Sample records for j1-j2 heisenberg model

  1. Multipartite quantum correlations in the extended J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Batle, J.; Tarawneh, O.; Nagata, Koji; Nakamura, Tadao; Abdalla, S.; Farouk, Ahmed

    2017-11-01

    Multipartite entanglement and the maximum violation of Bell inequalities are studied in finite clusters of spins in an extended J1-J2 Heisenberg model at zero temperature. The ensuing highly frustrated states will unveil a rich structure for different values of the corresponding spin-spin interaction strengths. The interplay between nearest-neighbors, next-nearest neighbors and further couplings will be explored using multipartite correlations. The model is relevant to certain quantum annealing computation architectures where an all-to-all connectivity is considered.

  2. Dynamical structure factor of the J1-J2 Heisenberg model in one dimension: The variational Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Ferrari, Francesco; Parola, Alberto; Sorella, Sandro; Becca, Federico

    2018-06-01

    The dynamical spin structure factor is computed within a variational framework to study the one-dimensional J1-J2 Heisenberg model. Starting from Gutzwiller-projected fermionic wave functions, the low-energy spectrum is constructed from two-spinon excitations. The direct comparison with Lanczos calculations on small clusters demonstrates the excellent description of both gapless and gapped (dimerized) phases, including incommensurate structures for J2/J1>0.5 . Calculations on large clusters show how the intensity evolves when increasing the frustrating ratio and give an unprecedented accurate characterization of the dynamical properties of (nonintegrable) frustrated spin models.

  3. U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Haghshenas, R.; Sheng, D. N.

    2018-05-01

    We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1<0.53 . For 0.53 <J2/J1<0.61 , a nonmagnetic columnar valence bond solid (VBS) state is established as observed by the pattern of local bond energy. The divergent behavior of correlation length ξ ˜D1.2 and vanishing order parameters are consistent with a deconfined Néel-to-VBS transition at J2c1/J1=0.530 (5 ) , where estimated critical anomalous exponents are ηs˜0.6 and ηd˜1.9 for spin and dimer correlations, respectively. We show that the associated VBS order parameter monotonically increases with J2/J1 and finally a first-order quantum phase transition takes place at J2c2/J1=0.610 (2 ) to the conventional Stripe phase. We compare our results with earlier DMRG and PEPS studies and suggest future directions for resolving remaining issues.

  4. Hierarchical mean-field approach to the J1-J2 Heisenberg model on a square lattice

    NASA Astrophysics Data System (ADS)

    Isaev, L.; Ortiz, G.; Dukelsky, J.

    2009-01-01

    We study the quantum phase diagram and excitation spectrum of the frustrated J1-J2 spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying relevant degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry-preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers, and other degrees of freedom, and show that only the symmetric plaquette covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) plaquette crystal, connected with the neighboring Néel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the Néel and columnar phases. Our results suggest that the quantum phase transition between Néel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.

  5. Hierarchical mean-field approach to the J1-J2 Heisenberg model on a square lattice

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Ortiz, Gerardo; Dukelsky, Jorge

    2009-03-01

    We study the quantum phase diagram and excitation spectrum of the frustrated J1-J2 spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying relevant degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the symmetric plaquette covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) plaquette crystal, connected with the neighbouring N'eel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the N'eel and columnar phases. Our results suggest that the quantum phase transition between N'eel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.

  6. Modified spin-wave theory with ordering vector optimization: spatially anisotropic triangular lattice and J1J2J3 model with Heisenberg interactions

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp; Roscilde, Tommaso; Murg, Valentin; Cirac, J. Ignacio; Schmied, Roman

    2011-07-01

    We study the ground-state phases of the S=1/2 Heisenberg quantum antiferromagnet on the spatially anisotropic triangular lattice (SATL) and on the square lattice with up to next-next-nearest-neighbor coupling (the J1J2J3 model), making use of Takahashi's modified spin-wave (MSW) theory supplemented by ordering vector optimization. We compare the MSW results with exact diagonalization and projected-entangled-pair-states calculations, demonstrating their qualitative and quantitative reliability. We find that the MSW theory correctly accounts for strong quantum effects on the ordering vector of the magnetic phases of the models under investigation: in particular, collinear magnetic order is promoted at the expense of non-collinear (spiral) order, and several spiral states that are stable at the classical level disappear from the quantum phase diagram. Moreover, collinear states and non-collinear ones are never connected continuously, but they are separated by parameter regions in which the MSW theory breaks down, signaling the possible appearance of a non-magnetic ground state. In the case of the SATL, a large breakdown region appears also for weak couplings between the chains composing the lattice, suggesting the possible occurrence of a large non-magnetic region continuously connected with the spin-liquid state of the uncoupled chains. This shows that the MSW theory is—despite its apparent simplicity—a versatile tool for finding candidate regions in the case of spin-liquid phases, which are among prime targets for relevant quantum simulations.

  7. Quantum phase diagram of distorted J 1 - J 2 Heisenberg S  =  1/2 antiferromagnet in honeycomb lattice: a modified spin wave study

    NASA Astrophysics Data System (ADS)

    Ghorbani, Elaheh; Shahbazi, Farhad; Mosadeq, Hamid

    2016-10-01

    Using the modified spin wave method, we study the {{J}1}-{{J}2} Heisenberg model with first and second neighbor antiferromagnetic exchange interactions. For a symmetric S  =  1/2 model, with the same couplings for all the equivalent neighbors, we find three phases in terms of the frustration parameter \\barα={{J}2}/{{J}1} : (1) a commensurate collinear ordering with staggered magnetization (Néel.I state) for 0≤slant \\barα≲ 0.207 , (2) a magnetically gapped disordered state for 0.207≲ \\barα≲ 0.369 , preserving all the symmetries of the Hamiltonian and lattice, which by definition is a quantum spin liquid (QSL) state and (3) a commensurate collinear ordering in which two out of the three nearest neighbor magnetizations are antiparallel and the remaining pair are parallel (Néel.II state), for 0.396≲ \\barα≤slant 1 . We also explore the phase diagram of a distorted {{J}1}-{{J}2} model with S  =  1/2. Distortion is introduced as an inequality of one nearest neighbor coupling with the other two. This yields a richer phase diagram by the appearance of a new gapped QSL, a gapless QSL and also a valence bond crystal phase in addition to the previous three phases found for the undistorted model.

  8. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  9. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  10. Strong anisotropy within a Heisenberg model in the J eff = 1 2 insulating state of Sr 2 Ir 0.8 Ru 0.2 O 4

    DOE PAGES

    Calder, Stuart A.; Kim, J. W.; Taylor, Alice E.; ...

    2016-12-28

    The dispersive magnetic excitations in Sr 2IrO 4 have previously been well described within an isospin-1/2 Heisenberg model on a square lattice that revealed parallels with La 2CuO 4. In this paper, we investigate the inelastic spectra of Sr 2Ir 0.8Ru 0.2O 4 with resonant inelastic x-ray scattering (RIXS) at the Ir L 3 edge. The results are well described using linear spin-wave theory within a similar Heisenberg model applicable to Sr 2IrO 4; however, the disorder induced by the substitution of 20% Ir 4+ ions for Ru 4+ removes longer range exchange interactions. A large spin gap (40 meV)more » is measured indicating strong anisotropy from spin-orbit coupling that is manifest due to the altered magnetic structure in Sr 2Ir 0.8Ru 0.2O 4 with c-axis aligned moments compared to the basal plane moments in the parent. Finally, collectively the results indicate the robustness of a Heisenberg model description even when the magnetic structure is altered and the J eff = 1/2 moments are diluted.« less

  11. A tensor product state approach to spin-1/2 square J1-J2 antiferromagnetic Heisenberg model: evidence for deconfined quantum criticality

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang

    We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.

  12. Investigation of possible phase transition of the frustrated spin-1/2 J 1-J 2-J 3 model on the square lattice.

    PubMed

    Hu, Ai-Yuan; Wang, Huai-Yu

    2017-09-05

    The frustrated spin-1/2 J 1 -J 2 -J 3 antiferromagnet with exchange anisotropy on the two-dimensional square lattice is investigated. The exchange anisotropy is presented by η with 0 ≤ η < 1. The effects of the J 1 , J 2 , J 3 and anisotropy on the possible phase transition of the Néel state and collinear state are studied comprehensively. Our results indicate that for J 3  > 0 there are upper limits [Formula: see text] and η c values. When 0 < J 3  ≤ [Formula: see text] and 0 ≤ η ≤ η c , the Néel and collinear states have the same order-disorder transition point at J 2  = J 1 /2. Nevertheless, when the J 3 and η values beyond the upper limits, it is a paramagnetic phase at J 2  = J 1 /2. For J 3  < 0, in the case of 0 ≤ η < 1, the two states always have the same critical temperature as long as J 2  = J 1 /2. Therefore, for J 2  = J 1 /2, under such parameters, a first-order phase transition between the two states for these two cases below the critical temperatures may occur. When J 2  ≠ J 1 /2, the Néel and collinear states may also exist, while they have different critical temperatures. When J 2  > J 1 /2, a first-order phase transition between the two states may also occur. However, for J 2  < J 1 /2, the Néel state is always more stable than the collinear state.

  13. Spinon excitation spectra of the J1-J2 chain from analytical calculations in the dimer basis and exact diagonalization

    NASA Astrophysics Data System (ADS)

    Lavarélo, Arthur; Roux, Guillaume

    2014-10-01

    The excitation spectrum of the frustrated spin-1/2 Heisenberg chain is reexamined using variational and exact diagonalization calculations. We show that the overlap matrix of the short-range resonating valence bond states basis can be inverted which yields tractable equations for single and two spinons excitations. Older results are recovered and new ones, such as the bond-state dispersion relation and its size with momentum at the Majumdar-Ghosh point are found. In particular, this approach yields a gap opening at J 2 = 0.25 J 1 and an onset of incommensurability in the dispersion relation at J 2 = 9/17 J 1 as in [S. Brehmer et al., J. Phys.: Condens. Matter 10, 1103 (1998)]. These analytical results provide a good support for the understanding of exact diagonalization spectra, assuming an independent spinons picture.

  14. J1-J2 square lattice antiferromagnetism in the orbitally quenched insulator MoOPO4

    NASA Astrophysics Data System (ADS)

    Yang, L.; Jeong, M.; Babkevich, P.; Katukuri, V. M.; Náfrádi, B.; Shaik, N. E.; Magrez, A.; Berger, H.; Schefer, J.; Ressouche, E.; Kriener, M.; Živković, I.; Yazyev, O. V.; Forró, L.; Rønnow, H. M.

    2017-07-01

    We report magnetic and thermodynamic properties of a 4 d1 (Mo5 +) magnetic insulator MoOPO4 single crystal, which realizes a J1-J2 Heisenberg spin-1 /2 model on a stacked square lattice. The specific-heat measurements show a magnetic transition at 16 K which is also confirmed by magnetic susceptibility, ESR, and neutron diffraction measurements. Magnetic entropy deduced from the specific heat corresponds to a two-level degree of freedom per Mo5 + ion, and the effective moment from the susceptibility corresponds to the spin-only value. Using ab initio quantum chemistry calculations, we demonstrate that the Mo5 + ion hosts a purely spin-1 /2 magnetic moment, indicating negligible effects of spin-orbit interaction. The quenched orbital moments originate from the large displacement of Mo ions inside the MoO6 octahedra along the apical direction. The ground state is shown by neutron diffraction to support a collinear Néel-type magnetic order, and a spin-flop transition is observed around an applied magnetic field of 3.5 T. The magnetic phase diagram is reproduced by a mean-field calculation assuming a small easy-axis anisotropy in the exchange interactions. Our results suggest 4 d molybdates as an alternative playground to search for model quantum magnets.

  15. Phase diagram of the frustrated J 1J 2 transverse field Ising model on the square lattice

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Langari, A.

    2018-03-01

    We study the zero-temperature phase diagram of transverse field Ising model on the J 1J 2 square lattice. In zero magnetic field, the model has a classical Néel phase for J 2/J 1 < 0.5 and an antiferromagnetic collinear phase for J 2/J 1 > 0.5. We incorporate harmonic fluctuations by using linear spin wave theory (LSWT) with single spin flip excitations above a magnetic order background and obtain the phase diagram of the model in this approximation. We find that harmonic quantum fluctuations of LSWT fail to lift the large degeneracy at J 2/J 1 = 0.5 and exhibit some inconsistent regions on the phase diagram. However, we show that anharmonic fluctuations of cluster operator approach (COA) resolve the inconsistency of the LSWT, which reveals a string-valence bond solid ordered phase for the highly frustrated region.

  16. Crystal structure and magnetic properties of cyclohexylammonium trichlorocuprate(II): A quasi 1d Heisenberg S = {1}/{2} ferromagnet

    NASA Astrophysics Data System (ADS)

    Groenendijk, H. A.; Blöte, H. W. J.; van Duyneveldt, A. J.; Gaura, R. M.; Landee, C. P.; Willett, R. D.

    1981-06-01

    The crystal structure of [C 6H 11NH 3] CuCl 3, cyclohexylammonium trichlorocuprate(II) (CHAC), is orthorhombic, space group P2 12 12 1 with a = 19.441(5), b = 8.549(2) and c = 6.190(1) Å. The salt contains chains of CuCl -3 ions along the c axis. From magnetization and susceptibility measurements it is found that the compound behaves as a one-dimensional S = {1}/{2} Heisenberg ferromagnet with J1/ k = 70(2) K. Antiferromagnetic ordering with a weak ferromagnetic moment along the a axis occurs below T c = 2.18(2) K. From the metamagnetic phase diagram the interchain interactions are derived using mean field theory: z2J2/ z1J1 = 1.1 × 10 -3 and z3J3/ z1J1 = -1.0 × 10 -4. Also a small anisotropy ( J|/ J⊥ ≈ 0.01) is found in the intrachain interaction. The measurements indicate that CHAC is one of the best approximations to the 1d Heisenberg ferromagnet known to date.

  17. Heisenberg necklace model in a magnetic field

    DOE PAGES

    Tsvelik, A. M.; Zaliznyak, I. A.

    2016-08-26

    Here, we study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO 2 and Sr 2CuO 3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J. We also consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I=3/2) present on the samemore » sites. We find that the resulting necklace model has a characteristic energy scale, Λ~J 1/3(γI) 2/3, at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. Furthermore, this energy scale is insensitive to a magnetic field B. For μBB>Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, 2√+1.« less

  18. Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1 /2 Heisenberg Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Qin, Yan Qi; Capponi, Sylvain; Chesi, Stefano; Meng, Zi Yang; Sandvik, Anders W.

    2017-10-01

    We study the spin-excitation spectrum (dynamic structure factor) of the spin-1 /2 square-lattice Heisenberg antiferromagnet and an extended model (the J -Q model) including four-spin interactions Q in addition to the Heisenberg exchange J . Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ -function) contribution to the structure factor expected from spin-wave (magnon) excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu (DCOO )2.4 D2O , where a broad spectral-weight continuum at wave vector q =(π ,0 ) was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π ,0 ) show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q =(π /2 ,π /2 ) (as also seen experimentally). We further investigate the reasons for the small magnon weight at (π ,0 ) and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J -Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π ,0 ) in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π ,0 )-magnon pole in the Heisenberg model and its depletion in the J -Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle

  19. Spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice

    NASA Astrophysics Data System (ADS)

    Starykh, Oleg

    2007-03-01

    The Triangular lattice spin-1/2 Heisenberg AntiFerromagnet (TAF) is a prototypical model of frustrated quantum magnetism. While it is believed to exhibit long-range order in the isotropic limit, changes such as spatial anisotropy can alter the delicate balance amongst competing ground states. I will describe the static and dynamic properties of the spatially anisotropic TAF, with inter-chain diagonal exchange J' much weaker than the intrachain exchange J. Treating J' as a perturbation of decoupled Heisenberg spin-1/2 chains, I find that the ground state is spontaneously dimerized in a four-fold degenerate zig-zag pattern. This dimerization instability is driven by quantum fluctuations, which are dramatically enhanced here by the frustrated nature of inter-chain exchange. A magnetic field partially relieves frustration, by canting the spins along the field direction, and causes a quantum phase transition into a magnetically-ordered spin-density-wave phase. This is followed by cone and, finally, fully polarized (saturated) phases, as a function of increasing magnetic field. I show that many of these features are in fact observed in experiments on the celebrated material Cs2CuCl4 (J'/J =1/3). I will also discuss the significant modification of the phase diagram by symmetry-breaking anisotropic Dzyaloshinskii-Moriya (DM) interactions, present in this interesting magnet. In addition to static and thermodynamic properties, the proposed ``one-dimensional'' approach offers a compelling explanation of the unusual experimentally measured dynamical structure factor of Cs2CuCl4 in terms of descendants of one-dimensional spinons. Quite generally, I find characteristic features of a momentum-dependent spinon bound state and a dispersing incoherent excitation in the structure factor, in agreement with experiments.

  20. Exact expression of the t-J model in terms of local spin and fermionic holon operators

    NASA Astrophysics Data System (ADS)

    Wang, Y. R.; Rice, M. J.

    1994-02-01

    An exact expression for the Hamiltonian H of the t-J model in terms of local spin (Si) and fermionic holon (ei) operators is derived which requires no constraint between these operators. The result for the Hamiltonian H is H=-t tsumijeie°j(1/2+2Si.Sj)+(J/2)t smij(1-e°iei)(Si.Sj-1/4)(1-e°je The number of electrons at site i is given by ni=1-e°iei, and the true spin operator S~i, is related to the local spin operator by S~i=(1-e°iei)Si. The expression correctly produces the Nagaoka theorem in the limit J-->0, and preserves the time-reversal symmetry of the original model. For a bipartite lattice, H describes a competition between ferromagnetism, favored by the hopping term, and antiferromagnetism, favored by the Heisenberg term.

  1. Magnetic properties of a quasi-two-dimensional S =1/2 Heisenberg antiferromagnet with distorted square lattice

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hironori; Tamekuni, Yusuke; Iwasaki, Yoshiki; Otsuka, Rei; Hosokoshi, Yuko; Kida, Takanori; Hagiwara, Masayuki

    2017-06-01

    We successfully synthesize single crystals of the verdazyl radical α -2 ,3 ,5 -Cl3 -V. Ab initio molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α =J2/J1≃0.56 ), form an S =1 /2 distorted square lattice. We explain the magnetic properties based on the S =1 /2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the S =1 /2 square lattice Heisenberg antiferromagnet.

  2. Numerical study of incommensurate and decoupled phases of spin-1/2 chains with isotropic exchange J 1, J 2 between first and second neighbors

    NASA Astrophysics Data System (ADS)

    Soos, Zoltán G.; Parvej, Aslam; Kumar, Manoranjan

    2016-05-01

    The spin-1/2 chain with isotropic exchange J 1, J 2  >  0 between first and second neighbors is frustrated for either sign of J 1 and has a singlet ground state (GS) for J 1/J 2  ⩾  -4. Its rich quantum phase diagram supports gapless, gapped, commensurate (C), incommensurate (IC) and other phases. Critical points J 1/J 2 are evaluated using exact diagonalization and density matrix renormalization group calculations. The wave vector q G of spin correlations is related to GS degeneracy and obtained as the peak of the spin structure factor S(q). Variable q G indicates IC phases in two J 1/J 2 intervals, [-4, -  1.24] and [0.44, 2], and a C-IC point at J 1/J 2  =  2. The decoupled C phase in [-1.24, 0.44] has constant q G  =  π/2, nondegenerate GS, and a lowest triplet state with broken spin density on sublattices of odd and even numbered sites. The lowest triplet and singlet excitations, E m and E σ , are degenerate in finite systems at specific frustration J 1/J 2. Level crossing extrapolates in the thermodynamic limit to the same critical points as q G. The S(q) peak diverges at q G  =  π in the gapless phase with J 1/J 2  >  4.148 and quasi-long-range order (QLRO(π)). S(q) diverges at  ±π/2 in the decoupled phase with QLRO(π/2), but is finite in gapped phases with finite-range correlations. Numerical results and field theory agree at small J 2/J 1 but disagree for the decoupled phase with weak exchange J 1 between sublattices. Two related models are summarized: one has an exact gapless decoupled phase with QLRO(π/2) and no IC phases; the other has a single IC phase without a decoupled phase in between.

  3. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour.

    PubMed

    Mathy, Nathalie; Hébert, Agnès; Mervelet, Peggy; Bénard, Lionel; Dorléans, Audrey; Li de la Sierra-Gallay, Inés; Noirot, Philippe; Putzer, Harald; Condon, Ciarán

    2010-01-01

    Ribonucleases J1 and J2 are recently discovered enzymes with dual 5'-to-3' exoribonucleolytic/endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently. Here we present evidence that RNases J1 and J2 form a complex that is likely to be the predominant form of these enzymes in wild-type cells. While both RNase J1 and the RNase J1/J2 complex have robust 5'-to-3' exoribonuclease activity in vitro, RNase J2 has at least two orders of magnitude weaker exonuclease activity, providing a possible explanation for why RNase J1 is essential. The association of the two proteins also has an effect on the endoribonucleolytic properties of RNases J1 and J2. While the individual enzymes have similar endonucleolytic cleavage activities and specificities, as a complex they behave synergistically to alter cleavage site preference and to increase cleavage efficiency at specific sites. These observations dramatically change our perception of how these ribonucleases function and provide an interesting example of enzyme subfunctionalization after gene duplication.

  4. Rotational symmetry breaking toward a string-valence bond solid phase in frustrated J1 -J2 transverse field Ising model

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Langari, A.

    2018-06-01

    We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1 -J2 Ising model on the square lattice, at the limit J2 /J1 = 0.5 . We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a string-VBS state, which breaks lattice rotational symmetry with only two fold degeneracy. The tendency toward the broken symmetry state is justified by numerical exact diagonalization. Moreover, we introduce a map to find the relation between the present model on the checkerboard and square lattices.

  5. Control of Expression of the RNases J1 and J2 in Bacillus subtilis

    PubMed Central

    Jamalli, Ailar; Hébert, Agnès; Zig, Léna

    2014-01-01

    In Bacillus subtilis, the dual activity 5′ exo- and endoribonucleases J1 and J2 are important players in mRNA and stable RNA maturation and degradation. Recent work has improved our understanding of their structure and mechanism of action and identified numerous RNA substrates. However, almost nothing is known about the expression of these enzymes. Here, we have identified the transcriptional and translational signals that control the expression of the rnjA (RNase J1) and rnjB (RNase J2) genes. While the rnjB gene is transcribed constitutively from a sigma A promoter, optimal expression of RNase J1 requires cotranscription and cotranslation with the upstream ykzG gene, encoding a protein of unknown function. In the absence of coupled translation, RNase J1 expression is decreased more than 5-fold. Transcription of the ykzG operon initiates at a sigma A promoter with a noncanonical −35 box that is required for optimal transcription. Biosynthesis of RNase J1 is autocontrolled within a small range (1.4-fold) and also slightly stimulated (1.4-fold) in the absence of RNase J2. These controls are weak but might be useful to maintain the overall RNase J level and possibly also equimolar amounts of the two nucleases in the cell that primarily act as a heterodimer in vivo. PMID:24187087

  6. One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.

    2017-11-01

    We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.

  7. Quantum phases of dimerized and frustrated Heisenberg spin chains with s = 1/2, 1 and 3/2: an entanglement entropy and fidelity study.

    PubMed

    Goli, V M L Durga Prasad; Sahoo, Shaon; Ramasesha, S; Sen, Diptiman

    2013-03-27

    We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J2) and dimerization (δ). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J2-δ plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.

  8. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j').

    PubMed

    Weeks, David E; Niday, Thomas A; Yang, Sang H

    2006-10-28

    Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.

  9. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  10. Role of quantum fluctuations on spin liquids and ordered phases in the Heisenberg model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Merino, Jaime; Ralko, Arnaud

    2018-05-01

    Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1 /2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3) plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansätze. For S =1 /2 , we find a quantum spin liquid (QSL) stabilized between the Néel, spiral, and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1 /2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasiclassical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D , to various S =1 honeycomb compounds, we have analyzed the destruction of magnetic order based on an SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S =1 /2 to the S =1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S =1 /2 by S =1 localized moments in certain honeycomb compounds.

  11. A satellite relative motion model including J_2 and J_3 via Vinti's intermediary

    NASA Astrophysics Data System (ADS)

    Biria, Ashley D.; Russell, Ryan P.

    2018-03-01

    Vinti's potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti's spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating J_2, J_3, and generally a partial J_4 in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti's solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti's solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti's solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the J_2 through J_5 terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim-Alfriend state transition matrix, which considers the J_2 perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.

  12. Renormalization group analysis of dipolar Heisenberg model on square lattice

    NASA Astrophysics Data System (ADS)

    Keleş, Ahmet; Zhao, Erhai

    2018-06-01

    We present a detailed functional renormalization group analysis of spin-1/2 dipolar Heisenberg model on square lattice. This model is similar to the well-known J1-J2 model and describes the pseudospin degrees of freedom of polar molecules confined in deep optical lattice with long-range anisotropic dipole-dipole interactions. Previous study of this model based on tensor network ansatz indicates a paramagnetic ground state for certain dipole tilting angles which can be tuned in experiments to control the exchange couplings. The tensor ansatz formulated on a small cluster unit cell is inadequate to describe the spiral order, and therefore the phase diagram at high azimuthal tilting angles remains undetermined. Here, we obtain the full phase diagram of the model from numerical pseudofermion functional renormalization group calculations. We show that an extended quantum paramagnetic phase is realized between the Néel and stripe/spiral phases. In this region, the spin susceptibility flows smoothly down to the lowest numerical renormalization group scales with no sign of divergence or breakdown of the flow, in sharp contrast to the flow towards the long-range-ordered phases. Our results provide further evidence that the dipolar Heisenberg model is a fertile ground for quantum spin liquids.

  13. The solar gravitational figure: J2 and J4

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Hawkins, G. W.

    1980-01-01

    The theory of the solar gravitational figure is derived including the effects of differential rotation. It is shown that J sub 4 is smaller than J sub 2 by a factor of about 10 rather than being of order J sub 2 squared as would be expected for rigid rotation. The dependence of both J sub 2 and J sub 4 on envelope mass is given. High order p-mode oscillation frequencies provide a constraint on solar structure which limits the range in envelope mass to the range 0.01 M sub E/solar mass 0.04. For an assumed rotation law in which the surface pattern of differential rotation extends uniformly throughout the convective envelope, this structural constraint limits the ranges of J sub 2 and J sub 4 in units of 10 to the -8th power to 10 J sub 2 15 and 0.6 -J sub 4 1.5. Deviations from these ranges would imply that the rotation law is not constant with depth and would provide a measure of this rotation law.

  14. Incommensurate phase of a triangular frustrated Heisenberg model studied via Schwinger-boson mean-field theory

    NASA Astrophysics Data System (ADS)

    Li, Peng; Su, Haibin; Dong, Hui-Ning; Shen, Shun-Qing

    2009-08-01

    We study a triangular frustrated antiferromagnetic Heisenberg model with nearest-neighbor interactions J1 and third-nearest-neighbor interactions J3 by means of Schwinger-boson mean-field theory. By setting an antiferromagnetic J3 and varying J1 from positive to negative values, we disclose the low-temperature features of its interesting incommensurate phase. The gapless dispersion of quasiparticles leads to the intrinsic T2 law of specific heat. The magnetic susceptibility is linear in temperature. The local magnetization is significantly reduced by quantum fluctuations. We address possible relevance of these results to the low-temperature properties of NiGa2S4. From a careful analysis of the incommensurate spin wavevector, the interaction parameters are estimated as J1≈-3.8755 K and J3≈14.0628 K, in order to account for the experimental data.

  15. Life or death by NFκB, Losartan promotes survival in dy2J/dy2J mouse of MDC1A

    PubMed Central

    Elbaz, M; Yanay, N; Laban, S; Rabie, M; Mitrani-Rosenbaum, S; Nevo, Y

    2015-01-01

    Inflammation and fibrosis are well-defined mechanisms involved in the pathogenesis of the incurable Laminin α2-deficient congenital muscular dystrophy (MDC1A), while apoptosis mechanism is barely discussed. Our previous study showed treatment with Losartan, an angiotensin II type I receptor antagonist, improved muscle strength and reduced fibrosis through transforming growth factor beta (TGF-β) and mitogen-activated protein kinases (MAPK) signaling inhibition in the dy2J/dy2J mouse model of MDC1A. Here we show for the first time that Losartan treatment up-regulates and shifts the nuclear factor kappa B (NFκB) signaling pathway to favor survival versus apoptosis/damage in this animal model. Losartan treatment was associated with significantly increased serum tumor necrosis factor alpha (TNF-α) level, p65 nuclei accumulation, and decreased muscle IκB-β protein level, indicating NFκB activation. Moreover, NFκB anti-apoptotic target genes TNF receptor-associated factor 1 (TRAF1), TNF receptor-associated factor 2 (TRAF2), cellular inhibitor of apoptosis (cIAP2), and Ferritin heavy chain (FTH1) were increased following Losartan treatment. Losartan induced protein expression toward a pro-survival profile as BCL-2 expression levels were increased and Caspase-3 expression levels were decreased. Muscle apoptosis reduction was further confirmed using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) assay. Thus, along with TGF-β and MAPK signaling, NFκB serves as an important regulatory pathway which following Losartan treatment promotes survival in the dy2J/dy2J mouse model of MDC1A. PMID:25766329

  16. The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds. V. The Sh2-235 Cloud in CO J=2-1, 13CO J=2-1, and CO J=3-2

    NASA Astrophysics Data System (ADS)

    Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta

    2016-09-01

    We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.

  17. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α < α1ac = 0 . 46(1) and α > α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  18. J-2X Turbopump Cavitation Diagnostics

    NASA Technical Reports Server (NTRS)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the

  19. Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E

    PubMed Central

    Even, Sergine; Pellegrini, Olivier; Zig, Lena; Labas, Valerie; Vinh, Joelle; Bréchemmier-Baey, Dominique; Putzer, Harald

    2005-01-01

    Many prokaryotic organisms lack an equivalent of RNase E, which plays a key role in mRNA degradation in Escherichia coli. In this paper, we report the purification and identification by mass spectrometry in Bacillus subtilis of two paralogous endoribonucleases, here named RNases J1 and J2, which share functional homologies with RNase E but no sequence similarity. Both enzymes are able to cleave the B.subtilis thrS leader at a site that can also be cleaved by E.coli RNase E. We have previously shown that cleavage at this site increases the stability of the downstream messenger. Moreover, RNases J1/J2 are sensitive to the 5′ phosphorylation state of the substrate in a site-specific manner. Orthologues of RNases J1/J2, which belong to the metallo-β-lactamase family, are evolutionarily conserved in many prokaryotic organisms, representing a new family of endoribonucleases. RNases J1/J2 appear to be implicated in regulatory processing/maturation of specific mRNAs, such as the T-box family members thrS and thrZ, but may also contribute to global mRNA degradation. PMID:15831787

  20. Numerical study of the Kitaev-Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi

    2018-05-01

    We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j =1/2 spins are replaced by nonmagnetic ions in the honeycomb layer. Next, we investigate the low-energy excitations of the 1D Kitaev-Heisenberg model by calculating the dynamical spin structure factor using the Lanczos exact-diagonalization method. In the vicinity of Kitaev limit, there exist two well-separated dispersions. The bandwidth of each dispersion depends on the Heisenberg and Kitaev terms. This result may be relevant to the low-lying magnetic excitations of K0.5RuClm.

  1. The CO-12 and CO-13 J=2-1 and J=1-0 observations of hot and cold galaxies

    NASA Technical Reports Server (NTRS)

    Xie, Shuding; Schloerb, F. Peter; Young, Judith

    1990-01-01

    Researchers observed the nuclear regions of the galaxies NGC 2146 and IC 342 in CO-12 and CO-13 J=1-0 and J=2-1 lines using the Five College Radio Astronomy Observatory (FCRAO) 14m telescope. NGC 2146 is a peculiar Sab spiral galaxy. Its complex optical morphology and strong nuclear radio continuum emission suggest that it is experiencing a phase of violent activity and could have a polar ring which may have resulted from an interaction. IC 342 is a nearby luminous Scd spiral galaxy. Strong CO, infrared and radio continuum emission from the nuclear region of IC 342 indicate enhanced star-forming activity, and interferometric CO-12 J=1-0 observations reveal a bar-like structure centered on the nucleus, along the dark lane in the NS direction. These two galaxies are selected based on their different dust temperatures and star formation efficiencies (SFE) as derived from the Infrared Astronomy Satellite (IRAS) S sub 60 mu/S sub 100 mu flux density ratio and L sub IR/M(H2), respectively, with a relatively high SFE and dust temperature of 45 K in NGC 2146 and a relatively low SFE and dust temperature of 35 K in IC 342. The data from the different CO-12 and CO-13 lines are used to study the physical conditions in the molecular clouds in the galaxies. Researchers also consider the radiative transfer to determine whether a warm and optically thin gas component exists in these galaxies, as has been suggested in the case of M82 (Knapp et al. 1980), and whether the warm gas is related to the dust properties. Since optically thin CO-12 gas is rarely detected in our own Galaxy (except in outflow sources), to confirm its existence in external galaxies is very important in understanding the molecular content of external galaxies and its relationship to star formation activity. The present CO-12 J=2-1 and CO-13 J=2-1 and J=1-0 data for NGC 2146 are the first detections of this galaxy to our knowledge. The CO-12 J=1-0 distribution in NGC 2146 has been measured as part of the FCRAO

  2. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2

    PubMed Central

    Unterweger, Birgit; Bulach, Dieter M.; Scoble, Judith; Midgley, David J.; Greenfield, Paul; Lyras, Dena; Johanesen, Priscilla

    2016-01-01

    ABSTRACT We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida. Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101

  3. Global analysis of DNA methylation in young (J1) and senescent (J2) Gossypium hirsutum L. cotyledons by MeDIP-Seq

    PubMed Central

    Dou, Lingling; Jia, Xiaoyun; Wei, Hengling; Fan, Shuli; Wang, Hantao; Guo, Yaning; Duan, Shan; Pang, Chaoyou; Yu, Shuxun

    2017-01-01

    DNA methylation is an important epigenetic modification regulating gene expression, genomic imprinting, transposon silencing and chromatin structure in plants and plays an important role in leaf senescence. However, the DNA methylation pattern during Gossypium hirsutum L. cotyledon senescence is poorly understood. In this study, global DNA methylation patterns were compared between two cotyledon development stages, young (J1) and senescence (J2), using methylated DNA immunoprecipitation (MeDIP-Seq). Methylated cytosine occurred mostly in repeat elements, especially LTR/Gypsy in both J1 and J2. When comparing J1 against J2, there were 1222 down-methylated genes and 623 up-methylated genes. Methylated genes were significantly enriched in carbohydrate metabolism, biosynthesis of other secondary metabolites and amino acid metabolism pathways. The global DNA methylation level decreased from J1 to J2, especially in gene promoters, transcriptional termination regions and regions around CpG islands. We further investigated the expression patterns of 9 DNA methyltransferase-associated genes and 2 DNA demethyltransferase-associated genes from young to senescent cotyledons, which were down-regulated during cotyledon development. In this paper, we first reported that senescent cotton cotyledons exhibited lower DNA methylation levels, primarily due to decreased DNA methyltransferase activity and which also play important role in regulating secondary metabolite process. PMID:28715427

  4. Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Ricardo de Sousa, J.; Araújo, Ijanílio G.

    1999-07-01

    We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.

  5. Spectralon solar diffuser BRDF variation for NPP, JPSS J1 and J2

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Johnson, Lindsay; Klein, Staci

    2017-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on the Suomi National Polar-orbiting Partnership (NPP) satellite as well as the upcoming Joint Polar Satellite System (JPSS). VIIRS collects Earth radiometric and imagery data in 22 spectral bands from 0.4 to 12.5 μm. Radiometric calibration of the reflective bands in the 0.4 to 2.5 μm wavelength range is performed by measuring the sunlight reflectance from Spectralon®. Reflected sun light is directly proportional to the Bidirectional Reflectance Distribution Function (BRDF) of the Spectralon. This paper presents the BRDF measurements of the Spectralon for JPSS J2 in the 0.4 - 1.63 μm wavelength using PASCAL (Polarization And Scatter Characterization Analysis of Lambertian materials) with an uncertainty better than 1.2%. PASCAL makes absolute measurements of the BRDF in an analogous fashion to the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reflectance Reflectometer (STARR) facility. Unique additional features of this instrument include the ability to vary the sample elevation and roll / clock the sample about its normal, allowing measurement of BRDF in the as used geometry. Comparison of BRDF in the as used configuration for NPP, J1, and J2 shows variation of up to 3%. The sign of the change from panel to panel depends on the angle of incidence and view angle. The results demonstrate lot to lot variability in Spectralon and emphasize the necessity of characterizing each panel. A pattern in the BRDF variation is also presented.

  6. Pioneer 11 observations of trapped particle absorption by the Jovian ring and the satellites 1979, J1, J2, and J3

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Mckibben, R. B.; Simpson, J. A.

    1983-01-01

    Pioneer 11 low energy telescope observation of charged particles around the Jovian satellites Amalthea, 1979 J1, J2, and J3, and the Jupiter ring are examined in the light of Voyager optical data from the same region. Good agreement was found in the absorption features of 0.5-8.7 MeV protons, electrons with energies of 3.4 MeV or more, and medium-Z nuclei. The heavier nuclei are suggested to be oxygen and sulfur particles with energies exceeding 70 MeV/nucleon. The observed intensity features in the regularly spaced radiation bands are interpreted as ring and satellite absorption.

  7. Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sousa, J. Ricardo de

    A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.

  8. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

    NASA Astrophysics Data System (ADS)

    Andronov, Ivan L.; Kim, Yonggi; Kim, Young-Hee; Yoon, Joh-Na; Chinarova, Lidia L.; Tkachenko, Mariia G.

    2015-06-01

    We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M⊙, M2=0.854M⊙, M=M1+M2=1.599M⊙, the orbital separation a=1.65°109m=2.37R⊙ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions

  9. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  10. Natural disease history of the dy2J mouse model of laminin α2 (merosin)-deficient congenital muscular dystrophy.

    PubMed

    Pasteuning-Vuhman, S; Putker, K; Tanganyika-de Winter, C L; Boertje-van der Meulen, J W; van Vliet, L; Overzier, M; Plomp, J J; Aartsma-Rus, A; van Putten, M

    2018-01-01

    Merosin deficient congenital muscular dystrophy 1A (MDC1A) is a very rare autosomal recessive disorder caused by mutations in the LAMA2 gene leading to severe and progressive muscle weakness and atrophy. Although over 350 causative mutations have been identified for MDC1A, no treatment is yet available. There are many therapeutic approaches in development, but the lack of natural history data of the mouse model and standardized outcome measures makes it difficult to transit these pre-clinical findings to clinical trials. Therefore, in the present study, we collected natural history data and assessed pre-clinical outcome measures for the dy2J/dy2J mouse model using standardized operating procedures available from the TREAT-NMD Alliance. Wild type and dy2J/dy2J mice were subjected to five different functional tests from the age of four to 32 weeks. Non-tested control groups were taken along to assess whether the functional test regime interfered with muscle pathology. Respiratory function, body weights and creatine kinase levels were recorded. Lastly, skeletal muscles were collected for further histopathological and gene expression analyses. Muscle function of dy2J/dy2J mice was severely impaired at four weeks of age and all mice lost the ability to use their hind limbs. Moreover, respiratory function was altered in dy2J/dy2J mice. Interestingly, the respiration rate was decreased and declined with age, whereas the respiration amplitude was increased in dy2J/dy2J mice when compared to wild type mice. Creatine kinase levels were comparable to wild type mice. Muscle histopathology and gene expression analysis revealed that there was a specific regional distribution pattern of muscle damage in dy2J/dy2J mice. Gastrocnemius appeared to be the most severely affected muscle with a high proportion of atrophic fibers, increased fibrosis and inflammation. By contrast, triceps was affected moderately and diaphragm only mildly. Our study presents a complete natural history

  11. Infection of porcine circovirus 2 (PCV2) in intestinal porcine epithelial cell line (IPEC-J2) and interaction between PCV2 and IPEC-J2 microfilaments.

    PubMed

    Yan, Mengfei; Zhu, Liqi; Yang, Qian

    2014-11-19

    Porcine circovirus-associated disease (PCVAD) is caused by a small pathogenic DNA virus, Porcine circovirus type 2 (PCV2), and is responsible for severe economic losses. PCV2-associated enteritis appears to be a distinct clinical manifestation of PCV2. Most studies of swine enteritis have been performed in animal infection models, but none have been conducted in vitro using cell lines of porcine intestinal origin. An in vitro system would be particularly useful for investigating microfilaments, which are likely to be involved in every stage of the viral lifecycle. We confirmed that PCV2 infects the intestinal porcine epithelial cell line IPEC-J2 by means of indirect immunofluorescence, transmission electron microscopy, flow cytometry and qRT-PCR. PCV2 influence on microfilaments in IPEC-J2 cells was detected by fluorescence microscopy and flow cytometry. We used Cytochalasin D or Cucurbitacin E to reorganize microfilaments, and observed changes in PCV2 invasion, replication and release in IPEC-J2 cells by qRT-PCR. PCV2 infection changes the ultrastructure of IPEC-J2 cells. PCV2 copy number in IPEC-J2 cells shows a rising trend as infection proceeds. Microfilaments are polymerized at 1 h p.i., but densely packed actin stress fibres are disrupted and total F-actin increases at 24, 48 and 72 h p.i. After Cytochalasin D treatment, invasion of PCV2 is suppressed, while invasion is facilitated by Cucurbitacin E. The microfilament drugs have opposite effects on viral release. PCV2 infects and proliferates in IPEC-J2 cells, demonstrating that IPEC-J2 cells can serve as a cell intestinal infection model for PCV2 pathogenesis. Furthermore, PCV2 rearranges IPEC-J2 microfilaments and increases the quantity of F-actin. Actin polymerization may facilitate the invasion of PCV2 in IPEC-J2 cells and the dissolution of cortical actin may promote PCV2 egress.

  12. Comparison of Two New Mouse Models of Polygenic Type 2 Diabetes at the Jackson Laboratory, NONcNZO10Lt/J and TALLYHO/JngJ

    PubMed Central

    Leiter, Edward H.; Strobel, Marjorie; Schultz, David; Schile, Andrew; Reifsnyder, Peter C.

    2013-01-01

    This review compares two novel polygenic mouse models of type 2 diabetes (T2D), TALLYHO/JngJ and NONcNZO10/LtJ, and contrasts both with the well-known C57BLKS/J-Leprdb (db/db) monogenic diabesity model. We posit that the new polygenic models are more representative of the “garden variety” obesity underlying human T2D in terms of their polygenetic rather than monogenic etiology. Moreover, the clinical phenotypes in these new models are less extreme, for example, more moderated development of obesity coupled with less extreme endocrine disturbances. The more progressive development of obesity produces a maturity-onset development of hyperglycemia in contrast to the juvenile-onset diabetes observed in the morbidly obese db/db model. Unlike the leptin receptor-deficient db/db models with central leptin resistance, the new models develop a progressive peripheral leptin resistance and are able to maintain reproductive function. Although the T2D pathophysiology in both TALLYHO/JngJ and NONcNZO10/LtJ is remarkably similar, their genetic etiologies are clearly different, underscoring the genetic heterogeneity underlying T2D in humans. PMID:23671854

  13. Comparison of Two New Mouse Models of Polygenic Type 2 Diabetes at the Jackson Laboratory, NONcNZO10Lt/J and TALLYHO/JngJ.

    PubMed

    Leiter, Edward H; Strobel, Marjorie; O'Neill, Adam; Schultz, David; Schile, Andrew; Reifsnyder, Peter C

    2013-01-01

    This review compares two novel polygenic mouse models of type 2 diabetes (T2D), TALLYHO/JngJ and NONcNZO10/LtJ, and contrasts both with the well-known C57BLKS/J-Lepr(db) (db/db) monogenic diabesity model. We posit that the new polygenic models are more representative of the "garden variety" obesity underlying human T2D in terms of their polygenetic rather than monogenic etiology. Moreover, the clinical phenotypes in these new models are less extreme, for example, more moderated development of obesity coupled with less extreme endocrine disturbances. The more progressive development of obesity produces a maturity-onset development of hyperglycemia in contrast to the juvenile-onset diabetes observed in the morbidly obese db/db model. Unlike the leptin receptor-deficient db/db models with central leptin resistance, the new models develop a progressive peripheral leptin resistance and are able to maintain reproductive function. Although the T2D pathophysiology in both TALLYHO/JngJ and NONcNZO10/LtJ is remarkably similar, their genetic etiologies are clearly different, underscoring the genetic heterogeneity underlying T2D in humans.

  14. Physics of the spin gap in the S=1/2 Heisenberg antiferromagnet on kagome

    NASA Astrophysics Data System (ADS)

    Tchernyshyov, Oleg

    2009-03-01

    A combination of low spin and strong frustration makes the S=1/2 Heisenberg antiferromagnet on kagome a likely candidate for an unusual ground state and elementary excitations. Exact-diagonalization studies [1] on finite clusters point to a lack of magnetic order in the ground state and to an energy gap of order J/20 for S=1 excitations. The exact nature of the ground state and elementary excitations remains a subject of vigorous debate. Among the proposed ground states are chiral [2] and non-chiral [3] spin liquids and a valence-bond crystal (VBC) [4-5]; spin excitations range from deconfined spinons with a Bose [6] or Fermi statistics [2-3] to magnons [7]. We show that the system behaves as a collection of spinons, quasiparticles with S=1/2 and Fermi statistics, whose motion disturbs valence-bond order. Attraction between spinons, mediated by exchange, binds them into small, massive pairs of S=0 with a binding energy of 0.06 J [8]. The pair formation strongly suppresses the motion of individual spinons and makes the survival of the Singh-Huse VBC plausible. A spin excitation amounts to breaking up a pair into two (nearly) free spinons with S=1. The survival of the VBC is expected to lead to spinon confinement; however, small energy differences between various valence-bond configurations would make the confinement length large. [4pt] [1] Ch. Waldtmann et al., Eur. Phys. J. B 2, 510 (1998).[0pt] [2] J. B. Marston and C. Zeng, J. Appl. Phys. 69, 5962 (1991).[0pt] [3] M. B. Hastings, Phys. Rev. B 63, 014413 (2000).[0pt] [4] P. Nikolic and T. Senthil, Phys. Rev. B 68, 214415 (2003).[0pt] [5] R. R. P. Singh and D. A. Huse, Phys. Rev. B 76, 180407 (2007).[0pt] [6] S. Sachdev, Phys. Rev. B 45, 12377 (1992).[0pt] [7] R. R. P. Singh and D. A. Huse, arXiv:0801.2735. [0pt] [8] Z. Hao and O. Tchernyshyov, the subsequent talk.

  15. Global phase diagram and quantum spin liquids in a spin- 1 2 triangular antiferromagnet

    DOE PAGES

    Gong, Shou-Shu; Zhu, Wei; Zhu, Jianxin; ...

    2017-08-09

    For this research, we study the spin-1/2 Heisenberg model on the triangular lattice with the nearest-neighbor J 1 > 0 , the next-nearest-neighobr J 2 > 0 Heisenberg interactions, and the additional scalar chiral interaction Jχ (more » $$\\vec{S}$$ i × $$\\vec{S}$$ j ) · $$\\vec{S}$$ k for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing J 2 (J 2 / J 1 ≤ 0.3 ) and Jχ (Jχ / J 11.0 ) interactions, we establish a quantum phase diagram with the magnetically ordered 120°, stripe, and noncoplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν = 1/2 bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the J 1 - J 2 triangular model (0.08 ≲ J 2 / J 1 ≲ 0.15) shows a phase transition to the CSL phase at very small Jχ. We also compute the spin triplet gap in both spin liquid phases, and our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even sector. Lastly, we discuss the implications of our results on the nature of the spin liquid phases.« less

  16. Observation of ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ.

    PubMed

    Ablikim, M; Achasov, M N; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2017-06-02

    Using 4.479×10^{8}  ψ(3686) events collected with the BESIII detector, we search for the decays ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ, where J=0, 1, 2. The decays ψ(3686)→e^{+}e^{-}χ_{cJ} and χ_{cJ}→e^{+}e^{-}J/ψ are observed for the first time. The measured branching fractions are B(ψ(3686)→e^{+}e^{-}χ_{cJ})=(11.7±2.5±1.0)×10^{-4}, (8.6±0.3±0.6)×10^{-4}, (6.9±0.5±0.6)×10^{-4} for J=0, 1, 2, and B(χ_{cJ}→e^{+}e^{-}J/ψ)=(1.51±0.30±0.13)×10^{-4}, (3.73±0.09±0.25)×10^{-3}, (2.48±0.08±0.16)×10^{-3} for J=0, 1, 2, respectively. The ratios of the branching fractions B(ψ(3686)→e^{+}e^{-}χ_{cJ})/B(ψ(3686)→γχ_{cJ}) and B(χ_{cJ}→e^{+}e^{-}J/ψ)/B(χ_{cJ}→γJ/ψ) are also reported. Also, the α values of helicity angular distributions of the e^{+}e^{-} pair are determined for ψ(3686)→e^{+}e^{-}χ_{c1,2} and χ_{c1,2}→e^{+}e^{-}J/ψ.

  17. J-2X engine test

    NASA Image and Video Library

    2011-12-01

    NASA conducted a key stability test firing of the J-2X rocket engine on the A-2 Test Stand at Stennis Space Center on Dec. 1, marking another step forward in development of the upper-stage engine that will carry humans deeper into space than ever before. The J-2X will provide upper-stage power for NASA's new Space Launch System.

  18. 5-HT(2C) receptor RNA editing in the amygdala of C57BL/6J, DBA/2J, and BALB/cJ mice.

    PubMed

    Hackler, Elizabeth A; Airey, David C; Shannon, Caitlin C; Sodhi, Monsheel S; Sanders-Bush, Elaine

    2006-05-01

    Post-transcriptional RNA editing of the G-protein coupled 5-hydroxytryptamine-2C (5-HT(2C)) receptor predicts an array of 24 receptor isoforms, some of which are characterized by reduced constitutive activity and potency to initiate intracellular signaling. The amygdala is integral to anxiety, fear, and related psychiatric diseases. Activation of 5-HT(2C) receptors within the amygdala is anxiogenic. Here, we describe the RNA editing profiles from amygdala of two inbred mouse strains (BALB/cJ and DBA/2J) known to be more anxious than a third (C57BL/6J). We confirmed the strain anxiety differences using light<-->dark exploration, and we discovered that BALB/cJ and DBA/2J are each characterized by a higher functioning RNA editing profile than C57BL/6J. BALB/cJ and DBA/2J exhibit a roughly two-fold reduction in C site editing, and a corresponding two-fold reduction in the edited isoform VSV. C57BL/6J is characterized by a relative decrease in the unedited highly functional isoform INI. We estimated the heritability of editing at the C site to be approximately 40%. By sequencing genomic DNA, we found complete conservation between C57BL/6J, BALB/cJ, DBA/2J and 37 other inbred strains for the RNA edited region of Htr2c, suggesting Htr2c DNA sequence does not influence variation in Htr2c RNA editing between inbred strains of mice. We did, however, discover that serotonin turnover is reduced in BALB/cJ and DBA/2J, consistent with emerging evidence that synaptic serotonin levels regulate RNA editing. These results encourage further study of the causes and consequences of 5-HT(2C) receptor RNA editing in the amygdala of mice.

  19. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    NASA Astrophysics Data System (ADS)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  20. Theoretical description of the decays Λb→Λ(*)(1/2±,3/2±)+J

    NASA Astrophysics Data System (ADS)

    Gutsche, Thomas; Ivanov, Mikhail A.; Körner, Jürgen G.; Lyubovitskij, Valery E.; Lyubushkin, Vladimir V.; Santorelli, Pietro

    2017-07-01

    We calculate the invariant and helicity amplitudes for the transitions Λb→Λ(*)(JP)+J /ψ , where the Λ(*)(JP) are Λ (s u d )-type ground and excited states with JP quantum numbers JP=1/2± , 3/2± . The calculations are performed in the framework of a covariant confined quark model previously developed by us. We find that the values of the helicity amplitudes for the Λ*(1520 ,3/2-) and the Λ*(1890 ,3/2+) are suppressed compared with those for the ground state Λ (1116 ,1/2+) and the excited state Λ*(1405 ,1/2-). This analysis is important for the identification of the hidden charm pentaquark states Pc+(4380 ) and Pc+(4450 ) which were discovered in the decay chain Λb0→Pc+(→p J /ψ )+K- because the cascade decay chain Λb→Λ*(3/2±)(→p K-)+J /ψ involves the same final state.

  1. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo2 -yAs2

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Ueland, B. G.; Anand, V. K.; Sangeetha, N. S.; Abernathy, D. L.; Stone, M. B.; Niedziela, J. L.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.

    2017-10-01

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo2 -yAs2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J1-J2 Heisenberg model on a square lattice with ferromagnetic J1 and hence indicate that the extensive previous experimental and theoretical study of the J1-J2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  2. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo_{2-y}As_{2}.

    PubMed

    Sapkota, A; Ueland, B G; Anand, V K; Sangeetha, N S; Abernathy, D L; Stone, M B; Niedziela, J L; Johnston, D C; Kreyssig, A; Goldman, A I; McQueeney, R J

    2017-10-06

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  3. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo 2 - y As 2

    DOE PAGES

    Sapkota, A.; Ueland, B. G.; Anand, V. K.; ...

