Sample records for jack stands atlantis

  1. KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  2. KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed away from the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed away from the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  3. KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  4. KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  5. AmeriFlux US-NMj Northern Michigan Jack Pine Stand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiquan

    This is the AmeriFlux version of the carbon flux data for the site US-NMj Northern Michigan Jack Pine Stand. Site Description - The jack pine site is owned by Michigan Technological University. The stand is managed, and thus thinned and harvested depending on stand age. This jack pine site is naturally regenerating following a clearcut around 1989. Heavy snow in December 2001 c

  6. KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls into the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls into the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  7. KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls toward the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis rolls toward the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  8. KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is back inside the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is back inside the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  9. KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. - The orbiter Atlantis is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  10. KENNEDY SPACE CENTER, FLA. - Workers accompany the orbiter Atlantis as it is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-16

    KENNEDY SPACE CENTER, FLA. - Workers accompany the orbiter Atlantis as it is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  11. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  12. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  13. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis nears the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis nears the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  14. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis moves into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis moves into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  15. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  16. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  17. KENNEDY SPACE CENTER, FLA. - Workers back the Space Shuttle orbiter Atlantis out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - Workers back the Space Shuttle orbiter Atlantis out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  18. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is moved into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is moved into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  19. KENNEDY SPACE CENTER, FLA. - Workers prepare to tow the Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - Workers prepare to tow the Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  20. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is moments away from a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is moments away from a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  1. KENNEDY SPACE CENTER, FLA. - Workers monitor the Space Shuttle orbiter Atlantis as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - Workers monitor the Space Shuttle orbiter Atlantis as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  2. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB) high bay 4. It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB) high bay 4. It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  3. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  4. KENNEDY SPACE CENTER, FLA. - Workers walk with Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB) high bay 4. The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - Workers walk with Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB) high bay 4. The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  5. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis backs out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis backs out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  6. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis arrives in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis arrives in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  7. HOW to Manage Jack Pine to Reduce Damage from Jack Pine Budworm

    Treesearch

    Deborah G. McCullough; Steven Katovich; Robert L. Heyd; Shane Weber

    1994-01-01

    Jack pine budworm, Choristoneura pinus pinus Freeman, is a needle feeding caterpillar that is generally considered the most significant pest of jack pine. Vigorous young jack pine stands are rarely damaged during outbreaks. The most vigorous stands are well stocked, evenly spaced, fairly uniform in height, and less than 45 years old. Stands older than 45 years that are...

  8. Forest floor fuels in red and jack pine stands

    Treesearch

    James K. Brown

    1966-01-01

    An investigation to determine the quantity and density of forest floor fuels in red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb.) stands was conducted on National Forests in Michigan and Minnesota. The study was designed to answer three questions: How much fuel per acre exits in individual layers of the forest floor? How reliably can weight of...

  9. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is turned into position outside the Orbiter Processing Facility (OPF) for its tow to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is turned into position outside the Orbiter Processing Facility (OPF) for its tow to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  10. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is almost in position in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is almost in position in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  11. KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is reflected in a rain puddle as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

    NASA Image and Video Library

    2003-12-05

    KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is reflected in a rain puddle as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  12. AmeriFlux US-Wi9 Young Jack pine (YJP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiquan

    This is the AmeriFlux version of the carbon flux data for the site US-Wi9 Young Jack pine (YJP). Site Description - The Wisconsin Young Jack Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative ofmore » the successional stages of development in the predominant stand types of a physically homogeneous landscape. Clearcut on 40 to 70 year intervals, jack pine stands occupy approximately 13% of the region.« less

  13. Regeneration of Cutover Jack Pine Stands

    Treesearch

    John W. Benzie

    1968-01-01

    Jack pine can be regenerated on mineral soil seedbeds by scattering cone-bearing branches or repellent-treated seed. On some areas where competition develops, the seedlings may need to be released between the third and fifth years.

  14. AmeriFlux US-Wi5 Mixed young jack pine (MYJP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiquan

    This is the AmeriFlux version of the carbon flux data for the site US-Wi5 Mixed young jack pine (MYJP). Site Description - The Wisconsin Mixed Young Jack Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites aremore » indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. Clearcut on 40 to 70 year intervals, jack pine stands occupy approximately 13% of the region.« less

  15. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-058 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, shuttle launch director Michael Leinbach (standing), assistant launch director Peter Nickolenko and Atlantis flow director Angie Brewer (both seated), applaud the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  16. Jack Pine

    Treesearch

    William Dent Sterrett

    1920-01-01

    Jack pine is a very frugal tree in its climatic and soil requirements. The northern limit of its natural range is within 14 degrees of the Arctic Circle and the southern is marked by the southern shores of Lake Michigan. No other North American pine grows naturally so far north and all the others grow farther south. It develops commercial stands and reproduces itself...

  17. Artist Concept of Atlantis' new home

    NASA Image and Video Library

    2012-01-18

    CAPE CANAVERAL, Fla. -- A full scale external tank and twin solid rocket booster replicas will stand at the Atlantis exhibit entrance at the Kennedy Space Center Visitor Complex, preparing to launch guests deep into the 30-year history of the Space Shuttle Program. A groundbreaking ceremony for the future home of Atlantis was held Jan. 18. For more information on this and other exhibits at the visitor complex, go to http://www.kennedyspacecenter.com. Artist rendering courtesy of PGAV Destinations for Delaware North Parks & Resorts

  18. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - A fire and rescue truck is in place beside Runway 33 if needed to support the landing of space shuttle Atlantis at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. After 11 days in space, Atlantis completed the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jack Pfaller

  19. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-015 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  20. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-016 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  1. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-017 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  2. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This closeup shows the workers, standing on lifts, who are checking the bolts on the apparatus holding the orbiter Atlantis. The orbiter will be rotated and lifted into high bay 1 where it will be stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  3. Manager's handbook for jack pine in the north central states.

    Treesearch

    John W. Benzie

    1977-01-01

    Provides a key for the resource manager to use in choosing silvicultural practices for the management of jack pine. Control of stand composition, growth, and stand establishment for timber production, water, wildlife, and recreation are discussed.

  4. Nutrient accumulation in planted red and jack pine.

    Treesearch

    David H. Alban

    1988-01-01

    Compares nutrient accumulation in adjacent plantations of red and jack pine in the upper Great Lakes. Describes equations developed to predict biomass and nutrient accumulation based on stand basal area and height.

  5. Ecological Responses to Five Years of Experimental Nitrogen Application in an Upland Jack-pine Stand

    NASA Astrophysics Data System (ADS)

    Melaschenko, N.; Berryman, S.; Straker, J.; Berg, K.; McDonough, A.; Watmough, S. A.

    2016-12-01

    A five-year experimental study was conducted to evaluate the response of an upland jack-pine (Pinus banksiana) forest to elevated levels of nitrogen (N) deposition in Northern Alberta. N deposition in the region is expected to increase with industrial expansion of oil sands activity, and there is regional interest to set N critical loads for sensitive ecosystems. In this study, N was applied as NH4NO3 above a jack-pine canopy via helicopter, annually for five years (2010-2015) at dosages equivalent to 5, 10, 15, 20 and 25 kg N ha-1 yr-1. Approximately 35% of the applied N was retained in the canopy while 65% reached understory vegetation dominated by lichens and mosses. We measured a significant increase in tissue N concentrations of common ground lichens (Cladonia mitis and C. stellaris) and ground moss (Pleurozium schreberi) as well as epiphytic lichens (Hypogymnia physodes and Evernia mesomorpha). On an annual basis, the applied N was primarily captured in the lichen and moss understory, dominated by C. mitis. In the highest treatments, N concentrations in C. mitis were 1.5-2.5 times greater than pre-treatment values. Peak N concentrations in the ground moss Pleurozium schreberi (1.4%) indicate that a threshold of N saturation was reached by year 3. We observed no changes in community composition of vascular and non-vascular plants, or changes in vascular plant tissue N. Chlorophyll levels in C. mitis increased with N treatment, but there was no indication of toxicity or changes to decomposition and growth. After five years of N application, only Peltigera polydactylon, a ground cyanolichen, appeared to be negatively impacted where the thalli showed necrosis at deposition loads >10kg N ha-1 yr-1. No changes to biomass or N ecosystem processes were observed. Based on these observations, we provide evidence that the first adverse ecological effects of N deposition in jack-pine stands occurred at deposition rates of 10 kg N ha-1 yr-1.

  6. KSC-03PD-3232

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  7. KSC-03PD-3230

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  8. KSC-03PD-3233

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The orbiter Atlantis rolls out of the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  9. KSC-03PD-3231

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis is backed away from the Vehicle Assembly Building for transfer back to the Orbiter Processing Facility. Atlantis spent 10 days in the VAB to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  10. STS-104 Atlantis on pad after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers clean the mobile launcher platform on which sits Space Shuttle Atlantis. They are standing in front of one of two tail service masts on either side of the Shuttle, in front of each wing. The masts support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload.

  11. ATLANTIS ROLLS OUT TO PAD 39A FOLLOWING HURRICANE FRAN THREAT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A view from the flame trench looking up shows the Space Shuttle Atlantis, mounted on the Mobile Launcher Platform and Crawler- Transporter, as it arrives atop the hardstand at Launch Pad 39A. After the Shuttle and launch stand are in position, the crawler will be pulled back. This is the third time Atlantis has completed the journey to Launch Pad 39A in the STS-79 mission flow. The Shuttle was rolled back from the pad in July due to the threat from Hurricane Bertha, then rolled back again earlier this week because of Hurricane Fran. The targeted launch date for Atlantis on Mission STS-79 -- the fourth docking between the U.S. Shuttle and Russian Space Station Mir -- is now Sept. 16 at 4:54 a.m. EDT. The three rollout dates for Atlantis to Pad 39A are: July 1, Aug. 20 and Sept. 5.

  12. KSC-03PD-3237

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The orbiter Atlantis rolls into the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  13. KSC-03PD-3236

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The orbiter Atlantis rolls toward the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  14. MS Mastracchio operates the RMS on the flight deck of Atlantis during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-E-5099 (11 September 2000) --- Astronaut Richard A. Mastracchio, mission specialist, stands near viewing windows, video monitors and the controls for the remote manipulator system (RMS) arm (out of frame at left) on the flight deck of the Earth-orbiting Space Shuttle Atlantis during Flight Day 3 activity. Atlantis was docked with the International Space Station (ISS) when this photo was recorded with an electronic still camera (ESC).

  15. Forest Modeling of Jack Pine Trees for BOREAS

    NASA Technical Reports Server (NTRS)

    Moghhadam, Mahta; Saatchi, Sasan

    1994-01-01

    As a part of the intensive field campaign for the Boreal forest ecosystem-atmosphere research (BOREAS) project in August 1993, the NASA/JPL AIRSAR covered an area of about 100 km by 100 km near the Prince Albert National Park in Saskatchewan, Canada. At the same time, ground-truth measurements were made in several stands which have been selected as the primary study sites, as well as in some auxiliary sites. This paper focuses on an area including Jack Pine stands in the Nipawin area near the park.

  16. Structure and biomass production of one- to seven-year-old intensively cultured jack pine plantation in Wisconsin.

    Treesearch

    J. Zavitkovski; David H. Dawson

    1978-01-01

    Spacing and rotation length effects were studied for 7 years in intensively cultured jack pine stands. Production culminated at age 5 in the densest planting and progressively later in more open spacing. Biomass production was two to several times higher than in jack pine plantations grown under traditional silvicultural systems.

  17. STS-34 Atlantis, OV-104, crew eats preflight breakfast at KSC O and C Bldg

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 crewmembers, wearing mission t-shirts, eat preflight breakfast at Kennedy Space Center (KSC) Operations and Checkout (O and C) Building before boarding Atlantis, Orbiter Vehicle (OV) 104. Sitting around table (left to right) are Commmander Donald E. Williams, Mission Specialist (MS) Franklin R. Chang-Diaz, MS Shannon W. Lucid, MS Ellen S. Baker, and Pilot Michael J. McCulley. A jack-o-lantern (pumpkin) carved with the STS-34 mission insignia is in the center of the table decorated with a mission baseball cap and sitting atop a flight jacket.

  18. KSC-03PD-3238

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The orbiter Atlantis is back inside the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  19. KSC-03PD-3235

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The orbiter Atlantis is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  20. STS-30 ATLANTIS, ORBITER VEHICLE (OV)-104 - OFFICIAL CREW PORTRAIT

    NASA Image and Video Library

    1989-01-01

    S89-28536 (March 1989) --- These five astronauts have been assigned to fly aboard Atlantis for the STS-30 mission. Astronaut David M. Walker, standing at left, is mission commander. Others are, left to right, Astronauts Ronald J. Grabe, pilot; Norman E. Thagard, Mary L. Cleave and Mark C. Lee, all mission specialists.

  1. KSC-03PD-3234

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers accompany the orbiter Atlantis as it is towed back to the Orbiter Processing Facility after spending 10 days in the Vehicle Assembly Building. The hiatus in the VAB allowed work to be performed in the OPF that can only be accomplished while the bay is empty. Work included annual validation of the bay's cranes, work platforms, lifting mechanisms and jack stands. Work resumes to prepare Atlantis for launch in September 2004 on the first return-to-flight mission, STS-114.

  2. 20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR UNITS 23, 22, AND 21 HAS BEEN AUTOMATED FOR MANY YEARS BUT THE MANUAL JACKING STATIONS REMAIN IN PLACE AND FUNCTIONAL, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  3. Jack R. Ferrell III | NREL

    Science.gov Websites

    Jack R. Ferrell III Photo of Jack R. Ferrell III Jack Ferrell Research Engineer Jack.Ferrell @nrel.gov | 303-384-7777 Orcid ID http://orcid.org/0000-0003-3041-8742 Research Interests Jack Ferrell works in the Thermochemical Catalysis Research and Development (R&D) group and manages tasks on

  4. From Jack to Double Jack Polynomials via the Supersymmetric Bridge

    NASA Astrophysics Data System (ADS)

    Lapointe, Luc; Mathieu, Pierre

    2015-07-01

    The Calogero-Sutherland model occurs in a large number of physical contexts, either directly or via its eigenfunctions, the Jack polynomials. The supersymmetric counterpart of this model, although much less ubiquitous, has an equally rich structure. In particular, its eigenfunctions, the Jack superpolynomials, appear to share the very same remarkable combinatorial and structural properties as their non-supersymmetric version. These super-functions are parametrized by superpartitions with fixed bosonic and fermionic degrees. Now, a truly amazing feature pops out when the fermionic degree is sufficiently large: the Jack superpolynomials stabilize and factorize. Their stability is with respect to their expansion in terms of an elementary basis where, in the stable sector, the expansion coefficients become independent of the fermionic degree. Their factorization is seen when the fermionic variables are stripped off in a suitable way which results in a product of two ordinary Jack polynomials (somewhat modified by plethystic transformations), dubbed the double Jack polynomials. Here, in addition to spelling out these results, which were first obtained in the context of Macdonal superpolynomials, we provide a heuristic derivation of the Jack superpolynomial case by performing simple manipulations on the supersymmetric eigen-operators, rendering them independent of the number of particles and of the fermionic degree. In addition, we work out the expression of the Hamiltonian which characterizes the double Jacks. This Hamiltonian, which defines a new integrable system, involves not only the expected Calogero-Sutherland pieces but also combinations of the generators of an underlying affine {widehat{sl}_2} algebra.

  5. KSC-08pd2526

    NASA Image and Video Library

    2008-09-03

    CAPE CANAVERAL, Fla. – Space shuttle Atlantis stands ready in the Vehicle Assembly Building at NASA’s Kennedy Space Center for the pending rollout to Launch Pad 39A. The Sept. 2 rollout date was postponed due to Tropical Storm Hanna’s shift to a northern track. Managers are closely following Hanna to determine when would be the best time this week to move space shuttle Atlantis to its launch pad. The tentative rollout time is 10 a.m. Sept. 4, depending on the track Hanna follows along the Florida coast. Atlantis is scheduled to launch on the STS-125 mission to service NASA’s Hubble Space Telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller

  6. Variability and persistence of post-fire biological legacies in jack pine-dominated ecosystems of northern Lower Michigan

    Treesearch

    Daniel Kashian; Gregory Corace; Lindsey Shartell; Deahn M. Donner; Philip Huber

    2011-01-01

    Stand-replacing wildfires have historically shaped the forest structure of dry, sandy jack pine-dominated ecosystems at stand and landscape scales in northern Lower Michigan. Unique fire behavior during large wildfire events often preserves long strips of unburned trees arranged perpendicular to the direction of fire spread. These biological legacies create...

  7. STS-27 ATLANTIS - ORBITER VEHICLE(OV)-104 - OFFICIAL CREW PORTRAIT

    NASA Image and Video Library

    1988-08-25

    S88-45002 (August 1988) --- These five astronauts will fly aboard the Space Shuttle Atlantis for the STS-27 mission. They are (seated left to right) astronauts Guy S. Gardner, Robert L. Gibson and Jerry L. Ross; and (standing, left to right) William M. Shepherd and Richard M. (Mike) Mullane. Gibson is commander; Gardner, pilot; and the other three will serve as mission specialists.

  8. KSC-03PD-3196

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  9. KSC-03PD-3198

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is moved into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  10. KSC-03PD-3207

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB) high bay 4. It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  11. KSC-03PD-3195

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers monitor the Space Shuttle orbiter Atlantis as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  12. KSC-03PD-3199

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers back the Space Shuttle orbiter Atlantis out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  13. KSC-03PD-3201

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis approaches high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  14. KSC-03PD-3188

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis awaits a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  15. KSC-03PD-3205

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis backs out of the Orbiter Processing Facility (OPF) for its move to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  16. KSC-03PD-3202

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis moves into high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  17. KSC-03PD-3191

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers prepare to tow the Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  18. KSC-03PD-3194

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  19. KSC-03PD-3204

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis arrives in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  20. KSC-03PD-3197

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis nears the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  1. KSC-03PD-3206

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers walk with Space Shuttle orbiter Atlantis from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB) high bay 4. The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  2. KSC-03PD-3190

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is moments away from a tow from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to- flight mission, STS-114.

