Sample records for jacobi elliptic function

  1. A Primer on Elliptic Functions with Applications in Classical Mechanics

    ERIC Educational Resources Information Center

    Brizard, Alain J.

    2009-01-01

    The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…

  2. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

    PubMed Central

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327

  3. F-expansion method and new exact solutions of the Schrödinger-KdV equation.

    PubMed

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

  4. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

    PubMed

    Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping

    2011-02-01

    We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society

  5. Jacobi spectral Galerkin method for elliptic Neumann problems

    NASA Astrophysics Data System (ADS)

    Doha, E.; Bhrawy, A.; Abd-Elhameed, W.

    2009-01-01

    This paper is concerned with fast spectral-Galerkin Jacobi algorithms for solving one- and two-dimensional elliptic equations with homogeneous and nonhomogeneous Neumann boundary conditions. The paper extends the algorithms proposed by Shen (SIAM J Sci Comput 15:1489-1505, 1994) and Auteri et al. (J Comput Phys 185:427-444, 2003), based on Legendre polynomials, to Jacobi polynomials with arbitrary α and β. The key to the efficiency of our algorithms is to construct appropriate basis functions with zero slope at the endpoints, which lead to systems with sparse matrices for the discrete variational formulations. The direct solution algorithm developed for the homogeneous Neumann problem in two-dimensions relies upon a tensor product process. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented.

  6. New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function.

    PubMed

    Milne, S C

    1996-12-24

    In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi's (1829) 4 and 8 squares identities to 4n(2) or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan's tau function tau(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the eta-function identities in appendix I of Macdonald's work [Macdonald, I. G. (1972) Invent. Math. 15, 91-143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415-456] identities involving representing a positive integer by sums of 4n(2) or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C(l) nonterminating (6)phi(5) summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n(2) or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.

  7. Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs

    NASA Astrophysics Data System (ADS)

    Del Zotto, Michele; Gu, Jie; Huang, Min-xin; Kashani-Poor, Amir-Kian; Klemm, Albrecht; Lockhart, Guglielmo

    2018-03-01

    We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition function at given base degree, exact in all fiber classes to arbitrary order and to all genus, in terms of a rational function of weak Jacobi forms. Our results yield, at given base degree, the elliptic genus of the corresponding non-critical 6d string, and thus the associated BPS invariants of the 6d theory. The required elliptic indices are determined from the chiral anomaly 4-form of the 2d worldsheet theories, or the 8-form of the corresponding 6d theories, and completely fix the holomorphic anomaly equation constraining the partition function. We introduce subrings of the known rings of Weyl invariant Jacobi forms which are adapted to the additional symmetries of the partition function, making its computation feasible to low base wrapping number. In contradistinction to the case of simpler singularities, generic vanishing conditions on BPS numbers are no longer sufficient to fix the modular ansatz at arbitrary base wrapping degree. We show that to low degree, imposing exact vanishing conditions does suffice, and conjecture this to be the case generally.

  8. An Anharmonic Solution to the Equation of Motion for the Simple Pendulum

    ERIC Educational Resources Information Center

    Johannessen, Kim

    2011-01-01

    An anharmonic solution to the differential equation describing the oscillations of a simple pendulum at large angles is discussed. The solution is expressed in terms of functions not involving the Jacobi elliptic functions. In the derivation, a sinusoidal expression, including a linear and a Fourier sine series in the argument, has been applied.…

  9. Predator prey oscillations in a simple cascade model of drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berionni, V.; Guercan, Oe. D.

    2011-11-15

    A reduced three shell limit of a simple cascade model of drift wave turbulence, which emphasizes nonlocal interactions with a large scale mode, is considered. It is shown to describe both the well known predator prey dynamics between the drift waves and zonal flows and to reduce to the standard three wave interaction equations. Here, this model is considered as a dynamical system whose characteristics are investigated. The analytical solutions for the purely nonlinear limit are given in terms of the Jacobi elliptic functions. An approximate analytical solution involving Jacobi elliptic functions and exponential growth is computed using scale separationmore » for the case of unstable solutions that are observed when the energy injection rate is high. The fixed points of the system are determined, and the behavior around these fixed points is studied. The system is shown to display periodic solutions corresponding to limit cycle oscillations, apparently chaotic phase space orbits, as well as unstable solutions that grow slowly while oscillating rapidly. The period doubling route to transition to chaos is examined.« less

  10. Why There Are No Elliptical Galaxies More Flattened Than E7. Thirty Years Later

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2006-12-01

    Elliptical galaxies are modelled as homeoidally striated Jacobi ellipsoids (Caimmi and Marmo 2005) where the peculiar velocity distribution is anisotropic, or equivalently as their adjoint configurations i.e. classical Jacobi ellipsoids of equal mass and axes, in real or imaginary rotation (Caimmi 2006). Reasons for the coincidence of bifurcation points from axisymmetric to triaxial configurations in both the sequences (Caimmi 2006), contrary to earlier findings (Wiegandt 1982a,b, Caimmi and Marmo 2005) are presented and discussed. The effect of centrifugal support at the ends of the major equatorial axis is briefly outlined. The existence of a lower limit to the flattening of elliptical galaxies is investigated in dealing with a number of limiting situations. More specifically, (i) elliptical galaxies are considered as isolated systems, and an allowed region within Ellipsoidland (Hunter and de Zeeuw 1997), related to the occurrence of bifurcation points from ellipsoidal to pear-shaped configurations, is shown to be consistent with observations; (ii) elliptical galaxies are considered as embedded within dark matter haloes and, under reasonable assumptions, it is shown that tidal effects from hosting haloes have little influence on the above mentioned results; (iii) dark matter haloes and embedded elliptical galaxies, idealized as a single homeoidally striated Jacobi ellipsoid, are considered in connection with the cosmological transition from expansion to relaxation, by generalizing an earlier model (Thuan and Gott 1975), and the existence of a lower limit to the flattening of relaxed (oblate-like) configurations, is established. On the other hand, no lower limit is found to the elongation of relaxed (prolate-like) configurations, and the existence of some sort of instability is predicted, owing to the observed lack of elliptical galaxies more flattened or elongated than E7.

  11. VizieR Online Data Catalog: ynogkm: code for calculating time-like geodesics (Yang+, 2014)

    NASA Astrophysics Data System (ADS)

    Yang, X.-L.; Wang, J.-C.

    2013-11-01

    Here we present the source file for a new public code named ynogkm, aim on calculating the time-like geodesics in a Kerr-Newmann spacetime fast. In the code the four Boyer-Lindquis coordinates and proper time are expressed as functions of a parameter p semi-analytically, i.e., r(p), μ(p), φ(p), t(p), and σ(p), by using the Weiers- trass' and Jacobi's elliptic functions and integrals. All of the ellip- tic integrals are computed by Carlson's elliptic integral method, which guarantees the fast speed of the code.The source Fortran file ynogkm.f90 contains three modules: constants, rootfind, ellfunction, and blcoordinates. (3 data files).

  12. Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E.; Bhrawy, A.

    2006-06-01

    It is well known that spectral methods (tau, Galerkin, collocation) have a condition number of ( is the number of retained modes of polynomial approximations). This paper presents some efficient spectral algorithms, which have a condition number of , based on the Jacobi?Galerkin methods of second-order elliptic equations in one and two space variables. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. The complexities of the algorithms are a small multiple of operations for a -dimensional domain with unknowns, while the convergence rates of the algorithms are exponentials with smooth solutions.

  13. Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals

    NASA Astrophysics Data System (ADS)

    Schwalm, William A.

    2015-12-01

    This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first- and second-year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

  14. Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptic Coplanar Orbits

    NASA Technical Reports Server (NTRS)

    daSilvaFernandes, Sandro; dasChagasCarvalho, Francisco

    2007-01-01

    In this work, a complete first order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through Hamilton-Jacobi theory and a perturbation method based on Lie series.

  15. Efficient relaxed-Jacobi smoothers for multigrid on parallel computers

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Mittal, Rajat

    2017-03-01

    In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.

  16. Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach.

    PubMed

    Petrović, Nikola Z; Aleksić, Najdan B; Belić, Milivoj

    2015-04-20

    We analyze the modulation stability of spatiotemporal solitary and traveling wave solutions to the multidimensional nonlinear Schrödinger equation and the Gross-Pitaevskii equation with variable coefficients that were obtained using Jacobi elliptic functions. For all the solutions we obtain either unconditional stability, or a conditional stability that can be furnished through the use of dispersion management.

  17. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  18. Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect

    NASA Astrophysics Data System (ADS)

    Das, Amiya; Ganguly, Asish

    2017-07-01

    The paper deals with Kadomtsev-Petviashvili (KP) equation in presence of a small dispersion effect. The nature of solutions are examined under the dispersion effect by using Lyapunov function and dynamical system theory. We prove that when dispersion is added to the KP equation, in certain regions, yet there exist bounded traveling wave solutions in the form of solitary waves, periodic and elliptic functions. The general solution of the equation with or without the dispersion effect are obtained in terms of Weirstrass ℘ functions and Jacobi elliptic functions. New form of kink-type solutions are established by exploring a new technique based on factorization method, use of functional transformation and the Abel's first order nonlinear equation. Furthermore, the stability analysis of the dispersive solutions are examined which shows that the traveling wave velocity is a bifurcation parameter which governs between different classes of waves. We use the phase plane analysis and show that at a critical velocity, the solution has a transcritical bifurcation.

  19. Travelling wave solutions and conservation laws for the Korteweg-de Vries-Bejamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Simbanefayi, Innocent; Khalique, Chaudry Masood

    2018-03-01

    In this work we study the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) equation, which describes the two-way propagation of waves. Using Lie symmetry method together with Jacobi elliptic function expansion and Kudryashov methods we construct its travelling wave solutions. Also, we derive conservation laws of the KdV-BBM equation using the variational derivative approach. In this method, we begin by computing second-order multipliers for the KdV-BBM equation followed by a derivation of the respective conservation laws for each multiplier.

  20. Optical soliton solutions, periodic wave solutions and complexitons of the cubic Schrödinger equation with a bounded potential

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Zou, Li

    2018-01-01

    In this paper, we consider the cubic Schrödinger equation with a bounded potential, which describes the propagation properties of optical soliton solutions. By employing an ansatz method, we precisely derive the bright and dark soliton solutions of the equation. Moreover, we obtain three classes of analytic periodic wave solutions expressed in terms of the Jacobi's elliptic functions including cn ,sn and dn functions. Finally, by using a tanh function method, its complexitons solutions are derived in a very natural way. It is hoped that our results can enrich the nonlinear dynamical behaviors of the cubic Schrödinger equation with a bounded potential.

  1. Generalization of Jacobi's Decomposition Theorem to the Rotation and Translation of a Solid in a Fluid.

    NASA Astrophysics Data System (ADS)

    Chiang, Rong-Chang

    Jacobi found that the rotation of a symmetrical heavy top about a fixed point is composed of the two torque -free rotations of two triaxial bodies about their centers of mass. His discovery rests on the fact that the orthogonal matrix which represents the rotation of a symmetrical heavy top is decomposed into a product of two orthogonal matrices, each of which represents the torque-free rotations of two triaxial bodies. This theorem is generalized to the Kirchhoff's case of the rotation and translation of a symmetrical solid in a fluid. This theorem requires the explicit computation, by means of theta functions, of the nine direction cosines between the rotating body axes and the fixed space axes. The addition theorem of theta functions makes it possible to decompose the rotational matrix into a product of similar matrices. This basic idea of utilizing the addition theorem is simple but the carry-through of the computation is quite involved and the full proof turns out to be a lengthy process of computing rather long and complex expressions. For the translational motion we give a new treatment. The position of the center of mass as a function of the time is found by a direct evaluation of the elliptic integral by means of a new theta interpretation of Legendre's reduction formula of the elliptic integral. For the complete solution of the problem we have added further the study of the physical aspects of the motion. Based on a complete examination of the all possible manifolds of the steady helical cases it is possible to obtain a full qualitative description of the motion. Many numerical examples and graphs are given to illustrate the rotation and translation of the solid in a fluid.

  2. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  3. Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Melson, N. Duane

    1998-01-01

    We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.

  4. YNOGK: A New Public Code for Calculating Null Geodesics in the Kerr Spacetime

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Wang, Jiancheng

    2013-07-01

    Following the work of Dexter & Agol, we present a new public code for the fast calculation of null geodesics in the Kerr spacetime. Using Weierstrass's and Jacobi's elliptic functions, we express all coordinates and affine parameters as analytical and numerical functions of a parameter p, which is an integral value along the geodesic. This is the main difference between our code and previous similar ones. The advantage of this treatment is that the information about the turning points does not need to be specified in advance by the user, and many applications such as imaging, the calculation of line profiles, and the observer-emitter problem, become root-finding problems. All elliptic integrations are computed by Carlson's elliptic integral method as in Dexter & Agol, which guarantees the fast computational speed of our code. The formulae to compute the constants of motion given by Cunningham & Bardeen have been extended, which allow one to readily handle situations in which the emitter or the observer has an arbitrary distance from, and motion state with respect to, the central compact object. The validation of the code has been extensively tested through applications to toy problems from the literature. The source FORTRAN code is freely available for download on our Web site http://www1.ynao.ac.cn/~yangxl/yxl.html.

  5. Local, smooth, and consistent Jacobi set simplification

    DOE PAGES

    Bhatia, Harsh; Wang, Bei; Norgard, Gregory; ...

    2014-10-31

    The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lackmore » fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).« less

  6. A Comprehensive Analytical Solution of the Nonlinear Pendulum

    ERIC Educational Resources Information Center

    Ochs, Karlheinz

    2011-01-01

    In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…

  7. Numerical methods for systems of conservation laws of mixed type using flux splitting

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1990-01-01

    The essentially non-oscillatory (ENO) finite difference scheme is applied to systems of conservation laws of mixed hyperbolic-elliptic type. A flux splitting, with the corresponding Jacobi matrices having real and positive/negative eigenvalues, is used. The hyperbolic ENO operator is applied separately. The scheme is numerically tested on the van der Waals equation in fluid dynamics. Convergence was observed with good resolution to weak solutions for various Riemann problems, which are then numerically checked to be admissible as the viscosity-capillarity limits. The interesting phenomena of the shrinking of elliptic regions if they are present in the initial conditions were also observed.

