The hyperkagome iridate, Na4Ir3O8 , has been regarded as a promising candidate material for a three-dimensional quantum spin liquid. Here the three-dimensional network of corner-sharing triangles forms the hyperkagome lattice of Ir4 + ions. Due to strong spin-orbit coupling, the local moments of Ir4 + ions are described by the pseudospin jeff=1 /2 Kramers doublet. The Heisenberg model on this lattice is highly frustrated, and quantum/classical versions have been studied in earlier literature. In this work, we derive a generic local-moment model beyond the Heisenberg limit for the hyperkagome iridate by considering multiorbital interactions for all the t2 g orbitals and spin-orbit coupling. The lifting of massive classical degeneracy in the Heisenberg model by various spin-anisotropy terms is investigated at the classical level, and the resulting phase diagram is presented. We find that different anisotropy terms prefer distinct classes of magnetically ordered phases, often with various discrete degeneracy. The implications of our results for recent μ SR and NMR experiments on this material and possible quantum spin liquid phases are discussed.

  12. Supersymmetric t - J model: An exact result for two dimensions

    SciTech Connect

    Cappon, K. Principia Microsystems Inc., 12 Caines Avenue, North York, Ontario, Canada M2M 1G2)

    1991-04-01

    The {ital t}-{ital J} model exhibits an additional symmetry at {ital J}=2{ital t}. The irreducible representations of this symmetry include states with different quantities of holes and total spin. This leads to degeneracies between systems with differing number of holes and gives an upper bound on the ground-state energy for one- and two-hole systems of arbitrary dimension. Also, it leads to an exact result for the difference in the ground-state energy for momenta {bold k}=(0,0) and {bold k}=({pi},{pi}) between the single-hole {ital t}-{ital J} model and the Heisenberg antiferromagnet in two dimensions.

  13. Effective action for noncommutative Bianchi I model

    SciTech Connect

    Rosenbaum, M.; Vergara, J. D.; Minzoni, A. A.

    2013-06-12

    Quantum Mechanics, as a mini-superspace of Field Theory has been assumed to provide physically relevant information on quantum processes in Field Theory. In the case of Quantum Gravity this would imply using Cosmological models to investigate quantum processes at distances of the order of the Planck scale. However because of the Stone-von Neuman Theorem, it is well known that quantization of Cosmological models by the Wheeler-DeWitt procedure in the context of a Heisenberg-Weyl group with piecewise continuous parameters leads irremediably to a volume singularity. In order to avoid this information catastrophe it has been suggested recently the need to introduce in an effective theory of the quantization some form of reticulation in 3-space. On the other hand, since in the geometry of the General Relativistic formulation of Gravitation space can not be visualized as some underlying static manifold in which the physical system evolves, it would be interesting to investigate whether the effective reticulation which removes the singularity in such simple cosmologies as the Bianchi models has a dynamical origin manifested by a noncommutativity of the generators of the Heisenberg-Weyl algebra, as would be expected from an operational point of view at the Planck length scale.

  14. An interactive modelling tool for understanding hydrological processes in lowland catchments

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  15. On the relativity and uncertainty of distance, time, and energy measurements by man. (1) Derivation of the Weber psychophysical law from the Heisenberg uncertainty principle applied to a superconductive biological detector. (2) The reverse derivation. (3) A human theory of relativity.

    PubMed

    Cope, F W

    1981-01-01

    The Weber psychophysical law, which describes much experimental data on perception by man, is derived from the Heisenberg uncertainty principle on the assumption that human perception occurs by energy detection by superconductive microregions within man . This suggests that psychophysical perception by man might be considered merely a special case of physical measurement in general. The reverse derivation-i.e., derivation of the Heisenberg principle from the Weber law-may be of even greater interest. It suggest that physical measurements could be regarded as relative to the perceptions by the detectors within man. Thus one may develop a "human" theory of relativity that could have the advantage of eliminating hidden assumptions by forcing physical theories to conform more completely to the measurements made by man rather than to concepts that might not accurately describe nature.

  16. A nonlinear Bloch model for Coulomb interaction in quantum dots

    SciTech Connect

    Bidegaray-Fesquet, Brigitte Keita, Kole

    2014-02-15

    In this paper, we first derive a Coulomb Hamiltonian for electron–electron interaction in quantum dots in the Heisenberg picture. Then we use this Hamiltonian to enhance a Bloch model, which happens to be nonlinear in the density matrix. The coupling with Maxwell equations in case of interaction with an electromagnetic field is also considered from the Cauchy problem point of view. The study is completed by numerical results and a discussion about the advisability of neglecting intra-band coherences, as is done in part of the literature.

  17. Wang-Landau Algorithm for Continuous Models and Joint Density of States

    SciTech Connect

    Zhou, Chenggang; Schulthess, Thomas C; Torbrugge, S.; Landau, D. P.

    2006-01-01

    We present a modified Wang-Landau algorithm for models with continuous degrees of freedom. We demonstrate this algorithm with the calculation of the joint density of states of ferromagnet Heisenberg models and a model polymer chain. The joint density of states contains more information than the density of states of a single variable-energy, but is also much more time consuming to calculate. We present strategies to significantly speed up this calculation for large systems over a large range of energy and order parameter.

  18. Exact quantisation of the relativistic Hopfield model

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2016-11-01

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  19. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements. PMID:27586896

  20. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  1. Magnetization measurement on the S=1 quasi-one-dimensional Heisenberg antiferromagnet Ni(C{sub 5}H{sub 14}N{sub 2}){sub 2}N{sub 3}(PF{sub 6})

    SciTech Connect

    Honda, Z.; Katsumata, K.

    2001-06-01

    We have performed magnetization (M) measurements on the S=1 quasi-one-dimensional Heisenberg antiferromagnet, Ni(C{sub 5}H{sub 14}N{sub 2}){sub 2}N{sub 3}(PF{sub 6}) (NDMAP) with a vibrating sample magnetometer in a static field (H). In the temperature (T) dependence of the susceptibility (M/H), we observed that a transition from the gapped phase to a gapless one occurs at a finite H. On increasing H further, we observed a bending in the M/H{endash}T curve and the M/H takes almost constant value below the bending temperature (T{sub B}). Since T{sub B} corresponds to the critical temperature determined from heat capacity measurements, we identify the T independent susceptibility to the perpendicular susceptibility of an anisotropic antiferromagnet. We also observed a change in the M{endash}H curves of NDMAP at finite H. The value of H where M changes corresponds to the phase boundary between the field induced long-range ordered and paramagnetic phases determined from the heat capacity measurement. {copyright} 2001 American Institute of Physics.

  2. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Cotton, Stephen J.

    2016-08-01

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  3. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.

    PubMed

    Wang, Ji Kang; Sun, Mao

    2005-10-01

    The aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight are studied, using the method of numerically solving the Navier-Stokes equations. Available morphological and stroke-kinematic parameters of dragonfly (Aeshna juncea) are used for the model dragonfly. Six advance ratios (J; ranging from 0 to 0.75) and, at each J, four forewing-hindwing phase angle differences (gamma(d); 180 degrees, 90 degrees, 60 degrees and 0 degree) are considered. The mean vertical force and thrust are made to balance the weight and body-drag, respectively, by adjusting the angles of attack of the wings, so that the flight could better approximate the real flight. At hovering and low J (J=0, 0.15), the model dragonfly uses separated flows or leading-edge vortices (LEV) on both the fore- and hindwing downstrokes; at medium J (J=0.30, 0.45), it uses the LEV on the forewing downstroke and attached flow on the hindwing downstroke; at high J (J=0.6, 0.75), it uses attached flows on both fore- and hindwing downstrokes. (The upstrokes are very lightly loaded and, in general, the flows are attached.) At a given J, at gamma(d)=180 degrees, there are two vertical force peaks in a cycle, one in the first half of the cycle, produced mainly by the hindwing downstroke, and the other in the second half of the cycle, produced mainly by the forewing downstroke; at gamma(d)=90 degrees, 60 degrees and 0 degree, the two force peaks merge into one peak. The vertical force is close to the resultant aerodynamic force [because the thrust (or body-drag) is much smaller than vertical force (or the weight)]. 55-65% of the vertical force is contributed by the drag of the wings. The forewing-hindwing interaction is detrimental to the vertical force (and resultant force) generation. At hovering, the interaction reduces the mean vertical force (and resultant force) by 8-15%, compared with that without interaction; as J increases, the reduction generally decreases (e.g. at J=0.6 and