  3. KSC-03PD-3189

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  4. STS-79 Atlantis approaches the VAB

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis begins its move into the Vehicle Assembly Building for shelter from the effects of Hurricane Fran. Atlantis is completing its rollback from Launch Pad 39A, where it was undergoing preparations for Mission STS-79. This marks the second rollback for Atlantis since July because of hurricane threats. The threat of Hurricane Bertha forced the rollback of Atlantis in July. Atlantis currently is scheduled for launch on the fourth Shuttle-Mir docking mission around mid-September.

  5. Jack & the Video Camera

    ERIC Educational Resources Information Center

    Charlan, Nathan

    2010-01-01

    This article narrates how the use of video camera has transformed the life of Jack Williams, a 10-year-old boy from Colorado Springs, Colorado, who has autism. The way autism affected Jack was unique. For the first nine years of his life, Jack remained in his world, alone. Functionally non-verbal and with motor skill problems that affected his…

  6. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  7. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  8. Jacks--A Study of Simple Machines.

    ERIC Educational Resources Information Center

    Parsons, Ralph

    This vocational physics individualized student instructional module on jacks (simple machines used to lift heavy objects) contains student prerequisites and objectives, an introduction, and sections on the ratchet bumper jack, the hydraulic jack, the screw jack, and load limitations. Designed with a laboratory orientation, each section consists of…

  9. Influence of seedbed, light environment, and elevated night temperature on growth and carbon allocation in pitch pine (Pinus rigida) and jack pine (Pinus banksiana) seedlings

    Treesearch

    Michael E. Day; Jessica L. Schedlbauer; William H. Livingston; Michael S. Greenwood; Alan S. White; John C. Brissette

    2005-01-01

    Jack pine (Pinus banksiana Lamb.) and pitch pine (Pinus rigida Mill.) are two autecologically similar species that occupy generally disjunct ranges in eastern North America. Jack pine is boreal in distribution, while pitch pine occurs at temperate latitudes. The two species co-occur in a small number of stands along a 'tension...

  10. KSC-03PD-3193

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is turned into position outside the Orbiter Processing Facility (OPF) for its tow to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  11. KSC-03PD-3200

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is reflected in a rain puddle as it is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  12. KSC-03PD-3203

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Space Shuttle orbiter Atlantis is almost in position in high bay 4 of the Vehicle Assembly Building (VAB). It was towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.

  13. Atlantis STS-135 Rollout

    NASA Image and Video Library

    2011-05-30

    Crowds of people are seen watching the rollout of the space shuttle Atlantis in this image made atop of the Mobile Launcher Platform (MLP) that is carrying Atlantis from High Bay 3 in the Vehicle Assembly Building to Launch Pad 39a for its final flight, Tuesday evening, May 31, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The 3.4-mile trek, known as "rollout," will take about seven hours to complete. Atlantis will carry the Raffaello multipurpose logistics module to deliver supplies, logistics and spare parts to the International Space Station. The launch of STS-135 is targeted for July 8. Photo Credit: (NASA/Bill Ingalls)

  14. STS-27 Atlantis, OV-104, terminal countdown demonstration test (TCDT) at KSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in the terminal countdown demonstration test (TCDT) at the Kennedy Space Center (KSC). Standing in front of the M113 tracked rescue vehicle (armored personnel carrier (APC)) are left to right Mission Specialist (MS) William M. Shepherd, Pilot Guy S. Gardner, Commander Robert L. Gibson, MS Richard M. Mullane, and MS Jerry L. Ross. Crewmembers are wearing orange partial pressure or launch and entry suits (LESs).

  15. Maniac Talk - Dr. Jack Kaye

    NASA Image and Video Library

    2014-07-23

    Jack Kaye Maniac Lecture, July 23, 2014 Dr. Jack Kaye, Associate Director for Research at NASA Headquarters presented a Maniac Talk entitled, "An Unlikely but Rewarding Journey--From Quantum Chemistry to Earth Science Research Program Leadership." Jack took stock of his 30+ years at NASA, noting the people, opportunities, lessons learned, and choices that helped him get to where he is today and accomplish what he have.

  16. Jack Dymond's Deep Insights

    NASA Astrophysics Data System (ADS)

    Thomson, R. E.; Delaney, J. R.

    2004-12-01

    Most people do not know that Jack Dymond was a major influence on several aspects of current deep-sea research. Along with Margaret Leinen and Jack, we were part of the first Alvin dive program on the Endeavour hydrothermal field in 1984. Jack was working with Rick, on a sediment-trap study of the overall carbon fluxes in the vicinity of the Endeavour hydrothermal systems in an effort to address a question that Cindy Lee had posed about the overall carbon production from hydrothermal vents. At the time we were recognizing and naming many of the 20- to 40-meter-high sulfide structures in the Endeavour field (Hulk, Grotto, Dante, Dudley, Bastille), Jack commented that it was a shame that the world could not see these magnificent edifices or watch endlessly awesome black smokers. His feeling was that some vent sites should be converted to National Parks to preserve them from invasion by enthusiastic scientists, yet he clearly had the vision that the public should be given a sense of the grandeur involved locally, as well as the vastness of the 70,000-km ridge-crest system running through every ocean. Within a year we started talking about the RIDGE Program, and Jack was an early and enthusiastic participant in the design and development of RIDGE. Jack was among the first to encourage multi-disciplinary research at the hydrothermal vent sites. Recognizing that deep currents are important to vent processes, he urged physical oceanographers to work with the chemists, biologists, and geologists and was personally responsible for Rick becoming interested in studying vents. We, the co-authors of this abstract, became close friends as a result of having been introduced to each other by Jack. Several years ago, we co-authored the first paper ever written on the possible influence of hydrothermal activity on the circulation of the Europan Ocean, a paper that we here dedicate to the memory of Jack. Finally, it was in part because of Jack's conviction that the world should know

  17. John B. "Jack" Townshend (1927-2012)

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.

    2012-01-01

    Jack Townshend, geophysicist and dedicated public servant, died on 13 August 2012 in Fairbanks, Alaska. He was 85. Jack's career with the federal government, most of it with the national magnetic observatory program, spanned more than six solar cycles of time, and he retired only days before his death. The duration of Jack's career encompassed an important period in the history of the advancement of our understanding of the Earth. Jack's career of contributions, his life, and his personality are worthy of retrospective celebration.

  18. KSC-2009-2431

    NASA Image and Video Library

    2009-03-30

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician helps with the lifting of the Science Instrument Command and Data Handling Unit, or SIC&DH. The unit will be placed on a stand until it is installed on the Multi-Use Lightweight Equipment Carrier. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission, replacing one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. The carrier holds the payload for space shuttle Atlantis' STS-125 mission servicing NASA's Hubble Space Telescope, targeted to launch May 12. Photo credit: NASA/Jack Pfaller

  19. Variability and persistence of post-fire biological legacies in jack pine-dominated ecosystems of northern Lower Michigan

    Treesearch

    Daniel M. Kashian; R. Gregory Corace; Lindsey M. Shartell; Deahn M. Donner; Philip W. Huber

    2012-01-01

    On the dry, flat, jack pine (Pinus banksiana Lamb.)-dominated ecosystems of the northern Lake States and eastern Canada, wildfire behavior often produces narrow, remnant strips of unburned trees that provide heterogeneity on a landscape historically shaped by stand-replacing wildfires. We used landscape metrics to analyze a chronosequence of aerial...

  20. STS-27 Atlantis, OV-104, terminal countdown demonstration test (TCDT) at KSC

    NASA Image and Video Library

    1988-11-14

    S88-53086 (17 Nov 1988) --- STS-27 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in the terminal countdown demonstration test (TCDT) at the Kennedy Space Center (KSC). Standing in front of the M113 tracked rescue vehicle (armored personnel carrier (APC)) are left to right Mission Specialist (MS) William M. Shepherd, Pilot Guy S. Gardner, Commander Robert L. Gibson, MS Richard M. Mullane, and MS Jerry L. Ross. Crewmembers are wearing orange partial pressure or launch and entry suits (LES).

  1. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Administrator Charles Bolden, right, participates in the post launch traditional beans and cornbread at the NASA Kennedy Space Center, Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  2. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Photographer Kim Shiflett, left, and Videographer Glenn Benson capture a group photo of the launch team in Firing Room Four of the NASA Kennedy Space Center Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  3. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    PubMed

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  4. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure

    PubMed Central

    Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  5. KSC-2009-2432

    NASA Image and Video Library

    2009-03-30

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician monitors the lowering of the Science Instrument Command and Data Handling Unit, or SIC&DH, onto a stand. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission, replacing the one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. The SIC&DH is being prepared for integration onto the Multi-Use Lightweight Equipment Carrier. The SIC&DH will be installed on the Hubble Space Telescope during space shuttle Atlantis' STS-125 mission, replacing one that suffered a failure aboard the orbiting telescope on Sept. 27, 2008. The carrier holds the payload for space shuttle Atlantis' STS-125 mission servicing NASA's Hubble Space Telescope, targeted to launch May 12. Photo credit: NASA/Jack Pfaller

  6. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Administrator Charles Bolden speaks to visitors at the NASA Kennedy Space Center Banana Creek viewing site prior to going to the Launch Control Center (LCC) for the planned launch of the space shuttle Atlantis from pad 39A on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  7. STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks, positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center) and MS James S. Voss (standing). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. A maze of panel switches appear overhead and in the background.

  8. 46 CFR 134.150 - Liftboat-jacking systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Liftboat-jacking systems. 134.150 Section 134.150... FOR LIFTBOATS § 134.150 Liftboat-jacking systems. (a) For this subchapter, liftboat jacking systems are vital systems and must comply with Sections 4/1.13.1 through 4/1.13.3 of the ABS's “Rules for...

  9. 46 CFR 134.150 - Liftboat-jacking systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Liftboat-jacking systems. 134.150 Section 134.150... FOR LIFTBOATS § 134.150 Liftboat-jacking systems. (a) For this subchapter, liftboat jacking systems are vital systems and must comply with Sections 4/1.13.1 through 4/1.13.3 of the ABS's “Rules for...

  10. Automated detection and mapping of crown discolouration caused by jack pine budworm with 2.5 m resolution multispectral imagery

    NASA Astrophysics Data System (ADS)

    Leckie, Donald G.; Cloney, Ed; Joyce, Steve P.

    2005-05-01

    Jack pine budworm ( Choristoneura pinus pinus (Free.)) is a native insect defoliator of mainly jack pine ( Pinus banksiana Lamb.) in North America east of the Rocky Mountains. Periodic outbreaks of this insect, which generally last two to three years, can cause growth loss and mortality and have an important impact ecologically and economically in terms of timber production and harvest. The jack pine budworm prefers to feed on current year needles. Their characteristic feeding habits cause discolouration or reddening of the canopy. This red colouration is used to map the distribution and intensity of defoliation that has taken place that year (current defoliation). An accurate and consistent map of the distribution and intensity of budworm defoliation (as represented by the red discolouration) at the stand and within stand level is desirable. Automated classification of multispectral imagery, such as is available from airborne and new high resolution satellite systems, was explored as a viable tool for objectively classifying current discolouration. Airborne multispectral imagery was acquired at a 2.5 m resolution with the Multispectral Electro-optical Imaging Sensor (MEIS). It recorded imagery in six nadir looking spectral bands specifically designed to detect discolouration caused by budworm and a near-infrared band viewing forward at 35° was also used. A 2200 nm middle infrared image was acquired with a Daedalus scanner. Training and test areas of different levels of discolouration were created based on field observations and a maximum likelihood supervized classification was used to estimate four classes of discolouration (nil-trace, light, moderate and severe). Good discrimination was achieved with an overall accuracy of 84% for the four discolouration levels. The moderate discolouration class was the poorest at 73%, because of confusion with both the severe and light classes. Accuracy on a stand basis was also good, and regional and within stand

  11. Climatic sensitivity, water-use efficiency, and growth decline in boreal jack pine (Pinus banksiana) forests in Northern Ontario

    NASA Astrophysics Data System (ADS)

    Dietrich, Rachel; Bell, F. Wayne; Silva, Lucas C. R.; Cecile, Alice; Horwath, William R.; Anand, Madhur

    2016-10-01

    Rises in atmospheric carbon dioxide (atmCO2) levels are known to stimulate photosynthesis and increase intrinsic water-use efficiency (iWUE) in trees. Stand-level increases in iWUE depend on the physiological response of dominant species to increases in atmCO2, while tree-level response to increasing atmCO2 depends on the balance between the direct effects of atmCO2 on photosynthetic rate and the indirect effects of atmCO2 on drought conditions. The aim of this study was to characterize the response of boreal jack pine (Pinus banksiana) stands in Northern Ontario to changes in atmCO2 and associated climatic change over the past 100 years. The impact of changes in growing season length, temperature, and precipitation, as well as atmCO2 on tree growth, was determined using stable carbon isotopes and dendrochronological analysis. Jack pine stands in this study were shown to be in progressive decline. As expected, iWUE was found to increase in association with rising atmCO2. However, increases in iWUE were not directly coupled with atmCO2, suggesting that the degree of iWUE improvement is limited by alternative factors. Water-use efficiency was negatively associated with tree growth, suggesting that warming- and drought-induced stomatal closure has likely led to deviations from expected atmCO2-enhanced growth. This finding corroborates that boreal forest stands are likely to face continued stress under future climatic warming.

  12. Generalized clustering conditions of Jack polynomials at negative Jack parameter {alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B. Andrei; Department of Physics, Princeton University, Princeton, New Jersey 08544; Haldane, F. D. M.

    We present several conjectures on the behavior and clustering properties of Jack polynomials at a negative parameter {alpha}=-(k+1/r-1), with partitions that violate the (k,r,N)- admissibility rule of [Feigin et al. [Int. Math. Res. Notices 23, 1223 (2002)]. We find that the ''highest weight'' Jack polynomials of specific partitions represent the minimum degree polynomials in N variables that vanish when s distinct clusters of k+1 particles are formed, where s and k are positive integers. Explicit counting formulas are conjectured. The generalized clustering conditions are useful in a forthcoming description of fractional quantum Hall quasiparticles.

  13. Fire effects in northeastern forests: jack pine.

    Treesearch

    Cary Rouse

    1986-01-01

    The jack pine ecosystem has evolved through fire. Jack pine, although easily killed by fire, has developed serotinous cones that depend upon high heat to open and release the seeds. Without a fire to enable the cones to open, jack pine would be replaced by another species. Prescribed fire can be an economical management tool for site preparation in either a natural...

  14. Effects of a clear-cut harvest on soil respiration in a jack pine - Lichen woodland

    USGS Publications Warehouse

    Striegl, Robert G.; Wickland, K.P.

    1998-01-01

    Quantification of the components of ecosystem respiration is essential to understanding carbon (C) cycling of natural and disturbed landscapes. Soil respiration, which includes autotrophic and heterotrophic respiration from throughout the soil profile, is the second largest flux in the global carbon cycle. We measured soil respiration (soil CO2 emission) at an undisturbed mature jack pine (Pinus banksiana Lamb.) stand in Saskatchewan (old jack pine, OJP), and at a formerly continuous portion of the stand that was clear-cut during the previous winter (clear-cut, CC). Tree harvesting reduced soil CO2 emission from ???22.5 to ???9.1 mol CO2??m2 for the 1994 growing season. OJP was a small net sink of atmospheric CO2, while CC was a net source of CO2. Winter emissions were similar at both sites. Reduction of soil respiration was attributed to disruption of the soil surface and to the death of tree roots. Flux simulations for CC and OJP identify 40% of CO2 emission at the undisturbed OJP site as near-surface respiration, 25% as deep-soil respiration, and 35% as tree-root respiration. The near-surface component was larger than the estimated annual C input to soil, suggesting fast C turnover and no net C accumulation in these boreal uplands in 1994.

  15. STS-79 Atlantis approaches the VAB (view from inside VAB)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis begins its move into the Vehicle Assembly Building for shelter from the effects of Hurricane Fran. Atlantis is completing its rollback from Launch Pad 39A, where it was undergoing preparations for Mission STS-79. This marks the second rollback for Atlantis since July because of hurricane threats. The threat of Hurricane Bertha forced the rollback of Atlantis in July. Atlantis currently is scheduled for launch on the fourth Shuttle-Mir docking mission around mid-September.

  16. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle.

    PubMed

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (-):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  17. Relative size and stand age determine Pinus banksiana mortality

    Treesearch

    Han Y. H. Chen; Songling Fu; Robert A. Monserud; Ian C. Gillies

    2008-01-01

    Tree mortality is a poorly understood process in the boreal forest. Whereas large disturbances reset succession by killing all or most trees, background tree mortality was hypothesized to be affected by competition, ageing, and stand composition. We tested these hypotheses on jack pine (Pinus banksiana Lamb.) mortality using data from long-term...

  18. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms to...

  19. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms to...

  20. KSC-07pd2836

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, the frustum is ready to be lifted from a transporter to move onto a stand. The solid rocket booster segment will be added to the stack for space shuttle Atlantis, launch vehicle for mission STS-122 targeted for a December launch. Atlantis will be carrying the Columbus Laboratory, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Jack Pfaller

  1. KSC-07pd2838

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, the frustum is lifted from a transporter to be moved onto a stand. The solid rocket booster segment will be added to the stack for space shuttle Atlantis, launch vehicle for mission STS-122 targeted for a December launch. Atlantis will be carrying the Columbus Laboratory, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Jack Pfaller

  2. KSC-07pd2837

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, the frustum is lifted from a transporter to be moved onto a stand. The solid rocket booster segment will be added to the stack for space shuttle Atlantis, launch vehicle for mission STS-122 targeted for a December launch. Atlantis will be carrying the Columbus Laboratory, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Jack Pfaller

  3. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false High-moisture jack cheese. 133.154 Section 133.154... Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms to... ingredients prescribed for monterey cheese by § 133.153, except that its moisture content is more than 44...