    2017-10-02

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo 2–yAs 2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. Here, these results are shown to arise from near-perfect bond frustration within the J 1J 2 Heisenberg model on a square lattice with ferromagnetic J 1 and hence indicate that the extensive previous experimental and theoretical study of the J 1J 2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  4. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo 2 - y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, A.; Ueland, B. G.; Anand, V. K.

    Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo 2–yAs 2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. Here, these results are shown to arise from near-perfect bond frustration within the J 1J 2 Heisenberg model on a square lattice with ferromagnetic J 1 and hence indicate that the extensive previous experimental and theoretical study of the J 1J 2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

  5. Measurement of sigma chi c2 B(chi c2-->J/psi gamma)/sigma chi c1 B(chi c1 -->J/psi gamma) in pp collisions at square root s=1.96 TeV.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; DaRonco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-06-08

    We measure the ratio of cross section times branching fraction, Rp=sigma chi c2 B(chi c2-->J/psi gamma)/sigma chi c1 B(chi c1-->J/psi gamma), in 1.1 fb(-1) of pp collisions at square root s=1.96 TeV. This measurement covers the kinematic range pT(J/psi)>4.0 GeV/c, |eta(J/psi)<1.0, and pT(gamma)>1.0 GeV/c. For events due to prompt processes, we find Rp=0.395+/-0.016(stat)+/-0.015(syst). This result represents a significant improvement in precision over previous measurements of prompt chi c1,2 hadro production.

  6. Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study

    NASA Astrophysics Data System (ADS)

    Chandra, V. Ravi; Sahoo, Jyotisman

    2018-04-01

    We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .

  7. Split Active Asteroid P/2016 J1 (PANSTARRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Man-To; Jewitt, David; Du, Xinnan, E-mail: pachacoti@ucla.edu

    We present a photometric and astrometric study of the split active asteroid P/2016 J1 (PANSTARRS). The two components (hereafter J1-A and J1-B) separated either ∼1500 days (2012 May to June) or 2300 days (2010 April) prior to the current epoch, with a separation speed V {sub sep} = 0.70 ± 0.02 m s{sup −1} for the former scenario and 0.83 ± 0.06 m s{sup −1} for the latter. Keck photometry reveals that the two fragments have similar, Sun-like colors that are comparable to the colors of primitive C- and G-type asteroids. With a nominal comet-like albedo, p{sub R} = 0.04, the effective, dust-contaminated cross sections are estimated tomore » be 2.4 km{sup 2} for J1-A and 0.5 km{sup 2} for J1-B. We estimate that the nucleus radii lie in the range 140 ≲  R {sub N} ≲ 900 m for J1-A and 40 ≲  R {sub N} ≲ 400 m for J1-B. A syndyne–synchrone simulation shows that both components have been active for 3–6 months, by ejecting dust grains at speeds ∼0.5 m s{sup −1} with rates ∼1 kg s{sup −1} for J1-A and 0.1 kg s{sup −1} for J1-B. In its present orbit, the rotational spin-up and devolatilization times of 2016 J1 are very small compared to the age of the solar system, raising the question of why this object still exists. We suggest that ice that was formerly buried within this asteroid became exposed at the surface, perhaps via a small impact, and that sublimation torques then rapidly drove it to breakup. Further disintegration events are anticipated owing to the rotational instability.« less

  8. Precision spectroscopy of the X1Σg+, v=0→1(J=0-2) rovibrational splittings in H2, HD and D2

    NASA Astrophysics Data System (ADS)

    Niu, M. L.; Salumbides, E. J.; Dickenson, G. D.; Eikema, K. S. E.; Ubachs, W.

    2014-06-01

    Accurate experimental values for the vibrational ground tone or fundamental vibrational energy splitting of H2, HD, and D2 are presented. Absolute accuracies of 2×10-4 cm-1 are obtained from Doppler-free laser spectroscopy applied in a collisionless environment. The vibrational splitting frequencies are derived from the combination difference between separate electronic excitations from the X1Σg+, v=0, J and v=1, J vibrational states to a common EF1Σg+, v=0, J state. The present work on rotational quantum states J=1,2 extends the results reported by Dickenson et al. on J=0 [Phys. Rev. Lett. 110 (2013) 193601]. The experimental procedures leading to this high accuracy are discussed in detail. A comparison is made with full ab initio calculations encompassing Born-Oppenheimer energies, adiabatic and non-adiabatic corrections, as well as relativistic corrections and QED-contributions. The present agreement between the experimental results and the calculations provides a stringent test on the application of quantum electrodynamics in molecules. Furthermore, the combined experimental-theoretical uncertainty can be interpreted to provide bounds to new interactions beyond the Standard Model of Physics or fifth forces between hadrons.

  9. Joint Chiefs of Staff > Directorates > J1 | Manpower and Personnel

    Science.gov Websites

    Management J1 | Manpower and Personnel J2 | Joint Staff Intelligence J3 | Operations J4 | Logistics► J8 | Force Structure, Resources & Assessment Contact J1 Manpower and Personnel Home : Directorates : J1 | Manpower and Personnel Mission To provide the Chairman of the Joint Chiefs of Staff

  10. Alignment relaxation of Ne*(2pi[J=1]) atoms due to collisions with He(1s^2) atoms

    NASA Astrophysics Data System (ADS)

    Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro; Bahrim, Cristian

    2008-10-01

    Alignment relaxation of atoms induced by collisions offers accurate information regarding the anisotropic atom-atom potentials and has many applications in atomic and plasma physics. Here we report the energy-averaged cross sections for destruction of alignment σ^(2) and the rate coefficients for disalignment KDA of Ne^*(2p^5 3p; 2pi [J=1]) atoms due to He atom collisions using a many-channels close-coupling method based on a modified model potential for the HeNe^*(2p^5 3p) system [1]. Comparison with measurements using laser-induced fluorescence spectroscopy (LIFS) [2] and Hanle signals [3] is reported. The LIFS method measures KDA due to intra-multiplet transitions, while the analysis of Hanle signals gives σ^(2), which incorporates both the intra- and inter-multiplet transitions. Good agreement between theory and experiments was found for the 2p2, 2p5, and 2p7 states at 77 K < T < 350 K when a static polarizability for each Ne^*(2pi) state is added to the long-range potentials of the HeNe^*(2p^5 3p) system given in Ref.[4]. [1] Bahrim C and Khadilkar V 2008 J. Phys. B 41 035203 [2] Seo M, Shimamura T, Furatani T, Hasuo M, Bahrim C and Fujimoto T 2003 J. Phys. B 36 1885 [3] Carrington C G and Corney A 1971 J. Phys. B 4 869 [4] Bahrim C, Kucal H and Masnou-Seeuws F 1997 Phys. Rev. A 56 1305

  11. Model-Independent Evidence for J/ψp Contributions to Λ_{b}^{0}→J/ψpK^{-} Decays.

    PubMed

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M M; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Niess, V; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S

    2016-08-19

    The data sample of Λ_{b}^{0}→J/ψpK^{-} decays acquired with the LHCb detector from 7 and 8 TeV pp collisions, corresponding to an integrated luminosity of 3  fb^{-1}, is inspected for the presence of J/ψp or J/ψK^{-} contributions with minimal assumptions about K^{-}p contributions. It is demonstrated at more than nine standard deviations that Λ_{b}^{0}→J/ψpK^{-} decays cannot be described with K^{-}p contributions alone, and that J/ψp contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for P_{c}^{+}→J/ψp charmonium-pentaquark states in the same data sample.

  12. VizieR Online Data Catalog: W1J00 and W2J00 Transit Circle Catalogs (Rafferty+, 2016)

    NASA Astrophysics Data System (ADS)

    Rafferty, T. J.; Holdenried, E. R.; Urban, S. E.

    2016-06-01

    The W1J00, named because it was the first (of two) Washington transit circle catalog to be referred to the Equinox of J2000.0, is the result of observations made with the Six-inch Transit Circle in Washington, D.C., between September 1977 and July 1982. The observing program was structured to be absolute, in the sense that the positions were not explicitly relying on any previous observations. The absolute positions were defined with respect to an internally consistent frame that was unique to the particular instrument. Following the reductions, comparisons with stars from the Hipparcos Catalogue (European Space Agency 1997) revealed unaccounted for systematic differences on the level of 100-200mas. It was decided, therefore, to include data on both the absolute positions reduced in way common to many past Washington transit circle catalogs, as well as the positions differentially adjusted to the system of the Hipparcos Catalog. The W1J00 contains mean positions of 7267 stars and 4383 observations of solar system objects. The majority of the stars fall into two categories; those from the Fifth Fundamental Catalog (FK5; Fricke et al 1988), and those from the Catalog Of 3539 Zodiacal Stars For The Equinox 1950.0 (Robertson 1940). The solar system objects include the Sun, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, eight minor planets (Eunomia, Flora, Hebe, Iris, Juno, Metis, Pallas, and Vesta), and the dwarf planet Ceres. Characteristics of the W1J00 catalog: Category Range Average ------------------------------------------------------------- Magnitudes -1.6 to 10.4 7.18 RA standard errors of the mean 15 to 460 mas 98 mas Dec standard errors of the mean 10 to 400 mas 107 mas RA Number of observations / star 3 to 187 10 Dec Number of observations / star 2 to 179 10 Declination coverage -39 to +90 degrees ------------------------------------------------------------- Details of the W1J00 can be found in Rafferty, Holdenried, and Urban (2016, Publ. USNO, 2nd

  13. Alignment relaxation of Ne*(2pi [J = 1]) atoms in He-Ne* glow discharges

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro

    2009-11-01

    Alignment relaxation of the Ne*(2p5 3p; 2pi [J = 1]) atoms (where i = 2, 5, 7 or 10) induced by collisions with He atoms in glow discharges at 77 K < T < 1,000 K are reported. Close-coupling many-channel quantum calculations using a model potential for the Ne*(2p5 3p) - He system are compared with measurements of the alignment relaxation using the LIFS technique and the Hanle effect. The addition of the dipole polarization potential of the Ne*(2pi [J = 1]) atoms to the spin-orbit coupling and the electrostatic interaction between Ne* and He atoms leads to good agreement between theory and experiment.

  14. J-2X engine

    NASA Image and Video Library

    2012-04-20

    NASA Administrator Charles Bolden (r) takes an up-close look at the first development J-2X rocket engine on the A-2 Test Stand at Stennis Space Center during an April 20, 2012, visit. Pictured with Bolden is A-2 Test Stand Director Skip Roberts. The J-2X engine is being developed for NASA by Pratt & Whitney Rocketdyne.

  15. J-2X engine

    NASA Image and Video Library

    2012-04-20

    NASA Administrator Charles Bolden (r) takes an up-close look at the first development J-2X rocket engine on the A-2 Test Stand at Stennis Space Center during an April 20, 2012, visit. Pictured with Bolden is A-2 Test Stand Director Skip Roberts. The J-2X engine i s being developed for NASA by Pratt & Whitney Rocketdyne.

  16. Testing for the J-2X Upper Stage Engine

    NASA Technical Reports Server (NTRS)

    Buzzell, James C.

    2010-01-01

    NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.

  17. Giant Spin Gap and Magnon Localization in the Disordered Heisenberg Antiferromagnet Sr2Ir1-xRuxO4

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Liu, Xuerong; Xu, Wenhu; Yin, Weiguo; Meyers, Derek; Kim, Jungho; Casa, Diego; Upton, Mary; Gog, Thomas; Berlijn, Tom; Alvarez, Gonzalo; Yuan, Shujuan; Terzic, Jasminka; Tranquada, J. M.; Hill, John; Cao, Gang; Konik, Robert; Dean, M. P. M.

    We study the evolution of magnetic excitations in the disordered two-dimensional antiferromagnet Sr_2Ir_1-xRu_xO_4. A gigantic magnetic gap greater than 40 meV opens at x = 0.27 and increases with Ru concentration, from 40 meV to >150 meV, rendering the dispersive magnetic excitations in Sr2IrO4 almost momentum independent. Up to a Ru concentration of x = 0.77, both experiments and first-principles calculations show the Ir J_eff = 1/2 state remains intact. The magnetic gap arises from the local interaction anisotropy in the proximity of the Ru disorder. Under the coherent potential approximation, we reproduce the experimental magnetic excitations using the disordered Heisenberg antiferromagnetic model with suppressed next-nearest neighbor ferromagnetic coupling.

  18. Early phenotypical diagnoses in Trembler-J mice model.

    PubMed

    Rosso, Gonzalo; Cal, Karina; Canclini, Lucía; Damián, Juan Pablo; Ruiz, Paul; Rodríguez, Héctor; Sotelo, José Roberto; Vazquez, Cristina; Kun, Alejandra

    2010-06-30

    Pmp-22 mutant mice (Trembler-J: B6.D2-Pmp22J>/J), are used as a model to study Charcot-Marie-Tooth type 1A (CMT1A). The identification of individual genotypes is a routine in the management of the Tr(J) colony. The earliest phenotypic manifestation of the pmp-22 mutation is just about 20th postnatal days, when pups begin to tremble. In this study, a rapid and simple diagnostic method was developed by modifying the Tail Suspension Test (MTST) to determine the difference between the Tr(J) and the wild-type mice phenotype. The animal behavioral phenotypes generated during the test were consistent with the specific genotype of each animal. The MTST allowed us to infer the heterozygous genotype in early postnatal stages, at 11 days after birth. The motor impairment of Tr(J) mice was also analyzed by a Fixed Bar Test (FBT), which revealed the disease evolution according to age. The main advantages of MTST are its objectivity, simplicity, and from the viewpoint of animal welfare, it is a non-invasive technique that combined with his rapidity show its very well applicability for use from an early age in these mice. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Quantum state-to-state dynamics for the quenching process of Br(2P1/2) + H2(v(i) = 0, 1, j(i) = 0).

    PubMed

    Xie, Changjian; Jiang, Bin; Xie, Daiqian; Sun, Zhigang

    2012-03-21

    Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data. © 2012 American Institute of Physics

  20. Effects of Dorzolamide on Retinal and Choroidal Blood Flow in the DBA/2J Mouse Model of Glaucoma

    PubMed Central

    Chandra, Saurav; Muir, Eric R.; Deo, Kaiwalya; Kiel, Jeffrey W.; Duong, Timothy Q.

    2016-01-01

    Purpose To test the hypothesis that acute topical dorzolamide (DZ) decreases intraocular pressure (IOP) and increases retinal and choroidal blood flow in the DBA/2J mouse model of glaucoma. Methods Retinal and choroidal blood flow were measured in 4- and 9-month-old DBA/2J mice, and 4-month C57BL/6 (control) mice under isoflurane anesthesia using magnetic resonance imaging. Ocular blood flow was measured at baseline, and 1 and 2 hours after topical dorzolamide. Intraocular pressure was measured using a rebound tonometer in a subset of animals at the same time points. Results Baseline IOP in the 4-month-old DBA/2J mice and C57BL/6 mice was not significantly different (P > 0.05), and IOP in both groups was less than in the 9-month-old DBA/2J mice (P < 0.05 for both). Compared to baseline, dorzolamide reduced IOP at 1 and 2 hours after dorzolamide in the 4- (P < 0.05) and 9-month-old (P < 0.01) DBA/2J mice, but not in the C57BL/6J mice (P > 0.05). Baseline retinal blood flow was lower in the 4-month and 9-month-old DBA/2J mice compared with the 4-month-old C57BL/6J mice (P < 0.05). Baseline choroidal blood flow in the 9-month-old DBA/2J mice was less than in the C57BL/6J mice (P < 0.05). Compared with baseline, both retinal and choroidal blood flow increased at 1-hour post-dorzolamide and remained elevated 2 hours later in the 9-month-old DBA/2J mice (P < 0.05). Conclusions Dorzolamide lowers IOP and raises retinal and choroidal blood flow in older DBA/2J mice, consistent with the study hypothesis. PMID:26934140

  1. J-2X Abort System Development

    NASA Technical Reports Server (NTRS)

    Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.

    2008-01-01

    The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.

  2. Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice.

    PubMed

    Jackson, Kristy L; Dampney, Bruno W; Moretti, John-Luis; Stevenson, Emily R; Davern, Pamela J; Carrive, Pascal; Head, Geoffrey A

    2016-05-01

    BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1 ± 1.6 and -11.0 ± 1.1 mm Hg, respectively;P<0.001 compared with vehicle). However, when almorexant (100 mg/kg, IP) was administered during the light-inactive period (5 hours before lights off) no reduction from baseline was observed (P=0.64). The same dose of almorexant in BPN/3J mice had no effect on blood pressure during the dark (P=0.79) or light periods (P=0.24). Almorexant attenuated the depressor response to ganglion blockade (P=0.018) and reduced the mid frequency mean arterial pressure power in BPH/2J mice (P<0.001), but not BPN/3J mice (P=0.70). Immunohistochemical labeling revealed that BPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice. © 2016 American Heart Association, Inc.

  3. Highly anisotropic exchange interactions of j eff = 1 2 iridium moments on the fcc lattice in La 2 B IrO 6   ( B = Mg , Zn )

    DOE PAGES

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; ...

    2016-06-20

    Here we have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites Lamore » $$_2$$ZnIrO$$_6$$ and La$$_2$$MgIrO$$_6$$, which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated $$j_{\\rm eff}=1/2$$ Mott insulators provide clear evidence for gapped spin wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry-forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in $$j_{\\rm eff}=1/2$$ Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly-directional Kitaev interaction is a type of exchange anisotropy which is symmetry-allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order-by-disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry-lowering due to lattice distortions can pin the order and enhance the magnon gap. In conclusion, our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling.« less

  4. Energy metabolism in BPH/2J genetically hypertensive mice.

    PubMed

    Jackson, Kristy L; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-05-01

    Recent evidence indicates that genetic hypertension in BPH/2J mice is sympathetically mediated, but these mice also have lower body weight (BW) and elevated locomotor activity compared with BPN/3J normotensive mice, suggestive of metabolic abnormalities. The aim of the present study was to determine whether hypertension in BPH/2J mice is associated with metabolic differences. Whole-body metabolic and cardiovascular parameters were measured over 24 h by indirect calorimetry and radiotelemetry respectively, in conscious young (10-13 weeks) and older (22-23 weeks) BPH/2J, normotensive BPN/3J and C57Bl6 mice. Blood pressure (BP) was greater in BPH/2J compared with both normotensive strains at both ages (P<0.01). Metabolic rate was greater in young BPH/2J compared with BPN/3J mice (P<0.01) but similar to C57Bl6 mice indicating that high metabolic rate is not necessarily related to the hypertension per say. The slope of the BP-metabolic rate relationship was comparable between BPH/2J and normotensive mice when adjusted for activity (P>0.1) suggesting differences in this relationship are not responsible for hypertension. EchoMRI revealed that percentage body composition was comparable in BPN/3J and BPH/2J mice (P>0.1) and both strains gained weight similarly with age (P=0.3). Taken together, the present findings indicate that hypertension in BPH/2J mice does not appear to be related to altered energy metabolism.

  5. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model

    PubMed Central

    Connolly, Michael; Marketon, Anthony

    2016-01-01

    Allergies caused by Japanese Red Cedar (JRC) pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1) to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4+ T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses. PMID:27239481

  6. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease.

    PubMed

    Chen, Yumay; Chiang, Huai-Chin; Litchfield, Patricia; Pena, Michelle; Juang, Charity; Riley, Daniel J

    2014-07-17

    Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.

  7. 26 CFR 1.415(j)-1 - Limitation year.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Limitation year. 1.415(j)-1 Section 1.415(j)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.415(j)-1 Limitation year. (a) In...

  8. J-2X engine assembly

    NASA Image and Video Library

    2011-03-03

    Pratt & Whitney Rocketdyne employees Carlos Alfaro (l) and Oliver Swanier work on the main combustion element of the J-2X rocket engine at their John C. Stennis Space Center facility. Assembly of the J-2X rocket engine to be tested at the site is under way, with completion and delivery to the A-2 Test Stand set for June. The J-2X is being developed as a next-generation engine that can carry humans into deep space. Stennis Space Center is preparing a trio of stands to test the new engine.

  9. THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. V. THE SH2-235 CLOUD IN CO J  = 2 − 1, {sup 13}CO J  = 2 − 1, AND CO J  = 3 − 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieging, John H.; Peters, William L.; Patel, Saahil

    We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and {sup 13}CO  J  = 2 − 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s{sup −1}. With the same telescope, we also mapped the CO J  = 3 − 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s{sup −1}.more » The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J  = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and {sup 13}CO  J  = 2 − 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc{sup 2} region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H ii regions, which may be triggering current star formation.« less

  10. J-2X powerpack

    NASA Image and Video Library

    2012-10-05

    NASA removed J-2X engine No. 10001 from the A-2 Test Stand at Stennis Space Center in early October. Opening of the test stand clamshell flooring allowed a clear view of the next-generation engine and stub nozzle, which is being built to help power future deep-space missions. The engine is an upgrade from the heritage J-2 rocket engine, which helped power Apollo missions to the moon during the late 1960s and early 1970s.

  11. Entropic uncertainty relations in the Heisenberg XXZ model and its controlling via filtering operations

    NASA Astrophysics Data System (ADS)

    Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-04-01

    The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J < 0 ) and the anti-ferromagnetism ( J > 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.

  12. Half-magnetization plateau in a Heisenberg antiferromagnet on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Ye, Mengxing; Chubukov, Andrey V.

    2017-10-01

    We present the phase diagram of a 2D isotropic triangular Heisenberg antiferromagnet in a magnetic field. We consider spin-S model with nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. We focus on the range of 1 /8 <J2/J1<1 , where the ordered states are different from those in the model with only nearest-neighbor exchange. A classical ground state in this range is infinitely degenerate in any field. The actual order is then determined by quantum fluctuations via "order from disorder" phenomenon. We argue that the phase diagram is rich due to competition between competing quantum states which break either orientational or sublattice symmetry. At small and high fields, the ground state is a canted stripe state, which breaks orientational symmetry, but at intermediate fields the ordered states break sublattice symmetry. The most noticeable of such states is "three up, one down" state in which spins in three sublattices are directed along the field and in one sublattice opposite to the field. In such a state, magnetization is quantized at exactly one half of the saturation value. We identify gapless states, which border the "three up, one down" state and discuss the transitions between these states and the canted stripe state.

  13. Spectral Variability of Two Rapidly Rotating Brown Dwarfs: 2MASS J08354256-0819237 and 2MASS J18212815+1414010

    NASA Astrophysics Data System (ADS)

    Schlawin, E.; Burgasser, Adam J.; Karalidi, T.; Gizis, J. E.; Teske, J.

    2017-11-01

    L dwarfs exhibit low-level, rotationally modulated photometric variability generally associated with heterogeneous, cloud-covered atmospheres. The spectral character of these variations yields insight into the particle sizes and vertical structure of the clouds. Here, we present the results of a high-precision, ground-based, near-infrared, spectral monitoring study of two mid-type L dwarfs that have variability reported in the literature, 2MASS J08354256-0819237 and 2MASS J18212815+1414010, using the SpeX instrument on the Infrared Telescope Facility. By simultaneously observing a nearby reference star, we achieve < 0.15 % per-band sensitivity in relative brightness changes across the 0.9-2.4 μm bandwidth. We find that 2MASS J0835-0819 exhibits marginal (≲0.5% per band) variability with no clear spectral dependence, while 2MASS J1821+1414 varies by up to ±1.5% at 0.9 μm, with the variability amplitude declining toward longer wavelengths. The latter result extends the variability trend observed in prior HST/WFC3 spectral monitoring of 2MASS J1821+1414, and we show that the full 0.9-2.4 μm variability amplitude spectrum can be reproduced by Mie extinction from dust particles with a log-normal particle size distribution with a median radius of 0.24 μm. We do not detect statistically significant phase variations with wavelength. The different variability behavior of 2MASS J0835-0819 and 2MASS J1821+1414 suggests dependencies on viewing angle and/or overall cloud content, underlying factors that can be examined through a broader survey.

  14. Measurement of the radiative decay and energy of the metastable $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{(J=0)}$$ level in Fe XVII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Lopez-Urrutia, J. R. Crespo; Trabert, E.

    Measurements at the Livermore electron beam ion trap have been performed in order to infer the energy and the radiative lifetime of themore » $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level in the Fe xvii spectrum. This is the longest-lived level in the neonlike iron ion, and its radiative decay produces the Fe xvii line at 1153 Å, feeding the population of the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$ upper level of one of the most prominent lines in the Fe xvii L-shell X-ray spectrum, commonly dubbed $3G$. In the presence of a strong ($$\\geqslant $$ few kG) magnetic field, the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level has a finite probability to decay directly to the $${(1{s}^{2}2{s}^{2}2{p}^{6})}_{J=0}$$ neonlike ground level via the emission of an L-shell X-ray. Our measurements allow us to observe this X-ray line in the Fe xvii L-shell spectrum and from it to infer the radiative rate for the magnetic dipole decay of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level to the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$. Our result of $$(1.45\\pm 0.15)\\times {10}^{4}$$ s-1 is in agreement with predictions. We have also measured the wavelength of the associated X-ray line to be 16.804 ± 0.002 Å, which means that the line is displaced 1.20 ± 0.05 eV from the neighboring $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=1}\\to {(2{s}^{2}2{p}^{6})}_{J=0}$$ transition, commonly labeled $3F$. Furthermore, from our measurement, we infer 5950570 ± 710 cm-1 for the energy of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level.« less

  15. Measurement of the radiative decay and energy of the metastable $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{(J=0)}$$ level in Fe XVII

    DOE PAGES

    Beiersdorfer, P.; Lopez-Urrutia, J. R. Crespo; Trabert, E.

    2016-01-20

    Measurements at the Livermore electron beam ion trap have been performed in order to infer the energy and the radiative lifetime of themore » $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level in the Fe xvii spectrum. This is the longest-lived level in the neonlike iron ion, and its radiative decay produces the Fe xvii line at 1153 Å, feeding the population of the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$ upper level of one of the most prominent lines in the Fe xvii L-shell X-ray spectrum, commonly dubbed $3G$. In the presence of a strong ($$\\geqslant $$ few kG) magnetic field, the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level has a finite probability to decay directly to the $${(1{s}^{2}2{s}^{2}2{p}^{6})}_{J=0}$$ neonlike ground level via the emission of an L-shell X-ray. Our measurements allow us to observe this X-ray line in the Fe xvii L-shell spectrum and from it to infer the radiative rate for the magnetic dipole decay of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level to the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$. Our result of $$(1.45\\pm 0.15)\\times {10}^{4}$$ s-1 is in agreement with predictions. We have also measured the wavelength of the associated X-ray line to be 16.804 ± 0.002 Å, which means that the line is displaced 1.20 ± 0.05 eV from the neighboring $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=1}\\to {(2{s}^{2}2{p}^{6})}_{J=0}$$ transition, commonly labeled $3F$. Furthermore, from our measurement, we infer 5950570 ± 710 cm-1 for the energy of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level.« less

  16. J-2X engine

    NASA Image and Video Library

    2012-09-14

    NASA engineers continued to collect test performance data on the new J-2X rocket engine at Stennis Space Center with a 250-second test Sept. 14. The test on the A-2 Test Stand was the 19th in a series of firings to gather critical data for continued development of the engine. The J-2X is being developed by Pratt and Whitney Rocketdyne for NASA's Marshall Space Flight Center in Huntsville, Ala. It is the first liquid oxygen and liquid hydrogen rocket engine rated to carry humans into space to be developed in 40 years.

  17. Investigations of the Quantum Correlation in Two-Qubit Heisenberg XYZ Model with Decoherence

    NASA Astrophysics Data System (ADS)

    Guo-Hui, Yang

    2017-03-01

    Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated with the use of concurrence C and quantum discord (QD). With the Werner state as the initial state, we discuss the influence of mixture degree r on the dynamics. There are some difference between the time evolution behaviors of these two correlation measures with different value of r. For 0 ≤ r ≤ 1/3, there exists quantum discord but no entanglement; For 1/3< r<1, there is a "entanglement sudden death and birth" phenomenon in the concurrence but not in the QD; For r=1, there is one interesting thing that the concurrence decays from 1 to a minimum value close to 0 but the QD vanish. In addition, we have investigated the influence of different parameters on the two correlation measures. It has been found that, the concurrence and QD both exhibit osillatory behaviors with the time evolution, which is independent on the magnetic field B and the coupling coefficient J z . However, the Dzyaloshinskii-Moriya interaction (D) and coupling coefficient J have strong influence on concurrence and QD. With the increasing of the D or J, the frequency of the oscillation getting larger. When time is fixed, with the increasing of D or J, the concurrence and QD change periodically.

  18. Cross-talk of cannabinoid and endocannabinoid metabolism is mediated via human cardiac CYP2J2.

    PubMed

    Arnold, William R; Weigle, Austin T; Das, Aditi

    2018-07-01

    Phytocannabinoids have well-known cardiovascular implications. For instance, Δ9-tetrahydrocannabinol (Δ9-THC), the principal component of cannabis, induces tachycardia in humans. In order to understand the impact of phytocannabinoids on human cardiovascular health, there is a need to study the metabolism of phytocannabinoids by cardiac cytochromes p450 (CYPs). CYP2J2, the primary CYP of cardiomyocytes, is responsible for the metabolism of the endocannabinoid, anandamide (AEA), into cardioprotective epoxides (EET-EAs). Herein, we have investigated the kinetics of the direct metabolism of six phytocannabinoids (Δ9-THC, Δ8-tetrahydrocannabinol, cannabinol, cannabidiol, cannabigerol, and cannabichromene) by CYP2J2. CYP2J2 mainly produces 1'/1″-OH metabolites of these phytocannabinoids. These phytocannabinoids are metabolized with greater catalytic efficiency compared to the metabolism of AEA by CYP2J2. We have also determined that the phytocannabinoids are potent inhibitors of CYP2J2-mediated AEA metabolism, with Δ9-THC being the strongest inhibitor. Most of the inhibition of CYP2J2 by the phytocannabinoids follow a noncompetitive inhibition model, and therefore dramatically reduce the formation of EET-EAs by CYP2J2. Taken together, these data demonstrate that phytocannabinoids are directly metabolized by CYP2J2 and inhibit human cardiac CYP2J2, leading to a reduction in the formation of cardioprotective EET-EAs. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A Murine Hypertrophic Cardiomyopathy Model: The DBA/2J Strain.

    PubMed

    Zhao, Wenyuan; Zhao, Tieqiang; Chen, Yuanjian; Zhao, Fengbo; Gu, Qingqing; Williams, Robert W; Bhattacharya, Syamal K; Lu, Lu; Sun, Yao

    2015-01-01

    Familial hypertrophic cardiomyopathy (HCM) is attributed to mutations in genes that encode for the sarcomere proteins, especially Mybpc3 and Myh7. Genotype-phenotype correlation studies show significant variability in HCM phenotypes among affected individuals with identical causal mutations. Morphological changes and clinical expression of HCM are the result of interactions with modifier genes. With the exceptions of angiotensin converting enzyme, these modifiers have not been identified. Although mouse models have been used to investigate the genetics of many complex diseases, natural murine models for HCM are still lacking. In this study we show that the DBA/2J (D2) strain of mouse has sequence variants in Mybpc3 and Myh7, relative to widely used C57BL/6J (B6) reference strain and the key features of human HCM. Four-month-old of male D2 mice exhibit hallmarks of HCM including increased heart weight and cardiomyocyte size relative to B6 mice, as well as elevated markers for cardiac hypertrophy including β-myosin heavy chain (MHC), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and skeletal muscle alpha actin (α1-actin). Furthermore, cardiac interstitial fibrosis, another feature of HCM, is also evident in the D2 strain, and is accompanied by up-regulation of type I collagen and α-smooth muscle actin (SMA)-markers of fibrosis. Of great interest, blood pressure and cardiac function are within the normal range in the D2 strain, demonstrating that cardiac hypertrophy and fibrosis are not secondary to hypertension, myocardial infarction, or heart failure. Because D2 and B6 strains have been used to generate a large family of recombinant inbred strains, the BXD cohort, the D2 model can be effectively exploited for in-depth genetic analysis of HCM susceptibility and modifier screens.

  20. Giant spin gap and magnon localization in the disordered Heisenberg antiferromagnet Sr 2 Ir 1 - x Ru x O 4

    DOE PAGES

    Cao, Yue; Liu, X.; Xu, Wenhu; ...

    2017-03-06

    Here, we study the evolution of magnetic excitations in the disordered two-dimensional antiferromagnet Sr 2Ir 1–xRuxO 4. The maximum energy of the magnetic excitation remains robust up to x = 0.77, with a gap opening at low dopings and increasing to over 150 meV at x = 0.77. At these higher Ru concentrations, the dispersive magnetic excitations in Sr 2IrO 4 are rendered essentially momentum independent. Up to a Ru concentration of x = 0.77, both experiments and first-principles calculations show the Ir J eff = 1/2 state remains intact. The magnetic gap arises from the local interaction anisotropy inmore » the proximity of the Ru disorder. Under the coherent potential approximation, we reproduce the experimental magnetic excitations using the disordered Heisenberg antiferromagnetic model with suppressed next-nearest-neighbor ferromagnetic coupling.« less

  1. Inducible CYP2J2 and its product 11,12-EET promotes bacterial phagocytosis: a role for CYP2J2 deficiency in the pathogenesis of Crohn's disease?

    PubMed

    Bystrom, Jonas; Thomson, Scott J; Johansson, Jörgen; Edin, Matthew L; Zeldin, Darryl C; Gilroy, Derek W; Smith, Andrew M; Bishop-Bailey, David

    2013-01-01

    The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn's disease. Unlike macrophages from control donors, macrophages from Crohn's disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn's disease.

  2. 1. Photocopied December 1977, from original in 'Report of J.B.J.,'Vol. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopied December 1977, from original in 'Report of J.B.J.,'Vol. I, Jervis Library. ELEVATION OF SING SING KILL BRIDGE, SHOWING ORIGINAL PLAN FOR AN 80-FOOT ARCH. - Old Croton Aqueduct, Sing Sing Kill Bridge, Spanning Aqueduct Street & Broadway, Ossining, Westchester County, NY

  3. Precise measurement of spin-averaged {chi}{sub cJ}(1P) mass using photon conversions in {psi}(2S){yields}{gamma}{chi}{sub cJ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Bai, J.Z.; Bian, J.G.

    2005-05-01

    Using photon conversions to e{sup +}e{sup -} pairs, the energy spectrum of inclusive photons from {psi}(2S) radiative decays is measured with photon energy resolution ({sigma}{sub E{sub {gamma}}}) in the range from 2.3 to 3.8 MeV by BESII at the Beijing Electron-Positron Collider. The {chi}{sub cJ}(1P) states (J=0,1,2) are clearly observed, and their masses and the spin-averaged {chi}{sub cJ} mass are determined to be M{sub {chi}{sub c}{sub 0}}=3414.21{+-}0.39{+-}0.27, M{sub {chi}{sub c}{sub 1}}=3510.30{+-}0.14{+-}0.16, M{sub {chi}{sub c}{sub 2}}=3555.70{+-}0.59{+-}0.39, and M({sup 3}P{sub cog})=3524.85{+-}0.32{+-}0.30 MeV/c{sup 2}, respectively.

  4. The Young L Dwarf 2MASS J11193254-1137466 Is a Planetary-mass Binary

    NASA Astrophysics Data System (ADS)

    Best, William M. J.; Liu, Michael C.; Dupuy, Trent J.; Magnier, Eugene A.

    2017-07-01

    We have discovered that the extremely red, low-gravity L7 dwarf 2MASS J11193254-1137466 is a 0.″14 (3.6 au) binary using Keck laser guide star adaptive optics imaging. 2MASS J11193254-1137466 has previously been identified as a likely member of the TW Hydrae Association (TWA). Using our updated photometric distance and proper motion, a kinematic analysis based on the BANYAN II model gives an 82% probability of TWA membership. At TWA’s 10 ± 3 Myr age and using hot-start evolutionary models, 2MASS J11193254-1137466AB is a pair of {3.7}-0.9+1.2 {M}{Jup} brown dwarfs, making it the lowest-mass binary discovered to date. We estimate an orbital period of {90}-50+80 years. One component is marginally brighter in K band but fainter in J band, making this a probable flux-reversal binary, the first discovered with such a young age. We also imaged the spectrally similar TWA L7 dwarf WISEA J114724.10-204021.3 with Keck and found no sign of binarity. Our evolutionary model-derived {T}{eff} estimate for WISEA J114724.10-204021.3 is ≈230 K higher than for 2MASS J11193254-1137466AB, at odds with the spectral similarity of the two objects. This discrepancy suggests that WISEA J114724.10-204021.3 may actually be a tight binary with masses and temperatures very similar to 2MASS J11193254-1137466AB, or further supporting the idea that near-infrared spectra of young ultracool dwarfs are shaped by factors other than temperature and gravity. 2MASS J11193254-1137466AB will be an essential benchmark for testing evolutionary and atmospheric models in the young planetary-mass regime.

  5. Ground state of a Heisenberg chain with next-nearest-neighbor bond alternation

    NASA Astrophysics Data System (ADS)

    Capriotti, Luca; Becca, Federico; Sorella, Sandro; Parola, Alberto

    2003-05-01

    We investigate the ground-state properties of the spin-half J1-J2 Heisenberg chain with a next-nearest-neighbor spin-Peierls dimerization using conformal field theory and Lanczos exact diagonalizations. In agreement with the results of a recent bosonization analysis by Sarkar and Sen [Phys. Rev. B 65, 172408 (2002)], we find that for small frustration (J2/J1) the system is in a Luttinger spin-fluid phase, with gapless excitations, and a finite spin-wave velocity. In the regime of strong frustration the ground state is spontaneously dimerized and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating the Luttinger phase from the gapped one. An accurate determination of the phase boundary is obtained numerically from the study of the excitation spectrum.

  6. Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-09-01

    Announcement of discovery of Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460. Discovered independently by John Seach (Chatsworth Island, NSW, Australia, on 2011 Sep. 06.37 UT at mag=9.8 (DSLR)) and by Yuji Nakamura (Kameyama, Mie, Japan, on 2011 Sep. 06.4313 UT at mag=9.7 C (CCD)). Posted on the IAU Central Bureau for Astronomical Telegrams Transient Object Confirmation Page (TOCP) as PNV J16364440-4132340 (Nakamura) and PNV J16364300-4132460 (Seach); identifications consolidated in VSX under PNV J16364440-4132340. Spectra obtained by A. Arai et al. on 2011 Sep. 7.42 UT suggest a highly reddened Fe II-type classical nova. Spectra by F. Walter and J. Seron obtained Sep. 2011 8.091 UT confirm a young galactic nova; they report spectra are reminiscent of an early recurrent nova. Initially announced in AAVSO Special Notice #251 (Matthew Templeton) and IAU Central Bureau Electronic Telegram 2813 (Daniel W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  7. J-2X Powerpack hot-fire test

    NASA Image and Video Library

    2008-01-31

    The first hot-fire test of the J-2X power pack 1A gas generator was performed Jan. 31 on the A-1 Test Stand at Stennis Space Center. Initial indications are that all test objectives were met. The test was designed as a 3.42-second helium spin start with gas generator ignition and it went the full scheduled duration. Test conductors reported a smooth start with normal shutdown and described the event as a 'good test.' The test was part of the early component testing for the new J-2X engine being built by NASA to power the Ares I and Ares V rockets that will carry humans back to the moon and on to Mars. It was performed as one in a series of 12 scheduled tests. Those tests began last November at Stennis, but the January 31 event represented the first hot-fire test. The Stennis tests are a critical step in the successful development of the J-2X engine.

  8. Inducible CYP2J2 and Its Product 11,12-EET Promotes Bacterial Phagocytosis: A Role for CYP2J2 Deficiency in the Pathogenesis of Crohn’s Disease?

    PubMed Central

    Bystrom, Jonas; Thomson, Scott J.; Johansson, Jörgen; Edin, Matthew L.; Zeldin, Darryl C.; Gilroy, Derek W.; Smith, Andrew M.; Bishop-Bailey, David

    2013-01-01

    The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn’s disease. Unlike macrophages from control donors, macrophages from Crohn’s disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn’s disease. PMID:24058654

  9. J-2X installation on A-1

    NASA Image and Video Library

    2007-09-20

    Core components of the J-2X engine being designed for NASA's Constellation Program recently were installed on the A-1 Test Stand at NASA's Stennis Space Center near Bay St. Louis, Miss. Tests of the components, known as Powerpack 1A, will be conducted from November 2007 through February 2008. The Powerpack 1A test article consists of a gas generator and engine turbopumps originally developed for the Apollo Program that put Americans on the moon in the late 1960s and early 1970s. Engineers are testing these heritage components to obtain data that will help them modify the turbomachinery to meet the higher performance requirements of the Ares I and Ares V launch vehicles. The upcoming tests will simulate inlet and outlet conditions that would be present on the turbomachinery during a full-up engine hot-fire test.

  10. DMRG study of the Kagome Antiferromagnetic Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Yan, Simeng; White, Steven

    2010-03-01

    We have used DMRG to study the S=1/2 Heisenberg model on the Kagome lattice, using cylindrical boundary conditions and large clusters. We have focused on the spin gap and the presence or absence of the Valence Bond Crystal (VBC) order with a 36 unit cell as studied by Marston and Zeng, Singh and Huse, and others. Our results are probably the highest accuracy results for large clusters to date. Our extrapolated results find a finite spin gap with a value of about 0.05 J. To determine whether VBC order occurs, we calculated the ground states of a variety of clusters, some of which allow the 36 site VBC order, and others which do not allow it. For narrower cylinders (width < 12) , the VBC patterns are found to vanish as the number of kept states increases. For wider systems, we do observe VBC ground states, but it is not always clear that the calculations have converged. The extrapolated energies of the two types of states are very close, within about 1%.

  11. Study of J/ψ→pp̄ and J/ψ→nn̄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.

    2012-08-31

    The decays J/ψ→pp̄ and J/ψ→nn̄ have been investigated with a sample of 225.2×10⁶ J/ψ events collected with the BESIII detector at the BEPCII e⁺e⁻ collider. The branching fractions are determined to be B(J/ψ→pp̄)=(2.112±0.004±0.031)×10⁻³ and B(J/ψ→nn̄)=(2.07±0.01±0.17)×10⁻³. Distributions of the angle θ between the proton or antineutron and the beam direction are well described by the form 1+αcos²θ, and we find α=0.595±0.012±0.015 for J/ψ→pp̄ and α=0.50±0.04±0.21 for J/ψ→nn̄. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the J/ψ→NN¯¯¯ decay.

  12. Spinon-Holon Attraction in the Supersymmetric t-J Model with 1/r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B. A.; Giuliano, D.; Laughlin, R. B.

    2001-10-22

    We derive the coordinate representation of the one-spinon one-holon wave function for the supersymmetric t-J model with 1/r{sup 2} interaction. This result allows us to show that a spinon and a holon attract each other at short distance. The attraction gets stronger as the size of the system is increased and, in the thermodynamic limit, it is responsible for the square-root singularity in the hole spectral function [Y. Kato, Phys.Rev.Lett.81, 5402 (1998)].

  13. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  14. The branching fraction calculations of Bc+ → ψ(2S)π+, Bc+ → J/ψK+ and Bc+ → J/ψDs+ decays relative to that of the Bc+ → J/ψπ+ mode

    NASA Astrophysics Data System (ADS)

    Mohammadi, Behnam

    2018-03-01

    The weak decay of Bc+ into ψ(2S)π+, J/ψK+ and J/ψDs+ mesons, observed by LHCb collaboration for the first time, are calculated in the model which takes into account the “factorizable” contributions and “nonfactorizable” corrections. The decays of Bc+ mesons into charmonia and light hadrons are expected to be well described by the factorization approximation. In the standard model, Bc+ → ψ(2S)π+, J/ψK+ decays occur through only the tree-level diagrams and so there are no CP violation in these channels. The decay Bc+ → ψ(2S)π+ is expected to proceed mainly via a b¯ →c¯ud¯ transition because the Bc+ → J/ψπ+ decay has identical final state and similar event topology, where it is chosen as the relative branching fraction channel. The ratio of branching fractions ℬ(Bc+ → J/ψK+)/ℬ(B c+ → J/ψπ+) is of particular interest since the CKM matrix element is suppressed by a factor |Vus/Vud|2 ˜ 0.05, in which the Bc+ → J/ψK+ occur through b¯ →c¯us¯ transition, but the dominant amplitude of the decay Bc+ → J/ψπ+ is a b¯ →c¯ud¯ transition. The decay Bc+ → J/ψD s+ is examined by color-allowed, color-suppressed spectator and weak annihilation diagrams. The weak annihilation topology, in contrast to decays of other beauty hadrons, is not suppressed and can contribute significantly to the decay amplitude. Because of the Bc+ → ψ(2S)π+, Bc+ → J/ψK+ and Bc+ → J/ψD s+ branching fractions are calculated relative to the Bc+ → J/ψπ+ decay, this decay mode is estimated separately, the ratio between them are 0.327 ± 0.028, 0.074 ± 0.0057 and 3.257 ± 0.293, respectively, that are compatible with the experimental data.

  15. Omigapil treatment decreases fibrosis and improves respiratory rate in dy(2J) mouse model of congenital muscular dystrophy.

    PubMed

    Yu, Qing; Sali, Arpana; Van der Meulen, Jack; Creeden, Brittany K; Gordish-Dressman, Heather; Rutkowski, Anne; Rayavarapu, Sree; Uaesoontrachoon, Kitipong; Huynh, Tony; Nagaraju, Kanneboyina; Spurney, Christopher F

    2013-01-01

    Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients. dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected. dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis. Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy

  16. Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb.

    PubMed

    Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi

    2018-01-29

    We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points [Formula: see text] and [Formula: see text] are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl 3 , a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.

  17. The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Pozuelos, F. J.; Novaković, B.; Licandro, J.; Cabrera-Lavers, A.; Bolin, Bryce; Jedicke, Robert; Gladman, Brett J.; Bannister, Michele T.; Gwyn, Stephen D. J.; Vereš, Peter; Chambers, Kenneth; Chastel, Serge; Denneau, Larry; Flewelling, Heather; Huber, Mark; Schunová-Lilly, Eva; Magnier, Eugene; Wainscoat, Richard; Waters, Christopher; Weryk, Robert; Farnocchia, Davide; Micheli, Marco

    2017-03-01

    We present deep imaging observations, orbital dynamics, and dust-tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada-France-Hawaii Telescope (CFHT) from mid-March to late July of 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ˜2300 days prior to the current perihelion passage, I.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust-tail models show that those two components became active simultaneously ˜250 days before the current perihelion, with comparable maximum loss rates of ˜0.7 and ˜0.5 kg s-1, and total ejected masses of 8 × 106 and 6 × 106 kg for fragments J1-A and J1-B, respectively. Consequently, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6-9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.

  18. Field-driven quantum phase transitions in S =1/2 spin chains

    NASA Astrophysics Data System (ADS)

    Iaizzi, Adam; Damle, Kedar; Sandvik, Anders W.

    2017-05-01

    We study the magnetization process of a one-dimensional extended Heisenberg model, the J -Q model, as a function of an external magnetic field h . In this model, J represents the traditional antiferromagnetic Heisenberg exchange and Q is the strength of a competing four-spin interaction. Without external field, this system hosts a twofold-degenerate dimerized (valence-bond solid) state above a critical value qc≈0.85 where q ≡Q /J . The dimer order is destroyed and replaced by a partially polarized translationally invariant state at a critical field value. We find magnetization jumps (metamagnetism) between the partially polarized and fully polarized state for q >qmin , where we have calculated qmin=2/9 exactly. For q >qmin , two magnons (flipped spins on a fully polarized background) attract and form a bound state. Quantum Monte Carlo studies confirm that the bound state corresponds to the first step of an instability leading to a finite magnetization jump for q >qmin . Our results show that neither geometric frustration nor spin anisotropy are necessary conditions for metamagnetism. Working in the two-magnon subspace, we also find evidence pointing to the existence of metamagnetism in the unfrustrated J1-J2 chain (J1>0 ,J2<0 ), but only if J2 is spin anisotropic. In addition to the studies at zero temperature, we also investigate quantum-critical scaling near the transition into the fully polarized state for q ≤qmin at T >0 . While the expected "zero-scale-factor" universality is clearly seen for q =0 and q ≪qmin , for q closer to qmin we find that extremely low temperatures are required to observe the asymptotic behavior, due to the influence of the tricritical point at qmin. In the low-energy theory, one can expect the quartic nonlinearity to vanish at qmin and a marginal sixth-order term should govern the scaling, which leads to a crossover at a temperature T*(q ) between logarithmic tricritical scaling and zero-scale-factor universality, with T*(q )

  19. cyNeo4j: connecting Neo4j and Cytoscape

    PubMed Central

    Summer, Georg; Kelder, Thomas; Ono, Keiichiro; Radonjic, Marijana; Heymans, Stephane; Demchak, Barry

    2015-01-01

    Summary: We developed cyNeo4j, a Cytoscape App to link Cytoscape and Neo4j databases to utilize the performance and storage capacities Neo4j offers. We implemented a Neo4j NetworkAnalyzer, ForceAtlas2 layout and Cypher component to demonstrate the possibilities a distributed setup of Cytoscape and Neo4j have. Availability and implementation: The app is available from the Cytoscape App Store at http://apps.cytoscape.org/apps/cyneo4j, the Neo4j plugins at www.github.com/gsummer/cyneo4j-parent and the community and commercial editions of Neo4j can be found at http://www.neo4j.com. Contact: georg.summer@gmail.com PMID:26272981

  20. Neuroanatomical characterization of the cellular and axonal architecture of subcortical band heterotopia in the BXD29-Tlr4lps-2J/J mouse cortex.

    PubMed

    Ramos, Raddy L; Toia, Alyssa R; Pasternack, Daniel M; Dotzler, Timothy P; Cuoco, Joshua A; Esposito, Anthony W; Le, Megan M; Parker, Alexander K; Goodman, Jeffrey H; Sarkisian, Matthew R

    2016-11-19

    Subcortical band heterotopia (SBH) are malformations of the human cerebral cortex typically associated with epilepsy and cognitive delay/disability. Rodent models of SBH have demonstrated strong face validity as they are accompanied by both cognitive deficits and spontaneous seizures or reduced seizure threshold. BXD29-Tlr4 lps-2J /J recombinant inbred mice display striking bilateral SBH, partial callosal agenesis, morphological changes in subcortical structures of the auditory pathway, and display sensory deficits in behavioral tests (Rosen et al., 2013; Truong et al., 2013, 2015). Surprisingly, these mice show no cognitive deficits and have a higher seizure threshold to chemi-convulsive treatment (Gabel et al., 2013) making them different than other rodent SBH models described previously. In the present report, we perform a detailed characterization of the cellular and axonal constituents of SBH in BXD29-Tlr4 lps-2J /J mice and demonstrate that various types of interneurons and glia as well as cortical and subcortical projections are found in SBH. In addition, the length of neuronal cilia was reduced in SBH compared to neurons in the overlying and adjacent normotopic cortex. Finally, we describe additional and novel malformations of the hippocampus and neocortex present in BXD29-Tlr4 lps-2J /J mice. Together, our findings in BXD29-Tlr4 lps-2J /J mice are discussed in the context of the known neuroanatomy and phenotype of other SBH rodent models. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. J Waves for Predicting Cardiac Events in Hypertrophic Cardiomyopathy.

    PubMed

    Tsuda, Toyonobu; Hayashi, Kenshi; Konno, Tetsuo; Sakata, Kenji; Fujita, Takashi; Hodatsu, Akihiko; Nagata, Yoji; Teramoto, Ryota; Nomura, Akihiro; Tanaka, Yoshihiro; Furusho, Hiroshi; Takamura, Masayuki; Kawashiri, Masa-Aki; Fujino, Noboru; Yamagishi, Masakazu

    2017-10-01

    This study sought to investigate whether the presence of J waves was associated with cardiac events in patients with hypertrophic cardiomyopathy (HCM). It has been uncertain whether the presence of J waves predicts life-threatening cardiac events in patients with HCM. This study evaluated consecutive 338 patients with HCM (207 men; age 61 ± 17 years of age). A J-wave was defined as J-point elevation >0.1 mV in at least 2 contiguous inferior and/or lateral leads. Cardiac events were defined as sudden cardiac death, ventricular fibrillation or sustained ventricular tachycardia, or appropriate implantable cardiac defibrillator therapy. The study also investigated whether adding the J-wave in a conventional risk model improved a prediction of cardiac events. J waves were seen in 46 (13.6%) patients at registration. Cardiac events occurred in 31 patients (9.2%) during median follow-up of 4.9 years (interquartile range: 2.6 to 7.1 years). In a Cox proportional hazards model, the presence of J waves was significantly associated with cardiac events (adjusted hazard ratio: 4.01; 95% confidence interval [CI]: 1.78 to 9.05; p = 0.001). Compared with the conventional risk model, the model using J waves in addition to conventional risks better predicted cardiac events (net reclassification improvement, 0.55; 95% CI: 0.20 to 0.90; p = 0.002). The presence of J waves was significantly associated with cardiac events in HCM. Adding J waves to conventional cardiac risk factors improved prediction of cardiac events. Further confirmatory studies are needed before considering J-point elevation as a marker of risk for use in making management decisions regarding risk in patients with HCM. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Spectrophotometry of J8, J9, and four Trojan asteroids from 0.32 to 1.05 microns

    NASA Technical Reports Server (NTRS)

    Smith, D. W.; Johnson, P. E.; Shorthill, R. W.