  4. Modelling sub-daily evaporation from a small reservoir.

    NASA Astrophysics Data System (ADS)

    McGloin, Ryan; McGowan, Hamish; McJannet, David; Burn, Stewart

    2013-04-01

    . Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack and J. J. Middelburg (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnology and Oceanography, 51, 2388-2397. Granger, R.J. and N. Hedstrom (2011), Modelling hourly rates of evaporation from small lakes, Hydrological and Earth System Sciences, 15, doi:10.5194/hess-15-267-2011. Imberger, J. and J.C. Patterson (1981), Dynamic Reservoir Simulation Model - DYRESM: 5, In: Transport Models for Inland and Coastal Waters. H.B. Fischer (Ed.). Academic Press, New York, 310-361.

  5. Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model

    NASA Astrophysics Data System (ADS)

    Deppisch, Frank F.; Graf, Lukas; Kulkarni, Suchita; Patra, Sudhanwa; Rodejohann, Werner; Sahu, Narendra; Sarkar, Utpal

    2016-01-01

    We interpret the 2 TeV excesses at the LHC in a left-right symmetric model with Higgs doublets and spontaneous D -parity violation. The light neutrino masses are understood via a linear seesaw, suppressed by a high D -parity breaking scale, and the heavy neutrinos have a pseudo-Dirac character. In addition, with a suppressed right-handed gauge coupling gR/gL≈0.6 in an S O (10 ) embedding, we can thereby interpret the observed e e j j excess at CMS. We show that it can be reconciled with the diboson and dijet excesses within a simplified scenario based on our model. Moreover, we find that the mixing between the light and heavy neutrinos can be potentially large, which would induce dominant nonstandard contributions to neutrinoless double beta decay via long-range λ and η neutrino exchange.

  6. Vertex operator representation of the soliton tau functions in the An(1) Toda models by dressing transformations

    NASA Astrophysics Data System (ADS)

    Belich, H.; Cuba, G.; Paunov, R.

    1998-10-01

    We study the relation between the group-algebraic approach and the dressing symmetry one to the soliton solutions of the An(1) Toda field theory in 1+1 dimensions. Originally, solitons in the affine Toda models were found by Olive, Turok, and Underwood. Single solitons are created by exponentials of elements which ad-diagonalize the principal Heisenberg subalgebra. Alternatively, Babelon and Bernard exploited the dressing symmetry to reproduce the known expressions for the fundamental tau functions in the sine-Gordon model. In this paper we show the equivalence between these two methods to construct solitons in the An(1) Toda models.

  7. Phase diagram of a truncated tetrahedral model.

    PubMed

    Krcmar, Roman; Gendiar, Andrej; Nishino, Tomotoshi

    2016-08-01

    Phase diagram of a discrete counterpart of the classical Heisenberg model, the truncated tetrahedral model, is analyzed on the square lattice, when the interaction is ferromagnetic. Each spin is represented by a unit vector that can point to one of the 12 vertices of the truncated tetrahedron, which is a continuous interpolation between the tetrahedron and the octahedron. Phase diagram of the model is determined by means of the statistical analog of the entanglement entropy, which is numerically calculated by the corner transfer matrix renormalization group method. The obtained phase diagram consists of four different phases, which are separated by five transition lines. In the parameter region, where the octahedral anisotropy is dominant, a weak first-order phase transition is observed. PMID:27627273

  8. Phase diagram of a truncated tetrahedral model

    NASA Astrophysics Data System (ADS)

    Krcmar, Roman; Gendiar, Andrej; Nishino, Tomotoshi

    2016-08-01

    Phase diagram of a discrete counterpart of the classical Heisenberg model, the truncated tetrahedral model, is analyzed on the square lattice, when the interaction is ferromagnetic. Each spin is represented by a unit vector that can point to one of the 12 vertices of the truncated tetrahedron, which is a continuous interpolation between the tetrahedron and the octahedron. Phase diagram of the model is determined by means of the statistical analog of the entanglement entropy, which is numerically calculated by the corner transfer matrix renormalization group method. The obtained phase diagram consists of four different phases, which are separated by five transition lines. In the parameter region, where the octahedral anisotropy is dominant, a weak first-order phase transition is observed.

  9. Solvable Models of Correlated Particles

    NASA Astrophysics Data System (ADS)

    Ha, Zachary Nyong-Chol

    The Heisenberg spin chain with inverse-square exchange (ISE) has recently been introduced and has elevated general interest in the models with ISE. It has been known for a long time that the model is directly related to the random matrix theory. Recently, the matrix model in two -dimensional quantum gravity has also been shown to be related to the ISE model. In this thesis we show that the Bethe -ansatz-solvable, nearest-neighbor-exchange (NNE) models and the ISE model share a striking structure called the "string". Chapter 1 is a review of the Bethe ansatz, the "strings", and the ISE models. In Chapter 2 the "string" structure of one-dimensional Hubbard model eigenstates is studied numerically and is used to show the validity of thermodynamic Bethe ansatz equations (TBAE). We, furthermore, solve TBAE in a strong coupling expansion series form and obtain the thermodynamic potential which agrees with the known high temperature expansion series. We also calculate various thermodynamic quantities using our solution and provide some new features of the strongly correlated one -dimensional Hubbard model. In Chapter 3 a one-dimensional quantum N-body system of either fermions or bosons with SU(n) "spins" (or colors in particle physics language) interacting via inverse-square exchange is presented. A class of eigenstates of both the continuum and lattice version of the model Hamiltonians is constructed in terms of the Jastrow-product wave function. The class of states we construct corresponds to the ground state and the low-energy excitations of the model that can be described by the effective harmonic fluid Hamiltonian. By expanding the energy about the ground state, we find the harmonic fluid parameters (i.e., the charge, spin velocities, etc.) explicitly. The correlation exponent and the compressibility are also found. As expected, the general harmonic relation (i.e., v_ {S} = (v_{N}v_{J })^{1/2) is satisfied among the charge and the spin velocities. In Chapter 4, an

  10. A Numerical Model for Atomtronic Circuit Analysis

    SciTech Connect

    Chow, Weng W.; Straatsma, Cameron J. E.; Anderson, Dana Z.

    2015-07-16

    A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. This model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.

  11. Influence of magnetospheric inputs definition on modeling of ionospheric storms

    NASA Astrophysics Data System (ADS)

    Tashchilin, A. V.; Romanova, E. B.; Kurkin, V. I.

    Usually for numerical modeling of ionospheric storms corresponding empirical models specify parameters of neutral atmosphere and magnetosphere. Statistical kind of these models renders them impractical for simulation of the individual storm. Therefore one has to correct the empirical models using various additional speculations. The influence of magnetospheric inputs such as distributions of electric potential, number and energy fluxes of the precipitating electrons on the results of the ionospheric storm simulations has been investigated in this work. With this aim for the strong geomagnetic storm on September 25, 1998 hour global distributions of those magnetospheric inputs from 20 to 27 September were calculated by the magnetogram inversion technique (MIT). Then with the help of 3-D ionospheric model two variants of ionospheric response to this magnetic storm were simulated using MIT data and empirical models of the electric fields (Sojka et al., 1986) and electron precipitations (Hardy et al., 1985). The comparison of the received results showed that for high-latitude and subauroral stations the daily variations of electron density calculated with MIT data are more close to observations than those of empirical models. In addition using of the MIT data allows revealing some peculiarities in the daily variations of electron density during strong geomagnetic storm. References Sojka J.J., Rasmussen C.E., Schunk R.W. J.Geophys.Res., 1986, N10, p.11281. Hardy D.A., Gussenhoven M.S., Holeman E.A. J.Geophys.Res., 1985, N5, p.4229.