  8. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  9. Squashed Toric Sigma Models and Mock Modular Forms

    NASA Astrophysics Data System (ADS)

    Gupta, Rajesh Kumar; Murthy, Sameer

    2018-05-01

    We study a class of two-dimensional N}=(2,2)} sigma models called squashed toric sigma models, using their Gauged Linear Sigma Models (GLSM) description. These models are obtained by gauging the global {U(1)} symmetries of toric GLSMs and introducing a set of corresponding compensator superfields. The geometry of the resulting vacuum manifold is a deformation of the corresponding toric manifold in which the torus fibration maintains a constant size in the interior of the manifold, thus producing a neck-like region. We compute the elliptic genus of these models, using localization, in the case when the unsquashed vacuum manifolds obey the Calabi-Yau condition. The elliptic genera have a non-holomorphic dependence on the modular parameter {τ} coming from the continuum produced by the neck. In the simplest case corresponding to squashed {C / Z_{2 the elliptic genus is a mixed mock Jacobi form which coincides with the elliptic genus of the {N=(2,2)} {SL(2,R) / U(1)} cigar coset.

  10. Difference Schemes and Applications

    DTIC Science & Technology

    2015-02-06

    was found. An analogous investigation with the same conclusions was performed for boundary layer flows and wall- jets . The authors came to the...Distribution A: Approved for public release; distribution is unlimited. 31 There are other phenomena, such as the flow of liquids containing small gas...obtained an asymptotic solution consisting of a damped cnoidal (a Jacobi elliptic cosine) wave matched to the solitary wave solution of the KdV

  11. New formulae between Jacobi polynomials and some fractional Jacobi functions generalizing some connection formulae

    NASA Astrophysics Data System (ADS)

    Abd-Elhameed, W. M.

    2017-07-01

    In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.

  12. Van der Waals interactions between planar substrate and tubular lipid membranes undergoing pearling instability

    NASA Astrophysics Data System (ADS)

    Valchev, G. S.; Djondjorov, P. A.; Vassilev, V. M.; Dantchev, D. M.

    2017-10-01

    In the current article we study the behavior of the van der Waals force between a planar substrate and an axisymmetric bilayer lipid membrane undergoing pearling instability, caused by uniform hydrostatic pressure difference. To do so, the recently suggested "surface integration approach" is used, which can be considered a generalization of the well known and widely used Derjaguin approximation. The static equilibrium shape after the occurrence of the instability is described in the framework of Helfrich's spontaneous curvature model. Some specific classes of exact analytical solutions to the corresponding shape equation are considered, and the components of the respective position vectors given in terms of elliptic integrals and Jacobi elliptic functions. The mutual orientation between the interacting objects is chosen such that the axis of revolution of the distorted cylinder be parallel to the plane bounding the substrate. Based on the discussed models and approaches we made some estimations for the studied force in real experimentally realizable systems, thus showing the possibility of pearling as an useful technique for reduction of the adhesion in variety of industrial processes using lipid membranes as carriers.

  13. Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2017-12-01

    In this paper, we analyze new optical soliton solutions to the higher-order dispersive cubic-quintic nonlinear Schrödinger equation (NLSE) using three integration schemes. The schemes used in this paper are modified tanh-coth (MTC), extended Jacobi elliptic function expansion (EJEF), and two variable (G‧ / G , 1 / G) -expansion methods. We obtain new solutions that to the best of our knowledge do not exist previously. The obtained solutions includes bright, dark, combined bright-dark, singular as well as periodic waves solitons. The obtained solutions may be used to explain and understand the physical nature of the wave spreads in the most dispersive optical medium. Some interesting figures for the physical interpretation of the obtained solutions are also presented.

  14. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  15. Multistability and switching in oppositely-directed saturated coupler

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Shafeeque Ali, A. K.; Porsezian, K.; Nishad, M. P. M.; Tchofo Dinda, P.; Grelu, Ph.

    2018-06-01

    We investigate theoretically the optical multistability that takes place in a two-core oppositely-directed saturated coupler (ODSC) having negative index material (NIM) channel. The dynamics are studied using the Lagrangian variational method, and analytical solutions are constructed with Jacobi elliptic functions. The ODSC exhibits a bandgap as a consequence of the effective feedback mechanism due to the opposite directionality of the phase velocity and the Poynting vector in the NIM channel. Depending on the strength of the nonlinear saturation, the system admits multiple stable states. Considering the additional degrees of design freedom with respect to conventional nonlinear couplers, the ODSC could become an attractive choice for all-optical switching. The existence of multiple transmission resonance windows could also facilitate the realization of gap solitons.

  16. Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.; Zukovic, M.

    2017-10-01

    In this paper the dynamics of the nonlinear mass-in-mass system as the basic subsystem of the acoustic metamaterial is investigated. The excitation of the system is in the form of the Jacobi elliptic function. The corresponding model to this forcing is the mass-in-mass system with cubic nonlinearity of the Duffing type. Mathematical model of the motion is a system of two coupled strong nonlinear and nonhomogeneous second order differential equations. Particular solution to the system is obtained. The analytical solution of the problem is based on the simple and double integral of the cosine Jacobi function. In the paper the integrals are given in the form of series of trigonometric functions. These results are new one. After some modification the simplified solution in the first approximation is obtained. The result is convenient for discussion. Conditions for elimination of the motion of the mass 1 by connection of the nonlinear dynamic absorber (mass - spring system) are defined. In the consideration the effective mass ratio is introduced in the nonlinear mass-in-mass system. Negative effective mass ratio gives the absorption of vibrations with certain frequencies. The advantage of the nonlinear subunit in comparison to the linear one is that the frequency gap is significantly wider. Nevertheless, it has to be mentioned that the amplitude of vibration differs from zero for a small value. In the paper the analytical results are compared with numerical one and are in agreement.

  17. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Avinash; Saxena, Avadh

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well asmore » for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.« less

  18. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems

    NASA Technical Reports Server (NTRS)

    Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.

    1993-01-01

    In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).

  19. Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Wang, Xiu-Bin; Zhang, Tian-Tian

    2018-05-01

    We consider the generalised dispersive modified Benjamin-Bona-Mahony equation, which describes an approximation status for long surface wave existed in the non-linear dispersive media. By employing the truncated Painlevé expansion method, we derive its non-local symmetry and Bäcklund transformation. The non-local symmetry is localised by a new variable, which provides the corresponding non-local symmetry group and similarity reductions. Moreover, a direct method can be provided to construct a kind of finite symmetry transformation via the classic Lie point symmetry of the normal prolonged system. Finally, we find that the equation is a consistent Riccati expansion solvable system. With the help of the Jacobi elliptic function, we get its interaction solutions between solitary waves and cnoidal periodic waves.

  20. Equilibrium figures inside the dark-matter ring and the shapes of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.; Trubitsyna, N. G.; Kireeva, E. N.

    We solve the general problem of the theory of equilibrium figures and analyze two classes of liquid rotating gravitating figures residing inside a gravitating ring or torus. These figures form families of sequences of generalized oblate spheroids and triaxial ellipsoids, which at the lower limit of the tidal parameter α = 0 have the form of the Maclaurin spheroids and the Jacobi ellipsoids. In intermediate cases 0 < α ≤ αmax each new sequence of axisymmetric equilibrium figures has two non-rotating boundary spheroids. At the upper limit αmax/(π Gρ ) = 0.1867 the sequence degenerates into a single non-rotating spheroid with the eccentricity {e cr} ≈ 0.96 corresponding to the flattening limit of elliptical galaxies (E7). We also perform a detailed study of the sequences of generalized triaxial ellipsoids and find bifurcation points of triaxial ellipsoids in the sequences of generalized spheroids. We use this method to explain the shapes of E-galaxies. According to observations, very slowly rotating oblate E-type galaxies are known that have the shapes, which, because of instability, cannot be supported by velocity dispersion anisotropy exclusively. The hypothesis of a massive dark-matter outer ring requires no extreme anisotropy of pressure; it not only explains the shape of these elliptical galaxies, but also sheds new light on the riddle of the ellipticity limit (E7) of elliptical galaxies.

  1. Exact optical solitons in (n + 1)-dimensions with anti-cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Younis, Muhammad; Shahid, Iram; Anbreen, Sumaira; Rizvi, Syed Tahir Raza

    2018-02-01

    The paper studies the propagation of optical solitons in (n + 1)-dimensions under anti-cubic law of nonlinearity. The bright, dark and singular optical solitons are extracted using the extended trial equation method. The constraint conditions, for the existence of these solitons, are also listed. Additionally, a couple of other solutions known as singular periodic and Jacobi elliptic solutions, fall out as a by-product of this scheme. The obtained results are new and reported first time in (n + 1)-dimensions with anti-cubic law of nonlinearity.

  2. Unified formalism for the generalized kth-order Hamilton-Jacobi problem

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; de Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2014-08-01

    The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.

  3. Hamilton-Jacobi modelling of relative motion for formation flying.

    PubMed

    Kolemen, Egemen; Kasdin, N Jeremy; Gurfil, Pini

    2005-12-01

    A precise analytic model for the relative motion of a group of satellites in slightly elliptic orbits is introduced. With this aim, we describe the relative motion of an object relative to a circular or slightly elliptic reference orbit in the rotating Hill frame via a low-order Hamiltonian, and solve the Hamilton-Jacobi equation. This results in a first-order solution to the relative motion identical to the Clohessy-Wiltshire approach; here, however, rather than using initial conditions as our constants of the motion, we utilize the canonical momenta and coordinates. This allows us to treat perturbations in an identical manner, as in the classical Delaunay formulation of the two-body problem. A precise analytical model for the base orbit is chosen with the included effect of zonal harmonics (J(2), J(3), J(4)). A Hamiltonian describing the real relative motion is formed and by differing this from the nominal Hamiltonian, the perturbing Hamiltonian is obtained. Using the Hamilton equations, the variational equations for the new constants are found. In a manner analogous to the center manifold reduction procedure, the non-periodic part of the motion is canceled through a magnitude analysis leading to simple boundedness conditions that cancel the drift terms due to the higher order perturbations. Using this condition, the variational equations are integrated to give periodic solutions that closely approximate the results from numerical integration (1 mm/per orbit for higher order and eccentricity perturbations and 30 cm/per orbit for zonal perturbations). This procedure provides a compact and insightful analytic description of the resulting relative motion.

  4. A Hamilton-Jacobi theory for implicit differential systems

    NASA Astrophysics Data System (ADS)

    Esen, Oǧul; de León, Manuel; Sardón, Cristina

    2018-02-01

    In this paper, we propose a geometric Hamilton-Jacobi theory for systems of implicit differential equations. In particular, we are interested in implicit Hamiltonian systems, described in terms of Lagrangian submanifolds of TT*Q generated by Morse families. The implicit character implies the nonexistence of a Hamiltonian function describing the dynamics. This fact is here amended by a generating family of Morse functions which plays the role of a Hamiltonian. A Hamilton-Jacobi equation is obtained with the aid of this generating family of functions. To conclude, we apply our results to singular Lagrangians by employing the construction of special symplectic structures.

  5. Numerical Grid Generation and Potential Airfoil Analysis and Design

    DTIC Science & Technology

    1988-01-01

    Gauss- Seidel , SOR and ADI iterative methods e JACOBI METHOD In the Jacobi method each new value of a function is computed entirely from old values...preceding iteration and adding the inhomogeneous (boundary condition) term. * GAUSS- SEIDEL METHOD When we compute I in a Jacobi method, we have already...Gauss- Seidel method. Sufficient condition for p convergence of the Gauss- Seidel method is diagonal-dominance of [A].9W e SUCESSIVE OVER-RELAXATION (SOR

  6. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  7. The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles

    NASA Astrophysics Data System (ADS)

    Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh

    2016-01-01

    We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.

  8. Scheduled Relaxation Jacobi method: Improvements and applications

    NASA Astrophysics Data System (ADS)

    Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A.

    2016-09-01

    Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential system of equations from which they result becomes notably stiff. Here we present a new methodology for obtaining the parameters of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ schemes with up to 15 levels and resolutions of up to 215 points per dimension, allowing for acceleration factors larger than several hundreds with respect to the Jacobi method for typical resolutions and, in some high resolution cases, close to 1000. Most of the success in finding SRJ optimal schemes with more than 10 levels is based on an analytic reduction of the complexity of the previously mentioned system of equations. Furthermore, we extend the original algorithm to apply it to certain systems of non-linear ePDEs.

  9. Discontinuous solutions of Hamilton-Jacobi equations on networks

    NASA Astrophysics Data System (ADS)

    Graber, P. J.; Hermosilla, C.; Zidani, H.

    2017-12-01

    This paper studies optimal control problems on networks without controllability assumptions at the junctions. The Value Function associated with the control problem is characterized as the solution to a system of Hamilton-Jacobi equations with appropriate junction conditions. The novel feature of the result lies in that the controllability conditions are not needed and the characterization remains valid even when the Value Function is not continuous.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin

    The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an examplemore » of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.« less

  11. High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations

    NASA Astrophysics Data System (ADS)

    Khawaja, U. Al; Al-Refai, M.; Shchedrin, Gavriil; Carr, Lincoln D.

    2018-06-01

    Fractional nonlinear differential equations present an interplay between two common and important effective descriptions used to simplify high dimensional or more complicated theories: nonlinearity and fractional derivatives. These effective descriptions thus appear commonly in physical and mathematical modeling. We present a new series method providing systematic controlled accuracy for solutions of fractional nonlinear differential equations, including the fractional nonlinear Schrödinger equation and the fractional nonlinear diffusion equation. The method relies on spatially iterative use of power series expansions. Our approach permits an arbitrarily large radius of convergence and thus solves the typical divergence problem endemic to power series approaches. In the specific case of the fractional nonlinear Schrödinger equation we find fractional generalizations of cnoidal waves of Jacobi elliptic functions as well as a fractional bright soliton. For the fractional nonlinear diffusion equation we find the combination of fractional and nonlinear effects results in a more strongly localized solution which nevertheless still exhibits power law tails, albeit at a much lower density.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbachev, D V; Ivanov, V I

    Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles.

  13. Structural aspects of Hamilton-Jacobi theory

    NASA Astrophysics Data System (ADS)

    Cariñena, J. F.; Gràcia, X.; Marmo, G.; Martínez, E.; Muñoz-Lecanda, M. C.; Román-Roy, N.

    2016-12-01

    In our previous papers [J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 1417-1458; Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Meth. Mod. Phys. 7 (2010) 431-454] we showed that the Hamilton-Jacobi problem can be regarded as a way to describe a given dynamics on a phase space manifold in terms of a family of dynamics on a lower-dimensional manifold. We also showed how constants of the motion help to solve the Hamilton-Jacobi equation. Here we want to delve into this interpretation by considering the most general case: a dynamical system on a manifold that is described in terms of a family of dynamics (slicing vector fields) on lower-dimensional manifolds. We identify the relevant geometric structures that lead from this decomposition of the dynamics to the classical Hamilton-Jacobi theory, by considering special cases like fibered manifolds and Hamiltonian dynamics, in the symplectic framework and the Poisson one. We also show how a set of functions on a tangent bundle can determine a second-order dynamics for which they are constants of the motion.