    1981-01-01

    New 30-channel narrowband photometry from 0.32 to 1.05 microns of the retrograde Jovian satellites J9 (to 0.7 micron) and J8 and the trailing Trojan asteroids 617, 884, 1172, and 1173 is presented. The data confirm previous measurements of J8, 617, 884, and 1172 at wavelengths less than 0.8 micron, but the extension into the infrared shows that the normalized spectral reflectance of these objects rises steadily from approximately 0.8 at 0.4 micron to approximately 1.4 at 1.05 microns, suggesting they are too bright in the near infrared to be C-type asteroids. The C classification of 1173 is confirmed. J9 is markedly redder than J8 at visible wavelengths. The results indicate a greater taxonomic contrast between these distant objects and main-belt asteroids than previously thought.

  3. Relocking of intrinsic angular momenta in collisions of diatoms with ions: Capture of H2(j = 0,1) by H2+

    NASA Astrophysics Data System (ADS)

    Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.

    2016-12-01

    Rate coefficients for capture of H2(j = 0,1) by H2+ are calculated in perturbed rotor approximation, i.e., at collision energies considerably lower than Bhc (where B denotes the rotational constant of H2). The results are compared with the results from an axially nonadiabatic channel (ANC) approach, the latter providing a very good approximation from the low-temperature Bethe-Wigner to the high temperature Langevin limit. The classical ANC approximation performs satisfactorily at temperatures above 0.1 K. At 0.1 K, the rate coefficient for j =1 is about 25% higher than that for j = 0 while the latter is close to the Langevin rate coefficient. The Bethe-Wigner limit of the rate coefficient for j = 1 is about twice that for j = 0. The analysis of the relocking of the intrinsic angular momentum of H2 during the course of the collision illustrates the significance of relocking in capture dynamics in general.

  4. Resonant slepton production yields CMS e e j j and e p Tj j excesses

    NASA Astrophysics Data System (ADS)

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-01

    Recent CMS searches for dileptoquark production report local excesses of 2.4 σ in an e e j j channel and 2.6 σ in an e p Tj j channel. Here, we simultaneously explain both excesses with resonant slepton production in R -parity violating supersymmetry. We consider resonant slepton production, which decays to a lepton and a chargino/neutralino, followed by three-body decays of the neutralino/chargino via an R -parity violating coupling. There are regions of parameter space which are also compatible at the 95% confidence level with a 2.8 σ e e j j excess in a recent CMS WR search, while being compatible with other direct search constraints. Phase II of the GERDA neutrinoless double beta decay (0 ν β β ) experiment will probe a sizable portion of the good-fit region.

  5. Searching for planetary nebulae at the Galactic halo via J-PAS and J-PLUS

    NASA Astrophysics Data System (ADS)

    Goncalves, Denise R.; Aparício-Villegas, Teresa; Akras, Stavros; Borges Fernandes, Marcelo; J-PAS Collaboration

    2015-08-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey to be carried out from a dedicated 2.5m telescope and a 4.7 sq.deg camera with 1.2Gpix. It will last 5 years and will observe 8500 sq.deg of Northern sky to a 5-σ magnitude depth for point sources, equivalent to i ~23.3 over an aperture of 2 arcsec2. The J-PAS filter system consists of 54 contiguous narrow band filters of 145-Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus 3 SDSS g, r, and i filters. The Javalambre Photometric Local Universe Survye (J-PLUS) will be an auxiliary survey ofJ-PAS (mainly for calibration) with a dedicated 0.80m telescope. J-PLUS comprises 12 filters, including g, r, i and z SDSS ones. Though about 2,500 planetary nebulae (PNe, confirmed spectroscopically) are known in the Galaxy, only 14 objects have been convincingly identified as halo PNe. They were classified as such from their location, kinematics and chemistry. Halo PNe are able to reveal precious information for the study of low- and intermediate-mass star evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense line emissions of PNe make them good objects to be searched by J-PAS, and even by J-PLUS. For instance, the halo PNe BoBn 1, DdDm 1 and PS 1, located somewhere between 11 and 24 kpc from the Sun, have B magnitudes of 16, 14 and 13.4, respectively. Such values are easily encompassed by J-PAS/J-PLUS, given the typical limit magnitude of the survey. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS/J-PLUS strategy to search for PNe. Our first results will be shown in this poster.

  6. KC-130J Transport Aircraft (KC-130J)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-433 KC-130J Transport Aircraft (KC-130J) As of FY 2017 President’s Budget Defense Acquisition...Management Information Retrieval (DAMIR) March 23, 2016 15:23:28 UNCLASSIFIED KC-130J December 2015 SAR March 23, 2016 15:23:28 UNCLASSIFIED 2...Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost KC-130J December 2015 SAR March 23

  7. Swift Observations of 2MASS J070931-353746

    NASA Astrophysics Data System (ADS)

    Schartel, Dirk Grupe Norbert; Komossa, S.

    2018-05-01

    We report of Swift observations of 2MASS J070931-353746 which was discovered as a bright X-ray source during an XMM slew on 2018-April-26. Compared with the flux seen during the ROSAT All Sky Survey (Voges et al. 1999) the source appeared to be brighter by a factor of about 16. We performed a short 1ks Swift observation of 2MASS J070931-353746 on 2018-May-18.

  8. Full Phase Multi-Band Study of Eclipsing Binaries 1SWASP J061850.43+220511.9 and 2MASSJ07095549+3643564

    NASA Astrophysics Data System (ADS)

    Terheide, Rachel; Zhang, Liyun; Han, Xianming; Lu, Hongpeng

    2018-01-01

    We present full-phase VRI-band light curves for eclipsing binary 1SWASP J061850.43+220511.9, and full-phase BVRI-band light curves for eclipsing binary 2MASS J07095549+3643564. The observations were conducted using the 0.94-m Holcomb Observatory telescope located on Butler University Campus in Indianapolis, Indiana, and the 0.6-m SARA telescope located at the Cerro Tololo Inter-American Observatory in Chile. We obtained key system parameters for both eclipsing binaries. For 1SWASP J061850.43+220511.9, the period is 0.21482 ±0.00053 days compared to 0.21439 days from an older study (Lohr et. al), the system mass ratio is found as 2.50 and the system is classified as EW type. Similarly, for 2MASS J07095549+3643564, we obtained a linear ephemeris and a physical model for the first time. We found its period to be 0.22297 ±0.00032 days, as compared to 0.446092 days and 0.11152 days from previous research (Drake et. al 2014, Hartman et. al 2011). 2MASS J07095549+3643564 is classified as a W Uma type eclipsing binary.

  9. The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, F.; Pozuelos, F. J.; Novaković, B.

    We present deep imaging observations, orbital dynamics, and dust-tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada–France–Hawaii Telescope (CFHT) from mid-March to late July of 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ∼2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of theirmore » parent body. Monte Carlo dust-tail models show that those two components became active simultaneously ∼250 days before the current perihelion, with comparable maximum loss rates of ∼0.7 and ∼0.5 kg s{sup −1}, and total ejected masses of 8 × 10{sup 6} and 6 × 10{sup 6} kg for fragments J1-A and J1-B, respectively. Consequently, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6–9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.« less

  10. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu 3(OH) 6Cl 2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction.more » Combined with the magnetic field dependence of χ kagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less

  11. Near-Infrared Spectroscopy of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32-565830.2: the Importance of Non-Equilibrium Chemistry

    NASA Technical Reports Server (NTRS)

    Leggett, S. K.; Tremblin, P.; Saumon, D.; Marley, M. S.; Morley, Caroline V.; Amundsen, D. S.; Baraffe, I.; Chabrier, G.

    2016-01-01

    We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32-565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R = 540 spectrum was obtained for W0350, covering 1.0 < ? micrometer < 1.7, and a cross-dispersed GNIRS R = 2800 spectrum was obtained for W1738, covering 0.993 - 1.087 micrometer, 1.191 - 1.305 micrometer, 1.589 - 1.631 micrometer, and 1.985 - 2.175 micrometer, in four orders. We also present revised Y JH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH4/CO and NH3/N2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T(sub eff) = 425 +/- 25K and log g = 4.0 +/- 0.25, and for the Y1, W0350, T(sub eff) = 350 +/- 25K and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3 - 9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3 - 3 Gyr, and the age of W1738 is 0.15 - 1 Gyr.

  12. TSCA Section 5(a)(3)(C) Determination for Microbial Commercial Activity Notice (MCAN) J-16-0011, J-16-0012, J-16-0013, J-16-0014, J-16-0015, and J-16-0016

    EPA Pesticide Factsheets

    This document describes EPA's Microbial Commercial Activity Notice (MCAN) review determination under amended TSCA for J-16-0011, J-16-0012, J-16-0013, J-16-0014, J-16-0015, and J-16-0016, a biofuel producing organism.

  13. J-2X engine

    NASA Image and Video Library

    2012-05-16

    On May 16, 2012, engineers at Stennis Space Center conducted a test of the next-generation J-2X engine that will help power NASA's new Space Launch System, moving NASA even closer to a return to deep space.

  14. Ethanol teratogenesis in the C57BL/6J, DBA/2J, and A/J inbred mouse strains.

    PubMed

    Boehm, S L; Lundahl, K R; Caldwell, J; Gilliam, D M

    1997-01-01

    Research has shown variations in susceptibility to alcohol-related birth defects in humans. Genetic differences are one reason for this variability. This study compared three inbred mouse strains to determine whether they differ in their susceptibilities to ethanol teratogenesis because previous studies have generated conflicting data. Pregnant C57BL/6J (B6), DBA/2J (D2), and A/J (A) dams were intubated intragastrically with either an acute dose of ethanol (5.8 g/kg) or an isocaloric amount of maltose-dextrine on day 9 of pregnancy. Litters were removed on day 18 of pregnancy and examined for gross, soft-tissue, and skeletal malformations. Results showed that ethanol-exposed B6 litters had a higher percentage of digit (19%), kidney (24%), and skeletal (32%, mostly vertebral) malformations than their maltose-exposed controls (7% or below). Prenatal exposure to ethanol increased skeletal (68%, both rib and vertebral) malformations for A litters when compared to their maltose-exposed controls (4%), but did not increase digit or kidney malformations. Ethanol-exposed D2 litters did not differ from maltose-exposed controls. Maternal blood ethanol levels did not differ among the B6, D2, and A strains. These results provide additional evidence suggesting a genetic component to ethanol teratogenesis.

  15. Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

    NASA Astrophysics Data System (ADS)

    Poilblanc, Didier

    2017-09-01

    A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

  16. Magnetization curves of di-, tri- and tetramerized mixed spin-1 and spin-2 Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Karľová, Katarína; Strečka, Jozef

    2018-05-01

    Magnetization curves of ferrimagnetic mixed spin-1 and spin-2 Heisenberg chains are calculated with the help of density-matrix renormalization group method and quantum Monte Carlo simulations by considering a spin dimerization (1,2), trimerization (1,1,2) and tetramerization (1,1,1,2). The investigated mixed-spin Heisenberg chains can be alternatively viewed as a pure spin-1 Heisenberg chain, which contains at a regular lattice positions spin-2 particles. Unlike the antiferromagnetic spin-1 Heisenberg chain solely displaying a zero magnetization plateau due to the Haldane phase, the ferrimagnetic mixed spin-(1,2), spin-(1,1,2) and spin-(1,1,1,2) Heisenberg chains exhibit more striking magnetization curves involving at least two intermediate magnetization plateaux and quantum spin-liquid states.

  17. j5 v2.8.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Nathan

    j5 automates and optimizes the design of the molecular biological process of cloning/constructing DNA. j5 enables users to benefit from (combinatorial) multi-part scar-less SLIC, Gibson, CPEC, Golden Gate assembly, or variants thereof, for which automation software does not currently exist, without the intense labor currently associated with the process. j5 inputs a list of the DNA sequences to be assembled, along with a Genbank, FASTA, jbei-seq, or SBOL v1.1 format sequence file for each DNA source. Given the list of DNA sequences to be assembled, j5 first determines the cost-minimizing assembly strategy for each part (direct synthesis, PCR/SOE, or oligo-embedding),more » designs DNA oligos with Primer3, adds flanking homology sequences (SLIC, Gibson, and CPEC; optimized with Primer3 for CPEC) or optimized overhang sequences (Golden Gate) to the oligos and direct synthesis pieces, and utilizes BLAST to check against oligo mis-priming and assembly piece incompatibility events. After identifying DNA oligos that are already contained within a local collection for reuse, the program estimates the total cost of direct synthesis and new oligos to be ordered. In the instance that j5 identifies putative assembly piece incompatibilities (multiple pieces with high flanking sequence homology), the program suggests hierarchical subassemblies where possible. The program outputs a comma-separated value (CSV) file, viewable via Excel or other spreadsheet software, that contains assembly design information (such as the PCR/SOE reactions to perform, their anticipated sizes and sequences, etc.) as well as a properly annotated genbank file containing the sequence resulting from the assembly, and appends the local oligo library with the oligos to be ordered j5 condenses multiple independent assembly projects into 96-well format for high-throughput liquid-handling robotics platforms, and generates configuration files for the PR-PR biology-friendly robot programming language. j5 thus

  18. Discovery of the Y1 Dwarf WISE J064723.23-623235.5

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Beichman, Charles A.; Tinney, C. G.; Faherty, Jacqueline K.; Schneider, Adam; Mace, Gregory N.

    2013-10-01

    We present the discovery of a very cold, very low mass, nearby brown dwarf using data from the NASA Wide-field Infrared Survey Explorer (WISE). The object, WISE J064723.23-623235.5, has a very red WISE color of W1-W2 > 3.77 mag and a very red Spitzer Space Telescope color of ch1-ch2 = 2.82 ± 0.09 mag. In J MKO -ch2 color (7.58 ± 0.27 mag) it is one of the two or three reddest brown dwarfs known. Our grism spectrum from the Hubble Space Telescope (HST) confirms it to be the seventeenth Y dwarf discovered, and its spectral type of Y1 ± 0.5 makes it one of the four latest-type Y dwarfs classified. Astrometric imaging from Spitzer and HST, combined with data from WISE, provides a preliminary parallax of π = 115 ± 12 mas (d = 8.7 ± 0.9 pc) and proper motion of μ = 387 ± 25 mas yr-1 based on 2.5 yr of monitoring. The spectrum implies a blue J-H color, for which model atmosphere calculations suggest a relatively low surface gravity. The best fit to these models indicates an effective temperature of 350-400 K and a mass of ~5-30 M Jup. Kinematic analysis hints that this object may belong to the Columba moving group, which would support an age of ~30 Myr and thus an even lower mass of <2 M Jup, but verification would require a radial velocity measurement not currently possible for a J = 22.7 mag brown dwarf.

  19. Photodissociation of cis-, trans-, and 1,1-dichloroethylene in the ultraviolet range: characterization of Cl((2)P(J)) elimination.

    PubMed

    Hua, Linqiang; Zhang, Xiaopeng; Lee, Wei-Bin; Chao, Meng-Hsuan; Zhang, Bing; Lin, King-Chuen

    2010-01-14

    By using photofragment velocity imaging detection coupled with a (2 + 1) resonance-enhanced multiphoton ionization technique, the elimination channel of spin-orbit chlorine atoms in photodissociation of cis-, trans-, and 1,1-dichloroethylene at two photolysis wavelengths of 214.5 and 235 nm is investigated. Translational energy and angular distributions of Cl((2)P(J)) fragmentation are acquired. The Cl((2)P(J)) fragments are produced by two competing channels. The fast dissociation component with higher translational energy is characterized by a Gaussian distribution, resulting from a curve crossing of the initially excited (pi, pi*) state to nearby repulsive (pi, sigma*) and/or (n, sigma*). In contrast, the slow component with a lower translational energy is characterized by a Boltzmann distribution, which dissociates on the vibrationally hot ground state relaxed from the (pi, pi*) state via internal conversion. cis-C(2)H(2)Cl(2) is found to have a larger branching of Boltzmann component than the other two isomers. The fraction of available energy partitioning into translation increases along the trend of cis- < trans- < 1,1-C(2)H(2)Cl(2). This trend may be fitted by a rigid radical model and interpreted by means of a torque generated during the C-Cl bond cleavage. The anisotropy parameters are determined, and the transition dipole moments are expected to be essentially along the C horizontal lineC bond axis. The results are also predicted theoretically. The relative quantum yields of Cl((2)P(J)) have a similar value for the three isomers at the two photolysis wavelengths.

  20. J-2X Test Articles Using FDM Process

    NASA Technical Reports Server (NTRS)

    Anderson, Ted; Ruf, Joe; Steele, Phil

    2010-01-01

    This viewgraph presentation gives a brief history of the J-2X engine, along with detailed description of the material demonstrator and test articles that were created using Fused Deposition Modeling (FDM) process.

  1. Partial dispensability of Djp1's J domain in peroxisomal protein import in Saccharomyces cerevisiae results from genetic redundancy with another class II J protein, Caj1.

    PubMed

    Dobriyal, Neha; Tripathi, Prerna; Sarkar, Susrita; Tak, Yogesh; Verma, Amit K; Sahi, Chandan

    2017-05-01

    J proteins are obligate co-chaperones of Hsp70s. Via their signature J domain, all J proteins interact with their partner Hsp70s and stimulate their weak ATPase activity, which is vital for Hsp70 functions. The dependency of J proteins on their J domain is such that mutations in critical amino acids in the J domain often results into a null phenotype for a particular J protein. Here, we show that the J domain of Djp1, a cytosolic J protein important for peroxisomal protein import in Saccharomyces cerevisiae, is partially dispensable. A complete deletion of Djp1 J domain resulted into only partial loss in peroxisomal protein import function. Instead, the C-terminal domain of Djp1 was found to be essential for proper localization of the peroxisomal targeted GFP-PTS1. Furthermore, we show that Caj1, another cytosolic J protein, also has some role in peroxisomal protein import. Caj1 was found to be partially redundant with Djp1 as cells lacking both Djp1 and Caj1 resulted into a much more severe defect in GFP-PTS1 localization. Based on these results, we propose that dispensability of J domains could be attributed to genetic redundancy between different J proteins sharing common structural topology and cellular localization.

  2. Measurement of direct CP violation parameters in B± → J/ψK± and B± → J/ψπ± decays with 10.4 fb-1 of Tevatron data.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Beattie, M; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hart, B; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Holzbauer, J; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lamont, I; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; Mason, N; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2013-06-14

    We present a measurement of the direct CP-violating charge asymmetry in B(±) mesons decaying to J/ψK(±) and J/ψπ(±) where J/ψ decays to μ(+) μ(-), using the full run II data set of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B(-) and B(+) mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of A(J/ψK) = [0.59 ± 0.37]%, which is the most precise measurement to date, and A(J/ψπ) = [-4.2 ± 4.5]%. Both measurements are consistent with standard model predictions.

  3. VIIRS/J1 polarization narrative

    NASA Astrophysics Data System (ADS)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith R.; Young, James B.; Fest, Eric; Butler, James; Wang, Tung R.; Monroy, Eslim O.; Turpie, Kevin; Meister, Gerhard; Thome, Kurtis J.

    2015-09-01

    The polarization sensitivity of the Visible/NearIR (VISNIR) bands in the Joint Polar Satellite Sensor 1 (J1) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5 %, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4 %, 4.4 %, 3.1 %, and 4.3 %, respectively with a polarization characterization uncertainty of less than 0.38%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands is mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at the National Aeronautics and Space Administration's (NASA) Goddard center and at the National Institute of Science and Technology (NIST) facility and the use of NIST's Traveling Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (T-SIRCUS) for polarization testing and associated analyses and results.

  4. Multiple Quantum Coherences (MQ) NMR and Entanglement Dynamics in the Mixed-Three-Spin XXX Heisenberg Model with Single-Ion Anisotropy

    NASA Astrophysics Data System (ADS)

    Hamid, Arian Zad

    2016-12-01

    We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.

  5. Branching fraction measurement of J /ψ →KSKL and search for J /ψ →KSKS

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chen, Z. X.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, S. H.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, B. Q.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, X. H.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-12-01

    Using a sample of 1.31 ×109 J /ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J /ψ →KSKL and KSKS . The branching fraction of J /ψ →KSKL is determined to be B (J /ψ →KSKL)=(1.93 ±0.01 (stat )±0.05 (syst ))×10-4 , which significantly improves on previous measurements. No clear signal is observed for the J /ψ →KSKS process, and the upper limit at the 95% confidence level for its branching fraction is determined to be B (J /ψ →KSKS)<1.4 ×10-8 , which improves on the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.

  6. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.

    PubMed

    Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli

    2016-03-15

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.

  7. Testing and Functions of the J2X Gas Generator

    NASA Technical Reports Server (NTRS)

    Miller, Nicholas

    2009-01-01

    The Ares I, NASA s new solid rocket based crew launch vehicle, is a two stage in line rocket that has made its waytothe forefront of NASA s endeavors. The Ares I s Upper Stage (US) will be propelled by a J-2X engine which is fueled by liquid hydrogen and liquid oxygen. The J-2X is a variation based on two of its predecessor s, the J-2 and J-2S engines. ET50 is providing the design support for hardware required to run tests on the J-2X Gas Generator (GG) that increases the delivery pressure of the supplied combustion fuels that the engine burns. The test area will be running a series of tests using different lengths and curved segments of pipe and different sized nozzles to determine the configuration that best satisfies the thrust, heat, and stability requirements for the engine. I have had to research the configurations that are being tested and gain an understanding of the purpose of the tests. I then had to research the parts that would be used in the test configurations. I was taken to see parts similar to the ones used in the test configurations and was allowed to review drawings and dimensions used for those parts. My job over this summer has been to use the knowledge I have gained to design, model, and create drawings for the un-fabricated parts that are necessary for the J-2X Workhorse Gas Generator Phase IIcTest.

  8. A new detection scheme for ultrafast 2D J-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Akoka, Serge

    2007-06-01

    Recent ultrafast techniques enable 2D NMR spectra to be obtained in a single scan. A modification of the detection scheme involved in this technique is proposed, permitting the achievement of 2D 1H J-resolved spectra in 500 ms. The detection gradient echoes are substituted by spin echoes to obtain spectra where the coupling constants are encoded along the direct ν2 domain. The use of this new J-resolved detection block after continuous phase-encoding excitation schemes is discussed in terms of resolution and sensitivity. J-resolved spectra obtained on cinnamic acid and 3-ethyl bromopropionate are presented, revealing the expected 2D J-patterns with coupling constants as small as 2 Hz.

  9. A PHOTOMETRIC STUDY OF FOUR RECENTLY DISCOVERED CONTACT BINARIES: 1SWASP J064501.21+342154.9, 1SWASP J155822.10-025604.8, 1SWASP J212808.86+151622.0, AND UCAC4 436-062932

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djurašević, G.; Latković, O.; Cséki, A.

    We present new, high-quality multicolor observations of four recently discovered contact binaries, 1SWASP J064501.21+342154.9, 1SWASP J155822.10-025604.8, 1SWASP J212808.86+151622.0, and UCAC4 436-062932, and analyze their light curves to determine orbital and physical parameters using the modeling program of G. Djurašević. In the absence of spectroscopic observations, the effective temperatures of the brighter components are estimated from the color indices, and the mass ratios are determined with the q -search method. The analysis shows that all four systems are W UMa type binaries in shallow contact configurations, consisting of late-type main-sequence primaries and evolved secondaries with active surface regions (dark or bright spots) resultingmore » from magnetic activity or ongoing transfer of thermal energy between the components. We compare the derived orbital and stellar parameters for these four variables with a large sample of previously analyzed W UMa stars and find that our results fit it well.« less

  10. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-07-01

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operationalmore » modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.« less

  11. Major contribution of the medial amygdala to hypertension in BPH/2J genetically hypertensive mice.

    PubMed

    Jackson, Kristy L; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-04-01

    BPH/2J mice are recognized as a neurogenic model of hypertension primarily based on overactivity of the sympathetic nervous system and greater neuronal activity in key autonomic cardiovascular regulatory brain regions. The medial amygdala (MeAm) is a forebrain region that integrates the autonomic response to stress and is the only region found to have greater Fos during the night and daytime in BPH/2J compared with BPN/3J mice. To determine the contribution of the MeAm to hypertension, the effect of neuronal ablation on blood pressure (BP) was assessed in BPH/2J (n=7) and normotensive BPN/3J mice (n=7). Mice were preimplanted with radiotelemetry devices to measure 24-hour BP and cardiovascular responses to stress, before and 1 to 3 weeks after bilateral lesions of the MeAm. Baseline BP was 121±4 mm Hg in BPH/2J and 101±2 mm Hg in BPN/3J mice (Pstrain<0.001). MeAm lesions reduced BP by 11±2 mm Hg in BPH/2J mice (Plesion<0.001) but had no effect in BPN/3J mice. The hypotensive effect of lesions in BPH/2J mice was similar during both day and night, suggesting that the MeAm has tonic effects on BP, but the pressor response to stress was maintained in both strains. Midfrequency BP power was attenuated in both strains (Plesion<0.05) and the depressor responses to pentolinium after enalaprilat pretreatment was attenuated after lesions in BPH/2J mice (Plesion<0.001; n=3). These findings indicate that the MeAm provides a tonic contribution to hypertension in BPH/2J mice, which is independent of its role in stress reactivity or circadian BP influences.

  12. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0

    NASA Astrophysics Data System (ADS)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.

    2015-08-01

    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  13. Ion imaging studies of product rotational alignment in collisions of NO ( X2Π1/2, j=0.5) with Ar

    NASA Astrophysics Data System (ADS)

    Wade, Elisabeth A.; Thomas Lorenz, K.; Chandler, David W.; Barr, James W.; Barnes, George L.; Cline, Joseph I.

    2004-06-01

    The collision-induced rotational alignment of NO ( X2Π1/2, v=0, j=4.5 , 8.5, 11.5, 12.5, and 15.5) is measured for rotationally inelastic scattering of NO ( X2Π1/2, v=0, j=0.5) with Ar at 520 ± 70 cm -1 of center-of-mass collision energy. The experiments are performed by velocity-mapped ion imaging with polarized 1+1 ' REMPI of the scattered NO product. Differential cross-sections (DCSs), corrected for alignment effects, are also reported. While the alignment correction is important, it does not change the positions of the observed rotational rainbows. The alignment moments and DCSs are compared with calculations using Alexander's CCSD(T) PESs. The theoretical and experimental DCSs show excellent agreement, as do the theoretical and experimental alignment moments for low Δ j. For high Δ j collisions and back-scattered trajectories, which sample the hard wall of the PES, the theoretical and experimental alignment moments show less agreement.

  14. Intertwined order in a frustrated four-leg t - J cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodaro, John F.; Jiang, Hong -Chen; Kivelson, Steven A.

    Here, we report a density-matrix renormalization group study of the t–J model with nearest (t 1 and J 1) and next-nearest (t 2 and J 2) interactions on a four-leg cylinder with concentration δ=1/8 of doped holes. We observe an astonishingly complex interplay between uniform d-wave superconductivity (SC) and strong spin and charge-density wave ordering tendencies (SDW and CDW). Depending on parameters, the CDWs can be commensurate with period 4 or 8. By comparing the charge ordering vectors with 2k F, we rule out Fermi surface nesting-induced density wave order in our model. Magnetic frustration (i.e., J 2/J 1~1/2) significantlymore » quenches SDW correlations with little effect on the CDW. Typically, the SC order is strongly modulated at the CDW ordering vector and exhibits d-wave symmetry around the cylinder. There is no evidence of a near-degenerate tendency to pair-density wave (PDW) ordering, charge 4e SC, or orbital current order.« less

  15. Intertwined order in a frustrated four-leg t - J cylinder

    DOE PAGES

    Dodaro, John F.; Jiang, Hong -Chen; Kivelson, Steven A.

    2017-04-12

    Here, we report a density-matrix renormalization group study of the t–J model with nearest (t 1 and J 1) and next-nearest (t 2 and J 2) interactions on a four-leg cylinder with concentration δ=1/8 of doped holes. We observe an astonishingly complex interplay between uniform d-wave superconductivity (SC) and strong spin and charge-density wave ordering tendencies (SDW and CDW). Depending on parameters, the CDWs can be commensurate with period 4 or 8. By comparing the charge ordering vectors with 2k F, we rule out Fermi surface nesting-induced density wave order in our model. Magnetic frustration (i.e., J 2/J 1~1/2) significantlymore » quenches SDW correlations with little effect on the CDW. Typically, the SC order is strongly modulated at the CDW ordering vector and exhibits d-wave symmetry around the cylinder. There is no evidence of a near-degenerate tendency to pair-density wave (PDW) ordering, charge 4e SC, or orbital current order.« less

  16. CaMn 2Sb 2: Spin waves on a frustrated antiferromagnetic honeycomb lattice

    DOE PAGES

    McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; ...

    2015-05-22

    Here we presenmore » t inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn 2 Sb 2 , which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first-and second-neighbor exchange interactions J 1 and J 2 in the Mn plane and also an exchange interaction between planes. The determined ratio J 2/J 11/6 suggests that CaMn 2 Sb 2 is an example of a compound that lies very close to the mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the Néel phase and two different spiral phases coexist. Lastly, the magnitude of the determined exchange interactions reveals a mean field ordering temperature ≈ 4 times larger than the reported Néel temperature T N = 85 K, suggesting significant frustration arising from proximity to the tricritical point.« less

  17. Structural basis for the mutation-induced dysfunction of human CYP2J2: a computational study.

    PubMed

    Cong, Shan; Ma, Xiao-Tu; Li, Yi-Xue; Wang, Jing-Fang

    2013-06-24

    Arachidonic acid is an essential fatty acid in cells, acting as a key inflammatory intermediate in inflammatory reactions. In cardiac tissues, CYP2J2 can adopt arachidonic acid as a major substrate to produce epoxyeicosatrienoic acids (EETs), which can protect endothelial cells from ischemic or hypoxic injuries and have been implicated in the pathogenesis of coronary artery disease and hypertension. However, some CYP2J2 polymorphisms, i.e., T143A and N404Y, significantly reduce the metabolism of arachidonic acid. Lacking experimental structural data for CYP2J2, the detailed mechanism for the mutation-induced dysfunction in the metabolism of arachidonic acid is still unknown. In the current study, three-dimensional structural models of the wild-type CYP2J2 and two mutants (T143A and N404Y) were constructed by a coordinate reconstruction approach and ab initio modeling using CYP2R1 as a template. The structural analysis of the computational models showed that the wild-type CYP2J2 exhibited a typical CYP fold with 12 alpha-helices and three beta-sheets on one side and with the heme group buried deeply inside the core. Due to the small and hydrophobic side-chain, T143A mutation could destabilize the C helix, further placing the water access channel in a closed state to prevent the escape of the produced water molecules during the catalytic processes. N404Y mutation could reposition the side-chain of Leu(378), making it no longer form a hydrogen bond with the carboxyl group of arachidonic acid. However, this hydrogen bond was essential for substrate recognition and positioning in a correct orientation.

  18. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Moumita, E-mail: moumitadeb44@gmail.com; Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com

    2016-05-23

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu{sub 3}WO{sub 6}.

  19. Observation of Psi(3770)-->gammachi(c1)-->gammagammaJ/Psi.

    PubMed

    Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H

    2006-05-12

    From e(+)e(-) collision data acquired with the CLEO detector at the Cornell Electron Storage Ring, we observe the non-DD(_) decay Psi(3770))-->gammachi(c1) with a statistical significance of 6.6 standard deviations, using the two-photon cascades to J/Psi and J/Psi-->l(+)l(-). We determine sigma(e(=)e(-)-->Psi(3770))xBeta(Psi(3770)-->gammachi(c1))=(18.0 +/- 3.3 +/- 2.5) pb and branching fraction Beta(Psi(3770)-->gammachi(c1)=(2.8 +/- 0.5+/-0.4) x 10(-3). We set 90% C.L. upper limits for the transition to chi(c2) (chi(c0)): sigma x Beta<5.7 pb (<282 pb) and Beta<0.9 x 10(-3) (<44 x 10(-3)). We also determine Gamma(Psi(3770)gammachi(c1))/Gamma(Psi(3770)-->pi(+)pi(-)J/Psi)=1.5 +/- 0.3 +/- 0.3 (>1.0 at 90% C.L.), which bears upon the interpretation of X(3872).

  20. J-2X Fuel Turbopump Point of Departure: The Performance of the J-2s Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, S. R.; Becht, D. G.; Mulder, A. D.

    2008-01-01

    To aid the J-2X program design effort with detailed performance and environment information, the J-2S fuel turbopump (FTP) inducer has undergone a thorough test series in both water and hydrogen. The test series utilizes both inducer only and a complete pump configuration to assess the inducer interaction to the overall turbopump system. The test goals include verification of suction performance against heritage J-2S data, head production, effects of thermodynamic suppression head (TSH), and evaluation of the inducer dynamic pressure caused by cavitation instabilities. Test facilities at both Pratt & Whitney Rocketdyne (PWR) and NASA s Stennis Space Center (SSC) are employed for the testing. The inducer only water test effort conducted at PWR established performance curves for suction performance, head production, and efficiency over a wide operating range. Because the heritage J-2S suction performance data set is in hydrogen, it is desired to obtain current suction performance data in hydrogen as well, thus avoiding the reliance on a theoretical TSH correlation for direct comparison. This data then provides an empirically based TSH correlation allowing for the comparison of water test suction data to system suction requirements. The FTP testing performed at SSC provides these suction performance relationships as well as inlet duct dynamic pressures during liquid hydrogen operation. The test effort successfully confirms the heritage J-2S suction performance and establishes the amount of TSH between water and hydrogen operation at the design flow coefficient. Correlating data is also obtained for cavitating instability frequency content, illustrating the validity of using the wide flow range water test data to predict hydrogen performance.

  1. Optical control of ground-state atomic orbital alignment: Cl(2P3/2) atoms from HCl(v=2,J=1) photodissociation.

    PubMed

    Sofikitis, Dimitris; Rubio-Lago, Luis; Martin, Marion R; Ankeny Brown, Davida J; Bartlett, Nathaniel C-M; Alexander, Andrew J; Zare, Richard N; Rakitzis, T Peter

    2007-10-14

    H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.

  2. Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice.

    PubMed

    Jackson, Kristy L; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-03-01

    BPH/2J hypertensive mice have an exaggerated sympathetic contribution to blood pressure (BP). Premotor sympathetic neurons within the rostroventrolateral medulla (RVLM) are a major source of sympathetic vasomotor tone and major site of action of the centrally acting sympatholytic agent, rilmenidine. The relative cardiovascular effect of rilmenidine in BPH/2J versus normotensive BPN/3J mice was used as an indicator of the involvement of the RVLM in the sympathetic contribution to hypertension in BPH/2J mice. BPH/2J and BPN/3J mice were pre-implanted with telemetry devices to measure BP in conscious unrestrained mice. Rilmenidine was administered acutely (n=7-9/group), orally for 14 days, at a wide range of doses (n=5/group), and also infused intracerebroventricularly for 7 days (n=6/group). Acute intraperitoneal rilmenidine induced greater depressor and bradycardic responses in BPH/2J than BPN/3J mice (Pstrain<0.01). Both responses were reduced by atropine pre-treatment, with the remaining hypotensive effect being small and comparable between strains (Pstrain=1.0). This suggests that vagally induced reductions in cardiac output were responsible for the hypotension. Chronic intracerebroventricularly infused rilmenidine reduced BP from baseline marginally in BPH/2J mice during the dark (active) period (-6.5 ± 2 mmHg; P=0.006). Chronic orally administered rilmenidine (1-12 mg/kg per day) also had minimal effect on 24-h BP in both strains (P>0.16). The sympathetic vasomotor inhibitory effect of rilmenidine is minimal in both strains and similar in hypertensive BPH/2J and BPN/3J mice. Thus, hypertension in BPH/2J mice is not likely mediated by greater neuronal activity in the RVLM, and agents such as rilmenidine would be an ineffective treatment for this form of neurogenic hypertension.

  3. MACS J0416.1-2403: Impact of line-of-sight structures on strong gravitational lensing modelling of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chirivì, G.; Suyu, S. H.; Grillo, C.; Halkola, A.; Balestra, I.; Caminha, G. B.; Mercurio, A.; Rosati, P.

    2018-06-01

    Exploiting the powerful tool of strong gravitational lensing by galaxy clusters to study the highest-redshift Universe and cluster mass distributions relies on precise lens mass modelling. In this work, we aim to present the first attempt at modelling line-of-sight (LOS) mass distribution in addition to that of the cluster, extending previous modelling techniques that assume mass distributions to be on a single lens plane. We have focussed on the Hubble Frontier Field cluster MACS J0416.1-2403, and our multi-plane model reproduces the observed image positions with a rms offset of 0.''53. Starting from this best-fitting model, we simulated a mock cluster that resembles MACS J0416.1-2403 in order to explore the effects of LOS structures on cluster mass modelling. By systematically analysing the mock cluster under different model assumptions, we find that neglecting the lensing environment has a significant impact on the reconstruction of image positions (rms 0.''3); accounting for LOS galaxies as if they were at the cluster redshift can partially reduce this offset. Moreover, foreground galaxies are more important to include into the model than the background ones. While the magnification factor of the lensed multiple images are recovered within 10% for 95% of them, those 5% that lie near critical curves can be significantly affected by the exclusion of the lensing environment in the models. In addition, LOS galaxies cannot explain the apparent discrepancy in the properties of massive sub-halos between MACS J0416.1-2403 and N-body simulated clusters. Since our model of MACS J0416.1-2403 with LOS galaxies only reduced modestly the rms offset in the image positions, we conclude that additional complexities would be needed in future models of MACS J0416.1-2403.

  4. Characterisation of J(O1D) at Cape Grim 2000-2005

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.

    2014-07-01

    Estimates of the rate of production of excited oxygen atoms due to the photolysis of ozone J(O1D) have been derived from radiation measurements carried out at Cape Grim, Tasmania (40.6° S, 144.7° E). These estimates agree well with measurements made during SOAPEX-II and with model estimates of clear sky photolysis rates. Observations spanning 2000-2005 have been used to quantify the impact of season, cloud and ozone column amount. The annual cycle of J(O1D) has been investigated via monthly means. These means show an inter-annual variation (monthly standard deviation) of 9%, but in midsummer and midwinter this reduces to 3-4%. Factors dependent upon solar zenith angle and satellite derived total ozone column explain 87% of the observed signal variation of the individual measurements. The impact of total column ozone, expressed as a Radiation Amplification Factor (RAF), is found to be ~1.45, in agreement with model estimates. This ozone dependence explains 20% of the variation observed at medium solar zenith angles (30-50°). The impact of clouds results in a median reduction of 14% in J(O1D) for the same solar zenith angle range. At all solar zenith angles less than 50° approximately 10% of measurements show enhanced J(O1D) due to cloud scattering and this fraction climbs to 25% at higher solar angles. Including estimates of cloudiness derived from Long Wave Radiation measurements resulted in a statistically significant fit to observations but the quality of the fit did not increase significantly as measured by the reduced R2.

  5. J-2X Powerpack tests begin

    NASA Image and Video Library

    2007-12-18

    COLD FLOW - Liquid oxygen runs through the piping on Stennis Space Center's A-1 Test Stand on Dec. 18 to test the ability of the J-2X engine's Powerpack 1A to withstand the temperature change and pressure. Just visible above and to the right of the test article's nozzle is a frosty pipe, indicating the supercold fuel is flowing as it should.

  6. Dalitz plot analyses of J /ψ →π+π-π0, J /ψ →K+K-π0, and J /ψ →Ks0K±π∓ produced via e+e- annihilation with initial-state radiation

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Fritsch, M.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Szczepaniak, A. P.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Pennington, M. R.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2017-04-01

    We study the processes e+e- →γISRJ /ψ , where J /ψ →π+π-π0, J /ψ →K+K-π0, and J /ψ →KS0K±π∓ using a data sample of 519 fb-1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e- collider at center-of-mass energies at and near the Υ (n S ) (n =2 ,3 ,4 ) resonances. We measure the ratio of branching fractions R1=B/(J /ψ →K+K-π0) B (J /ψ →π+π-π0) and R2=B/(J /ψ →KS0K±π∓) B (J /ψ →π+π-π0) . We perform Dalitz plot analyses of the three J /ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J /ψ →π+π-π0 decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450 ) in all three J /ψ decay modes and measure the relative branching fraction: R (ρ (1450 ))=B/(ρ (1450 )→K+K-) B (ρ (1450 )→π+π-) =0.307 ±0.084 (stat)±0.082 (sys).

  7. Novel Δ J =1 Sequence in 78Ge: Possible Evidence for Triaxiality

    NASA Astrophysics Data System (ADS)

    Forney, A. M.; Walters, W. B.; Chiara, C. J.; Janssens, R. V. F.; Ayangeakaa, A. D.; Sethi, J.; Harker, J.; Alcorta, M.; Carpenter, M. P.; Gürdal, G.; Hoffman, C. R.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Rogers, A. M.; Seweryniak, D.; Stefanescu, I.; Zhu, S.

    2018-05-01

    A sequence of low-energy levels in Ge783246 has been identified with spins and parity of 2+, 3+, 4+, 5+, and 6+. Decays within this band proceed strictly through Δ J =1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2+ level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ -rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reduced transition probabilities for the Δ J =2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ =3 0 ° , there are sequences of higher-spin levels connected by strong Δ J =1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.

  8. Novel Δ J = 1 Sequence in Ge 78 : Possible Evidence for Triaxiality

    DOE PAGES

    Forney, A. M.; Walters, W. B.; Chiara, C. J.; ...

    2018-05-22

    Here, a sequence of low-energy levels in 78 32Ge 46 has been identified with spins and parity of 2 +, 3 +, 4 +, 5 +, and 6 +. Decays within this band proceed strictly through ΔJ=1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2+ level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ-rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reducedmore » transition probabilities for the ΔJ=2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ=30°, there are sequences of higher-spin levels connected by strong ΔJ=1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.« less

  9. Novel Δ J = 1 Sequence in Ge 78 : Possible Evidence for Triaxiality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forney, A. M.; Walters, W. B.; Chiara, C. J.

    Here, a sequence of low-energy levels in 78 32Ge 46 has been identified with spins and parity of 2 +, 3 +, 4 +, 5 +, and 6 +. Decays within this band proceed strictly through ΔJ=1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2+ level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ-rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reducedmore » transition probabilities for the ΔJ=2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ=30°, there are sequences of higher-spin levels connected by strong ΔJ=1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.« less

  10. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    PubMed Central

    Hanif, Ahmad; Edin, Matthew L.; Zeldin, Darryl C.; Morisseau, Christophe; Falck, John R.

    2017-01-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05). Similarly, inhibition of ω-hydroxylases increased repayment volume and repayment duration, in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Endothelial overexpression of CYP2J2 significantly changed oxylipin profiles, including increased EETs (P < 0.05), increased EpOMEs (P < 0.05), and decreased 8-iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid

  11. Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57BL/6J mice relative to outbred SKH1 hairless mice

    PubMed Central

    Konger, Raymond L.; Derr-Yellin, Ethel; Hojati, Delaram; Lutz, Cathleen; Sundberg, John P.

    2016-01-01

    Hairless albino Crl:SKH1-Hrhr mice are commonly utilized for studies in which hair or pigmentation would introduce an impediment to observational studies. Being an outbred strain, the SKH1 model suffers from key limitations that are not seen with congenic mouse strains. Inbred and congenic C57BL/6J mice are commonly utilized for modified genetic mouse models. We compare the acute UV-induced photoresponse between outbred SKH1 mice and an immune competent, hairless, albino C57BL/6J congenic mouse line [B6.Cg-Tyrc-2J Hrhr/J]. Histologically, B6.Cg-Tyrc-2J Hrhr/J skin is indistinguishable from that of SKH1 mice. The skin of both SKH1 and B6.Cg-Tyrc-2J Hrhr/J mice exhibited a reduction in hypodermal adipose tissue, the presence of utricles and dermal cystic structures, the presence of dermal granulomas, and epidermal thickening. In response to a single 1500 J/m2 UVB dose, the edema and apoptotic response was equivalent in both mouse strains. However, B6.Cg-Tyrc-2J Hrhr/J mice exhibited a more robust delayed sunburn reaction, with an increase in epidermal erosion, scab formation, and myeloperoxidase activity relative to SKH1 mice. Compared with SKH1 mice, B6.Cg-Tyrc-2J Hrhr/J also exhibited an aberrant proliferative response to this single UV exposure. Epidermal Ki67 immunopositivity was significantly suppressed in B6.Cg-Tyrc-2J Hrhr/J mice at 24 hours post-UV. A smaller non-significant reduction in Ki67 labeling was observed in SKH1 mice. Finally, at 72 hours post-UV, SKH1 mice, but not B6.Cg-Tyrc-2J Hrhr/J mice, exhibited a significant increase in Ki67 immunolabeling relative to non-irradiated controls. Thus, B6.Cg-Tyrc-2J Hrhr/J mice are suitable for photobiology experiments. PMID:27095432

  12. Characterisation and molecular dynamic simulations of J15 asparaginase from Photobacterium sp. strain J15.

    PubMed

    Yaacob, Mohd Adilin; Hasan, Wan Atiqah Najiah Wan; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Basri, Mahiran; Leow, Thean Chor

    2014-01-01

    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.

  13. 75 FR 70104 - Airworthiness Directives; Eurocopter France (ECF) Model SA330F, G, and J; and AS332C, L, L1, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Airworthiness Directives; Eurocopter France (ECF) Model SA330F, G, and J; and AS332C, L, L1, and L2 Helicopters... (ASB) No. 52.13 for the SA330F, G, and J helicopters, and 52.00.38 for the AS332C, C1, L, L1, and L2... authority citation for part 39 continues to read as follows: Authority: 49 U.S.C. 106(g), 40113, 44701. Sec...

  14. Near-infrared spectroscopy of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32–565830.2: The importance of non-equilibrium chemistry

    DOE PAGES

    Leggett, Sandy K.; Tremblin, Patrick; Saumon, Didier; ...

    2016-06-03

    Here, we present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32–565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R = 540 spectrum was obtained for W0350, coveringmore » $$1.0\\lt \\lambda \\;\\mu {\\rm{m}}$$ $$\\lt \\;1.7$$, and a cross-dispersed Gemini near-infrared spectrograph R = 2800 spectrum was obtained for W1738, covering 0.993–1.087 μm, 1.191–1.305 μm, 1.589–1.631 μm, and 1.985–2.175 μm, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H-band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs, the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH 4/CO and NH 3/N 2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, $${T}_{{\\rm{eff}}}=425\\pm 25\\;{\\rm{K}}$$, and log $$g=4.0\\pm 0.25$$, and for the Y1, W0350, $${T}_{{\\rm{eff}}}=350\\pm 25\\;{\\rm{K}}$$, and log $$g=4.0\\pm 0.25$$. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3–9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3–3 Gyr, and the age of W1738 is 0.15–1 Gyr.« less

  15. 26 CFR 1.904(j)-0 - Outline of regulation provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Outline of regulation provisions. 1.904(j)-0 Section 1.904(j)-0 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Income from Sources Without the United States § 1.904(j)-0 Outline of...

  16. Evidence for the decay B0→J/ψω and measurement of the relative branching fractions of Bs0 meson decays to J/ψη and J/ψη'

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellan Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, Th.; Bay, A.; Beddow, J.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Büchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Domingo Bonal, F.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Esperante Pereira, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J.-C.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Harrison, P. F.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicks, E.; Hill, D.; Hoballah, M.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Huston, R. S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, M.; Keaveney, J.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y. M.; Kochebina, O.; Komarov, I.; Komarov, V.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Li, L.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; von Loeben, J.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Mac Raighne, A.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Magnin, J.; Maino, M.; Malde, S.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Mazurov, A.; McCarthy, J.; McGregor, G.; McNulty, R.; Meissner, M.; Merk, M.; Merkel, J.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pie Valls, B.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Rogers, G. J.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sobczak, K.; Soler, F. J. P.; Solomin, A.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tsaregorodtsev, A.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Videau, I.; Vieira, D.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, H.; Voß, C.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2013-02-01

    First evidence of the B0→J/ψω decay is found and the Bs0→J/ψη and Bs0→J/ψη' decays are studied using a dataset corresponding to an integrated luminosity of 1.0 fb-1 collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of √{s}=7 TeV. The branching fractions of these decays are measured relative to that of the B0→J/ψρ0 decay: {B(B0→J/ψω)}/{B(B0→J/ψρ0)}=0.89±0.19(stat)-0.13+0.07(syst), {B(B}/{s0→J/ψη)B(B0→J/ψρ0)}=14.0±1.2(stat)-1.5+1.1(syst)-1.0+1.1(fd/fs), {B(B}/{s0→J/ψη')B(B0→J/ψρ0)}=12.7±1.1(stat)-1.3+0.5(syst)-0.9+1.0(fd/fs), where the last uncertainty is due to the knowledge of fd/fs, the ratio of b-quark hadronization factors that accounts for the different production rate of B0 and Bs0 mesons. The ratio of the branching fractions of Bs0→J/ψη' and Bs0→J/ψη decays is measured to be {B(B}/{s0→J/ψη')B(Bs0→J/ψη)}=0.90±0.09(stat)-0.02+0.06(syst).

  17. Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya

    2018-04-01

    Context. Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. Aim. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. Methods: We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the 4.5 yr time separation between the two observations. Results: We found that there is no diffuse emission associated with AX J1714.1-3912, which is instead the point-like source CXOU J171343.9-391205. We discovered rapid time variability (timescale 103 s), together with a high intrinsic absorption and a hard nonthermal spectrum (power law with photon index Γ 1.4). We also found that the X-ray flux of the source drops down by 1-2 orders of magnitude on a timescale of a few years. Conclusions: Our results suggest a possible association between AX J1714.1-3912 and a previously unknown supergiant fast X-ray transient, although further follow-up observations are necessary to prove this association definitively.

  18. A high-fat diet differentially regulates glutathione phenotypes in the obesity-prone mouse strains DBA/2J, C57BL/6J, and AKR/J.

    PubMed

    Norris, Katie M; Okie, Whitney; Kim, Woo Kyun; Adhikari, Roshan; Yoo, Sarah; King, Stephanie; Pazdro, Robert

    2016-12-01

    The ubiquitous tripeptide glutathione (GSH) is a critical component of the endogenous antioxidant defense system. Tissue GSH concentrations and redox status (GSH/GSSG) are genetically controlled, but it is unclear whether interactions between genetic background and diet affect GSH homeostasis. The current study tested the hypothesis that a high-fat diet regulates GSH homeostasis in a manner dependent on genetic background. At 4 months of age, female mice representing 3 obesity-prone inbred strains-C57BL/6J (B6), DBA/2J (D2), and AKR/J (AKR)-were randomly assigned to consume a control (10% energy from fat) or high-fat (62% energy from fat) diet for 10 weeks (n=5/diet per strain). Tissue GSH levels, GSSG levels, and GSH/GSSG were quantified, and hepatic expression of GSH-related enzymes was evaluated by quantitative reverse transcription polymerase chain reaction. The high-fat diet caused a decrease in hepatic GSH/GSSG in D2 mice. In contrast, B6 mice exhibited a decrease in GSSG levels in the liver and kidney, as well as a resultant increase in renal GSH/GSSG. AKR mice also exhibited increased renal GSH/GSSG on a high-fat diet. Finally, the high-fat diet induced a unique gene expression response in D2 mice compared with B6 and AKR. The D2 response was characterized by up-regulation of glutamate-cysteine ligase modifier subunit and down-regulation of glutathione reductase, whereas the B6 and AKR responses were characterized by up-regulation of glutathione peroxidase 1. Two-way analysis of variance analyses confirmed several diet-strain interactions within the GSH system, and linear regression models highlighted relationships between body mass and GSH outcomes as well. Overall, our data indicate that dietary fat regulates the GSH system in a strain-dependent manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Machinist's Mate J 1 and C: Aviation.

    ERIC Educational Resources Information Center

    Naval Training Publications Center, Memphis, TN.

    The rate training manual is one of a series of training manuals prepared for enlisted personnel of the Navy and Naval Reserve studying for advancement from the Aviation Machinist's Mate ADJ2 rating to ADJ1 to ADJC. Aviation Machinist's Mates J maintain aircraft jet engines and their related systems. Chpater 1 discusses the enlisted rating…

  20. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE PAGES

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations.more » Cloud-J is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  1. Vertical transmission of avian leukosis virus subgroup J (ALV-J) from hens infected through artificial insemination with ALV-J infected semen.

    PubMed

    Li, Yang; Cui, Shuai; Li, Weihua; Wang, Yixin; Cui, Zhizhong; Zhao, Peng; Chang, Shuang

    2017-06-29

    Avian leukosis virus (ALV) is one of the main causes of tumour development within the poultry industry in China. The subgroup J avian leukosis viruses (ALV-J), which induce erythroblastosis and myelocytomatosis, have the greatest pathogenicity and transmission ability within this class of viruses. ALV can be transmitted both horizontally and vertically; however, the effects of ALV infection in chickens-especially roosters-during the propagation, on future generations is not clear. Knowing the role of the cock in the transmission of ALV from generation to generation might contribute to the eradication programs for ALV. The results showed that two hens inseminated with ALV-J-positive semen developed temporary antibody responses to ALV-J at 4-5 weeks post insemination. The p27 antigen was detected in cloacal swabs of six hens, and in 3 of 26 egg albumens at 1-6 weeks after insemination. Moreover, no viremia was detected at 6 weeks after insemination even when virus isolation had been conducted six times at weekly intervals for each of the 12 females. However, ALV-J was isolated from 1 of their 34 progeny chicks at 1 week of age, and its gp85 had 98.4%-99.2% sequence identity with the gp85 of ALV-J isolated from semen samples of the six cocks. Our findings indicated that females that were late horizontally infected with ALV-J by artificial insemination might transmit the virus to progeny through eggs, which amounts to vertical transmission.