  4. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false High-moisture jack cheese. 133.154 Section 133.154... Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms to... ingredients prescribed for monterey cheese by § 133.153, except that its moisture content is more than 44...

  5. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false High-moisture jack cheese. 133.154 Section 133.154... Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms to... ingredients prescribed for monterey cheese by § 133.153, except that its moisture content is more than 44...

  6. STS-79 Atlantis rolls back to the VAB at sunrise

    NASA Technical Reports Server (NTRS)

    1996-01-01

    As the sun begins to rise in the early-morning sky, the Space Shuttle Atlantis slowly travels on the Crawlerway toward the Vehicle Assembly Building (VAB) after its departure from Launch Pad 39A. This marks the second rollback for Atlantis since July because of hurricane threats. Atlantis, which is targeted for liftoff later this month on the STS-79 Shuttle mission, is returning to the VAB because of the threat from Hurricane Fran. The threat of Hurricane Bertha forced the rollback of Atlantis in July. Atlantis currently is scheduled for launch on the fourth Shuttle-Mir docking mission around mid-September.

  7. 14 CFR 23.507 - Jacking loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Jacking loads. 23.507 Section 23.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... inertia forces so as to result in no change in the direction of the resultant loads at the jack points. (c...

  8. A note on the Goodman Jack

    USGS Publications Warehouse

    Swolfs, H.S.; Kibler, J.D.

    1982-01-01

    A Note on the Goodman Jack: Reconnaissance experiments, performed to evaluate the practical utility of the hard-rock variety of the Goodman Jack, reveal that the Hustrulid-T* correction adequately reconciles the discrepancy between the measured and true deformation modulus of the rock mass in the range of 30 to 50 gigapascals. ?? 1982 Springer-Verlag.

  9. STS-71 Shuttle Atlantis landing closeup

    NASA Technical Reports Server (NTRS)

    1995-01-01

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Atlantis makes a smooth touchdown on Runway 15 of the Shuttle Landing Facility, bringing an end to the historic STS-71 mission which featured the first docking between the Space Shuttle and the Russian Mir space station. The chase plane, the Shuttle Training Aircraft flown by Robert D. Cabana, head of the Astronaut Office, is in the upper left of photo. Main gear touchdown of Atlantis was at 10:54:34 a.m. EDT, on July 7, 1995. This was the first of seven scheduled Shuttle/Mir docking missions. The 10-day mission also set the record for having the most people who have flown in an orbiter during a mission: the five U.S. astronauts and two cosmonauts who were launched on Atlantis on June 27, and three space flyers who have been aboard Mir since March 16 and were returned to Earth in Atlantis. The STS-71 crew included Mission Commander Robert L. 'Hoot' Gibson, Pilot Charles J. Precourt, Payload Commander Dr. Ellen S. Baker, and Mission Specialists Bonnie J. Dunbar and Gregory J. Harbaugh. Also part of the STS-71 crew were two cosmonauts who comprise the Mir 19 crew -- Mission Commander Anatoly Y. Solovyev and Flight Engineer Nikolai M. Budarin. They transfered to Mir during the four days of docking operations, and remain there. They replaced the Mir 18 crew of U.S. astronaut and cosmonaut researcher Dr. Norman E. Thagard, and cosmonauts Vladimir N. Dezhurov, who served as mission commander, and Gennadiy M. Strekalov, who served as flight engineer. The Mir crew joined the American STS-71 crew members for the return to Earth on Atlantis.

  10. Fisheye view of Atlantis from Mir space station

    NASA Image and Video Library

    1995-06-29

    STS071-741-004 (27 June-7 July 1995) --- Docked already with Russia's Mir Space Station and backdropped against a half globe of Earth featuring the Crimean Peninsula, the space shuttle Atlantis is partially visible through a window on the Kvant 2 Module. A 70mm camera, carried into space by the STS-71 crew aboard the space shuttle Atlantis, was used to expose the image. The crew cabin and forward cargo bay of Atlantis are most prominent. Below center can be seen the Androgynous Peripheral Docking System (APDS) and the Kristall Module on Mir. The APDS is connected to a port in a tunnel leading to the Spacelab Science Module in Atlantis' cargo bay. The linkup enabled the seven STS-71 crew members to visit Mir and it allowed the three Mir-18 crew members, in space since March of this year, access to Spacelab. That module was quite busy with tests and data collection involving the three, Mir-18 crew, until Atlantis brought them home on July 7, 1995. The Black Sea lies directly beneath Atlantis, with Ukraine's diamond-shaped Crimean Peninsula immediately to the right of the cockpit. The wide lower course of the Dnepr River can be seen entering the Black Sea at far right. The coast of Romania and Bulgaria lies at a point where the cloud begins at top right. The peninsula of Asia Minor lies across the left of the view, mostly under cloud cover. The Mediterranean Sea is the cloud-free, blue mass beyond. Still further, at about 1,300 miles distance, the north edge of Africa is stretched out as a line across the horizon with its characteristic sandy color. The nose of Atlantis points southwest toward the only outlet of the Black Sea known as the Bosporus.

  11. Space Shuttle Atlantis after its Final Landing

    NASA Image and Video Library

    2011-07-21

    STS135-S-274 (21 July 2011) --- Space shuttle Atlantis is slowly towed from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. (EDT) on July 21, 2011, secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  12. Space Shuttle Atlantis after its Final Landing

    NASA Image and Video Library

    2011-06-21

    STS135-S-273 (21 July 2011) --- Space shuttle Atlantis is slowly towed from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. (EDT) on July 21, 2011, secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  13. STS-79 Atlantis rolls back to the VAB (flag in foreground)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis passes by the Turn Basin and the American flag at the Press Site, in foreground, en route to the Vehicle Assembly Building, where it will be sheltered from the threat of Hurricane Fran. Atlantis is rolling back from Launch Pad 39A, where it was undergoing preparations for Mission STS-79. This marks the second rollback for Atlantis since July because of hurricane threats. The threat of Hurricane Bertha forced the rollback of Atlantis in July. Atlantis currently is scheduled for launch on the fourth Shuttle-Mir docking mission around mid- September.

  14. AmeriFlux CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Alan

    This is the AmeriFlux version of the carbon flux data for the site CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine). Site Description - 53.87581° N, 104.64529° W, BOREAS 1994, 1996, BERMS climate and flux measurements to begin Spring 2003

  15. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    PubMed

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  16. KSC-08pd2313

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Multi-Use Lightweight Equipment, or MULE, carrier rests on a stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  17. View of the Docked STS-132 Atlantis

    NASA Image and Video Library

    2010-05-16

    ISS023-E-047286 (16 May 2010) --- The aft section of space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member shortly after Atlantis docked with the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1), named Rassvet, is visible in the cargo bay. The planet Venus and the moon are visible at top center.

  18. Carbon combustion in boreal black spruce and jack pine stands of the Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Walker, X. J.; Baltzer, J. L.; Cumming, S.; Day, N.; Goetz, S. J.; Johnstone, J. F.; Rogers, B. M.; Turetsky, M. R.; Mack, M. C.

    2017-12-01

    Increased fire frequency, extent, and severity is expected to strongly impact the structure and function of northern ecosystems. One of the most important functions of the boreal forest is its ability to sequester and store carbon (C). Increases in combustion of vegetation and organic soils, associated with an intensifying fire regime, could shift this biome across a C cycle threshold: from net accumulation of C from the atmosphere over multiple fire cycles, to a net loss, which in turn would cause a positive feedback to climate warming. In order for this shift to occur, fires would have to release old carbon that escaped combustion in one or more previous fires. In this study, we examined boreal black spruce and jack pine forests that burned during the 2014 fire season in the Northwest Territories, Canada. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining how fire weather, site environmental conditions, and pre-fire stand characteristics affect total C emissions. On average 3.35 Kg C /m2 was combusted and almost 90% of this can be attributed to combustion of the SOL. Our results indicate that the greatest carbon combustion occurs at mature black spruce sites in intermediately drained landscape positions and that variables associated with fire weather and date of burn are not important predictors of C combustion. We then used radiocarbon dating of the residual soil organic layer to determine the maximum age of soil C lost. Dates of the residual surface organic layers in a low ( 5 cm) and high ( 17 cm) severity burn were approximately 1995 and 1900, respectively. These preliminary results indicate that our metrics of burn depth are related to age of the soil C lost and suggest that high severity burns can result in combustion of old C. Using these data, we aim to determine if there are ecosystem, landscape, or regional controls that either facilitate or protect old C loss from combustion. Estimating changes in C

  19. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.

  20. STS-84 Shuttle Atlantis Liftoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis turns night into day for a few moments as it lifts off on May 15 at 4:07:48 a.m. EDT from Launch Pad 39A on the STS-84 mission. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  1. Launch of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-11

    STS125-S-050 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.

  2. Launch of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-11

    STS125-S-057 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.

  3. Advanced jack up rig breaking U.S. construction drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, P.

    1997-03-10

    A new heavy duty jack up, due in mid-1998, will be able to simultaneously drill and produce wells in harsher environments and deeper water than current jack ups in the worldwide fleet. Rowan Cos. Inc.`s Gorilla V is the only mobile offshore drilling unit (MODU) currently under construction in the US. Two more enhanced Gorilla design rigs are planned before the year 2000. The enhanced Gorilla class jack up represents the most technologically advanced jack up unit constructed to date. The rigs are structurally designed to meet year-round weather challenges in the harshest geographical environments. Rising demand for drilling rigs,more » coupled with a dwindling fleet, is generating supply shortages around the world, particularly at the high-specification end of the market. Even increasing the historical retirement age from 20 to 25 years, rig attrition continues at a level of about 18 rigs per year. Apart from the jack up market per se, however, Rowan`s strategy in designing and building enhanced Gorillas is to improve existing jack up drilling technology and offer the versatility to operate as a drilling unit, a mobile production unit, or both simultaneously in either open water locations or alongside existing platforms. The paper discusses the market for these heavy jack-ups, the use of one on the Cohasset project in Nova Scotia, the Gorilla V and enhanced Gorillas, geographical range of use, and MOPU economics.« less

  4. Jack Hills, Australia

    NASA Image and Video Library

    2009-06-02

    This image acquired by NASA Terra spacecraft, shows the oldest material on Earth which has yet been dated by man is a zircon mineral of 4.4 billion years old from a sedimentary gneiss in the Jack Hills of the Narre Gneiss Terrane of Australia.

  5. Replacement of Atlantis', OV-104's, right orbital maneuvering system pod

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Atlantis', Orbiter Vehicle (OV) 104's, right orbital maneuvering system (OMS) pod (RP01) is placed in a checkout cell at Kennedy Space Center's (KSC's) Hypergolic Maintenance Facility (HMF). Technicians steady OMS mounted on ground handling cart as third technician, standing on ladder, secures support frame. At the HMF, a group of specially-equipped buildings in the KSC Industrial Area, the OMS pods are undergoing extensive processing, including removal of certain components that will undergo modification at vendor facilities prior to the Shuttle's return to flight. The OMS pods are bolted to the aft fuselage of the orbiter and contain the engines and thrusters used to maneuver the spaceship in orbit. View provided by KSC with alternate number KSC-87PC-93.

  6. KSC-2009-4198

    NASA Image and Video Library

    2009-07-16

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians keep watch as the control moment gyroscope is lifted from its stand. It will be moved to an EXPRESS Logistics Carrier. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12 . Photo credit: NASA/Jack Pfaller

  7. JACK - ANTHROPOMETRIC MODELING SYSTEM FOR SILICON GRAPHICS WORKSTATIONS

    NASA Technical Reports Server (NTRS)

    Smith, B.

    1994-01-01

    JACK is an interactive graphics program developed at the University of Pennsylvania that displays and manipulates articulated geometric figures. JACK is typically used to observe how a human mannequin interacts with its environment and what effects body types will have upon the performance of a task in a simulated environment. Any environment can be created, and any number of mannequins can be placed anywhere in that environment. JACK includes facilities to construct limited geometric objects, position figures, perform a variety of analyses on the figures, describe the motion of the figures and specify lighting and surface property information for rendering high quality images. JACK is supplied with a variety of body types pre-defined and known to the system. There are both male and female bodies, ranging from the 5th to the 95th percentile, based on NASA Standard 3000. Each mannequin is fully articulated and reflects the joint limitations of a normal human. JACK is an editor for manipulating previously defined objects known as "Peabody" objects. Used to describe the figures as well as the internal data structure for representing them, Peabody is a language with a powerful and flexible mechanism for representing connectivity between objects, both the joints between individual segments within a figure and arbitrary connections between different figures. Peabody objects are generally comprised of several individual figures, each one a collection of segments. Each segment has a geometry represented by PSURF files that consist of polygons or curved surface patches. Although JACK does not have the capability to create new objects, objects may be created by other geometric modeling programs and then translated into the PSURF format. Environment files are a collection of figures and attributes that may be dynamically moved under the control of an animation file. The animation facilities allow the user to create a sequence of commands that duplicate the movements of a

  8. The closing of Atlantis.

    PubMed

    Jackson, Jonathan David

    2007-01-01

    This article examines the author's experience of cultural bias as a spectator at a now-defunct, predominately white, working class American burlesque house called Club Atlantis in Baltimore, Maryland. The club was well known in the mid-Atlantic region for its all-nude male dancers. According to the author, Club Atlantis was less known for its sometimes subtle and sometimes overt unwelcome treatment of black American or dark-skinned patrons and its unwritten policy of banning black American or dark-skinned would-be strippers. Based on personal observations and informal interviews conducted between 2002 and 2004, and written in a manner common to the author's disciplines of creative nonfiction and the performing arts, the article argues for increased examination of erotic performance as a form of sex work. The article also argues for further study of the racial politics of commercial sex.

  9. Atlantis Chaos - False Color

    NASA Image and Video Library

    2014-12-23

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Atlantis Chaos.

  10. BOREAS RSS-4 1994 Southern Study Area Jack Pine LAI and FPAR Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Plummer, Stephen

    2000-01-01

    The RSS-4 team collected several data sets related to leaf, plant, and stand physical, optical, and chemical properties. This data set contains leaf area indices and FPAR measurements that were taken at the three conifer sites in the BOREAS SSA during August 1993 and at the jack pine tower flux and a subset of auxiliary sites during July and August 1994. The measurements were made with LAI-2000 and Ceptometer instruments. The measurements were taken for the purpose of model parameterization and to test empirical relationships that were hypothesized between biophysical parameters and remotely sensed data. The data are stored in tabular ASCII files.

  11. The New Atlantis.

    ERIC Educational Resources Information Center

    Le Bovit, Judith

    The culminating remarks in this paper call for the building of a new Atlantis, a"...home where the unquiet heart of modern man can find peace." The author reviews the historical importance of Latin as a "connecting tissue" among European languages and its significance in the development of a common linguistic heritage. From this frame of…

  12. STS-104 Atlantis on pad after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This view from above Space Shuttle Atlantis reduces the workers below to appearing like ants. Seen below the Shuttle is the opening over the exhaust hole containing flame detectors. On either side of the Atlantis, in front of the wings, are two tail service masts. The masts support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload.

  13. STS-132 Atlantis during Expedition 23 Docking OPS

    NASA Image and Video Library

    2010-05-16

    ISS023-E-047233 (16 May 2010) --- Intersecting the thin line of Earth's atmosphere, the aft section of space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member shortly after Atlantis docked with the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1), named Rassvet, is visible in the cargo bay.

  14. KSC-08pd2307

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane is attached to the Multi-Use Lightweight Equipment, or MULE, carrier to moved the carrier to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  15. KSC-08pd2312

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Multi-Use Lightweight Equipment, or MULE, carrier toward a stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  16. KSC-08pd2306

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – The Multi-Use Lightweight Equipment, or MULE, carrier is waiting to be moved onto another stand in the high bay in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. .Photo credit: NASA/Jack Pfaller

  17. KSC-08pd2311

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Multi-Use Lightweight Equipment, or MULE, carrier toward a stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  18. KSC-08pd2448

    NASA Image and Video Library

    2008-08-16

    CAPE CANAVERAL, Fla. – The Wide Field Camera 3, or WFC3, rests on a work stand in the Payload Hazardous Servicing Facility since its arrival Aug. 12. WFC3 is part of the payload on space shuttle Atlantis for the fifth and final Hubble servicing mission, STS-125. As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8. Photo credit: NASA/Jack Pfaller

  19. Atlantis is lowered to external stack in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In Vehicle Assembly Building high bay 1, the orbiter Atlantis is being lowered into position for mating to its external tank/solid rocket booster stack. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  20. Atlantis Non-destructive Testing

    NASA Image and Video Library

    2003-10-29

    In the Orbiter Processing Facility, the nose cap (foreground) removed from Atlantis (behind) waits to be shipped to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  1. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-059 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, Kennedy Director Bob Cabana congratulates the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  2. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-055 (16 Nov. 2009) --- The space shuttle launch team monitors the progress of Space Shuttle Atlantis' countdown from consoles on the main floor of Firing Room 4 in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  3. Atlantis TPS Processing

    NASA Image and Video Library

    2003-10-01

    In the Orbiter Processing Facility, Harrell Watts (left), with United Space Alliance, removes a tile from the thermal barrier around the umbilical areas, the external tank attach points, on the underside of Atlantis. The umbilical areas are closed off after ET separation by a door, seen here. The exposed area of each closed door is covered with reusable surface insulation.

  4. A perfect launch of Atlantis on mission STS-106

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Clouds on the horizon seem to wait for their rival Space Shuttle Atlantis as it churns billows of steam and smoke after launch. The perfect on-time liftoff of Atlantis on mission STS- 106 occurred at 8:45:47 a.m. EDT. On the 11-day mission to the International Space Station, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19.