  12. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    NASA Astrophysics Data System (ADS)

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  13. Modelling the oil spill track from Prestige-Nassau accident

    NASA Astrophysics Data System (ADS)

    Montero, P.; Leitao, P.; Penabad, E.; Balseiro, C. F.; Carracedo, P.; Braunschweig, F.; Fernandes, R.; Gomez, B.; Perez-Munuzuri, V.; Neves, R.

    2003-04-01

    . Prego, J.J. Taboada, P. Leitão, M. Ruiz-Villarreal, R. Neves and V. Pérez-Villar. Oceanologica Acta 22(2), p.167-177, (1999). (2) A model for ocean circulation on the Iberian Coast. H.S. Coelho, R.J.J. Neves, M. White, P.C. Leitão and A.J. Santos. Journal of Marine Systems 32, 153-179 (2002). (3) Impact of Cloud Analysis on Numerical Weather Prediction in the Galician Region of Spain. M.J. Souto, C.F. Balseiro, V. Pérez-Muñuzuri, M. Xue and K. Brewster, Journal of Applied Meteorology (2003)

  14. Magnetic properties of Ni(C 5H 5N) 2Ni(CN) 4 - 2d S = 1 Heisenberg magnet with easy-axis anisotropy

    NASA Astrophysics Data System (ADS)

    Čižmár, E.; Kačmár, M.; Orendáč, M.; Orendáčová, A.; Černák, J.; Feher, A.

    1999-05-01

    Specific heat studies of structurally layered powdered Ni(C 5H 5N) 2Ni(CN) 4 have been carried out from 100 mK to 2.5 K in zero magnetic field. A λ-like anomaly with a strong rounding-off observed at 0.9 K might be ascribed to the phase transition into the magnetically ordered state. Consequently, easy-axis type of anisotropy introduced by C 5H 5N enabled analysing the system using a 2d S = {1}/{2} Ising model for the square lattice and a Schottky anomaly yielding D/ kB = - 1.9 K and | J/ kB| = 0.35 K.

  15. Magnetization steps in the diluted Heisenberg layer materials ( CH3 NH3 )2 Mnx Cd1-x Cl4 : Equilibrium data at 0.6 K

    NASA Astrophysics Data System (ADS)

    Paduan-Filho, A.; Gratens, X.; Bindilatti, V.; Oliveira, N. F., Jr.; Shapira, Yaacov

    2005-08-01

    The magnetization M of (CH3NH3)2MnxCd1-xCl4 , with x from 0.025 up to 0.265, was measured at 0.6 K in a slowly varying magnetic field B up to 17 T. The exchange interaction in these strongly diluted planar magnetic materials is antiferromagnetic. The in-plane cation structure is well approximated by a square lattice. The observed qualitative features, listed in the order that they appear in increasing B , are as follows: a fast rise of M , starting at B=0 ; a magnetization plateau (plateau of “apparent saturation”); a large magnetization step (MST), attributed to nearest-neighbor (NN) pairs; a second magnetization plateau; another large MST from NN pairs; and a third plateau that is not completed below the highest available B . These features are expected from the NN cluster model presented in the preceding paper. The magnetic fields at the two MST’s give J1/kB=(-4.39±0.10)K for the NN exchange constant. This value is slightly lower than reported for the undiluted (x=1) member of this series, (CH3NH3)2MnCl4 . A smaller J1 when x⩽0.265 may be the result of an in-plane expansion with decreasing x , caused by the slightly larger Cd2+ ion compared to Mn2+ . Analysis of the initial rise of M at low B indicates the presence of weak interactions that are not included in the NN cluster model. This conclusion is consistent with the observation (to be reported later) of a weak exchange interaction with a neighbor that is more distant than a NN. The apparent saturation value Ms , at the first magnetization plateau, was determined for all seven samples. There is a fair agreement with the values expected from a random distribution of the Mn ions over all cation sites. The largest deviation is for samples with x⩾0.15 , where the measured Ms is somewhat higher. In the same samples the magnetization jump ΔM at the MST’s from NN pairs is somewhat smaller than for a random Mn distribution. A proposed explanation of the discrepancies for x⩾0.15 postulates that the

  16. Quantum Paramagnet in a π Flux Triangular Lattice Hubbard Model.

    PubMed

    Rachel, Stephan; Laubach, Manuel; Reuther, Johannes; Thomale, Ronny

    2015-04-24

    We propose the π flux triangular lattice Hubbard model (π THM) as a prototypical setup to stabilize magnetically disordered quantum states of matter in the presence of charge fluctuations. The quantum paramagnetic domain of the π THM that we identify for intermediate Hubbard U is framed by a Dirac semimetal for weak coupling and by 120° Néel order for strong coupling. Generalizing the Klein duality from spin Hamiltonians to tight-binding models, the π THM maps to a Hubbard model which corresponds to the (J_{H},J_{K})=(-1,2) Heisenberg-Kitaev model in its strong coupling limit. The π THM provides a promising microscopic testing ground for exotic finite-U spin liquid ground states amenable to numerical investigation. PMID:25955072

  17. Extending a rainfall-runoff model for lowland catchments from lumped to semi-distributed

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Teuling, Ryan; Uijlenhoet, Remko

    2016-04-01

    , A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  18. A model of the two-dimensional quantum harmonic oscillator in an AdS_3 background

    NASA Astrophysics Data System (ADS)

    Frick, R.

    2016-10-01

    In this paper we study a model of the two-dimensional quantum harmonic oscillator in a three-dimensional anti-de Sitter background. We use a generalized Schrödinger picture in which the analogs of the Schrödinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the AdS_3 spacetime. In this picture, we have a metamorphosis of the Heisenberg uncertainty relations.

  19. A computational model of selection by consequences: log survivor plots.

    PubMed

    Kulubekova, Saule; McDowell, J J

    2008-06-01

    [McDowell, J.J, 2004. A computational model of selection by consequences. J. Exp. Anal. Behav. 81, 297-317] instantiated the principle of selection by consequences in a virtual organism with an evolving repertoire of possible behaviors undergoing selection, reproduction, and mutation over many generations. The process is based on the computational approach, which is non-deterministic and rules-based. The model proposes a causal account for operant behavior. McDowell found that the virtual organism consistently showed a hyperbolic relationship between response and reinforcement rates according to the quantitative law of effect. To continue validation of the computational model, the present study examined its behavior on the molecular level by comparing the virtual organism's IRT distributions in the form of log survivor plots to findings from live organisms. Log survivor plots did not show the "broken-stick" feature indicative of distinct bouts and pauses in responding, although the bend in slope of the plots became more defined at low reinforcement rates. The shape of the virtual organism's log survivor plots was more consistent with the data on reinforced responding in pigeons. These results suggest that log survivor plot patterns of the virtual organism were generally consistent with the findings from live organisms providing further support for the computational model of selection by consequences as a viable account of operant behavior.

  20. A mean-field study of the Hubbard model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Enjalran, Matthew

    The experimental work on the herbertsmithite compound, ZnCu3(OH)6Cl2, almost a decade ago ignited intense interest in the field of frustrated magnetism because it represented the best material realization of a spin- 1 / 2 Heisenberg antiferromagnet (AFM) on the kagome lattice and its ground state was a gapless spin liquid. Many theoretical and numerical studies of the quantum Heisenberg AFM on the kagome lattice have been performed since and have coalesced around the general consensus of a small gapped spin liquid ground state for the model. Although there is not currently a metallic kagome material system, the work on ZnCu3(OH)6Cl2 has motivated theoretical and numerical investigations of itinerant electrons on the kagome lattice. We contribute to this pursuit by studying the single band Hubbard model on the kagome lattice, where the frustration can be tuned by adjusting the hopping along different bonds, t1 and t2; however, we are mainly interested in the isotropic limit, t1 =t2 = t . We report preliminary results on the low temperature correlations in the half filled model as a function of frustration and interaction strength in the mean-field, Hartree-Fock, limit. CSU Research Grant.