  2. Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL-1, by Genomic and Structural Analysis

    PubMed Central

    Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham

    2014-01-01

    Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012

  3. Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1.

    PubMed

    Yang, Jixian; Wei, Wei; Pi, Shanshan; Ma, Fang; Li, Ang; Wu, Dan; Xing, Jie

    2015-11-01

    The adsorption of Cu(2+) and Zn(2+) by extracellular polymeric substances (EPS) extracted from Klebsiella sp. J1 and competitive adsorption mechanism were investigated. Equilibrium adsorption capacities of Cu(2+) (1.77mMg(-1)) on Klebsiella sp. J1 EPS were higher than those of Zn(2+) (1.36mMg(-1)) in single systems. The competitive Langmuir and Langmuir-Freundlich isotherm models were proven to be effective in describing the experimental data of binary component system. The three dimensional sorption surfaces of binary component system demonstrated that the presence of Cu(2+) more significantly decreased the sorption of Zn(2+), but the sorption of Cu(2+) was not disturbed by the presence of Zn(2+). FTIR and EEM results revealed the adsorption sites of Cu(2+) entirely overlapped with those of Zn(2+). Cu(2+) and Zn(2+) showed competitive adsorption in binary systems, and Cu(2+) was preferentially adsorbed because of the stronger complexation ability of the protein-like substances in Klebsiella sp. J1 EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. SPECTRUM AND MORPHOLOGY OF THE TWO BRIGHTEST MILAGRO SOURCES IN THE CYGNUS REGION: MGRO J2019+37 AND MGRO J2031+41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Abeysekara, U.; Linnemann, J. T.

    2012-07-10

    The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum ismore » measured in the range 1-100 TeV using the last three years of Milagro data (2005-2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7{sup +5}{sub -2} Multiplication-Sign 10{sup -10} s{sup -1} m{sup -2} TeV{sup -1}, a spectral index of 2.0{sup +0.5}{sub -1.0}, and a cutoff energy of 29{sup +50}{sub -16} TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1{sup +0.6}{sub -0.6} Multiplication-Sign 10{sup -10} s{sup -1} m{sup -2} TeV{sup -1} and a spectral index of 3.22{sup +0.23}{sub -0.18}. The overall flux is subject to a {approx}30% systematic uncertainty. The systematic uncertainty on the power-law indices is {approx}0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.« less

  5. Spectrum and Morphology of the Two Brightest Milagro Sources in the Cygnus Region: MGRO J2019+37 and MGRO J2031+41

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Abeysekara, U.; Allen, B. T.; Aune, T.; Berley, D.; Bonamente, E.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Ellsworth, R. W.; Galbraith-Frew, J. G.; Gonzalez, M. M.; Goodman, J. A.; Hoffman, C. M.; Hüntemeyer, P. H.; Hui, C. M.; Kolterman, B. E.; Linnemann, J. T.; McEnery, J. E.; Mincer, A. I.; Morgan, T.; Nemethy, P.; Pretz, J.; Ryan, J. M.; Saz Parkinson, P. M.; Shoup, A.; Sinnis, G.; Smith, A. J.; Vasileiou, V.; Walker, G. P.; Williams, D. A.; Yodh, G. B.

    2012-07-01

    The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum is measured in the range 1-100 TeV using the last three years of Milagro data (2005-2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7+5 -2 × 10-10 s-1 m-2 TeV-1, a spectral index of 2.0+0.5 -1.0, and a cutoff energy of 29+50 -16 TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1+0.6 -0.6 × 10-10 s-1 m-2 TeV-1 and a spectral index of 3.22+0.23 -0.18. The overall flux is subject to a ~30% systematic uncertainty. The systematic uncertainty on the power-law indices is ~0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.

  6. Photon transitions in {psi}(2S) decays to {chi}{sub cJ}(1P) and {eta}{sub c}(1S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athar, S.B.; Avery, P.; Breva-Newell, L.

    2004-12-01

    We have studied the inclusive photon spectrum in {psi}(2S) decays using the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates for {psi}(2S){yields}{gamma}{chi}{sub cJ}(1P) (J=0,1,2). We also confirm the hindered magnetic dipole (M1) transition, {psi}(2S){yields}{gamma}{eta}{sub c}(1S). However, the direct M1 transition {psi}(2S){yields}{gamma}{eta}{sub c}(2S) observed by the Crystal Ball as a narrow peak at a photon energy of 91 MeV is not found in our data.

  7. Models of the strongly lensed quasar DES J0408-5354

    NASA Astrophysics Data System (ADS)

    Agnello, A.; Lin, H.; Buckley-Geer, L.; Treu, T.; Bonvin, V.; Courbin, F.; Lemon, C.; Morishita, T.; Amara, A.; Auger, M. W.; Birrer, S.; Chan, J.; Collett, T.; More, A.; Fassnacht, C. D.; Frieman, J.; Marshall, P. J.; McMahon, R. G.; Meylan, G.; Suyu, S. H.; Castander, F.; Finley, D.; Howell, A.; Kochanek, C.; Makler, M.; Martini, P.; Morgan, N.; Nord, B.; Ostrovski, F.; Schechter, P.; Tucker, D.; Wechsler, R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Gill, M. S.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-12-01

    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass Mp(RE, G2) ≲ 1.0 × 1010 M⊙. The main deflector has stellar mass log _{10}(M_{\\star }/M_{⊙})=11.49^{+0.46}_{-0.32}, a projected mass Mp(RE, G1) ≈ 6 × 1011 M⊙ within its Einstein radius RE, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267-280 km s-1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (ΔtAB = (135.0 ± 12.6) d, ΔtBD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.

  8. Fully quantum-state resolved study of NO{sub 2} photodissociation. Correlated NO({sup 2}{Pi}{sub {Omega}}, {nu} = 0 J,A) + O({sup 3}P{sub j}) distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanov, A.; Bieler, C.R.; Reisler, H.

    1995-09-14

    Relative O({sup 3}P{sub j} = 2.1.0) spin-orbit populations correlated with specific NO[{sup 2}{Pi}{sub {Omega}} = {1/2}, 3/2; {nu} = 0; f; {Lambda} = {Pi}(A{prime}), {Pi}(A{double_prime})] product states were obtained following photolysis of NO{sub 2} at excess energies E{sup {+-}} = 390, 425, and 1054 cm{sup -1}. These fully quantum state-resolved measurements were carried out by recording spatial profiles of recoiling NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) products using polarized radiation for photolysis and state-selective laser ionization detection. The relative O({sup 3}P{sub j}) populations correlated with each NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) state show marked fluctuations at each excess energy as amore » function of rotational state and {Lambda}-doublet component. The relative populations also fluctuate as a function of excess energy. The O({sup 3}P{sub j}) spin-orbit population ratios, when averaged over all measurements, exhibit distributions that are colder than statistical, in agreement with previous results. In particular, we find that, on average, O({sup 3}P{sub 1}):O({sup 3}P{sub 2}) population ratios correlated with the ground NO({sup 2}{Pi}{sub {1/2}}) state are colder than the corresponding ratios correlated with the excited NO({sup 2}{Pi}{sub 3/2}) spin-orbit state. These results are in agreement with the state-specific calculations of Katigiri and Kato. 45 refs., 12 figs., 3 tabs.« less

  9. Evidence for the decay B0→J/ψω and measurement of the relative branching fractions of Bs0 meson decays to J/ψη and J/ψη‧

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Aaij, R.; Abellan Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, Th.; Bay, A.; Beddow, J.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Büchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Domingo Bonal, F.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Esperante Pereira, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J.-C.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Harrison, P. F.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicks, E.; Hill, D.; Hoballah, M.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Huston, R. S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, M.; Keaveney, J.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y. M.; Kochebina, O.; Komarov, I.; Komarov, V.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Li, L.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; von Loeben, J.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Mac Raighne, A.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Magnin, J.; Maino, M.; Malde, S.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Mazurov, A.; McCarthy, J.; McGregor, G.; McNulty, R.; Meissner, M.; Merk, M.; Merkel, J.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pie Valls, B.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Rogers, G. J.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sobczak, K.; Soler, F. J. P.; Solomin, A.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tsaregorodtsev, A.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Videau, I.; Vieira, D.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, H.; Voß, C.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhong, L.; Zvyagin, A.

    2013-02-01

    First evidence of the B0→J/ψω decay is found and the Bs0→J/ψη and Bs0→J/ψη‧ decays are studied using a dataset corresponding to an integrated luminosity of 1.0 fb-1 collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of s=7 TeV. The branching fractions of these decays are measured relative to that of the B0→J/ψρ0 decay:B(B0→J/ψω)B(B0→J/ψρ0)=0.89±0.19(stat)-0.13+0.07(syst), B(Bs0→J/ψη)B(B0→J/ψρ0)=14.0±1.2(stat)-1.5+1.1(syst)-1.0+1.1(fdfs), B(Bs0→J/ψη‧)B(B0→J/ψρ0)=12.7±1.1(stat)-1.3+0.5(syst)-0.9+1.0(fdfs), where the last uncertainty is due to the knowledge of fd/fs, the ratio of b-quark hadronization factors that accounts for the different production rate of B0 and Bs0 mesons. The ratio of the branching fractions of Bs0→J/ψη‧ and Bs0→J/ψη decays is measured to beB(Bs0→J/ψη‧)B(Bs0→J/ψη)=0.90±0.09(stat)-0.02+0.06(syst).

  10. Branching fractions for transitions of {psi}(2S) to J/{psi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez, H.; Ge, J. Y.; Miller, D. H.

    2008-07-01

    We report determination of branching fractions for the decays {psi}(2S){yields}h+J/{psi}, where h=any, {pi}{sup +}{pi}{sup -}, {pi}{sup 0}{pi}{sup 0}, {eta}, {pi}{sup 0}, and {gamma}{gamma} through {chi}{sub c0,1,2}. These measurements use 27M {psi}(2S) decays produced in e{sup +}e{sup -} collision data collected with the CLEO detector. The resulting branching fractions and ratios thereof improve upon previously achieved precision in all cases, and in combination with other measurements permit determination of B({chi}{sub cJ}{yields}{gamma}J/{psi}) and B({psi}(2S){yields}light hadrons)

  11. Accuracy of 1H magnetic resonance spectroscopy for quantification of 2-hydroxyglutarate using linear combination and J-difference editing at 9.4T.

    PubMed

    Neuberger, Ulf; Kickingereder, Philipp; Helluy, Xavier; Fischer, Manuel; Bendszus, Martin; Heiland, Sabine

    2017-12-01

    Non-invasive detection of 2-hydroxyglutarate (2HG) by magnetic resonance spectroscopy is attractive since it is related to tumor metabolism. Here, we compare the detection accuracy of 2HG in a controlled phantom setting via widely used localized spectroscopy sequences quantified by linear combination of metabolite signals vs. a more complex approach applying a J-difference editing technique at 9.4T. Different phantoms, comprised out of a concentration series of 2HG and overlapping brain metabolites, were measured with an optimized point-resolved-spectroscopy sequence (PRESS) and an in-house developed J-difference editing sequence. The acquired spectra were post-processed with LCModel and a simulated metabolite set (PRESS) or with a quantification formula for J-difference editing. Linear regression analysis demonstrated a high correlation of real 2HG values with those measured with the PRESS method (adjusted R-squared: 0.700, p<0.001) as well as with those measured with the J-difference editing method (adjusted R-squared: 0.908, p<0.001). The regression model with the J-difference editing method however had a significantly higher explanatory value over the regression model with the PRESS method (p<0.0001). Moreover, with J-difference editing 2HG was discernible down to 1mM, whereas with the PRESS method 2HG values were not discernable below 2mM and with higher systematic errors, particularly in phantoms with high concentrations of N-acetyl-asparate (NAA) and glutamate (Glu). In summary, quantification of 2HG with linear combination of metabolite signals shows high systematic errors particularly at low 2HG concentration and high concentration of confounding metabolites such as NAA and Glu. In contrast, J-difference editing offers a more accurate quantification even at low 2HG concentrations, which outweighs the downsides of longer measurement time and more complex postprocessing. Copyright © 2017. Published by Elsevier GmbH.

  12. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K -π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  13. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-04-10

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K -π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  14. SU(2) slave-boson formulation of spin nematic states in S=(1)/(2) frustrated ferromagnets

    NASA Astrophysics Data System (ADS)

    Shindou, Ryuichi; Momoi, Tsutomu

    2009-08-01

    An SU(2) slave-boson formulation of bond-type spin nematic orders is developed in frustrated ferromagnets, where the spin nematic states are described as the resonating spin-triplet valence bond (RVB) states. The d vectors of spin-triplet pairing ansatzes play the role of the directors in the bond-type spin-quadrupolar states. The low-energy excitations around such spin-triplet RVB ansatzes generally comprise the (potentially massless) gauge bosons, massless Goldstone bosons, and spinon individual excitations. Extending the projective symmetry-group argument to the spin-triplet ansatzes, we show how to identify the number of massless gauge bosons efficiently. Applying this formulation, we next (i) enumerate possible mean-field solutions for the S=(1)/(2) ferromagnetic J1-J2 Heisenberg model on the square lattice, with ferromagnetic nearest neighbor J1 and competing antiferromagnetic next-nearest neighbor J2 and (ii) argue their stability against small gauge fluctuations. As a result, two stable spin-triplet RVB ansatzes are found in the intermediate coupling regime around J1:J21:0.4 . One is the Z2 Balian-Werthamer (BW) state stabilized by the Higgs mechanism and the other is the SU(2) chiral p -wave (Anderson-Brinkman-Morel) state stabilized by the Chern-Simon mechanism. The former Z2 BW state in fact shows the same bond-type spin-quadrupolar order as found in the previous exact diagonalization study [Shannon , Phys. Rev. Lett. 96, 027213 (2006)].

  15. Swift observation of Nova Ophiuchi 2018 No.2 = PNV J17140261-2849237 = TCP J17140253-2849233

    NASA Astrophysics Data System (ADS)

    Sokolovsky, K.

    2018-03-01

    The nova candidate PNV J17140261-2849237 = TCP J17140253-2849233 was discovered by H. Nishimura, T. Kojima, K. Nishiyama and F. Kabashima. A. Takao reports the transient (9.5mag) visible at unfiltered images obtained on 2018-03-10.753 UT. Spectroscopic observations with the 2m Liverpool Telescope confirmed the transient to be a Fe II type nova (ATel #11398).

  16. J-2X powerpack

    NASA Image and Video Library

    2012-12-13

    The J-2X powerpack assembly was fired up one last time on Dec. 13 at NASA's John C. Stennis Space Center in Mississippi, finishing a year of testing on an important component of America's next heavy-lift rocket. The powerpack assembly burned millions of pounds of propellants during a series of 13 tests during 2012 totaling more than an hour and a half.

  17. Optical spectroscopic followup of XMMSL1 J164303.7+653253 in the error box of IGR J16426+6536

    NASA Astrophysics Data System (ADS)

    Parisi, P.; Masetti, N.; Malizia, A.; Morelli, L.; Mason, E.; Dean, A. J.; Ubertini, P.

    2008-10-01

    We report on a spectroscopic observation of the optical object USNO-A2.0 1500-06133361 (with J2000 coordinates RA = 16 43 04.07, Dec = +65 32 50.9 and magnitude R ~ 18.9) inside the error circle of the XMM-Newton slew source XMMLS1 J164303.7+653253 (see Ibarra et al., ATel #1397), possibly associated with the unidentified INTEGRAL source IGR J16426+6536 (Bird et al. 2007, ApJS, 170, 175). The observations were performed on 2008 February 04, starting at 06:10 UT, with DOLORES, a focal reducer instrument installed on the 3.58m Telescopio Nazionale Galileo (TNG) in the Astronomical Observatory of Roque de Los Muchachos (Santa Cruz de La Palma, Spain), for a total exposure time of 1800 s.

  18. J-2X engine installation

    NASA Image and Video Library

    2011-06-10

    A J-2X next-generation rocket engine is lifted onto the A-2 Test Stand at Stennis Space Center. Testing of the engine began the following month. The engine is being developed for NASA by Pratt & Whitney Rocketdyne and could help carry humans beyond low-Earth orbit into deep space once more.

  19. Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice

    NASA Astrophysics Data System (ADS)

    Wu, Ruirui; Wu, Xiafang; Wang, Huihui; Fang, Xin; Li, Yongfang; Gao, Lanyue; Sun, Guifan; Pi, Jingbo; Xu, Yuanyuan

    2017-03-01

    Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains.

  20. DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance.

    PubMed

    Østergaard, Mette V; Pinto, Vanda; Stevenson, Kirsty; Worm, Jesper; Fink, Lisbeth N; Coward, Richard J M

    2017-02-01

    Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies. Copyright © 2017 the American Physiological Society.

  1. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J).

    PubMed

    Lee, Hong Jo; Lee, Kyung Youn; Jung, Kyung Min; Park, Kyung Je; Lee, Ko On; Suh, Jeong-Yong; Yao, Yongxiu; Nair, Venugopal; Han, Jae Yong

    2017-12-01

    Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na + /H + exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Free-Spinning-Tunnel Investigation of a 1/20-Scale Model of the North American T2J-1 Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1959-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel to determine the erect and inverted spin and recovery characteristics of a 1/20-scale dynamic model of the North American T2J-1 airplane. The model results indicate that the optimum technique for recovery from erect spins of the airplane will be dependent on the distribution of the disposable load. The recommended recovery procedure for spins encountered at the flight design gross weight is simultaneous rudder reversal to against the spin and aileron movement to with the spin. With full wingtip tanks plus rocket installation and full internal fuel load, rudder reversal should be followed by a downward movement of the elevator. For the flight design gross weight plus partially full wingtip tanks, recovery should be attempted by simultaneous rudder reversal to against the spin, movement of ailerons to with the spin, and ejection of the wing-tip tanks. The optimum recovery technique for airplane-inverted spins is rudder reversal to against the spin with the stick maintained longitudinally and laterally neutral.

  3. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  4. Measurement of prompt J/ ψ pair production in pp collisions at = 7 Tev

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá, W. L.; Alves, G. A.; Martins, M. Correa; Martins, T. Dos Reis; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.; Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Vetere, M. Lo; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Ricca, G. Della; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Moreno, S. Carrillo; Valencia, F. Vazquez; Pedraza, I.; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Da Cruz E Silva, C. Beirão; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Yuldashev, B. S.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Vázquez, D. Domínguez; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Yzquierdo, A. Pérez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Negra, M. Della; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.

    2014-09-01

    Production of prompt J/ ψ meson pairs in proton-proton collisions at = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb-1. The two J/ ψ mesons are fully reconstructed via their decays into μ + μ - pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ ψ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ ψ transverse momentum ( p T J/ ψ ) and rapidity (| y J/ ψ |): | y J/ ψ | < 1.2 for p {T/J/ ψ } > 6.5 GeV/ c; 1.2 < | y J/ ψ | < 1.43 for a p T threshold that scales linearly with | y J/ ψ | from 6.5 to 4.5 GeV/ c; and 1.43 < | y J/ ψ | < 2.2 for p {T/J/ ψ } > 4.5 GeV/ c. The total cross section, assuming unpolarized prompt J/ ψ pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ ψ polarization imply modifications to the cross section ranging from -31% to +27%. [Figure not available: see fulltext.

  5. A novel ΔJ = 1 sequence in 78Ge: possible evidence for triaxiality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forney, A. M.; Walters, W. B.; Chiara, C. J.

    2018-02-20

    A sequence of low-energy levels inmore » $$78\\atop{32}$$Ge 46 has been identi ed with spins and parity of 2 +, 3 +, 4 +, 5 +, and 6 +. Decays within this band proceed strictly through ΔJ = 1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2 + level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ-rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reduced transition probabilities for the ΔJ = 2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Lastly, within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ = 30°, there are sequences of higher-spin levels connected by strong ΔJ = 1 transitions which decay in the same manner as those observed experimentally, yet calculated at too high an excitation energy.« less

  6. The structures of 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles related to J147, a drug for treating Alzheimer's disease.

    PubMed

    Farrán, M Ángeles; Bonet, M Ángels; Claramunt, Rosa M; Torralba, M Carmen; Alkorta, Ibon; Elguero, José

    2018-04-01

    J147 [N-(2,4-dimethylphenyl)-2,2,2-trifluoro-N'-(3-methoxybenzylidene)acetohydrazide] has recently been reported as a promising new drug for the treatment of Alzheimer's disease. The X-ray structures of seven new 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles, namely 1-(3,4-dimethylphenyl)-4-phenyl-5-trifluoromethyl-1H-1,2,3-triazole (C 17 H 14 F 3 N 3 , 1), 1-(3,4-dimethylphenyl)-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 2), 1-(3,4-dimethylphenyl)-4-(4-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 3), 1-(2,4-dimethylphenyl)-4-(4-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 4), 1-[2,4-bis(trifluoromethyl)phenyl]-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 10 F 9 N 3 O, 5), 1-(3,4-dimethoxyphenyl)-4-(3,4-dimethoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 19 H 18 F 3 N 3 O 4 , 6) and 3-[4-(3,4-dimethoxyphenyl)-5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl]phenol (C 17 H 14 F 3 N 3 O 3 , 7), have been determined and compared to that of J147. B3LYP/6-311++G(d,p) calculations have been performed to determine the potential surface and molecular electrostatic potential (MEP) of J147, and to examine the correlation between hydrazone J147 and the 1,2,3-triazoles, both bearing a CF 3 substituent. Using MEPs, it was found that the minimum-energy conformation of 4, which is nearly identical to its X-ray structure, is closely related to one of the J147 seven minima.

  7. Confirming the gamma-ray blazar nature of the low energy counterpart QSO GB6 J1604+5714 of 2FGL J1604.6+5710 with WISE

    NASA Astrophysics Data System (ADS)

    Massaro, F.; D'Abrusco, R.; Paggi, A.

    2012-06-01

    Following the rapid optical variability detected in the QSO GB6 J1604+5714 (=BZQJ1604+5714) (ATEL #4184), associated to the gamma-ray source 2FGL J1604.6+5710 (=1FGL J1604.3+5710) in Nolan et al. (2012 ApJS, 199, 31), we searched in the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010 AJ, 140, 1868) catalog at the VLBI position of the QSO GB6 J1604+5714 (R.A.(J2000): 16h04m37.3546s, Dec.(J2000): +57d14m36.660s) reported in Beasley et al......

  8. The ortho:para-H_2 ratio in C- and J-type shocks

    NASA Astrophysics Data System (ADS)

    Wilgenbus, D.; Cabrit, S.; Pineau des Forêts, G.; Flower, D. R.

    2000-04-01

    We have computed extensive grids of models of both C- and J-type planar shock waves, propagating in dark, cold molecular clouds, in order to study systematically the behaviour of the ortho:para-H_2 ratio. Careful attention was paid to both macroscopic (dynamical) and microscopic (chemical reactions and collisional population transfer in H_2) aspects. We relate the predictions of the models to observational determinations of the ortho:para-H_2 ratio using both pure rotational lines and rovibrational lines. As an illustration, we consider ISO and ground-based H_2 observations of HH 54. Neither planar C-type nor planar J-type shocks appear able to account fully for these observations. Given the additional constraints provided by the observed ortho:para H_2 ratios, a C-type bowshock, or a C-type precursor followed by a J-type shock, remain as plausible models. Tables~2a-f and 4a-f are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  9. Word Frequency Analysis. MOS: 62J. Skill Levels 1 & 2.

    DTIC Science & Technology

    1981-05-01

    WCRDI COUNT2 W OR u, CO UIT 3 WORD 3 COUNT’. kCRD4 I CELL 9 CLNTER I CERERLINE t CENTRALLY 2 C [JTP I FGAL 2 CZRT..IN I CESSIVE 46 LFI’ 14 C H%1% ~ 4...4 .4* 4 AD ,G4 ANGLI 4 fC S 0A 4 r. 5 54b d204 4 BE- J 4OCK4 ECAGNE 4 TTA .(.KFTS 4 B𔃻E.KER 4 44 CC!’PPCT 4 13FL*.~If 4 CCLC CTwV7CCC~L< EL4 CO 4 CE...t CI RE I CARTcUL I CAR7~ I 3 CARRY I CAL 7I C!! 11 E t C., TFPS I CA~TCH I C4TEO I co usIN Kr I CL TC1 I CELL 1CTNlERL!NEz I ’ENI P.LIY Ic3VEI

  10. Models of the strongly lensed quasar DES J0408-5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; Lin, H.; Buckley-Geer, L.

    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass M p(R E, G2) ≲ 1.0 × 10 10 M⊙. The main deflector has stellar mass log10 (M */M⊙) =11.49more » $$+0.46\\atop{-0.32}$$ log10 (M */M⊙)=11.49-0.32+0.46 , a projected mass M p(R E, G1) ≈ 6 × 10 11 M⊙ within its Einstein radius R E, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267–280 km s -1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (Δt AB = (135.0 ± 12.6) d, Δt BD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. Lastly, we also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  11. Models of the strongly lensed quasar DES J0408-5354

    DOE PAGES

    Agnello, A.; Lin, H.; Buckley-Geer, L.; ...

    2017-09-07

    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass M p(R E, G2) ≲ 1.0 × 10 10 M⊙. The main deflector has stellar mass log10 (M */M⊙) =11.49more » $$+0.46\\atop{-0.32}$$ log10 (M */M⊙)=11.49-0.32+0.46 , a projected mass M p(R E, G1) ≈ 6 × 10 11 M⊙ within its Einstein radius R E, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267–280 km s -1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (Δt AB = (135.0 ± 12.6) d, Δt BD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. Lastly, we also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  12. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism.

    PubMed

    Moy, Sheryl S; Riddick, Natallia V; Nikolova, Viktoriya D; Teng, Brian L; Agster, Kara L; Nonneman, Randal J; Young, Nancy B; Baker, Lorinda K; Nadler, Jessica J; Bodfish, James W

    2014-02-01

    Restricted repetitive behaviors are core symptoms of autism spectrum disorders (ASDs). The range of symptoms encompassed by the repetitive behavior domain includes lower-order stereotypy and self-injury, and higher-order indices of circumscribed interests and cognitive rigidity. Heterogeneity in clinical ASD profiles suggests that specific manifestations of repetitive behavior reflect differential neuropathology. The present studies utilized a set of phenotyping tasks to determine a repetitive behavior profile for the C58/J mouse strain, a model of ASD core symptoms. In an observational screen, C58/J demonstrated overt motor stereotypy, but not over-grooming, a commonly-used measure for mouse repetitive behavior. Amphetamine did not exacerbate motor stereotypy, but had enhanced stimulant effects on locomotion and rearing in C58/J, compared to C57BL/6J. Both C58/J and Grin1 knockdown mice, another model of ASD-like behavior, had marked deficits in marble-burying. In a nose poke task for higher-order repetitive behavior, C58/J had reduced holeboard exploration and preference for non-social, versus social, olfactory stimuli, but did not demonstrate cognitive rigidity following familiarization to an appetitive stimulus. Analysis of available high-density genotype data indicated specific regions of divergence between C58/J and two highly-sociable strains with common genetic lineage. Strain genome comparisons identified autism candidate genes, including Cntnap2 and Slc6a4, located within regions divergent in C58/J. However, Grin1, Nlgn1, Sapap3, and Slitrk5, genes linked to repetitive over-grooming, were not in regions of divergence. These studies suggest that specific repetitive phenotypes can be used to distinguish ASD mouse models, with implications for divergent underlying mechanisms for different repetitive behavior profiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE PAGES

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 %more » errors using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  14. The J-2X Fuel Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  15. On Nulling, Drifting, and Their Interactions in PSRs J1741-0840 and J1840-0840

    NASA Astrophysics Data System (ADS)

    Gajjar, V.; Yuan, J. P.; Yuen, R.; Wen, Z. G.; Liu, Z. Y.; Wang, N.

    2017-12-01

    We report detailed investigation of nulling and drifting behavior of two pulsars PSRs J1741-0840 and J1840-0840 observed from the Giant Meterwave Radio Telescope at 625 MHz. PSR J1741-0840 was found to show a nulling fraction (NF) of around 30% ± 5% while PSR J1840-0840 was shown to have an NF of around 50% ± 6%. We measured drifting behavior from different profile components in PSR J1840-0840 for the first time with the leading component showing drifting with 13.5 ± 0.7 periods while the weak trailing component showed drifting of around 18 ± 1 periods. Large nulling hampers accuracy of these quantities derived using standard Fourier techniques. A more accurate comparison was drawn from driftband slopes, measured after sub-pulse modeling. These measurements revealed interesting sporadic and irregular drifting behavior in both pulsars. We conclude that the previously reported different drifting periodicities in the trailing component of PSR J1741-0840 is likely due to the spread in these driftband slopes. We also find that both components of PSR J1840-0840 show similar driftband slopes within the uncertainties. Unique nulling-drifting interaction is identified in PSR J1840-0840 where, on most occasions, the pulsar tends to start nulling after what appears to be the end of a driftband. Similarly, when the pulsar switches back to an emission phase, on most occasions it starts at the beginning of a new driftband in both components. Such behaviors have not been detected in any other pulsars to our knowledge. We also found that PSR J1741-0840 seems to have no memory of its previous burst phase while PSR J1840-0840 clearly exhibits memory of its previous state even after longer nulls for both components. We discuss possible explanations for these intriguing nulling-drifting interactions seen in both pulsars based on various pulsar nulling models.

  16. Observation of J/psi-->3gamma.

    PubMed

    Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Ma, J S Y; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B

    2008-09-05

    We report the first observation of the decay J/psi-->3gamma. The signal has a statistical significance of 6sigma and corresponds to a branching fraction of B(J/psi-->3gamma)=(1.2+/-0.3+/-0.2)x10;{-5}, in which the errors are statistical and systematic, respectively. The measurement uses psi(2S)-->pi;{+}pi;{-}J/psi events acquired with the CLEO-c detector operating at the CESR e;{+}e;{-} collider.

  17. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  18. Elastic and inelastic photoproduction of J/ ψ mesons at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jöhnson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stöβlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; H1 Collaboration

    1996-02-01

    Results on J/ ψ production in ep interactions in the H1 experiment at HERA are presented. The J/ ψ mesons are produced by almost real photons ( Q2 ≈ 0) and detected via their leptonic decays. The data have been taken in 1994 and correspond to an integrated luminosity of 2.7 pb -1. The γp cross section for elastic J/ ψ production is observed to increase strongly with the center of mass energy. The cross section for diffractive J/ ψ production with proton dissociation is found to be of similar magnitude as the elastic cross section. Distributions of transverse momentum and decay angle are studied and found to be in accord with a diffractive production mechanism. For inelastic J/ ψ production the total γp cross section, the distribution of transverse momenta, and the elasticity of the J/ ψ are compared to NLO QCD calculations in a colour singlet model and agreement is found. Diffractive ψ' production has been observed and a first estimate of the ratio to J/ ψ production in the HERA energy regime is given.

  19. 26 CFR 31.3121(j)-1 - Covered transportation service.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Covered transportation service. 31.3121(j)-1... § 31.3121(j)-1 Covered transportation service. (a) Transportation systems acquired in whole or in part... operation of a public transportation system constitutes covered transportation service if any part of the...

  20. 26 CFR 31.3121(j)-1 - Covered transportation service.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Covered transportation service. 31.3121(j)-1... § 31.3121(j)-1 Covered transportation service. (a) Transportation systems acquired in whole or in part... operation of a public transportation system constitutes covered transportation service if any part of the...

  1. 26 CFR 31.3121(j)-1 - Covered transportation service.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Covered transportation service. 31.3121(j)-1... § 31.3121(j)-1 Covered transportation service. (a) Transportation systems acquired in whole or in part... operation of a public transportation system constitutes covered transportation service if any part of the...

  2. 26 CFR 31.3121(j)-1 - Covered transportation service.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Covered transportation service. 31.3121(j)-1... § 31.3121(j)-1 Covered transportation service. (a) Transportation systems acquired in whole or in part... operation of a public transportation system constitutes covered transportation service if any part of the...

  3. 26 CFR 31.3306(j)-1 - State, United States, and citizen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false State, United States, and citizen. 31.3306(j)-1 Section 31.3306(j)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED... SOURCE Federal Unemployment Tax Act (Chapter 23, Internal Revenue Code of 1954) § 31.3306(j)-1 State...

  4. An energy-dependent numerical model for the condensation probability, γ j

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie Marie

    The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less

  5. An energy-dependent numerical model for the condensation probability, γ j

    DOE PAGES

    Kerby, Leslie Marie

    2016-12-09

    The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less

  6. 1,2-Difluoroethane: the angular dependance on 1J(CF) coupling constants is independent of hyperconjugation.

    PubMed

    Freitas, Matheus P; Bühl, Michael; O'Hagan, David

    2012-02-28

    1,2-Difluoroethane is widely recognised to adopt a lower energy gauche rather than anti conformation; this gauche effect has its origin in hyperconjugation; however, surprisingly the (1)J(CF) coupling constant is not influenced by hyperconjugation; instead, its magnitude changes with the overall molecular dipole. This journal is © The Royal Society of Chemistry 2012

  7. Chronic Intermittent Ethanol Inhalation Increases Ethanol Self-administration in both C57BL/6J and DBA/2J Mice

    PubMed Central

    McCool, Brian A.; Chappell, Ann M.

    2015-01-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent ‘high’ and ‘low’ drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. PMID:25659650

  8. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    PubMed

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Subchronic infusion of the product of inflammation prostaglandin J2 models sporadic Parkinson's disease in mice.

    PubMed

    Pierre, Sha-Ron; Lemmens, Marijke A M; Figueiredo-Pereira, Maria E

    2009-07-25

    Chronic neuroinflammation is implicated in Parkinson's disease (PD). Inflammation involves the activation of microglia and astrocytes that release high levels of prostaglandins. There is a profound gap in our understanding of how cyclooxygenases and their prostaglandin products redirect cellular events to promote PD neurodegeneration. The major prostaglandin in the mammalian brain is prostaglandin D2, which readily undergoes spontaneous dehydration to generate the bioactive cyclopentenone prostaglandins of the J2 series. These J2 prostaglandins are highly reactive and neurotoxic products of inflammation shown in cellular models to impair the ubiquitin/proteasome pathway and cause the accumulation of ubiquitinated proteins. PD is a disorder that exhibits accumulation of ubiquitinated proteins in neuronal inclusions (Lewy bodies). The role of J2 prostaglandins in promoting PD neurodegeneration has not been investigated under in vivo conditions. We addressed the neurodegenerative and behavioral effects of the administration of prostaglandin J2 (PGJ2) simultaneously into the substantia nigra/striatum of adult male FVB mice by subchronic microinjections. One group received unilateral injections of DMSO (vehicle, n = 6) and three groups received PGJ2 [3.4 microg or 6.7 microg (n = 6 per group) or 16.7 microg (n = 5)] per injection. Immunohistochemical and behavioral analyses were applied to assess the effects of the subchronic PGJ2 microinfusions. Immunohistochemical analysis demonstrated a PGJ2 dose-dependent significant and selective loss of dopaminergic neurons in the substantia nigra while the GABAergic neurons were spared. PGJ2 also triggered formation of aggregates immunoreactive for ubiquitin and alpha-synuclein in the spared dopaminergic neurons. Moreover, PGJ2 infusion caused a massive microglia and astrocyte activation that could initiate a deleterious cascade leading to self-sustained progressive neurodegeneration. The PGJ2-treated mice also exhibited

  10. The Mass1frings mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC

    PubMed Central

    Johnson, K.R.; Zheng, Q.Y.; Weston, M.D.; Ptacek, L.J.; Noben-Trauth, K.

    2010-01-01

    The human ortholog of the gene responsible for audiogenic seizure susceptibility in Frings and BUB/BnJ mice (mouse gene symbol Mass1) recently was shown to underlie Usher syndrome type IIC (USH2C). Here we report that the Mass1frings mutation is responsible for the early onset hearing impairment of BUB/BnJ mice. We found highly significant linkage of Mass1 with ABR threshold variation among mice from two backcrosses involving BUB/BnJ mice with mice of strains CAST/EiJ and MOLD/RkJ. We also show an additive effect of the Cdh23 locus in modulating the progression of hearing loss in backcross mice. Together, these two loci account for more than 70% of the total ABR threshold variation among the backcross mice at all ages. The modifying effect of the strain-specific Cdh23ahl variant may account for the hearing and audiogenic seizure differences observed between Frings and BUB/BnJ mice, which share the Mass1frings mutation. During postnatal cochlear development in BUB/BnJ mice, stereocilia bundles develop abnormally and remain immature and splayed into adulthood, corresponding with the early onset hearing impairment associated with Mass1frings. Progressive base–apex hair cell degeneration occurs at older ages, corresponding with the age-related hearing loss associated with Cdh23ahl. The molecular basis and pathophysiology of hearing loss suggest BUB/BnJ and Frings mice as models to study cellular and molecular mechanisms underlying USH2C auditory pathology. PMID:15820310

  11. J-2X engine test

    NASA Image and Video Library

    2011-07-26

    A plume of steam signals a successful engine start of the J-2X rocket engine on the A-3 Test Stand at Stennis Space Center on July 26. The 3.7-second test was the second on the next-generation engine, which is being developed for NASA by Pratt & Whitney Rocketdyne.

  12. Transfer-Matrix Method for Solving the Spin 1/2 Antiferromagnetic Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Garcia-Bach, M. A.; Klein, D. J.; Valenti, R.

    Following the discovery of high Tc superconductivity in the copper oxides, there has been a great deal of interest in the RVB wave function proposed by Anderson [1]. As a warm-up exercise we have considered a valence-bond wave function for the one dimensional spin-1/2 Heisenberg chain. The main virtue of our work is to propose a new variational singlet wavefunction which is almost analytically tractable by a transfer-matrix technique. We have obtained the ground state energy for finite as well as infinite chains, in good agreement with exact results. Correlation functions, excited states, and the effects of other interactions (e.g., spin-Peierls) are also accessible within this scheme [2]. Since the ground state of the chain is known to be a singlet (Lieb & Mattis [3]), we write the appropriate wave function as a superposition of valence-bond singlets, |ψ > =∑ limits k C k | k>, where |k> is a spin configuration obtained by pairing all spins into singlet pairs, in a way which is common in valence-bond calculations of large molecules. As in that case, each configuration, |k>, can be represented by a Rümer diagram, with directed bonds connecting each pair of spins on the chain. The ck's are variational co-efficients, the form of which is determined as follows: Each singlet configuration (Rümer diagram) is divided into "zones", a "zone" corresponding to the region between two consecutive sites. Each zone is indexed by its distance from the end of the chain and by the number of bonds crossing it. Our procedure assigns a variational parameter, xij, to the jth zone, when crossed by i bonds. The resulting wavefunction for an N-site chain is written as |ψ > =∑ limits k ∏ M limits { i =1} ∏ { N -1}limits { j =1} X ij{ m ij (k)} | k> where mij(k) equals 1 when zone j is crossed by i bonds and zero otherwise. To make the calculation tractable we reduce the number of variational parameters by disallowing configurations with bonds connecting any two sites separated

  13. Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice.

    PubMed

    Dow, H C; Kreibich, A S; Kaercher, K A; Sankoorikal, G M V; Pauley, E D; Lohoff, F W; Ferraro, T N; Li, H; Brodkin, E S

    2011-02-01

    Aggressive behaviors are disabling, treatment refractory, and sometimes lethal symptoms of several neuropsychiatric disorders. However, currently available treatments for patients are inadequate, and the underlying genetics and neurobiology of aggression is only beginning to be elucidated. Inbred mouse strains are useful for identifying genomic regions, and ultimately the relevant gene variants (alleles) in these regions, that affect mammalian aggressive behaviors, which, in turn, may help to identify neurobiological pathways that mediate aggression. The BALB/cJ inbred mouse strain exhibits relatively high levels of intermale aggressive behaviors and shows multiple brain and behavioral phenotypes relevant to neuropsychiatric syndromes associated with aggression. The A/J strain shows very low levels of aggression. We hypothesized that a cross between BALB/cJ and A/J inbred strains would reveal genomic loci that influence the tendency to initiate intermale aggressive behavior. To identify such loci, we conducted a genomewide scan in an F2 population of 660 male mice bred from BALB/cJ and A/J inbred mouse strains. Three significant loci on chromosomes 5, 10 and 15 that influence aggression were identified. The chromosome 5 and 15 loci are completely novel, and the chromosome 10 locus overlaps an aggression locus mapped in our previous study that used NZB/B1NJ and A/J as progenitor strains. Haplotype analysis of BALB/cJ, NZB/B1NJ and A/J strains showed three positional candidate genes in the chromosome 10 locus. Future studies involving fine genetic mapping of these loci as well as additional candidate gene analysis may lead to an improved biological understanding of mammalian aggressive behaviors. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  14. Laser spectroscopy of the 5P3/2 → 6Pj (j = 1/2 and 3/2) electric dipole forbidden transitions in atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Hoyos, L. M.; Flores-Mijangos, J.; Ramírez-Martínez, F.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2018-04-01

    Doppler-free optical double-resonance spectroscopy is used to study the 5S1/2 → 5P3/2 → 6Pj (j = 3/2,1/2) excitation sequence in room-temperature rubidium atoms. This involves a 5S1/2 → 5P3/2 electric dipole preparation step followed by the 5P3/2 → 6Pj electric quadrupole excitation. The electric dipole forbidden transitions occur at 911.0 nm (j = 3/2) and 917.5 nm (j = 1/2). Production of atoms in the 6Pj states is detected by observing their direct decay to the ground state through emission of blue photons (λ ≈ 420 nm). A detailed experimental and theoretical study of the dependence on the relative linear polarizations of excitation beams is made. It is shown that specific electric quadrupole selection rules over magnetic quantum numbers are directly related to the relative orientation of the linear polarization of the excitation beams.

  15. Potential of decursin to inhibit the human cytochrome P450 2J2 isoform.

    PubMed

    Lee, Boram; Wu, Zhexue; Sung, Sang Hyun; Lee, Taeho; Song, Kyung-Sik; Lee, Min Young; Liu, Kwang-Hyeon

    2014-08-01

    CYP2J2 enzyme is highly expressed in human tumors and carcinoma cell lines, and epoxyeicosatrienoic acids, CYP2J2-mediated metabolites, have been implicated in the pathologic development of human cancers. To identify a CYP2J2 inhibitor, 50 natural products obtained from plants were screened using astemizole as a CYP2J2 probe substrate in human liver microsomes. Of these, decursin noncompetitively inhibited CYP2J2-mediated astemizole O-demethylation and terfenadine hydroxylation activities with Ki values of 8.34 and 15.8μM, respectively. It also showed cytotoxic effects against human hepatoma HepG2 cells in a dose-dependent manner while it did not show cytotoxicity against mouse hepatocytes. The present data suggest that decursin is a potential candidate for further evaluation for its CYP2J2 targeting anti-cancer activities. Studies are currently underway to test decursin as a potential therapeutic agent for cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. 520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    He, Huijun; Wang, Zhaohua; Hu, Chenyang; Jiang, Jianwang; Qin, Shuang; He, Peng; Zhang, Ninghua; Yang, Peilong; Li, Zhiyuan; Wei, Zhiyi

    2018-02-01

    We report on a 520-µJ, 1-kHz mid-infrared femtosecond optical parametric amplifier system driven by a Ti:sapphire laser system. The seeding signal was generated from white-light continuum in YAG plate and then amplified in four non-collinear amplification stages and the idler was obtained in the last stage with central wavelength at 2.8 µm and bandwidth of 525 nm. To maximize the bandwidth of the idler, a theoretical method was developed to give an optimum non-collinear angle and estimate the conversion efficiency and output spectrum. As an experimental result, laser pulse energy up to 1.8 mJ for signal wave and 520 µJ for idler wave were obtained in the last stage under 10-mJ pump energy, corresponding to a pump-to-idler conversion efficiency of 5.2%, which meets well with the numerical calculation.

  17. Psr J2030+3641: Radio Discovery And Gamma-Ray Study Of A Middle-Aged Pulsar In The Now Identified Fermi -Lat Source 1FGL J2030.0+3641

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camilo, F.; Kerr, M.; Ray, P. S.

    2012-01-23

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.2 s, spin-down luminosity of 3X10 34 erg s -1, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright andmore » radio-undetected Geminga. Its gamma-ray flux is 1% that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc cm-3. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive — PSR J2030+3641 would have been found blindly in gamma rays if only & 0:8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.« less

  18. PSRs J0248+6021 and J2240+5832: young pulsars in the northern Galactic plane: Discovery, timing, and gamma-ray observations

    DOE PAGES

    Theureau, G.; Parent, D.; Cognard, I.; ...

    2010-12-03

    Context. Pulsars PSR J0248+6021 (with a rotation period P = 217 ms and spin-down powermore » $$\\dot{E}$$ = 2.13 × 10 35 erg s -1) and PSR J2240+5832 (P = 140 ms, $$\\dot{E}$$ = 2.12 × 10 35 erg s -1) were discovered in 1997 with the Nançay radio telescope during a northern Galactic plane survey, using the Navy-Berkeley Pulsar Processor (NBPP) filter bank. The GeV gamma-ray pulsations from both were discovered using the Fermi Large Area Telescope. Aims. We characterize the neutron star emission using radio and gamma-ray observations, and explore the rich environment of PSR J0248+6021. Methods. Twelve years of radio timing data, including glitches, with steadily improved instrumentation, such as the Berkeley-Orleans-Nançay pulsar backend, and a gamma-ray data set 2.6 times larger than previously published allow detailed investigations of these pulsars. Radio polarization data allow comparison with the geometry inferred from gamma-ray emission models. Results. The two pulsars resemble each other in both radio and gamma-ray data. Both are rare in having a single gamma-ray pulse offset far from the radio peak. The anomalously high dispersion measure for PSR J0248+6021 (DM = 370 pc cm -3) is most likely due to its being within the dense, giant HII region W5 in the Perseus arm at a distance of 2 kpc, as opposed to being beyond the edge of the Galaxy as obtained from models of average electron distributions. Its large transverse velocity and the low magnetic field along the line-of-sight favor this small distance. Neither gamma-ray, X-ray, nor optical data yield evidence of a pulsar wind nebula surrounding PSR J0248+6021. We report the discovery of gamma-ray pulsations from PSR J2240+5832. We argue that it could be in the outer arm, although slightly nearer than its DM-derived distance, but that it may be in the Perseus arm at half the distance. Conclusions. The energy flux and distance yield a gamma-ray luminosity for PSR J0248+6021 of Lγ = (1.4 ± 0.3) × 10 34

  19. Models of the strongly lensed quasar DES J0408−5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  20. 1-mJ Q-switched diode-pumped Nd:BaY2F8 laser

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Carraro, Giovanni; Guandalini, Annalisa; Reali, Giancarlo; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro

    2004-08-01

    We report what is to our knowledge the first high repetition rate Q-switched Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at 806 nm. As much as 2.42 W of average power and up to 1.05 mJ of pulse energy were obtained with 6.1 W of absorbed pump power, with excellent beam quality (M2<1.2) and linear polarization.

  1. Synthetic and Spectroscopic Studies on N-(i,j-Disubstituted Phenyl)-4- Substituted Benzenesulphonamides, 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i, j = 2, 3; 2, 4; 2, 5; 2, 6 or 3, 4; and X = CH3 or Cl

    NASA Astrophysics Data System (ADS)

    Shetty, Mahesha; Gowda, B. Thimme

    2005-02-01

    Fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides of the general formula 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i,j = 2,3; 2,4; 2,5; 2,6 or 3, 4; and X = CH3 or Cl, are prepared and characterized and their infrared, 1H and 13C NMR spectra in solution are studied. The N-H stretching vibrations νN-H absorb in the range 3305 - 3205 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1377 - 1307 cm-1 and 1184 - 1128 cm-1, respectively. The N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides show C-S, S-N and C-N stretching vibrations in the ranges 844 - 800 cm-1, 945 - 891 cm-1 and 1309 - 1170 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of 2.jpg" /> are assigned to protons and carbon atoms of the two benzene rings. Incremental shifts of the ring protons and carbon atoms due to -SO2NH(i,j-X2C6H3) groups in C6H5SO2NH(i,j-X2C6H3) and 4-X'C6H4SO2NH- groups in 4-X'C6H4SO2NH(C6H*) are computed and employed to calculate the chemical shifts of the ring protons and carbon atoms in the substituted compounds 4-X'C6H4SO2NH(i,j-X2C6H3). The different methods of calculation lead to almost the same values in most cases and agree well with the observed chemical shifts, indicating the validity of the principle of additivity of the substituent effects with chemical shifts in these compounds.

  2. Discovery of a Hand X-Ray Source, SAX J0635+0533, in the Error Box of the Gamma-Ray Source 2EG J0635+0521

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.

  3. CHANDRA OBSERVATIONS OF FIVE INTEGRAL SOURCES: NEW X-RAY POSITIONS FOR IGR J16393-4643 AND IGR J17091-3624

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodaghee, A.; Tomsick, J. A.; Rahoui, F.

    2012-06-01

    The Chandra High Resolution Camera observed the fields of five hard X-ray sources in order to help us obtain X-ray coordinates with subarcsecond precision. These observations provide the most accurate X-ray positions known for IGR J16393-4643 and IGR J17091-3624. The obscured X-ray pulsar IGR J16393-4643 lies at R.A. (J2000) = 16{sup h}39{sup m}05.{sup s}47, and decl. = -46 Degree-Sign 42'13.''0 (error radius of 0.''6 at 90% confidence). This position is incompatible with the previously proposed counterpart 2MASS J16390535-4642137, and it points instead to a new counterpart candidate that is possibly blended with the Two Micron All Sky Survey star. Themore » black hole candidate IGR J17091-3624 was observed during its 2011 outburst providing coordinates of R.A. = 17{sup h}09{sup m}07.{sup s}59, and decl. = -36 Degree-Sign 24'25.''4. This position is compatible with those of the proposed optical/IR and radio counterparts, solidifying the source's status as a microquasar. Three targets, IGR J14043-6148, IGR J16358-4726, and IGR J17597-2201, were not detected. We obtained 3{sigma} upper limits of, respectively, 1.7, 1.8, and 1.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} on their 2-10 keV fluxes.« less

  4. Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2J mice in comparison with four inbred mouse strains.

    PubMed

    Popova, Nina K; Naumenko, Vladimir S; Tibeikina, Marina A; Kulikov, Alexander V

    2009-12-01

    Prepulse inhibition (PPI), the reduction in acoustic startle produced when it is preceded by a weak prepulse stimulus, is impaired in schizophrenic patients. The DBA/2J mouse strain displayed deficient PPI and is therefore suggested as an experimental animal model for the loss of sensorimotor gating in schizophrenia. Brain serotonin (5-HT) has been implicated in the pathophysiology of several psychiatric disorders, including major depressive disorder and schizophrenia. In the present study, behavior, 5-HT transporter (5-HTT) mRNA level, 5-HT(1A) receptor mRNA level, and 5-HT(1A) receptor density in the brain regions were studied in DBA/2J mice in comparison with four inbred mouse strains (CBA/Lac, C57BL/6, BALB/c, and ICR). A decrease in 5-HTT mRNA level in the midbrain and a reduced density of 5-HT(1A) receptors in the frontal cortex without significant changes in 5-HT(1A) receptor mRNA level in DBA/2J mice were found. It was shown that, along with decreased PPI, DBA/2J mice demonstrated considerably reduced immobility in the tail suspension test and in the forced swim test. No significant interstrain differences in intermale aggression, or in light-dark box and elevated plus-maze tests, were found. The results suggested the involvement of decreased 5-HTT gene expression and 5-HT(1A) receptor density in genetically defined PPI deficiency and showed a lack of any association between PPI deficiency and predisposition to aggressive, anxiety, and depressive-like behaviors. Copyright 2009 Wiley-Liss, Inc.

  5. Verticalization of behavior elicited by dopaminergic mobilization is qualitatively different between C57BL/6J and DBA/2J mice.

    PubMed

    Tirelli, E; Witkin, J M

    1994-10-01

    Behavioral effects of dopaminergic stimulation were evaluated in C57BL/6J mice and compared to the effects occurring in DBA/2J mice, an inbred strain with reduced densities of striatal dopamine receptors. Effects of apomorphine (0.5-64 mg/kg) alone and in combination with cocaine (30 mg/kg) were assessed using a time-sampling technique that classified climbing and leaning in separate categories. Locomotion was also assessed in a separate experiment. Climbing occurred in DBA/2J mice only at doses of apomorphine that were 16 times higher than the smallest effective dose in C57BL/6J mice; nevertheless, relative to baseline values, effects were fairly comparable. By contrast, whereas DBA/2J mice showed dose-dependent leaning under apomorphine, C57BL/6J mice exhibited little leaning even at doses not producing climbing, and only after the highest apomorphine dose was leaning significantly increased. Apomorphine was equipotent in inducing gnawing across strains, although somewhat less efficacious in DBA/2J mice. When given alone, cocaine produced significant climbing, but not leaning or gnawing, in either strain. Whereas cocaine potentiated apomorphine-induced climbing and gnawing in both strains, apomorphine-induced leaning was not consistently changed by cocaine in either strain. These effects were not indirectly due to hyperkinesia, since neither apomorphine alone nor apomorphine and cocaine in combination was stimulant; apomorphine alone reduced locomotor activity and attenuated cocaine-induced hyperkinesia. The present data do not support a unitary, purely quantitative, account of insensitivity to dopaminergic stimulation based upon low densities of striatal dopamine receptors in DBA/2J mice. Rather, this constellation of results is suggestive of qualitative interstrain dissimilarities in dopaminergic responsiveness that could reflect organizational differences in receptor populations.