  14. Complex quantum Hamilton-Jacobi equation with Bohmian trajectories: Application to the photodissociation dynamics of NOCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2014-03-14

    The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneouslymore » integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.« less

  15. Ellipsoidal Harmonic Vertical Deflections. Global and Regional Modeling of The Horizontal Derivative of The Terrestrial Garvity Field

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Ardalan, A.; Finn, G.

    In terms of elliptic coordinates of Jacobi type (longitude, latitude, semi-minor axis) the horizontal derivative is computed as a linear operator acting on an ellipsoidal har- monic disturbing/incremental gravitational potential. Such disturbing potential is de- fined with respect to the Somigliana-Pizzetti Reference Potential, the potential field of a level ellipsoid, and the International Reference Ellipsoid/WGS84 or World Geode- tic Datum 2000/WGD2000. Case studies of those vertical deflections on a global as well as regional scale are presented which take advantage of SEGEN (Special Ellipsoidal Gravity Earth Normal: ellipsoidal harmonics expansion 130321 coeffi- cients: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) and of CENT (precise centrifugal potential)

  16. RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1997-01-01

    Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.

  17. New algorithms for solving third- and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi Petrov–Galerkin method

    PubMed Central

    Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H.

    2014-01-01

    Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient. PMID:26425358

  18. Separation of variables in the special diagonal Hamilton-Jacobi equation: Application to the dynamical problem of a particle constrained on a moving surface

    NASA Technical Reports Server (NTRS)

    Blanchard, D. L.; Chan, F. K.

    1973-01-01

    For a time-dependent, n-dimensional, special diagonal Hamilton-Jacobi equation a necessary and sufficient condition for the separation of variables to yield a complete integral of the form was established by specifying the admissible forms in terms of arbitrary functions. A complete integral was then expressed in terms of these arbitrary functions and also the n irreducible constants. As an application of the results obtained for the two-dimensional Hamilton-Jacobi equation, analysis was made for a comparatively wide class of dynamical problems involving a particle moving in Euclidean three-dimensional space under the action of external forces but constrained on a moving surface. All the possible cases in which this equation had a complete integral of the form were obtained and these are tubulated for reference.

  19. A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

    NASA Astrophysics Data System (ADS)

    Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong

    2017-09-01

    In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

  20. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations

    NASA Technical Reports Server (NTRS)

    Osher, Stanley; Sethian, James A.

    1987-01-01

    New numerical algorithms are devised (PSC algorithms) for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be used also for more general Hamilton-Jacobi-type problems. The algorithms are demonstrated by computing the solution to a variety of surface motion problems.

  1. Periodic solutions of the Hamilton-Jacobi equation with a periodic non-homogeneous term and Aubry-Mather theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolevskii, A N

    It is proved that the one-dimensional Hamilton-Jacobi equation with a periodic non-homogeneous term admits a family of generalized solutions, each of which can be represented as the sum of a linear and a periodic function; a condition for the uniqueness of such a solution is given in terms of Aubry-Mather theory.

  2. The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations

    NASA Technical Reports Server (NTRS)

    Bardi, Martino; Osher, Stanley

    1991-01-01

    Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimensions when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a 'maxmin' equals a 'minmax', and thus a representation formula for this problem is obtained, generalizing the classical Hopi formulas.

  3. Elliptic supersymmetric integrable model and multivariable elliptic functions

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2017-12-01

    We investigate the elliptic integrable model introduced by Deguchi and Martin [Int. J. Mod. Phys. A 7, Suppl. 1A, 165 (1992)], which is an elliptic extension of the Perk-Schultz model. We introduce and study a class of partition functions of the elliptic model by using the Izergin-Korepin analysis. We show that the partition functions are expressed as a product of elliptic factors and elliptic Schur-type symmetric functions. This result resembles recent work by number theorists in which the correspondence between the partition functions of trigonometric models and the product of the deformed Vandermonde determinant and Schur functions were established.

  4. Automorphic Forms and Mock Modular Forms in String Theory

    NASA Astrophysics Data System (ADS)

    Nazaroglu, Caner

    We study a variety of modular invariant objects in relation to string theory. First, we focus on Jacobi forms over generic rank lattices and Siegel forms that appear in N = 2, D = 4 compactifications of heterotic string with Wilson lines. Constraints from low energy spectrum and modularity are employed to deduce the relevant supersymmetric partition functions entirely. This procedure is applied on models that lead to Jacobi forms of index 3, 4, 5 as well as Jacobi forms over root lattices A2 and A3. These computations are then checked against an explicit orbifold model which can be Higgsed to the models under question. Models with a single Wilson line are then studied in detail with their relation to paramodular group Gammam as T-duality group made explicit. These results on the heterotic string side are then turned into predictions for geometric invariants using TypeII - Heterotic duality. Secondly, we study theta functions for indenite signature lattices of generic signature. Building on results in literature for signature (n-1,1) and (n-2,2) lattices, we work out the properties of generalized error functions which we call r-tuple error functions. We then use these functions to build such indenite theta functions and describe their modular completions.

  5. Perturbations of Jacobi polynomials and piecewise hypergeometric orthogonal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neretin, Yu A

    2006-12-31

    A family of non-complete orthogonal systems of functions on the ray [0,{infinity}] depending on three real parameters {alpha}, {beta}, {theta} is constructed. The elements of this system are piecewise hypergeometric functions with singularity at x=1. For {theta}=0 these functions vanish on [1,{infinity}) and the system is reduced to the Jacobi polynomials P{sub n}{sup {alpha}}{sup ,{beta}} on the interval [0,1]. In the general case the functions constructed can be regarded as an interpretation of the expressions P{sub n+{theta}}{sup {alpha}}{sup ,{beta}}. They are eigenfunctions of an exotic Sturm-Liouville boundary-value problem for the hypergeometric differential operator. The spectral measure for this problem ismore » found.« less

  6. Equality of the Spectral and Dynamical Definitions of Reflection

    NASA Astrophysics Data System (ADS)

    Breuer, Jonathan; Ryckman, Eric; Simon, Barry

    2010-04-01

    For full-line Jacobi matrices, Schrödinger operators, and CMV matrices, we show that being reflectionless, in the sense of the well-known property of m-functions, is equivalent to a lack of reflection in the dynamics in the sense that any state that goes entirely to x = -∞ as t → -∞ goes entirely to x = ∞ as t → ∞. This allows us to settle a conjecture of Deift and Simon from 1983 regarding ergodic Jacobi matrices.

  7. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.

    PubMed

    Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.

  8. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  9. Solving the Hamilton-Jacobi equation for general relativity

    NASA Astrophysics Data System (ADS)

    Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    We demonstrate a systematic method for solving the Hamilton-Jacobi equation for general relativity with the inclusion of matter fields. The generating functional is expanded in a series of spatial gradients. Each term is manifestly invariant under reparametrizations of the spatial coordinates (``gauge invariant''). At each order we solve the Hamiltonian constraint using a conformal transformation of the three-metric as well as a line integral in superspace. This gives a recursion relation for the generating functional which then may be solved to arbitrary order simply by functionally differentiating previous orders. At fourth order in spatial gradients we demonstrate solutions for irrotational dust as well as for a scalar field. We explicitly evolve the three-metric to the same order. This method can be used to derive the Zel'dovich approximation for general relativity.

  10. New Formulae for the High-Order Derivatives of Some Jacobi Polynomials: An Application to Some High-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, W. M.

    2014-01-01

    This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms. PMID:25386599

  11. Large-scale computation of incompressible viscous flow by least-squares finite element method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.

  12. Entanglement, replicas, and Thetas

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Murthy, Sameer; Wu, Jie-Qiang

    2018-01-01

    We compute the single-interval Rényi entropy (replica partition function) for free fermions in 1+1d at finite temperature and finite spatial size by two methods: (i) using the higher-genus partition function on the replica Riemann surface, and (ii) using twist operators on the torus. We compare the two answers for a restricted set of spin structures, leading to a non-trivial proposed equivalence between higher-genus Siegel Θ-functions and Jacobi θ-functions. We exhibit this proposal and provide substantial evidence for it. The resulting expressions can be elegantly written in terms of Jacobi forms. Thereafter we argue that the correct Rényi entropy for modular-invariant free-fermion theories, such as the Ising model and the Dirac CFT, is given by the higher-genus computation summed over all spin structures. The result satisfies the physical checks of modular covariance, the thermal entropy relation, and Bose-Fermi equivalence.

  13. Structure and decays of nuclear three-body systems: The Gamow coupled-channel method in Jacobi coordinates

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Michel, N.; Nazarewicz, W.; Xu, F. R.

    2017-10-01

    Background: Weakly bound and unbound nuclear states appearing around particle thresholds are prototypical open quantum systems. Theories of such states must take into account configuration mixing effects in the presence of strong coupling to the particle continuum space. Purpose: To describe structure and decays of three-body systems, we developed a Gamow coupled-channel (GCC) approach in Jacobi coordinates by employing the complex-momentum formalism. We benchmarked the complex-energy Gamow shell model (GSM) against the new framework. Methods: The GCC formalism is expressed in Jacobi coordinates, so that the center-of-mass motion is automatically eliminated. To solve the coupled-channel equations, we use hyperspherical harmonics to describe the angular wave functions while the radial wave functions are expanded in the Berggren ensemble, which includes bound, scattering, and Gamow states. Results: We show that the GCC method is both accurate and robust. Its results for energies, decay widths, and nucleon-nucleon angular correlations are in good agreement with the GSM results. Conclusions: We have demonstrated that a three-body GSM formalism explicitly constructed in the cluster-orbital shell model coordinates provides results similar to those with a GCC framework expressed in Jacobi coordinates, provided that a large configuration space is employed. Our calculations for A =6 systems and 26O show that nucleon-nucleon angular correlations are sensitive to the valence-neutron interaction. The new GCC technique has many attractive features when applied to bound and unbound states of three-body systems: it is precise, is efficient, and can be extended by introducing a microscopic model of the core.

  14. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  15. Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems

    DTIC Science & Technology

    1971-06-01

    the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces

  16. Tensor products of U{sub q}{sup Prime }sl-caret(2)-modules and the big q{sup 2}-Jacobi function transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gade, R. M.

    2013-01-15

    Four tensor products of evaluation modules of the quantum affine algebra U{sub q}{sup Prime }sl-caret(2) obtained from the negative and positive series, the complementary and the strange series representations are investigated. Linear operators R(z) satisfying the intertwining property on finite linear combinations of the canonical basis elements of the tensor products are described in terms of two sets of infinite sums {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} and {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} involving big q{sup 2}-Jacobi functions or related nonterminating basic hypergeometric series. Inhomogeneous recurrence relations can be derived for both sets. Evaluations of the simplestmore » sums provide the corresponding initial conditions. For the first set of sums the relations entail a big q{sup 2}-Jacobi function transform pair. An integral decomposition is obtained for the sum {tau}{sup (r,t)}. A partial description of the relation between the decompositions of the tensor products with respect to U{sub q}sl(2) or with respect to its complement in U{sub q}{sup Prime }sl-caret(2) can be formulated in terms of Askey-Wilson function transforms. For a particular combination of two tensor products, the occurrence of proper U{sub q}{sup Prime }sl-caret(2)-submodules is discussed.« less

  17. Constants of the motion, universal time and the Hamilton-Jacobi function in general relativity

    NASA Astrophysics Data System (ADS)

    O'Hara, Paul

    2013-04-01

    In most text books of mechanics, Newton's laws or Hamilton's equations of motion are first written down and then solved based on initial conditions to determine the constants of the motions and to describe the trajectories of the particles. In this essay, we take a different starting point. We begin with the metrics of general relativity and show how they can be used to construct by inspection constants of motion, which can then be used to write down the equations of the trajectories. This will be achieved by deriving a Hamiltonian-Jacobi function from the metric and showing that its existence requires all of the above mentioned properties. The article concludes by showing that a consistent theory of such functions also requires the need for a universal measure of time which can be identified with the "worldtime" parameter, first introduced by Steuckelberg and later developed by Horwitz and Piron.

  18. Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.

    2014-03-01

    A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.

  19. A Piecewise Deterministic Markov Toy Model for Traffic/Maintenance and Associated Hamilton–Jacobi Integrodifferential Systems on Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr

    2016-10-15

    We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product,more » the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.« less

  20. Hamilton-Jacobi formalism to warm inflationary scenario

    NASA Astrophysics Data System (ADS)

    Sayar, K.; Mohammadi, A.; Akhtari, L.; Saaidi, Kh.

    2017-01-01

    The Hamilton-Jacobi formalism as a powerful method is being utilized to reconsider the warm inflationary scenario, where the scalar field as the main component driving inflation interacts with other fields. Separating the context into strong and weak dissipative regimes, the goal is followed for two popular functions of Γ . Applying slow-rolling approximation, the required perturbation parameters are extracted and, by comparing to the latest Planck data, the free parameters are restricted. The possibility of producing an acceptable inflation is studied where the result shows that for all cases the model could successfully suggest the amplitude of scalar perturbation, scalar spectral index, its running, and the tensor-to-scalar ratio.

  1. On the Geometry of the Hamilton-Jacobi Equation and Generating Functions

    NASA Astrophysics Data System (ADS)

    Ferraro, Sebastián; de León, Manuel; Marrero, Juan Carlos; Martín de Diego, David; Vaquero, Miguel

    2017-10-01

    In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.

  2. Jacobi bundles and the BFV-complex

    NASA Astrophysics Data System (ADS)

    Lê, Hông Vân; Tortorella, Alfonso G.; Vitagliano, Luca

    2017-11-01

    We extend the construction of the BFV-complex of a coisotropic submanifold from the Poisson setting to the Jacobi setting. In particular, our construction applies in the contact and l.c.s. settings. The BFV-complex of a coisotropic submanifold S controls the coisotropic deformation problem of S under both Hamiltonian and Jacobi equivalence.

  3. Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

    NASA Astrophysics Data System (ADS)

    Priya, B. Ganesh; Muthukumar, P.

    2018-02-01

    This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

  4. Convergence to Diagonal Form of Block Jacobi-type Processes

    NASA Astrophysics Data System (ADS)

    Hari, Vjeran

    2008-09-01

    The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.

  5. Taxonomic changes in the genus Diabrotica Chevrolat (Coleoptera: Chrysomelidae: Galerucinae): results of a synopsis of North and Central America Diabrotica species

    USDA-ARS?s Scientific Manuscript database

    The following new synonyms in Diabrotica Chevrolat are proposed: D. flaviventris Jacoby 1887 = D. tibialis Jacoby 1887 = D. adelpha Harold 1875; D. peckii Bowditch 1911 = D. bioculata Bowditch 1911; D. circulata Harold 1875 = D. nummularis Harold 1877; D. linensis Bechyné 1956 = D. trifurcata Jacoby...