  1. Chaos in a 4D dissipative nonlinear fermionic model

    NASA Astrophysics Data System (ADS)

    Aydogmus, Fatma

    2015-12-01

    Gursey Model is the only possible 4D conformally invariant pure fermionic model with a nonlinear self-coupled spinor term. It has been assumed to be similar to the Heisenberg's nonlinear generalization of Dirac's equation, as a possible basis for a unitary description of elementary particles. Gursey Model admits particle-like solutions for the derived classical field equations and these solutions are instantonic in character. In this paper, the dynamical nature of damped and forced Gursey Nonlinear Differential Equations System (GNDES) are studied in order to get more information on spinor type instantons. Bifurcation and chaos in the system are observed by constructing the bifurcation diagrams and Poincaré sections. Lyapunov exponent and power spectrum graphs of GNDES are also constructed to characterize the chaotic behavior.

  2. Molecular modeling of fluoropropene refrigerants.

    PubMed

    Raabe, Gabriele

    2012-05-17

    Different fluoropropenes are currently considered as refrigerants, either as pure compounds or as components in low GWP (global warming potential) refrigerant mixtures. Due to their limited commercial production, experimental data for the thermophysical properties of fluoropropenes and their mixtures are in general rare, which hampers the exploration of their performance in technical applications. In principle, molecular simulation can be used to predict the relevant properties of refrigerants and refrigerant blends, provided that adequate intermolecular potential functions ("force fields") are available. In our earlier work (Raabe, G.; Maginn, E. J., J. Phys. Chem. B2010, 114, 10133-10142), we introduced a transferable force field for fluoropropenes comprising the compounds 3,3,3-trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). In this paper, we provide an extension of the force field model to the trans- and cis-1,3,3,3-tetrafluoro-1-propene (HFO-1234ze(E), HFO-1234ze) and the cis-1,2,3,3,3-pentafluoro-1-propene (HFO-1225ye(Z)) as well as revised simulation results for HFO-1216. We present Gibbs ensemble simulation results on the vapor pressures, saturated densities, and heats of vaporization of these compounds in comparison with experimental results. The simulation results show that the force field model enables reliable predictions of the properties of the different fluoropropenes and also reproduces well the differing vapor-liquid coexistence and vapor pressure curve of the cis- and trans-isomers of 1,3,3,3-tetrafluoro-1-propene, HFO-1234ze and HFO-1234ze(E). For these two isomers, we also present molecular dynamics simulation studies on their local structure.

  3. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit

    SciTech Connect

    Pezze, Luca; Smerzi, Augusto

    2009-03-13

    We show that quantum Fisher information provides a sufficient condition to recognize multiparticle entanglement in an N qubit state. The same criterion gives a necessary and sufficient condition for sub-shot-noise phase sensitivity in the estimation of a collective rotation angle {theta}. The analysis therefore singles out the class of entangled states which are useful to overcome classical phase sensitivity in metrology and sensors. We finally study the creation of useful entangled states by the nonlinear dynamical evolution of two decoupled Bose-Einstein condensates or trapped ions.

  4. The Heisenberg representation of quantum computers

    SciTech Connect

    Gottesman, D.

    1998-06-24

    Since Shor`s discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers--the difficulty of describing them on classical computers--also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an important class of quantum operations. States used in error correction and certain communication protocols can be described by their stabilizer, a group of tensor products of Pauli matrices. Even this simple group structure is sufficient to allow a rich range of quantum effects, although it falls short of the full power of quantum computation.

  5. L∞-algebra models and higher Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Ritter, Patricia; Sämann, Christian

    2016-10-01

    We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In the first part, we review in detail how higher Chern-Simons theories arise in the AKSZ-formalism. These theories form a universal starting point for the construction of L∞-algebra models. We then show how to describe superconformal field theories and how to perform dimensional reductions in this context. In the second part, we demonstrate that Nambu-Poisson and multisymplectic manifolds are closely related via their Heisenberg algebras. As a byproduct of our discussion, we find central Lie p-algebra extensions of 𝔰𝔬(p + 2). Finally, we study a number of L∞-algebra models which are physically interesting and which exhibit quantized multisymplectic manifolds as vacuum solutions.

  6. One-dimensional Kondo lattice model at quarter filling

    NASA Astrophysics Data System (ADS)

    Xavier, J. C.; Miranda, E.

    2008-10-01

    We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of a dimerized phase and a nonzero charge gap had been reported by Xavier [Phys. Rev. Lett. 90, 247204 (2003)]. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge gap. In the interest of clarifying this important issue, we show that these objections are based on results obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible dimerized phase of the Majumdar-Ghosh point of the J1-J2 Heisenberg model as a paradigm with which to illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.

  7. Quantum Brownian motion model for the stock market

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  8. Yang-Baxter integrable models in experiments: from condensed matter to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Batchelor, Murray T.; Foerster, Angela

    2016-04-01

    The Yang-Baxter equation has long been recognised as the masterkey to integrability, providing the basis for exactly solved models which capture the fundamental physics of a number of realistic classical and quantum systems. In this article we provide an introductory survey of the impact of Yang-Baxter integrable models on experiments in condensed matter physics and ultracold atoms. A number of prominent examples are covered, including the hard-hexagon model, the Heisenberg spin chain, the transverse quantum Ising chain, a spin ladder model, the Lieb-Liniger Bose gas, the Gaudin-Yang Fermi gas and the two-site Bose-Hubbard model. The review concludes by pointing to some other recent developments with promise for further progress.

  9. Topological phases of the Kitaev-Hubbard model at half filling

    NASA Astrophysics Data System (ADS)

    Faye, J. P. L.; Sénéchal, D.; Hassan, S. R.

    2014-03-01

    The Kitaev-Hubbard model of interacting fermions is defined on the honeycomb lattice and, at strong coupling, interpolates between the Heisenberg model and the Kitaev model. It is basically a Hubbard model with ordinary hopping t and spin-dependent hopping t'. We study this model in the weak to intermediate coupling regime, at half filling, using the cellular dynamical impurity approximation (CDIA), an approach related to dynamical mean field theory but based on Potthoff's variational principle. We identify four phases in the (U,t') plane: two semimetallic phases with different numbers of Dirac points, an antiferromagnetic insulator, and an algebraic spin liquid. The last two are separated by a first-order transition. These four phases all meet at a single point and could be realized in cold atom systems.

  10. Measurement of the top quark mass using the template method in the lepton plus jets channel with in situ W ---> j j calibration at CDF-II

    SciTech Connect

    Adelman, Jahred A.; Arguin, J.F.; Bellettini, G.; Brubaker, E.; Budagov, J.; Chlachidze, G.; Demortier, L.; Gibson, A.; Kim, S.; Kim, Y.K.; Maruyama, T.; Sato, K.; Shochet, M.; Sinervo, P.; Tomura, T.; Velev, G.; Xie, S.; Yang, U.K.; /Chicago U. /Toronto U. /INFN, Pisa /Dubna, JINR /Rockefeller U. /LBL, Berkeley /Tsukuba U. /Fermilab

    2006-05-01

    We report an updated measurement of the top quark mass in the lepton plus jets channel of t{bar t} events from p{bar p} collisions at {radical}s = 1.96 TeV. This measurement uses a dataset with integrated luminosity of 680 pb{sup -1}, containing 360 t{bar t} candidates separated into four subsamples. A top quark mass is reconstructed for each event by using energy and momentum constraints on the top quark pair decay products. We also employ the reconstructed mass of hadronic W boson decays W {yields} jj to constrain in situ the largest systematic uncertainty of the top quark mass measurement: the jet energy scale. Monte Carlo templates of the reconstructed top quark and W boson mass are produced as a function of the true top quark mass and the jet energy scale. The distribution of reconstructed top quark and W boson mass in the data are compared to the Monte Carlo templates using a likelihood fit to obtain: M{sub top} = 173.4 {+-} 2.8 GeV/c{sup 2}.