  6. Wide-field 12CO (J=2-1) and 13CO (J=2-1) Observations toward the Aquila Rift and Serpens Molecular Cloud Complexes. I. Molecular Clouds and Their Physical Properties

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Dobashi, Kazuhito; Shimoikura, Tomomi; Tanaka, Tomohiro; Onishi, Toshikazu

    2017-03-01

    We present the results of wide-field 12CO (J=2{--}1) and 13CO (J=2{--}1) observations toward the Aquila Rift and Serpens molecular cloud complexes (25^\\circ < l< 33^\\circ and 1^\\circ < b< 6^\\circ ) at an angular resolution of 3.‧4 (≈ 0.25 pc) and at a velocity resolution of 0.079 km s-1 with velocity coverage of -5 {km} {{{s}}}-1< {V}{LSR}< 35 {km} {{{s}}}-1. We found that the 13CO emission better traces the structures seen in the extinction map, and derived the {X}{13{CO}}-factor of this region. Applying SCIMES to the 13CO data cube, we identified 61 clouds and derived their mass, radii, and line widths. The line width-radius relation of the identified clouds basically follows those of nearby molecular clouds. The majority of the identified clouds are close to virial equilibrium, although the dispersion is large. By inspecting the 12CO channel maps by eye, we found several arcs that are spatially extended to 0.°2-3° in length. In the longitude-velocity diagrams of 12CO, we also found two spatially extended components that appear to converge toward Serpens South and the W40 region. The existence of two components with different velocities and arcs suggests that large-scale expanding bubbles and/or flows play a role in the formation and evolution of the Serpens South and W40 cloud.

  7. Development Status of the J-2X

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Vilja, John

    2008-01-01

    In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because

  8. Second-order differential equations for bosons with spin j1 and in the bases of general tensor-spinors of rank 2j

    NASA Astrophysics Data System (ADS)

    Banda Guzmán, V. M.; Kirchbach, M.

    2016-09-01

    A boson of spin j≥ 1 can be described in one of the possibilities within the Bargmann-Wigner framework by means of one sole differential equation of order twice the spin, which however is known to be inconsistent as it allows for non-local, ghost and acausally propagating solutions, all problems which are difficult to tackle. The other possibility is provided by the Fierz-Pauli framework which is based on the more comfortable to deal with second-order Klein-Gordon equation, but it needs to be supplemented by an auxiliary condition. Although the latter formalism avoids some of the pathologies of the high-order equations, it still remains plagued by some inconsistencies such as the acausal propagation of the wave fronts of the (classical) solutions within an electromagnetic environment. We here suggest a method alternative to the above two that combines their advantages while avoiding the related difficulties. Namely, we suggest one sole strictly D^{(j,0)oplus (0,j)} representation specific second-order differential equation, which is derivable from a Lagrangian and whose solutions do not violate causality. The equation under discussion presents itself as the product of the Klein-Gordon operator with a momentum-independent projector on Lorentz irreducible representation spaces constructed from one of the Casimir invariants of the spin-Lorentz group. The basis used is that of general tensor-spinors of rank 2 j.

  9. Branching fractions for psi(2S)-to-J/psi transitions.

    PubMed

    Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2005-06-17

    We describe new measurements of the inclusive and exclusive branching fractions for psi(2S) transitions to J/psi using e(+)e(-) collision data collected with the CLEO detector operating at CESR. All branching fractions and ratios of branching fractions reported here represent either the most precise measurements to date or the first direct measurements. Indirectly and in combination with other CLEO measurements, we determine B(chi(cJ) --> gamma(J/psi)) and B[psi(2S) --> light hadrons].

  10. 75 FR 33164 - Modification of Jet Routes J-32, J-38, and J-538; Minnesota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-1080; Airspace Docket No. 09-AGL-13] RIN 2120-AA66 Modification of Jet Routes J-32, J-38, and J-538; Minnesota AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action...

  11. Revisiting the Gamma-Ray Source 2FGL J1823.8+4312

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Assef, Roberto J.

    2013-02-01

    One of the great challenges of gamma-ray astronomy is identifying the lower energy counterparts to these high-energy sources. Recently, in this journal, Massaro et al. attempted to find the counterpart of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus (AGN) of uncertain type from the Second Fermi Large Area Telescope catalog. After considering mid-infrared data in the field from the Wide-field Infrared Survey Explorer (WISE), those authors conclude that the preferred identification of 2FGL J1823.8+4312 is WISE J182352.33+431452.5, despite the fact that the mid-infrared source is undetected at radio energies. They claim that WISE J182352.33+431452.5 constitutes the discovery of a new class of extragalactic X-ray source, either a radio-faint blazar or the prototype of a new class of active galaxy with an enigmatic spectral energy distribution. This conclusion is claimed to be independent of whether or not the WISE source is the actual counterpart to 2FGL J1823.8+4312. Based on a re-analysis of public data in this field and new spectroscopy from Palomar, we conclude that WISE J182352.33+431452.5 is a dust-reddened quasar at z = 0.560, a representative example of a very common extragalactic AGN class. Were WISE J182352.33+431452.5 to be associated with the gamma-ray emission, this would be an unusual and exciting discovery. However, we argue that 2FGL J1823.8+4312 is more likely associated with either WISE J182409.25+431404.7 or, more likely, WISE J182419.04+430949.6, two radio-loud sources in the field. The former is a radio-loud quasar and the latter is an optically variable source with a featureless blue spectrum.

  12. Identification of acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer activity in HepG2 cells.

    PubMed

    Park, See-Hyoung; Phuc, Nguyen Minh; Lee, Jongsung; Wu, Zhexue; Kim, Jieun; Kim, Hyunkyoung; Kim, Nam Doo; Lee, Taeho; Song, Kyung-Sik; Liu, Kwang-Hyeon

    2017-01-15

    Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (K i = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC 50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. Taken together, our present study elucidates acetylshikonin displays the

  13. Elastic electroproduction of ϱ and {J}/{ψ} mesons at large Q2 at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.

    1996-02-01

    The total cross sections for the elastic electroproduction of P and {J}/{ψ} mesons for Q2 > 8 GeV 2 and ⋍ 90 GeV/c 2 are measured at HERA with the H1 detector. The measurements are for an integrated electron-proton luminosity of ⋍3 pb-1. The dependences of the total virtual photon-proton ( γ ∗p ) cross sections on Q2, W and the momentum transfer squared to the proton ( t), and, for the ϱ, the dependence on the polar decay angle ( cos θ ∗ are presented. The {J}/{ψ} : ∂ cross section ratio is determined. The results are discussed in the light of theoretical models and of the interplay of hard and soft physics processes.

  14. Inclusive J / $$\\psi$$ Production at D0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Christopher R.

    1995-04-01

    We present results on inclusivemore » $$J/\\psi$$ and b-quark production in $$p\\bar{p}$$ collisions at $$\\sqrt{s}$$ = 1.8 TeV. The results are based on data collected at the D0 experiment during the 1992-1993 FermiLab collider run. There is excellent agreement between the differential $$J/\\psi$$ cross section measured at D0 and that measured at the CDF detector. A measurement of the fraction of $$J/\\psi$$ events due to b-quark decays is presented and we extract from this a measurement of the integrated b-quark cross section. The radiative decays of $$_{Xc}$$ charmonium states into the $$J/\\psi$$ is discussed and we present results on the fraction of $$J/\\psi$$ mesons that are due to $$_{Xc}$$ decays. We also observe that a fraction of promptly produced $$J/\\psi$$ mesons is larger than the measured fraction of $$J/\\psi$$ due to $$_{Xc}$$ decays and is not accounted for by existing charmonium. production models.« less

  15. Optical spectroscopy of SN2014J

    NASA Astrophysics Data System (ADS)

    Kotak, R.

    2014-01-01

    Authors: J. Polshaw, R. Kotak, J. R. Maund, S. J. Smartt (QUB), M. Fraser, N. Walton (IoA), J. M. Abreu (IAC), M. Balcells, C. Benn, J. Mendez, A. Oscoz, O. Zamora, C. Zurita (ING) A spectrum of the supernova SN 2014J in the nearby galaxy M82 was obtained on Jan. 23.2 2014 (UT) at the 2.54m Isaac Newton Telescope (INT) with IDS and the grating R1200R (approximate wavelength range 5600 - 7500A, at 2A resolution).

  16. Spectrum and Morphology of the Two Brightest Milagro Sources in the Cygnus Region: MGRO J2019+37 and MGRO J2031+41

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Abeysekara, U.; Allen, B, T.; Aune, T.; Berley, D.; Bonamente, E.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Ellsworth, R. W.; hide

    2012-01-01

    The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum is measured in the range 1-100 TeV using the last three years of Milagro data (2005-2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7(sup +5 sub -2) × 10(exp -10)/ s /sq m/ TeV, a spectral index of 2.0(sup +0.5 sub -10), and a cutoff energy of 29(sup +50 sub -16) TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1(sup +0.6 sub -0.6) × 10(exp -10)/ s/sq m/ TeV and a spectral index of 3.22(sup +0.23 sub -0.18. The overall flux is subject to a approx.. 30% systematic uncertainty. The systematic uncertainty on the power-law indices is approx. 0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.

  17. Spectrum, symmetries, and dynamics of Heisenberg spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Joel, Kira; Kollmar, Davida; Santos, Lea

    2013-03-01

    Quantum spin chains are prototype quantum many-body systems. They are employed in the description of various complex physical phenomena. Here we provide an introduction to the subject by focusing on the time evolution of Heisenberg spin-1/2 chains with couplings between nearest-neighbor sites only. We study how the anisotropy parameter and the symmetries of the model affect its time evolution. Our predictions are based on the analysis of the eigenvalues and eigenstates of the system and then confirmed with actual numerical results.

  18. J. J. Thomson goes to America.

    PubMed

    Downard, Kevin M

    2009-11-01

    Joseph John (J. J.) Thomson was an accomplished scientist who helped lay the foundations of nuclear physics. A humble man of working class roots, Thomson went on to become one of the most influential physicists of the late 19th century. He is credited with the discovery of the electron, received a Nobel Prize in physics in 1906 for investigations into the conduction of electricity by gases, was knighted in 1908, and served as a Cavendish Professor and Director of the laboratory for over 35 years from 1884. His laboratory attracted some of the world's brightest minds; Francis W. Aston, Niels H. D. Bohr, Hugh L. Callendar, Charles T. R. Wilson, Ernest Rutherford, George F. C. Searle, Geoffrey I. Taylor, and John S. E. Townsend all worked under him. This article recounts J. J. Thomson's visits to North America in 1896, 1903, 1909, and finally 1923. It presents his activities and his personal impressions of the people and society of the U.S.A. and Canada, and the science of atomic physics and chemistry in the late 1800s and early 1900s.

  19. Approximate degeneracy of J =1 spatial correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Rohrhofer, C.; Aoki, Y.; Cossu, G.; Fukaya, H.; Glozman, L. Ya.; Hashimoto, S.; Lang, C. B.; Prelovsek, S.

    2017-11-01

    We study spatial isovector meson correlators in Nf=2 QCD with dynamical domain-wall fermions on 3 23×8 lattices at temperatures T =220 - 380 MeV . We measure the correlators of spin-one (J =1 ) operators including vector, axial-vector, tensor and axial-tensor. Restoration of chiral U (1 )A and S U (2 )L×S U (2 )R symmetries of QCD implies degeneracies in vector-axial-vector (S U (2 )L×S U (2 )R) and tensor-axial-tensor (U (1 )A) pairs, which are indeed observed at temperatures above Tc. Moreover, we observe an approximate degeneracy of all J =1 correlators with increasing temperature. This approximate degeneracy suggests emergent S U (2 )CS and S U (4 ) symmetries at high temperatures, that mix left- and right-handed quarks.

  20. A CO J = 3-2 map of M51 with HARP-B: radial properties of the spiral structure

    NASA Astrophysics Data System (ADS)

    Vlahakis, C.; van der Werf, P.; Israel, F. P.; Tilanus, R. P. J.

    2013-08-01

    We present the first complete CO J = 3-2 map of the nearby grand-design spiral galaxy M51 (NGC 5194), at a spatial resolution of ˜600 pc, obtained with the HARP-B instrument on the James Clerk Maxwell Telescope. The map covers the entire optical galaxy disc and out to the companion NGC 5195, with CO J = 3-2 emission detected over an area of ˜9 arcmin × 6 arcmin (˜21 × 14 kpc). We describe the CO J = 3-2 integrated intensity map and combine our results with maps of CO J = 2-1, CO J = 1-0 and other data from the literature to investigate the variation of the molecular gas, atomic gas and polycyclic aromatic hydrocarbon (PAH) properties of M51 as a function of distance along the spiral structure on sub-kiloparsec scales. We find that for the CO J = 3-2 and CO J = 2-1 transitions, there is a clear difference between the variation of arm and interarm emission with galactocentric radius, with the interarm emission relatively constant with radius and the contrast between arm and interarm emission decreasing with radius. For the CO J = 1-0 line and H I emission, the variation with radius shows a similar trend for the arm and interarm regions, and the arm-interarm contrast appears relatively constant with radius. We investigate the variation of CO line ratios (J = 3-2/2-1, J = 2-1/1-0 and J = 3-2/1-0) as a function of distance along the spiral structure. Line ratios are consistent with the range of typical values for other nearby galaxies in the literature. The highest CO J = 3-2/J = 2-1 line ratios are found in the central ˜1 kiloparsec and in the spiral arms and the lowest line ratios in the interarm regions. We find no clear evidence of a trend with radius for the spiral arms, but for the interarm regions there appears to be a trend for all CO line ratios to increase with radius. We find a strong relationship between the ratio of CO J = 3-2 intensity to stellar-continuum-subtracted 8 μm PAH surface brightness and the CO J = 3-2 intensity that appears to vary with

  1. 1. Building J oblique, showing north and south elevations from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Building J oblique, showing north and south elevations from cartway (between Building L and M) looking northeast. - Daniel F. Waters Germantown Dye Works, Building J, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA

  2. Physical Therapy, AFSC 4J0X2

    DTIC Science & Technology

    1998-05-01

    TABLE 19 HYDROTHERAPY EQUIPMENT USED OR OPERATED BY 20 PERCENT OR MORE OF 4J0X2 FIRST-JOB OR FIRST-ENLISTMENT PERSONNEL 37 TABLE 20 MEASUREMENT...which had responses of greater than 20 percent) (see Table 18) 9 types of hydrotherapy equipment (7 of which had responses greater than 20 percent...75 89 84 64 60 33 33 72 65 36 TABLE 19 HYDROTHERAPY EQUIPMENT USED OR OPERATED BY 20 PERCENT OR MORE OF 4J0X2 FIRST-JOB OR FIRST-ENLISTMENT

  3. 75 FR 53857 - Airworthiness Directives; Eurocopter France Model SA330J Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Airworthiness Directives; Eurocopter France Model SA330J Helicopters AGENCY: Federal Aviation Administration... known U.S. owners and operators of Eurocopter France (Eurocopter) Model SA330J helicopters by individual...'' rather than checking for ``play.'' This helicopter model is manufactured in France and is type...

  4. WISEP J061135.13-041024.0 AB: A J-band Flux Reversal Binary at the L/T Transition

    NASA Astrophysics Data System (ADS)

    Gelino, Christopher R.; Smart, R. L.; Marocco, Federico; Kirkpatrick, J. Davy; Cushing, Michael C.; Mace, Gregory; Mendez, Rene A.; Tinney, C. G.; Jones, Hugh R. A.

    2014-07-01

    We present Keck II laser guide star adaptive optics observations of the brown dwarf WISEP J061135.13-041024.0 showing it is a binary with a component separation of 0.''4. This system is one of the six known resolved binaries in which the magnitude differences between the components show a reversal in sign between the Y/J band and the H/K bands. Deconvolution of the composite spectrum results in a best-fit binary solution with L9 and T1.5 components. We also present a preliminary parallax placing the system at a distance of 21.2 ± 1.3 pc. Using the distance and resolved magnitudes we are able to place WISEP J061135.13-041024.0 AB on a color-absolute magnitude diagram, showing that this system contributes to the well-known "J-band bump" and the components' properties appear similar to other late-type L and early-type T dwarfs. Fitting our data to a set of cloudy atmosphere models suggests the system has an age >1 Gyr with WISE 0611-0410 A having an effective temperature (T eff) of 1275-1325 K and mass of 64-65 M Jup, and WISE 0611-0410 B having T eff = 1075-1115 K and mass 40-65 M Jup.

  5. 2. Building J oblique, showing south and east elevations from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Building J oblique, showing south and east elevations from Lena Street. View looking northwest. - Daniel F. Waters Germantown Dye Works, Building J, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA

  6. Increased expression of Apo-J and Omi/HtrA2 after Intracerebral Hemorrage in rats.

    PubMed

    Li, Feng; Yang, Jing; Guo, Xiaoyan; Zheng, Xiaomei; Lv, Zhiyu; Shi, Chang Qing; Li, Xiaogang

    2018-03-23

    To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrage. 150 SD adult rats were randomly divided into 3 groups: (1) Normal Control (NC) group, (2) Sham group, (3) Intracerebral Hemorrage (ICH) group. The data were collected at 6h, 12h, 1d, 2d, 3d, 5d and 7d. Apoptosis was measured by Tunel staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by RT-PCR. Apoptosis in ICH group was higher than Sham and NC groups (p<0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3d. The Apo-J mRNA level positively correlated with HtrA2 mRNA level in ICH group (r=0.883, p<0.001). The expressions of Apo-J and Omi/HtrA2 paralelly increased in peripheral region of rat cerebral hemorrhage. Local high expressed Apo-J in the peripheral regions might play a neuroprotective role by inhibiting apoptosis via Omi/HtrA2 pathway after hemorrhage. Copyright © 2018. Published by Elsevier Inc.

  7. C-130J Hercules Transport Aircraft (C-130J)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-220 C-130J Hercules Transport Aircraft (C-130J) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 21, 2016 11:33:03 UNCLASSIFIED C-130J December 2015 SAR March 21, 2016 11:33:03...Requirements Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost C-130J December 2015 SAR March 21

  8. The emergence of Y-chromosome haplogroup J1e among Arabic-speaking populations

    PubMed Central

    Chiaroni, Jacques; King, Roy J; Myres, Natalie M; Henn, Brenna M; Ducourneau, Axel; Mitchell, Michael J; Boetsch, Gilles; Sheikha, Issa; Lin, Alice A; Nik-Ahd, Mahnoosh; Ahmad, Jabeen; Lattanzi, Francesca; Herrera, Rene J; Ibrahim, Muntaser E; Brody, Aaron; Semino, Ornella; Kivisild, Toomas; Underhill, Peter A

    2010-01-01

    Haplogroup J1 is a prevalent Y-chromosome lineage within the Near East. We report the frequency and YSTR diversity data for its major sub-clade (J1e). The overall expansion time estimated from 453 chromosomes is 10 000 years. Moreover, the previously described J1 (DYS388=13) chromosomes, frequently found in the Caucasus and eastern Anatolian populations, were ancestral to J1e and displayed an expansion time of 9000 years. For J1e, the Zagros/Taurus mountain region displays the highest haplotype diversity, although the J1e frequency increases toward the peripheral Arabian Peninsula. The southerly pattern of decreasing expansion time estimates is consistent with the serial drift and founder effect processes. The first such migration is predicted to have occurred at the onset of the Neolithic, and accordingly J1e parallels the establishment of rain-fed agriculture and semi-nomadic herders throughout the Fertile Crescent. Subsequently, J1e lineages might have been involved in episodes of the expansion of pastoralists into arid habitats coinciding with the spread of Arabic and other Semitic-speaking populations. PMID:19826455

  9. Photoproduction of {J}/{ψ} mesons at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blodel, V.; Borras, K.; Botterweck, F.; Borrdry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Grubber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kurlen, T.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, R.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1994-11-01

    We present a study of {J}/{ψ} meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The {J}/{ψ} mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → {J}/{ψ}X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ Wγp ≤ 180 GeV and Q2 ≲ 4 GeV 2. Using the flux of quasi-real photons with Q2 ≲ 4 GeV 2, a total production cross section of σ( γp → J/ ψX) = (56±13±14) nb is derived at an average Wγp=90 GeV. The distribution of the squared momentum transfer t from the proton to the {J}/{ψ} can be fitted using an exponential exp(- b∥ t∥) below a ∥ t∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV -2.

  10. Spin Bose-metal phase in a spin- (1)/(2) model with ring exchange on a two-leg triangular strip

    NASA Astrophysics Data System (ADS)

    Sheng, D. N.; Motrunich, Olexei I.; Fisher, Matthew P. A.

    2009-05-01

    Recent experiments on triangular lattice organic Mott insulators have found evidence for a two-dimensional (2D) spin liquid in close proximity to the metal-insulator transition. A Gutzwiller wave function study of the triangular lattice Heisenberg model with a four-spin ring exchange term appropriate in this regime has found that the projected spinon Fermi sea state has a low variational energy. This wave function, together with a slave particle-gauge theory analysis, suggests that this putative spin liquid possesses spin correlations that are singular along surfaces in momentum space, i.e., “Bose surfaces.” Signatures of this state, which we will refer to as a “spin Bose metal” (SBM), are expected to manifest in quasi-one-dimensional (quasi-1D) ladder systems: the discrete transverse momenta cut through the 2D Bose surface leading to a distinct pattern of 1D gapless modes. Here, we search for a quasi-1D descendant of the triangular lattice SBM state by exploring the Heisenberg plus ring model on a two-leg triangular strip (zigzag chain). Using density matrix renormalization group (DMRG) supplemented by variational wave functions and a bosonization analysis, we map out the full phase diagram. In the absence of ring exchange the model is equivalent to the J1-J2 Heisenberg chain, and we find the expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange reveals a new gapless phase over a large swath of the phase diagram. Spin and dimer correlations possess singular wave vectors at particular “Bose points” (remnants of the 2D Bose surface) and allow us to identify this phase as the hoped for quasi-1D descendant of the triangular lattice SBM state. We use bosonization to derive a low-energy effective theory for the zigzag spin Bose metal and find three gapless modes and one Luttinger parameter controlling all power law correlations. Potential instabilities out of the zigzag SBM give rise to other interesting phases such as a period-3

  11. A SELF-CONSISTENT EXPLANATION OF TeV EMISSIONS FROM HESS J1640-465 AND HESS J1641-463

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yunyong; Yang, Chuyuan; Wang, Jiancheng

    2015-10-10

    The bright TeV source HESS J1640-465 is positionally coincident with the young supernova remnant (SNR) G338.3-0.0, and the nearby HESS J1641-463 with TeV gamma-ray emission seems to be closely associated with it. Based on the nonlinear diffusion shock acceleration model, we explore the emission from these two TeV sources, the particle diffusion is assumed to be different inside and outside the absorbing boundary of the particles accelerated in the SNR shock. The results indicate that (1) the GeV–TeV emission from the region of the HESS J1640-465 is produced as a result of the particle acceleration inside the SNR G338.3-0.0 andmore » (2) the runaway cosmic-ray particles outside the SNR are interacting with the nearby dense molecular cloud (MC) at the region of the HESS J1641-463, corresponding π{sup 0} decay gamma-ray in proton–proton collision contribute to the TeV emission from the HESS J1641-463. Also, we investigate the possible X-ray emission in MC from the synchrotron procedure by secondary e{sup ±} produced through escaped protons interaction with the MC.« less

  12. Transcription factor RBP-J-mediated signalling regulates basophil immunoregulatory function in mouse asthma model.

    PubMed

    Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui

    2017-09-01

    Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.

  13. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  14. Development of very high J c in Ba(Fe 1-xCo x) 2As 2 thin films grown on CaF 2

    DOE PAGES

    Tarantini, C.; Kametani, F.; Lee, S.; ...

    2014-12-03

    Ba(Fe 1-xCo x) 2As 2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, J c. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,T c, of the material. In this study we demonstrate that strain induced by the substrate can further improve J c of both single and multilayer films by more than that expected simply due to the increase in T c. The multilayer deposition of Ba(Fe 1-xComore » x) 2As 2 on CaF 2 increases the pinning force density (F p=J c x μ₀H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m 3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.« less

  15. Observation of the decay B-->J/psietaK and search for X(3872)-->J/psieta.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Tehrani, F Safai; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; De Nardo, G; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-07-23

    We report the observation of the B meson decay B+/- -->J/psietaK+/- and evidence for the decay B0-->J/psietaK0S, using 90 x 10(6) BB; events collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC PEP-II e+e- asymmetric-energy storage ring. We obtain branching fractions of B(B+/- -->J/psietaK+/-) = [10.8 +/- 2.3(stat) +/- 2.4(syst)] x 10(-5) and B(B0-->J/psietaK0S) = [8.4 +/- 2.6(stat) +/- 2.7(syst)] x 10(-5). We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B+/- -->X(3872)K+/-,X(3872)-->J/psieta and determine an upper limit of B[B +/- -->X(3872)K+/- -->J/psietaK+/-] < 7.7 x 10(-6) at 90% confidence level. Copyright 2004 The American Physical Society

  16. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Huang, Ai-Jun; Wang, Dong; Wang, Jia-Ming; Shi, Jia-Dong; Sun, Wen-Yang; Ye, Liu

    2017-08-01

    In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter b<1, the uncertainty will decrease with the decrease of the inhomogeneous field parameter b, conversely, the uncertainty will increase with decreasing b under the condition that b>1. Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.

  17. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus.

    PubMed

    Guillén-Chable, Francisco; Arenas-Sosa, Iván; Islas-Flores, Ignacio; Corzo, Gerardo; Martinez-Liu, Cynthia; Estrada, Georgina

    2017-08-01

    The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. 1. VIEW OF HEADQUARTERS OF J. CLARK SALYER NATIONAL WILDLIFE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF HEADQUARTERS OF J. CLARK SALYER NATIONAL WILDLIFE REFUGE, SHOWING PART OF THE POND BEHIND DAM 326, LOOKING SOUTHEAST FROM THE LOOKOUT TOWER - J. Clark Salyer National Wildlife Refuge Dams, Along Lower Souris River, Kramer, Bottineau County, ND

  19. The J-2X Oxidizer Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.

  20. Explaining a CMS e e j j excess with R -parity violating supersymmetry and implications for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Allanach, Ben; Biswas, Sanjoy; Mondal, Subhadeep; Mitra, Manimala

    2015-01-01

    A recent CMS search for the right-handed gauge boson WR reports an interesting deviation from the Standard Model. The search has been conducted in the e e j j channel and has shown a 2.8 σ excess around me e j j˜2 TeV . In this work, we explain the reported CMS excess with R -parity violating supersymmetry. We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an R -parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay (0 ν β β ) experiments. GERDA Phase-II will probe a significant portion of the good-fit parameter space.

  1. Theater Medical Information Program Joint Increment 2 (TMIP J Inc 2)

    DTIC Science & Technology

    2016-03-01

    Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY...the Full Deployment Decision ( FDD ), the TMIP-J Increment 2 Economic Analysis was approved on December 6, 2013. The USD(AT&L) signed an Acquisition...Decision Memorandum (ADM) on December 23, 2013 approving FDD for TMIP-J Increment 2 and establishing the Full Deployment Objective and Threshold dates as

  2. J-2 Engine ready to go into test stand

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Two technicians watch carefully as cables prepare to lift a J-2 engine into a test stand. The J-2 powered the second stage and the third stage of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  3. Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2

    PubMed Central

    Yang, Shenglan; Gong, Wei; Wang, Yan; Cianflone, Katherine; Tang, Jiarong; Wang, Dao Wen

    2012-01-01

    Background MicroRNAs (miRNAs) are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3′ untranslated region (3′UTR). Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. Methods and Results Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3′UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. Conclusions Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes. PMID:22761738

  4. Neuronal Tryptophan Hydroxylase Expression in BALB/cJ and C57Bl/6J Mice

    PubMed Central

    Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J. John; Underwood, Mark D.

    2014-01-01

    BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared to other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei (DRN) was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-HIAA were determined by high pressure liquid chromatography (HPLC). BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral DRN (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain of BALB/cJ compared to C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. PMID:21740442

  5. Neuronal tryptophan hydroxylase expression in BALB/cJ and C57Bl/6J mice.

    PubMed

    Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J John; Underwood, Mark D

    2011-09-01

    BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared with other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid. Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-hydroxyindoleacetic acid were determined by HPLC. BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral dorsal raphe nuclei (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain and 18% lower in the cerebral cortex of BALB/cJ compared with C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  6. Design, Activation, and Operation of the J2-X Subscale Simulator (JSS)

    NASA Technical Reports Server (NTRS)

    Saunders, Grady P.; Raines, Nickey G.; Varner, Darrel G.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design, activation, and operation of the J2-X Subscale Simulator (JSS) installed in Cell 1 of the E3 test facility at Stennis Space Center, MS (SSC). The primary purpose of the JSS is to simulate the installation of the J2-X engine in the A3 Subscale Rocket Altitude Test Facility at SSC. The JSS is designed to give aerodynamically and thermodynamically similar plume properties as the J2-X engine currently under development for use as the upper stage engine on the ARES I and ARES V spacecraft. The JSS is a scale pressure fed, LOX/GH fueled rocket that is geometrically similar to the J2-X from the throat to the nozzle exit plane (NEP) and is operated at the same oxidizer to fuel ratios and chamber pressures. This paper describes the heritage hardware used as the basis of the JSS design, the newly designed rocket hardware, igniter systems used, and the activation and operation of the JSS.

  7. χ_{c1} and χ_{c2} Resonance Parameters with the Decays χ_{c1,c2}→J/ψμ^{+}μ^{-}.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Luchinsky, A; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-12-01

    The decays χ_{c1}→J/ψμ^{+}μ^{-} and χ_{c2}→J/ψμ^{+}μ^{-} are observed and used to study the resonance parameters of the χ_{c1} and χ_{c2} mesons. The masses of these states are measured to be m(χ_{c1})=3510.71±0.04(stat)±0.09(syst)  MeV and m(χ_{c2})=3556.10±0.06(stat)±0.11(syst)  MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(χ_{c2})-m(χ_{c1})=45.39±0.07(stat)±0.03(syst)  MeV. The natural width of the χ_{c2} meson is measured to be Γ(χ_{c2})=2.10±0.20(stat)±0.02(syst)  MeV. These results are in good agreement with and have comparable precision to the current world averages.

  8. χc 1 and χc 2 Resonance Parameters with the Decays χc 1 ,c 2J /ψ μ+μ-

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luchinsky, A.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-12-01

    The decays χc 1J /ψ μ+μ- and χc 2J /ψ μ+μ- are observed and used to study the resonance parameters of the χc 1 and χc 2 mesons. The masses of these states are measured to be m (χc 1)=3510.71 ±0.04 (stat ) ±0.09 (syst ) MeV and m (χc 2)=3556.10 ±0.06 (stat ) ±0.11 (syst ) MeV , where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m (χc 2)-m (χc 1)=45.39 ±0.07 (stat ) ±0.03 (syst ) MeV . The natural width of the χc 2 meson is measured to be Γ (χc 2)=2.10 ±0.20 (stat ) ±0.02 (syst ) MeV . These results are in good agreement with and have comparable precision to the current world averages.

  9. Measurement of the Ratio of Branching Fractions B (Bc+→J /ψ τ+ντ)/B (Bc+→J /ψ μ+νμ)

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2018-03-01

    A measurement is reported of the ratio of branching fractions R (J /ψ ) =B (Bc+→J /ψ τ+ντ)/B (Bc+→J /ψ μ+νμ) , where the τ+ lepton is identified in the decay mode τ+→μ+νμν¯τ. This analysis uses a sample of proton-proton collision data corresponding to 3.0 fb-1 of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay Bc+→J /ψ τ+ντ at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R (J /ψ ) =0.71 ±0.17 (stat ) ±0.18 (syst ) . This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.

  10. J-2X, The Engine of the Future

    NASA Technical Reports Server (NTRS)

    Smith, Gail

    2009-01-01

    My project was two-fold, with both parts involving the J-2X Upper Stage engine (which will be used on both the Ares I and V). Mainly, I am responsible for using a program called Iris to create visual represen tations of the rocket engine's telemetry data. Also, my project includes the application of my newly acquired Pro Engineer skills in develo ping a 3D model of the engine's nozzle.

  11. Actinometric measurement of j(O3-O(1D)) using a luminol detector

    NASA Technical Reports Server (NTRS)

    Bairai, Solomon T.; Stedman, Donald H.

    1992-01-01

    The photolysis frequency of ozone to singlet D oxygen atoms has been measured by means of a chemical actinometer using a luminol based detector. The instrument measures j(O3-O(1D)) with a precision of 10 percent. The data collected in winter and spring of 1991 is in agreement with model predictions and previously measured values. Data from a global solar radiometer can be used to estimate the effects of local cloudiness on j(O3-O(1D)).

  12. J SERIES MAGAZINE. J 107 NORTH END AND REAR (EAST). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 107 NORTH END AND REAR (EAST). J 106-103 IN BACKGROUND. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  13. Angular analysis of B → J/ψK1: Towards a model independent determination of the photon polarization with B → K1γ

    NASA Astrophysics Data System (ADS)

    Kou, E.; Le Yaouanc, A.; Tayduganov, A.

    2016-12-01

    We propose a model independent extraction of the hadronic information needed to determine the photon polarization of the b → sγ process by the method utilizing the B →K1 γ → Kππγ angular distribution. We show that exactly the same hadronic information can be obtained by using the B → J / ψK1J / ψKππ channel, which leads to a much higher precision.

  14. Coherent and incoherent J /ψ photonuclear production in an energy-dependent hot-spot model

    NASA Astrophysics Data System (ADS)

    Cepila, J.; Contreras, J. G.; Krelina, M.

    2018-02-01

    In a previous publication, we have presented a model for the photoproduction of J /ψ vector mesons off protons, where the proton structure in the impact-parameter plane is described by an energy-dependent hot-spot profile. Here we extend this model to study the photonuclear production of J /ψ vector mesons in coherent and incoherent interactions of heavy nuclei. We study two methods to extend the model to the nuclear case: using the standard Glauber-Gribov formalism and using geometric scaling to obtain the nuclear saturation scale. We find that the incoherent cross section changes sizably with the inclusion of subnucleonic hot spots and that this change is energy dependent. We propose to search for this behavior by measuring the ratio of the incoherent to coherent cross sections at different energies. We compare the results of our model to results from the Relativistic Heavy-Ion Collider (RHIC) and from run 1 at the Large Hadron Collider (LHC), finding satisfactory agreement. We also present predictions for the LHC at the new energies reached in run 2. The predictions include J /ψ production in ultraperipheral collisions, as well as the recently observed photonuclear production in peripheral collisions.

  15. Fermi LAT Detection of Pulsed Gamma-Rays From the Vela-Like Pulsars PSR J1048-5832 and PSR J2229+6114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    We report the detection of {gamma}-ray pulsations ({ge}0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the {gamma}-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the {gamma}-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar tomore » the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 {+-} 0.01 and 0.57 {+-} 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 {+-} 0.01. The {gamma}-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 {+-} 0.22 {+-} 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 {+-} 0.22 {+-} 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young {gamma}-ray pulsars that make up the dominant population of GeV {gamma}-ray sources in the Galactic plane.« less

  16. Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains.

    PubMed

    Blizard, David A

    2007-01-01

    Studies of inbred strains of rats and mice have suggested a positive association between strain variations in sweet taste and ethanol intake. However, strain associations by themselves are insufficient to support a functional link between taste and ethanol intake. We used conditioned taste aversion (CTA) to explore the sweet and bitter taste of ethanol and ability to detect sucrose, quinine and ethanol in C57BL/6J (B6) and DBA/2J (D2) mouse strains that are frequently used in alcohol research. The present study showed that C57BL/6J mice generalized taste aversions from sucrose and quinine solutions to 10% ethanol and, reciprocally, aversions to 10% ethanol generalized to each of these solutions presented separately. Only conditioned aversions to quinine generalized to ethanol in the DBA/2J strain but an aversion conditioned to ethanol did not generalize reciprocally to quinine. Thus, considering these two gustatory qualities, 10% ethanol tastes both sweet and bitter to B6 mice but only bitter to D2. Both strains were able to generalize taste aversions across different concentrations of the same compound. B6 were able to detect lower concentrations of quinine than D2 but both strains were able to detect sucrose and (in contrast to previous findings) ethanol at similar concentrations. The strain-dependent gustatory profiles for ethanol may make an important contribution to the understanding of the undoubtedly complex mechanisms influencing high ethanol preference of B6 and pronounced ethanol avoidance of D2 mice.

  17. Listeria arpJ gene modifies T helper type 2 subset differentiation.

    PubMed

    Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro

    2015-07-15

    Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Measurement of prompt J/Ψ pair production in pp collisions at √s = 7 TeV

    DOE PAGES

    Khachatryan, Vardan

    2014-09-17

    Production of prompt J/ψ meson pairs in proton-proton collisions at √s = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb -1. The two J/ψ mesons are fully reconstructed via their decays into μ + μ - pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ψ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ψ transverse momentum (p T J/ψ ) andmore » rapidity (|y J/ψ |): |y J/ψ | < 1.2 for p T J/ψ > 6.5 GeV/c; 1.2 < |y J/ψ | < 1.43 for a p T threshold that scales linearly with |y J/ψ | from 6.5 to 4.5 GeV/c; and 1.43 < |y J/ψ | < 2.2 for p T J/ψ > 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/ψ pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ψ polarization imply modifications to the cross section ranging from -31% to +27%.« less

  19. Numerical Modelling Of The V-J Combinations Of The T Cell Receptor TRA/TRD Locus

    PubMed Central

    Dariz, Aurélie; Baum, Thierry Pascal; Hierle, Vivien; Demongeot, Jacques; Marche, Patrice Noël; Jouvin-Marche, Evelyne

    2010-01-01

    T-Cell antigen Receptor (TR) repertoire is generated through rearrangements of V and J genes encoding α and β chains. The quantification and frequency for every V-J combination during ontogeny and development of the immune system remain to be precisely established. We have addressed this issue by building a model able to account for Vα-Jα gene rearrangements during thymus development of mice. So we developed a numerical model on the whole TRA/TRD locus, based on experimental data, to estimate how Vα and Jα genes become accessible to rearrangements. The progressive opening of the locus to V-J gene recombinations is modeled through windows of accessibility of different sizes and with different speeds of progression. Furthermore, the possibility of successive secondary V-J rearrangements was included in the modelling. The model points out some unbalanced V-J associations resulting from a preferential access to gene rearrangements and from a non-uniform partition of the accessibility of the J genes, depending on their location in the locus. The model shows that 3 to 4 successive rearrangements are sufficient to explain the use of all the V and J genes of the locus. Finally, the model provides information on both the kinetics of rearrangements and frequencies of each V-J associations. The model accounts for the essential features of the observed rearrangements on the TRA/TRD locus and may provide a reference for the repertoire of the V-J combinatorial diversity. PMID:20174554

  20. Determination of the number of J/ψ events with inclusive J/ψ decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.

    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 10 6, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 10 6. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ±more » 7.0) × 10 6, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible.« less

  1. Determination of the number of J/ψ events with inclusive J/ψ decays

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; ...

    2016-08-26

    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 10 6, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 10 6. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ±more » 7.0) × 10 6, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible.« less

  2. Theoretical Studies of N2-broadened Half-widths of H2O Lines Involving High j States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    Based on the properties of the energy levels and wave functions of H2O states, one can categorize H2O lines into individually defined groups such that within the same group, the energy levels and the wave functions associated with two paired lines have an identity property while those associated with different pairs have a similarity property. Meanwhile, by thoroughly analyzing processes used to calculate N2-broadened half-widths, it was found that the 'Fourier series' of W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub f) T(sub f) and W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub i) T(sub i), and a factor P(sub 222) (j(sub f) T(sub f) j(sub i) T(sub i)) are the key items in the Robert-Bonamy formalism to distinguish contributions to ReS2(r(sub c)) among different transitions of j(sub f) T(sub f) - j(sub i). However, these items are completely determined by the energy levels and the wave functions associated with their initial and final states and they must bear the latter's features as well. Thus, it becomes obvious that for two paired lines in the same group, their calculated half-widths must be almost identical and the values associated with different pairs must vary smoothly as their ji values vary. Thus, the pair identity and the smooth variation rules are established within individual groups of lines. One can use these rules to screen half-width data listed in HITRAN and to improve the data accuracies.

  3. Maternal Weight Gain as a Predictor of Litter Size in Swiss Webster, C57BL/6J, and BALB/cJ mice.

    PubMed

    Finlay, James B; Liu, Xueli; Ermel, Richard W; Adamson, Trinka W

    2015-11-01

    An important task facing both researchers and animal core facilities is producing sufficient mice for a given project. The inherent biologic variability of mouse reproduction and litter size further challenges effective research planning. A lack of precision in project planning contributes to the high cost of animal research, overproduction (thus waste) of animals, and inappropriate allocation of facility resources. To examine the extent daily prepartum maternal weight gain predicts litter size in 2 commonly used mouse strains (BALB/cJ and C57BL/6J) and one mouse stock (Swiss Webster), we weighed ≥ 25 pregnant dams of each strain or stock daily from the morning on which a vaginal plug (day 0) was present. On the morning when dams delivered their pups, we recorded the weight of the dam, the weight of the litter itself, and the number of pups. Litter sizes ranged from 1 to 7 pups for BALB/cJ, 2 to 13 for Swiss Webster, and 5 to 11 for C57BL/6J mice. Linear regression models (based on weight change from day 0) demonstrated that maternal weight gain at day 9 (BALB/cJ), day 11 (Swiss Webster), or day 14 (C57BL/6J) was a significant predictor of litter size. When tested prospectively, the linear regression model for each strain or stock was found to be accurate. These data indicate that the number of pups that will be born can be estimated accurately by using maternal weight gain at specific or stock-specific time points.

  4. Unusual Nonemissive Behavior of Rubrene J-Aggregates: A Rare Violation.

    PubMed

    Aggarwal, Nikhil; Patnaik, Archita

    2017-04-13

    Structure-property correlations in rubrene (RB) colloidal J-aggregates were unravelled by steady state and time-resolved spectroscopy in conjunction with excited state density functional calculations. The RB J-aggregate with a slippage angle θ = 30.4°, estimated from the monomeric transition dipole moment directions, exhibited a broad fwhm of 1073 cm -1 and a 5 nm red-shifted absorption band carrying a transition dipole moment (M⃗ λ agg = 1.80 D) almost equivalent to the monomeric dye (M⃗ λ mon = 1.89 D). A significantly low magnitude of exciton coupling energy, ΔE exc = -358 cm -1 for the rhombic-RB colloidal J-aggregates resulted owing to the weaker electronic communication between the largely separated RB subunits (r = 7.2 Å) and a restricted exciton delocalization over the RB J-dimer (N = 2). The RB J-dimer exhibited a perfect balance between the computed singlet (2.53 eV) and the triplet (1.29 eV) exciton energies for singlet fission (SF). Supporting this, the PL decay profile of the J-aggregates revealed a delayed fluorescence, substantiating triplet pair formation via SF. The experimental evidence for the long-lived triplet formation was furthermore confirmed by its transient absorption (T 1 → T N ) at 530 nm. Consequently, a high probability for SF and a low probability for triplet-triplet recombination, leading to a dramatic lowering in photoluminescence quantum yield from 0.172 down to 0.035 was noted. The electronic structure calculations for the RB J-dimer followed TD-DFT-M062X/6-31G+(d,p) level of theory following integral equation formalism polarizable continuum model (IEFPCM) in water. S 1 excited state for RB J-dimer was carefully analyzed using integral overlap of electron and hole density distribution (ϕ) and the defined t-indexes along all three spatial directions, and was found to be of locally excited in character.

  5. J-tube technique for double-j stent insertion during laparoscopic upper urinary tract surgical procedures.

    PubMed

    Kim, Hyung Suk; Lee, Byung Ki; Jung, Jin-Woo; Lee, Jung Keun; Byun, Seok-Soo; Lee, Sang Eun; Jeong, Chang Wook

    2014-11-01

    Double-J stent insertion has been generally performed during laparoscopic upper urinary tract (UUT) surgical procedures to prevent transient urinary tract obstruction and postoperative flank pain from ureteral edema and blood clots. Several restrictive conditions that make this procedure difficult and time consuming, however, include the coiled distal ends of the flexible Double-J stent and the limited bending angle of the laparoscopic instruments. To overcome these limitations, we devised a Double-J stent insertion method using the new J-tube technique. Between July 2011 and May 2013, Double-J stents were inserted using the J-tube technique in 33 patients who underwent a laparoscopic UUT surgical procedure by a single surgeon. The mean stent placement time was 4.8±2.7 minutes, and there were no intraoperative complications. In conclusion, the J-tube technique is a safe and time-saving method for Double-J stent insertion during laparoscopic surgical procedures.

  6. Decadal variation in Earth's oblateness (J2) from satellite laser ranging data

    NASA Astrophysics Data System (ADS)

    Cheng, Minkang; Ries, John C.

    2018-02-01

    For four decades, satellite laser ranging has recorded the global nature of the long-wavelength hydrological mass redistribution within the Earth system, which results in significant variations in the Earth's dynamical oblateness, characterized by the second degree zonal geopotential spherical harmonic J2 (or C20). Analysis of the J2 time-series has shown a significant variation related to the strong El Niño-Southern Oscillation events with periods of 2-6 yr. In particular, the variation related to the powerful 2015-2016 El Niño that peaked during 2015 November-December was one of the strongest on record, comparable with the 1982-1983 and 1997-1998 events. In this study, we investigate further the hydrological mass transfer between atmosphere-ocean-land and their signature in the decadal variations of J2 with timescales of ˜10 yr. We found that the ˜6.4-yr variations can be accounted for by the atmosphere and ocean mass variations based on the improved Atmosphere-Ocean De-aliasing data, and the observed decadal variation in J2 correlates well with the decadal tropical variability characterized by the 5-yr running mean of the El Niño-Southern Oscillation Index, although existing physical models, especially the land water storage, are limited for the purpose of further studies of the excitation.

  7. Haemoglobin J-Baltimore can be detected by HbA1c electropherogram but with underestimated HbA1c value.

    PubMed

    Brunel, Valéry; Lahary, Agnčs; Chagraoui, Abdeslam; Thuillez, Christian

    2016-01-01

    Glycated haemoglobin (HbA(1c)) is considered the gold standard for assessing diabetes compensation and treatment. In addition, fortuitous detection of haemoglobin variants during HbA1c measurement is not rare. Recently, two publications reported different conclusions on accuracy of HbA(1c) value using capillary electrophoresis method in presence of haemoglobin J-Baltimore (HbJ).
Here we describe the fortuitous detection of unknown HbJ using capillary electrophoresis for measurement of HbA(1c). A patient followed for gestational diabetes in our laboratory presented unknown haemoglobin on Capillarys 2 Flex Piercing analyser which was identified as HbJ. HbJ is not associated with haematological abnormalities. High Performance Liquid Chromatography methods are known to possibly underestimate HbA(1c) value in the presence of this variant. This variant and its glycated form are clearly distinguished on electropherogram but HbJ was responsible for underestimating the true area of HbA(1c).
 Capillary electrophoresis is a good method for detecting HbJ but does not seem suitable for evaluation of HbA(1C) value in patients in presence of HbJ variant.

  8. 1RXS J184542.4+483134 is a new eclipsing polar

    NASA Astrophysics Data System (ADS)

    Pavlenko, E.; Sokolovsky, K.; Baklanov, A.; Antonyuk, K.; Antonyuk, O.; Denisenko, D.

    2011-06-01

    We present time-resolved ground-based optical and space-based Swift UV and X-ray observations of the cataclysmic variable 1RXS J184542.4+483134 (USNO-B1.0 1385-0291789 18:45:42.622 +48:31:30.84, J2000; Monet et al. 2003 AJ, 125, 984) recently identified by Denisenko & Sokolovsky (2011 AstL, 37, 91) and Denisenko & Smirnov (2011 PZP, 11, 10). Photometry with the 2.6-m Shajn and 1.25-m AZT-11 telescopes of the Crimean astrophysical observatory was conducted on 2011 April 30, May 02, 03 and April 25, 26, respectively, for the total duration of about 14.6 hrs.

  9. J-2X concludes series of tests

    NASA Image and Video Library

    2008-05-09

    NASA engineers successfully complete the first series of tests in the early development of the J-2X engine that will power the Ares I and Ares V rockets, key components of NASA's Constellation Program.

  10. Branching fraction measurement of J / ψ → K S K L and search for J / ψ → K S K S

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2017-12-04

    Using a sample of 1.31×10 9J/ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J/ψ→ K SK L and K SK S. The branching fraction of J/ψ→ K SK L is determined to be B(J/ψ→ K SK L) = (1:93 0:01 (stat:) 0:05 (syst:))×10 -4, which signi cantly improves on previous measurements. No clear signal is observed for the J/ψ→ K SK S process, and the upper limit at the 95% con dence level for its branching fraction is determined to be B(J= ! K SK S) < 1:4×10 -8, which improves onmore » the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.« less

  11. Branching fraction measurement of J / ψ → K S K L and search for J / ψ → K S K S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.

    Using a sample of 1.31×10 9J/ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J/ψ→ K SK L and K SK S. The branching fraction of J/ψ→ K SK L is determined to be B(J/ψ→ K SK L) = (1:93 0:01 (stat:) 0:05 (syst:))×10 -4, which signi cantly improves on previous measurements. No clear signal is observed for the J/ψ→ K SK S process, and the upper limit at the 95% con dence level for its branching fraction is determined to be B(J= ! K SK S) < 1:4×10 -8, which improves onmore » the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.« less

  12. Sociability and brain development in BALB/cJ and C57BL/6J mice

    PubMed Central

    Fairless, Andrew H.; Dow, Holly C.; Kreibich, Arati Sadalge; Torre, Matthew; Kuruvilla, Mariyam; Gordon, Elliot; Morton, Elizabeth A.; Tan, Junhao; Berrettini, Wade H.; Li, Hongzhe; Abel, Ted; Brodkin, Edward S.

    2012-01-01

    Sociability—the tendency to seek social interaction–propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains’ contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. We also hypothesized that littermates would resemble one another in sociability more than non-littermates. Finally, we hypothesized that low sociability would be associated with low corpus callosum size and increased brain size in BALB/cJ mice. Separate cohorts of C57BL/6J and BALB/cJ mice were tested for sociability at 19-, 23-, 31-, 42-, or 70-days-of-age, and brain weights and mid-sagittal corpus callosum area were measured. BALB/cJ sociability increased with age, and a strain by age interaction in sociability between 31 and 42 days of age suggested strong effects of puberty on sociability development. Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development. PMID:22178318

  13. Nature of the Unidentified TeV Source HESS J1614-518 Revealed by Suzaku and XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Sakai, M.; Yajima, Y.; Matsumoto, H.

    2013-03-01

    We report new results concerning HESS J1614-518, which exhibits two regions with intense γ-ray emission. The south and center regions of HESS J1614-518 were observed with Suzaku in 2008, while the north region with the 1st brightest peak was observed in 2006. No X-ray counterpart is found at the 2nd brightest peak; the upper limit of the X-ray flux is estimated as 1.6 × 10-13 erg cm-2 s-1 in the 2-10 keV band. A previously-known soft X-ray source, Suzaku J1614-5152, is detected at the center of HESS J1614-518. Analyzing the XMM-Newton archival data, we reveal that Suzaku J1614-5152 consists of multiple point sources. The X-ray spectrum of the brightest point source, XMMU J161406.0-515225, could be described by a power-law model with the photon index Γ = 5.2+0.6-0.5 or a blackbody model with the temperature kT = 0.38+0.04-0.04 {keV}. In the blackbody model, the estimated column density N H = 1.1+0.3-0.2 × 1022 {cm}-2 is almost the same as that of the hard extended X-ray emission in Suzaku J1614-5141, spatially coincident with the 1st peak position. In this case, XMMU J161406.0-515225 may be physically related to Suzaku J1614-5141 and HESS J1614-518.

  14. 22 CFR 505.13 - General exemptions (Subsection (j)).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true General exemptions (Subsection (j)). 505.13... exemptions (Subsection (j)). (a) General exemptions are available for systems of records which are maintained by the Central Intelligence Agency (Subsection (j)(1)), or maintained by an agency which performs as...

  15. 40 CFR Table 1 to Subpart B of... - Section 112(j) Part 2 Application Due Dates

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Section 112(j) Part 2 Application Due Dates 1 Table 1 to Subpart B of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air...

  16. 30 CFR Appendix A to Subpart J of... - Appendix A to Subpart J of Part 75

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Appendix A to Subpart J of Part 75 A Appendix A to Subpart J of Part 75 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Medium-Voltage Alternating Current Circuits Pt. 75, Subpt. J, App. A Appendix A to Subpart J of Part 75...

  17. J85 Rejuvenation Through Technology Insertion

    DTIC Science & Technology

    2000-10-01

    and Sabre 75 business addition to military production, the J85 was jets . Number Model Produced Aircraft Type(s) Engine Type Thrust (lbs) J85-GE-4 740...REJUVENATION THROUGH TECHNOLOGY INSERTION T.A. Brisken, P.N. Howell, A.C. Ewing Military Engines Operation GE Aircraft Engines 1 Neumann Way Cincinnati...OH 45215, USA Summary thrust to weight ratio turbojet engines with potential application to early cruise missiles and drones. The history of the

  18. Unconventional quantum antiferromagnetism with a fourfold symmetry breaking in a spin-1/2 Ising-Heisenberg pentagonal chain

    NASA Astrophysics Data System (ADS)

    Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.