  6. Electromagnetic fields and Green's functions in elliptical vacuum chambers

    NASA Astrophysics Data System (ADS)

    Persichelli, S.; Biancacci, N.; Migliorati, M.; Palumbo, L.; Vaccaro, V. G.

    2017-10-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.

  7. Electromagnetic fields and Green’s functions in elliptical vacuum chambers

    DOE PAGES

    Persichelli, S.; Biancacci, N.; Migliorati, M.; ...

    2017-10-23

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less

  8. Electromagnetic fields and Green’s functions in elliptical vacuum chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persichelli, S.; Biancacci, N.; Migliorati, M.

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less

  9. The right-hand side of the Jacobi identity: to be naught or not to be ?

    NASA Astrophysics Data System (ADS)

    Kiselev, Arthemy V.

    2016-01-01

    The geometric approach to iterated variations of local functionals -e.g., of the (master-)action functional - resulted in an extension of the deformation quantisation technique to the set-up of Poisson models of field theory. It also allowed of a rigorous proof for the main inter-relations between the Batalin-Vilkovisky (BV) Laplacian Δ and variational Schouten bracket [,]. The ad hoc use of these relations had been a known analytic difficulty in the BV- formalism for quantisation of gauge systems; now achieved, the proof does actually not require the assumption of graded-commutativity. Explained in our previous work, geometry's self- regularisation is rendered by Gel'fand's calculus of singular linear integral operators supported on the diagonal. We now illustrate that analytic technique by inspecting the validity mechanism for the graded Jacobi identity which the variational Schouten bracket does satisfy (whence Δ2 = 0, i.e., the BV-Laplacian is a differential acting in the algebra of local functionals). By using one tuple of three variational multi-vectors twice, we contrast the new logic of iterated variations - when the right-hand side of Jacobi's identity vanishes altogether - with the old method: interlacing its steps and stops, it could produce some non-zero representative of the trivial class in the top- degree horizontal cohomology. But we then show at once by an elementary counterexample why, in the frames of the old approach that did not rely on Gel'fand's calculus, the BV-Laplacian failed to be a graded derivation of the variational Schouten bracket.

  10. Periodic GMP Matrices

    NASA Astrophysics Data System (ADS)

    Eichinger, Benjamin

    2016-07-01

    We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic finite gap Jacobi matrices by periodic GMP matrices. Moreover, due to their structural similarity we can carry over numerous results from the direct and inverse spectral theory of periodic Jacobi matrices to the class of periodic GMP matrices. In particular, we prove an analogue of the remarkable ''magic formula'' for this new class.

  11. Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin-Korepin analysis

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2018-05-01

    We present a method to analyze the wavefunctions of six-vertex models by extending the Izergin-Korepin analysis originally developed for domain wall boundary partition functions. First, we apply the method to the case of the basic wavefunctions of the XXZ-type six-vertex model. By giving the Izergin-Korepin characterization of the wavefunctions, we show that these wavefunctions can be expressed as multiparameter deformations of the quantum group deformed Grothendieck polynomials. As a second example, we show that the Izergin-Korepin analysis is effective for analysis of the wavefunctions for a triangular boundary and present the explicit forms of the symmetric functions representing these wavefunctions. As a third example, we apply the method to the elliptic Felderhof model which is a face-type version and an elliptic extension of the trigonometric Felderhof model. We show that the wavefunctions can be expressed as one-parameter deformations of an elliptic analog of the Vandermonde determinant and elliptic symmetric functions.

  12. Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism

    NASA Astrophysics Data System (ADS)

    Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo

    2018-05-01

    We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalisation of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterated integrals have at most logarithmic singularities. We study the properties of our iterated integrals and their relationship to the multiple elliptic polylogarithms from the mathematics literature. On the one hand, we find that our iterated integrals span essentially the same space of functions as the multiple elliptic polylogarithms. On the other, our formulation allows for a more direct use to solve a large variety of problems in high-energy physics. We demonstrate the use of our functions in the evaluation of the Laurent expansion of some hypergeometric functions for values of the indices close to half integers.

  13. Propagation of waves in elliptic ducts. A theoretical study. [in view of jet engine compressor noise reduction

    NASA Technical Reports Server (NTRS)

    Baskaran, S.

    1974-01-01

    The cut-off frequencies for high order circumferential modes were calculated for various eccentricities of an elliptic duct section. The problem was studied with a view to the reduction of jet engine compressor noise by elliptic ducts, instead of circular ducts. The cut-off frequencies for even functions decrease with increasing eccentricity. The third order eigen frequencies are oscillatory as the eccentricity increases for odd functions. The eigen frequencies decrease for higher order odd functions inasmuch as, for higher orders, they assume the same values as those for even functions. Deformation of a circular pipe into an elliptic one of sufficiently large eccentricity produces only a small reduction in the cut-off frequency, provided the area of the pipe section is kept invariable.

  14. Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.

    PubMed

    Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-11-18

    We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.

  15. Higher order derivatives of R-Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Das, Sourav; Swaminathan, A.

    2016-06-01

    In this work, the R-Jacobi polynomials defined on the nonnegative real axis related to F-distribution are considered. Using their Sturm-Liouville system higher order derivatives are constructed. Orthogonality property of these higher ordered R-Jacobi polynomials are obtained besides their normal form, self-adjoint form and hypergeometric representation. Interesting results on the Interpolation formula and Gaussian quadrature formulae are obtained with numerical examples.

  16. Reconstruction of color biomedical images by means of quaternion generic Jacobi-Fourier moments in the framework of polar pixels

    PubMed Central

    Camacho-Bello, César; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Báez-Rojas, José Javier

    2016-01-01

    Abstract. A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image description is presented. In order to reach numerical stability, a recursive approach is used during the computation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best values for the parameters α and β of the radial Jacobi polynomial families. Additionally, a polar pixel approach is taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the mathematical theory, some color images from optical microscopy and human retina are used. Experiments and results about color image reconstruction are presented. PMID:27014716

  17. Efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Hafez, R. M.

    2013-09-01

    In this paper, we propose the shifted Jacobi-Gauss collocation spectral method for solving initial value problems of Bratu type, which is widely applicable in fuel ignition of the combustion theory and heat transfer. The spatial approximation is based on shifted Jacobi polynomials J {/n (α,β)}( x) with α, β ∈ (-1, ∞), x ∈ [0, 1] and n the polynomial degree. The shifted Jacobi-Gauss points are used as collocation nodes. Illustrative examples have been discussed to demonstrate the validity and applicability of the proposed technique. Comparing the numerical results of the proposed method with some well-known results show that the method is efficient and gives excellent numerical results.

  18. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  19. Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and Fourier series.

    PubMed

    Mao, Shi-Chun; Wu, Zhen-Sen

    2008-12-01

    An exact solution to the two-dimensional scattering properties of an anisotropic elliptic cylinder for transverse electric polarization is presented. The internal field in an anisotropic elliptic cylinder is expressed as integral representations of Mathieu functions and Fourier series. The coefficients of the series expansion are obtained by imposing boundary conditions on the anisotropic-free-space interface. A matrix is developed to solve the nonorthogonality properties of Mathieu functions at the interface between two different media. Numerical results are given for the bistatic radar cross section and the amplitude of the total magnetic field along the x and y axes. The result is in agreement with that available as expected when an elliptic cylinder degenerates to a circular one.

  20. Excursion Processes Associated with Elliptic Combinatorics

    NASA Astrophysics Data System (ADS)

    Baba, Hiroya; Katori, Makoto

    2018-06-01

    Researching elliptic analogues for equalities and formulas is a new trend in enumerative combinatorics which has followed the previous trend of studying q-analogues. Recently Schlosser proposed a lattice path model in the square lattice with a family of totally elliptic weight-functions including several complex parameters and discussed an elliptic extension of the binomial theorem. In the present paper, we introduce a family of discrete-time excursion processes on Z starting from the origin and returning to the origin in a given time duration 2 T associated with Schlosser's elliptic combinatorics. The processes are inhomogeneous both in space and time and hence expected to provide new models in non-equilibrium statistical mechanics. By numerical calculation we show that the maximum likelihood trajectories on the spatio-temporal plane of the elliptic excursion processes and of their reduced trigonometric versions are not straight lines in general but are nontrivially curved depending on parameters. We analyze asymptotic probability laws in the long-term limit T → ∞ for a simplified trigonometric version of excursion process. Emergence of nontrivial curves of trajectories in a large scale of space and time from the elementary elliptic weight-functions exhibits a new aspect of elliptic combinatorics.

  1. Excursion Processes Associated with Elliptic Combinatorics

    NASA Astrophysics Data System (ADS)

    Baba, Hiroya; Katori, Makoto

    2018-04-01

    Researching elliptic analogues for equalities and formulas is a new trend in enumerative combinatorics which has followed the previous trend of studying q-analogues. Recently Schlosser proposed a lattice path model in the square lattice with a family of totally elliptic weight-functions including several complex parameters and discussed an elliptic extension of the binomial theorem. In the present paper, we introduce a family of discrete-time excursion processes on Z starting from the origin and returning to the origin in a given time duration 2T associated with Schlosser's elliptic combinatorics. The processes are inhomogeneous both in space and time and hence expected to provide new models in non-equilibrium statistical mechanics. By numerical calculation we show that the maximum likelihood trajectories on the spatio-temporal plane of the elliptic excursion processes and of their reduced trigonometric versions are not straight lines in general but are nontrivially curved depending on parameters. We analyze asymptotic probability laws in the long-term limit T → ∞ for a simplified trigonometric version of excursion process. Emergence of nontrivial curves of trajectories in a large scale of space and time from the elementary elliptic weight-functions exhibits a new aspect of elliptic combinatorics.

  2. Dynamic optimization and its relation to classical and quantum constrained systems

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo

    2017-08-01

    We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.

  3. On shifted Jacobi spectral method for high-order multi-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.

    2012-10-01

    This paper reports a spectral tau method for numerically solving multi-point boundary value problems (BVPs) of linear high-order ordinary differential equations. The construction of the shifted Jacobi tau approximation is based on conventional differentiation. This use of differentiation allows the imposition of the governing equation at the whole set of grid points and the straight forward implementation of multiple boundary conditions. Extension of the tau method for high-order multi-point BVPs with variable coefficients is treated using the shifted Jacobi Gauss-Lobatto quadrature. Shifted Jacobi collocation method is developed for solving nonlinear high-order multi-point BVPs. The performance of the proposed methods is investigated by considering several examples. Accurate results and high convergence rates are achieved.

  4. Luigi Gatteschi's work on asymptotics of special functions and their zeros

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter; Giordano, Carla

    2008-12-01

    A good portion of Gatteschi's research publications-about 65%-is devoted to asymptotics of special functions and their zeros. Most prominently among the special functions studied figure classical orthogonal polynomials, notably Jacobi polynomials and their special cases, Laguerre polynomials, and Hermite polynomials by implication. Other important classes of special functions dealt with are Bessel functions of the first and second kind, Airy functions, and confluent hypergeometric functions, both in Tricomi's and Whittaker's form. This work is reviewed here, and organized along methodological lines.

  5. Focusing elliptical laser beams

    NASA Astrophysics Data System (ADS)

    Marchant, A. B.

    1984-03-01

    The spot formed by focusing an elliptical laser beam through an ordinary objective lens can be optimized by properly filling the objective lens. Criteria are given for maximizing the central irradiance and the line-spread function. An optimized spot is much less elliptical than the incident laser beam. For beam ellipticities as high as 2:1, this spatial filtering reduces the central irradiance by less than 14 percent.

  6. Fourier Series and Elliptic Functions

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…

  7. The Zine Project: Innovation or Oxymoron?

    ERIC Educational Resources Information Center

    Jacobi, Tobi

    2007-01-01

    The Zine Project helps students and teachers consider the assumptions and expectations we have about how literacy functions in school and community contexts. In this article, Tobi Jacobi examines the relationships among composition theory, community literacy practices, and service learning, taking into account the complex possibilities and…

  8. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  9. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  10. Hamilton-Jacobi theory in multisymplectic classical field theories

    NASA Astrophysics Data System (ADS)

    de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso; Vilariño, Silvia

    2017-09-01

    The geometric framework for the Hamilton-Jacobi theory developed in the studies of Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 3(7), 1417-1458 (2006)], Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 13(2), 1650017 (2015)], and de León et al. [Variations, Geometry and Physics (Nova Science Publishers, New York, 2009)] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results.

  11. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  12. Elliptic flow in small systems due to elliptic gluon distributions?

    DOE PAGES

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; ...

    2017-05-31

    We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the ‘elliptic flow’ parameter v 2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.

  13. Stress-intensity factor equations for cracks in three-dimensional finite bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1981-01-01

    Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.

  14. Elliptic flow in small systems due to elliptic gluon distributions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen

    We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the ‘elliptic flow’ parameter v 2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.

  15. Generalizations of the Alternating Direction Method of Multipliers for Large-Scale and Distributed Optimization

    DTIC Science & Technology

    2014-05-01

    exact one is solved later — as- signed as step 5 of Algorithm 2 — because at each iteration , the ADMM updates the variables in the Gauss - Seidel ...Jacobi ADMM (see Algo- rithm 5 below). Unlike the Gauss - Seidel ADMM, the Jacobi ADMM updates all the 70 blocks in parallel at every iteration : xk+1i...that extending ADMM straightforwardly from the classic Gauss - Seidel setting to the Jacobi setting, from two blocks to multiple blocks, will preserve

  16. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem.

    PubMed

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-21

    Quantum mechanical calculations of ro-vibrational energies of CH 4 , CHD 3 , CH 3 D, and CH 3 F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH 3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH 3 . Euler angles specifying the orientation of a frame attached to CH 3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH 4 , CHD 3 , and CH 3 D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH 3 F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  17. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiqiang; Chen, Jun; Zhang, Zhaojun; Zhang, Dong H.; Wang, Xiao-Gang; Carrington, Tucker; Gatti, Fabien

    2018-02-01

    Quantum mechanical calculations of ro-vibrational energies of CH4, CHD3, CH3D, and CH3F were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH3 subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH3. Euler angles specifying the orientation of a frame attached to CH3 with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH4, CHD3, and CH3D, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CH3F, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.

  18. C1,1 regularity for degenerate elliptic obstacle problems

    NASA Astrophysics Data System (ADS)

    Daskalopoulos, Panagiota; Feehan, Paul M. N.

    2016-03-01

    The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.