  11. J. J. Sakurai Prize for Theoretical Particle Physics Talk: The Long Road to the TeV Scale -- A Personal Reflection

    NASA Astrophysics Data System (ADS)

    Lane, Kenneth D.

    2011-04-01

    I recount, in a personal way, the steps along the road that have led to the threshold of uncovering the dynamics of electroweak symmetry breaking. They began with a few theorists' profound dissatisfaction with the ``standard'' Higgs-boson description of this physics and have taken us to the enterprise of thousands - accelerator physicists, engineers, experimentalists and theorists - who designed, built and will now exploit the Large Hadron Collider at CERN.

  12. Rival Visions: J.J. Rousseau and T.H. Huxley on the Nature (or Nurture) of Inequality and What It Means for Education

    ERIC Educational Resources Information Center

    Currie-Knight, Kevin

    2011-01-01

    Jean-Jacques Rousseau (1712-1778) and Thomas Huxley (1852-1895) had different, but substantial, effects on the history of education. Rousseau's educational theories supplied the intellectual foundation for pedagogical progressivism. Huxley's educational writings helped to enlarge the scope of the British curriculum to include such things as…

  13. Modeling and Reality in Early Twentieth-Century Physics

    NASA Astrophysics Data System (ADS)

    Seth, Suman

    2011-04-01

    Towards the end of 1913, Arnold Sommerfeld, Professor of theoretical physics at Munich University, sent a letter of congratulations to a young Niels Bohr. The Dane's now-classic trilogy of papers, which coupled Rutherford's conception of the atom with a ``planetary'' configuration of electrons, had just appeared. Sommerfeld saw the calculation of the Rydberg constant as a singular triumph and immediately spotted an opportunity to try to explain the Zeeman effect. Yet he also sounded a note of caution, confessing that he remained ``somewhat skeptical'' of atomic models in general. In this, of course, he was hardly alone. Bohr's atom was a particularly egregious example of a peculiar model, one requiring what even its creator considered ``horrid assumptions.'' Nonetheless, success bred conviction. Expanding upon Bohr's original ideas, Sommerfeld soon produced the so-called ``Bohr-Sommerfeld quantization conditions,'' using them to calculate a myriad of results. Experimental evidence, Sommerfeld argued in 1915, showed that quantised electron-paths ``correspond exactly to reality'' and possess ``real existence.'' This kind of realism would not, of course, last long. In 1925, Werner Heisenberg (earlier a student of Sommerfeld's) made scepticism about the details of the Bohr model into a methodological dictum, one later enshrined in the ``Copenhagen interpretation'' of quantum mechanics. This paper uses Sommerfeld's work from the turn of the twentieth century to the mid-1920s as a window onto a landscape involving multiple contestations over the legitimacy of atomic modelling. The surprise that greeted Heisenberg's and others' phenomenological insistences, we will see, can only be understood with reference to what should be considered a ``realist interlude'' in the history of twentieth century atomic physics, one inspired by the astonishing successes of Rutherford's and Bohr's imaginings.

  14. Early atomic models - from mechanical to quantum (1904-1913)

    NASA Astrophysics Data System (ADS)

    Baily, C.

    2013-01-01

    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J.J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond qualitative predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic α-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.

  15. A constitutive model for Sn-Pb solder.

    SciTech Connect

    Neilsen, Michael K.; Vianco, Paul Thomas; Boyce, Brad Lee

    2010-10-01

    A unified creep plasticity damage (UCPD) model for Sn-Pb solder is developed in this paper. Stephens and Frear (1999) studied the creep behavior of near-eutectic 60Sn-40Pb solder subjected to low strain rates and found that the inelastic (creep and plastic) strain rate could be accurately described using a hyperbolic Sine function of the applied effective stress. A recently developed high-rate servo-hydraulic method was employed to characterize the temperature and strain-rate dependent stress-strain behavior of eutectic Sn-Pb solder over a wide range of strain rates (10{sup -4} to 10{sup 2} per second). The steady state inelastic strain rate data from these latest experiments were also accurately captured by the hyperbolic Sine equation developed by Stephens and Frear. Thus, this equation was used as the basis for the UCPD model for Sn-Pb solder developed in this paper. Stephens, J.J., and Frear, D.R., Metallurgical and Materials Transactions A, Volume 30A, pp. 1301-1313, May 1999.

  16. Photochemical Modeling of the Distribution of C3H8 in the Atmosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Edgington, S. G.; Simon-Miller, A.; Jennings, D.; Bjoraker, G.; Romani, P.; Achterberg, R.; Orton, G.; Flasar, M.; Cassini CIRS Team

    2005-08-01

    Cassini's Composite Infrared Spectrometer (CIRS) has measured the abundance of C2H2 and C3H8 (Propane) at several latitudes in the Southern hemisphere. An increase of radiance with latitude towards the pole has been observed, possibly implying a corresponding increase of C3H8. In an effort explain the observed distribution of both species, it is important to model the creation, destruction, and transport of these chemical species. Furthermore, since both molecules have overlapping absorption features in the same spectral region near 748 cm-1, such modeling will aid in refining derived abundances and separating temperature effects. The photochemistry model used in Edgington et al. (1998, 1999, 2000) to model simultaneously hydrocarbons, ammonia, and phosphine is updated and expanded to include paths relevant to the creation of C3H8. Destruction occurs through photolysis, while transport would tend to spread C3H8 from its source regions. With a series of exercises in 1- and 2- dimensions, we explore the extent to which photolysis, vertical, and/or meridional transport impacts the distribution of C2H2 and C3H8 with latitude. Thermal profiles derived from CIRS observations versus latitude are used as they have an impact on numerous reaction rates. We then compare these results with abundances derived from observations taken with the CIRS instrument. Edgington, S.G., West, R.A., Friedson, A.J., Atreya, S.K., 2000. A 2-D photochemical model with meridional circulation. Bull. American. Astron. Soc., 32, 1013. Edgington, S.G., S.K. Atreya, L.M. Trafton, J.J. Caldwell, R.F. Beebe, A.A. Simon, and R.A. West, 1999. Ammonia and eddy mixing variations in the southern hemisphere of Jupiter from HST Faint Object Spectrograph Observations. Icarus, 142, 342-357. Edgington, S.G., S.K. Atreya, L.M. Trafton, J.J. Caldwell, R.F. Beebe, A.A. Simon, R.A. West, and C. Barnet, 1998. On the latitude variation of ammonia, acetylene, and phosphine altitude profiles on Jupiter from HST Faint

  17. Quantum phase transitions, frustration, and the Fermi surface in the Kondo lattice model

    NASA Astrophysics Data System (ADS)

    Eidelstein, Eitan; Moukouri, S.; Schiller, Avraham

    2011-07-01

    The quantum phase transition from a spin-Peierls phase with a small Fermi surface to a paramagnetic Luttinger-liquid phase with a large Fermi surface is studied in the framework of a one-dimensional Kondo-Heisenberg model that consists of an electron gas away from half filling, coupled to a spin-1/2 chain by Kondo interactions. The Kondo spins are further coupled to each other with isotropic nearest-neighbor and next-nearest-neighbor antiferromagnetic Heisenberg interactions which are tuned to the Majumdar-Ghosh point. Focusing on three-eighths filling and using the density-matrix renormalization-group (DMRG) method, we show that the zero-temperature transition between the phases with small and large Fermi momenta appears continuous, and involves a new intermediate phase where the Fermi surface is not well defined. The intermediate phase is spin gapped and has Kondo-spin correlations that show incommensurate modulations. Our results appear incompatible with the local picture for the quantum phase transition in heavy fermion compounds, which predicts an abrupt change in the size of the Fermi momentum.