    2018-03-01

    The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.

  19. Effects of the observed J2 variations on the Earth's precession and nutation

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Baenas, Tomás; Belda, Santiago

    2016-04-01

    The Earth's oblateness parameter J2 is closely related to the dynamical ellipticity H, which factorizes the main components of the precession and the different nutation terms. In most theoretical approaches to the Earth's rotation, with IAU2000 nutation theory among them, H is assumed to be constant. The precession model IAU2006 supposes H to have a conventional linear variation, based on the J2 time series derived mainly from satellite laser ranging (SLR) data for decades, which gives rise to an additional quadratic term of the precession in longitude and some corrections of the nutation terms. The time evolution of J2 is, however, too complex to be well approximated by a simple linear model. The effect of more general models including periodic terms and closer to the observed time series, although still unable to reproduce a significant part of the signal, has been seldom investigated. In this work we address the problem of deriving the effect of the observed J2 variations without resorting to such simplified models. The Hamiltonian approach to the Earth rotation is extended to allow the McCullagh's term of the potential to depend on a time-varying oblateness. An analytical solution is derived by means of a suitable perturbation method in the case of the time series provided by the Center for Space Research (CSR) of the University of Texas, which results in non-negligible contributions to the precession-nutation angles. The presentation focuses on the main effects on the longitude of the equator; a noticeable non-linear trend is superimposed to the linear main precession term, along with some periodic and decadal variations.

  20. TopBP1 deficiency impairs V(D)J recombination during lymphocyte development

    PubMed Central

    Kim, Jieun; Kyu Lee, Sung; Jeon, Yoon; Kim, Yehyun; Lee, Changjin; Ho Jeon, Sung; Shim, Jaegal; Kim, In-Hoo; Hong, Seokmann; Kim, Nayoung; Lee, Ho; Seong, Rho Hyun

    2014-01-01

    TopBP1 was initially identified as a topoisomerase II-β-binding protein and it plays roles in DNA replication and repair. We found that TopBP1 is expressed at high levels in lymphoid tissues and is essential for early lymphocyte development. Specific abrogation of TopBP1 expression resulted in transitional blocks during early lymphocyte development. These defects were, in major part, due to aberrant V(D)J rearrangements in pro-B cells, double-negative and double-positive thymocytes. We also show that TopBP1 was located at sites of V(D)J rearrangement. In TopBP1-deficient cells, γ-H2AX foci were found to be increased. In addition, greater amount of γ-H2AX product was precipitated from the regions where TopBP1 was localized than from controls, indicating that TopBP1 deficiency results in inefficient DNA double-strand break repair. The developmental defects were rescued by introducing functional TCR αβ transgenes. Our data demonstrate a novel role for TopBP1 as a crucial factor in V(D)J rearrangement during the development of B, T and iNKT cells. PMID:24442639

  1. The effect of the physician J-1 visa waiver on rural Wisconsin.

    PubMed

    Crouse, Byron J; Munson, Randy L

    2006-10-01

    One strategy to increase the number of physicians in rural and other underserved areas grants a waiver to foreign physicians in this country on a J-1 education visa allowing them to stay in the United States if they practice in designated underserved areas. The goal of this study is to evaluate the retention and acceptance of the J-1 Visa Waiver physicians in rural Wisconsin. Sites in Wisconsin at which physicians with a J-1 Visa Waiver practiced between 1996 and 2002 were identified. A 12-item survey that assessed the acceptance and retention of these physicians was sent to leaders of institutions that had participated in this program. Retention of J-1 Visa Waiver physicians was compared to other physicians recruited to rural Wisconsin practices by the Wisconsin Office of Rural Health during the same time period. While there was a general perception that the communities were well satisfied with the care provided and the physicians worked well with the medical community, there was a lower satisfaction with physician integration into the community-at-large. This was found to correlate with the poor retention rate of physicians with a J-1 Visa Waiver. Physicians participating in a placement program without J-1 Visa Waivers entering practice in rural communities had a significantly higher retention rate. Physicians with J-1 Visa Waivers appear to provide good care and work well in health care environments while fulfilling the waiver requirements. To keep these physicians practicing in these communities, successful integration into the community is important.

  2. Polarizations of J/psi and psi(2S) mesons produced in pp collisions at square root s = 1.96 TeV.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-09-28

    We have measured the polarizations of J/psi and psi(2S) mesons as functions of their transverse momentum p(T) when they are produced promptly in the rapidity range |y| < 0.6 with p(T) > or =5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb(-1) collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as p(T) increases from 5 to 30 GeV/c. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of J/psi and psi(2S) mesons from B-hadron decays are also reported.

  3. Near-infrared photometry of WISE J085510.74-071442.5

    NASA Astrophysics Data System (ADS)

    Zapatero Osorio, M. R.; Lodieu, N.; Béjar, V. J. S.; Martín, E. L.; Ivanov, V. D.; Bayo, A.; Boffin, H. M. J.; Mužić, K.; Minniti, D.; Beamín, J. C.

    2016-08-01

    Aims: We aim at obtaining near-infrared photometry and deriving the mass, age, temperature, and surface gravity of WISE J085510.74-071442.5 (J0855-0714), which is the coolest object beyond the solar system currently known. Methods: We used publicly available data from the archives of the Hubble Space Telescope (HST) and the Very Large Telescope (VLT) to determine the emission of this source at 1.153 μm (F110W) and 1.575 μm (CH4-off). J0855-0714 was detected at both wavelengths with a signal-to-noise ratio of ≈10 (F110W) and ≈4 (CH4-off) at the peak of the corresponding point-spread-functions. Results: This is the first detection of J0855-0714 in the H-band wavelengths. We measured 26.31 ± 0.10 and 23.22 ± 0.35 mag in F110W and CH4-off (Vega system). J0855-0714 remains unresolved in the HST images that have a spatial resolution of 0.22''. Companions at separations of 0.5 AU (similar mass and brightness) and at ~1 AU (≈1 mag fainter in the F110W filter) are discarded. By combining the new data with published photometry, including non-detections, we build the spectral energy distribution of J0855-0714 from 0.89 through 22.09 μm, and contrast it against current solar-metallicity models of planetary atmospheres. We determine that the best spectral fit yields a temperature of 225-250 K, a bolometric luminosity of log L/L⊙ = -8.57, and a high surface gravity of log g = 5.0 (cm s-2), which suggests an old age although a gravity this high is not fully compatible with evolutionary models. After comparing our data with the cooling theory for brown dwarfs and planets, we infer a mass in the interval 2-10 MJup for ages of 1-12 Gyr and high atmospheric gravities of log g ⪆ 3.5 (cm s-2). If it had the age of the Sun, J0855-0714 would be a ≈5-MJup free-floating planetary-mass object. Conclusions: J0855-0714 meets the mass values previously determined for free-floating planetary-mass objects discovered in star-forming regions and young stellar clusters. Based on

  4. 2. VIEW, LOOKING EAST, SHOWING J. CLARK SALYER NATIONAL WILDLIFE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW, LOOKING EAST, SHOWING J. CLARK SALYER NATIONAL WILDLIFE REFUGE, JUST EAST OF WESTHOPE, NORTH DAKOTA (THE NORTH END OF THE REFUGE JUST SOUTH OF DAM 357 AND THE CANADIAN BORDER) - J. Clark Salyer National Wildlife Refuge Dams, Along Lower Souris River, Kramer, Bottineau County, ND

  5. Spin-orbit driven magnetic insulating state with J eff=1/2 character in a 4d oxide

    DOE PAGES

    Calder, S.; Li, Ling; Okamoto, Satoshi; ...

    2015-11-30

    The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr 4RhO 6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogousmore » J eff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with J eff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr 4RhO 6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous J eff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with J eff=12 character.« less

  6. Association of Escherichia coli J5-specific serum antibody responses with clinical mastitis outcome for J5 vaccinate and control dairy cattle.

    PubMed

    Wilson, David J; Mallard, Bonnie A; Burton, Jeanne L; Schukken, Ynte H; Grohn, Yrjo T

    2009-02-01

    Dairy cattle in two commercial Holstein herds were randomly selected to be vaccinated twice with J5, at approximately 60 days and 28 days before the expected calving date, or to be untreated controls. Based on whether milk production changed following clinical mastitis or whether cows were culled or died within 30 days after onset, 51 mastitis cases were classified as severe or mild. J5-specific antibody responses were evaluated by enzyme-linked immunosorbent assay of all 32 severe and 19 mild cases. The amounts of J5-specific immunoglobulin M (IgM), IgG1, and IgG2 antibodies in sera from the 27 J5 vaccinates were compared with those of the 24 controls. At drying off (before J5 vaccination), all cows had similar amounts of J5-specific antibody. Immediately after calving (approximately 28 days after the second vaccination), J5 vaccinates had significantly higher production of J5-specific IgG1 and IgG2 than controls. When cows were tested following clinical mastitis, none of the three antibody classes differed significantly between the controls and the vaccinates. Vaccinates that contracted Escherichia coli mastitis had 75% less milk loss than controls. The cows that contracted clinical mastitis later in lactation, the unvaccinated controls, and those infected with E. coli had more milk loss following mastitis. The hazards of being culled for all reasons and of being culled for mastitis were significantly lower for J5 vaccinates. Vaccination with J5 was associated with protection against milk production loss and culling following clinical mastitis, and it was also significantly associated with changes in J5-specific IgM, IgG1, and IgG2 antibodies in sera of vaccinated cows.

  7. Avian leukosis virus subgroup J induces its receptor--chNHE1 up-regulation.

    PubMed

    Feng, Weiguo; Meng, Wei; Cai, Liming; Cui, Xiyao; Pan, Zhifang; Wang, Guihua; Cheng, Ziqiang

    2016-04-02

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus which causes immunosuppression and neoplasia in meat-type and egg-type chickens. ALV-J infects host cells via specific interaction between the viral Env and the cell surface receptor -chicken sodium hydrogen exchanger type 1 (chNHE1). NHE1 involved in altering the cellular pH and playing a critical role in tumorigenesis. However, little is known about the other relationship between ALV-J and chNHE1. In ALV-J infected DF-1 cells, the mRNA level of chNHE1 was up-regulated with time-dependent manner tested by real time PCR, and accordingly, intracellular pH was increased tested by spectrofluorometer. In vivo, the mRNA level of chNHE1 was determined by real time PCR in ALV-J infected experimental chickens and field cases. The result showed that the mRNA level of chNHE1 was up-regulated after virus shedding, especially in continuous viremic shedders (CS group). However, no significant difference was found between non-shedding group (NS group) and control group. In field cases, mRNA level of chNHE1 was positively correlated with increasing ALV-J load in tumor bearing and immune tolerance chickens. Furthermore, immunohistochemistry results showed that the protein expression of chNHE1 was up-regulated in different organs of both experimental chickens and tumor bearing chickens compared with the control. Taken together, we conclude that ALV-J induces chNHE1 up-regulation in viremia and neoplasia chickens.

  8. 2J, 3J-HMBC: A New Long-Range Heteronuclear Shift Correlation Technique Capable of Differentiating 2JCH from 3JCH Correlations to Protonated Carbons

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V. V.; Russell, David J.; Hadden, Chad E.; Martin, Gary E.

    2000-09-01

    The development of a series of new, accordion-optimized long-range heteronuclear shift correlation techniques has been reported. A further derivative of the constant time variable delay introduced in the IMPEACH-MBC experiment, a STAR (Selectively Tailored Accordion F1 Refocusing) operator is described in the present report. Incorporation of the STAR operator with the capability of user-selected homonuclear modulation scaling as in the CIGAR-HMBC experiment, into a long-range heteronuclear shift correlation pulse sequence, 2J,3J-HMBC, affords for the first time in a proton-detected experiment the means of unequivocally differentiating two-bond (2JCH) from three-bond (3JCH) long-range correlations to protonated carbons.

  9. J SERIES MAGAZINE. J 107 SOUTH ELEVATION. Naval Magazine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 107 SOUTH ELEVATION. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  10. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  11. The J3 SCR model applied to resonant converter simulation

    NASA Technical Reports Server (NTRS)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  12. Exclusive decay of P-wave bottomonium into double J/{psi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Juan; Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006; Dong Hairong

    2011-11-01

    We calculate the relativistic corrections of J/{psi}, including electromagnetic corrections, to {chi}{sub b}J{yields}J/{psi}J/{psi} in the framework of nonrelativistic QCD factorization. The relativistic effects are found to increase the lower-order prediction for the decay width by about 10%, while the electromagnetism contribution is very small, about 0.2% for {chi}{sub b0} and {chi}{sub b2}. The total branching ratios are predicted to be of order 10{sup -5} for {chi}{sub b0,b2}{yields}J/{psi}J/{psi}, but 10{sup -11} for {chi}{sub b1}{yields}J/{psi}J/{psi}, since there is only electromagnetism contribution in this channel. We predict it is possible to observe these reactions in LHC.

  13. Sociability and brain development in BALB/cJ and C57BL/6J mice.

    PubMed

    Fairless, Andrew H; Dow, Holly C; Kreibich, Arati Sadalge; Torre, Matthew; Kuruvilla, Mariyam; Gordon, Elliot; Morton, Elizabeth A; Tan, Junhao; Berrettini, Wade H; Li, Hongzhe; Abel, Ted; Brodkin, Edward S

    2012-03-17

    Sociability--the tendency to seek social interaction--propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains' contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. We also hypothesized that littermates would resemble one another in sociability more than non-littermates. Finally, we hypothesized that low sociability would be associated with low corpus callosum size and increased brain size in BALB/cJ mice. Separate cohorts of C57BL/6J and BALB/cJ mice were tested for sociability at 19-, 23-, 31-, 42-, or 70-days-of-age, and brain weights and mid-sagittal corpus callosum area were measured. BALB/cJ sociability increased with age, and a strain by age interaction in sociability between 31 and 42 days of age suggested strong effects of puberty on sociability development. Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. System Engineering for J-2X Development: The Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.

  15. Ultrastructural analysis of the pigment dispersion syndrome in DBA/2J mice.

    PubMed

    Schraermeyer, Mareike; Schnichels, Sven; Julien, Sylvie; Heiduschka, Peter; Bartz-Schmidt, Karl-Ulrich; Schraermeyer, Ulrich

    2009-11-01

    To characterise ocular pigment abnormalities associated with iris atrophy in DBA/2J mice as a model for human pigment dispersion syndrome. Immunohistochemistry, electron and light microscopy were performed to examine the eyes of DBA/2J mice ranging in age from 2.5 to 18 months old. The focus of our study was the description of the ultrastructural modifications in the irides of DBA/2J mice. The DBA/2J mice presented modifications in the melanosomes in all the pigmented parts of the eye, including the retinal pigment epithelial cells and choroidal melanocytes of the ciliary pigment epithelium. The extracellular matrix of the iris stroma disappeared with ageing. Pigmented cells detached from the iris and migrated into the trabecular meshwork exclusively on the anterior iris surface. These cells were identified as macrophages by immunohistochemistry and electron microscopy. There was no evidence that melanocytes or iris pigment epithelial cells migrated into the trabecular meshwork, but they became more and more depigmented. The aqueous outflow was blocked by pigment-laden cells, but not by cellular debris or melanosomes. No substantial amount of extracellular melanosomes was observed. The morphology of melanosomes is aberrant in all pigment cells in the eyes of DBA/2J mice. We conclude that the disease process begins with the transfer of both immature melanosomes from the iris pigment epithelium (IPE) and melanocytes to macrophages, which subsequently migrate into the trabecular meshwork. Accumulating macrophages cause a blockade of the chamber angle. As the disease progresses, the IPE, melanocytes and iris stroma, including blood vessels, disappear, leading to iris atrophy. It is speculated that the loss of these pigment cells is partly caused by reduction of the iris stroma.

  16. Presence of rare hepatitis C virus subtypes, 2j, 2k, and 2r in Mexico City as identified by sequencing.

    PubMed

    Uribe-Noguez, Luis Antonio; Ocaña-Mondragón, Alicia; Mata-Marín, José Antonio; Gómez-Torres, María Elena; Ribas-Aparicio, Rosa María; Martínez-Rodríguez, María de la Luz

    2018-03-06

    The HCV 5'UTR, Core/E1, and NS5B regions of samples from fifty patients infected with the hepatitis C virus (HCV) were analyzed. Seventeen patients were identified with genotype (GT) 1b, eleven with GT-1a, nine with GT-2b and four with GT-3a. Two rare subtypes were detected: GT-2j in two patients and GT-2r in one patient. Three patients had mixed infections: one with GT-2k + 2j and two with GT-1b + 2b. This work identifies HCV GTs, 2j, 2k, and 2r for the first time in Mexico. © 2018 Wiley Periodicals, Inc.

  17. Parity-Dependent Rotational Energy Transfer in CN(A2Π, ν = 4, jF1ε) + N2, O2, and CO2 Collisions

    PubMed Central

    2015-01-01

    We report state-resolved total removal cross sections and state-to-state rotational energy transfer (RET) cross sections for collisions of CN(A2Π, ν = 4, jF1ε) with N2, O2, and CO2. CN(X2Σ+) was produced by 266 nm photolysis of ICN in a thermal bath (296 K) of the collider gas. A circularly polarized pulse from a dye laser prepared CN(A2Π, ν = 4) in a range of F1e rotational states, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5. These prepared states were monitored using the circularly polarized output of an external cavity diode laser by frequency-modulated (FM) spectroscopy on the CN(A–X)(4,2) band. The FM Doppler profiles were analyzed as a function of pump–probe delay to determine the time dependence of the population of the initially prepared states. Kinetic analysis of the resulting time dependences was used to determine total removal cross sections from the initially prepared levels. In addition, a range of j′ F1e and j′ F2f product states resulting from rotational energy transfer out of the j = 6.5 F1e initial state were probed, from which state-to-state RET cross sections were measured. The total removal cross sections lie in the order CO2 > N2 > O2, with evidence for substantial cross sections for electronic and/or reactive quenching of CN(A, ν = 4) to unobserved products with CO2 and O2. This is supported by the magnitude of the state-to-state RET cross sections, where a deficit of transferred population is apparent for CO2 and O2. A strong propensity for conservation of rotational parity in RET is observed for all three colliders. Spin–orbit-changing cross sections are approximately half of those of the respective conserving cross sections. These results are in marked disagreement with previous experimental observations with N2 as a collider but are in good agreement with quantum scattering calculations from the same study (Khachatrian et al. J. Phys. Chem. A2009, 113, 392219215110). Our results with CO2 as a collider are similarly in strong

  18. Exactly solved mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Lisnyi, Bohdan; Strečka, Jozef

    2015-03-01

    The mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration-iteration transformation and the transfer-matrix method. The decoration-iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively.

  19. Possible new VY Scl-type variable 1RXS J075330.1+044606

    NASA Astrophysics Data System (ADS)

    Sokolovsky, K.; Denisenko, D.; Mescheryakov, A.; Tkachenko, A.; Korotkiy, S.; Gerke, V.

    2012-02-01

    We report the discovery of a possible new VY Scl-type cataclysmic variable associated with previously unidentified X-ray source 1RXS J075330.1+044606. The variable optical object USNO-B1.0 0947-0148659 (07:53:30.78 +04:45:56.3, J2000) located 15" from the X-ray source listed in the ROSAT All Sky Survey Faint Source Catalog (Voges et al., 2000, IAUC, 7432) was identified from information listed in the USNO-B1.0 catalog (Monet et al.

  20. XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components

    NASA Astrophysics Data System (ADS)

    Saxton, R. D.; Read, A. M.; Komossa, S.; Lira, P.; Alexander, K. D.; Wieringa, M. H.

    2017-02-01

    Aims: We study X-ray bright tidal disruption events (TDE), close to the peak of their emission, with the intention of understanding the evolution of their light curves and spectra. Methods: Candidate TDE are identified by searching for soft X-ray flares from non-active galaxies in recent XMM-Newton slew data. Results: In April 2014, X-ray emission was detected from the galaxy XMMSL1 J074008.2-853927 (a.k.a. 2MASX 07400785-8539307), a factor 20 times higher than an upper limit from 20 years earlier. Both the X-ray and UV flux subsequently fell, by factors of 70 and 12 respectively. The bolometric luminosity peaked at Lbol 2 × 1044 ergs s-1 with a spectrum that may be modelled with thermal emission in the UV band, a power-law with Γ 2 dominating in the X-ray band above 2 keV and a soft X-ray excess with an effective temperature of 86 eV. Rapid variability locates the X-ray emission to within <73 Rg of the nuclear black hole. Radio emission of flux density 1 mJy, peaking at 1.5 GHz was detected 21 months after discovery. Optical spectra indicate that the galaxy, at a distance of 73 Mpc (z = 0.0173), underwent a starburst 2 Gyr ago and is now quiescent. We consider a tidal disruption event to be the most likely cause of the flare. If this proves to be correct then this is a very clean example of a disruption exhibiting both thermal and non-thermal radiation. Data for this object are available within the Open TDE Catalog at http://https://tde.space/tde/XMMSL1 J0740-85

  1. Develop 3G Application with The J2ME SATSA API

    NASA Astrophysics Data System (ADS)

    JunWu, Xu; JunLing, Liang

    This paper describes research in the use of the Security and Trust Services API for J2ME (SATSA) to develop mobile applications. for 3G networks. SATSA defines a set of APIs that allows J2ME applications to communicate with and access functionality, secure storage and cryptographic operations provided by security elements such as smart cards and Wireless Identification Modules (WIM). A Java Card application could also work as an authentication module in a J2ME-based e-bank application. The e-bank application would allow its users to access their bank accounts using their cell phones.

  2. 16 CFR Appendix J1 to Part 305 - Pool Heaters-Gas

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. J1 Appendix J1 to Part 305—Pool Heaters—Gas Range Information Manufacturer's rated heating capacity Range of Thermal...

  3. 16 CFR Appendix J1 to Part 305 - Pool Heaters-Gas

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. J1 Appendix J1 to Part 305—Pool Heaters—Gas Range Information Manufacturer's rated heating capacity Range of Thermal...

  4. Mid-J CO Shock Tracing Observations of Infrared Dark Clouds. III. SLED Fitting

    NASA Astrophysics Data System (ADS)

    Pon, A.; Kaufman, M. J.; Johnstone, D.; Caselli, P.; Fontani, F.; Butler, M. J.; Jiménez-Serra, I.; Palau, A.; Tan, J. C.

    2016-08-01

    Giant molecular clouds contain supersonic turbulence that can locally heat small fractions of gas to over 100 K. We run shock models for low-velocity, C-type shocks propagating into gas with densities between 103 and 105 cm-3 and find that CO lines are the most important cooling lines. Comparison to photodissociation region (PDR) models indicates that mid-J CO lines (J = 8 \\to 7 and higher) should be dominated by emission from shocked gas. In Papers I and II we presented CO J = 3 \\to 2, 8 \\to 7, and 9 \\to 8 observations toward four primarily quiescent clumps within infrared dark clouds. Here we fit PDR models to the combined spectral line energy distributions and show that the PDR models that best fit the low-J CO emission underpredict the mid-J CO emission by orders of magnitude, strongly hinting at a hot gas component within these clumps. The low-J CO data clearly show that the integrated intensities of both the CO J = 8 \\to 7 and 9 \\to 8 lines are anomalously high, such that the line ratio can be used to characterize the hot gas component. Shock models are reasonably consistent with the observed mid-J CO emission, with models with densities near {10}4.5 cm-3 providing the best agreement. Where this mid-J CO is detected, the mean volume filling factor of the hot gas is 0.1%. Much of the observed mid-J CO emission, however, is also associated with known protostars and may be due to protostellar feedback.

  5. 16 CFR Appendix J1 to Part 305 - Pool Heaters-Gas

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Pool Heaters-Gas J1 Appendix J1 to Part 305... Part 305—Pool Heaters—Gas Range Information Manufacturer's rated heating capacity Range of Thermal Efficiencies (percent) Natural Gas Low High Propane Low High All capacities 79.0 95.0 79.0 95.0 [72 FR 49983...

  6. 16 CFR Appendix J1 to Part 305 - Pool Heaters-Gas

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pool Heaters-Gas J1 Appendix J1 to Part 305... Part 305—Pool Heaters—Gas Range Information Manufacturer's rated heating capacity Range of Thermal Efficiencies (percent) Natural Gas Low High Propane Low High All capacities 79.0 95.0 79.0 95.0 [72 FR 49983...

  7. Swift J1112.2-8238: a candidate relativistic tidal disruption flare

    NASA Astrophysics Data System (ADS)

    Brown, G. C.; Levan, A. J.; Stanway, E. R.; Tanvir, N. R.; Cenko, S. B.; Berger, E.; Chornock, R.; Cucchiaria, A.

    2015-10-01

    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare. The outburst was first detected by Swift/Burst Alert Telescope (BAT) in 2011 June as an unknown, long-lived (order of days) gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z = 0.89 based on a single emission line that we interpret as the blended [O II] λ3727 doublet. At this redshift, the peak X-ray/gamma-ray luminosity exceeded 1047 erg s-1, while a spatially coincident optical transient source had i' ˜ 22 (Mg ˜ -21.4 at z = 0.89) during early observations, ˜20 d after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late-time observations, almost 3 yr post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ˜3 month period (<3 per cent of its total lifetime as of 2015 March). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.

  8. Generalized moments expansion applied to the two-dimensional S= 1 /2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Mancini, Jay D.; Murawski, Robert K.; Fessatidis, Vassilios; Bowen, Samuel P.

    2005-12-01

    In this work we derive a generalized moments expansion (GMX), to third order, of which the well-established connected moments expansion and the alternate moments expansion are shown to be special cases. We discuss the benefits of the GMX with respect to the avoidance of singularities which are known to plague such moments methods. We then apply the GMX estimates for the ground-state energy for the two-dimensional S=1/2 Heisenberg square lattice and compare these results to those of both spin-wave theory and the linked-cluster expansion.

  9. Development of the Non-Hydrostatic Jupiter Global Ionosphere Thermosphere Model (J-GITM): Status and Current Simulations

    NASA Astrophysics Data System (ADS)

    Bougher, Stephen; Ridley, Aaron; Majeed, Tariq; Waite, J. Hunter; Gladstone, Randy; Bell, Jared

    2016-07-01

    The primary objectives for development and validation of a new 3-D non-hydrostatic model of Jupiter's upper atmosphere is to improve our understanding of Jupiter's thermosphere-ionosphere-magnetosphere system and to provide a global context within which to analyze the data retrieved from the new JUNO mission. The new J-GITM model presently incorporates the progress made on the previous Jupiter-TGCM code (i.e. key parameterizations, ion-neutral chemistry, IR cooling) while also employing the non-hydrostatic numerical core of the Earth Global Ionosphere-Thermosphere Model (GITM). The GITM numerical framework has been successfully applied to Earth, Mars, and Titan (see Ridley et al. [2006], Bougher et al. [2015], Bell [2008, 2010]). Moreover, it has been shown to simulate the effects of strong, localized heat sources (such as joule heating and auroral heating) more accurately than strictly hydrostatic GCMs (Deng et al. [2007, 2008]). Thus far, in the J-GITM model development and testing, model capability has been progressively augmented to capture the neutral composition (e.g. H, H2, He major species), 3-component neutral winds, and thermal structure, as well as the ion composition (H3+, H2+, and H+ among others) above 250 km. Presently, J-GITM: (a) provides an interactive calculation for auroral particle precipitation (i.e. heating, ionization), an improvement over the static formulation used previously in the J-TGCM (Bougher et al., 2005; Majeed et al., 2005, 2009, 2015); (b) self-consistently calculates an ionosphere using updated ion-neutral chemistry, ion dynamics, and electron transport; (c) simulates the chemistry that forms key hydrocarbons at the base of the thermosphere, focusing on CH4, C2H2, and C2H6; (d) allows the production of H3+, CH4, C2H2, and C2H6 to modify the global thermal balance of Jupiter through their non-LTE radiative cooling; (e) provides a calculation of H2 vibrational chemistry to regulate H+ densities; and (f) uses the improved

  10. VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'

    NASA Astrophysics Data System (ADS)

    Mandy, M. E.

    2016-11-01

    State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).

  11. Polarization of prompt J / ψ and Υ ( 1 S ) production in the color evaporation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Vincent; Vogt, Ramona

    We calculate the polarization of prompt J/ψ and Υ(1S) production using the color evaporation model at leading order. We present the polarization parameter x F as a function of center of mass energy and rapidity in p+p collisions. We also compare the x F dependence to experimental results in p+Cu and π+W collisions, and predict the x F dependence in p+Pb collisions at fixed-target energies.

  12. Polarization of prompt J / ψ and Υ ( 1 S ) production in the color evaporation model

    DOE PAGES

    Cheung, Vincent; Vogt, Ramona

    2017-09-14

    We calculate the polarization of prompt J/ψ and Υ(1S) production using the color evaporation model at leading order. We present the polarization parameter x F as a function of center of mass energy and rapidity in p+p collisions. We also compare the x F dependence to experimental results in p+Cu and π+W collisions, and predict the x F dependence in p+Pb collisions at fixed-target energies.

  13. A 1J LD pumped Nd:YAG pulsed laser system

    NASA Astrophysics Data System (ADS)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  14. Monitoring of Swift J1357.2-0933 (CRTS J135716.8-093238) requested

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-04-01

    Dr. Gregory Sivakoff (University of Alberta) has requested AAVSO observers' assistance in monitoring the black hole X-ray binary Swift J1357.2-0933 (CRTS J135716.8-093238) during its current outburst. Sivakoff writes: "...[Because it] is at high Galactic latitude...extinction is relatively small and the bright blue nature of the outburst can be observed readily by citizen astronomers as the source fades into quiescence on a timescale of a few months. AAVSO observations will be critical in complementing multiple multi-wavelength campaigns observing this outburst...In addition, this source is known to undergo recurring rapid dips. These dips can last for 10s of seconds, and recur on timescales of a few minutes. This is a great source for AAVSO observers, particularly CCD observers to follow." From now until the object is no longer observable with your equipment (quiescence is r/i 20, V 22.3), UBV photometry is requested in the form of nightly snapshot observations (once to a few times per night). However, more frequent observations are also welcome. Sivakoff writes: "[The recurring rapid dips]...might be interesting for some observers to go after. These dips can be on the order of a minute long. Observers wishing to probe that should go for as fast observations as the telescope allows for them to get a SNR of 10-20 in their telescope. To capture the longer term evolution, an hourly cadence would be wonderful...U B V places a priority on the blue filters, which are typically harder to get at higher Galactic extinction (lower Galactic latitude). That being said, I would definitely request that some observers get V data to connect with the daily SMARTS campaign (V I J K)...if people can get down to I 17 - 18, then...Ic is good for connecting with the SMARTS campaign and LCOGT work on this source." Precision of the photometry is requested to be at least 0.05 to 0.1 magnitude if possible, with allowance for it to go down to 0.2 mag as the source becomes fainter. A S/N of

  15. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...

  16. DEVELOPMENT OF HOME CAGE SOCIAL BEHAVIORS IN BALB/cJ vs. C57BL/6J MICE

    PubMed Central

    Fairless, Andrew H.; Katz, Julia M.; Vijayvargiya, Neha; Dow, Holly C.; Kreibich, Arati Sadalge; Berrettini, Wade H.; Abel, Ted; Brodkin, Edward S.

    2012-01-01

    BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ~30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism. PMID:22982070

  17. Development of home cage social behaviors in BALB/cJ vs. C57BL/6J mice.

    PubMed

    Fairless, Andrew H; Katz, Julia M; Vijayvargiya, Neha; Dow, Holly C; Kreibich, Arati Sadalge; Berrettini, Wade H; Abel, Ted; Brodkin, Edward S

    2013-01-15

    BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ∼30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Swift J1658.2-4242 as observed by AstroSat LAXPC

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Belloni, Tomaso; Vincentelli, Federico; Gandhi, Poshak; Altamirano, Diego

    2018-03-01

    We report on preliminary analysis of an AstroSat observation of the newly discovered X-ray transient, Swift J1658.2-4242 [J1658] (GCN #22416, #22417, #22419; ATel #11306, #11307, #11310, #11311, #11318, #11321, #11336).

  19. Comments on ""Lake Woebegone," Twenty Years Later" by J. J. Cannell, MD

    ERIC Educational Resources Information Center

    McRae, D. J.

    2006-01-01

    This article presents the author's comments on ""Lake Woebegone," Twenty Years Later" by J. J. Cannell, MD. J. J. Cannell's article on the so-called "Lake Woebegone" effect for K-12 educational testing systems is mostly an historical account of technical issues and policy considerations that led in part to development…

  20. A polyclonal antibody against extracellular loops 1 of chNHE1 blocks avian leukosis virus subgroup J infection.

    PubMed

    Meng, Wei; Zhou, Defang; Li, Chengui; Wang, Guihua; Huang, Libo; Cheng, Ziqiang

    2018-05-02

    Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces myelocytomas and other various tumors, leading to great economical losses in poultry industry. It is a great challenge to develop effective preventive methods for ALV-J control due to its antigenic variations in the variable regions of envelope. In present study, we generated a mouse polyclonal antibody targeting the first extracellular loop (ECL1) of chicken Na + /H + exchanger isoform 1 (chNHE1), the receptor of ALV-J, to block ALV-J infection in vitro and in vivo. In ALV-J infected DF-1 cells, chNHE1 expression and the intracellular pH (pHi) were up-regulated with "wave" pattern, indicating that the disequilibrium of ALV-J infected cells associated with chNHE1. Next, we validated that ALV-J infection was significantly blocked with time dependent after treating with anti-ECL1 antibody and accordingly the pHi value were recovered, indicating the blockage of ALV-J infection did not affect Na + /H + exchange. Furthermore, in anti-ECL1 antibody treatment chickens that infected by ALV-J, weight gain and immune organs were recovered, and viral loads were significantly decreased, and the tissue injury and inflammation were reduced significantly from 21 to 35 days of age. The study demonstrated that anti-ECL1 antibody effectively blocks ALV-J infection without affecting Na + /H + exchange, and sheds light on a novel strategy for retroviruses control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. FERMI LARGE AREA TELESCOPE DETECTION OF PULSED gamma-RAYS FROM THE VELA-LIKE PULSARS PSR J1048-5832 AND PSR J2229+6114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    2009-12-01

    We report the detection of gamma-ray pulsations (>=0.1 GeV) from PSR J2229+6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the gamma-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the gamma-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar tomore » the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 +- 0.01 and 0.57 +- 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 +- 0.01. The gamma-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 +- 0.22 +- 0.32) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J1048-5832 and (3.77 +- 0.22 +- 0.44) x 10{sup -7} cm{sup -2} s{sup -1} for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources which were entangled together as 3EG J1048-5840. These detections add to the growing number of young gamma-ray pulsars that make up the dominant population of GeV gamma-ray sources in the Galactic plane.« less

  2. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ.

    PubMed

    Sittig, Laura J; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios-Camacho, Camila M; Palmer, Abraham A

    2014-12-01

    Closely related substrains of inbred mice often show phenotypic differences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole-genome sequence data for both inbred strains (~3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies.

  3. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ

    PubMed Central

    Sittig, Laura J.; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios Camacho, Camila M.; Palmer, Abraham A.

    2014-01-01

    Closely related substrains of inbred mice often show phenotypic difzferences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole genome sequence data for both inbred strains (∼3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies. PMID:24997021

  4. A BABAR sensitivity study on the search for the invisible decay of J/psi in B+/- mesons going to K*+/- J/psi

    NASA Astrophysics Data System (ADS)

    Cheaib, Racha

    We present a sensitivity study on the search for J/psi → nu nu in B+/- → K*+/- J/psi using data from the BABAR experiment at the SLAC National Accelerator Laboratory. The decay is highly suppressed in the Standard Model and thus is a possible window for new physics such as supersymmetry and dark matter. Hadronic tag reconstruction is employed for the analysis, where one B is fully reconstructed using hadronic decay modes. The remaining tracks and clusters are attributed to the signal B on which the B+/- → K*+/- J/psi cut-based signal selection is applied. The associated K* is allowed to decay via two modes, Mode 1: K* +/- → K0S pi+/- and Mode 2: K* +/- → K+/- pi 0. The approach is to reconstruct a K*+/- candidate, the only signature in a signal event, and calculate the recoiling mass. The data is left blinded in the signal region and only a range of the branching fraction limits is calculated to determine the sensitivity. The result for Mode 1 is an upper limit, at the 90% confidence level, on B (J/psi → nunu) of 9.13 x 10-2 using the Barlow method and 11.10 x 10-2 using the Feldmann-Cousins method. The upper limit for Mode 2, also at the 90% CL, is estimated to be 2.49 x 10-2 and 2.98 x 10-2 using Barlow and Feldmann-Cousins respectively. The branching fractions thus yield a sensitivity of order 10-2. Although the result is not an improvement on the current J/psi → nu nu limits, this method can be extended to other cc¯ quarkonium modes and could further yield a much better result with data from the newly approved SuperB experiment, the extension of BABAR to higher luminosities.

  5. Swift Follow up observation of the transient source Fermi J1654-1055 (PMN J1632-1052)

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Kocevski, D.; Buson, S.; Buehler, R.; Giomi, M.

    2016-02-01

    On February 25, 2016, Swift carried out a 2ks target of opportunity observation of the transient Fermi J1654-1055 (see ATel #8721). Only one source is clearly detected, within the LAT error circle, by the Swift X-ray telescope (XRT) at RA, Dec= 16h 32m 49.9s, -10d 52' 30.1" (J2000) with a 90 % uncertainty radius of 6.3 arcsec.

  6. 16 CFR Appendix J2 to Part 305 - Pool Heaters-Oil

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. J2 Appendix J2 to Part 305—Pool Heaters—Oil Range Information Manufacturer's rated heating capacities Range of Thermal...

  7. 16 CFR Appendix J2 to Part 305 - Pool Heaters-Oil

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. J2 Appendix J2 to Part 305—Pool Heaters—Oil Range Information Manufacturer's rated heating capacities Range of Thermal...

  8. 16 CFR Appendix J2 to Part 305 - Pool Heaters-Oil

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. J2 Appendix J2 to Part 305—Pool Heaters—Oil Range Information Manufacturer's rated heating capacities Range of Thermal...

  9. 16 CFR Appendix J2 to Part 305 - Pool Heaters-Oil

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. J2 Appendix J2 to Part 305—Pool Heaters—Oil Range Information Manufacturer's rated heating capacities Range of Thermal...

  10. The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice

    PubMed Central

    Harder, Jeffrey M.; Fernandes, Kimberly A.; Libby, Richard T.

    2012-01-01

    Axonal insult induces retinal ganglion cell (RGC) death through a BAX-dependent process. The pro-apoptotic Bcl-2 family member BIM is known to induce BAX activation. BIM expression increased in RGCs after axonal injury and its induction was dependent on JUN. Partial and complete Bim deficiency delayed RGC death after mechanical optic nerve injury. However, in a mouse model of glaucoma, DBA/2J mice, Bim deficiency did not prevent RGC death in eyes with severe optic nerve degeneration. In a subset of DBA/2J mice, Bim deficiency altered disease progression resulting in less severe nerve damage. Bim deficient mice exhibited altered optic nerve head morphology and significantly lessened intraocular pressure elevation. Thus, a decrease in axonal degeneration in Bim deficient DBA/2J mice may not be caused by a direct role of Bim in RGCs. These data suggest that BIM has multiple roles in glaucoma pathophysiology, potentially affecting susceptibility to glaucoma through several mechanisms. PMID:22833783

  11. High-Tc superconductivity: The t-J-V model and its applications

    NASA Astrophysics Data System (ADS)

    Roy, K.; Pal, P.; Nath, S.; Ghosh, N. K.

    2017-05-01

    We present numerical results of the t-J-V model in an 8-site tilted square cluster using exact diagonalization (ED) method with periodic boundary conditions. Effective hopping amplitude initially increases with inter-site Coulomb repulsion (V), but decreases at larger V's. The hole-hole correlation decreases with inter-site distances at smaller V. With the increase of Coulomb repulsion, the system becomes ordered. The specific heat curves confirm the non-Fermi liquid behavior of the system under t-J-V model.

  12. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  13. Optical flare of an X-ray source XMMSL1 J014956.7+533504

    NASA Astrophysics Data System (ADS)

    Korotkiy, S. A.; Sokolovsky, K. V.

    2012-01-01

    A bright (unfiltered magnitude 12.8) optical flare was detected on 2012 January 29 at position 01:49:56.77 +53:35:01.8 (+/-0.5", J2000) coinciding with an X-ray source listed in the XMM-Newton slew survey catalog XMMSL1 J014956.7+533504 (Saxton et al. 2008, A&A, 480, 611), an optical object USNO-B1.0 1435-0053799 (B1mag=15.96, R1mag=14.86; Monet et al. 2003, AJ, 125, 984), and a near-infrared object 2MASS 01495682+5335017.

  14. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factormore » derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.« less

  15. PSR J2030+364I: Radio Discovery and Gamma-ray Study of a Middle-aged Pulsar in the Now Identified Fermi-LAT Source 1FGL J2030.0+3641

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.; hide

    2011-01-01

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  16. Measurement of the Ratio of Branching Fractions B(B_{c}^{+}→J/ψτ^{+}ν_{τ})/B(B_{c}^{+}→J/ψμ^{+}ν_{μ}).

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2018-03-23

    A measurement is reported of the ratio of branching fractions R(J/ψ)=B(B_{c}^{+}→J/ψτ^{+}ν_{τ})/B(B_{c}^{+}→J/ψμ^{+}ν_{μ}), where the τ^{+} lepton is identified in the decay mode τ^{+}→μ^{+}ν_{μ}ν[over ¯]_{τ}. This analysis uses a sample of proton-proton collision data corresponding to 3.0  fb^{-1} of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay B_{c}^{+}→J/ψτ^{+}ν_{τ} at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R(J/ψ)=0.71±0.17(stat)±0.18(syst). This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.

  17. The C57BL/6J Niemann-Pick C1 mouse model with decreased gene dosage has impaired glucose tolerance independent of body weight.

    PubMed

    Jelinek, David; Castillo, Joseph J; Garver, William S

    2013-09-15

    The human Niemann-Pick C1 (NPC1) gene has been found to be associated with extreme (early-onset and morbid-adult) obesity and type 2 diabetes independent of body weight. We previously performed growth studies using BALB/cJ Npc1 normal (Npc1+/+) and Npc1 heterozygous (Npc1+/-) mice and determined that decreased Npc1 gene dosage interacts with a high-fat diet to promote weight gain and adiposity. The present study was performed using both BALB/cJ and C57BL/6J Npc1+/+ and Npc1+/- mice to determine if decreased Npc1 gene dosage predisposes to metabolic features associated with type 2 diabetes. The results indicated that C57BL/6J Npc1+/- mice, but not BALB/cJ Npc1+/- mice, have impaired glucose tolerance when fed a low-fat diet and independent of body weight. The results also suggest that an accumulation of liver free fatty acids and hepatic lipotoxicity marked by an elevation in the amount of plasma alanine aminotransferase (ALT) may be responsible for hepatic insulin resistance and impaired glucose tolerance. Finally, the peroxisome-proliferator activated receptor α (PPARα) and sterol regulatory element-binding protein-1 (SREBP-1) pathways known to have a central role in regulating free fatty acid metabolism were downregulated in the livers, but not in the adipose or muscle, of C57BL/6J Npc1+/- mice compared to C57BL/6J Npc1+/+ mice. Therefore, decreased Npc1 gene dosage among two different mouse strains interacts with undefined modifying genes to manifest disparate yet often related metabolic diseases. Published by Elsevier B.V.

  18. A Massive Molecular Gas Reservoir in the Z = 2.221 Type-2 Quasar Host Galaxy SMM J0939+8315 Lensed by the Radio Galaxy 3C220.3

    NASA Astrophysics Data System (ADS)

    Leung, T. K. Daisy; Riechers, Dominik A.

    2016-02-01

    We report the detection of CO(J = 3 \\to 2) line emission in the strongly lensed submillimeter galaxy (SMG) SMM J0939+8315 at z = 2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z = 0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of Scont = 7.4 ± 1.4 mJy. Using the CO(J = 3 \\to 2) line intensity of ICO(3-2) = (12.6 ± 2.0) Jy km s-1, we derive a lensing- and excitation-corrected CO line luminosity of {L}{{CO(1-0)}}\\prime = (3.4 ± 0.7) × 1010 (10.1/μL) K km s-1 pc2 for the SMG, where μL is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of Mgas = (2.7 ± 0.6) × 1010 (10.1/μL) M⊙. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1{}-1.3+1.1 K, a dust mass of Mdust = (5.2 ± 2.1) × 108 (10.1/μL) M⊙, and a total infrared luminosity of LIR = (9.1 ± 1.2) ×1012 (10.1/μL) L⊙. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a starbursting phase to an unobscured quasar phase as described by the “evolutionary link” model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.

  19. Diffractive J/Psi Production; Produção Difrativa de $J/psi$ no Experimento DØ (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    dos Santos Assis Jesus, Ana Carolina

    This work presents measurements of two diffractive production ratio for heavy flavour physics with the use of a reconstructed J/Ψ → μ +μ - sample in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV using the D0 detector at Fermilab Tevatron. These events were selected using the Luminosity Monitor detectors, the calorimeter system and the muon system in a pseudo-rapidity region with range 2.7 ≤ |η| ≤ 4.4. The measured ratio were estimated to be N$$J/Ψ\\atop{diff}$$/N$$J/Ψ\\atop{total}$$ = (1.74 ± 0.16(stat) {+-} 0.13(syst))% e N$$b\\atop{diff}$$/N$$b\\atop{total}$$ = (0.79 ± 0.11(stat) ± 0.23(syst))%.« less

  20. Nodal liquids in extended t-J models and dynamical supersymmetry

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Sarkar, Sarben

    2000-08-01

    In the context of extended t-J models, with intersite Coulomb interactions of the form -V∑j>ninj, with ni denoting the electron number operator at site i, nodal liquids are discussed. We use the spin-charge separation ansatz as applied to the nodes of a d-wave superconducting gap. Such a situation may be of relevance to the physics of high-temperature superconductivity. We point out the possibility of existence of certain points in the parameter space of the model characterized by dynamical supersymmetries between the spinon and holon degrees of freedom, which are quite different from the symmetries in conventional supersymmetric t-J models. Such symmetries pertain to the continuum effective-field theory of the nodal liquid, and one's hope is that the ancestor lattice model may differ from the continuum theory only by renormalization-group irrelevant operators in the infrared. We give plausible arguments that nodal liquids at such supersymmetric points are characterized by superconductivity of Kosterlitz-Thouless type. The fact that quantum fluctuations around such points can be studied in a controlled way, probably makes such systems of special importance for an eventual nonperturbative understanding of the complex phase diagram of the associated high-temperature superconducting materials.

  1. Worm Algorithm simulations of the hole dynamics in the t-J model

    NASA Astrophysics Data System (ADS)

    Prokof'ev, Nikolai; Ruebenacker, Oliver

    2001-03-01

    In the limit of small J << t, relevant for HTSC materials and Mott-Hubbard systems, computer simulations have to be performed for large systems and at low temperatures. Despite convincing evidence against spin-charge separation obtained by various methods for J > 0.4t there is an ongoing argument that at smaller J spin-charge separation is still possible. Worm algorithm Monte Carlo simulations of the hole Green function for 0.1 < J/t < 0.4 were performed on lattices with up to 32x32 sites, and at temperature J/T = 40 (for the largest size). Spectral analysis reveals a single, delta-function sharp quasiparticle peak at the lowest edge of the spectrum and two distinct peaks above it at all studied J. We rule out the possibility of spin-charge separation in this parameter range, and present, apparently, the hole spectral function in the thermodynamic limit.

  2. Mid-UV studies of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states

    NASA Astrophysics Data System (ADS)

    Rivera Sandoval, L. E.; Hernández Santisteban, J. V.; Degenaar, N.; Wijnands, R.; Knigge, C.; Miller, J. M.; Reynolds, M.; Altamirano, D.; van den Berg, M.; Hill, A.

    2018-05-01

    We report mid-UV (MUV) observations taken with Hubble Space Telescope (HST)/WFC3, Swift/UVOT, and GALEX/NUV of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states. Both systems were detected in our images and showed MUV variability. At similar orbital phases, the MUV luminosities of both pulsars are comparable. This suggests that the emission processes involved in both objects are similar. We estimated limits on the mass ratio, companion's temperature, inclination, and distance to XSS J12270-4859 by using a Markov Chain Monte Carlo algorithm to fit published folded optical light curves. Using the resulting parameters, we modelled MUV light curves in our HST filters. The resulting models failed to fit our MUV observations. Fixing the mass ratio of XSS J12270-4859 to the value reported in other studies, we obtained a distance of ˜3.2 kpc. This is larger than the one derived from dispersion measure (˜1.4 kpc). Assuming a uniform prior for the mass ratio, the distance is similar to that from radio measurements. However, it requires an undermassive companion (˜0.01M⊙). We conclude that a direct heating model alone cannot fully explain the observations in optical and MUV. Therefore, an additional radiation source is needed. The source could be an intrabinary shock which contributes to the MUV flux and likely to the optical one as well. During the radio pulsar state, the MUV orbital variations of PSR J1023+0038 detected with GALEX, suggest the presence of an asymmetric intrabinary shock.

  3. J SERIES MAGAZINE. J 107 SOUTH ELEVATION W/POLE. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 107 SOUTH ELEVATION W/POLE. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  4. Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Yamaji, Youhei

    2018-05-01

    Temperature (T) dependence of heat capacity C (T) in the S = 1 / 2 Kitaev honeycomb model shows a double-peak structure resulting from fractionalization of spins into two kinds of Majorana fermions. Recently it has been discussed that the double-peak structure in C (T) is also observed in magnetic ordered phases of the S = 1 / 2 Kitaev-Heisenberg (KH) model on a honeycomb lattice when the system is located in the vicinity of the Kitaev's spin liquid phase. In addition to the S = 1 / 2 spin case, similar double-peak structure has been confirmed in the KH honeycomb model for classical Heisenberg spins, where spin S is regarded as S → ∞ . We investigate spin-S dependence of C (T) for the KH honeycomb models by using thermal pure quantum state. We also perform classical Monte Carlo calculations to obtain C (T) for the classical KH model. From obtained results, we find that the origin of the high-temperature peak is different between the quantum spin case with small Ss and the classical Heisenberg spin case. Furthermore, the high-temperature peak in the quantum spin case, which is one of the clues for fractionalization of spins, disappears for S > 1 .

  5. Testing to Transition the J-2X from Paper to Hardware

    NASA Technical Reports Server (NTRS)

    Byrd, Tom

    2010-01-01

    The J-2X Upper Stage Engine (USE) will be the first new human-rated upper stage engine since the Apollo program of the 1960s. It is designed to carry the Ares I and Ares V into orbit and send the Ares V to the Moon as part of NASA's Constellation Program. This paper will provide an overview of progress on the design, testing, and manufacturing of this new engine in 2009 and 2010. The J-2X embodies the program goals of basing the design on proven technology and experience and seeking commonality between the Ares vehicles as a way to minimize risk, shorten development times, and live within current budget constraints. It is based on the proven J-2 engine used on the Saturn IB and Saturn V launch vehicles. The prime contractor for the J-2X is Pratt & Whitney Rocketdyne (PWR), which is under a design, development, test, and engineering (DDT&E) contract covering the period from June 2006 through September 2014. For Ares I, the J-2X will provide engine start at approximately 190,000 feet, operate roughly 500 seconds, and shut down. For Ares V, the J-2X will start at roughly 190,000 feet to place the Earth departure stage (EDS) in orbit, shut down and loiter for up to five days, re-start on command and operate for roughly 300 seconds at its secondary power level to perform trans lunar injection (TLI), followed by final engine shutdown. The J-2X development effort focuses on four key areas: early risk mitigation, design risk mitigation, component and subassembly testing, and engine system testing. Following that plan, the J-2X successfully completed its critical design review (CDR) in 2008, and it has made significant progress in 2009 and 2010 in moving from the drawing board to the machine shop and test stand. Post-CDR manufacturing is well under way, including PWR in-house and vendor hardware. In addition, a wide range of component and sub-component tests have been completed, and more component tests are planned. Testing includes heritage powerpack, turbopump inducer

  6. J SERIES MAGAZINE. J 106 INTERIOR. BOMB TAILS ON LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    J SERIES MAGAZINE. J 106 INTERIOR. BOMB TAILS ON LEFT. - Naval Magazine Lualualei, Headquarters Branch, Inert Storehouse Type, Twelfth Street between Kwajulein & New Mexico Streets, Pearl City, Honolulu County, HI

  7. Phase separation in the t-J model. [in theory of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Emery, V. J.; Lin, H. Q.; Kivelson, S. A.

    1990-01-01

    A detailed understanding of the motion of 'holes' in an antiferromagnet is of fundamental importance for the theory of high-temperature superconductors. It is shown here that, for the t-J model, dilute holes in an antiferromagnet are unstable against phase separation into a hole-rich and a no-hole phase. When the spin-exchange interaction J exceeds a critical value Jc, the hole-rich phase has no electrons. It is proposed that, for J slightly less than Jc, the hole-rich phase is a low-density superfluid of electron pairs. Phase separation in related models is briefly discussed.

  8. The origin of RX J1856.5-3754 and RX J0720.4-3125 - updated using new parallax measurements

    NASA Astrophysics Data System (ADS)

    Tetzlaff, N.; Eisenbeiss, T.; Neuhäuser, R.; Hohle, M. M.