  19. Instability of low viscosity elliptic jets with varying aspect ratio

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun

    2011-11-01

    In this work an analytical description of capillary instability of liquid elliptic jets with varying aspect ratio is presented. Linear stability analysis in the long wave approximation with negligible gravitational effects is employed. Elliptic cylindrical coordinate system is used and perturbation velocity potential substituted in the Laplace equation to yield Mathieu and Modified Mathieu differential equations. The dispersion relation for elliptical orifices of any aspect ratio is derived and validated for axisymmetric disturbances with m = 0, in the limit of aspect ratio, μ = 1 , i.e. the case of a circular jet. As Mathieu functions and Modified Mathieu function solutions converge to Bessel's functions in this limit the Rayleigh-Plateau instability criterion is met. Also, stability of solutions corresponding to asymmetric disturbances for the kink mode, m = 1 and flute modes corresponding to m >= 2 is discussed. Experimental data from earlier works is used to compare observations made for elliptical orifices with μ ≠ 1 . This novel approach aims at generalizing the results pertaining to cylindrical jets with circular cross section leading to better understanding of breakup in liquid jets of various geometries.

  20. The Role of Noncriterial Recollection in Estimating Recollection and Familiarity

    ERIC Educational Resources Information Center

    Parks, Colleen M.

    2007-01-01

    Noncriterial recollection (ncR) is recollection of details that are irrelevant to task demands. It has been shown to elevate familiarity estimates and to be functionally equivalent to familiarity in the process dissociation procedure [Yonelinas, A. P., & Jacoby, L. L. (1996). Noncriterial recollection: Familiarity as automatic, irrelevant…

  1. Exploring Strange Nonchaotic Attractors through Jacobian Elliptic Functions

    ERIC Educational Resources Information Center

    Garcia-Hoz, A. Martinez; Chacon, R.

    2011-01-01

    We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of…

  2. The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators

    NASA Astrophysics Data System (ADS)

    Ahmedov, Anvarjon

    2018-03-01

    In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral decomposition. New method for the best approximation of the square-integrable function by multiple Fourier series summed over the elliptic levels are established. Using the best approximation, the Lebesgue constant corresponding to the elliptic partial sums is estimated. The latter is applied to obtain an estimation for the maximal operator in the classes of Liouville.

  3. Inverse resonance scattering for Jacobi operators

    NASA Astrophysics Data System (ADS)

    Korotyaev, E. L.

    2011-12-01

    The Jacobi operator ( Jf) n = a n-1 f n-1 + a n f n+1 + b n f n on ℤ with real finitely supported sequences ( a n - 1) n∈ℤ and ( b n ) n∈ℤ is considered. The inverse problem for two mappings (including their characterization): ( a n , b n , n ∈ ℤ) → {the zeros of the reflection coefficient} and ( a n , b n , n ∈ ℤ) → {the eigenvalues and the resonances} is solved. All Jacobi operators with the same eigenvalues and resonances are also described.

  4. A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Zaky, M. A.

    2015-01-01

    In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.

  5. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM pointed towards the existence of the e(z) relation, we conclude that such an effect is real though rather weak. A detailed study of the e(z) relation showed that the observed relation is nonlinear, and the number of elongated structures grows rapidly for z>0.14.

  6. Motion in a central field in the presence of a constant perturbing acceleration in a co-moving coordinate system

    NASA Astrophysics Data System (ADS)

    Sannikova, T. N.; Kholshevnikov, K. V.

    2015-08-01

    The motion of a point mass under the action of a gravitational force toward a central body and a perturbing acceleration P is considered. The magnitude of P is taken to be small compared to the main gravitational acceleration due to the central body, and the direction of P to be constant in a standard astronomical coordinate system with its origin at the central body and axes directed along the radius vector, the transversal, and the binormal. Consideration of a constant vector perturbing acceleration simplifies averaging of the Euler equations for the motion in osculating elements, making it straightforward to obtain evolutionary differential equations of motion in the mean elements, as was done earlier in a first small-parameter approximation. This paper is devoted to integration of the mean equations. The system is integratable by quadratures if at least one component of the perturbing acceleration is zero, and also if the orbit is initially circular. Moreover, all the quadratures can be expressed in terms of elementary functions and elliptical integrals of the first kind in Jacobi form. If all three components of P are non-zero, this problem reduces to a system of two first-order differential equations, which are apparently not integrable. Possible applications include the motion of natural and artificial satellites taking into account light pressure, the motion of a spacecraft with low thrust, and the motion of an asteroid subject to a thrust from an engine mounted on it or to a gravitational tractor designed, for example, to avoid a collision with Earth.

  7. Exact Baker-Campbell-Hausdorff formula for the contact Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego

    2017-03-01

    In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker-Campbell-Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.

  8. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    ERIC Educational Resources Information Center

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  9. Inhomogeneous Jacobi equation for minimal surfaces and perturbative change in holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ghosh, Avirup; Mishra, Rohit

    2018-04-01

    The change in holographic entanglement entropy (HEE) for small fluctuations about pure anti-de Sitter (AdS) is obtained by a perturbative expansion of the area functional in terms of the change in the bulk metric and the embedded extremal surface. However it is known that change in the embedding appears at second order or higher. It was shown that these changes in the embedding can be calculated in the 2 +1 dimensional case by solving a "generalized geodesic deviation equation." We generalize this result to arbitrary dimensions by deriving an inhomogeneous form of the Jacobi equation for minimal surfaces. The solutions of this equation map a minimal surface in a given space time to a minimal surface in a space time which is a perturbation over the initial space time. Using this we perturbatively calculate the changes in HEE up to second order for boosted black brane like perturbations over AdS4.

  10. About an Optimal Visiting Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagagiolo, Fabio, E-mail: bagagiol@science.unitn.it; Benetton, Michela

    In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous 'Traveling Salesman Problem' and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton-Jacobi equation. We introduce some 'external' variables, one per target, which keep in memory whether the corresponding target is already visited or not,more » and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton-Jacobi equation turns out to be discontinuous.« less

  11. Reexamining epilepsy-associated stigma: validation of the Stigma Scale of Epilepsy in Zambia.

    PubMed

    Elafros, Melissa A; Bowles, Ryan P; Atadzhanov, Masharip; Mbewe, Edward; Haworth, Alan; Chomba, Elwyn; Birbeck, Gretchen L

    2015-06-01

    Epilepsy-associated stigma is an important patient-centered outcome, yet quantification remains challenging. Jacoby's 3-item Stigma Scale is commonly used to assess felt stigma among people with epilepsy (PWE) yet has ceiling effects. The Stigma Scale of Epilepsy (SSE) is a 24-item instrument that measures felt stigma among PWE and stigmatizing attitudes among others. If cross-culturally valid, the SSE may elucidate stigma determinants and provide an outcome measure for interventions. We assessed the properties of the SSE in 102 Zambian PWE using exploratory and confirmatory item response theories and compared the latent traits assessed by the SSE to those assessed by Jacoby's Stigma Scale. Differential item functioning based on forced disclosure of epilepsy was examined. The SSE yielded two latent traits--the first reflected difficulties faced by PWE; the second reflected emotions associated with epilepsy. Jacoby's Stigma Scale was associated only with the first latent trait. Forced disclosure was associated with "worry" and "pity" that were associated with the second latent trait. In Zambian PWE, the SSE captured two latent traits. One trait represents feelings associated with epilepsy, which is theorized as a substantial yet unmeasured part of stigma. The SSE performs well across cultures and may more comprehensively assess felt stigma than other instruments. Further validation is required to determine whether the SSE adequately assesses stigmatizing attitudes among people without epilepsy.

  12. Above-Threshold Ionization by an Elliptically Polarized Field: Quantum Tunneling Interferences and Classical Dodging

    NASA Astrophysics Data System (ADS)

    Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.

    1998-01-01

    Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.

  13. Fractional Fourier transform of truncated elliptical Gaussian beams.

    PubMed

    Du, Xinyue; Zhao, Daomu

    2006-12-20

    Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.

  14. A transmission line model for propagation in elliptical core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the casemore » of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.« less

  15. Elliptical excisions: variations and the eccentric parallelogram.

    PubMed

    Goldberg, Leonard H; Alam, Murad

    2004-02-01

    The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.

  16. Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane

    NASA Astrophysics Data System (ADS)

    Bertin, M. C.; Pimentel, B. M.; Valcárcel, C. E.; Zambrano, G. E. R.

    2017-08-01

    We develop the Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane. The main goal is to build the complete set of Hamiltonian generators of the system as well as to study the canonical and gauge transformations of the theory.

  17. Teardrop and heart orbits of a swinging Atwood's machine

    NASA Astrophysics Data System (ADS)

    Tufillaro, Nicholas B.

    1994-03-01

    An exact solution is presented for a swinging Atwood's machine. This teardrop-heart orbit is constructed using Hamilton-Jacobi theory. The example nicely illustrates the utility of the Hamilton-Jacobi method for finding solutions to nonlinear mechanical systems when more elementary techniques fail.

  18. The correlation function of galaxy ellipticities produced by gravitational lensing

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi

    1991-01-01

    The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.

  19. EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2015-07-01

    Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space-time) states, the original version of EPR paradox can be discussed and the correct answer can be verified based on the strong rooted complex quantum Hamilton-Jacobi theory [2-27] and as another example we can use the negative energy states, to remove the Klein's paradox without the need of any further explanations or justifications like backwardly moving electrons. Finally, comparing the two approaches, we can point out to the existence of a connection between quantum Hamiltonian dynamics, standard quantum field theory, and Krein space quantization [28-43].

  20. Improvement of transport-corrected scattering stability and performance using a Jacobi inscatter algorithm for 2D-MOC

    DOE PAGES

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    2017-03-10

    The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2Dmore » method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop$-$as is the case with the Gauss-Seidel sweeper$-$to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of the Jacobi iteration are substantially improved compared to the Gauss-Seidel iteration, it does yield a roughly 8$-$10% increase in the overall memory requirement.« less

  1. Numerical Solution of Hamilton-Jacobi Equations in High Dimension

    DTIC Science & Technology

    2012-11-23

    high dimension FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA-Universita di Roma P. Aldo Moro, 2 00185 ROMA AH930...solution of Hamilton-Jacobi equations in high dimension AFOSR contract n. FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA

  2. Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators

    NASA Astrophysics Data System (ADS)

    Cho, Yumi

    2018-05-01

    We study nonlinear elliptic problems with nonstandard growth and ellipticity related to an N-function. We establish global Calderón-Zygmund estimates of the weak solutions in the framework of Orlicz spaces over bounded non-smooth domains. Moreover, we prove a global regularity result for asymptotically regular problems which are getting close to the regular problems considered, when the gradient variable goes to infinity.

  3. A semi-analytical method for near-trapped mode and fictitious frequencies of multiple scattering by an array of elliptical cylinders in water waves

    NASA Astrophysics Data System (ADS)

    Chen, Jeng-Tzong; Lee, Jia-Wei

    2013-09-01

    In this paper, we focus on the water wave scattering by an array of four elliptical cylinders. The null-field boundary integral equation method (BIEM) is used in conjunction with degenerate kernels and eigenfunctions expansion. The closed-form fundamental solution is expressed in terms of the degenerate kernel containing the Mathieu and the modified Mathieu functions in the elliptical coordinates. Boundary densities are represented by using the eigenfunction expansion. To avoid using the addition theorem to translate the Mathieu functions, the present approach can solve the water wave problem containing multiple elliptical cylinders in a semi-analytical manner by introducing the adaptive observer system. Regarding water wave problems, the phenomena of numerical instability of fictitious frequencies may appear when the BIEM/boundary element method (BEM) is used. Besides, the near-trapped mode for an array of four identical elliptical cylinders is observed in a special layout. Both physical (near-trapped mode) and mathematical (fictitious frequency) resonances simultaneously appear in the present paper for a water wave problem by an array of four identical elliptical cylinders. Two regularization techniques, the combined Helmholtz interior integral equation formulation (CHIEF) method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.

  4. Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral

    NASA Astrophysics Data System (ADS)

    Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo

    2018-06-01

    We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.

  5. Local spectral properties of reflectionless Jacobi, CMV, and Schrödinger operators

    NASA Astrophysics Data System (ADS)

    Gesztesy, Fritz; Zinchenko, Maxim

    We prove that Jacobi, CMV, and Schrödinger operators, which are reflectionless on a homogeneous set E (in the sense of Carleson), under the assumption of a Blaschke-type condition on their discrete spectra accumulating at E, have purely absolutely continuous spectrum on E.

  6. The genus Ivalia Jacoby 1887 (Coleoptera: Chrysomelidae: Galerucinae: Alticini) of the mount Kinabalu, Sabah, Malaysia

    USDA-ARS?s Scientific Manuscript database

    The following new species of Ivalia Jacoby 1887 are described from the mount Kinabalu (Sabah, Malaysia): I. besar, I. biasa, I. fulvomaculata, I. haruka, I. marginata, I. minutissima, I. nigrofasciata, I. pseudostriolata, I. rubrorbiculata, I. striolata. Chabria kinabalensis Bryant 1938 is transferr...

  7. Elaborative Processing in the Korsakoff Syndrome: Context versus Habit

    ERIC Educational Resources Information Center

    Van Damme, Ilse; d'Ydewalle, Gery

    2008-01-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). "Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness." "Psychology and Aging," 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were…

  8. Finite-band solutions of the coupled dispersionless hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Zhu

    2016-08-01

    The coupled dispersionless hierarchy is derived with the help of the zero curvature equation. Based on the Lax matrix, we introduce an algebraic curve {{ K }}n of arithmetic genus n, from which we establish the corresponding meromorphic function ϕ, the Baker-Akhiezer function {\\varphi }1, and Dubrovin-type equations. The straightening out of all the flows is given under the Abel-Jacobi coordinates. Using the asymptotic properties of ϕ and {\\varphi }1, we obtain the explicit theta function representations of the meromorphic function ϕ, the Baker-Akhiezer function {\\varphi }1 and of solutions for the whole hierarchy.

  9. Value function in economic growth model

    NASA Astrophysics Data System (ADS)

    Bagno, Alexander; Tarasyev, Alexandr A.; Tarasyev, Alexander M.

    2017-11-01

    Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton-Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals and an example is given to illustrate construction of the value function in economic growth models.