  18. Ising-nematic order in the bilinear-biquadratic model for the iron pnictides

    NASA Astrophysics Data System (ADS)

    Bilbao Ergueta, Patricia; Nevidomskyy, Andriy H.

    2015-10-01

    Motivated by the recent inelastic neutron scattering (INS) measurements in the iron pnictides which show a strong anisotropy of spin excitations even above the magnetic transition temperature TN, we study the spin dynamics within the frustrated Heisenberg model with biquadratic spin-spin exchange interactions. Using the Dyson-Maleev (DM) representation, which proves appropriate for all temperature regimes, we find that the spin-spin dynamical structure factors are in excellent agreement with experiment, exhibiting breaking of the C4 symmetry even into the paramagnetic region TNHeisenberg spin interaction, we include the biquadratic coupling -K (Si.Sj) 2 and study its effect on the dynamical temperature range Tσ-TN of the Ising-nematic phase. We find that this range reduces dramatically when even small values of the interlayer exchange Jc and biquadratic coupling K are included. To supplement our analysis, we benchmark the results obtained using full decoupling in the DM method against those from different nonlinear spin-wave theories, including the recently developed generalized spin-wave theory (GSWT), and find good qualitative agreement among the different theoretical approaches as well as experiment for both the spin-wave dispersions and the dynamical structure factors.

  19. Joseph John Thomson's models of matter and radiation in the early 1890s.

    PubMed

    Bordoni, Stefano

    In the late nineteenth century, Joseph John Thomson moved away from Maxwell's specific theoretical models of matter and energy, even though he continued to rely on the general framework of Maxwell's electromagnetic theory. In his 1893 book, he accomplished the conceptual drift towards a discrete model for matter, electricity, and fields. In Thomson's model, energy was linked to tubes of force, in particular to the aether contained in them and surrounding them: the energy was the kinetic energy of aether, of both a rotational and translational kind. Starting from Maxwell's electromagnetic fields, namely stresses propagating through a continuous solid medium, Thomson arrived at a representation of fields as a sea of discrete units carrying energy and momentum. He tried to transform Maxwell's theory into a unified picture in which atomic models of matter stood beside atomic models of fields. In 1904 his interpretation of X-rays was based on the integration between two complementary features of electromagnetic radiation, the continuity and the discreteness, and on some kind of fibrous aether. In recent secondary literature, the problematic conceptual link between J. J. Thomson's theory and contemporary theories on electromagnetic radiation has been underestimated. On the contrary, in the first half of the twentieth century, some physicists inquired into that link, and a widespread debate emerged, misunderstandings included.

  20. Three-dimensional instantaneous dynamics modeling of present-day Aegean subduction

    NASA Astrophysics Data System (ADS)

    Glerum, Anne; Thieulot, Cedric; Pranger, Casper; van Hinsbergen, Douwe; Fraters, Menno; Spakman, Wim

    2015-04-01

    The Aegean region (Eastern Mediterranean) is exemplary of the interaction between crustal tectonics, plate motion, subduction and mantle flow: African subduction underneath the region has been continuous for at least the last 100 My, leading to about 2100-2500 km of subducted lithosphere residing in the mantle (van Hinsbergen et al., 2005). During this subduction, decoupled upper continental and oceanic crust accreted into a wedge of stacked nappes. In turn, these nappes have been significantly extended, predominantly during the last 25 My, due to the retreat of the African slab relative to Eurasia (van Hinsbergen and Schmid, 2012). As a first step to better understanding the coupling of the tectonic evolution of the crust and the underlying mantle dynamics, we are developing 3-D numerical models of the instantaneous dynamics of the present-day Aegean subduction system using the finite element code ASPECT (Kronbichler et al., 2012). The instantaneous models are set up with initial slab geometries derived from tomography and realistic plate boundary configurations and incorporate the major crustal weak zones of the overriding plate. Our modeling results in predictions of flow fields and stress, strain rate and rotation rate fields for the present-day tectonic setting of the Aegean region. By comparing our various model predictions to the widely available observations, such as focal mechanisms, GPS velocities and seismic anisotropy, we aim at an improved understanding of how mantle flow, subduction morphology and possibly slab segmentation, as well as the rheological behavior of the overriding plate, control present-day tectonic deformation. We expect to show preliminary results of this comparison. Kronbichler, M., Heister, T. and Bangerth, W. (2012), High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geophysical Journal International, 191, 12-29. Van Hinsbergen, D. J. J., Hafkenscheid, E., Spakman, W., Meulenkamp, J. E. and Wortel, R. (2005

  1. EPR pairing dynamics in Hubbard model with resonant U

    PubMed Central

    Zhang, X. Z.; Song, Z.

    2016-01-01

    We study the dynamics of the collision between two fermions in Hubbard model with on-site interaction strength U. The exact solution shows that the scattering matrix for two-wavepacket collision is separable into two independent parts, operating on spatial and spin degrees of freedom, respectively. The S-matrix for spin configuration is equivalent to that of Heisenberg-type pulsed interaction with the strength depending on U and relative group velocity vr. This can be applied to create distant EPR pair, through a collision process for two fermions with opposite spins in the case of |vr/U| = 1, without the need for temporal control and measurement process. Multiple collision process for many particles is also discussed. PMID:26728282

  2. Reduced Operator Approximation for Modelling Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Werpachowska, A.

    2015-06-01

    We present the reduced operator approximation: a simple, physically transparent and computationally efficient method of modelling open quantum systems. It employs the Heisenberg picture of the quantum dynamics, which allows us to focus on the system degrees of freedom in a natural and easy way. We describe different variants of the method, low- and high-order in the system-bath interaction operators, defining them for either general quantum harmonic oscillator baths or specialising them for independent baths with Lorentzian spectral densities. Its wide applicability is demonstrated on the examples of systems coupled to different baths (with varying system-bath interaction strength and bath memory length), and compared with the exact pseudomode and the popular quantum state diffusion approach. The method captures the decoherence of the system interacting with the bath, while conserving the total energy. Our results suggest that quantum coherence effects persist in open quantum systems for much longer times than previously thought.

  3. Early phenotypical diagnoses in Trembler-J mice model.

    PubMed

    Rosso, Gonzalo; Cal, Karina; Canclini, Lucía; Damián, Juan Pablo; Ruiz, Paul; Rodríguez, Héctor; Sotelo, José Roberto; Vazquez, Cristina; Kun, Alejandra

    2010-06-30

    Pmp-22 mutant mice (Trembler-J: B6.D2-Pmp22J>/J), are used as a model to study Charcot-Marie-Tooth type 1A (CMT1A). The identification of individual genotypes is a routine in the management of the Tr(J) colony. The earliest phenotypic manifestation of the pmp-22 mutation is just about 20th postnatal days, when pups begin to tremble. In this study, a rapid and simple diagnostic method was developed by modifying the Tail Suspension Test (MTST) to determine the difference between the Tr(J) and the wild-type mice phenotype. The animal behavioral phenotypes generated during the test were consistent with the specific genotype of each animal. The MTST allowed us to infer the heterozygous genotype in early postnatal stages, at 11 days after birth. The motor impairment of Tr(J) mice was also analyzed by a Fixed Bar Test (FBT), which revealed the disease evolution according to age. The main advantages of MTST are its objectivity, simplicity, and from the viewpoint of animal welfare, it is a non-invasive technique that combined with his rapidity show its very well applicability for use from an early age in these mice.

  4. Modeling Central Carbon Metabolic Processes in Soil Microbial Communities: Comparing Measured With Modeled

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Fairbanks, D.; Miller, E.; Salpas, E.; Hagerty, S.