    2011-10-01

    RX J1856.5-3754 and RX J0720.4-3125 are the only young isolated radio-quiet neutron stars (NSs) for which trigonometric parallaxes were measured. Due to detection of their thermal emission in X-rays, they are important to study NS cooling and to probe theoretical cooling models. Hence, a precise determination of their age is essential. Recently, new parallax measurements of RX J1856.5-3754 and RX J0720.4-3125 were obtained. Considering that NSs may originate from binary systems that got disrupted due to an asymmetric supernova, we attempt to identify runaway stars which may have been former companions to the NS progenitors. Such an identification would strongly support a particular birth scenario with time and place. We trace back each NS, runaway star and the centres of possible birth associations (assuming that most NSs are ejected directly from their parent association) to find close encounters. The kinematic age is then given by the time since the encounter. We use Monte Carlo simulations to account for observational uncertainties and evaluate the outcome statistically. Using the most recent parallax measurement of 8.16 ± 0.80 mas for RX J1856.5-3754 by Walter et al., we find that it originated in the Upper Scorpius association 0.46 ± 0.05 Myr ago. This kinematic age is slightly larger than the value we reported earlier (0.3 Myr) using the old parallax value of 5.6 ± 0.6 mas by Kaplan. Our result is strongly supported by its current radial velocity which we predict to be 6+19- 20 km s-1. This implies an inclination angle to the line of sight of 88°± 6° consistent with estimates by van Kerkwijk & Kulkarni from the bow shock. No suitable runaway star was found to be a potential former companion of RX J1856.5-3754. Making use of a recent parallax measurement for RX J0720.4-3125 of 3.6 ± 1.6 mas by Eisenbeiss, we find that this NS was possibly born in Trumpler 10 0.85 ± 0.15 Myr ago. This kinematic age is somewhat larger than the one obtained using the old

  9. Hole pairing and thermodynamic properties of the two dimensional frustrated t-J model

    NASA Astrophysics Data System (ADS)

    Roy, K.; Pal, P.; Nath, S.; Ghosh, N. K.

    2018-04-01

    The frustrated t-J model is investigated by using the exact-diagonalization (ED) method on an 8-site cluster. The effect on next-nearest-neighbor (NNN) exchange interaction J' (frustration) on the hole pairing and the thermodynamic properties of the system is considered. Two holes initially remain unbound at smaller value of J'/t, but tend to bind at larger value. The maximum possibility of pair formation has been observed to be at NNN sites. Entropy calculation shows that the system goes to more disordered state with J'. The specific heat curves show a single peak structure. A decrease in effective exchange energy is observed due to the frustration.

  10. Sub-Scale Testing and Development of the J-2X Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, Scott R.; Becht, David G.

    2011-01-01

    In the early stages of the J-2X upper stage engine program, various inducer configurations proposed for use in the fuel turbopump (FTP) were tested in water. The primary objectives of this test effort were twofold. First, to obtain a more comprehensive data set than that which existed in the Pratt & Whitney Rocketdyne (PWR) historical archives from the original J-2S program, and second, to supplement that data set with information regarding the cavitation induced vibrations for both the historical J-2S configuration as well as those tested for the J-2X program. The J-2X FTP inducer, which actually consists of an inducer stage mechanically attached to a kicker stage, underwent 4 primary iterations utilizing sub-scaled test articles manufactured and tested in PWR's Engineering Development Laboratory (EDL). The kicker remained unchanged throughout the test series. The four inducer configurations tested retained many of the basic design features of the J-2S inducer, but also included variations on leading edge blade thickness and blade angle distribution, primarily aimed at improving suction performance at higher flow coefficients. From these data sets, the effects of the tested design variables on hydrodynamic performance and cavitation instabilities were discerned. A limited comparison of impact to the inducer efficiency was determined as well.

  11. Discrete contribution to {psi}{sup '}{yields}J/{psi}+{gamma}{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Zhiguo; Soto, Joan; Lu Xiaorui

    2011-03-01

    The decay mode {psi}(2S){yields}J/{psi}+{gamma}{gamma} is proposed in order to experimentally identify the effects of the coupling of charmonium states to the continuum D{bar D} states. To have a better understanding of such a two-photon decay process, in this work we restrict ourselves to investigate the contribution of the discrete part, in which the photons are mainly produced via the intermediate states {chi}{sub cJ}(nP). Besides calculating the resonance contributions of {chi}{sub cJ}(1P)(J=0,1,2), we also take into account the contributions of the higher excited states {chi}{sub cJ}(2P) and the interference effect among the 1P and 2P states. We find that the contributionmore » of the 2P states and the interference terms to the total decay width is very tiny. However, for specific regions of the Dalitz plot, off the resonance peaks, we find that these contributions are sizable and should also be accounted for. We also provide the photon spectrum and study the polarization of J/{psi}.« less

  12. MeV electron acceleration at 1 kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard

    2017-01-01

    We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  13. The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice

    PubMed Central

    2014-01-01

    Background The liver plays a major role in regulating metabolic homeostasis and is vital for nutrient metabolism. Identifying the genetic factors regulating these processes could lead to a greater understanding of how liver function responds to a high-fat diet and how that response may influence susceptibilities to obesity and metabolic syndrome. In this study we examine differences in hepatic gene expression between the LG/J and SM/J inbred mouse strains and how gene expression in these strains is affected by high-fat diet. LG/J and SM/J are known to differ in their responses to a high-fat diet for a variety of obesity- and diabetes-related traits, with the SM/J strain exhibiting a stronger phenotypic response to diet. Results Dietary intake had a significant effect on gene expression in both inbred lines. Genes up-regulated by a high-fat diet were involved in biological processes such as lipid and carbohydrate metabolism; protein and amino acid metabolic processes were down regulated on a high-fat diet. A total of 259 unique transcripts exhibited a significant diet-by-strain interaction. These genes tended to be associated with immune function. In addition, genes involved in biochemical processes related to non-alcoholic fatty liver disease (NAFLD) manifested different responses to diet between the two strains. For most of these genes, SM/J had a stronger response to the high-fat diet than LG/J. Conclusions These data show that dietary fat impacts gene expression levels in SM/J relative to LG/J, with SM/J exhibiting a stronger response. This supports previous data showing that SM/J has a stronger phenotypic response to high-fat diet. Based upon these findings, we suggest that SM/J and its cross with the LG/J strain provide a good model for examining non-alcoholic fatty liver disease and its role in metabolic syndrome. PMID:24499025

  14. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-07-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereinafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey (SDSS) revealed a small linewidth of the broad component of the Hβ line (full width at half-maximum = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multiwavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in five months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy, and the synchronous variations in the multiwavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  15. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-04-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  16. Strain and sex differences in anxiety-like and social behaviors in C57BL/6J and BALB/cJ mice.

    PubMed

    An, Xiao-Lei; Zou, Jun-Xian; Wu, Rui-Yong; Yang, Ying; Tai, Fa-Dao; Zeng, Shuang-Yan; Jia, Rui; Zhang, Xia; Liu, En-Qi; Broders, Hugh

    2011-01-01

    Mood disorders are more frequent in women than men, however, the majority of research has focused on male rodents as animal models. We used a variety of common behavioral tests to look for differences in anxiety-like and social behaviors between and within C57BL/6J and BALB/cJ mice. Our results show that female C57BL/6J mice exhibited lower levels of anxiety-like behavior and higher levels of activity than female BALB/cJ during the open field and elevated plus maze tests. Principal component analysis generated more factors in the behavioral variables of males than females. In the open field, a sex difference was also found and factor 1 emerged as anxiety in males, and motor activity in females. While C57BL/6J mice were found to have higher levels of social exploration and social contacts, differences were found between the sexes (females were more social) in both strains for this measure and also for anxiety-like behaviors. When interacting with animals of the same sex, levels of sniffing body and huddling in both male and female C57BL/6J mice were higher than those in male and female BALB/cJ mice. However, in the between-sex interactions, male C57BL/6J mice sniffed the stimulus mouse less, and female C57BL/6J mice sniffed the stimulus more compared to BALB/cJ mice. This study provides important behavioral phenotypes and confirms the multidimensional behavioral structure of two widely used mice strains.

  17. Crystal structure of the V(D)J recombinase RAG1–RAG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sung; Lapkouski, Mikalai; Yang, Wei

    2016-04-29

    V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1–RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1–RAG2 complex at 3.2 Å resolution. The 230-kilodalton RAG1–RAG2 heterotetramer is ‘Y-shaped’, with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1–RAG2 heterodimer composes one arm of the ‘Y’, with the active site in the middle and RAG2 at its tip. The RAG1–RAG2more » structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.« less

  18. Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon

    2018-01-01

    Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.

  19. Measurements of B → J / ψ at forward rapidity in p + p collisions at s = 510 GeV

    DOE PAGES

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; ...

    2017-05-02

    Inmore » this paper, we report the first measurement of the fraction of J / ψ mesons coming from Β-meson decay (F Β→ J / ψ ) in p + p collisions at s = 510 GeV . The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of J / ψ due to Β-meson decays from prompt J / ψ . The measured value of F Β→ J / ψ is 8.1% ± 2.3%(stat) ± 1.9%(syst) for J / ψ with transverse momenta 0 < p T < 5 GeV / c and rapidity 1.2 < |y| < 2.2. The measured fraction F Β→ J / ψ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The bb cross section per unit rapidity [dσ / dy(pp → bb)] extracted from the obtained F Β→ J / ψ and the PHENIX inclusive J / ψ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean Β hadron rapidity y = ±1.7 in 510 GeV p + p collisions, is 3.63 +1.92 -1.70 μb. Finally, it is consistent with the fixed-order-next-to-leading-logarithm calculations.« less

  20. Measurements of B → J / ψ at forward rapidity in p + p collisions at s = 510 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.

    Inmore » this paper, we report the first measurement of the fraction of J / ψ mesons coming from Β-meson decay (F Β→ J / ψ ) in p + p collisions at s = 510 GeV . The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of J / ψ due to Β-meson decays from prompt J / ψ . The measured value of F Β→ J / ψ is 8.1% ± 2.3%(stat) ± 1.9%(syst) for J / ψ with transverse momenta 0 < p T < 5 GeV / c and rapidity 1.2 < |y| < 2.2. The measured fraction F Β→ J / ψ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The bb cross section per unit rapidity [dσ / dy(pp → bb)] extracted from the obtained F Β→ J / ψ and the PHENIX inclusive J / ψ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean Β hadron rapidity y = ±1.7 in 510 GeV p + p collisions, is 3.63 +1.92 -1.70 μb. Finally, it is consistent with the fixed-order-next-to-leading-logarithm calculations.« less

  1. On the optical counterpart of Swift J1658.2-4242

    NASA Astrophysics Data System (ADS)

    Russell, David M.; Lewis, Fraser; Zhang, Guobao

    2018-02-01

    We report on optical observations of the field of Swift J1658.2-4242 with the Las Cumbres Observatory (LCO) 1-m robotic telescopes. The X-ray (ATel #11306, #11321) and radio (ATel #11322) properties of the source suggest this new transient could be a black hole X-ray binary (BHXB).

  2. jà vu experiences in patients with schizophrenia.

    PubMed

    Adachi, Takuya; Adachi, Naoto; Takekawa, Yoshikazu; Akanuma, Nozomi; Ito, Masumi; Matsubara, Ryouji; Ikeda, Hiroshi; Kimura, Michihiro; Arai, Heii

    2006-01-01

    To investigate whether déjà vu experiences are psychopathologic phenomena, we studied the frequency and characteristics of déjà vu experiences in patients with schizophrenia. One hundred thirteen patients with schizophrenia and 386 nonclinical control subjects were evaluated with the Inventory of Déjà vu Experiences Assessment. The frequency and features of déjà vu experiences were compared between the 2 groups. The patients with schizophrenia had déjà vu experiences less frequently (53.1%) than did the nonclinical subjects (76.2%). The frequency of déjà vu experiences did not correlate significantly with age at evaluation or education level among the patients with schizophrenia. Most characteristics of déjà vu experiences of the patients were comparable with those of the control subjects. However, the experiences of the patients tended to be longer and more monotonous. The patients often felt alert, oppressed, and disturbed by the experiences. They appeared to have the experiences under unpleasant mental or physical states. Their déjà vu experiences are not primarily different in nature from those of the nonclinical subjects. The decreased frequency of the experiences in the patients may suggest déjà vu experiences as nonpathologic phenomena.

  3. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved NMR.

    PubMed

    Perras, Frédéric A; Bryce, David L

    2014-05-01

    The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The J-2X Upper Stage Engine: From Heritage to Hardware

    NASA Technical Reports Server (NTRS)

    Byrd, THomas

    2008-01-01

    NASA's Global Exploration Strategy requires safe, reliable, robust, efficient transportation to support sustainable operations from Earth to orbit and into the far reaches of the solar system. NASA selected the Ares I crew launch vehicle and the Ares V cargo launch vehicle to provide that transportation. Guiding principles in creating the architecture represented by the Ares vehicles were the maximum use of heritage hardware and legacy knowledge, particularly Space Shuttle assets, and commonality between the Ares vehicles where possible to streamline the hardware development approach and reduce programmatic, technical, and budget risks. The J-2X exemplifies those goals. It was selected by the Exploration Systems Architecture Study (ESAS) as the upper stage propulsion for the Ares I Upper Stage and the Ares V Earth Departure Stage (EDS). The J-2X is an evolved version ofthe historic J-2 engine that successfully powered the second stage of the Saturn I launch vehicle and the second and third stages of the Saturn V launch vehicle. The Constellation architecture, however, requires performance greater than its predecessor. The new architecture calls for larger payloads delivered to the Moon and demands greater loss of mission reliability and numerous other requirements associated with human rating that were not applied to the original J-2. As a result, the J-2X must operate at much higher temperatures, pressures, and flow rates than the heritage J-2, making it one of the highest performing gas generator cycle engines ever built, approaching the efficiency of more complex stage combustion engines. Development is focused on early risk mitigation, component and subassembly test, and engine system test. The development plans include testing engine components, including the subscale injector, main igniter, powerpack assembly (turbopumps, gas generator and associated ducting and structural mounts), full-scale gas generator, valves, and control software with hardware

  5. Magnetic structure and spin excitations in BaMn 2Bi 2

    DOE PAGES

    Calder, Stuart A.; Saparov, Bayrammurad I; Cao, H. B.; ...

    2014-02-19

    We present a single crystal neutron scattering study of BaMn 2Bi 2, a recently synthesized material with the same ThCr 2Si 2type structure found in several Fe-based unconventional superconducting materials. We show long range magnetic order, in the form of a G-type antiferromagnetic structure, to exist up to 390 K with an indication of a structural transition at 100 K. Utilizing inelastic neutron scattering we observe a spin-gap of 16 meV, with spin-waves extending up to 55 meV. We find these magnetic excitations are well fit to a J 1-J 2-J c Heisenberg model and present values for the exchangemore » interactions. The spin wave spectrum appears to be unchanged by the 100 K structural phase transition.« less

  6. Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans

    PubMed Central

    Limjunyawong, Nathachit; Craig, John M.; Lagassé, H. A. Daniel; Scott, Alan L.

    2015-01-01

    Emphysema, one of the major components of chronic obstructive pulmonary disease (COPD), is characterized by the progressive and irreversible loss of alveolar lung tissue. Even though >80% of COPD cases are associated with cigarette smoking, only a relatively small proportion of smokers develop emphysema, suggesting a potential role for genetic factors in determining individual susceptibility to emphysema. Although strain-dependent effects have been shown in animal models of emphysema, the molecular basis underlying this intrinsic susceptibility is not fully understood. In this present study, we investigated emphysema development using the elastase-induced experimental emphysema model in two commonly used mouse strains, C57BL/6J and BALB/cJ. The results demonstrate that mice with different genetic backgrounds show disparate susceptibility to the development of emphysema. BALB/cJ mice were found to be much more sensitive than C57BL/6J to elastase injury in both a dose-dependent and time-dependent manner, as measured by significantly higher mortality, greater body weight loss, greater decline in lung function, and a greater loss of alveolar tissue. The more susceptible BALB/cJ strain also showed the persistence of inflammatory cells in the lung, especially macrophages and lymphocytes. A comparative gene expression analysis following elastase-induced injury showed BALB/cJ mice had elevated levels of il17A mRNA and a number of classically (M1) and alternatively (M2) activated macrophage genes, whereas the C57BL/6J mice demonstrated augmented levels of interferon-γ. These findings suggest a possible role for these cellular and molecular mediators in modulating the severity of emphysema and highlight the possibility that they might contribute to the heterogeneity observed in clinical emphysema outcomes. PMID:26232300

  7. Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans.

    PubMed

    Limjunyawong, Nathachit; Craig, John M; Lagassé, H A Daniel; Scott, Alan L; Mitzner, Wayne

    2015-10-01

    Emphysema, one of the major components of chronic obstructive pulmonary disease (COPD), is characterized by the progressive and irreversible loss of alveolar lung tissue. Even though >80% of COPD cases are associated with cigarette smoking, only a relatively small proportion of smokers develop emphysema, suggesting a potential role for genetic factors in determining individual susceptibility to emphysema. Although strain-dependent effects have been shown in animal models of emphysema, the molecular basis underlying this intrinsic susceptibility is not fully understood. In this present study, we investigated emphysema development using the elastase-induced experimental emphysema model in two commonly used mouse strains, C57BL/6J and BALB/cJ. The results demonstrate that mice with different genetic backgrounds show disparate susceptibility to the development of emphysema. BALB/cJ mice were found to be much more sensitive than C57BL/6J to elastase injury in both a dose-dependent and time-dependent manner, as measured by significantly higher mortality, greater body weight loss, greater decline in lung function, and a greater loss of alveolar tissue. The more susceptible BALB/cJ strain also showed the persistence of inflammatory cells in the lung, especially macrophages and lymphocytes. A comparative gene expression analysis following elastase-induced injury showed BALB/cJ mice had elevated levels of il17A mRNA and a number of classically (M1) and alternatively (M2) activated macrophage genes, whereas the C57BL/6J mice demonstrated augmented levels of interferon-γ. These findings suggest a possible role for these cellular and molecular mediators in modulating the severity of emphysema and highlight the possibility that they might contribute to the heterogeneity observed in clinical emphysema outcomes. Copyright © 2015 the American Physiological Society.

  8. J/ψ production in polarized and unpolarized ep collision and Sivers and cos 2φ asymmetries

    NASA Astrophysics Data System (ADS)

    Mukherjee, Asmita; Rajesh, Sangem

    2017-12-01

    We calculate the Sivers and cos 2φ azimuthal asymmetries in J/ψ production in the polarized and unpolarized semi-inclusive ep collision, respectively, using the formalism based on the transverse momentum-dependent parton distributions (TMDs). The non-relativistic QCD-based color octet model is employed in calculating the J/ψ production rate. The Sivers asymmetry in this process directly probes the gluon Sivers function. The estimated Sivers asymmetry at z=1 is negative, which is in good agreement with the COMPASS data. The effect of TMD evolution on the Sivers asymmetry is also investigated. The cos 2φ asymmetry is sizable and probes the linearly polarized gluon distribution in an unpolarized proton.

  9. Turbine Design and Analysis for the J-2X Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Tran, Ken; Dorney, Daniel J.; Schmauch, Preston

    2008-01-01

    Pratt and Whitney Rocketdyne and NASA Marshall Space Flight Center are developing the advanced upper stage J-2X engine based on the legacy design of the J-2/J-2S family of engines which powered the Apollo missions. The cryogenic propellant turbopumps have been denoted as Mark72-F and Mark72-0 for the fuel and oxidizer side, respectively. Special attention is focused on preserving the essential flight-proven design features while adapting the design to the new turbopump configuration. Advanced 3-D CFD analysis has been employed to verify turbine aero performance at current flow regime boundary conditions and to mitigate risks associated with stresses. A limited amount of redesign and overall configuration modifications allow for a robust design with performance level matching or exceeding requirement.

  10. Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies.

    PubMed

    El-Serafi, I; Fares, M; Abedi-Valugerdi, M; Afsharian, P; Moshfegh, A; Terelius, Y; Potácová, Z; Hassan, M

    2015-10-01

    The role of cytochrome P450 2J2 (CYP2J2) in cyclophosphamide (Cy) bioactivation was investigated in patients, cells and microsomes. Gene expression analysis showed that CYP2J2 mRNA expression was significantly (P<0.01) higher in 20 patients with hematological malignancies compared with healthy controls. CYP2J2 expression showed significant upregulation (P<0.05) during Cy treatment before stem cell transplantation. Cy bioactivation was significantly correlated to CYP2J2 expression. Studies in HL-60 cells expressing CYP2J2 showed reduced cell viability when incubated with Cy (half maximal inhibitory concentration=3.6 mM). Inhibition of CYP2J2 using telmisartan reduced Cy bioactivation by 50% and improved cell survival. Cy incubated with recombinant CYP2J2 microsomes has resulted in apparent Km and Vmax values of 3.7-6.6 mM and 2.9-10.3 pmol/(min·pmol) CYP, respectively. This is the first study demonstrating that CYP2J2 is equally important to CYP2B6 in Cy metabolism. The heart, intestine and urinary bladder express high levels of CYP2J2; local Cy bioactivation may explain Cy-treatment-related toxicities in these organs.

  11. Determination of the number of J/ψ events with inclusive J/ψ decays

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2017-01-01

    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 106, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 106. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ± 7.0) × 106, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (10805053, 11125525, 11175188, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1232107, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  12. Integrated J- and H-band spectra of globular clusters in the LMC: implications for stellar population models and galaxy age dating

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.

    2012-07-01

    Context. The rest-frame near-IR spectra of intermediate age (1-2 Gyr) stellar populations are dominated by carbon based absorption features offering a wealth of information. Yet, spectral libraries that include the near-IR wavelength range do not sample a sufficiently broad range of ages and metallicities to allow for accurate calibration of stellar population models and thus the interpretation of the observations. Aims: In this paper we investigate the integrated J- and H-band spectra of six intermediate age and old globular clusters in the Large Magellanic Cloud (LMC). Methods: The observations for six clusters were obtained with the SINFONI integral field spectrograph at the ESO VLT Yepun telescope, covering the J (1.09-1.41 μm) and H-band (1.43-1.86 μm) spectral range. The spectral resolution is 6.7 Å in J and 6.6 Å in H-band (FWHM). The observations were made in natural seeing, covering the central 24″ × 24″ of each cluster and in addition sampling the brightest eight red giant branch and asymptotic giant branch (AGB) star candidates within the clusters' tidal radii. Targeted clusters cover the ages of ~1.3 Gyr (NGC 1806, NGC 2162), 2 Gyr (NGC 2173) and ~13 Gyr (NGC 1754, NGC 2005, NGC 2019). Results.H-band C2 and K-band 12CO (2-0) feature strengths for the LMC globular clusters are compared to the models of Maraston (2005). C2 is reasonably well reproduced by the models at all ages, while 12CO (2-0) shows good agreement for older (age ≥ 2 Gyr) populations, but the younger (1.3 Gyr) globular clusters do not follow the models. We argue that this is due to the fact that the empirical calibration of the models relies on only a few Milky Way carbon star spectra, which show different 12CO (2-0) index strengths than the LMC stars. The C2 absorption feature strength correlates strongly with age. It is present essentially only in populations that have 1-2 Gyr old stars, while its value is consistent with zero for older populations. The distinct spectral

  13. J/psi and psi(2S) Radiative Transitions to eta_{c}.

    PubMed

    Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J

    2009-01-09

    Using 2.45x10;{7} psi(2S) decays collected with the CLEO-c detector at the Cornell Electron Storage Ring we present the most precise measurements of magnetic dipole transitions in the charmonium system. We measure B(psi(2S)-->gammaeta_{c})=(4.32+/-0.16+/-0.60)x10;{-3}, B(J/psi-->gammaeta_{c})/B(psi(2S)-->gammaeta_{c})=4.59+/-0.23+/-0.64, and B(J/psi-->gammaeta_{c})=(1.98+/-0.09+/-0.30)%. We observe a distortion in the eta_{c} line shape due to the photon-energy dependence of the magnetic dipole transition rate. We find that measurements of the eta_{c} mass are sensitive to the line shape, suggesting an explanation for the discrepancy between measurements of the eta_{c} mass in radiative transitions and other production mechanisms.

  14. Chandra Observations of the Field Containing HESS J1616-508

    NASA Astrophysics Data System (ADS)

    Hare, Jeremy; Kargaltsev, Oleg; Pavlov, George G.; Rangelov, Blagoy; Volkov, Igor

    2017-06-01

    We report the results of three Chandra observations covering most of the extent of the TeV γ-ray source HESS J1616-508 and a search for a lower-energy counterpart to this source. We detect 56 X-ray sources, 37 of which have counterparts at lower frequencies, including a young massive star cluster, but none of them appear to be a particularly promising counterpart to the TeV source. The brightest X-ray source, CXOU J161423.4-505738, with a flux F 0.5-7 keV ≈ 5 × 10-13 erg cm-2 s-1, has a hard spectrum that is well fit by a power-law model with a photon index Γ = 0.2 ± 0.3 and is a likely intermediate polar CV candidate. No counterparts of this source were detected at other wavelengths. CVs are not known to produce extended TeV emission, and the source is also largely offset (19‧) from HESS J1616-508, making them unlikely to be associated. We have also set an upper limit on the X-ray flux of PSR J1614-5048 in the 0.5-8 keV band (F 0.5-8 keV < 5 × 10-15 erg cm-2 s-1 at a 90% confidence level). This makes PSR J1614-5048 one of the least X-ray-efficient pulsars known, with an X-ray efficiency {η }0.5{--8{keV}}={L}0.5{--8{keV}}/\\dot{E}< 2× {10}-5. We find no evidence supporting the association between the pulsar and the TeV source. We rule out a number of X-ray sources as possible counterparts to the TeV emission and do not find a plausible counterpart among the other sources. Lastly, we discuss the possible relation of PSR J1617-5055 to HESS J1616-508 in light of the new observations.

  15. Spin-symmetry conversion and internal rotation in high J molecular systems

    NASA Astrophysics Data System (ADS)

    Mitchell, Justin; Harter, William

    2006-05-01

    Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.

  16. Spatially Resolving the Very High Energy Emission from MGRO J2019+37 with VERITAS

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Aune, T.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Gotthelf, E. V.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kargaltsev, O.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pandel, D.; Park, N.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Roberts, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vincent, S.; Wakely, S. P.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2014-06-01

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (~2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2-104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  17. FERMI Large Area Telescope Detection of Pulsed γ-Rays from the Vela-Like Pulsars PSR J1048–5832 and PSR J2229+6114

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-11

    Within this paper, we report the detection of γ-ray pulsations (≥0.1 GeV) from PSR J2229+6114 and PSR J1048–5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the γ-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the γ-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048–5840 and 3EG J2227+6122, present spin-downmore » characteristics similar to the Vela pulsar. PSR J1048–5832 shows two sharp peaks at phases 0.15 ± 0.01 and 0.57 ± 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 ± 0.01. The γ-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 ± 0.22 ± 0.32) × 10 –7 cm –2 s –1 for PSR J1048–5832 and (3.77 ± 0.22 ± 0.44) × 10 –7 cm –2 s –1 for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048–5832 is one of the two LAT sources which were entangled together as 3EG J1048–5840. In conclusion, these detections add to the growing number of young γ-ray pulsars that make up the dominant population of GeV γ-ray sources in the Galactic plane.« less

  18. Serum Cytokine Levels are related to Nesfatin-1/NUCB2 Expression in the Implantation Sites of Spontaneous Abortion Model of CBA/j × DBA/2 Mice.

    PubMed

    Chung, Yiwa; Kim, Heejeong; Seon, Sojeong; Yang, Hyunwon

    2017-03-01

    The process of spontaneous abortion involves a complex mechanism with various cytokines, growth factors, and hormones during the pregnancy. However, the mechanism underlying spontaneous abortion by pro- and anti-inflammatory cytokines in the serum during the pregnancy is not fully understood. Therefore, the purpose of this study was to examine the relationship between the serum levels of pro- and anti-inflammatory cytokines and spontaneous abortion using the CBA/j × DBA/2 mouse model. Serum levels of pro-inflammatory cytokines, such as IFN-γ, IL-1α and TNF-α were not increased in abortion model mice, but anti-inflammatory cytokines, such as IL-4, IL-13 and IL-1ra were decreased compared to normal pregnant mice. In addition, serum levels of chemokine, such as SDF-1, G-CSF, M-CSF, IL-16, KC and MCP-1 were decreased in abortion model mice compared to normal pregnant mice. However, the expression levels of nesfatin-1/NUCB2 mRNA and protein in the uteri of implantation sites were significantly higher in abortion model mice than normal pregnant mice. These results suggest that uterine nesfatin-1/NUCB2 expression may be down-regulated by inflammatory cytokines and chemokines in the serum of pregnant mice. Moreover, this study suggests the possibility that nesfatin-1/NUCB2 expressed in the implantation sites may be associated with the maintenance of pregnancy.

  19. Study of J/ψ Production in Jets.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-05-12

    The production of J/ψ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/ψ meson, z(J/ψ)≡p_{T}(J/ψ)/p_{T}(jet), is measured using jets with p_{T}(jet)>20  GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/ψ) distribution for J/ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the p_{T} fraction carried by prompt J/ψ mesons in jets at any experiment.

  20. Evidence for a narrow near-threshold structure in the J/psivarphi mass spectrum in B;{+} --> J/psivarphiK;{+} decays.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-06-19

    Evidence is reported for a narrow structure near the J/psivarphi threshold in exclusive B;{+} --> J/psivarphiK;{+} decays produced in p[over]p collisions at sqrt[s] = 1.96 TeV. A signal of 14 +/- 5 events, with statistical significance in excess of 3.8 standard deviations, is observed in a data sample corresponding to an integrated luminosity of 2.7 fb;{-1}, collected by the CDF II detector. The mass and natural width of the structure are measured to be 4143.0 +/- 2.9(stat) +/- 1.2(syst) MeV/c;{2} and 11.7_{-5.0};{+8.3}(stat) +/- 3.7(syst) MeV/c;{2}.

  1. Radio Observations of the Tidal Disruption Event XMMSL1 J0740-85

    NASA Astrophysics Data System (ADS)

    Alexander, K. D.; Wieringa, M. H.; Berger, E.; Saxton, R. D.; Komossa, S.

    2017-03-01

    We present radio observations of the tidal disruption event candidate (TDE) XMMSL1 J0740-85 spanning 592 to 875 days post X-ray discovery. We detect radio emission that fades from an initial peak flux density at 1.6 GHz of 1.19 ± 0.06 mJy to 0.65 ± 0.06 mJy, suggesting an association with the TDE. This makes XMMSL1 J0740-85 at d = 75 Mpc the nearest TDE with detected radio emission to date and only the fifth TDE with radio emission overall. The observed radio luminosity rules out a powerful relativistic jet like that seen in the relativistic TDE Swift J1644+57. Instead, we infer from an equipartition analysis that the radio emission most likely arises from a non-relativistic outflow similar to that seen in the nearby TDE ASASSN-14li, with a velocity of about 104 km s-1 and a kinetic energy of about 1048 erg, expanding into a medium with a density of about 102 cm-3. Alternatively, the radio emission could arise from a weak initially relativistic but decelerated jet with an energy of ˜ 2× {10}50 erg, or (for an extreme disruption geometry) from the unbound debris. The radio data for XMMSL1 J0740-85 continues to support the previous suggestion of a bimodal distribution of common non-relativistic isotropic outflows and rare relativistic jets in TDEs (in analogy with the relation between Type Ib/c supernovae and long-duration gamma-ray bursts). The radio data also provide a new measurement of the circumnuclear density on a sub-parsec scale around an extragalactic supermassive black hole.

  2. Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC

    NASA Technical Reports Server (NTRS)

    SaintCyr, William W.; Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; SaintCyr, William W.

    2010-01-01

    John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft

  3. Extreme Blazars Studied With Fermi -Lat And Suzaku : 1es 0347–121 And Blazar Candidate Hess J1943+213

    DOE PAGES

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; ...

    2014-05-14

    We report on our study of high-energy properties of two peculiar TeV emitters: the “extreme blazar" 1ES 0347-121 and the “extreme blazar candidate" HESS J1943+213 located near the Galactic Plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi-LAT 2–year Source Catalog. We analyze a 4.5 year accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis resultsmore » of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00±0.02 and a moderate absorption in excess of the Galactic value, in agreementwith previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option, since in particular the broad-band spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available WISE and UKIDSS data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximatel ~ 600Mpc.« less

  4. First photometric study of ultrashort-period contact binary 1SWASP J140533.33+114639.1

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Qian, Sheng-Bang; Michel, Ri; Soonthornthum, Boonrucksar; Zhu, Li-Ying

    2018-03-01

    In this paper, CCD photometric light curves for the short-period eclipsing binary 1SWASP J140533.33+114639.1 (hereafter J1405) in the BV R bands are presented and analyzed using the 2013 version of the Wilson-Devinney (W-D) code. It is discovered that J1405 is a W-subtype shallow contact binary with a contact degree of f = 7.9 ± 0.5% and a mass ratio of q = 1.55 ± 0.02. In order to explain the asymmetric light curves of the system, a cool starspot on the more massive component is employed. This shallow contact eclipsing binary may have been formed from a short-period detached system through orbital shrinkage due to angular momentum loss. Based on the (O – C) method, the variation of orbital period is studied using all the available times of minimum light. The (O – C) diagram reveals that the period is increasing continuously at a rate of dP/dt = +2.09 × 10‑7, d yr‑1, which can be explained by mass transfer from the less massive component to the more massive one.

  5. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.; Biang, R.; Dolak, D.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of effortsmore » by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue

  6. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication

    PubMed Central

    Li, Zhenhui; Luo, Qingbin; Xu, Haiping; Zheng, Ming; Abdalla, Bahareldin Ali; Feng, Min; Cai, Bolin; Zhang, Xiaocui; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that has a similar replication cycle to multiple viruses and therefore can be used as a model system for viral entry into host cells. However, there are few reports on the genes or microRNAs (miRNAs) that are responsible for the replication of ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of miR-34b-5p was significantly upregulated in ALV-J-infected chicken spleens compared to non-infected chicken spleens, but melanoma differentiation-associated gene 5 (MDA5) had the opposite expression pattern. In this study, a dual-luciferase reporter assay showed that MDA5 is a direct target of miR-34b-5p. In vitro, overexpression of miR-34b-5p accelerated the proliferation of ALV-J-infected cells by inducing the progression from G2 to S phase and it promoted cell migration. Ectopic expression of MDA5 inhibited ALV-J-infected cell proliferation, the cell cycle and cell migration, and knockdown of MDA5 promoted proliferation, the cell cycle and migration. In addition, during ALV-J infections, MDA5 can detect virus invasion and it triggers the MDA5 signaling pathway. MDA5 overexpression can activate the MDA5 signaling pathway, and thus it can inhibit the mRNA and protein expression of the ALV-J env gene and it can suppress virion secretion. In contrast, in response to the knockdown of MDA5 by small interfering RNA (siRNA) or an miR-34b-5p mimic, genes in the MDA5 signaling pathway were significantly downregulated (P < 0.05), but the mRNA and protein expression of ALV-J env and the sample-to-positive ratio of virion in the supernatants were increased. This indicates that miR-34b-5p is able to trigger the MDA5 signaling pathway and affect ALV-J infections. Together, these results suggest that miR-34b-5p targets MDA5 to accelerate the proliferation and migration of ALV-J-infected cells, and it promotes ALV-J replication, via the MDA5 signaling pathway. PMID:28194372

  7. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication.

    PubMed

    Li, Zhenhui; Luo, Qingbin; Xu, Haiping; Zheng, Ming; Abdalla, Bahareldin Ali; Feng, Min; Cai, Bolin; Zhang, Xiaocui; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that has a similar replication cycle to multiple viruses and therefore can be used as a model system for viral entry into host cells. However, there are few reports on the genes or microRNAs (miRNAs) that are responsible for the replication of ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of miR-34b-5p was significantly upregulated in ALV-J-infected chicken spleens compared to non-infected chicken spleens, but melanoma differentiation-associated gene 5 ( MDA5 ) had the opposite expression pattern. In this study, a dual-luciferase reporter assay showed that MDA5 is a direct target of miR-34b-5p. In vitro , overexpression of miR-34b-5p accelerated the proliferation of ALV-J-infected cells by inducing the progression from G2 to S phase and it promoted cell migration. Ectopic expression of MDA5 inhibited ALV-J-infected cell proliferation, the cell cycle and cell migration, and knockdown of MDA5 promoted proliferation, the cell cycle and migration. In addition, during ALV-J infections, MDA5 can detect virus invasion and it triggers the MDA5 signaling pathway. MDA5 overexpression can activate the MDA5 signaling pathway, and thus it can inhibit the mRNA and protein expression of the ALV-J env gene and it can suppress virion secretion. In contrast, in response to the knockdown of MDA5 by small interfering RNA (siRNA) or an miR-34b-5p mimic, genes in the MDA5 signaling pathway were significantly downregulated ( P < 0.05), but the mRNA and protein expression of ALV-J env and the sample-to-positive ratio of virion in the supernatants were increased. This indicates that miR-34b-5p is able to trigger the MDA5 signaling pathway and affect ALV-J infections. Together, these results suggest that miR-34b-5p targets MDA5 to accelerate the proliferation and migration of ALV-J-infected cells, and it promotes ALV-J replication, via the MDA5 signaling pathway.

  8. AN IMPROVED DYNAMICAL MODEL FOR THE MICROQUASAR XTE J1550-564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orosz, Jerome A.; Steiner, James F.; McClintock, Jeffrey E.

    2011-04-01

    We present an improved dynamical model of the X-ray binary and microquasar XTE J1550-564 based on new moderate-resolution optical spectroscopy and near-infrared photometry obtained with the 6.5 m Magellan Telescopes at Las Campanas Observatory. Twelve spectra of the source were obtained using the Magellan Echellette Spectrograph between 2008 May 6 and August 4. In addition, several hundred images of the field were obtained between 2006 May and 2009 July in the J and K{sub S} filters using the PANIC camera. The agreement between the 2006/2007 and 2008 J and K{sub S} light curves is not perfect, and the differences canmore » plausibly be attributed to a hot spot on the accretion disk during the 2006/2007 observations. By combining our new radial velocity measurements with previous measurements obtained in 2001 May at the 8.2 m Very Large Telescope and with light curves, we find an orbital period of P = 1.5420333 {+-} 0.0000024 days and a radial velocity semiamplitude of K{sub 2} = 363.14 {+-} 5.97 km s{sup -1}, which together imply an optical mass function of f(M) = 7.65 {+-} 0.38 M{sub sun}. We find that the projected rotational velocity of the secondary star is 55 {+-} 5 km s{sup -1}, which implies a very extreme mass ratio of Q {identical_to} M/M{sub 2} {approx} 30. Using a model of a Roche lobe-filling star and an azimuthally symmetric accretion disk, we fit simultaneously optical light curves from 2001, near-infrared light curves from 2008, and all of the radial velocity measurements to derive system parameters. We find an inclination of 74.{sup 0}7 {+-} 3.{sup 0}8 and component masses of M{sub 2} = 0.30 {+-} 0.07 M{sub sun} and M = 9.10 {+-} 0.61 M{sub sun} for the secondary star and black hole, respectively. We note that these results depend on the assumption that in 2008, the disk did not have a hot spot, and that the fraction of light contributed by the accretion disk did not change between the spectroscopic and photometric observations. By considering two

  9. Apolipoprotein J (clusterin) and Alzheimer's disease.

    PubMed

    Calero, M; Rostagno, A; Matsubara, E; Zlokovic, B; Frangione, B; Ghiso, J

    2000-08-15

    Apolipoprotein J (clusterin) is a ubiquitous multifunctional glycoprotein capable of interacting with a broad spectrum of molecules. In pathological conditions, it is an amyloid associated protein, co-localizing with fibrillar deposits in systemic and localized amyloid disorders. In Alzheimer's disease, the most frequent form of amyloidosis in humans and the major cause of dementia in the elderly, apoJ is present in amyloid plaques and cerebrovascular deposits but is rarely seen in NFT-containing neurons. ApoJ expression is up-regulated in a wide variety of insults and may represent a defense response against local damage to neurons. Four different mechanisms of action could be postulated to explain the role of apoJ as a neuroprotectant during cellular stress: (1) function as an anti-apoptotic signal, (2) protection against oxidative stress, (3) inhibition of the membrane attack complex of complement proteins locally activated as a result of inflammation, and (4) binding to hydrophobic regions of partially unfolded, stressed proteins, and therefore avoiding aggregation in a chaperone-like manner. This review focuses on the association of apoJ in biological fluids with Alzheimer's soluble Abeta. This interaction prevents Abeta aggregation and fibrillization and modulates its blood-brain barrier transport at the cerebrovascular endothelium. Copyright 2000 Wiley-Liss, Inc.

  10. SWIFT J1910.2-0546: A Possible Black Hole Binary with a Retrograde Spin or Truncated Disk

    NASA Astrophysics Data System (ADS)

    Reis, R. C.; Reynolds, M. T.; Miller, J. M.; Walton, D. J.; Maitra, D.; King, A.; Degenaar, N.

    2013-12-01

    We present the first results from a long (51 ks) XMM-Newton observation of the Galactic X-ray binary SWIFT J1910.2-0546 in an intermediate state, obtained during its 2012 outburst. A clear, asymmetric iron emission line is observed and physically motivated models are used to fully describe the emission-line profile. Unlike other sources in their intermediate spectral states, the inner accretion disk in SWIFT J1910.2-0546 appears to be truncated, with an inner radius of r in =9.4^{+1.7}_{-1.3} r g at a 90% confidence limit. Quasi-periodic oscillations are also found at approximately 4.5 and 6 Hz, which correlates well with the break frequency of the underlying broad-band noise. Assuming that the line emission traces the innermost stable circular orbit, as would generally be expected for an intermediate state, the current observation of SWIFT J1910.2-0546 may offer the best evidence for a possible retrograde stellar mass black hole with a spin parameter a < - 0.32cJ/GM2 (90% confidence). Although this is an intriguing possibility, there are also a number of alternative scenarios which do not require a retrograde spin. For example, the inner accretion disk may be truncated at an unusually high luminosity in this case, potentially suffering frequent evaporation/condensation, or it could instead be persistently evacuated through mass loss in a relativistic jet. Further observations are required to distinguish between these different interpretations.

  11. Unveiling the radio counterparts of two binary AGN candidates: J1108+0659 and J1131-0204

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Pérez-Torres, M. A.; Piconcelli, E.; Fu, H.

    2016-04-01

    The sources SDSS J113126.08-020459.2 and SDSS J110851.04+065901.4 are two double-peaked [O III] emitting active galactic nuclei (AGNs), identified as candidate binary AGNs by optical and near infrared (NIR) observations. We observed the two sources with high resolution Very Long Baseline Interferometry (VLBI) using the European VLBI Network at 5 GHz, reduced VLA observations at three frequencies available for one of the sources, and used archival HST observations. For the source SDSS J113126.08-020459.2, the VLBI observations detected only one single compact component associated with the eastern NIR nucleus. In SDSS J110851.04+065901.4, the VLBI observations did not detect any compact components, but the VLA observations allowed us to identify a possible compact core in the region of the north-western optical/NIR nucleus. In this source we find kpc-scale extended radio emission that is spatially coincident to the ultraviolet continuum and to the extended emission narrow line region. The UV continuum is significantly obscured since the amount of extended radio emission yields a star formation rate of about 110 M⊙ yr-1, which is an order of magnitude larger than implied by the observed ultraviolet emission. Our analysis confirms the presence of only one AGN in the two candidate binary AGNs. FITS files of the reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A102

  12. Different contributions of dopamine D1 and D2 receptor activity to alcohol potentiation of brain stimulation reward in C57BL/6J and DBA/2J mice.

    PubMed

    Fish, Eric W; DiBerto, Jeffrey F; Krouse, Michael C; Robinson, J Elliott; Malanga, C J

    2014-08-01

    C57BL/6J (C57) and DBA/2J (DBA) mice respond differently to drugs that affect dopamine systems, including alcohol. The current study compared effects of D1 and D2 receptor agonists and antagonists, and the interaction between D1/D2 antagonists and alcohol, on intracranial self-stimulation in male C57 and DBA mice to determine the role of dopamine receptors in the effects of alcohol on brain stimulation reward (BSR). In the initial strain comparison, dose effects on BSR thresholds and maximum operant response rates were determined for the D1 receptor agonist SKF-82958 (±-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.1-0.56 mg/kg) and antagonist SCH 23390 (+-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepinehydrochloride; 0.003-0.056 mg/kg), and the D2 receptor agonist quinpirole (0.1-3.0 mg/kg) and antagonist raclopride (0.01-0.56 mg/kg). For the alcohol interaction, SCH 23390 (0.003 mg/kg) or raclopride (0.03 mg/kg) was given before alcohol (0.6-2.4 g/kg p.o.). D1 antagonism dose-dependently elevated and SKF-82958 dose-dependently lowered BSR threshold in both strains; DBA mice were more sensitive to SKF-82958 effects. D2 antagonism dose-dependently elevated BSR threshold only in C57 mice. Low doses of quinpirole elevated BSR threshold equally in both strains, whereas higher doses of quinpirole lowered BSR threshold only in C57 mice. SCH 23390, but not raclopride, prevented lowering of BSR threshold by alcohol in DBA mice. Conversely, raclopride, but not SCH 23390, prevented alcohol potentiation of BSR in C57 mice. These results extend C57 and DBA strain differences to D1/D2 sensitivity of BSR, and suggest differential involvement of D1 and D2 receptors in the acute rewarding effects of alcohol in these two mouse strains. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2015-02-01

    A unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Ji j between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Ji j values and TN in terms of the Ji j values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S . For collinear ordering these properties are the reduced temperature t =T /TN , the ratio f =θp/TN , and S . For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ (T ≤TN) of noncollinear 120∘ spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S , and the reduced perpendicular field versus reduced temperature phase diagram is constructed.

  14. A search for the presence of magnetic fields in the two supergiant fast X-ray transients, IGR J08408-4503 and IGR J11215-5952

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Sidoli, L.; Postnov, K.; Schöller, M.; Kholtygin, A. F.; Järvinen, S. P.; Steinbrunner, P.

    2018-02-01

    A significant fraction of high-mass X-ray binaries are supergiant fast X-ray transients (SFXTs). The prime model for the physics governing their X-ray behaviour suggests that the winds of donor OB supergiants are magnetized. To investigate if magnetic fields are indeed present in the optical counterparts of such systems, we acquired low-resolution spectropolarimetric observations of the two optically brightest SFXTs, IGR J08408-4503 and IGR J11215-5952, with the ESO FORS 2 instrument during two different observing runs. No field detection at a significance level of 3σ was achieved for IGR J08408-4503. For IGR J11215-5952, we obtain 3.2σ and 3.8σ detections (⟨Bz⟩hydr = -978 ± 308 G and ⟨Bz⟩hydr = 416 ± 110 G) on two different nights in 2016. These results indicate that the model involving the interaction of a magnetized stellar wind with the neutron star magnetosphere can indeed be considered to characterize the behaviour of SFXTs. We detected long-term spectral variability in IGR J11215-5952, whereas for IGR J08408-4503, we find an indication of the presence of short-term variability on a time-scale of minutes.

  15. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    NASA Astrophysics Data System (ADS)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP turbomachinery; and low-boiloff propellant management, and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be shown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  16. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP. turbomachinery; and low-boiloff propellant management; and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be $hown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  17. Advanced transportation system studies, technical area 3. Alternate propulsion subsystem concepts: J-2S restart study

    NASA Astrophysics Data System (ADS)

    Vilja, John; Levack, Daniel

    1993-04-01

    The objectives were to assess what design changes would be required to remit late production of the J-2S engine for use as a large high energy upper stage engine. The study assessed design changes required to perform per the J-2S model specification, manufacturing changes required due to obsolescence or improvements in state-of-the-practice, availability issues for supplier provided items, and provided cost and schedule estimates for this configuration. The confidence that J-2S production could be reinitiated within reasonable costs and schedules was provided. No significant technical issues were identified in either the producibility study or in the review of previous technical data. Areas of potential cost reduction were identified which could be quantified to a greater extent with further manufacturing planning. The proposed schedule can be met with no foreseeable impacts. The results of the study provided the necessary foundation for the detailed manufacturing and test plans and non-recurring and recurring cost estimates that are needed to complete the effort to reinitiate production of the J-2S engine system.

  18. PROPERTIES OF THE NEARBY BROWN DWARF WISEP J180026.60+013453.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizis, John E.; Burgasser, Adam J.; Vrba, Frederick J.

    2015-12-15

    We present new spectroscopy and astrometry to characterize the nearby brown dwarf WISEP J180026.60+013453.1. The optical spectral type, L7.5, is in agreement with the previously reported near-infrared spectral type. The preliminary trigonometric parallax places it at a distance of 8.01 ± 0.21 pc, confirming that it is the fourth closest known late-L (L7–L9) dwarf. The measured luminosity, our detection of lithium, and the lack of low surface gravity indicators indicates that WISEP J180026.60+013453.1 has a mass 0.03 < M < 0.06 M{sub ⊙} and an age between 300 million and 1.5 billion years according to theoretical substellar evolution models. Themore » low space motion is consistent with this young age. We have measured the rotational broadening (v sin i = 13.5 ± 0.5 km s{sup −1}), and use it to estimate a maximum rotation period of 9.3 hr.« less

  19. Novel object exploration in the C58/J mouse model of autistic-like behavior.

    PubMed

    Blick, Mikkal G; Puchalski, Breann H; Bolanos, Veronica J; Wolfe, Kaitlin M; Green, Matthew C; Ryan, Bryce C

    2015-04-01

    Mouse models of autistic like behaviors are a valuable tool to use when studying the causes, symptoms, and potential treatments for autism. The inbred C58/J strain is a strain of interest for this model and has previously been shown to possess face validity for some of the core traits of autism, including low social behavior and elevated motor stereotypies. Higher order repetitive behaviors have not been extensively studied in this strain, or in mice in general. In this study, we looked for evidence of higher-order repetitive behaviors in the C58/J strain using a novel object assay. This assay utilized a mouse's natural exploratory behavior among unfamiliar objects to identify potential sequencing patterns in motor activity. The motor stereotypies displayed by the C58/J strain during testing were consistent with past studies. The C58/J strain also displayed a high preference for a single object in the round arena assays and the females demonstrating elevated sequencing patterns in the round arena. Although the C58/J strain did not show pervasive evidence of higher-order repetitive behaviors across all measures, there was evidence of higher order repetitive behaviors in certain situations. This study further demonstrates the potential of the C58/J mouse strains as a model for lower-order and potentially, higher-order repetitive behaviors. This study also demonstrates that the shape of the novel object arena can change the behavior displayed by the test animals. Further studies utilizing the C58/J strain and further validation of the novel object assay are warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Measurements of B →J /ψ at forward rapidity in p +p collisions at √{s }=510 GeV

    NASA Astrophysics Data System (ADS)

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Attila, A.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoaroman, C.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lokos, S.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E. M.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Radzevich, P. V.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sun, J.; Syed, S.; Takahara, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Yamaguchi, Y. L.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2017-05-01

    We report the first measurement of the fraction of J /ψ mesons coming from B -meson decay (FB →J /ψ) in p +p collisions at √{s }=510 GeV . The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of J /ψ due to B -meson decays from prompt J /ψ . The measured value of FB →J /ψ is 8.12.3 %(stat)±1.9 %(syst) for J /ψ with transverse momenta 0 1.2 <|y |<2.2 . The measured fraction FB →J /ψ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The b b ¯ cross section per unit rapidity [d σ /d y (p p →b b ¯)] extracted from the obtained FB →J /ψ and the PHENIX inclusive J /ψ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean B hadron rapidity y =±1.7 in 510 GeV p +p collisions, is 3.6 3-1.70+1.92 μ b . It is consistent with the fixed-order-next-to-leading-logarithm calculations.

  1. Extreme Blazars Studied with Fermi-LAT and Suzaku: 1ES 0347-121 and Blazar Candidate HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; Cheung, C. C.; Dermer, C. D.; Kataoka, J.; Bamba, A.; Dubus, G.; De Naurois, M.; Wagner, S. J.; Fukazawa, Y.; Thompson, D. J.

    2014-06-01

    We report on our study of high-energy properties of two peculiar TeV emitters: the "extreme blazar" 1ES 0347-121 and the "extreme blazar candidate" HESS J1943+213 located near the Galactic plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi Large Area Telescope (LAT) two-year Source Catalog. We analyze a 4.5 yr accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis results of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00 ± 0.02 and a moderate absorption in excess of the Galactic value, which is in agreement with previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and we derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option since, in particular, the broadband spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available Wide-field Infrared Survey Explorer and UKIRT Infrared Deep Sky Survey data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximately ~600 Mpc.

  2. Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin

    2014-03-01

    Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.

  3. I Dream of J.J., or Affordances and Motion Pictures.

    ERIC Educational Resources Information Center

    Anderson, Joseph D.