  10. Effects of off-axis elliptical training on reducing pain and improving knee function in individuals with patellofemoral pain

    PubMed Central

    Tsai, Liang-Ching; Lee, Song Joo; Yang, Aaron J.; Ren, Yupeng; Press, Joel M.; Zhang, Li-Qun

    2014-01-01

    Objective To examine whether an off-axis elliptical training program reduces pain and improves knee function in individuals with patellofemoral pain (PFP). Design Controlled laboratory study, pre-test-post-test. Setting University rehabilitation center. Participants Twelve adult subjects with PFP. Interventions Subjects with PFP completed an exercise program consisting of 18 sessions of lower extremity off-axis training using a custom-made elliptical trainer that allows frontal-plane sliding and transverse-plane pivoting of the footplates. Main Outcome Measures Changes in knee pain and function post-training and 6 weeks following training were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) scores. Lower extremity off-axis control was assessed by pivoting and sliding instability, calculated as the root mean square (RMS) of the footplate pivoting angle and sliding distance during elliptical exercise. Subjects’ single-leg hop distance and proprioception in detecting lower extremity pivoting motion were also evaluated. Results Subjects reported significantly greater KOOS and IKDC scores (increased by 12–18 points) and hop distance (increased by 0.2 m) following training. A significant decrease in the pivoting and sliding RMS was also observed following training. Additionally, subjects with PFP demonstrated improved pivoting proprioception when tested under a minimum-weight-bearing position. Conclusions An off-axis elliptical training program was effective in enhancing lower extremity neuromuscular control on the frontal and transverse planes, reducing pain and improving knee function in persons with PFP. PMID:25591131

  11. Lens elliptic gamma function solution of the Yang-Baxter equation at roots of unity

    NASA Astrophysics Data System (ADS)

    Kels, Andrew P.; Yamazaki, Masahito

    2018-02-01

    We study the root of unity limit of the lens elliptic gamma function solution of the star-triangle relation, for an integrable model with continuous and discrete spin variables. This limit involves taking an elliptic nome to a primitive rNth root of unity, where r is an existing integer parameter of the lens elliptic gamma function, and N is an additional integer parameter. This is a singular limit of the star-triangle relation, and at subleading order of an asymptotic expansion, another star-triangle relation is obtained for a model with discrete spin variables in {Z}rN . Some special choices of solutions of equation of motion are shown to result in well-known discrete spin solutions of the star-triangle relation. The saddle point equations themselves are identified with three-leg forms of ‘3D-consistent’ classical discrete integrable equations, known as Q4 and Q3(δ=0) . We also comment on the implications for supersymmetric gauge theories, and in particular comment on a close parallel with the works of Nekrasov and Shatashvili.

  12. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  13. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

    DTIC Science & Technology

    2002-07-25

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc., AMS... orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener (1938). A Galerkin projection...1) by generalized polynomial chaos expansion, where the uncertainties can be introduced through κ, f , or g, or some combinations. It is worth

  14. Multivariant function model generation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The development of computer programs applicable to space vehicle guidance was conducted. The subjects discussed are as follows: (1) determination of optimum reentry trajectories, (2) development of equations for performance of trajectory computation, (3) vehicle control for fuel optimization, (4) development of equations for performance trajectory computations, (5) applications and solution of Hamilton-Jacobi equation, and (6) stresses in dome shaped shells with discontinuities at the apex.

  15. A new species of Burumoseria Csiki, 1939 from Taiwan, with redescription of the genus and new generic synonym (Coleoptera: Chrysomelidae: Galerucinae: Alticini)

    USDA-ARS?s Scientific Manuscript database

    The Oriental genus Burumoseria Csiki is redescribed. A new species, Burumoseria yuae from Taiwan is described and illustrated. A key to Burumoseria species is provided. The Oriental and Australian genus Licyllus Jacoby 1885 is synonymized with Thrasychroma Jacoby 1885....

  16. Notes on the occurrence of Oligonychus milleri (McGregor) and oligonychus ununguis (Jacobi) (Acari: Tetranychidae) in Brazil

    USDA-ARS?s Scientific Manuscript database

    We verified infestation of Oligonychus milleri (McGregor) on plantations of Pinus caribaea (Pinaceae) and of Oligonychus ununguis (Jacobi) on plantations of Eucalyptus urophylla x Eucalyptus grandis (Myrtaceae) in State of Rondônia, Northern region of Brazil. This represents the first record of O. m...

  17. Retrieval Constraints on the Front End Create Differences in Recollection on a Subsequent Test

    ERIC Educational Resources Information Center

    Marsh, Richard L.; Meeks, J. Thadeus; Cook, Gabriel I.; Clark-Foos, Arlo; Hicks, Jason L.; Brewer, Gene A.

    2009-01-01

    Four experiments were conducted to investigate how the cognitive control of memory retrieval selects particular qualitative characteristics as a consequence of instantiating a retrieval mode for recognition memory. Adapting the memory for foils paradigm from Jacoby, Shimizu, Daniels, and Rhodes (Jacoby, L. L., Shimizu, Y., Daniels, K. A., &…

  18. MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    2016-08-31

    In recent weeks, attention has been given to resolving the convergence issues encountered with TCP 0 by trying a Jacobi (J) inscatter approach when group sweeping, where the inscatter source is constructed using the previous iteration flux. This is in contrast to a Gauss-Seidel (GS) approach, which has been the default to-date, where the scattering source uses the most up-to-date flux values. The former is consistent with CASMO, which has no issues with TCP 0 convergence. Testing this out on a variety of problems has demonstrated that the Jacobi approach does indeed provide substantially more stability, though can take moremore » outer iterations to converge. While this is not surprising, there are improvements that can be made to the MOC sweeper to capitalize on the Jacobi approximation and provide substantial speedup. For example, the loop over groups, which has traditionally been the outermost loop in MPACT, can be moved to the interior, avoiding duplicate modular ray trace and coarse ray trace setup (mapping coarse mesh surface indexes), which needs to be performed repeatedly when group is outermost.« less

  19. A numerical study of viscous vortex rings using a spectral method

    NASA Technical Reports Server (NTRS)

    Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.

    1988-01-01

    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.

  20. Numerical study on the incompressible Euler equations as a Hamiltonian system: Sectional curvature and Jacobi field

    NASA Astrophysics Data System (ADS)

    Ohkitani, K.

    2010-05-01

    We study some of the key quantities arising in the theory of [Arnold "Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier 16, 319 (1966)] of the incompressible Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi fields is compared to the vorticity fields by visualizations. The Jacobi fields are found to grow exponentially in time for the flows with negative sectional curvatures. In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi field is shown to be correlated with the passive scalar gradient in spatial structure. On the basis of Rouchon's physical-space based expression for the sectional curvature (1984), the origin of negative curvature is investigated. It is found that a "potential" αξ appearing in the definition of covariant time derivative plays an important role, in that a rapid growth in its gradient makes a major contribution to the negative curvature.

  1. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    NASA Astrophysics Data System (ADS)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  2. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    USGS Publications Warehouse

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  3. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  4. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2018-04-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  5. Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph

    NASA Astrophysics Data System (ADS)

    Noja, Diego; Pelinovsky, Dmitry; Shaikhova, Gaukhar

    2015-07-01

    We develop a detailed analysis of edge bifurcations of standing waves in the nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a semi-infinite line subject to the Kirchhoff boundary conditions at the junction). It is shown in the recent work [7] by using explicit Jacobi elliptic functions that the cubic NLS equation on a tadpole graph admits a rich structure of standing waves. Among these, there are different branches of localized waves bifurcating from the edge of the essential spectrum of an associated Schrödinger operator. We show by using a modified Lyapunov-Schmidt reduction method that the bifurcation of localized standing waves occurs for every positive power nonlinearity. We distinguish a primary branch of never vanishing standing waves bifurcating from the trivial solution and an infinite sequence of higher branches with oscillating behavior in the ring. The higher branches bifurcate from the branches of degenerate standing waves with vanishing tail outside the ring. Moreover, we analyze stability of bifurcating standing waves. Namely, we show that the primary branch is composed by orbitally stable standing waves for subcritical power nonlinearities, while all nontrivial higher branches are linearly unstable near the bifurcation point. The stability character of the degenerate branches remains inconclusive at the analytical level, whereas heuristic arguments based on analysis of embedded eigenvalues of negative Krein signatures support the conjecture of their linear instability at least near the bifurcation point. Numerical results for the cubic NLS equation show that this conjecture is valid and that the degenerate branches become spectrally stable far away from the bifurcation point.

  6. Complex Analysis and Related Topics. Proceedings of the Conference held in Amsterdam on 27 - 29 January 1993

    DTIC Science & Technology

    1993-01-29

    Bessel functions and Jacobi functions (cf. [2]). References [1] R. Askey & J. Wilson, Some basic hypergeometric orthogonal polynomials that gen- eralize...1; 1] can be treated as a part of general theory of T-systems (see [81 for that theory and [7] for some aspects of the Chebyshev polynomials theory...waves in elastic media. It has been known for some time that these multiplicities sometimes occur for topological reasons and are present generically , see

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergyeyev, Artur; Krtous, Pavel; Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, Prague

    We consider the Klein-Gordon equation in generalized higher-dimensional Kerr-NUT-(A)dS spacetime without imposing any restrictions on the functional parameters characterizing the metric. We establish commutativity of the second-order operators constructed from the Killing tensors found in [J. High Energy Phys. 02 (2007) 004] and show that these operators, along with the first-order operators originating from the Killing vectors, form a complete set of commuting symmetry operators (i.e., integrals of motion) for the Klein-Gordon equation. Moreover, we demonstrate that the separated solutions of the Klein-Gordon equation obtained in [J. High Energy Phys. 02 (2007) 005] are joint eigenfunctions for all of thesemore » operators. We also present an explicit form of the zero mode for the Klein-Gordon equation with zero mass. In the semiclassical approximation we find that the separated solutions of the Hamilton-Jacobi equation for geodesic motion are also solutions for a set of Hamilton-Jacobi-type equations which correspond to the quadratic conserved quantities arising from the above Killing tensors.« less

  8. Predicting weak lensing statistics from halo mass reconstructions - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Spencer

    2015-08-20

    As dark matter does not absorb or emit light, its distribution in the universe must be inferred through indirect effects such as the gravitational lensing of distant galaxies. While most sources are only weakly lensed, the systematic alignment of background galaxies around a foreground lens can constrain the mass of the lens which is largely in the form of dark matter. In this paper, I have implemented a framework to reconstruct all of the mass along lines of sight using a best-case dark matter halo model in which the halo mass is known. This framework is then used to makemore » predictions of the weak lensing of 3,240 generated source galaxies through a 324 arcmin² field of the Millennium Simulation. The lensed source ellipticities are characterized by the ellipticity-ellipticity and galaxy-mass correlation functions and compared to the same statistic for the intrinsic and ray-traced ellipticities. In the ellipticity-ellipticity correlation function, I and that the framework systematically under predicts the shear power by an average factor of 2.2 and fails to capture correlation from dark matter structure at scales larger than 1 arcminute. The model predicted galaxy-mass correlation function is in agreement with the ray-traced statistic from scales 0.2 to 0.7 arcminutes, but systematically underpredicts shear power at scales larger than 0.7 arcminutes by an average factor of 1.2. Optimization of the framework code has reduced the mean CPU time per lensing prediction by 70% to 24 ± 5 ms. Physical and computational shortcomings of the framework are discussed, as well as potential improvements for upcoming work.« less

  9. An Analysis of Elliptic Grid Generation Techniques Using an Implicit Euler Solver.

    DTIC Science & Technology

    1986-06-09

    automatic determination of the control fu.nction, . elements of covariant metric tensor in the elliptic grid generation system , from the Cm = 1,2,3...computational fluid d’nan1-cs code. Tne code Inclues a tnree-dimensional current research is aimed primaril: at algebraic generation system based on transfinite...start the iterative solution of the f. ow, nea, transfer, and combustion proble:s. elliptic generation system . Tn13 feature also .:ven-.ts :.t be made

  10. Automated symbolic calculations in nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Kröger, Martin; Hütter, Markus

    2010-12-01

    We cast the Jacobi identity for continuous fields into a local form which eliminates the need to perform any partial integration to the expense of performing variational derivatives. This allows us to test the Jacobi identity definitely and efficiently and to provide equations between different components defining a potential Poisson bracket. We provide a simple Mathematica TM notebook which allows to perform this task conveniently, and which offers some additional functionalities of use within the framework of nonequilibrium thermodynamics: reversible equations of change for fields, and the conservation of entropy during the reversible dynamics. Program summaryProgram title: Poissonbracket.nb Catalogue identifier: AEGW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 227 952 No. of bytes in distributed program, including test data, etc.: 268 918 Distribution format: tar.gz Programming language: Mathematica TM 7.0 Computer: Any computer running Mathematica TM 6.0 and later versions Operating system: Linux, MacOS, Windows RAM: 100 Mb Classification: 4.2, 5, 23 Nature of problem: Testing the Jacobi identity can be a very complex task depending on the structure of the Poisson bracket. The Mathematica TM notebook provided here solves this problem using a novel symbolic approach based on inherent properties of the variational derivative, highly suitable for the present tasks. As a by product, calculations performed with the Poisson bracket assume a compact form. Solution method: The problem is first cast into a form which eliminates the need to perform partial integration for arbitrary functionals at the expense of performing variational derivatives. The corresponding equations are conveniently obtained using the symbolic programming environment Mathematica TM. Running time: For the test cases and most typical cases in the literature, the running time is of the order of seconds or minutes, respectively.

  11. Accelerating NLTE radiative transfer by means of the Forth-and-Back Implicit Lambda Iteration: A two-level atom line formation in 2D Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Milić, Ivan; Atanacković, Olga

    2014-10-01

    State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator within either Jacobi or Gauss-Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems, Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J=a+bS between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.

  12. Quasimodular instanton partition function and the elliptic solution of Korteweg-de Vries equations

    NASA Astrophysics Data System (ADS)

    He, Wei

    2015-02-01

    The Gauge/Bethe correspondence relates Omega-deformed N = 2 supersymmetric gauge theories to some quantum integrable models, in simple cases the integrable models can be treated as solvable quantum mechanics models. For SU(2) gauge theory with an adjoint matter, or with 4 fundamental matters, the potential of corresponding quantum model is the elliptic function. If the mass of matter takes special value then the potential is an elliptic solution of KdV hierarchy. We show that the deformed prepotential of gauge theory can be obtained from the average densities of conserved charges of the classical KdV solution, the UV gauge coupling dependence is assembled into the Eisenstein series. The gauge theory with adjoint mass is taken as the example.

  13. Nearly associative deformation quantization

    NASA Astrophysics Data System (ADS)

    Vassilevich, Dmitri; Oliveira, Fernando Martins Costa

    2018-04-01

    We study several classes of non-associative algebras as possible candidates for deformation quantization in the direction of a Poisson bracket that does not satisfy Jacobi identities. We show that in fact alternative deformation quantization algebras require the Jacobi identities on the Poisson bracket and, under very general assumptions, are associative. At the same time, flexible deformation quantization algebras exist for any Poisson bracket.