  5. STS-79 Atlantis arrives at LC39A

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis arrives at Launch Pad 39A at twilight. The second rollout to the pad brings Atlantis one step closer to a launch scheduled around September 12. Mission STS-79 will be highlighted by the fourth docking between the U.S. Space Shuttle and the Russian Space Station Mir, and the return to Earth of U.S. astronaut Shannon Lucid after a record-setting stay aboard the station

  6. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-056 (16 Nov. 2009) --- Members of the space shuttle launch team watch Space Shuttle Atlantis' launch through the newly installed windows of Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  7. KSC-07pd2661

    NASA Image and Video Library

    2007-10-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a United Space Alliance technician prepares the surface of Atlantis for installation of a thermal protection system tile. Space shuttle Atlantis is targeted for launch on mission STS-122 on Dec. 6. Photo credit: NASA/Jack Pfaller

  8. KSC-08pd0407

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- After greeting the media on the Shuttle Landing Facility at NASA's Kennedy Space Center, the STS-122 crew stands in front of space shuttle Atlantis for a final group photo. From left are Mission Specialists Leland Melvin, Hans Schlegel, Rex Walheim and Stanley Love, Pilot Alan Poindexter and Commander Steve Frick. Schlegel represents the European Space Agency. After a round trip of nearly 5.3 million miles, space shuttle Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST. The shuttle landed on orbit 202 to complete the 13-day STS-122 mission. Main gear touchdown was 9:07:10 a.m. Nose gear touchdown was 9:07:20 a.m. Wheel stop was at 9:08:08 a.m. Mission elapsed time was 12 days, 18 hours, 21 minutes and 44 seconds. During the mission, Atlantis' crew installed the new Columbus laboratory, leaving a larger space station and one with increased science capabilities. The Columbus Research Module adds nearly 1,000 cubic feet of habitable volume and affords room for 10 experiment racks, each an independent science lab. Photo credit: NASA/Jack Pfaller

  9. KSC-08pd2308

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Multi-Use Lightweight Equipment, or MULE, carrier from a mobile platform to move it to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  10. KSC-08pd2309

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Multi-Use Lightweight Equipment, or MULE, carrier from a mobile platform to move it to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  11. KSC-08pd2310

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Multi-Use Lightweight Equipment, or MULE, carrier from a mobile platform to move it to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  12. Transitional Experiences of Post-16 Sports Education: Jack's Story

    ERIC Educational Resources Information Center

    Aldous, David C. R.; Sparkes, Andrew C.; Brown, David H. K.

    2014-01-01

    This paper explores the layered transitional experiences of a semi-professional athlete named Jack (a pseudonym) between the fields of professional sport and further and higher education. Our analysis is framed by the quadripartite framework of structuration and focuses on Jack's "in-situ" practices at his college and university in order…

  13. View of FWD ISS and docked STS-132 Atlantis

    NASA Image and Video Library

    2010-05-16

    ISS023-E-047247 (16 May 2010) --- Space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member shortly after Atlantis docked with the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1), named Rassvet, is visible in the cargo bay. Earth?s horizon and the blackness of space provide the backdrop for the scene.

  14. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the transfer aisle of the Vehicle Assembly Building, the orbiter Atlantis is suspended vertically via overhead cranes. The orbiter will be rotated and lifted into high bay 1 where it will be stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  15. Jack bean (Canavalia ensiformis): nutrition related aspects and needed nutrition research.

    PubMed

    Akpapunam, M A; Sefa-Dedeh, S

    1997-01-01

    The nutritional characteristics and food potentials of jack bean (Canavalia ensiformis) have been reviewed. The bean is a good sources of protein, 23% to 34%, and carbohydrate 55%. It is also a good source of Ca, Zn, P, Mg, Cu and Ni. Jack bean protein is adequate in most essential amino acids with the exception of methionine and cystine which may be nutritionally limiting. Antinutritional and toxic factors including trypsin inhibitors, hemagglutinins, cyanogen glucosides, oligosaccharides and others are present in jack bean. Properly processed jack bean could be used to prepare some of the popular dishes made from cowpea, peanut, pigeon pea and soybean. Industrial products such as protein concentrates and isolates, starch, flakes, grits and flours can be produced from the bean. Further research is needed to identify varieties with high protein and nutritional quality. Development of new highly nutritious food products based on whole or processed jack bean should increase production and expand use.

  16. Atlantis begins rolling back to the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Perched atop its Mobile Launcher Platform, Space Shuttle Atlantis moves back to the Vehicle Assembly Building, via the crawler- transporter underneath, along the crawlerway. The water in the background is part of the Banana River. Atlantis' return to the VAB was determined by Shuttle managers so that inspections, continuity checks and X-ray analysis can be conducted on the 36 solid rocket booster cables located inside each booster's system tunnel. An extensive evaluation of NASA's SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. The launch has been rescheduled no earlier than Feb. 6.

  17. Psychoanalysis of Jack London's "The Call of the Wild" and "White Fang"

    ERIC Educational Resources Information Center

    Yang, Hongyan

    2015-01-01

    "The Call of the Wild" and "White Fang" both are masterpieces of Jack London. The protagonists Buck and White Fang are the incarnation of Jack himself to some extent for the two novels reveal a great deal of the writer. This essay aims at psychoanalyzing Jack London's creative process, the Oedipus complex and the confliction…

  18. Using Black Light to Find Jack-Pine Budworm Egg Masses

    Treesearch

    Daniel T. Jennings

    1968-01-01

    Jack pine foliage infested with jack-pine budworm egg masses was examined under two kinds of light -- black light and a combination of natural and fluorescent light. Black light significantly increased the accuracy of count but not the efficiency of examination.

  19. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, the orbiter Atlantis is being lifted from a transporter after rolling over from Orbiter Processing Facility bay 3. The orbiter will be raised to a vertical position, rotated and lifted into high bay 1, and stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  20. MRM1 in Atlantis Payload Bay

    NASA Image and Video Library

    2010-05-18

    ISS023-E-047431 (18 May 2010) --- Intersecting the thin line of Earth's atmosphere, the docked space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member on the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1) is visible in the payload bay as the shuttle robotic arm prepares to unberth the module from Atlantis and position it for handoff to the station robotic arm. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station.

  1. LOUSMA, JACK R. - WATER SURVIVAL TRAINING - FL

    NASA Image and Video Library

    1978-07-31

    S78-34037 (31 July 1978) --- Astronaut Jack R. Lousma, geared with a parachute, is pulled along behind a boat in Gulf waters at Homestead Air Force Base in Florida during a water survival training course attended by several NASA astronauts. The overall course is designed to familiarize astronauts with proper procedures to take in the event of ejection from an aircraft over water. Photo credit: NASA (NOTE: Since this photograph was made, astronaut Jack R. Lousma was named commander of STS-3, scheduled for launch in early spring of 1982.)

  2. Vector-valued Jack polynomials and wavefunctions on the torus

    NASA Astrophysics Data System (ADS)

    Dunkl, Charles F.

    2017-06-01

    The Hamiltonian of the quantum Calogero-Sutherland model of N identical particles on the circle with 1/r 2 interactions has eigenfunctions consisting of Jack polynomials times the base state. By use of the generalized Jack polynomials taking values in modules of the symmetric group and the matrix solution of a system of linear differential equations one constructs novel eigenfunctions of the Hamiltonian. Like the usual wavefunctions each eigenfunction determines a symmetric probability density on the N-torus. The construction applies to any irreducible representation of the symmetric group. The methods depend on the theory of generalized Jack polynomials due to Griffeth, and the Yang-Baxter graph approach of Luque and the author.

  3. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like 10,000 fireworks going off at once, Space Shuttle Atlantis roars into the moonlit sky while clouds of steam and smoke cascade behind. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

  4. Atlantis lifts off on mission STS-84

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis turns night into day for a few moments as it lifts off on May 15 at 4:07:48 a.m. EDT from Launch Pad 39A on the STS-84 mission. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  5. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-074 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-080 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  7. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-076 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-072 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  9. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-188 (21 July 2011) --- Ribbons of steam and smoke trail space shuttle Atlantis as it touches down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-075 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-077 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-081 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-073 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-078 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-079 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-071 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  17. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-186 (21 July 2011) --- Xenon lights cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  18. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-171 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  19. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-245 (21 July 2011) --- Xenon lights guide space shuttle Atlantis as it lands on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  20. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-168 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  1. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-251 (21 July 2011) --- Xenon lights guide space shuttle Atlantis as it lands on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  2. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-174 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  3. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-166 (21 July 2011) --- Xenon lights illuminate space shuttle Atlantis' unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  4. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-185 (21 July 2011) --- Xenon lights cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  5. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-173 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  6. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-241 (21 July 2011) --- Xenon lights cast a halo of light on space shuttle Atlantis as the spacecraft nears touchdown for the last time on Runway 15 at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  7. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-164 (21 July 2011) --- Xenon lights illuminate space shuttle Atlantis' unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  8. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-247 (21 July 2011) --- Xenon lights guide space shuttle Atlantis as it lands on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  9. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-250 (21 July 2011) --- Xenon lights guide space shuttle Atlantis as it lands on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  10. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-172 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  11. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-169 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  12. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-170 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  13. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-248 (21 July 2011) --- Xenon lights guide space shuttle Atlantis as it lands on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  14. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-167 (21 July 2011) --- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  15. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-246 (21 July 2011) --- Xenon lights guide space shuttle Atlantis as it lands on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  16. The Final Landing of STS-135 Atlantis

    NASA Image and Video Library

    2011-07-21

    STS135-S-165 (21 July 2011) --- Xenon lights illuminate space shuttle Atlantis' unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. (EDT) on July 21, 2011, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA

  17. Jack mechanism having positive stop means for its crank handle

    NASA Astrophysics Data System (ADS)

    Crockett, Watkins, IV; Baird, Bernard W.

    1995-04-01

    A jack mechanism having a crank handle that drives a linear motion control ball nut and threaded screw is presented. Two rods are included to provide a positive stop in each direction of the jack's limit so as to prevent overrun of the mechanism.

  18. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis heads toward the open door of the Vehicle Assembly Building (VAB) on the north side. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  19. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Vehicle Assembly Building (VAB), overhead cranes move above the orbiter Atlantis in order to lift it to vertical. When vertical, the orbiter will be placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  20. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    In high bay 1 of the Vehicle Assembly Building, a technician marks off an area for inspection on Atlantis' external tank. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  1. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    Technicians in the Vehicle Assembly Building prepare materials that will be used during repair of the nose cone on Atlantis' external tank. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  2. STS-98 Atlantis rolls out to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Under cloudy skies, Space Shuttle Atlantis inches its way to Launch Pad 39A from the Vehicle Assembly Building (right). The journey is a distance of just over 3 miles. The water in the foreground is part of Banana Creek. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five.

  3. Comparative analysis of a jack-up drilling unit with different leg systems

    NASA Astrophysics Data System (ADS)

    Ren, Xiangang; Bai, Yong; Jia, Lusheng

    2012-09-01

    The jack-up unit is one of the best drilling platforms in offshore oil fields with water depth shallower than 150 meters. As the most pivotal component of the jack-up unit, the leg system can directly affect the global performance of a jack-up unit. Investigation shows that there are three kinds of leg structure forms in the world now: the reverse K, X, and mixing types. In order to clarify the advantage and defects of each one, as well as their effect on the global performance of the jack-up unit, this paper commenced to study performance targets of a deepwater jack-up unit with different leg systems (X type, reverse K type, and mixing type). In this paper a typical leg scantling dimension and identical external loads were selected, detailed finite element snalysis (FEA) models were built to simulate the jack-up unit's structural behavior, and the multi-point constraint (MPC) element together with the spring element was used to deal with the boundary condition. Finally, the above problems were solved by comparative analysis of their main performance targets (including ultimate static strength, dynamic response, and weight).

  4. MRM1 in Atlantis Payload Bay

    NASA Image and Video Library

    2010-05-18

    ISS023-E-046806 (18 May 2010) --- Backdropped by Earth?s horizon and the blackness of space, the docked space shuttle Atlantis is featured in this image photographed by an Expedition 23 crew member on the International Space Station. The Russian-built Mini-Research Module 1 (MRM-1) is visible in the payload bay as the shuttle robotic arm prepares to unberth the module from Atlantis and position it for handoff to the station robotic arm (visible at right). Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station.

  5. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-054 (16 Nov. 2009) --- Michael Coats (left), director of NASA's Johnson Space Center in Houston; and Bob Cabana, director of NASA's Kennedy Space Center in Florida, monitor the progress of Space Shuttle Atlantis' countdown from consoles in the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) on Nov. 16, 2009.

  6. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  7. 21 CFR 133.153 - Monterey cheese and monterey jack cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Monterey cheese and monterey jack cheese. 133.153... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.153 Monterey cheese and monterey jack cheese. (a) Description...

  8. 21 CFR 133.153 - Monterey cheese and monterey jack cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Monterey cheese and monterey jack cheese. 133.153... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.153 Monterey cheese and monterey jack cheese. (a) Description...

  9. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018217 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew on the International Space Station. Airglow over Earth can be seen in the background.

  10. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018188 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  11. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018199 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  12. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018177 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  13. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018200 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  14. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018221 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  15. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018218 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against clouds and city lights, on its way home, was photographed by the Expedition 28 crew of the International Space Station. Airglow over Earth can be seen in the background.

  16. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians prepare the area around the nose cone (left) of Atlantis' external tank that will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  17. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians prepare the area around the nose cone (foreground) of Atlantis' external tank that will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  18. IMAX films Destiny in Atlantis's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In the Payload Changeout Room at Launch Pad 39A, a film crew from IMAX prepares its 3-D movie camera to film the payload bay door closure on Atlantis. Behind them is the payload, the U.S. Laboratory Destiny, which will fly on mission STS-98, the seventh construction flight to the ISS. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Launch of Atlantis is Feb. 7 at 6:11 p.m. EST.

  19. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from an upper level in the Vehicle Assembly Building (VAB), the orbiter Atlantis waits in the transfer aisle after its move from the Orbiter Processing Facility. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  20. ATLANTIS ROLLS OUT TO PAD 39A FOLLOWING HURRICANE FRAN THREAT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis completes the trip to Launch Pad 39A from the Vehicle Assembly Building for the third time in the STS- 79 mission flow. The Shuttle was rolled back from the pad in July due to the threat from Hurricane Bertha, then rolled back again earlier this week because of Hurricane Fran. The targeted launch date for Atlantis on Mission STS-79 -- the fourth docking between the U.S. Shuttle and Russian Space Station Mir -- is now Sept. 16 at 4:54 a.m. EDT. The three rollout dates for Atlantis to Pad 39A are: July 1, Aug. 20 and Sept. 5.

  1. KSC-2009-5257

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, space shuttle Atlantis' payload bay door is closing. The designated shuttle for the STS-129 mission, Atlantis will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis is targeted to launch Nov. 12. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-5252

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, space shuttle Atlantis' payload bay doors are being closed. The designated shuttle for the STS-129 mission, Atlantis will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis is targeted to launch Nov. 12. Photo credit: NASA/Jack Pfaller

  3. KSC-2009-5256

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, space shuttle Atlantis' payload bay door is closing. The designated shuttle for the STS-129 mission, Atlantis will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis is targeted to launch Nov. 12. Photo credit: NASA/Jack Pfaller

  4. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - A distant view creates a frame of leaves around the launch of Space Shuttle Atlantis on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss and CETA Cart A.

  5. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis leaps from the steam and smoke billowing across Launch Pad 39B after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  6. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The brilliance of the launch of Space Shuttle Atlantis is reflected in nearby waters. Liftoff of the Shuttle on mission STS-112 occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  7. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- Space Shuttle Atlantis races toward space just after liftoff from Launch Pad 39B on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  8. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The afternoon sun casts a shadow on Space Shuttle Atlantis as it launches on its journey to the International Space Station. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss and CETA cart.

  9. Hail damage on Atlantis' external tank is inspected

    NASA Image and Video Library

    2007-04-13

    In the Vehicle Assembly Building, Mike Ravenscroft, with United Space Alliance, points to some of the foam repair done on the external tank of Space Shuttle Atlantis. Holes filled with foam are sanded flush with the adjacent area. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8.

  10. Shuttle Atlantis travels to LC-39B for STS-76

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis completes the journey to Launch Pad 39B from the Vehicle Assembly Building. Atlantis is being prepared for a March 21 liftoff on Mission STS-76, which will be highlighted by the third docking between the U.S. Shuttle and the Russian Space Station Mir and the transfer of U.S. astronaut Shannon Lucid to the station for an extended stay.

  11. View of Atlantis Flight Deck Monitors

    NASA Image and Video Library

    2009-05-17

    S125-E-009190 (17 May 2009) --- A computer monitor showing animation of an extravehicular activity (EVA) is visible in this image photographed by a STS-125 crewmember in a darkened flight deck on the Earth-orbiting Space Shuttle Atlantis.

  12. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KSC employees accompany the orbiter Atlantis as it is moved aboard an orbiter transporter to the Vehicle Assembly Building (VAB). In the background are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  13. Space Shuttle Atlantis rolls back to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.

  14. Jack Stenner: The Lexile King.

    ERIC Educational Resources Information Center

    Webster, Linda J.