    1995-01-01

    Categorizes attempts to account for how viewers garner meanings from motion pictures as either semiotic, realist, or conventionalist. Proposes an alternative explanation based on J. J. Gibson's ecological theory of perception. Offers his concept of "affordances" as the key to an explanation of how meanings in motion pictures are…

  4. Observation of J/ψp Resonances Consistent with Pentaquark States in Λ_{b}^{0}→J/ψK^{-}p Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Ninci, D; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zucchelli, S

    2015-08-14

    Observations of exotic structures in the J/ψp channel, which we refer to as charmonium-pentaquark states, in Λ_{b}^{0}→J/ψK^{-}p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb^{-1} acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J/ψp mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380±8±29 MeV and a width of 205±18±86 MeV, while the second is narrower, with a mass of 4449.8±1.7±2.5 MeV and a width of 39±5±19 MeV. The preferred J^{P} assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

  5. jà Experiences in Temporal Lobe Epilepsy

    PubMed Central

    Illman, Nathan A.; Butler, Chris R.; Souchay, Celine; Moulin, Chris J. A.

    2012-01-01

    Historically, déjà vu has been linked to seizure activity in temporal lobe epilepsy, and clinical reports suggest that many patients experience the phenomenon as a manifestation of simple partial seizures. We review studies on déjà vu in epilepsy with reference to recent advances in the understanding of déjà vu from a cognitive and neuropsychological standpoint. We propose a decoupled familiarity hypothesis, whereby déjà vu is produced by an erroneous feeling of familiarity which is not in keeping with current cognitive processing. Our hypothesis converges on a parahippocampal dysfunction as the locus of déjà vu experiences. However, several other temporal lobe structures feature in reports of déjà vu in epilepsy. We suggest that some of the inconsistency in the literature derives from a poor classification of the various types of déjà experiences. We propose déjà vu/déjà vécu as one way of understanding déjà experiences more fully. This distinction is based on current models of memory function, where déjà vu is caused by erroneous familiarity and déjà vécu by erroneous recollection. Priorities for future research and clinical issues are discussed. PMID:22957231

  6. jà experiences in temporal lobe epilepsy.

    PubMed

    Illman, Nathan A; Butler, Chris R; Souchay, Celine; Moulin, Chris J A

    2012-01-01

    Historically, déjà vu has been linked to seizure activity in temporal lobe epilepsy, and clinical reports suggest that many patients experience the phenomenon as a manifestation of simple partial seizures. We review studies on déjà vu in epilepsy with reference to recent advances in the understanding of déjà vu from a cognitive and neuropsychological standpoint. We propose a decoupled familiarity hypothesis, whereby déjà vu is produced by an erroneous feeling of familiarity which is not in keeping with current cognitive processing. Our hypothesis converges on a parahippocampal dysfunction as the locus of déjà vu experiences. However, several other temporal lobe structures feature in reports of déjà vu in epilepsy. We suggest that some of the inconsistency in the literature derives from a poor classification of the various types of déjà experiences. We propose déjà vu/déjà vécu as one way of understanding déjà experiences more fully. This distinction is based on current models of memory function, where déjà vu is caused by erroneous familiarity and déjà vécu by erroneous recollection. Priorities for future research and clinical issues are discussed.

  7. The Epoxygenases CYP2J2 Activates the Nuclear Receptor PPARα In Vitro and In Vivo

    PubMed Central

    Wray, Jessica A.; Sugden, Mary C.; Zeldin, Darryl C.; Greenwood, Gemma K.; Samsuddin, Salma; Miller-Degraff, Laura; Bradbury, J. Alyce; Holness, Mark J.; Warner, Timothy D.; Bishop-Bailey, David

    2009-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are a family of three (PPARα, -β/δ, and -γ) nuclear receptors. In particular, PPARα is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARα mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart. Methodology/Principal Findings Expression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARα. The CYP2J2 products 8,9- and 11-12-EET also activate PPARα. In vitro, PPARα activation by its selective ligand induces the PPARα target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4. Conclusions/Significance Our results establish that CYP2J2 produces PPARα ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events. PMID:19823578

  8. XTE J1908+094

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Finger, M. H.; Gogus, E.; Swank, J.; Markwardt, C.; Strohmayer, T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Goddard Space Flight Center reports the serendipitous discovery of a new x-ray transient, XTE J1908+094, in RXTE (Rossi X-ray Timing Explorer) PCA (Proportional Counter Array) observations of the soft-gamma-ray repeater SGR 1900+14, triggered following the burst activity on Feb. 17-18 (GCN 1253). These observations failed to detect the 5.2-s SGR pulsations, pointing towards a possible new source as the origin of the high x-ray flux. An RXTE PCA scan of the region around SGR 1900+14 on Feb. 21 was consistent with emission only from known sources (and no new sources). However, the scans required SGR 1900+14 to be 20 times brighter than its quiescent flux level (GCN 1256). A Director's Discretionary Time Chandra observation on Mar. 11 showed that the SGR was quiescent and did not reveal any new source within the Chandra ACIS (Advanced CCD (charge coupled device) Imaging Spectrometer) field-of-view. A subsequent RXTE PCA scan on Mar. 17, taken in combination with the first scan, required that a new source be included in the fit. The best-fit position is R.A. 19h 08m 50s, Decl. = +9 22 deg .5 (equinox J2000.0; estimated 2 deg systematic error radius), or approximately 24 deg away from the SGR source. The source spectrum (2-30 kev) can be best fit with a power-law function including photoelectric absorption (column density N_h = 2.3 x 10(exp 22), photon index = 1.55). Iron line emission is present, but may be due to the Galactic ridge. Between Feb. 19 and Mar. 17, the source flux (2-10 keV) has risen from 26 to 64 mCrab. The power spectrum is flat between 1 mHz and 0.1 Hz, falling approximately as 1/f**0.5 up to 1 Hz. At 1 Hz is seen a broad quasiperiodic oscillation peak and a break to a 1/f**2 power law, which continues to 4 Hz. The fractional rms (root mean square) amplitude from 1 mHz to 4 Hz is 43 percent. No coherent pulsations are seen between 0.001 and 1024 Hz. The authors conclude that XTE J1908+094 is a new blackhole candidate.

  9. XTE J1946+274 = GRO J1944+26 Observations with RXTE and BATSE

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Scott, D. Matthew

    2000-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8 second transient X-ray pulsar discovered simultaneously with the Rossi X-ray Timing Explorer (RXTE) and Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) during an outburst in September 1998. Since its discovery, XTE J1946+274 has undergone 7 regularly spaced outbursts, that were observed with BATSE and the RXTE All-Sky Monitor (ASM). The pulse frequency and pulsed flux measurements with BATSE suggest that XTE J1946+274 is in an about 170 day orbit and is outbursting twice per orbit. The first outburst, which was brighter and longer than subsequent outbursts, was also observed with the RXTE Proportional Counter Array (PCA). We present histories of pulse frequency, pulsed flux, and total flux measured in the 20-50 keV band with BATSE and a history of the 2-10 keV total flux measured with the RXTE ASM. From the first outburst, we present energy and power spectra and pulse profiles from RXTE PCA observations.

  10. Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.

    PubMed

    Nishikawa, Yoshihiko; Michel, Manon; Krauth, Werner; Hukushima, Koji

    2015-12-01

    We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model. The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent z≈1 at the critical temperature, while that of the magnetization does not measure the performance of the algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical exponent from the conventional value of z≃2.

  11. BRCA1 and FancJ cooperatively promote interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1

    PubMed Central

    Zou, Jianqiu; Zhang, Deli; Qin, Guang; Chen, Xiangming; Wang, Hongmin; Zhang, Dong

    2014-01-01

    DNA damage response (DDR) and the centrosome cycle are 2 of the most critical cellular processes affecting the genome stability in animal cells. Yet the cross-talks between DDR and the centrosome are poorly understood. Here we showed that deficiency of the breast cancer 1, early onset gene (BRCA1) induces centrosome amplification in non-stressed cells as previously reported while attenuating DNA damage-induced centrosome amplification (DDICA) in cells experiencing prolonged genotoxic stress. Mechanistically, the function of BRCA1 in promoting DDICA is through binding and recruiting polo-like kinase 1 (PLK1) to the centrosome. In a recent study, we showed that FancJ also suppresses centrosome amplification in non-stressed cells while promoting DDICA in both hydroxyurea and mitomycin C treated cells. FancJ is a key component of the BRCA1 B-complex. Here, we further demonstrated that, in coordination with BRCA1, FancJ promotes DDICA by recruiting both BRCA1 and PLK1 to the centrosome in the DNA damaged cells. Thus, we have uncovered a novel role of BRCA1 and FancJ in the regulation of DDICA. Dysregulation of DDR or centrosome cycle leads to aneuploidy, which is frequently seen in both solid and hematological cancers. BRCA1 and FancJ are known tumor suppressors and have well-recognized functions in DNA damage checkpoint and DNA repair. Together with our recent findings, we demonstrated here that BRCA1 and FancJ also play an important role in centrosome cycle especially in DDICA. DDICA is thought to be an alternative fail-safe mechanism to prevent cells experiencing severe DNA damage from becoming carcinogenic. Therefore, BRCA1 and FancJ are potential liaisons linking early DDR with the DDICA. We propose that together with their functions in DDR, the role of BRCA1 and FancJ in the activation of DDICA is also crucial for their tumor suppression functions in vivo. PMID:25483079

  12. An X-Ray Counterpart of HESS J1427-608 Discovered with Suzaku

    NASA Astrophysics Data System (ADS)

    Fujinaga, Takahisa; Mori, Koji; Bamba, Aya; Kimura, Shoichi; Dotani, Tadayasu; Ozaki, Masanobu; Matsuta, Keiko; Pülhofer, Gerd; Uchiyama, Hideki; Hiraga, Junko S.; Matsumoto, Hironori; Terada, Yukikatsu

    2013-06-01

    We report on the discovery of an X-ray counterpart of the unidentified very high-energy gamma-ray source HESS J1427-608. In the sky field coincident with HESS J1427-608, an extended source was found in the 2-8 keV band, and was designated as Suzaku J1427-6051. Its X-ray radial profile has an extension of σ = 0.'9 ± 0.'1 if approximated by a Gaussian. The spectrum was well fitted by an absorbed power-law with NH = (1.1 ± 0.3) × 1023 cm-2, Γ = 3.1+0.6-0.5, and the unabsorbed flux FX = (9+4-2) × 10-13 erg s-1 cm-2 in the 2-10 keV band. Using XMM-Newton archive data, we found seven point sources in the Suzaku source region. However, because their total flux and absorbing column densities are more than an order of magnitude lower than those of Suzaku J1427-6051, we consider that they are unrelated to the Suzaku source. Thus, Suzaku J1427-6051 is considered to be a truly diffuse source and an X-ray counterpart of HESS J1427-608. The possible nature of HESS J1427-608 is discussed based on the observational properties.

  13. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We study the processes e + e - → γ ISR J / ψ , where J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb - 1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e + e - collider at center-of-mass energies at and near the Υ ( n S ) ( n = 2 , 3 , 4 ) resonances.« less

  14. Transient simulation of a miniature Joule-Thomson (J-T) cryocooler with and without the distributed J-T effect

    NASA Astrophysics Data System (ADS)

    Damle, R. M.; Atrey, M. D.

    2015-01-01

    The aim of this work is to develop a transient program for the simulation of a miniature Joule-Thomson (J-T) cryocooler to predict its cool-down characteristics. A one dimensional transient model is formulated for the fluid streams and the solid elements of the recuperative heat exchanger. Variation of physical properties due to pressure and temperature is considered. In addition to the J-T expansion at the end of the finned tube, the distributed J-T effect along its length is also considered. It is observed that the distributed J-T effect leads to additional cooling of the gas in the finned tube and that it cannot be neglected when the pressure drop along the length of the finned tube is large. The mathematical model, method of resolution and the global transient algorithm, within a modular object-oriented framework, are detailed in this paper. As a part of verification and validation of the developed model, cases available in the literature are simulated and the results are compared with the corresponding numerical and experimental data.

  15. Swift follow-up of 1RXS J194211.9+255552

    NASA Astrophysics Data System (ADS)

    Sidoli, L.; Fiocchi, M.; Bird, A. J.; Drave, S. P.; Bazzano, A.; Persi, P.; Tarana, A.; Sguera, V.; Chenevez, J.; Kuulkers, E.

    2011-12-01

    Following the INTEGRAL/JEM-X detection of the unidentified source 1RXS J194211.9+255552 (ATel #3816) on December 18, we asked for a Swift/XRT follow-up observation. Swift observed the source field on December 21, 2011 at 06:10:09.7 (UTC), with a net exposure of 1756 s. Within the ROSAT error circle there is only one pointlike source, at the following position (J2000): RA(hh mm ss.s) = 19h42m11.13s, Dec(dd mm ss.s) = +25:56:07.32 (3.6 arcsec error radius).

  16. 1-J white-light continuum from 100-TW laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Yannick; Henin, Stefano; Bejot, Pierre

    2011-01-15

    We experimentally measured the supercontinuum generation using 3-J, 30-fs laser pulses and measured white-light generation at the level of 1 J. Such high energy is allowed by a strong contribution to the continuum by the photon bath, as compared to the self-guided filaments. This contribution due to the recently observed congestion of the filament number density in the beam profile at very high intensity also results in a wider broadening for positively chirped pulses rather than for negatively chirped ones, similar to broadening in hollow-core fibers.

  17. Structures of the Kplus and NH4 Forms of Linde J

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Broach; R Kirchner

    2011-12-31

    The aluminosilicate zeolite Linde J has a unique topology. The structures of the K{sup +} and NH{sub 4}{sup +} forms of Linde J ([X{sub 2}(H{sub 2}O)][Si{sub 2}Al{sub 2}O{sub 8}] where X = K or NH{sub 4}) are identical except for slight cell size and positional differences due to NH{sub 4}{sup +} being larger than K{sup +} cations. The space group is P2{sub 1}2{sub 1}2{sub 1}. Cell dimensions are: K{sup +} Linde J, a = 9.4577(2) {angstrom}, b = 9.5573(2) {angstrom}, c = 9.9429(2) {angstrom}; NH{sub 4}{sup +} Linde J, a = 9.6324(4) {angstrom}, b = 9.6423(3) {angstrom}, c = 10.0230(3)more » {angstrom}. Zigzag 8-ring channels intersect giving a 2-D pore system.« less

  18. All the nonadiabatic (J=0) bound states of NO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzgeber, R.F.; Mandelshtam, V.A.; Schlier, C.

    1999-02-01

    We calculated all 3170 A{sub 1} and B{sub 2} (J=0) vibronic bound states of the coupled electronic ground ({tilde X}&hthinsp;{sup 2}A{sub 1}) and the first excited ({tilde A}&hthinsp;{sup 2}B{sub 2}) surfaces of NO{sub 2}, using a modification of the {ital ab initio} potentials of Leonardi {ital et al.} [J. Chem. Phys. {bold 105}, 9051 (1996)]. The calculation was performed by harmonic inversion of the Chebyshev correlation function generated from a DVR Hamiltonian in Radau coordinates. The rms error of the eigenenergies is about 2.5 cm{sup {minus}1}, corresponding to a relative error of 10{sup {minus}4} near the dissociation energy. The resultsmore » are compared with the adiabatic and diabatic levels calculated from the same surfaces, with experimental data, and with some approximations for the number of states function N(E). The experimental levels are reproduced fairly well up to an energy of 12&hthinsp;000 cm{sup {minus}1} above the potential minimum while the total number of bound levels agrees to within 2{percent} with that calculated from the phase space volume. {copyright} {ital 1999 American Institute of Physics.}« less

  19. Is the CMS e e j j excess a hint for light supersymmetry?

    NASA Astrophysics Data System (ADS)

    Krauss, Manuel E.; Porod, Werner

    2015-09-01

    We discuss the impact of additional two-body decays of the right-handed neutrino into a light charged Higgs state on the dilepton plus dijet cross sections from resonant W' production. We consider in particular a supersymmetric left-right symmetric model which predicts such a light charged Higgs boson. We demonstrate that the e e j j excess as measured by CMS can be explained best if the W' also has decay modes into Higgsino-like charginos and neutralinos with masses of a few hundred GeV. Provided that this excess is confirmed, the model predicts also one right-handed neutrino with a mass below 200 GeV as well as a doubly charged Higgs boson which should be discovered at the LHC in the near future.

  20. Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at √{sNN} = 2.76TeV with the CMS experiment

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Awad, A.; Elgammal, S.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Beernaert, K.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Gasparini, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Michelotto, M.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Schizzi, A.; Zanetti, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; De Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Paneva, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration

    2017-09-01

    The cross section for coherent J / ψ photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at √{sNN} = 2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159μb-1, collected during the 2011 PbPb run. The J / ψ mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is dσSUB>Xn0n/SUB>coh/dy (J / ψ) = 0.36 ± 0.04(stat) ± 0.04(syst) mb in the rapidity interval 1.8 < | y | < 2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0n measurement gives a total coherent photoproduction cross section of dσcoh / dy (J / ψ) = 1.82 ± 0.22(stat) ± 0.20(syst) ± 0.19(theo) mb. The data strongly disfavor the impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J / ψ photoproduction in γ + Pb interactions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing.

  1. 17 CFR 270.17j-1 - Personal investment activities of investment company personnel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Personal investment activities of investment company personnel. 270.17j-1 Section 270.17j-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270...

  2. 17 CFR 270.17j-1 - Personal investment activities of investment company personnel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Personal investment activities of investment company personnel. 270.17j-1 Section 270.17j-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270...

  3. DOES A DIFFERENTIATED, CARBONATE-RICH, ROCKY OBJECT POLLUTE THE WHITE DWARF SDSS J104341.53+085558.2?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melis, Carl; Dufour, P., E-mail: cmelis@ucsd.edu

    We present spectroscopic observations of the dust- and gas-enshrouded, polluted, single white dwarf star SDSS J104341.53+085558.2 (hereafter SDSS J1043+0855). Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet spectra combined with deep Keck HIRES optical spectroscopy reveal the elements C, O, Mg, Al, Si, P, S, Ca, Fe, and Ni and enable useful limits for Sc, Ti, V, Cr, and Mn in the photosphere of SDSS J1043+0855. From this suite of elements we determine that the parent body being accreted by SDSS J1043+0855 is similar to the silicate Moon or the outer layers of Earth in that it is rocky and iron-poor.more » Combining this with comparison to other heavily polluted white dwarf stars, we are able to identify the material being accreted by SDSS J1043+0855 as likely to have come from the outermost layers of a differentiated object. Furthermore, we present evidence that some polluted white dwarfs (including SDSS J1043+0855) allow us to examine the structure of differentiated extrasolar rocky bodies. Enhanced levels of carbon in the body polluting SDSS J1043+0855 relative to the Earth–Moon system can be explained with a model where a significant amount of the accreted rocky minerals took the form of carbonates; specifically, through this model the accreted material could be up to 9% calcium-carbonate by mass.« less

  4. DETAIL OF CORNERSTONE, WHICH STATES "J.J. DANIELS, BUILDER 1861." NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNERSTONE, WHICH STATES "J.J. DANIELS, BUILDER 1861." NOTE ALSO IRON STRAP AT EAST CORNER OF ABUTMENT. - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  5. Variable patterns of ectopic mineralization in Enpp1asj-2J mice, a model for generalized arterial calcification of infancy

    PubMed Central

    Siu, Sarah Y.; Dyment, Nathaniel A.; Rowe, David W.; Sundberg, John P.; Uitto, Jouni; Li, Qiaoli

    2016-01-01

    Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder characterized by early onset of extensive mineralization of the cardiovascular system. The classical forms of GACI are caused by mutations in the ENPP1 gene, encoding a membrane-bound pyrophosphatase/phosphodiesterase that hydrolyzes ATP to AMP and inorganic pyrophosphate. The asj-2J mouse harboring a spontaneous mutation in the Enpp1 gene has been characterized as a model for GACI. These mutant mice develop ectopic mineralization in skin and vascular connective tissues as well as in cartilage and collagen-rich tendons and ligaments. This study examined in detail the temporal ectopic mineralization phenotype of connective tissues in this mouse model, utilizing a novel cryo-histological method that does not require decalcification of bones. The wild type, heterozygous, and homozygous mice were administered fluorescent mineralization labels at 4 weeks (calcein), 10 weeks (alizarin complexone), and 11 weeks of age (demeclocycline). Twenty-four hours later, outer ears, muzzle skin, trachea, aorta, shoulders, and vertebrae were collected from these mice and examined for progression of mineralization. The results revealed differential timeline for disease initiation and progression in various tissues of this mouse model. It also highlights the advantages of cryo-histological fluorescent imaging technique to study mineral deposition in mouse models of ectopic mineralization disorders. PMID:27863377

  6. Viscomagnetic effect: j-magnitude weighting for Ar-N2

    NASA Astrophysics Data System (ADS)

    Snider, R. F.

    1984-10-01

    A continuing question in the study of the viscomagnetic effect has been the dependence on j magnitude, of the angular momentum polarization. It has been generally accepted that neither the normalized nor the unrenormalized angular momentum quadrupole correctly interprets the experimental results. IOS calculations of the production and relaxation cross sections are performed keeping the full j-magnitude dependence. Predictions of the field dependence of the viscomagnetic effect are made and it is found that the j dependence of both the production cross sections and of the relaxation matrix influence the detailed field dependence of the viscomagnetic effect.

  7. Disagreement between theory and experiment grows with increasing rotational excitation of HD(v', j') product for the H + D2 reaction.

    PubMed

    Jankunas, Justin; Sneha, Mahima; Zare, Richard N; Bouakline, Foudhil; Althorpe, Stuart C

    2013-03-07

    The Photoloc technique has been employed to measure the state-resolved differential cross sections of the HD(v', j(')) product in the reaction H + D2 over a wide range of collision energies and internal states. The experimental results were compared with fully dimensional, time-dependent quantum mechanical calculations on the refined Boothroyd-Keogh-Martin-Peterson potential energy surface. We find nearly perfect agreement between theory and experiment for HD(v', j(')) product states with low to medium rotational excitation, e.g., HD(v' = 1, j(') = 3) at a collision energy, Ecoll, of 1.72 eV, HD(v' = 1, j(') = 3, 5) at Ecoll = 1.97 eV, and HD(v' = 3, j(') = 3) at Ecoll = 1.97 eV. As the rotational angular momentum, j('), of HD(v', j(')) increases, the agreement between theoretical predictions and experimental measurements worsens but not in a simple fashion. A moderate disagreement between theory and experiment has been found for HD(v' = 0, j(') = 12) at Ecoll = 1.76 eV and increased monotonically for HD(v' = 0, j(') = 13) at Ecoll = 1.74 eV, HD(v' = 0, j(') = 14) at Ecoll = 1.72 eV, and HD(v' = 0, j(') = 15) at Ecoll = 1.70 eV. Disagreement was not limited to vibrationless HD(v', j(')) product states: HD(v' = 1, j(') = 12) at Ecoll = 1.60 eV and HD(v' = 3, j(') = 8, 10) at Ecoll = 1.97 eV followed a similar trend. Theoretical calculations suggest more sideways∕forward scattering than has been observed experimentally for high j(') HD(v', j(')) states. The source of this discrepancy is presently unknown but might be the result of inaccuracy in the potential energy surface.

  8. An Analytical Singularity-Free Solution to the J2 Perturbation Problem

    NASA Technical Reports Server (NTRS)

    Bond, V. R.

    1979-01-01

    The development of a singularity-free solution of the J2 problem in satellite theory is presented. The procedure resembles that of Lyndane who rederives Brouwer's satellite theory using Poincare elements. A comparable procedure is used in this report in which the satellite theory of Scheifele, who used elements similar to the Delaunay elements but in the extended phase space, is rederived using Poincare elements also in the extended phase space. Only the short-period effects due to J2 are included.

  9. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice.

    PubMed

    Rhodes, Justin S; Best, Karyn; Belknap, John K; Finn, Deborah A; Crabbe, John C

    2005-01-31

    Because of intrinsic differences between humans and mice, no single mouse model can represent all features of a complex human trait such as alcoholism. It is therefore necessary to develop partial models. One important feature is drinking to the point where blood ethanol concentration (BEC) reaches levels that have measurable affects on physiology and/or behavior (>1.0 mg ethanol/ml blood). Most models currently in use examine relative oral self-administration from a bottle containing alcohol versus one containing water (two-bottle preference drinking), or oral operant self-administration. In these procedures, it is not clear when or if the animals drink to pharmacologically significant levels because the drinking is episodic and often occurs over a 24-h period. The aim of this study was to identify the optimal parameters and evaluate the reliability of a very simple procedure, taking advantage of a mouse genotype (C57BL/6J) that is known to drink large quantities of ethanol. We exchanged for the water bottle a solution containing ethanol in tap water for a limited period, early in the dark cycle, in the home cage. Mice regularly drank sufficient ethanol to achieve BEC>1.0 mg ethanol/ml blood. The concentration of ethanol offered (10%, 20% or 30%) did not affect consumption in g ethanol/kg body weight. The highest average BEC ( approximately 1.6 mg/ml) occurred when the water-to-ethanol switch occurred 3 h into the dark cycle, and when the ethanol was offered for 4 rather than 2 h. Ethanol consumption was consistent within individual mice, and reliably predicted BEC after the period of ethanol access. C57BL/6J mice from three sources provided equivalent data, while DBA/2J mice drank much less than C57BL/6J in this test. We discuss advantages of the model for high-throughput screening assays where the goal is to find other genotypes of mice that drink excessively, or to screen drugs for their efficacy in blocking excessive drinking.

  10. Avian leukosis virus subgroup J promotes cell proliferation and cell cycle progression through miR-221 by targeting CDKN1B.

    PubMed

    Ren, Chaoqi; Yu, Mengmeng; Zhang, Yao; Fan, Minghui; Chang, Fangfang; Xing, Lixiao; Liu, Yongzhen; Wang, Yongqiang; Qi, Xiaole; Liu, Changjun; Zhang, Yanping; Cui, Hongyu; Li, Kai; Gao, Li; Pan, Qing; Wang, Xiaomei; Gao, Yulong

    2018-06-01

    Avian leukosis virus subgroup J (ALV-J), a highly oncogenic retrovirus, causes leukemia-like proliferative diseases in chickens. microRNAs post-transcriptionally suppress targets and are involved in the development of various tumors. We previously showed that miR-221 is upregulated in ALV-J-induced tumors. In this study, we analyzed the possible function of miR-221 in ALV-J tumorigenesis. The target validation system showed that CDKN1B is a target of miR-221 and is downregulated in ALV-J infection. As CDKN1B arrests the cell cycle and regulates its progression, we analyzed the proliferation of ALV-J-infected DF-1 cells. ALV-J-infection-induced DF1 cell derepression of G1/S transition and overproliferation required high miR-221 expression followed by CDKN1B downregulation. Cell cycle pathway analysis showed that ALV-J infection induced DF-1 cell overproliferation via the CDKN1B-CDK2/CDK6 pathway. Thus, miR-221 may play an important role in ALV-J-induced aggressive growth of DF-1 cells; these findings have expanded our insights into the mechanism underlying ALV-J infection and tumorigenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Fermi-LAT detection of a new gamma-ray flare from the NLSy1 PMN J0948+0022

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed an increasing gamma-ray flux from a source positionally consistent with PMN J0948+0022 (also known as 2FGL J0948.8+0020, Nolan et al. 2012, ApJS, 199, 31; R.A.= 09h48m57.3201s, Dec.= +00d22'25.558", J2000, Beasley et al. 2002, ApJS, 141, 13), a radio-loud narrow-line Seyfert 1 at z=0.5846 (Sloan Digital Sky Survey, 2004, SDSS2.C).

  12. J/ψ and ψ(2S) Radiative Transitions to ηc

    NASA Astrophysics Data System (ADS)

    Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Reed, J.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Hunt, J. M.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.

    2009-01-01

    Using 2.45×107 ψ(2S) decays collected with the CLEO-c detector at the Cornell Electron Storage Ring we present the most precise measurements of magnetic dipole transitions in the charmonium system. We measure B(ψ(2S)→γηc)=(4.32±0.16±0.60)×10-3, B(J/ψ→γηc)/B(ψ(2S)→γηc)=4.59±0.23±0.64, and B(J/ψ→γηc)=(1.98±0.09±0.30)%. We observe a distortion in the ηc line shape due to the photon-energy dependence of the magnetic dipole transition rate. We find that measurements of the ηc mass are sensitive to the line shape, suggesting an explanation for the discrepancy between measurements of the ηc mass in radiative transitions and other production mechanisms.

  13. The Topological Basis Realization for Six Qubits and the Corresponding Heisenberg Spin -{1/2} Chain Model

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2018-03-01

    In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.

  14. The Topological Basis Realization for Six Qubits and the Corresponding Heisenberg Spin-1/2 Chain Model

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2018-06-01

    In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5 D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.

  15. jFuzz: A Concolic Whitebox Fuzzer for Java

    NASA Technical Reports Server (NTRS)

    Jayaraman, Karthick; Harvison, David; Ganesh, Vijay; Kiezun, Adam

    2009-01-01

    We present jFuzz, a automatic testing tool for Java programs. jFuzz is a concolic whitebox fuzzer, built on the NASA Java PathFinder, an explicit-state Java model checker, and a framework for developing reliability and analysis tools for Java. Starting from a seed input, jFuzz automatically and systematically generates inputs that exercise new program paths. jFuzz uses a combination of concrete and symbolic execution, and constraint solving. Time spent on solving constraints can be significant. We implemented several well-known optimizations and name-independent caching, which aggressively normalizes the constraints to reduce the number of calls to the constraint solver. We present preliminary results due to the optimizations, and demonstrate the effectiveness of jFuzz in creating good test inputs. The source code of jFuzz is available as part of the NASA Java PathFinder. jFuzz is intended to be a research testbed for investigating new testing and analysis techniques based on concrete and symbolic execution. The source code of jFuzz is available as part of the NASA Java PathFinder.

  16. Inclusive χbJ(nP) decays to D0X

    NASA Astrophysics Data System (ADS)

    Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Reed, J.

    2008-11-01

    Using Υ(2S) and Υ(3S) data collected with the CLEO III detector we have searched for decays of χbJ to final states with open charm. We fully reconstruct D0 mesons with pD0>2.5GeV/c in three decay modes (K-π+, K-π+π0, and K-π-π+π+) in coincidence with radiative transition photons that tag the production of one of the χbJ(nP) states. Significant signals are obtained for the two J=1 states. Recent nonrelativistic QCD (NRQCD) calculations of χbJ(nP)→c cmacr X depend on one nonperturbative parameter per χbJ triplet. The extrapolation from the observed D0X rate over a limited momentum range to a full c cmacr X rate also depends on these same parameters. Using our data to fit for these parameters, we extract results which agree well with NRQCD predictions, confirming the expectation that charm production is largest for the J=1 states. In particular, for J=1, our results are consistent with c cmacr g accounting for about one-quarter of all hadronic decays.

  17. ψ ( 2 S ) versus J / ψ suppression in proton-nucleus collisions from factorization violating soft color exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yan -Qing; Venugopalan, Raju; Watanabe, Kazuhiro

    Here, we argue that the large suppression of themore » $$\\psi(2S)$$ inclusive cross-section relative to the $$J/\\psi$$ inclusive cross-section in proton-nucleus (p+A) collisions can be attributed to factorization breaking effects in the formation of quarkonium. These factorization breaking effects arise from soft color exchanges between charm-anticharm pairs undergoing hadronization and comoving partons that are long-lived on time scales of quarkonium formation. We compute the short distance pair production of heavy quarks in the Color Glass Condensate (CGC) effective field theory and employ an improved Color Evaporation model (ICEM) to describe their hadronization into quarkonium at large distances. The combined CGC+ICEM model provides a quantitative description of $$J/\\psi$$ and $$\\psi(2S)$$ data in proton-proton (p+p) collisions from both RHIC and the LHC. Factorization breaking effects in hadronization, due to additional parton comovers in the nucleus, are introduced heuristically by imposing a cutoff $$\\Lambda$$, representing the momentum kick from soft color exchanges, in the ICEM model. Such soft exchanges have no perceptible effect on $$J/\\psi$$ suppression in p+A collisions. In contrast, the interplay of the physics of these soft exchanges at large distances, with the physics of semi-hard rescattering at short distances, causes a significant additional suppression of $$\\psi(2S)$$ yields relative to that of the $$J/\\psi$$. A good fit of all RHIC and LHC $$J/\\psi$$ and $$\\psi(2S)$$ data, for transverse momenta $$P_\\perp\\leq 5$$ GeV in p+p and p+A collisions, is obtained for $$\\Lambda\\sim 10$$ MeV.« less

  18. ψ ( 2 S ) versus J / ψ suppression in proton-nucleus collisions from factorization violating soft color exchanges

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju; Watanabe, Kazuhiro; ...

    2018-01-31

    Here, we argue that the large suppression of themore » $$\\psi(2S)$$ inclusive cross-section relative to the $$J/\\psi$$ inclusive cross-section in proton-nucleus (p+A) collisions can be attributed to factorization breaking effects in the formation of quarkonium. These factorization breaking effects arise from soft color exchanges between charm-anticharm pairs undergoing hadronization and comoving partons that are long-lived on time scales of quarkonium formation. We compute the short distance pair production of heavy quarks in the Color Glass Condensate (CGC) effective field theory and employ an improved Color Evaporation model (ICEM) to describe their hadronization into quarkonium at large distances. The combined CGC+ICEM model provides a quantitative description of $$J/\\psi$$ and $$\\psi(2S)$$ data in proton-proton (p+p) collisions from both RHIC and the LHC. Factorization breaking effects in hadronization, due to additional parton comovers in the nucleus, are introduced heuristically by imposing a cutoff $$\\Lambda$$, representing the momentum kick from soft color exchanges, in the ICEM model. Such soft exchanges have no perceptible effect on $$J/\\psi$$ suppression in p+A collisions. In contrast, the interplay of the physics of these soft exchanges at large distances, with the physics of semi-hard rescattering at short distances, causes a significant additional suppression of $$\\psi(2S)$$ yields relative to that of the $$J/\\psi$$. A good fit of all RHIC and LHC $$J/\\psi$$ and $$\\psi(2S)$$ data, for transverse momenta $$P_\\perp\\leq 5$$ GeV in p+p and p+A collisions, is obtained for $$\\Lambda\\sim 10$$ MeV.« less

  19. Amazon Rain Forest Classification Using J-ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Kramer, C.; Alves, M.; Chapman, B.

    1994-01-01

    The Amazon rain forest is a region of the earth that is undergoing rapid change. Man-made disturbance, such as clear cutting for agriculture or mining, is altering the rain forest ecosystem. For many parts of the rain forest, seasonal changes from the wet to the dry season are also significant. Changes in the seasonal cycle of flooding and draining can cause significant alterations in the forest ecosystem.Because much of the Amazon basin is regularly covered by thick clouds, optical and infrared coverage from the LANDSAT and SPOT satellites is sporadic. Imaging radar offers a much better potential for regular monitoring of changes in this region. In particular, the J-ERS-1 satellite carries an L-band HH SAR system, which via an on-board tape recorder, can collect data from almost anywhere on the globe at any time of year.In this paper, we show how J-ERS-1 radar images can be used to accurately classify different forest types (i.e., forest, hill forest, flooded forest), disturbed areas such as clear cuts and urban areas, and river courses in the Amazon basin. J-ERS-1 data has also shown significant differences between the dry and wet season, indicating a strong potential for monitoring seasonal change. The algorithm used to classify J-ERS-1 data is a standard maximum-likelihood classifier, using the radar image local mean and standard deviation of texture as input. Rivers and clear cuts are detected using edge detection and region-growing algorithms. Since this classifier is intended to operate successfully on data taken over the entire Amazon, several options are available to enable the user to modify the algorithm to suit a particular image.

  20. Optimizing Crawler4j using MapReduce Programming Model

    NASA Astrophysics Data System (ADS)

    Siddesh, G. M.; Suresh, Kavya; Madhuri, K. Y.; Nijagal, Madhushree; Rakshitha, B. R.; Srinivasa, K. G.

    2017-06-01

    World wide web is a decentralized system that consists of a repository of information on the basis of web pages. These web pages act as a source of information or data in the present analytics world. Web crawlers are used for extracting useful information from web pages for different purposes. Firstly, it is used in web search engines where the web pages are indexed to form a corpus of information and allows the users to query on the web pages. Secondly, it is used for web archiving where the web pages are stored for later analysis phases. Thirdly, it can be used for web mining where the web pages are monitored for copyright purposes. The amount of information processed by the web crawler needs to be improved by using the capabilities of modern parallel processing technologies. In order to solve the problem of parallelism and the throughput of crawling this work proposes to optimize the Crawler4j using the Hadoop MapReduce programming model by parallelizing the processing of large input data. Crawler4j is a web crawler that retrieves useful information about the pages that it visits. The crawler Crawler4j coupled with data and computational parallelism of Hadoop MapReduce programming model improves the throughput and accuracy of web crawling. The experimental results demonstrate that the proposed solution achieves significant improvements with respect to performance and throughput. Hence the proposed approach intends to carve out a new methodology towards optimizing web crawling by achieving significant performance gain.

  1. Measurement of the ratio of the production cross sections times branching fractions of $$B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}$$ and $$B^{\\pm} \\to J/\\psi K^{\\pm}$$ and $$\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}\\pi^{\\pm}\\pi^{\\mp})/\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm})$$ in pp collisions at $$\\sqrt{s} =$$ 7 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-01-13

    The ratio of the production cross sections times branching fractions (σ(B ± c)B(B ± c→J/ψπ ±))/(σ(B ±)B(B ±→J/ψK ±)) is studied in proton-proton collisions at a center of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires B c ± and B ± mesons with transverse momentum p T > 15 GeV and rapidity |y|< 1.6. The data sample corresponds to an integrated luminosity of 5.1 fb -1. The ratio is determined to be [0.48±0.05(stat)± 0.03(syst)±0.05 (τBc)]%. The B c ± → J/ψπ ± π ± π ∓ decay is also observedmore » in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(B ± c→J/ψπ ±π ±π ∓)/B(B ± c→J/ψπ ±) is measured to be 2.55±0.80(stat)±0.33(syst) +0.04 -0.01(τ Bc), consistent with the previous LHCb result.« less

  2. Measurement of the ratio of the production cross sections times branching fractions of $$B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}$$ and $$B^{\\pm} \\to J/\\psi K^{\\pm}$$ and $$\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm}\\pi^{\\pm}\\pi^{\\mp})/\\mathcal{B}(B_{c}^{\\pm} \\to J/\\psi \\pi^{\\pm})$$ in pp collisions at $$\\sqrt{s} =$$ 7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    The ratio of the production cross sections times branching fractions (σ(B ± c)B(B ± c→J/ψπ ±))/(σ(B ±)B(B ±→J/ψK ±)) is studied in proton-proton collisions at a center of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires B c ± and B ± mesons with transverse momentum p T > 15 GeV and rapidity |y|< 1.6. The data sample corresponds to an integrated luminosity of 5.1 fb -1. The ratio is determined to be [0.48±0.05(stat)± 0.03(syst)±0.05 (τBc)]%. The B c ± → J/ψπ ± π ± π ∓ decay is also observedmore » in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(B ± c→J/ψπ ±π ±π ∓)/B(B ± c→J/ψπ ±) is measured to be 2.55±0.80(stat)±0.33(syst) +0.04 -0.01(τ Bc), consistent with the previous LHCb result.« less

  3. The Eastern side of the Westernmost Europeans: Insights from subclades within Y-chromosome haplogroup J-M304.

    PubMed

    Manco, Licínio; Albuquerque, Joana; Sousa, Maria Francisca; Martiniano, Rui; de Oliveira, Ricardo Costa; Marques, Sofia; Gomes, Verónica; Amorim, António; Alvarez, Luís; Prata, Maria João

    2018-03-01

    We examined internal lineages and haplotype diversity in Portuguese samples belonging to J-M304 to improve the spatial and temporal understanding of the introduction of this haplogroup in Iberia, using the available knowledge about the phylogeography of its main branches, J1-M267 and J2-M172. A total of 110 males of Portuguese descent were analyzed for 17 Y-chromosome bi-allelic markers and seven Y-chromosome short tandem repeats (Y-STR) loci. Among J1-M267 individuals (n = 36), five different sub-haplogroups were identified, with the most common being J1a2b2-L147.1 (∼72%), which encompassed the majority of representatives of the J1a2b-P58 subclade. One sample belonged to the rare J1a1-M365.1 lineage and presented a core Y-STR haplotype consistent with the Iberian settlement during the fifth century by the Alans, a people of Iranian heritage. The analysis of J2-M172 Portuguese males (n = 74) enabled the detection of the two main subclades at very dissimilar frequencies, J2a-M410 (∼80%) and J2b-M12 (∼20%), among which the most common branches were J2a1(xJ2a1b,h)-L26 (22.9%), J2a1b(xJ2a1b1)-M67 (20.3%), J2a1h-L24 (27%), and J2b2-M241 (20.3%). While previous inferences based on modern haplogroup J Y-chromosomes implicated a main Neolithic dissemination, here we propose a later arrival of J lineages into Iberia using a combination of novel Portuguese Y-chromosomal data and recent evidence from ancient DNA. Our analysis suggests that a substantial tranche of J1-M267 lineages was likely carried into the Iberian Peninsula as a consequence of the trans-Mediterranean contacts during the first millennium BC, while most of the J2-M172 lineages may be associated with post-Neolithic population movements within Europe. © 2017 Wiley Periodicals, Inc.

  4. A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk

    NASA Astrophysics Data System (ADS)

    Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha

    2017-02-01

    We discovered a debris disk around hot white dwarf (WD) SDSS J134430.11+032423.1 (SDSS J1344+0324). The effective temperature [{T}{eff} = 26,071(±163) K], surface gravity [{log}g=7.88(2)], and mass [M=0.58(1) {M}⊙ ] of this WD have been redetermined based on the analysis of its SDSS spectrum. We found that SDSS J1344+0324 is currently the hottest WD with a debris disk. Two spectra observed by SDSS at different times show that this object is similar to SDSS J1228+1040 with variable near-IR Ca II triplet emissions from a gaseous disk. The parameters of the debris disk are derived from the IR excess analysis of SDSS J1344+0324. We found that the disk is the coolest of all debris disks around WDs, and that the inner and outer radii are very close to the tide radius of the WD. Thus, the debris disk is very narrow (about 0.22 {R}⊙ ). This implies that it might be a newly formed disk resulting from the tidal disruption of a rocky planetary body that has just entered the tide volume of the WD. This might provide strong observational evidence for the formation of debris disks around WDs.

  5. 54. Photographer unknown February 1925 HUMBOLDT COUNTY, SECTION J, HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photographer unknown February 1925 HUMBOLDT COUNTY, SECTION J, HIGHWAY 1. HUM-1-J #34, SINKS ALONG HIGH. NEAR OCEAN, 2-25. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  6. Extremely correlated Fermi liquid theory of the t-J model in 2 dimensions: low energy properties

    NASA Astrophysics Data System (ADS)

    Shastry, B. Sriram; Mai, Peizhi

    2018-01-01

    Low energy properties of the metallic state of the two-dimensional t-J model are presented for second neighbor hopping with hole-doping (t\\prime ≤slant 0) and electron-doping (t\\prime > 0), with various superexchange energy J. We use a closed set of equations for the Greens functions obtained from the extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of the large U Hubbard model in infinite dimensions. The density and temperature dependent quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated. We also calculate the resistivity, Hall conductivity, Hall number and cotangent Hall angle. The spectral features display high thermal sensitivity at modest T for density n≳ 0.8, implying a suppression of the effective Fermi-liquid temperature by two orders of magnitude relative to the bare bandwidth. The cotangent Hall angle exhibits a T 2 behavior at low T, followed by an interesting kink at higher T. The Hall number exhibits strong renormalization due to correlations. Flipping the sign of t\\prime changes the curvature of the resistivity versus T curves between convex and concave. Our results provide a natural route for understanding the observed difference in the temperature dependent resistivity of strongly correlated electron-doped and hole-doped matter.

  7. Branching fraction measurements of ψ ( 3686 ) → γ χ c J

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2017-08-14

    In this paper, using a sample of 106 million ψ(3686) decays, the branching fractions of ψ(3686) → γχ c0, ψ(3686) → γχ c1, and ψ(3686) → γχ c2 are measured with improved precision to be (9.389±0.014±0.332) %, (9.905±0.011±0.353) %, and (9.621±0.013±0.272) %, respectively, where the first uncertainties are statistical and the second ones are systematic. Finally, the product branching fractions of ψ(3686) → γχ c1, χ c1 → γJ/ψ and ψ(3686) → γχ c2, χ c2 → γJ/ψ and the branching fractions of χ c1 → γJ/ψ and χ c2 → γJ/ψ are also presented.

  8. 26 CFR 301.6501(j)-1 - Investment credit carryback; taxable years ending after December 31, 1961.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Investment credit carryback; taxable years ending after December 31, 1961. 301.6501(j)-1 Section 301.6501(j)-1 Internal Revenue INTERNAL REVENUE... Limitations Limitations on Assessment and Collection § 301.6501(j)-1 Investment credit carryback; taxable...

  9. E 5 decay from the J π = 11 / 2 - isomer in Ba 137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, K.; McCutchan, E. A.; Lister, C. J.

    2014-10-01

    A new gamma-decay branch has been found from the well-known 661.659(3)-keV J(pi) = 11/2(-), T-1/2 = 2.552(1) min isomer in Ba-137 which is populated in the beta decay of Cs-137. The new 377.9(3)-keV gamma ray connects the isomer to the low-lying 283.5 keV, J(pi) = 1/2(-) state. It is of near-pure E5 character. The decay has a gamma branching ratio (Br-gamma = Gamma(gamma)/Gamma(tot)) of 1.12(9) x 10(-7). The new decay has a B(E5) of 0.71(6) W.u. [ B(E5) down arrow= 6.5(6) x 10(5) e(2) fm(10)], a value consistent with other "single-particle" E5 decays in the region. The new decay branchmore » is of topical interest, as it competes with the much-sought "two-photon" second-order electromagnetic decay from this state.« less

  10. Search for hc→π+π-J /ψ via ψ (3686 )→π0π+π-J

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Andersson, W. Ikegami; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jie, Q. L.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, J. J.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-03-01

    Using a data sample of 448.1 ×106 ψ (3686 ) events collected with the BESIII detector operating at the BEPCII, we perform search for the hadronic transition hc→π+π-J /ψ via ψ (3686 )→π0hc. No signals of the transition are observed, and the upper limit on the product branching fraction B (ψ (3686 )→π0hc)B (hc→π+π-J /ψ ) at the 90% confidence level (C.L.) is determined to be 2.0 ×10-6. This is the most stringent upper limit to date.

  11. Swift J1658.2-4242: Possible pulsar periodicity detected

    NASA Astrophysics Data System (ADS)

    Kennea, J. A.

    2018-02-01

    We report on analysis of all the current Windowed Timing mode data taken on the newly discovered Galactic Transient, Swift J1658.2-4242 (GCN #22416, GCN #22417, GCN #22419, ATEL #11310, ATEL #11306, ATEL #11307).

  12. Measurement of the CP-violating phase β s J/ψΦ in B s 0→J/ψΦ decays with the CDF II detector

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2012-04-23

    We present a measurement of the CP-violating parameter β s J/ψΦ using approximately 6500 B 0 s→J/ψΦ decays reconstructed with the CDF II detector in a sample of pp̄ collisions at √s=1.96 TeV corresponding to 5.2 fb⁻¹ integrated luminosity produced by the Tevatron collider at Fermilab. We find the CP-violating phase to be within the range β s J/ψΦϵ [0.02,0.52]∪[1.08,1.55] at 68% confidence level where the coverage property of the quoted interval is guaranteed using a frequentist statistical analysis. This result is in agreement with the standard model expectation at the level of about one Gaussian standard deviation. We considermore » the inclusion of a potential S-wave contribution to the B 0 s→J/ψK⁺K⁻ final state which is found to be negligible over the mass interval 1.009s J/ψΦ, we find the B 0 s decay width difference to be ΔΓ s=0.075±0.035(stat)±0.006(syst) ps⁻¹. We also present the most precise measurements of the B 0 s mean lifetime τ(B 0 s)=1.529±0.025(stat)±0.012(syst) ps, the polarization fractions |A0(0)|²=0.524±0.013(stat)±0.015(syst) and |A II (0)|²=0.231±0.014(stat)±0.015(syst), as well as the strong phase δ ⊥=2.95±0.64(stat)±0.07(syst) rad. In addition, we report an alternative Bayesian analysis that gives results consistent with the frequentist approach.« less

  13. Analyses of Longitudinal Mode Combustion Instability in J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) and Pratt & Whitney Rocketdyne are developing a liquid oxygen/liquid hydrogen rocket engine for future upper stage and trans-lunar applications. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. The contract for development was let to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations on the component test stand at the NASA Marshall Space Flight Center (MSFC). Several of the initial configurations resulted in combustion instability of the workhorse gas generator assembly at a frequency near the first longitudinal mode of the combustion chamber. In this paper, several aspects of these combustion instabilities are discussed, including injector, combustion chamber, feed system, and nozzle influences. To ensure elimination of the instabilities at the engine level, and to understand the stability margin, the gas generator system has been modeled at the NASA MSFC with two techniques, the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a lumped-parameter MATLAB(TradeMark) model created as an alternative calculation to the ROCCID methodology. To correctly predict the instability characteristics of all the chamber and injector geometries and test conditions as a whole, several inputs to the submodels in ROCCID and the MATLAB(TradeMark) model were modified. Extensive sensitivity calculations were conducted to determine how to model and anchor a lumped-parameter injector response, and finite-element and acoustic analyses were conducted on several complicated combustion chamber geometries to determine how to model and anchor the chamber response. These modifications and their ramification for future stability analyses of this type are discussed.

  14. 4. PART 1 OF 3 PART PANORAMA WITH NOS. CA265J5 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PART 1 OF 3 PART PANORAMA WITH NOS. CA-265-J-5 AND CA-265-J-6 OF FIGUEROA STREET AND LOS ANGELES RIVER VIADUCTS. NOTE TUNNEL NO.1 NORTH PORTAL AT LEFT REAR. LOOKING 268°W. - Arroyo Seco Parkway, Figueroa Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  15. 2MASS J13243553+6358281 Is an Early T-type Planetary-mass Object in the AB Doradus Moving Group

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Allers, Katelyn N.; Theissen, Christopher A.; Faherty, Jacqueline K.; Bardalez Gagliuffi, Daniella; Artigau, Étienne

    2018-02-01

    We present new radial velocity and trigonometric distance measurements indicating that the unusually red and photometrically variable T2 dwarf 2MASS J13243553+6358281 is a member of the young (∼150 Myr) AB Doradus moving group (ABDMG) based on its space velocity. We estimate its model-dependent mass in the range 11–12 M Jup at the age of the ABDMG, and its trigonometric distance of 12.7 ± 1.5 pc makes it one of the nearest known isolated planetary-mass objects. The unusually red continuum of 2MASS J13243553+6358281 in the near-infrared was previously suspected to be caused by an unresolved L + T brown dwarf binary, although it was never observed with high spatial resolution imaging. This new evidence of youth suggests that a low surface gravity may be sufficient to explain this peculiar feature. Using the new parallax we find that its absolute J-band magnitude is ∼0.4 mag fainter than equivalent-type field brown dwarfs, suggesting that the binary hypothesis is unlikely. The fundamental properties of 2MASS J13243553+6358281 follow the spectral type sequence of other known high-likelihood members of the ABDMG. The effective temperature of 2MASS J13243553+6358281 provides the first precise constraint on the L/T transition at a known young age and indicates that it happens at a temperature of ∼1150 K at ∼150 Myr, compared to ∼1250 K for field brown dwarfs.

  16. The congenic normal R/APfd and jaundiced R/APfd-j/j rat strains: a new animal model of hereditary non-haemolytic unconjugated hyperbilirubinaemia due to defective bilirubin conjugation.

    PubMed

    Leyten, R; Vroemen, J P; Blanckaert, N; Heirwegh, K P

    1986-10-01

    In this paper the production of the R/APfd-j/j strain which is congenic with the R/APfd strain is reported. The R/APfd-j/j completely lacks hepatic bilirubin UDP-glucuronyltransferase activity, as do our GUNNXR/Pfd-j/j rat strain and various other stocks of GUNN rats (j/j) described in the literature. Our recombinant inbred strain GUNNXR/Pfd-j/j was produced from non-inbred GUNN (j/j) rats. This GUNNXR/Pfd-j/j rat was used as a donor of the jaundice gene j, the R/APfd rat serving as the recipient. After eight backcross-intercross cycles (16 generations) the R/APfd-j/j strain was obtained which is congenic with the R/APfd strain. Congenicity was demonstrated by various techniques including transplantation of skin tissue, strain-specific tumour cells and hepatocytes, the mixed lymphocyte reaction, and comparison of biochemical markers. The potential of the novel inbred strain of jaundiced rat, R/APfd-j/j, and the corresponding control strain R/APfd for biochemical and clinical studies of bilirubin metabolism are briefly discussed.

  17. 56. Photographer unknown February 1925 HUMBOLDT COUNTY, SECTION J, HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Photographer unknown February 1925 HUMBOLDT COUNTY, SECTION J, HIGHWAY 1. HUM-1-J #36, SINKS ALONG OCEAN SHORE, 2-25. Stamped office copy. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  18. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice.

    PubMed

    Stewart, Taryn P; Kim, Hyoung Yon; Saxton, Arnold M; Kim, Jung Han

    2010-12-19

    Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs. We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in Apoa

  19. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice

    PubMed Central

    2010-01-01

    Background Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. Results In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs. Conclusions We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6

  20. 1. Historic American Buildings Survey, George J. Vaillancourt, Photographer, 1938, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, George J. Vaillancourt, Photographer, 1938, from a film by unknown, VIEW OF ORIGINAL ROOF TRUSSES. - Market House, Market Square, Providence, Providence County, RI