    2013-12-01

    Understanding the mechanisms regulating C cycling is hindered by our inability to directly observe and measure the biochemical processes of glycolysis, pentose phosphate pathway, and TCA cycle in intact and complex microbial communities. Position-specific 13C labeled metabolic tracer probing is proposed as a new way to study microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the quantification of C fluxes through the central C metabolic network processes (Dijkstra et al 2011a,b). We determined the 13CO2 production from U-13C, 1-13C, 2-13C, 3-13C, 4-13C, 5-13C, and 6-13C labeled glucose and 1-13C and 2,3-13C pyruvate in parallel incubations in three soils along an elevation gradient. Qualitative and quantitative interpretation of the results indicate a high pentose phosphate pathway activity in soils. Agreement between modeled and measured CO2 production rates for the six C-atoms of 13C-labeled glucose indicate that the metabolic model used is appropriate for soil community processes, but that improvements can be made. These labeling and modeling techniques may improve our ability to analyze the biochemistry and (eco)physiology of intact microbial communities. Dijkstra, P., Blankinship, J.C., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011a. Probing C flux patterns of soil microbial metabolic networks using parallel position-specific tracer labeling. Soil Biology & Biochemistry 43, 126-132. Dijkstra, P., Dalder, J.J., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011b. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biology & Biochemistry 43, 1848-1857.

  5. Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys

    NASA Astrophysics Data System (ADS)

    Hinzke, D.; Atxitia, U.; Carva, K.; Nieves, P.; Chubykalo-Fesenko, O.; Oppeneer, P. M.; Nowak, U.

    2015-08-01

    A hierarchical multiscale approach to model the magnetization dynamics of ferromagnetic random alloys is presented. First-principles calculations of the Heisenberg exchange integrals are linked to atomistic spin models based upon the stochastic Landau-Lifshitz-Gilbert (LLG) equation to calculate temperature-dependent parameters (e.g., effective exchange interactions, damping parameters). These parameters are subsequently used in the Landau-Lifshitz-Bloch (LLB) model for multisublattice magnets to calculate numerically and analytically the ultrafast demagnetization times. The developed multiscale method is applied here to FeNi (permalloy) as well as to copper-doped FeNi alloys. We find that after an ultrafast heat pulse the Ni sublattice demagnetizes faster than the Fe sublattice for the here-studied FeNi-based alloys.

  6. Modeling of the magnetic free energy of self-diffusion in bcc Fe

    NASA Astrophysics Data System (ADS)

    Sandberg, N.; Chang, Z.; Messina, L.; Olsson, P.; Korzhavyi, P.

    2015-11-01

    A first-principles based approach to calculating self-diffusion rates in bcc Fe is discussed with particular focus on the magnetic free energy associated with diffusion activation. First, the enthalpies and entropies of vacancy formation and migration in ferromagnetic bcc Fe are calculated from standard density functional theory methods in combination with transition state theory. Next, the shift in diffusion activation energy when going from the ferromagnetic to the paramagnetic state is estimated by averaging over random spin states. Classical and quantum mechanical Monte Carlo simulations within the Heisenberg model are used to study the effect of spin disordering on the vacancy formation and migration free energy. Finally, a quasiempirical model of the magnetic contribution to the diffusion activation free energy is applied in order to connect the current first-principles results to experimental data. The importance of the zero-point magnon energy in modeling of diffusion in bcc Fe is stressed.

  7. Collective excitations and sum rules for the Hubbard model in the spin-density-wave regime

    NASA Astrophysics Data System (ADS)

    Monien, H.; Bedell, K. S.

    1992-02-01

    A variational estimate for the spin-wave velocity of the one-band Hubbard model on a square lattice in the spin-density-wave regime is studied. The estimate is given by the ratio of the f-sum rule to the static structure factor of the transverse-spin response function. The known results for the Heisenberg model are used to obtain results for those quantities in the large-U limit of the Hubbard model. The f-sum rule and static structure factor are calculated using the random-phase approximation (RPA). The spin-wave velocity calculated in the RPA, in the spin-density wave ground state, violates the variational bound.

  8. Modeling

    SciTech Connect

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  9. Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approximately Planck's constant/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only Planck's constant and c.

  10. A model of the ionosphere of Saturn's rings and its implications

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Johnson, R. E.; Tokar, R. L.; Ledvina, S. A.; Cravens, T. E.

    2006-04-01

    The detection of cold O2+ and O + ions in the vicinity of Saturn's rings during the Cassini Orbiter orbit insertion confirmed expectations that the rings would have a water product atmosphere and ionosphere. These observations prompted a new look at their origin and nature by Johnson et al. [Johnson, R.E., Luhmann, J.G., Tokar, R.L., Bouhram, M., Berthelier, J.J., Sittler, E.C., Cooper, J.F., Hill, T.W., Crary, F.J., Young, D.T., 2006. Icarus 180, 393-402], but also raised questions about the ionosphere's spatial distribution and fate that inspired the ionospheric model described in this report. Here a test particle model with some Monte Carlo aspects is used to consider the behavior of the O2+ and O + ions produced in the atmosphere of Saturn's rings. Key features of these calculations include the Johnson et al. description of the production of the ring atmosphere, and the effects of the offset dipole magnetic field of Saturn. The results suggest that the latter should produce some possibly observable asymmetries in both the inner ring ionosphere and the precipitation of ring ions into the atmosphere of Saturn. Further in situ observations of the rings are not currently planned, but remote sensing instruments on Cassini may provide future observational tests of the model.

  11. Diboson excesses in an anomaly free leptophobic left-right model

    NASA Astrophysics Data System (ADS)

    Das, Kasinath; Li, Tianjun; Nandi, S.; Rai, Santosh Kumar

    2016-01-01

    The resonant excesses around 2 TeV reported by the ATLAS Collaboration can be explained in the left-right model, and the tight constraints from lepton plus missing energy searches can be evaded if the S U (2 )R gauge symmetry is leptophobic. We, for the first time, propose an anomaly- free leptophobic left-right model with gauge symmetry S U (3 )C×S U (2 )L×S U (2 )R×U (1 )X , where the SM leptons are singlets under S U (2 )R . The gauge anomalies are cancelled by introducing extra vectorlike quarks. The mass of the Z' gauge boson, which cannot be leptophobic, is assumed to be around or above 2.5 TeV so that the constraint on the dilepton final state can be avoided. Moreover, we find that the W'→W Z channel cannot explain the ATLAS diboson excess due to the tension with the constraint on the W'→j j decay mode. We solve this problem by considering the mixings between the SM quarks and vectorlike quarks. We show explicitly that the ATLAS diboson excess can be explained in the viable parameter space of our model, which is consistent with all the current experimental constraints.

  12. Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates and phase diagram in an infinite-D approximation

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar; Analytis, James G.; Vishwanath, Ashvin

    2014-11-01

    Motivated by the recent synthesis of two insulating Li2IrO3 polymorphs, where Ir4 + Seff=1 /2 moments form 3D ("harmonic") honeycomb structures with threefold coordination, we study magnetic Hamiltonians on the resulting β -Li2IrO3 hyperhoneycomb lattice and γ -Li2IrO3 stripyhoneycomb lattice. Experimentally measured magnetic susceptibilities suggest that Kitaev interactions, predicted for the ideal 90∘ Ir-O-Ir bonds, are sizable in these materials. We first consider pure Kitaev interactions, which lead to an exactly soluble 3D quantum spin liquid (QSL) with emergent Majorana fermions and Z2 flux loops. Unlike 2D QSLs, the 3D QSL is stable to finite temperature, with Tc≈|K | /100 . On including Heisenberg couplings, exact solubility is lost. However, by noting that the shortest closed loop ℓ is relatively large in these structures, we construct an ℓ →∞ approximation by defining the model on the Bethe lattice. The phase diagram of the Kitaev-Heisenberg model on this lattice is obtained directly in the thermodynamic limit, using tensor network states and the infinite-system time-evolving-block-decimation (iTEBD) algorithm. Both magnetically ordered and gapped QSL phases are found, the latter being identified by an entanglement fingerprint.