    2000-01-01

    Traces the career of Jack Stenner. Stenner made the empirical discovery that observable readability could be entirely predicted from word familiarity and sentence length, and applied this "Lexile Framework"(R) to books and readers. Discusses the use of the Lexile Framework as a way to target specific readers. (SLD)

  15. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis surpasses the full moon for beauty as it roars into the early evening sky trailing a tail of smoke. The upper portion catches the sun'''s rays as it climbs above the horizon and a flock of birds soars above the moon. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

  16. CoJACK: A High-Level Cognitive Architecture with Demonstrations of Moderators, Variability, and Implications for Situation Awareness

    DTIC Science & Technology

    2012-01-01

    defined, to CoJACK (Ritter, Reifers, Klein, & Schoelles, 2007) based on task appraisal theory (e.g., Cannon, 1932; Lazarus & Folkman , 1984; Selye...Cambridge, MA: MIT Press. Lazarus , R. S., & Folkman , S. (1984). Stress, appraisal and coping. New York: Springer Publishing. Lovett, M. C., Daily, L...promising. 0 0.5 1 1.5 2 2.5 3 3.5 4 Java JACK Default CoJack CoJack Caffeine CoJack Challenged CoJack Threatened Agent Type Ta n k s D es tr o y e d

  17. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians place protective material around the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  18. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians secure protective material around the base of the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  19. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians move protective material toward the nose cone (foreground) of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  20. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians secure protective material around Atlantis' external tank. The preparations are for future repair work of the hail damage that happened Feb. 27. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  1. Space Shuttle Atlantis Move

    NASA Image and Video Library

    2012-11-02

    Onlookers wearing commemorative t-shirts watch as space shuttle Atlantis rolls to ts new home at the Kennedy Space Center Visitor Complex, early Friday, Nov. 2, 2012, in Cape Canaveral, Fla. The spacecraft traveled 125,935,769 miles during 33 spaceflights, including 12 missions to the International Space Station. Its final flight, STS-135, closed out the Space Shuttle Program era with a landing on July 21, 2011. Photo Credit: (NASA/Bill Ingalls)

  2. KSC-08pd0405

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- After exiting the crew transport vehicle on the Shuttle Landing Facility at NASA's Kennedy Space Center, the STS-122 crew stands in front of space shuttle Atlantis to greet the media and guests. At the microphone is Commander Steve Frick. Behind him, left to right, are Mission Specialists Leland Melvin, Hans Schlegel, Rex Walheim (not visible) and Stanley Love, and Pilot Alan Poindexter. Schlegel represents the European Space Agency. After a round trip of nearly 5.3 million miles, space shuttle Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST. The shuttle landed on orbit 202 to complete the 13-day STS-122 mission. Main gear touchdown was 9:07:10 a.m. Nose gear touchdown was 9:07:20 a.m. Wheel stop was at 9:08:08 a.m. Mission elapsed time was 12 days, 18 hours, 21 minutes and 44 seconds. During the mission, Atlantis' crew installed the new Columbus laboratory, leaving a larger space station and one with increased science capabilities. The Columbus Research Module adds nearly 1,000 cubic feet of habitable volume and affords room for 10 experiment racks, each an independent science lab. Photo credit: NASA/Jack Pfaller

  3. Shuttle Atlantis enters Earth's Atmosphere

    NASA Image and Video Library

    2011-07-21

    ISS028-E-018216 (21 July 2011) --- This unprecedented view of the space shuttle Atlantis, appearing like a bean sprout against the darkness of space, a faint line of airglow over a dark cloud-covered Earth, on its way home, was photographed by the crew of the International Space Station. Airglow over Earth can be seen in the background.

  4. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis is moved aboard an orbiter transporter from the Orbiter Processing Facility (OPF) bay 3 over to the Vehicle Assembly Building (VAB). In the background (right) are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  5. 14 CFR 23.507 - Jacking loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...

  6. 14 CFR 23.507 - Jacking loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...

  7. 14 CFR 23.507 - Jacking loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...

  8. 14 CFR 23.507 - Jacking loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Vertical-load factor of 1.35 times the static reactions. (2) Fore, aft, and lateral load factors of 0.4 times the vertical static reactions. (b) The horizontal loads at the jack points must be reacted by...

  9. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    USGS Publications Warehouse

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  10. STS-43 Atlantis, Orbiter Vehicle (OV) 104, crew insignia

    NASA Image and Video Library

    1999-11-09

    STS043-S-001 (6 Feb. 1991) --- Designed by the astronauts assigned to fly on the mission, the STS-43 patch portrays the evolution and continuity of the United States of America's space program by highlighting 30 years of American manned space flight experience - from Mercury to the space shuttle. The emergence of the space shuttle Atlantis from the outlined configuration of the Mercury space capsule commemorates this special relationship. The energy and momentum of launch are conveyed by the gradations of blue which mark the space shuttle's ascent from Earth to space. Once in Earth orbit, Atlantis' cargo bay opens to reveal the Tracking and Data Relay Satellite (TDRS) which appears in gold emphasis against the white wings of the space shuttle Atlantis and the stark blackness of space. A primary mission objective, the Tracking and Data Relay Satellite System (TDRSS) will enable almost continuous communication from Earth to space for future space shuttle missions. The stars on the patch are arranged to suggest this mission's numerical designation, with four stars left of Atlantis and three to the right. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  11. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Looking like a star balanced on a stem of smoke, Space Shuttle Atlantis shoots through the clear blue sky after launch on mission STS-112, the 15th assembly flight to the International Space Station. Liftoff from Launch Pad 39B occurred at 3:46 p.m. EDT. Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  12. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The brilliance of the launch of Space Shuttle Atlantis is reflected in nearby waters. Liftoff of the Shuttle on mission STS-112 occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  13. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Twin columns of white flames from the solid rocket boosters propel Space Shuttle Atlantis toward space after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  14. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Rising clouds of smoke and steam appear to surround Space Shuttle Atlantis as it hurtles toward space on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  15. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- Space Shuttle Atlantis leaves a billowingclouds of smoke and steam behind just after liftoff from Launch Pad 39B on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-035 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  17. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-051 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  18. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-053 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  19. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-061 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  20. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-036 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  1. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-060 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  2. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-039 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  3. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-040 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  4. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-056 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  5. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-044 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-063 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  7. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-062 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-050 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  9. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-064 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-058 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-052 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-038 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-042 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-055 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-065 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-037 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  17. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-057 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  18. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-059 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  19. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-033 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell..

  20. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-066 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  1. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-054 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Rusty Backer and Michael Gayle

  2. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-067 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  3. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-047 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  4. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-030 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  5. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-048 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-045 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  7. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-041 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-049 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  9. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-043 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-068 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-034 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-069 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-046 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-031 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  15. Students Learning Physics While Lifting Themselves: A Simple Analysis of a Scissors Jack

    ERIC Educational Resources Information Center

    Haugland, Ole Anton

    2017-01-01

    Every time I have to jack up my car, I am a bit surprised by how slowly the scissors jack works the higher I raise it, and close to maximum height I need very little force to turn the crank. This agrees well with the principle of simple machines. Since I have to jack up my car at least twice a year to change between winter tires and summer tires,…

  16. Hydraulically-operated pump jack with chain drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratell Jr., R. E.

    1985-02-05

    My invention relates to pumping apparatus, particularly to a hydraulically-operated pump jack for oil, brine water and the like. The apparatus is fabricated from steel plate to make a strong, but light-weight tower which may be easily transported from one site to another by a small boom truck or gin pole truck. In contrast to pump jacks of the walking beam type which are massive in size, my improved pump jack is compact and is seated on and secured directly to the head of an oil well casing. A vertically-arranged hydraulic cylinder has its piston rod connected to a crossmore » head on which a pair of sprockets are journalled. Chains pass around respective sprockets, one reach of each chain extending upwardly and is anchored to a stationary part of the tower. The other reach of each chain extends upwardly and over and around an upper sprocket journalled on a shaft carried by the upper end of the tower, each chain then extending downwardly to a yoke to which the polish rod is connected. This arrangement will result in a 2 to 1 ratio between the movement of the polish rod and the stroke of the hydraulic cylinder.« less

  17. Jack Michael's Motivation

    ERIC Educational Resources Information Center

    Miguel, Caio F.

    2013-01-01

    Among many of Jack Michael's contributions to the field of behavior analysis is his behavioral account of motivation. This paper focuses on the concept of "motivating operation" (MO) by outlining its development from Skinner's (1938) notion of "drive." Conceptually, Michael's term helped us change our focus on…

  18. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi

    2003-12-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  19. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    USGS Publications Warehouse

    Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.

    2003-01-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  20. Jack Dymond's "Fingerprints" on Sediment Chemistry, Biogeochemical Fluxes, and my Career

    NASA Astrophysics Data System (ADS)

    Leinen, M.

    2004-12-01

    I first met Jack Dymond as a graduate student at Oregon State University. He wasn't my thesis advisor. He wasn't even on my committee. But his ever so gentle counsel and his low key advice did much to shape my career, as a student, as a scientist, and later as an administrator of science. At the time, Jack was wading through the analysis of a very large number of surface sediment samples from the Nazca Plate as part of an IDOE project. The number and density of sampling was extraordinary for the time and his work showed that the geochemistry of the sediments could be deconvolved to understand the contributions of sediment sources over the entire plate. I had been planning to analyze DSDP samples from the equatorial Pacific to understand the history of siliceous sedimentation in that region and I began to talk with Jack about how I could use geochemical signatures to estimate the non-biogenic fraction of the sediment. When Jack's Nazca Plate paper came out, Debra Stakes and I decided to analyze all of my sample residues for the same elements that Jack had studied. In the only piece of bad advice that he ever gave me, Jack told me that it was a waste of time because there wouldn't be high enough concentrations of transition metals in the calcareous and siliceous sediments to measure. We insisted and Jack, in typical fashion, agreed to pay for reagents and give us instrument time without charge anyway. The larger than expected concentrations, and the even more surprising match between the accumulation rates of some the metals and the accumulation rates of biogenic sediment were the subject of many discussions, all of which ended in the need for more information on the composition, fluxes and transformations of biogenic sediment in the water column and in recent sediments. This, of course, became another of Jack's specialties: his designs for sediment traps were important contributions to the evolution of this important sampling device. His studies of fluxes in a wide

  1. Jacking mechanism for upper internals structure of a liquid metal nuclear reactor

    DOEpatents

    Gillett, James E.; Wineman, Arthur L.

    1984-01-01

    A jacking mechanism for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns have a pin structure which rides up and down in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring bolt holes through the locking plates into alignment with a set of bolt holes in the housing, there being a set of such housing bolt holes corresponding to both a raised and a lowered position of the support column. When the locking plate is so aligned, a surface of the locking plate mates with a surface in the housing such that the support column is then supported by the locking plate and not by the ball jacks. Since the locking plates are to be installed and bolted to the housing during periods of reactor operation, the ball jacks need not be sized to react the large forces which occur or potentially could occur on the upper internals structure of the reactor during operation. The locking plates react these loads. The ball jacks, used only during refueling, can be smaller, which enable conventionally available equipment to fulfill the precision requirements for the task within available space.

  2. Alternate Host of Jack Pine Needle rust in Northern Minnesota

    Treesearch

    Ralph L. Anderson; Neil A. Anderson

    1978-01-01

    The pine needle rust of jack pine on the Little Sioux Burn in northeastern Minnesota infected large-leaf aster but not goldenrod. The rust was most severe when asters were abundant on the plots. Les than 10 percent of the jack pine were infected over a 3-year period when asters were more than 10 feet (3.05 m) from the mil-acre plots

  3. STS-115 MS Tanner on Atlantis Middeck

    NASA Image and Video Library

    2006-09-10

    S115-E-05337 (10 Sept. 2006) --- Astronaut Joseph R. Tanner, STS-115 mission specialist, works on the middeck of the Space Shuttle Atlantis on the eve of docking day with the International Space Station.

  4. Additive and non-additive genetic components of the jack male life history in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Forest, Adriana R; Semeniuk, Christina A D; Heath, Daniel D; Pitcher, Trevor E

    2016-08-01

    Chinook salmon, Oncorhynchus tshawytscha, exhibit alternative reproductive tactics (ARTs) where males exist in two phenotypes: large "hooknose" males and smaller "jacks" that reach sexual maturity after only 1 year in seawater. The mechanisms that determine "jacking rate"-the rate at which males precociously sexually mature-are known to involve both genetics and differential growth rates, where individuals that become jacks exhibit higher growth earlier in life. The additive genetic components have been studied and it is known that jack sires produce significantly more jack offspring than hooknose sires, and vice versa. The current study was the first to investigate both additive and non-additive genetic components underlying jacking through the use of a full-factorial breeding design using all hooknose sires. The effect of dams and sires descendant from a marker-assisted broodstock program that identified "high performance" and "low performance" lines using growth- and survival-related gene markers was also studied. Finally, the relative growth of jack, hooknose, and female offspring was examined. No significant dam, sire, or interaction effects were observed in this study, and the maternal, additive, and non-additive components underlying jacking were small. Differences in jacking rates in this study were determined by dam performance line, where dams that originated from the low performance line produced significantly more jacks. Jack offspring in this study had a significantly larger body size than both hooknose males and females starting 1 year post-fertilization. This study provides novel information regarding the genetic architecture underlying ARTs in Chinook salmon that could have implications for the aquaculture industry, where jacks are not favoured due to their small body size and poor flesh quality.

  5. Ferguson Uses a Computer on Atlantis Middeck

    NASA Image and Video Library

    2011-07-13

    S135-E-007705 (13 July 2011) --- NASA astronaut Chris Ferguson, STS-135 commander, inputs data on a computer on Atlantis' middeck during the sixth day in space for him and three crewmates. Photo credit: NASA

  6. Students Learning Physics While Lifting Themselves: A Simple Analysis of a Scissors Jack

    NASA Astrophysics Data System (ADS)

    Haugland, Ole Anton

    2017-02-01

    Every time I have to jack up my car, I am a bit surprised by how slowly the scissors jack works the higher I raise it, and close to maximum height I need very little force to turn the crank. This agrees well with the principle of simple machines. Since I have to jack up my car at least twice a year to change between winter tires and summer tires, I thought it was time to take a closer look at the physics behind the process. And like most physics teachers, I am always looking for new ideas for my teaching. In this note I will present a few ideas on how a jack can be a topic in physics teaching.

  7. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 'fish-eye' lens was used to record the image.

  8. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny is ready to be moved from Atlantis''' payload bay into the Payload Changeout Room. After the move, Atlantis will roll back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  9. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny (left) moves away from Atlantis''' payload bay doors (right) into the Payload Changeout Room. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  10. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the U.S. Lab Destiny as its moves from Atlantis''' payload bay into the PCR. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  11. Recollections of Jack Michael and the Application of Skinner's Analysis of Verbal Behavior

    ERIC Educational Resources Information Center

    Sundberg, Mark L.

    2017-01-01

    Jack Michael offered a course on verbal behavior almost every year throughout his teaching career. Jack was also interested in the application of Skinner's work and in 1976 began to offer a graduate course at Western Michigan University titled Verbal Behavior Applications. Jack and his students pursued the application of Skinner's work on verbal…

  12. Astronaut Jack R. Lousma and family

    NASA Image and Video Library

    1971-12-01

    S72-31432 (November 1972) --- Astronaut Jack R. Lousma poses for a family portrait with his wife, Gratia Kay, and their three children, left to right, Mary 4; Timothy, 9; and Matthew, 7. Lousma is the pilot for the Skylab 3 or second manned Skylab mission. Photo credit: NASA

  13. View of the Docked STS-132 Atlantis

    NASA Image and Video Library

    2010-05-16

    ISS023-E-044689 (16 May 2010) --- Pictured from a window on the International Space Station, the aft section of the docked space shuttle Atlantis (STS-132) is featured in this image photographed by an Expedition 23 crew member on the station.

  14. PLT Polansky at commanders station on Atlantis

    NASA Image and Video Library

    2001-02-09

    STS98-E-5024 (9 February 2001) --- Astronaut Mark L. Polansky, pilot, temporarily mans the commander's station on the flight deck of the Space Shuttle Atlantis during STS-98 Flight Day 2 maneuvers. The photograph was recorded with a digital still camera.

  15. KSC-2009-3433

    NASA Image and Video Library

    2009-06-02

    CAPE CANAVERAL, Fla. – Against a setting sun, space shuttle Atlantis, atop a Shuttle Carrier Aircraft, or SCA, is towed from the runway at NASA's Kennedy Space Center in Florida. The SCA is a modified Boeing 747 jetliner. Atlantis returned from California atop the SCA after its May 24 landing at Edwards Air Force Base, concluding mission STS-125. The ferry flight from Edwards Air Force Base began June 1. Atlantis' next assignment is the STS-129 mission, targeted to launch in November 2009. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-3491

    NASA Image and Video Library

    2009-06-03

    CAPE CANAVERAL, Fla. – With wheels lowered, Atlantis is placed on the ground via the hoist that is suspending it in the mate/demate device. Atlantis was separated from the Shuttle Carrier Aircraft, or SCA, a modified Boeing 747, that returned it from California after its May 24 landing at Edwards Air Force Base, concluding mission STS-125. The ferry flight from Edwards Air Force Base began June 1. Atlantis' next assignment is the STS-129 mission, targeted to launch in November 2009. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-3431

    NASA Image and Video Library

    2009-06-02

    CAPE CANAVERAL, Fla. – After a two-day trip from California, space shuttle Atlantis, atop a Shuttle Carrier Aircraft, or SCA, is towed from the runway at NASA's Kennedy Space Center in Florida. The SCA is a modified Boeing 747 jetliner. Atlantis returned from California atop the SCA after its May 24 landing at Edwards Air Force Base, concluding mission STS-125. The ferry flight from Edwards Air Force Base began June 1. Atlantis' next assignment is the STS-129 mission, targeted to launch in November 2009. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-3432

    NASA Image and Video Library

    2009-06-02

    CAPE CANAVERAL, Fla. – After a two-day trip from California, space shuttle Atlantis, atop a Shuttle Carrier Aircraft, or SCA, is towed from the runway at NASA's Kennedy Space Center in Florida. The SCA is a modified Boeing 747 jetliner. Atlantis returned from California atop the SCA after its May 24 landing at Edwards Air Force Base, concluding mission STS-125. The ferry flight from Edwards Air Force Base began June 1. Atlantis' next assignment is the STS-129 mission, targeted to launch in November 2009. Photo credit: NASA/Jack Pfaller

  19. STS-115 MS Tanner prepares to remove LES seat on Atlantis Middeck

    NASA Image and Video Library

    2006-09-09

    S115-E-05295 (9 Sept. 2006) --- Astronaut Joseph R. Tanner, STS-115 mission specialist, prepares to remove one of the launch and entry seats on mid deck of Atlantis soon after the crew reached Earth orbit. Atlantis and its crew will see a busy number of days before the mid deck seats get re-deployed for entry and landing.