  14. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  15. "Xchanges Journal"--Web Journal as the Writing Classroom: On Building an Academic Web Journal in a Collaborative Classroom

    ERIC Educational Resources Information Center

    Boles, Jacoby; Newmark, Julianne

    2011-01-01

    This website is the creation of one of Julianne Newmark's students, Jacoby Boles, the Editorial Assistant for the e-journal "Xchanges." Jacoby reflects, via this site, on his experiences as a member of the Technical Communication 371 "Publications Management" course at New Mexico Tech. This course was explicitly designed to…

  16. Jacobi Shape Transitions Within the LSD Model and the Skyrme-Etf Approach

    NASA Astrophysics Data System (ADS)

    Bartel, Johann; Pomorski, Krzysztof

    The "Modified Funny-Hills parametrisation" is used together with the Lublin-Strasbourg Drop Model to evaluate the stability of rotating nuclei. The Jacobi transition into triaxial shapes is studied. By a comparison with selfconsistent semiclassical calculations in the framework of the Extended Thomas-Fermi method, the validity of the present approach is demonstrated and possible improvements are indicated.

  17. Derivatives of random matrix characteristic polynomials with applications to elliptic curves

    NASA Astrophysics Data System (ADS)

    Snaith, N. C.

    2005-12-01

    The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have at least n eigenvalues equal to 1 and investigate the first non-zero derivative of the characteristic polynomial at that point. The connection between the values of random matrix characteristic polynomials and values of L-functions in families has been well established. The motivation for this work is the expectation that through this connection with L-functions derived from families of elliptic curves, and using the Birch and Swinnerton-Dyer conjecture to relate values of the L-functions to the rank of elliptic curves, random matrix theory will be useful in probing important questions concerning these ranks.

  18. Fisher's method of scoring in statistical image reconstruction: comparison of Jacobi and Gauss-Seidel iterative schemes.

    PubMed

    Hudson, H M; Ma, J; Green, P

    1994-01-01

    Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.

  19. A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.

    2014-02-01

    This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.

  20. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  1. Motion of charged particle in Reissner-Nordström spacetime: a Jacobi-metric approach

    NASA Astrophysics Data System (ADS)

    Das, Praloy; Sk, Ripon; Ghosh, Subir

    2017-11-01

    The present work discusses motion of neutral and charged particles in Reissner-Nordström spacetime. The constant energy paths are derived in a variational principle framework using the Jacobi metric which is parameterized by conserved particle energy. Of particular interest is the case of particle charge and Reissner-Nordström black hole charge being of same sign, since this leads to a clash of opposing forces—gravitational (attractive) and Coulomb (repulsive). Our paper aims to complement the recent work of Pugliese et al. (Eur Phys J C 77:206. arXiv:1304.2940, 2017; Phys Rev D 88:024042. arXiv:1303.6250, 2013). The energy dependent Gaussian curvature (induced by the Jacobi metric) plays an important role in classifying the trajectories.

  2. Value at 2 of the L-function of an elliptic curve

    NASA Astrophysics Data System (ADS)

    Brunault, Francois

    2006-02-01

    We study the special value at 2 of L-functions of modular forms of weight 2 on congruence subgroups of the modular group. We prove an explicit version of Beilinson's theorem for the modular curve X_1(N). When N is prime, we deduce that the target space of Beilinson's regulator map is generated by the images of Milnor symbols associated to modular units of X_1(N). We also suggest a reformulation of Zagier's conjecture on L(E,2) for the jacobian J_1(N) of X_1(N), where E is an elliptic curve of conductor N. In this direction we define an analogue of the elliptic dilogarithm for any jacobian J : it is a function R_J from the complex points of J to a finite-dimensional vector space. In the case J=J_1(N), we establish a link between the aforementioned L-values and the function R_J evaluated at Q-rational points of the cuspidal subgroup of J.

  3. Descriptions of eight new species of Phaelota (Coleoptera: Chrysomelidae) with a new generic synonymy and a key to species of Indian subcontinent

    USDA-ARS?s Scientific Manuscript database

    Six new species of Phaelota Jacoby from India viz. P. assamensis, P. kottigehara, P. maculipennis, P. mauliki, P. saluki, and P. viridipennis and two new species from Sri Lanka viz. P. ogloblini and P. schereri are described and illustrated. Thrylaea Jacoby is treated as a new junior synonym of Phae...

  4. Stabilization of a gravel channel by large streamside obstructions and bedrock bends, Jacoby Creek, northwestern California

    Treesearch

    Thomas E. Lisle

    1996-01-01

    Abstract - Jacoby Creek (bed width =12 m; bankfull discharge = 32.6 m 3 /s) contains stationary gravel bars that have forms and positions controlled by numerous large streamside obstructions (bedrock outcrops, large woody debris, and rooted bank projections) and bedrock bends. Bank-projection width and bar volume measured in 104 channel segments 1 bed-width long are...

  5. General relativity in two dimensions: A Hamilton-Jacobi analysis

    NASA Astrophysics Data System (ADS)

    Bertin, M. C.; Pimentel, B. M.; Pompeia, P. J.

    2010-11-01

    We analyzed the constraint structure of the Einstein-Hilbert first-order action in two dimensions using the Hamilton-Jacobi approach. We were able to find a set of involutive, as well as a set of non-involutive constraints. Using generalized brackets we showed how to assure integrability of the theory, to eliminate the set of non-involutive constraints and how to build the field equations.

  6. Fundamental Study on Quantum Nanojets

    DTIC Science & Technology

    2004-08-01

    Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2Dmore » method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop$-$as is the case with the Gauss-Seidel sweeper$-$to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of the Jacobi iteration are substantially improved compared to the Gauss-Seidel iteration, it does yield a roughly 8$-$10% increase in the overall memory requirement.« less

  8. Cognitive Effort Requirements in Recall, Recognition, and Lexical Decision

    DTIC Science & Technology

    1985-05-01

    that the amount of integrative processing required for an item is a function of its preexisting or baseline familiarity level . Low frequency words... Lockhart , Craik , & Jacoby, 1976). In the present study, increased effort, and possibly increased distinctiveness, does not influence hit rates, which are...ing of items. Second, a lexical decision task, which does not require elabo- rative processing , leads to an overall poor level of recall. Furthermore

  9. Transverse radius dependence for transverse velocity and elliptic flow in intermediate energy HIC

    NASA Astrophysics Data System (ADS)

    Yan, Ting-Zhi; Li, Shan

    2011-05-01

    The mean transverse velocity and elliptic flow of light fragments (A <= 2) as a function of transverse radius are studied for 25 MeV/nucleon 64Cu+64Cu collisions with impact parameters 3-5 fm by the isospin-dependent quantum molecular dynamics model. By comparison between the in-plane and the out-of-plane transverse velocities, the elliptic flow dependence on the transverse radius can be understood qualitatively, and variation of the direction of the resultant force on the fragments can be investigated qualitatively.

  10. A new approach to flow through a region bounded by two ellipses of the same ellipticity

    NASA Astrophysics Data System (ADS)

    Lal, K.; Chorlton, F.

    1981-05-01

    A new approach is presented to calculate steady flow of a laminar viscous incompressible fluid through a channel whose cross section is bounded by two ellipses with the same ellipticity. The Milne-Thomas approach avoids the stream function and is similar to the Rayleigh-Ritz approximation process of the calculus of variations in its first satisfying boundary conditions and then adjusting constants or multiplying functions to fit the differential equation.

  11. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATION OF THE ELLIPTIC INTEGRAL

    NASA Technical Reports Server (NTRS)

    Wallis, D. E.

    1994-01-01

    This program produces the Gauss-Kruger (constant meridional scale) Transverse Mercator Projection which is used to construct the U.S. Army's Universal Transverse Mercator (UTM) Grid System. The method is capable of mapping the entire northern hemisphere of the earth (and, by symmetry of the projection, the entire earth) accurately with respect to a single principal meridian, and is therefore mathematically insensitive to proximity either to the pole or the equator, or to the departure of the meridian from the central meridian. This program could be useful to any map-making agency. The program overcomes the limitations of the "series" method (Thomas, 1952) presently used to compute the UTM Grid, specifically its complicated derivation, non-convergence near the pole, lack of rigorous error analysis, and difficulty of obtaining increased accuracy. The method is based on the principle that the parametric colatitude of a point is the amplitude of the Elliptic Integral of the 2nd Kind, and this (irreducible) integral is the desired projection. Thus, a specification of the colatitude leads, most directly (and with strongest motivation) to a formulation in terms of amplitude. The most difficult problem to be solved was setting up the method so that the Elliptic Integral of the 2nd Kind could be used elsewhere than on the principal meridian. The point to be mapped is specified in conventional geographic coordinates (geodetic latitude and longitudinal departure from the principal meridian). Using the colatitude (complement of latitude) and the longitude (departure), the initial step is to map the point to the North Polar Stereographic Projection. The closed-form, analytic function that coincides with the North Polar Stereographic Projection of the spheroid along the principal meridian is put into a Newton-Raphson iteration that solves for the tangent of one half the parametric colatitude, generalized to the complex plane. Because the parametric colatitude is the amplitude of the (irreducible) Incomplete Elliptic Integral of the 2nd Kind, the value for the tangent of one half the amplitude of the Elliptic Integral of the 2nd Kind is now known. The elliptic integral may now be computed by any desired method, and the result will be the Gauss-Kruger Transverse Mercator Projection. This result is a consequence of the fact that these steps produce a computation of real distance along the image (in the plane) of the principal meridian, and an analytic continuation of the distance at points that don't lie on the principal meridian. The elliptic-integral method used by this program is one of the "transformations of the elliptic integral" (similar to Landen's Transformation), appearing in standard handbooks of mathematical functions. Only elementary transcendental functions are utilized. The program output is the conventional (as used by the mapping agencies) cartesian coordinates, in meters, of the Transverse Mercator projection. The origin is at the intersection of the principal meridian and the equator. This FORTRAN77 program was developed on an IBM PC series computer equipped with an Intel Math Coprocessor. Double precision complex arithmetic and transcendental functions are needed to support a projection accuracy of 1 mm. Because such functions are not usually part of the FORTRAN library, the needed functions have been explicitly programmed and included in the source code. The program was developed in 1989. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATIONS OF THE ELLIPTIC INTEGRAL is a copyrighted work with all copyright vested in NASA.

  12. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    PubMed

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  13. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present the first fifth order, semi-discrete central upwind method for approximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike most of the commonly used high order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-Tadmor and Kurganov-Tadmor-Petrova, and is derived for an arbitrary number of space dimensions. A theorem establishing the monotonicity of these fluxes is provided. The spacial discretization is based on a weighted essentially non-oscillatory reconstruction of the derivative. The accuracy and stability properties of our scheme are demonstrated in a variety of examples. A comparison between our method and other fifth-order schemes for Hamilton-Jacobi equations shows that our method exhibits smaller errors without any increase in the complexity of the computations.

  14. A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.

    2014-09-01

    In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach

  15. Streamline integration as a method for two-dimensional elliptic grid generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less

  16. Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games

    DTIC Science & Technology

    2016-05-01

    Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games Yat Tin...subproblems. Our approach is expected to have wide applications in continuous dynamic games , control theory problems, and elsewhere. Mathematics...differential dynamic games , control theory problems, and dynamical systems coming from the physical world, e.g. [11]. An important application is to

  17. Compressed Semi-Discrete Central-Upwind Schemes for Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kurganov, Alexander; Levy, Doron; Petrova, Guergana

    2003-01-01

    We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional Hamilton-Jacobi equations. These schemes are a less dissipative generalization of the central-upwind schemes that have been recently proposed in series of works. We provide the details of the new family of methods in one, two, and three space dimensions, and then verify their expected low-dissipative property in a variety of examples.

  18. High-Order Central WENO Schemes for 1D Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In this paper we derive fully-discrete Central WENO (CWENO) schemes for approximating solutions of one dimensional Hamilton-Jacobi (HJ) equations, which combine our previous works. We introduce third and fifth-order accurate schemes, which are the first central schemes for the HJ equations of order higher than two. The core ingredient is the derivation of our schemes is a high-order CWENO reconstructions in space.

  19. Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry

    NASA Technical Reports Server (NTRS)

    Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.

    2003-01-01

    Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson s Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.

  20. Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry

    NASA Technical Reports Server (NTRS)

    Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.

    2003-01-01

    Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson's Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.

  1. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  2. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

    NASA Astrophysics Data System (ADS)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

    2015-05-01

    3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

  3. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  4. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2007-06-01

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  5. Tensor calculus in polar coordinates using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.

    2016-11-01

    Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.

  6. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    NASA Astrophysics Data System (ADS)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  7. A quasi-intermittency

    NASA Astrophysics Data System (ADS)

    He, Da-Ren; Wang, Xu-Ming; Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng

    2002-03-01

    A kind of discontinuous and noninvertible area-preserving maps can display behaviors as a dissipative one, so it may be addressed as a "quasi-dissipative system"^1. In a quasi-dissipative system the disappearance of some elliptic periodic orbits and the elliptic islands around them via a collision with the discontinuous border of the system function can be observed. A chaotic quasi-attractor dominates behavior of the system after the disappearance of the elliptic periodic orbit and a sequence of transition elliptic periodic orbits. When the chaotic quasi-attractor just appears, the chaotic time sequence shows a random intersperse between laminar and turbulence phases. All these are very similar to the properties of type V intermittency happened in a dissipative system. So, we may call the phenomenon as a "type V quasi-intermittency". However, there can be only some remnants of the last disappeared transition elliptic island instead of its "ghost", therefore type V quasi-intermittency does not obey the characteristic scaling laws of type V intermittency. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.

  8. Inverse Problems and Imaging (Pitman Research Notes in Mathematics Series Number 245)

    DTIC Science & Technology

    1991-01-01

    Multiparamcter spectral theory in Hilbert space functional differential cquations B D Sleeman F Kappel and W Schappacher 24 Mathematical modelling...techniques 49 Sequence spaces R Aris W 11 Ruckle 25 Singular points of smooth mappings 50 Recent contributions to nonlinear C G Gibson partial...of convergence in the central limit T Husain theorem 86 Hamilton-Jacobi equations in Hilbert spaces Peter Hall V Barbu and G Da Prato 63 Solution of

  9. Effect of Convection on Weld Pool Shape and Microstructure.

    DTIC Science & Technology

    1986-07-01

    latent heat of fusion 11 u dynamic viscosity Iwo V kinematic viscosity P density a Stefan -Boltzman constant stress tensor 0, functions defined the...and temperature. The convections for velocities and temperature are based on a mixed Gauss- -* Seidel and Jacobi schemes, proceeding from line-to...line according to the Gauss- Seidel scheme, updating values as each line is completed. With each line, however, the point-by-point iteration is based on

  10. Structure and Formation of Elliptical and Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf

    2009-05-01

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT <= -21.66 have cuspy cores—"missing light"—at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ("dry") mergers. All 17 ellipticals with -21.54 <= MVT <= -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sérsic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sérsic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ("wet") mergers. Besides extra light, we find three new aspects to the ("E-E") dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have Sérsic indices n > 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong dichotomy between elliptical and spheroidal galaxies. Their properties are consistent with our understanding of their different formation processes: mergers for ellipticals and conversion of late-type galaxies into spheroidals by environmental effects and by energy feedback from supernovae. In an appendix, we develop machinery to get realistic error estimates for Sérsic parameters even when they are strongly coupled. And we discuss photometric dynamic ranges necessary to get robust results from Sérsic fits. Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  11. The Hodge-Elliptic Genus, Spinning BPS States, and Black Holes

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2017-10-01

    We perform a refined count of BPS states in the compactification of M-theory on {K3 × T^2}, keeping track of the information provided by both the {SU(2)_L} and {SU(2)_R} angular momenta in the SO(4) little group. Mathematically, this four variable counting function may be expressed via the motivic Donaldson-Thomas counts of {K3 × T^2}, simultaneously refining Katz, Klemm, and Pandharipande's motivic stable pairs counts on K3 and Oberdieck-Pandharipande's Gromov-Witten counts on {K3 × T^2}. This provides the first full answer for motivic curve counts of a compact Calabi-Yau threefold. Along the way, we develop a Hodge-elliptic genus for Calabi-Yau manifolds—a new counting function for BPS states that interpolates between the Hodge polynomial and the elliptic genus of a Calabi-Yau.