  13. Domino model for geomagnetic field reversals.

    PubMed

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field. PMID:23410284

  14. Phase transitions and ordering structures of a model of a chiral helimagnet in three dimensions

    NASA Astrophysics Data System (ADS)

    Nishikawa, Yoshihiko; Hukushima, Koji

    2016-08-01

    Phase transitions in a classical Heisenberg spin model of a chiral helimagnet with the Dzyaloshinskii-Moriya interaction in three dimensions are numerically studied. By using the event-chain Monte Carlo algorithm recently developed for particle and continuous spin systems, we perform equilibrium Monte Carlo simulations for large systems up to about 106 spins. Without magnetic fields, the system undergoes a continuous phase transition with critical exponents of the three-dimensional XY model, and a uniaxial periodic helical structure emerges in the low-temperature region. In the presence of a magnetic field perpendicular to the axis of the helical structure, it is found that there exists a critical point on the temperature and magnetic-field phase diagram and that above the critical point the system exhibits a phase transition with strong divergence of the specific heat and the uniform magnetic susceptibility.

  15. Spin superfluidity in the anisotropic XY model in the triangular lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-07-01

    We use the SU(3) Schwinger's boson theory to study the spin transport properties in the two-dimensional anisotropic frustrated Heisenberg model in the triangular lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents an single-ion anisotropy. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = < tz† > = t . Our results show a metallic spin transport for ω > 0 and a superfluid spin transport in the limit of DC conductivity, ω → 0 , where σ(ω) tends to infinity in this limit of ω.

  16. Modeling complex phenomena: Multiple length and time scales in extended dynamical systems

    SciTech Connect

    Lomdahl, P.; Bishop, A.; Jensen, N.G.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Using nonlinear techniques and large-scale simulations, we have systematically studied meso-scale pattern formation and dynamics in nonlinear, nonequilibrium systems exhibiting topological excitations (dislocations, vortices, vortex lines, domain walls); dislocation generation from crack fronts in ductile materials; the smoothing of rough surfaces in solid-on-solid models; ordering and melting of moving flux lattices in three-dimensional Josephson junction arrays with external magnetic field, current, and disorder; filamentary and plastic vortex flow in disordered thin films superconductors; magnetic vortices in Heisenberg spin layers; and hierarchical twinning and tweed texture in elastic models.

  17. Fermi’s golden rule: its derivation and breakdown by an ideal model

    NASA Astrophysics Data System (ADS)

    Zhang, J. M.; Liu, Y.

    2016-11-01

    Fermi’s golden rule is of great importance in quantum dynamics. However, in many textbooks on quantum mechanics, its contents and limitations are obscured by the approximations and arguments in the derivation, which are inevitable because of the generic setting considered. Here we propose to introduce it by an ideal model, in which the quasi-continuum band consists of equaldistant levels extending from -∞ to +∞ , and each of them couples to the discrete level with the same strength. For this model, the transition probability in the first order perturbation approximation can be calculated analytically by invoking the Poisson summation formula. It turns out to be a piecewise linear function of time, demonstrating on the one hand the key features of Fermi’s golden rule, and on the other hand that the rule breaks down beyond the Heisenberg time, even when the first order perturbation approximation itself is still valid.

  18. Modelling the Epistemic Uncertainty in the Vulnerability Assessment Component of an Earthquake Loss Model

    NASA Astrophysics Data System (ADS)

    Crowley, H.; Modica, A.

    2009-04-01

    . References Crowley, H., Bommer, J.J., Pinho, R., and Bird, J. (2005) "The impact of epistemic uncertainty on an earthquake loss model," Earthquake Engineering & Structural Dynamics, 34(14), 1653-1685. Grossi, P. (2000) "Quantifying the uncertainty in seismic risk and loss estimation," Proceedings of the Second EuroConference on Global Change and Catastrophe Risk Management: Earthquake Risks in Europe, Austria. Molina, S. and Lindholm, C. (2005) "A logic tree extension to the capacity spectrum method developed to estimate seismic risk in Oslo, Norway," Journal of Earthquake Engineering, Vol. 9, No. 6, pp. 877-897.

  19. Terrorism/Criminalogy/Sociology via Magnetism-Hamiltonian ``Models''?!: Black Swans; What Secrets Lie Buried in Magnetism?; ``Magnetism Will Conquer the Universe?''(Charles Middleton, aka ``His Imperial Majesty The Emperior Ming `The Merciless!!!''

    NASA Astrophysics Data System (ADS)

    Carrott, Anthony; Siegel, Edward Carl-Ludwig; Hoover, John-Edgar; Ness, Elliott

    2013-03-01

    Terrorism/Criminalogy//Sociology : non-Linear applied-mathematician (``nose-to-the grindstone / ``gearheadism'') ''modelers'': Worden,, Short, ...criminologists/counter-terrorists/sociologists confront [SIAM Conf. on Nonlinearity, Seattle(12); Canadian Sociology Conf,. Burnaby(12)]. ``The `Sins' of the Fathers Visited Upon the Sons'': Zeno vs Ising vs Heisenberg vs Stoner vs Hubbard vs Siegel ''SODHM''(But NO Y!!!) vs ...??? Magntism and it turn are themselves confronted BY MAGNETISM,via relatively magnetism/metal-insulator conductivity / percolation-phase-transitions critical-phenomena -illiterate non-linear applied-mathematician (nose-to-the-grindstone/ ``gearheadism'')''modelers''. What Secrets Lie Buried in Magnetism?; ``Magnetism Will Conquer the Universe!!!''[Charles Middleton, aka ``His Imperial Majesty The Emperior Ming `The Merciless!!!']'' magnetism-Hamiltonian phase-transitions percolation-``models''!: Zeno(~2350 BCE) to Peter the Pilgrim(1150) to Gilbert(1600) to Faraday(1815-1820) to Tate (1870-1880) to Ewing(1882) hysteresis to Barkhausen(1885) to Curie(1895)-Weiss(1895) to Ising-Lenz(r-space/Localized-Scalar/ Discrete/1911) to Heisenberg(r-space/localized-vector/discrete/1927) to Priesich(1935) to Stoner (electron/k-space/ itinerant-vector/discrete/39) to Stoner-Wohlfarth (technical-magnetism hysteresis /r-space/ itinerant-vector/ discrete/48) to Hubbard-Longuet-Higgins (k-space versus r-space/

  20. Spectroscopic and X-ray Scattering Models in SPECT3D

    NASA Astrophysics Data System (ADS)

    Golovkin, Igor; Gregori, Gianluca; Macfarlane, Joseph; Hall, Iain; Woodruff, Pamela; Bailey, James; Harding, Eric; Ao, Tom

    2012-10-01

    Spectrally resolved X-ray scattering has become a very effective method for diagnosing the electron temperatures, densities, and average ionization of warm dense matter. We present a newly implemented capability to compute scattering from realistic experiment configurations, including the influence of plasma non-uniformities and collecting scattered x-rays from a range of angles. The method is based on a formalism developed by G. Gregori [1]. The x-ray scattering modeling has been added to the multi-dimensional collisional-radiative spectral and imaging package SPECT3D [2]. Ability to compute emissivity and attenuation of scattered photons within a multi-dimensional plasma with non-uniform temperature and density distributions adds major new functionality to existing models. We will discuss the implementation details and demonstrate results relevant to ongoing experimental investigations at Sandia National Laboratories.[4pt] [1] G. Gregori, S. H. Glenzer, W. Rozmus, R. W. Lee, and O. L. Landen, Phys. Rev. E 67, 026412 (2003).[0pt] [2] J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, High Energy Density Phys., Vol. 3, p. 181-190 (2007).