  20. Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck

    NASA Image and Video Library

    1994-11-14

    STS066-14-021 (3-14 Nov 1994) --- On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, Jr., pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck. Brown joined four other NASA astronauts and a European Space Agency (ESA) astronaut for 11-days aboard Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.

  1. Visitors during STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-013 (14 May 2010) --- As visitors watch, the space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Ben Cooper

  2. Visitors during STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-014 (14 May 2010) --- With visitors looking on, the space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Ben Cooper

  3. Atlantis OMS Pods and Vertical Stabilizer

    NASA Image and Video Library

    2011-07-09

    S135-E-006375 (9 July 2011) --- Without the sun's being temporarily available to highlight space shuttle Atlantis' cargo bay and vertical stabilizer, the spacecraft barely shows through as a silhouette in this image photographed from the aft flight deck. The thin blue line of Earth?s atmosphere is the dominant feature in the photo. Photo credit: NASA

  4. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny begins moving out of Atlantis''' payload bay and into the Payload Changeout Room via the Payload Ground Handling Mechanism. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  5. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the Payload Ground Handling Mechanism that will move the U.S. Lab Destiny out of Atlantis''' payload bay and into the PCR. After the move, Atlantis will roll back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  6. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny moves out of Atlantis''' payload bay and into the Payload Changeout Room via the Payload Ground Handling Mechanism. Destiny will remain in the PCR while Atlantis rolls back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  7. STS-98 Atlantis rolls out to Pad 39A for the second time

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five.

  8. Crewmembers share a meal on Atlantis MDDK

    NASA Image and Video Library

    2008-02-16

    S122-E-009503 (16 Feb. 2008) --- Astronaut Peggy Whitson, Expedition 16 commander, smiles for a photo on the middeck of Space Shuttle Atlantis while docked with the International Space Station. Astronaut Stanley Love (partially out of frame), STS-122 mission specialist, is at left.

  9. Follow up of injected polyurethane slab jacking.

    DOT National Transportation Integrated Search

    2003-08-01

    GLENN JACKSON BRIDGE FOLLOW-UP REPORT The elevation monitoring in the report entitled Injected Polyurethane Slab Jacking (Soltesz 2000) is continued in this current report. The elevations of the concrete slabs are being monitored to see if polyuretha...

  10. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis roars into the clear blue sky from the billows of smoke below after launch on mission STS-112, the 15th assembly flight to the International Space Station. Liftoff from Launch Pad 39B occurred at 3:46 p.m. EDT. Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station.

  11. STS-98 Atlantis rolls to the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis (right) inches its way at 1 mph atop the crawler-transporter back to the Vehicle Assembly Building from Launch Pad 39A (upper left). A panorama view from the top of the VAB shows the proximity of the pad to the Atlantic Ocean (background) plus the 3.4-mile crawlerway leading from the pad to the VAB. The water areas on both sides of the crawlerway are part of the Banana River. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s external system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. The launch has been rescheduled no earlier than Feb. 6.

  12. Fish debris record the hydrothermal activity in the Atlantis II deep sediments (Red Sea)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudin, E.; Cocherie, A.

    1988-01-01

    The REE and U, Th, Zr, Hf, Sc have been analyzed in samples from Atlantis II and Shaban/Jean Charcot Deeps in the Red Sea. The high Zr/Hf ratio in some sediments indicates the presence of fish debris or of finely crystallized apatite. The positive ..sigma..REE vs P/sub 2/O/sub 5/ and ..sigma..REE vs Zr/Hf correlations show that fish debris and finely crystallized apatite are the main REE sink in Atlantis II Deep sediments as in other marine environments. The hydrothermal sediments and the fish debris concentrates have similar REE patterns, characterized by a LREE enrichment and a large positive Eu anomaly.more » This REE pattern is also observed in E.P.R. hydrothermal solutions. Fish debris from marine environments acquire their REE content and signature mostly from sea water during early diagenesis. The hydrothermal REE signature of Atlantis II Deep fish debris indicate that they probably record the REE signature of their hydrothermal sedimentation and diagenetic environment. The different REE signatures of the Shaban/Jean Charcot and Atlantis II Deep hydrothermal sediments suggest a sea water-dominated brine in the Shaban/Jean Charcot Deep as opposed to the predominantly hydrothermal brine in Atlantis II Deep. Atlantis II Deep fish debris are also characterized by their high U but low Th contents. Their low Th contents probably reflect the low Th content of the various possible sources (sea water, brine, sediments). Their U contents are probably controlled by the redox conditions of sedimentation.« less

  13. 3-D habitat suitability of jack mackerel Trachurus murphyi in the Southeastern Pacific, a comprehensive study

    NASA Astrophysics Data System (ADS)

    Bertrand, Arnaud; Habasque, Jérémie; Hattab, Tarek; Hintzen, Niels T.; Oliveros-Ramos, Ricardo; Gutiérrez, Mariano; Demarcq, Hervé; Gerlotto, François

    2016-08-01

    South Pacific jack mackerel, Trachurus murphyi, has an ocean-scale distribution, from the South American coastline to New Zealand and Tasmania. This fish, captured by Humans since the Holocene, is nowadays heavily exploited and its population has decreased substantially since the mid-1990s. The uncertainty associated to jack mackerel population structure currently hampers management. Several hypotheses have been proposed from a single population up to several discrete populations. Still no definitive answer was given. Determining how environmental conditions drive jack mackerel distribution can provide insights on its population structure. To do so, here we performed in three steps. First, we used satellite data to develop a statistical model of jack mackerel horizontal habitat suitability. Model predictions based on interaction between temperature and chlorophyll-a match the observed jack mackerel distribution, even during extreme El Niño event. Second, we studied the impact of oxygen and show that jack mackerel distribution and abundance is correlated to oxygen over a wide variety of scales and avoid low oxygen areas and periods. Third, on the basis of the above we built a conceptual 3D model of jack mackerel habitat in the Southeastern Pacific. We reveal the presence of a low suitable habitat along the Chilean and Peruvian coast, figuratively presenting a closed door caused by a gap in the horizontal habitat at ∼19-22°S and a shallow oxycline off south-centre Peru. This kind of situation likely occurs on a seasonal basis, in austral summer but also at longer temporal scales. A lack of exchanges at some periods/seasons partially isolate jack mackerel distributed off Peru. On the other hand the continuity in the habitat during most of the year explains why exchanges occur. We conclude that the more likely population structure for jack mackerel is a pelagic metapopulation.

  14. Atlantis returns to VAB after beginning rollout to the pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Scattered clouds cast shadows as Space Shuttle Atlantis crawls back inside the Vehicle Assembly Building high bay 1. After earlier starting its trek to Launch Pad 39B, Atlantis was returned to the VAB due to lightning in the area. To the left of the VAB is the Launch Control Center. The four-story building houses the firing rooms that are used to conduct Space Shuttle launches. Leading away from the VAB, in the foreground, is the crawlerway, the 130-foot-wide road specially constructed to transport the Shuttle, mobile launcher platform and crawler-transporter with a combined weight of about 17 million pounds. Space Shuttle Atlantis is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  15. 4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket Gate Linkages, view to the north. The jacking pump, located along the wall on the left side of photograph, is used for pumping oil to lift the thrust bearing prior to starting the unit. Note the wicket gate linkages attached to the operating ring and visible in the lower center of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  16. 65th birthday Jack Steinberger

    ScienceCinema

    None

    2017-12-09

    Laudatio pour Jack Steinberger né le 25 mai 1921, à l'occasion de son 65me anniversaire et sa retraite officielle, pour sa précieuse collaboration au Cern. Néanmoins son principal activité continuera comme avant dans sa recherche au Cern. Plusieurs orateurs prennent la parole (p.ex. E.Picasso) pour le féliciter et lui rendre hommage

  17. A Bibliographic Tribute to Jack Michael

    ERIC Educational Resources Information Center

    Esch, Barbara E.; Esch, John W.

    2016-01-01

    "In the late 1950's, Jack Michael, a bright but irritating young psychology instructor, moved from the Universities of Kansas to Houston to Arizona State. Along the way he befriended two nontraditional students, protected them through their Ph.D. programs, and turned them loose on the world: Teodoro Ayllon…and Montrose Wolf…" (Risley,…

  18. Load capacity, failure mode and design criteria investigation of sand jacks : full scale load testing of sand jacks.

    DOT National Transportation Integrated Search

    2008-12-01

    A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...

  19. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo in its overhead passage down the Space Station Processing Facility. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  20. STS-44 Atlantis, Orbiter Vehicle (OV) 104, is moved from KSC's OPF

    NASA Image and Video Library

    1991-10-18

    S91-50776 (18 Oct 1991) --- The Space Shuttle Atlantis is moved from the Orbital Processing Facility (OPF) Bay 2 to the Vehicle Assembly Building (VAB) at Kennedy Space Center, Florida. The Atlantis will be mated with the external fuel tank and solid rocket boosters before it is transported to Pad 39A, where it will launch a Department of Defense payload, Mission STS-44, in late 1991.

  1. Shuttle Atlantis on approach for docking to the ISS during STS-110 and Expedition Four

    NASA Image and Video Library

    2002-04-10

    ISS004-E-9944 (10 April 2002) --- The Space Shuttle Atlantis prepares to dock with the International Space Station (ISS) during the STS-110 mission. Aboard Atlantis are astronauts Michael J. Bloomfield, mission commander; Stephen N. Frick, pilot; Rex J. Walheim, Ellen Ochoa, Lee M. E. Morin, Jerry L. Ross, and Steven L. Smith, all mission specialists. The STS-110 crewmembers are delivering the S0 (S-zero) truss, which is visible in Atlantis’ payload bay. This image was taken by an Expedition Four crewmember.

  2. Tough new jack-up for rough seas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    Rowan Company's new deepwater jack-up, Rowan Gorilla I, is scheduled to spud its initial well off the east coast of Canada later this month for a consortium of oil companies including Bow Valley-Husky and ATS Exploration Ltd. The new rig's class designation--Gorilla--reflects designers' expectations for the drilling unit that is suited to work in virtually all ice-free hostile environmental areas of the world. Rowan's confidence in the design, built by Marathon LeTourneau's Vicksburg, Mississippi yard, is reiterated by the fact that two additional rigs in the Gorilla class are being built. Rowan Gorilla II is being constructed at Marathon's Singaporemore » yard, and the Rowan Gorilla III is in early construction stages at the firm's Vicksburg yard. The three Gorilla-class rigs will cost in excess of $85 million each, including owner-furnished drilling equipment. This, according to owners, will make them among the costliest jack-ups in the world. Another record being claimed by the Gorilla-class drilling units is that they are the largest jack-ups in the world. Fully outfitted, a Gorilla contains 16,000 tons of steel. Its triangular hull measures 297 ft from bow to stern and 292 ft across the stern. The rig has a variable load of 2,750 tons for drilling consumables and 42,265 sq ft of deck space. Its ample storage capacity, along with its 503-ft leg length and certain design features, makes the rig compatible with hostile offshore areas, where it can continue drilling for long periods unattended.« less

  3. Lively Jack-O'-Lantern Still Life

    ERIC Educational Resources Information Center

    Sanzaro, Christy

    2010-01-01

    Pumpkin carving is a favorite classroom activity. Around late October, the halls are filled with the sour smell of raw pumpkin innards, as parents, teachers and students are up to their elbows in yellowish strings and slime. These round, orange squash are transformed into jack-o'-lanterns that are placed around the school. The day after Halloween,…

  4. A Heavy-Duty Jack for a Giant Task

    NASA Image and Video Library

    2010-11-03

    A major refurbishment of the giant Mars antenna at NASA Deep Space Network Goldstone Deep Space Communications Complex in California Mojave Desert required workers to jack up millions of pounds of delicate scientific equipment.

  5. STS-112 Atlantis landing at KSC's shuttle landing facility

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis approaches the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .

  6. ISS during departure of STS-115 Space Shuttle Atlantis

    NASA Image and Video Library

    2006-09-17

    STS115-318-026 (17 Sept. 2006) --- Backdropped by the blackness of space and Earth's horizon, the International Space Station moves away from Space Shuttle Atlantis. Earlier the STS-115 and Expedition 13 crews concluded six days of cooperative work onboard the shuttle and station. Undocking of the two spacecraft occurred at 7:50 a.m. (CDT) on Sept. 17, 2006. Atlantis left the station with a new, second pair of 240-foot solar wings, attached to a new 17.5-ton section of truss with batteries, electronics and a giant rotating joint. The new solar arrays eventually will double the station's onboard power when their electrical systems are brought online during the next shuttle flight, planned for launch in December.

  7. KSC-07pd1080

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians observe the sander used to repair hail damage on Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  8. KSC-07pd1081

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians adjust the sander used to repair hail damage on Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  9. Full scale load testing of sand-jacks.

    DOT National Transportation Integrated Search

    2006-06-01

    A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...

  10. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 35mm camera was used to record the image, which includes much of the base of the launch site as well as the launch itself.

  11. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 70mm camera was used to record the image. Note the vegetation and the reflection of the launch in the water across from the launch pad.

  12. Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.

    We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less

  13. Astronaut Jack Fischer at Rock Creek Park

    NASA Image and Video Library

    2017-11-04

    NASA astronaut Jack Fischer answers a question from the audience, Saturday, Nov. 4, 2017 at the Rock Creek Park Nature Center and Planetarium in Washington, DC. During his 136 day mission aboard the ISS, Fischer conducted two spacewalks and hundreds of scientific experiments. Photo Credit: (NASA/Joel Kowsky)

  14. Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002, The camera provided views as the the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.

  15. Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002. The camera provided views as the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.

  16. An experimental study of the mechanism of failure of rocks under borehole jack loading

    NASA Technical Reports Server (NTRS)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  17. STS-112 Atlantis landing at KSC's shuttle landing facility

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis stirs up dust as it touches down on Runway 33 at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .

  18. STS-112 Atlantis landing at KSC's shuttle landing facility

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis casts a needle-shaped shadow as it drops to the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program.

  19. Typhoon Saomai taken from Atlantis during STS-106

    NASA Image and Video Library

    2000-09-09

    STS106-704-063 (9 September 2000) --- Typhoon Saomai swirls in the Pacific Ocean east of Taiwan and the Philippines. The typhoon was captured on film with a 70mm handheld camera by the STS-106 crew members aboard the Space Shuttle Atlantis on September. 9

  20. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- In its overhead passage down the Space Station Processing Facility, the U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo. Both are elements in the construction of the International Space Station. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  1. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  2. KSC-08pd0431

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is towed into the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. Photo credit: NASA/Jack Pfaller

  3. KSC-08pd0430

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is towed toward the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. Photo credit: NASA/Jack Pfaller

  4. Hail damage on Atlantis' external tank is inspected

    NASA Image and Video Library

    2007-04-13

    In the Vehicle Assembly Building, markers show the hail damage being repaired on the external tank of Space Shuttle Atlantis. The white hole with a red circle around it is a hole prepared for molding and material application. The red material is sealant tape so the mold doesn't leak when the foam rises against the mold. The white/ translucent square mold is an area where the foam has been applied and the foam has risen and cured against the mold surface. The area will be de-molded and sanded flush with the adjacent area. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8.

  5. KENNEDY SPACE CENTER, FLA. -- Endeavour backs out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

    NASA Image and Video Library

    2004-01-09

    KENNEDY SPACE CENTER, FLA. -- Endeavour backs out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  6. Kraft pulp from budworm-infested jack pine

    Treesearch

    J. Y. Zhu; Gary C. Myers

    2006-01-01

    This study evaluated the quality of kraft pulp from bud-worm-infested jack pine. The logs were classified as merchantable live, suspect, or merchantable dead. Raw materials were evaluated through visual inspection, analysis of the chemical composition, SilviScan measurement of the density, and measurement of the tracheid length. Unbleached pulps were then refined using...

  7. 75 FR 32357 - Gallatin National Forest; Montana; Jack Rabbit to Big Sky Meadow Village 161 kV Transmission Line...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... DEPARTMENT OF AGRICULTURE Forest Service Gallatin National Forest; Montana; Jack Rabbit to Big Sky... electric transmission line. The upgraded 161-kV transmission line would connect the existing Jack Rabbit... with eight regional entities to improve the reliability of the bulk power system. The Jack Rabbit to...

  8. Stereo photos for evaluating jack pine slash fuels.

    Treesearch

    Richard W. Blank

    1982-01-01

    Describes a quick, visual method for estimating jack pine logging residue and other fuels. The method uses a series of large color photographs and stereo pairs as well as data sheets that detail size classes and loadings of the logging slash and other fuels.

  9. KSC-08pd2541

    NASA Image and Video Library

    2008-09-04

    CAPE CANAVERAL, Fla. – Space shuttle Atlantis approaches the top of Launch Pad 39A after rolling from the Vehicle Assembly Building at NASA's Kennedy Space Center. The shuttle stack, with solid rocket boosters and external fuel tank attached to Atlantis, rest on the mobile launcher platform. Movement is provided by the crawler-transporter underneath. First motion occurred at 9:19 a.m. EDT. The Sept. 2 rollout date was postponed due to Tropical Storm Hanna’s shift to a northern track. Atlantis is scheduled to launch on the STS-125 mission to service NASA’s Hubble Space Telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller

  10. KSC-07pd1079

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians are inspecting the sanding performed on Atlantis' nose cone to repair hail damage. The equipment on the side of the nose cone is the sander. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  11. KSC-07pd1082

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians place a piece of foam on the side of Atlantis' nose cone to rest the sander while they make adjustments. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  12. KSC-07pd1083

    NASA Image and Video Library

    2007-05-09

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, one technician adjusts the sander while another observes as they work on repairing the hail damage to Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  13. KSC-08pd2799

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is in place at the payload changeout room on the rotating service structure. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. At right is Atlantis, atop the mobile launcher platform. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  14. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  15. Astronaut Jack Fischer at Rock Creek Park

    NASA Image and Video Library

    2017-11-04

    NASA astronaut Jack Fischer speaks about his time aboard the International Space Station as part of Expeditions 51 and 52, Saturday, Nov. 4, 2017 at the Rock Creek Park Nature Center and Planetarium in Washington, DC. During his 136 day mission aboard the ISS, Fischer conducted two spacewalks and hundreds of scientific experiments. Photo Credit: (NASA/Joel Kowsky)

  16. Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the ( k + 1)-Equals Ideal

    NASA Astrophysics Data System (ADS)

    Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.

    2014-08-01

    We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.

  17. View of the STS-98 orbiter Atlantis on approach to ISS

    NASA Image and Video Library

    2001-02-09

    ISS001-E-6128 (9 February 2001) --- Atlantis was photographed from the International Space Station (ISS) prior to link-up with international outpost at 10:50 a.m. (CST), Feb. 9, 2001, as the two craft flew over the Western Pacific northeast of New Guinea. About ninety minutes later, hatches were swung open between Atlantis and the ISS, enabling the STS-98 and station crews to greet each other and transfer critical gear before re-closure later in preparation for the first (Feb. 10) of three planned space walks to help in the installation and hookup of Destiny on the station. The photograph was taken with a digital still camera.

  18. STS-34 Atlantis, Orbiter Vehicle (OV) 104, lifts off from KSC LC Pad 39B

    NASA Image and Video Library

    1989-10-18

    STS034-S-025 (18 Oct 1989) --- The STS-34 Space Shuttle Atlantis lifts off from Launch Pad 39-B at 2:53:39:983 p.m. (EDT), marking the beginning of a five-day mission in space. Atlantis carries a crew of five and the spacecraft Galileo, along with a number of other scientific experiments. The Jupiter-bound probe will be deployed from Atlantis some six hours after launch. The journey to the giant planet is expected to take over six years. Crewmembers for the mission are astronauts Donald E. Williams, Michael J. McCulley, Shannon W. Lucid, Franklin R. Chang-Diaz and Ellen S. Baker. The scene was recorded with a 70mm camera.

  19. The Jack Wills crowd: towards a sociology of an elite subculture.

    PubMed

    King, Anthony; Smith, Daniel

    2018-03-01

    British sociologists have long been interested in youth sub-cultures. However British sociologists have tended to focus on working class subcultures and avoided engagement with exclusive sub-cultures of elite social groups. This article seeks to attend to this gap by examining the subculture of a British elite: ex-public school students at select universities in the UK in the twenty-first century. This group consists of a relatively small group of young adults, aged between 18 and 23, who attended public schools, especially one of the nine Clarendon schools (Eton, Winchester, Westminster, St. Paul's, Merchant Taylor's, Shrewsbury, Rugby, Harrow and Charterhouse), and were students at a selective group of British universities, primarily Oxford and Cambridge, Durham, Bristol, Exeter, Bath, Manchester, St Andrews and Edinburgh. The article examines the way in which this group has reconfigured and re-constituted itself in the face of globalizing challenges. Specifically, it examines the way in which participation of ex-public school students in events run by and under the patronage of the high street retailing company, Jack Wills, has played a galvanising role for this group in the last decade. The Jack Wills crowd is an example of how some young adults form exclusive social networks and reproduce prevailing forms of privilege. The social networks built around the Jack Wills subculture is likely to provide them with advantages in the job market through a prodigious network of connections and patrons. The Jack Wills subculture potentially contributions to the socio-economic reproduction of the higher professional middle classes. © London School of Economics and Political Science 2017.

  20. MS Ivins at the Atlantis aft flight deck controls

    NASA Image and Video Library

    2001-02-10

    STS98-E-5078 (10 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, monitors communications from ground controllers from her post at the aft flight deck controls on the Space Shuttle Atlantis. The scene was recorded with a digital still camera.

  1. KSC-07pd0928

    NASA Image and Video Library

    2007-04-25

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, workers check foam repairs on Atlantis' external tank. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  2. Space Shuttle Atlantis lights up the dark at liftoff

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A gap in shrubs across the water from Launch Pad 39A provide the perfect frame for the brilliantly lighted liftoff of Space Shuttle Atlantis on mission STS-101. Liftoff occurred on time at 6:11:10 a.m. EDT. The mission is taking the crew of seven to the International Space Station to deliver logistics and supplies as well as to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk and will reboost the space station from 230 statute miles to 250 statute miles. This will be the third assembly flight to the Space Station. After a 10-day mission, landing is targeted for May 29 at 2:19 a.m. EDT. This is the 98th Shuttle flight and the 21st flight for Shuttle Atlantis.

  3. Application of metal magnetic memory technology on defects detection of jack-up platform

    NASA Astrophysics Data System (ADS)

    Xu, Changhang; Cheng, Liping; Xie, Jing; Yin, Xiaokang; Chen, Guoming

    2016-02-01

    Metal magnetic memory test (MMMT), which is an effective way in evaluating early damages of ferrimagnets, can determine the existence of material stresses concentration and premature defects. As one of offshore oil exploration and development equipment, jack-up platform always generate stress concentration during its life-cycle due to complicated loading condition and the hash marine environment, which will decline the bearing capacity and cause serious consequences. The paper conducts in situ experiments of defects detection on some key structural components of jack-up platform using MMMT. The signals acquired by MMM-System are processed for feature extraction to evaluate the severity of structure stress concentration. The results show that the method presented in this paper based on MMMT can provide an effective and convenient way of defect detection and structural health monitoring for Jack-up Platform.

  4. 3. Historic American Buildings Survey Jack Maley, Photographer May 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Jack Maley, Photographer May 31, 1978 NORTHEAST (BACK) AND SOUTHEAST (SIDE) ELEVATIONS - Franklin Park Zoo, Elephant House, Seaver Street, Boston, Suffolk County, MA

  5. 4. Historic American Buildings Survey Jack Maley, Photographer May 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Jack Maley, Photographer May 31, 1978 SOUTHWEST (FRONT) AND SOUTHEAST (SIDE) ELEVATIONS - Franklin Park Zoo, Elephant House, Seaver Street, Boston, Suffolk County, MA

  6. 2. Historic American Buildings Survey Jack Maley, Photographer May 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Jack Maley, Photographer May 31, 1978 NORTHEAST (BACK) AND NORTHWEST (SIDE) ELEVATIONS - Franklin Park Zoo, Elephant House, Seaver Street, Boston, Suffolk County, MA

  7. 1. Historic American Buildings Survey Jack Maley, Photographer May 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Jack Maley, Photographer May 31, 1978 SOUTHWEST (FRONT) AND NORTHWEST (SIDE) ELEVATIONS - Franklin Park Zoo, Elephant House, Seaver Street, Boston, Suffolk County, MA

  8. 3. Historic American Buildings Survey Jack Maley, Photographer May 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Jack Maley, Photographer May 31, 1978 NORTHEAST (BACK) AND NORTHWEST (SIDE) ELEVATION - Franklin Park Zoo, Feline House, Seaver Street, Boston, Suffolk County, MA

  9. 2. Historic American Buildings Survey Jack Maley, Photographer May 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Jack Maley, Photographer May 31, 1978 SOUTHWEST (FRONT) AND NORTHWEST (SIDE) ELEVATION - Franklin Park Zoo, Feline House, Seaver Street, Boston, Suffolk County, MA

  10. 1. Historic American Buildings Survey Jack Maley, Photographer May 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Jack Maley, Photographer May 31, 1978 SOUTHWEST (FRONT) AND SOUTHEAST (SIDE) ELEVATION - Franklin Park Zoo, Feline House, Seaver Street, Boston, Suffolk County, MA

  11. Sphaeropsis Collar Rot of Red and Jack Pines

    Treesearch

    Glen Stanosz; Linda Haugen; Joseph O' Brien

    2002-01-01

    Sphaeropsis collar rot has been detected in red and jack pines in Wisconsin and Michigan, and it could be affecting pines in other states. This disease may be less familiar than Sphaeropsis shoot blight, but both the incidence and the distribution of collar rot appear to be increasing.

  12. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  13. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis cuts its way through the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  14. KSC-08pd0424

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to theOrbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller

  15. KSC-08pd0426

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller

  16. KSC-08pd0428

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is towed along a two-mile tow-way to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller

  17. KSC-08pd0429

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed toward the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller

  18. KSC-08pd0427

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller

  19. KSC-08pd0425

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller

  20. STS-110 M.S. Smith, Ross, and Walheim in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- (Left to right) STS-110 Mission Specialists Steven Smith, Jerry Ross and Rex Walheim settle into their seats aboard Space Shuttle Atlantis prior to a simulated launch countdown. The simulation is part of Terminal Countdown Demonstration Test activities. TCDT also includes emergency egress training and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  1. 5. 3/4 view looking southwest. Jack Boucher, photographer, 1977 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. 3/4 view looking southwest. Jack Boucher, photographer, 1977 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  2. Exterior view of ISS and Shuttle Atlantis

    NASA Image and Video Library

    2011-07-14

    ISS028-E-016368 (14 July 2011) --- This panoramic view, photographed from the International Space Station, looking past the docked space shuttle Atlantis' cargo bay and part of the station including a solar array panel toward Earth, was taken on July 14 as the joint complex passed over the southern hemisphere. Aurora Australis or the Southern Lights can be seen on Earth's horizon and a number of stars are visible also.

  3. 'Weightless' acrylic painting by Jack Kroehnke

    NASA Technical Reports Server (NTRS)

    1987-01-01

    'Weightless' acrylic painting by Jack Kroehnke depicts STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers participating in extravehicular activity (EVA) simulation in JSC Weightless Environment Training Facility (WETF) Bldg 29. In the payload bay (PLB) mockup, Hilmers, wearing extravehicular mobility unit (EMU), holds onto the mission-peculiar equipment support structure in foreground while SCUBA-equipped diver monitors activity overhead and camera operator records EVA procedures. Copyrighted art work for use by NASA.

  4. Do Jack Hills Detrital Zircons Contain Records of the Early Geodynamo?

    NASA Astrophysics Data System (ADS)

    Weiss, B. P.; Maloof, A. C.; Tailby, N. D.; Ramezani, J.; Fu, R. R.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.; Hanus, V.; Trail, D.; Watson, E. B.; Harrison, T. M.; Bowring, S. A.; Kirschvink, J. L.; Swanson-Hysell, N.; Coe, R. S.; Einsle, J. F.; Harrison, R. J.

    2015-12-01

    It is unknown when Earth's dynamo magnetic field originated. With crystallization ages ranging from 3.0-4.38 Ga, detrital zircon crystals found in the Jack Hills of Western Australia might preserve a record of the missing first billion years of Earth's magnetic field history. Recently, Tarduno et al. (2015) argued that magnetization in Jack Hills zircons provides evidence for a substantial geomagnetic field dating back to their U/Pb formation ages (3.3 and 4.2 Ga). However, the identification of such ancient field records requires establishing that the zircons have avoided remagnetization since their formation. At a minimum, it should be demonstrated that they have not been remagnetized since being deposited at ~3.0 Ga. To establish the timing and intensity of the metamorphic and alteration events experienced by the zircon, we conducted 12 paleomagnetic field tests in combination with U-Pb geochronology on their host rocks (see Weiss et al. 2015, EPSL). Our data show that the Hadean zircon-bearing rocks and surrounding region have been pervasively remagnetized, with the final major overprinting likely from emplacement of the Warakurna large igneous province at 1.1 Ga (see Figure). Even if some Jack Hills zircons do record a pre-depositional magnetization, they still could have been remagnetized sometime during the 1.4 Gy between their crystallization and their deposition. First, the temperatures capable of remagnetizing magnetite inclusions are well below those that could reset a U-Pb date or result in significant discordance. Therefore, thermal events capable of completely remagnetizing Jack Hills zircons could be undetected by the techniques reported by Tarduno at al. (2015). Second, the zircons' magnetization might be dominated by secondary ferromagnetic inclusions or contamination. To address the latter possibility, we are conducting electron microscopy, x-ray tomography, and magnetic field mapping on the zircons. Our initial quantum diamond magnetometry high

  5. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Behind the workers at left is the Joint Airlock Module. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  6. 20. Jack E. Boucher, Photogtapher, May 1974. CLOSEUP VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Jack E. Boucher, Photogtapher, May 1974. CLOSE-UP VIEW OF PAULI-LENTICULAR TRUSS SYSTEM, CENTRAL AREA. - Smithfield Street Bridge, Spanning Monongahela River on Smithfield Street, Pittsburgh, Allegheny County, PA

  7. 7. Straighton view of east portal. Jack Boucher, photographer, 1977 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Straight-on view of east portal. Jack Boucher, photographer, 1977 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  8. 9. View looking east down cantilevered walkway. Jack Boucher, photographer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View looking east down cantilevered walkway. Jack Boucher, photographer, 1977 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  9. Jack Reeves and his science.

    PubMed

    Moore, Lorna G; Grover, Robert F

    2006-04-28

    John T. (Jack) Reeves' science is reviewed across the 37 years of his research career at the University of Colorado Health Sciences Center, a period which occupied approximately half his remarkable life. His contributions centered on understanding the inter-relatedness as well as the underlying mechanisms controlling the various components of the O(2) transport system. We review here his studies on exercise performance; these encompassed about half his scientific output with the other half being devoted to the study of hypoxic pulmonary hypertension. Early studies concerned cardiac output, showing how it was a balance between O(2) uptake and O(2) extraction, and that cardiac output during exercise at high altitude was reduced, most likely because of decreased plasma volume and left ventricular filling. Jack's many studies addressed virtually every aspect of the O(2) transport system -- adding significantly to our understanding of the syndromes of altitude illness, the mechanisms by which ventilatory sensitivity to hypoxia and hypercapnia influenced ventilatory acclimatization, and the contributions of the various limbs of the autonomic nervous system on systemic blood pressure, vascular resistance and substrate utilization. His scientific career ended abruptly in 2004 when struck by a car while biking to work, but his legacy remains in his more than 385+ research articles or chapters, the 40+ fellows he trained, and the countless number of younger (and older) scientists for whom he served as a role model for learning how to scrutinize their data and present their findings in clear and sometimes bold prose. An integral man, he is sorely missed.

  10. 2. EAST SIDE OF SLAVE QUARTERS (Jack E. Boucher, photgrapher, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST SIDE OF SLAVE QUARTERS (Jack E. Boucher, photgrapher, April/May, 1986) - Felix & Odile Pratt Valle Slave Quarters, Southeast corner of Merchant & Second Streets, Sainte Genevieve, Ste. Genevieve County, MO

  11. 19. Jack E, Boucher, Photographer, May 1974. CLOSEUP DETAIL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Jack E, Boucher, Photographer, May 1974. CLOSE-UP DETAIL VIEW OF PAULI-LENTICULAR TRUSS SYSTEM, CENTRAL AREA. - Smithfield Street Bridge, Spanning Monongahela River on Smithfield Street, Pittsburgh, Allegheny County, PA

  12. 4. View looking north showing bridge in elevation. Jack Boucher, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View looking north showing bridge in elevation. Jack Boucher, photographer, 1977 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  13. 21 CFR 133.153 - Monterey cheese and monterey jack cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a lactic acid-producing bacterial culture. One or more of the clotting enzymes specified in... “monterey cheese” or alternatively, “monterey jack cheese”. (d) Label declaration. Each of the ingredients...

  14. 21 CFR 133.153 - Monterey cheese and monterey jack cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a lactic acid-producing bacterial culture. One or more of the clotting enzymes specified in... “monterey cheese” or alternatively, “monterey jack cheese”. (d) Label declaration. Each of the ingredients...

  15. 21 CFR 133.153 - Monterey cheese and monterey jack cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a lactic acid-producing bacterial culture. One or more of the clotting enzymes specified in... “monterey cheese” or alternatively, “monterey jack cheese”. (d) Label declaration. Each of the ingredients...

  16. Space Shuttle Atlantis' external tank repairs from Hail Damage

    NASA Image and Video Library

    2007-04-09

    In the Vehicle Assembly Building, United Space Alliance technicians Brenda Morris and Brian Williams are applying foam and molds on Space Shuttle Atlantis' external tank to areas damaged by hail. The white hole with a red circle around it (upper right) is a hole prepared for molding and material application. The red material is sealant tape so the mold doesn't leak when the foam rises against the mold. The white/ translucent square mold is an area where the foam has been applied and the foam has risen and cured against the mold surface. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The March launch was postponed and has not yet been rescheduled due to the repair process.

  17. Space Shuttle Atlantis' external tank repairs from Hail Damage

    NASA Image and Video Library

    2007-04-09

    In the Vehicle Assembly Building, markers show the hail damage being repaired on the external tank of Space Shuttle Atlantis. The white hole with a red circle around it is a hole prepared for molding and material application. The red material is sealant tape so the mold doesn't leak when the foam rises against the mold. The white/ translucent square mold is an area where the foam has been applied and the foam has risen and cured against the mold surface. The area will be de-molded and sanded flush the with adjacent area. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The March launch was postponed and has not yet been rescheduled due to the repair process.

  18. KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello is lifted from its stand in the Space Station Processing Facility to move to another work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

    NASA Image and Video Library

    2004-02-10

    KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello is lifted from its stand in the Space Station Processing Facility to move to another work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.

  19. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With landing gear down, space shuttle Atlantis approaches landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  20. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With drag chute unfurled, space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  1. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Sandra Joseph

  2. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls as space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  3. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  4. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis kicks up dust as it touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  5. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Streams of smoke trail from the main landing gear tires as space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million-mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  6. STS-101 Space Shuttle Atlantis after RSS rollback at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Rotating Service Structure (left) begins rolling back from Space Shuttle Atlantis on Launch Pad 39A. Atlantis is targeted for liftoff at 4:15 p.m. EDT April 24 on mission STS-101. The mission will take the crew of seven to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  7. KSC-07pd0927

    NASA Image and Video Library

    2007-04-25

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, foam repairs on Atlantis' external tank include sanding and inspection, as seen here. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  8. KSC-07pd0929

    NASA Image and Video Library

    2007-04-25

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, a worker carefully sands foam repairs on Atlantis' external tank. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch now is targeted for June 8. Photo credit: NASA/Jack Pfaller

  9. View of Atlantis as it leaves the ISS

    NASA Image and Video Library

    2009-11-25

    ISS021-E-033360 (25 Nov. 2009) --- Surrounded by the blackness of space, this profile view of the space shuttle Atlantis was photographed by an Expedition 21 crew member on the International Space Station soon after the shuttle and station began their post-undocking relative separation. Undocking of the two spacecraft occurred at 3:53 a.m. (CST) on Nov. 25, 2009.

  10. JACK CREEK BASIN, MONTANA.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Van Noy, Ronald M.

    1984-01-01

    A mineral survey of the Jack Creek basin area in Montana revealed that phosphate rock underlies the basin. The phosphate rock is in thin beds that dip steeply and are broken and offset by faults. These features plus the rugged topography of the region would make mining difficult; however, this study finds the area to have a probable mineral-resource potential for phosphate. Sedimentary rock formations favorable for oil and gas also underlie the basin. No oil or gas has been produced from the basin or from nearby areas in southwestern Montana, but oil and gas have been produced from the same favorable formations elsewhere in Montana. The possibility of oil and gas being produced from the basin is slight but it cannot be ignored.

  11. STS-84 Atlantis on Pad 39-A after RSS roll back

    NASA Technical Reports Server (NTRS)

    1997-01-01

    News media representatives watch and record as the Space Shuttle Atlantis in full launch configuration is revealed after the Rotating Service Structure (RSS) is rotated back at Launch Pad 39A. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). Atlantis and its crew of seven are in final preparations for liftoff on Mission STS-84, the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Launch is scheduled at about 4:08 a.m. during an approximately 7-minute launch window. The exact liftoff time will be determined about 90 minutes prior to launch, based on the most current location of Mir.

  12. STS-27 Atlantis, OV-104, lifts off from KSC Launch Complex (LC) Pad 39B

    NASA Image and Video Library

    1988-12-02

    STS027-S-005 (Dec 2, 1988) --- Space Shuttle Atlantis is launched from Kennedy Space Center's (KSC) Pad 39-B at 9:30 a.m. EST, on a Department of Defense (DOD) dedicated mission. This is the third mission for the orbiter Atlantis. Crew members are: Commander Robert L. "Hoot" Gibson; Pilot Guy S. Gardner; and Mission Specialists Jerry L. Ross, William M. Shepherd and Richard M. (Mike) Mullane.

  13. Prediction methods of spudcan penetration for jack-up units

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-xia; Duan, Meng-lan; Li, Hai-ming; Zhao, Jun; Wang, Jian-jun

    2012-12-01

    Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.

  14. KENNEDY SPACE CENTER, FLA. -- Endeavour begins rolling out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

    NASA Image and Video Library

    2004-01-09

    KENNEDY SPACE CENTER, FLA. -- Endeavour begins rolling out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  15. KENNEDY SPACE CENTER, FLA. -- Endeavour is ready to be rolled out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

    NASA Image and Video Library

    2004-01-09

    KENNEDY SPACE CENTER, FLA. -- Endeavour is ready to be rolled out of the Orbiter Processing Facility for temporary transfer to the Vehicle Assembly Building. The move allows work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  16. Making Learning Fun: Quest Atlantis, A Game Without Guns

    ERIC Educational Resources Information Center

    Barab, Sasha; Thomas, Michael; Dodge, Tyler; Carteaux, Robert; Tuzun, Hakan

    2005-01-01

    This article describes the Quest Atlantis (QA) project, a learning and teaching project that employs a multiuser, virtual environment to immerse children, ages 9-12, in educational tasks. QA combines strategies used in commercial gaming environments with lessons from educational research on learning and motivation. It allows users at participating…

  17. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - With nearly 7 million pounds of thrust generated by twin solid rocket boosters and three main engines, space shuttle Atlantis zooms into the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kenny Allen

  18. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Twitter followers and media representatives at the NASA Press Site witness space shuttle Atlantis cut its way through the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Gianni Woods

  19. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - With nearly 7 million pounds of thrust generated by twin solid rocket boosters and three main engines, space shuttle Atlantis races to orbit over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kenny Allen

  20. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Twitter followers and media representatives at the NASA Press Site watch as space shuttle Atlantis springs into action from Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Gianni Woods

  1. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Like a phoenix rising from the flames, space shuttle Atlantis takes flight from Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  2. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Twitter followers and media representatives at the NASA Press Site have front-row seats as space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Gianni Woods

  3. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - An exhaust cloud begins to form around space shuttle Atlantis as it springs into action from Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit:Jim Grossmann

  4. Geographic variation of jack pine (Pinus banksiana Lamb.)

    Treesearch

    Jung Oh Hyun

    1977-01-01

    Ten traits were measured on 10-year-old jack pine grown at Cloquet, Minnesota, from seed collected from 90 provenances. The traits were examined by using analysis of variance and computing correlations for all combinations of 9 traits plus latitude , longitude, and elevation of the seed sources and cluster analyses using the D2 values from the...

  5. Jack Colby Continues Stellar Legacy of APPA Fellows

    ERIC Educational Resources Information Center

    Thaler-Carter, Ruth E.

    2011-01-01

    This article profiles 2011 APPA Fellow Jack K. Colby, assistant vice chancellor for facilities operations at North Carolina State University. Colby has a history of nonstop service to his profession and to APPA that makes that ever-active, never-stop rabbit look like a piker. Like previous APPA Fellows, Colby could easily rest on his laurels of…

  6. Seismic analysis of the frame structure reformed by cutting off column and jacking based on stiffness ratio

    NASA Astrophysics Data System (ADS)

    Zhao, J. K.; Xu, X. S.

    2017-11-01

    The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.

  7. KSC-08pd0423

    NASA Image and Video Library

    2008-02-20

    KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility runway at NASA's Kennedy Space Center, a tractor tow vehicle is backed up to space shuttle Atlantis for towing to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller

  8. Investigating the Jack the Ripper Case: Engaging Students in a Criminal Investigations Class through Active Learning

    ERIC Educational Resources Information Center

    Gutierrez, Daniel; Kazmi, Syed

    2010-01-01

    The present study examines the utilization of a class project involving the Jack the Ripper murders. Students enrolled in a criminal investigations class were required to investigate the five canonical murders associated with the infamous serial killer known as Jack the Ripper and the murders that occurred in London during 1888. This paper…

  9. Jack Michael's Musings on the 60th Anniversary of Skinner's "Verbal Behavior"

    ERIC Educational Resources Information Center

    Esch, Barbara E.; Esch, John W.; Palmer, David C.

    2017-01-01

    When the B. F. Skinner Foundation reprinted Skinner's "Verbal Behavior" in 1992, Jack Michael wrote one of its two forewords, a detailed outline of the book's purpose and scope. On the 60th anniversary of the first publication (1957) of "Verbal Behavior", Jack reflects on the book's impact and its importance to the…

  10. STS-34 Galileo PCR at Pad & Galileo in Atlantis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The primary objective of the STS-34 mission was the deployment of the Galileo spacecraft and the attached Inertial Upper Stage. This videotape shows the Galileo in the Payload Clean Room in preparation for the six year trip to Jupiter. There are also views of the spacecraft in the Atlantis Payload Bay.

  11. STS-27 Atlantis, Orbiter Vehicle (OV) 104, liftoff

    NASA Image and Video Library

    1988-12-02

    S88-55870 (2 Dec. 1988) --- The space shuttle Atlantis and its five-man crew of astronauts are launched from Kennedy Space Center?s Pad 39B at 9:30 a.m. (EST), Dec. 2, 1988. Onboard the Department of Defense?dedicated mission are astronauts Robert L. Gibson, Guy S. Gardner, Jerry L. Ross, Richard M. (Mike) Mullane and Williams M. Shepherd. Photo credit: NASA

  12. Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets.

    PubMed

    Bastías, José M; Balladares, Pamela; Acuña, Sergio; Quevedo, Roberto; Muñoz, Ociel

    2017-01-01

    The effect of four cooking methods was evaluated for proximate composition, fatty acid, calcium, iron, and zinc content in salmon and Chilean jack mackerel. The moisture content of steamed salmon decreased (64.94%) compared to the control (68.05%); a significant decrease was observed in Chilean jack mackerel in all the treatments when compared to the control (75.37%). Protein content in both salmon and Chilean jack mackerel significantly increased under the different treatments while the most significant decrease in lipids was found in oven cooking and canning for salmon and microwaving for Chilean jack mackerel. Ash concentration in both salmon and Chilean jack mackerel did not reveal any significant differences. Iron and calcium content only had significant changes in steaming while zinc did not undergo any significant changes in the different treatments. Finally, no drastic changes were observed in the fatty acid profile in both salmon and Chilean jack mackerel.

  13. HOW to Identify and Control Stem Rusts of Jack Pine

    Treesearch

    Kathryn Robbins; Dale K. Smeltzer; D. W. French

    Damage to jack pine caused by rust fungi includes growth reduction, cankers, death (by girdling or wind breakage), and creation of entryways for other fungi and insects. Seedlings and saplings are more seriously affected than older trees.

  14. Atlantis and Payload on Approach to ISS during the STS-132 Mission

    NASA Image and Video Library

    2010-05-16

    ISS023-E-044611 (16 May 2010) --- Flying above the Atlantic coast of Spain and the Gulf of Cadiz, the space shuttle Atlantis is shown making its relative approach to the International Space Station, from which this photo was taken. The tip of a Russian spacecraft, temporarily docked to the orbital outpost can be seen at top center. The coast includes the city of Ayamonte (left of image as photographed), past Huelva (under Atlantis), past the sand dunes, the Rio Guadalquivir, to the city of Rota. Center point coordinates of the area pictured in the image are 37.3 degrees north latitude and 6.7 degrees west longitude. Photo credit: NASA or National Aeronautics and Space Administration

  15. KSC-08pd2798

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted to the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  16. KSC-08pd2796

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted toward the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  17. KSC-08pd2797

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted toward the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  18. Is the lateral jack-knife position responsible for cases of transient neurapraxia?

    PubMed

    Molinares, Diana Margarita; Davis, Timothy T; Fung, Daniel A; Liu, John Chung-Liang; Clark, Stephen; Daily, David; Mok, James M

    2016-01-01

    The lateral jack-knife position is often used during transpsoas surgery to improve access to the spine. Postoperative neurological signs and symptoms are very common after such procedures, and the mechanism is not adequately understood. The objective of this study is to assess if the lateral jack-knife position alone can cause neurapraxia. This study compares neurological status at baseline and after positioning in the 25° right lateral jack-knife (RLJK) and the right lateral decubitus (RLD) position. Fifty healthy volunteers, ages 21 to 35, were randomly assigned to one of 2 groups: Group A (RLD) and Group B (RLJK). Motor and sensory testing was performed prior to positioning. Subjects were placed in the RLD or RLJK position, according to group assignment, for 60 minutes. Motor testing was performed immediately after this 60-minute period and again 60 minutes thereafter. Sensory testing was performed immediately after the 60-minute period and every 15 minutes thereafter, for a total of 5 times. Motor testing was performed by a physical therapist who was blinded to group assignment. A follow-up call was made 7 days after the positioning sessions. Motor deficits were observed in the nondependent lower limb in 100% of the subjects in Group B, and no motor deficits were seen in Group A. Statistically significant differences (p < 0.05) were found between the 2 groups with respect to the performance on the 10-repetition maximum test immediately immediately and 60 minutes after positioning. Subjects in Group B had a 10%-70% (average 34.8%) decrease in knee extension strength and 20%-80% (average 43%) decrease in hip flexion strength in the nondependent limb. Sensory abnormalities were observed in the nondependent lower limb in 98% of the subjects in Group B. Thirty-six percent of the Group B subjects still exhibited sensory deficits after the 60-minute recovery period. No symptoms were reported by any subject during the follow-up calls 7 days after positioning. Twenty

  19. Commander Bloomfield poses on the middeck of Atlantis during STS-110

    NASA Image and Video Library

    2002-04-08

    STS110-E-5033 (8 April 2002) --- Astronaut Michael J. Bloomfield, STS-110 mission commander, is photographed on the mid deck of the Space Shuttle Atlantis. The image was taken with a digital still camera.

  20. The late Quaternary history of lodgepole and jack pines

    Treesearch

    William B. Critchfield

    1985-01-01

    Lodgepole and jack pines (Pinus contorta Dougl. ex. Loud, and Pinus banksiana Lamb.), components of the North American boreal forest, have pioneering roles after major disturbances such as fire or glaciation. These species are closely related and hybridize in western Canada, but their fossil records and contemporary variation...

  1. Filling Holes with Words: An Interview with Jack Gantos.

    ERIC Educational Resources Information Center

    Shoemaker, Joel

    2003-01-01

    This interview with Jack Gantos, an author who writes books for young adults, focuses on how he uses his own personal experiences in his books. Discusses memories of his father and his childhood, drug-smuggling activities and the resulting jail time, and student reactions to his books. (LRW)

  2. The Bildungsroman Tradition: The Philosophical Maturation of Jack Burden in "All The King's Men"

    ERIC Educational Resources Information Center

    Al-Shraah, Bassam M.

    2017-01-01

    This paper aims to sketch out the transformation that Jack Burden--the main character in the novel--had gone through. With all the political leanings in Warren's "All the king's Men," Jack Burden seems to have had developed his own theories of dealing with life and people all through his life. He has always suffered an inferiority…

  3. NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as the unusual combination left for Kennedy Space Center, Florida, on March 1, 2001. Atlantis and the shuttle Columbia were both airborne on the same day as they migrated from California to Florida. Columbia underwent refurbishing at nearby Palmdale, California.

  4. Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets

    PubMed Central

    Balladares, Pamela; Acuña, Sergio; Quevedo, Roberto; Muñoz, Ociel

    2017-01-01

    The effect of four cooking methods was evaluated for proximate composition, fatty acid, calcium, iron, and zinc content in salmon and Chilean jack mackerel. The moisture content of steamed salmon decreased (64.94%) compared to the control (68.05%); a significant decrease was observed in Chilean jack mackerel in all the treatments when compared to the control (75.37%). Protein content in both salmon and Chilean jack mackerel significantly increased under the different treatments while the most significant decrease in lipids was found in oven cooking and canning for salmon and microwaving for Chilean jack mackerel. Ash concentration in both salmon and Chilean jack mackerel did not reveal any significant differences. Iron and calcium content only had significant changes in steaming while zinc did not undergo any significant changes in the different treatments. Finally, no drastic changes were observed in the fatty acid profile in both salmon and Chilean jack mackerel. PMID:28686742

  5. Atlantis University: A New Pedagogical Approach beyond E-Learning

    ERIC Educational Resources Information Center

    Bleimann, Udo

    2004-01-01

    Atlantis University is an ambitious international project in the area of learning and is currently being developed by a group of universities and companies. It combines three different types of learning and teaching to form a single package offered to Students and people in the workplace alike: face-to-face learning, e-learning and project-based…

  6. Hurricane Florence as seen from STS-66 shuttle Atlantis

    NASA Image and Video Library

    1994-11-14

    From 165 nautical miles above the earth, the STS-66 astronauts were able to capture detail in a number of storm systems around the globe during their 11-day stay in space aboard the Space Shuttle Atlantis. A 70mm handheld Hasselblad was used to photograph Hurricane Florence in the Atlantic Ocean, about 400 miles from Bermuda.

  7. Ten-year height growth variation in Lake States jack pine

    Treesearch

    James P. King

    1966-01-01

    Jack pine (Pinus banksiana Lamb.) is one of the major pulpwood producing species in the Lake States. It is found on a variety of sites, but its outstanding characteristic is its ability to make early rapid growth on dry sandy soils.

  8. Space Shuttle Atlantis/STS-98 shortly before being towed to NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-02-20

    Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  9. KSC-2011-3043

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  10. KSC-2011-3041

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  11. KSC-2011-3044

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  12. KSC-2011-3040

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is transferred to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  13. KSC-2011-3051

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  14. KSC-2011-3053

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  15. KSC-2011-3042

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  16. KSC-2011-3049

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is being lowered between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  17. KSC-2011-3039

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is transferred to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  18. KSC-2011-3048

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers guide external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  19. KSC-2011-3047

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers guide external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  20. Shuttle Atlantis Landing at Edwards

    NASA Image and Video Library

    1985-12-03

    NASA's Space Shuttle Atlantis touched down on the lakebed runway at Edwards Air Force Base in California's Mojave Desert Tuesday, 3 December 1985 at 1:33:49 p.m. Pacific Standard Time, concluding the STS 61-B international mission. The eight-day mission successfully deployed three communications satellites including the Mexican Morelos B, the Australian Aussat 2 and an RCA Satcom K-2 satellite. In addition, two spacewalks were performed to experiment with construction of structures in space. Crew of the 61-B mission included Commander Brewster H. Shaw, Jr.; Pilot Bryan D. O'Connor; Mission Specialists Mary L. Cleave, Sherwood C. Spring and Jerry L. Ross; and Payload Specialists Rudolfo Neri Vela of Mexico and Charles Walker of McDonnell Douglas Astronautics Co.