  12. Fully Automated Single-Zone Elliptic Grid Generation for Mars Science Laboratory (MSL) Aeroshell and Canopy Geometries

    NASA Technical Reports Server (NTRS)

    kaul, Upender K.

    2008-01-01

    A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic grid generation has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy. The procedure obviates the need for generating multizone grids for such geometries, as reported in the literature. This has been possible because the enhanced elliptic grid generator automatically generates clustered grids without manual prescription of decay parameters needed with the conventional approach. In fact, these decay parameters are calculated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically without having to break up the boundaries and the corresponding interior domains into various zones for grid generation.

  13. Solution of D dimensional Dirac equation for coulombic potential using NU method and its thermodynamics properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id

    2016-02-08

    The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.

  14. Attention - Control in the Frequentistic Processing of Multidimensional Event Streams.

    DTIC Science & Technology

    1980-07-01

    Human memory. Annual Review of Psychology, 1979, 30, 63-702. Craik , F. I. M., & Lockhart , R. S. Levels of processing : A framework for memory research...1979; Jacoby & Craik , 1979). Thus, the notions of memora- bility (or retrievability) and levels of processing are tied closely in the sense that the...differing levels and degrees of elaborateness (Jacoby & Craik , 1979). Decisions as to which attributes receive elaborated processing and how they are

  15. Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.

  16. Geometrical analysis of the LiCN vibrational dynamics: a stability geometrical indicator.

    PubMed

    Vergel, A; Benito, R M; Losada, J C; Borondo, F

    2014-02-01

    The vibrational dynamics of the LiNC/LiCN molecular system is examined making use of the Riemannian geometry. Stability and chaoticity are analyzed, in this context, by means of the Jacobi-Levi-Civita equations, derived from the Jacobi metric, and its solutions. A dynamical indicator, called stability geometrical indicator, is introduced in order to ascertain the dynamical characteristics of stability and chaos in the molecule under study.

  17. A successive overrelaxation iterative technique for an adaptive equalizer

    NASA Technical Reports Server (NTRS)

    Kosovych, O. S.

    1973-01-01

    An adaptive strategy for the equalization of pulse-amplitude-modulated signals in the presence of intersymbol interference and additive noise is reported. The successive overrelaxation iterative technique is used as the algorithm for the iterative adjustment of the equalizer coefficents during a training period for the minimization of the mean square error. With 2-cyclic and nonnegative Jacobi matrices substantial improvement is demonstrated in the rate of convergence over the commonly used gradient techniques. The Jacobi theorems are also extended to nonpositive Jacobi matrices. Numerical examples strongly indicate that the improvements obtained for the special cases are possible for general channel characteristics. The technique is analytically demonstrated to decrease the mean square error at each iteration for a large range of parameter values for light or moderate intersymbol interference and for small intervals for general channels. Analytically, convergence of the relaxation algorithm was proven in a noisy environment and the coefficient variance was demonstrated to be bounded.

  18. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    NASA Astrophysics Data System (ADS)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  19. Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2017-04-01

    As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.

  20. Hunting grounds for Jacobi transitions and hyperdeformations

    DOE PAGES

    Herskind, B.; Benzoni, G.; Wilson, J. N.; ...

    2003-04-01

    In recent attempts to search for exotic shapes, hyperdeformation (HD), and Jacobi transitions in Hf, Ba, Xe, Sn and Nd nuclei, ridge structures presumably originating from nuclei of very elongated shapes have been observed in 126Ba, with Gammasphere (GS) and in 126Xe, with Euroball-IV (EB-IV). After the promising results from GS, a second experiment in 126Ba followed at EB-IV, taking advantage of the use of the BGO Inner Ball (IB) for selecting the highest spins. The decay of the Giant Dipole Resonances (GDR) is also studied, and the analysis in progress. The Quasi-continuum transitions in the Jacobi region, show amore » significant decrease in energy for both 126Ba and 126Xe, compared to the Thomas-Fermi- and the LSD model predictions. Similar effects were recently found for other nuclei by Ward et al.« less

  1. TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE

    NASA Technical Reports Server (NTRS)

    Vu, B. T.

    1994-01-01

    TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.

  2. Fluid displacement between two parallel plates: a non-empirical model displaying change of type from hyperbolic to elliptic equations

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.

    2004-11-01

    We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.

  3. Heat kernel for the elliptic system of linear elasticity with boundary conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Justin; Kim, Seick; Brown, Russell

    2014-10-01

    We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.

  4. Notes on the Occurrence of Oligonychus milleri (McGregor) and Oligonychus ununguis (Jacobi) (Acari: Tetranychidae) in Brazil.

    PubMed

    Castro, E B; Zanardi, O C; Garlet, J; Ochoa, R; Feres, R J F

    2018-06-01

    We verified infestation of Oligonychus milleri (McGregor) on plantations of Pinus caribaea (Pinaceae) and of Oligonychus ununguis (Jacobi) on plantations of Eucalyptus urophylla x Eucalyptus grandis (Myrtaceae) in State of Rondônia, Northern region of Brazil. This represents the first record of O. milleri in Brazil. Oligonychus ununguis was recorded previously, on cypress. The damage caused by these two spider mites in the plantations is described herein.

  5. MIB Galerkin method for elliptic interface problems.

    PubMed

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-12-15

    Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the designed second order convergence of the MIB Galerkin method in the L ∞ and L 2 errors. Some of the best results are obtained in the present work when the interface is C 1 or Lipschitz continuous and the solution is C 2 continuous.

  6. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    NASA Astrophysics Data System (ADS)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-05-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  7. Elliptical orbit performance computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  8. Initial eccentricity and constituent quark number scaling of elliptic flow in ideal and viscous dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, A. K.

    2010-04-15

    In the Israel-Stewart theory of dissipative hydrodynamics, the scaling properties of elliptic flow in Au+Au collisions are studied. The initial energy density of the fluid was fixed to reproduce STAR data on phi-meson multiplicity in 0-5% Au+Au collisions such that, irrespective of fluid viscosity, entropy at the freeze-out is similar in ideal or in viscous evolution. The initial eccentricity or constituent quark number scaling is only approximate in ideal or minimally viscous (eta/s=1/4pi) fluid. Eccentricity scaling becomes nearly exact in more viscous fluid (eta/s>=0.12). However, in more viscous fluid, constituent quark number scaled elliptic flow for mesons and baryons splitsmore » into separate scaling functions. Simulated flows also do not exhibit 'universal scaling'; that is, elliptic flow scaled by the constituent quark number and charged particles v{sub 2} is not a single function of transverse kinetic energy scaled by the quark number. From a study of the violation of universal scaling, we obtain an estimate of quark-gluon plasma viscosity, eta/s=0.12+-0.03. The error is statistical only. The systematic error in eta/s could be as large.« less

  9. Elliptic surface grid generation on minimal and parmetrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.

  10. Ratchet motion induced by a correlated stochastic force

    NASA Astrophysics Data System (ADS)

    Cortés, Emilio

    2000-01-01

    We apply a rigorous formalism we have just worked out (Cortés and Espinosa, Physica A 267 (1999) 414) about escape rates and the Hamilton-Jacobi equation, to study the ratchet motion of a Brownian particle and calculate the probability current in a periodic non-symmetric potential subject to correlated fluctuations. We are able to obtain the current behaviour as a function of the correlation time parameter and compare with other results in the literature.

  11. First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard

    1996-01-01

    The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.

  12. Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    DOE PAGES

    Adamczyk, L.

    2015-06-26

    We present measurements of π⁻ and π⁺ elliptic flow, v₂, at midrapidity in Au+Au collisions at √s NN = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A ch, based on data from the STAR experiment at RHIC. We find that π⁻ (π⁺) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √s NN = 27 GeV and higher. At √s NN = 200 GeV, the slope of the difference of v₂ between π⁻ and π⁺ as a function of A ch exhibits a centrality dependence, which ismore » qualitatively similar to calculations that incorporate a chiral magnetic wave effect. In addition, similar centrality dependence is also observed at lower energies.« less

  13. Crushing characteristics of composite tubes with 'near-elliptical' cross sections

    NASA Astrophysics Data System (ADS)

    Farley, Gary L.; Jones, Robert M.

    1992-01-01

    An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.

  14. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. On the unity of activity in galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan-Robinson, M.

    1977-05-01

    A scheme is presented which unites quasars, radio galaxies, N galaxies, and Seyfert galaxies into a single picture of activity in galaxies. Probability functions are given for optical and radio cores, and extended radio sources (in the case of ellipticals), for both spirals and ellipticals. Activity occurs in galaxies of all luminosities, but the strength of it is made proportional to galaxy luminosity. It is assumed that there is dust surrounding the optical cores, to explain the strong infrared emission in Seyferts.Quasars may, in this picture, occur in both spirals and ellipticals, and in fact most optically selected QSOs aremore » predicted to be in spirals.« less

  16. Afrotropical flea beetle genera: a key to their identification, updated catalogue and biogeographical analysis (Coleoptera, Chrysomelidae, Galerucinae, Alticini)

    PubMed Central

    Biondi, Maurizio; D’Alessandro, Paola

    2012-01-01

    Abstract A revision of the Alticini genera from the Afrotropical region is reported. The paper includes the following for the flea beetle fauna occurring in Sub-Saharan Africa and Madagascar: a key to their identification; habitus photos of all the genera; microscope and scanning electron micrographs of many diagnostic morphological characters; and an updated annotated catalogue with biogeographical notes that include new distributional data. The following new synonymies are proposed: Aphthona Chevrolat, 1836 = Ethiopia Scherer, 1972 syn. n.; Sanckia Duvivier, 1891 = Eugonotes Jacoby, 1897 syn. n.; Eurylegna Weise, 1910a = Eurylegniella Scherer, 1972 syn. n.; Kimongona Bechyné, 1959a = Mesocrepis Scherer, 1963 syn. n.; Diphaulacosoma Jacoby, 1892a = Neoderina Bechyné, 1952 syn. n.; Sesquiphaera Bechyné, 1958a = Paropsiderma Bechyné, 1958a syn. n.; Podagrica Chevrolat, 1836 = Podagricina Csiki in Heikertinger and Csiki 1940 syn. n.; Amphimela Chapuis, 1875 = Sphaerophysa Baly, 1876a syn. n. The following new combinations are proposed: Blepharida insignis Brancsik, 1897 = Xanthophysca insignis (Brancsik, 1897) comb. n.; Blepharida multiguttata Duvivier, 1891 = Xanthophysca multiguttata (Duvivier, 1891) comb. n.; Hemipyxis balyana (Csiki in Heikertinger and Csiki 1940) = Pseudadorium balyanum (Csiki in Heikertinger and Csiki, 1940) comb. n.; Hemipyxis brevicornis (Jacoby, 1892a) = Pseudadorium brevicornis (Jacoby, 1892a) comb. n.; Hemipyxis cyanea (Weise, 1910b) = Pseudadorium cyaneum (Weise, 1910b) comb. n.; Hemipyxis gynandromorpha Bechyné, 1958c = Pseudadorium gynandromorphum (Bechyné, 1958c) comb. n.; Hemipyxis latiuscula Bechyné, 1958c = Pseudadorium latiusculum (Bechyné, 1958c) comb. n.; Hemipyxis soror (Weise, 1910b) = Pseudadorium soror (Weise, 1910b) comb. n. The genera Buphonella Jacoby, 1903aand Halticopsis Fairmaire, 1883a are transferred to the tribe Galerucini; the genus Biodontocnema Biondi, 2000 stat. prom. is considered to be valid and reinstated at generic level. Finally, a zoogeographical analysis of the flea beetle fauna in the Afrotropical region is provided. PMID:23378812

  17. Effects of an Off-Axis Pivoting Elliptical Training Program on Gait Function in Persons With Spastic Cerebral Palsy: A Preliminary Study.

    PubMed

    Tsai, Liang-Ching; Ren, Yupeng; Gaebler-Spira, Deborah J; Revivo, Gadi A; Zhang, Li-Qun

    2017-07-01

    This preliminary study examined the effects of off-axis elliptical training on reducing transverse-plane gait deviations and improving gait function in 8 individuals with cerebral palsy (CP) (15.5 ± 4.1 years) who completed an training program using a custom-made elliptical trainer that allows transverse-plane pivoting of the footplates during exercise. Lower-extremity off-axis control during elliptical exercise was evaluated by quantifying the root-mean-square and maximal angular displacement of the footplate pivoting angle. Lower-extremity pivoting strength was assessed. Gait function and balance were evaluated using 10-m walk test, 6-minute-walk test, and Pediatric Balance Scale. Toe-in angles during gait were quantified. Participants with CP demonstrated a significant decrease in the pivoting angle (root mean square and maximal angular displacement; effect size, 1.00-2.00) and increase in the lower-extremity pivoting strength (effect size = 0.91-1.09) after training. Reduced 10-m walk test time (11.9 ± 3.7 seconds vs. 10.8 ± 3.0 seconds; P = 0.004; effect size = 1.46), increased Pediatric Balance Scale score (43.6 ± 12.9 vs. 45.6 ± 10.8; P = 0.042; effect size = 0.79), and decreased toe-in angle (3.7 ± 10.5 degrees vs. 0.7 ± 11.7 degrees; P = 0.011; effect size = 1.22) were observed after training. We present an intervention to challenge lower-extremity off-axis control during a weight-bearing and functional activity for individuals with CP. Our preliminary findings suggest that this intervention was effective in enhancing off-axis control, gait function, and balance and reducing in-toeing gait in persons with CP.

  18. Escape rates over potential barriers: variational principles and the Hamilton-Jacobi equation

    NASA Astrophysics Data System (ADS)

    Cortés, Emilio; Espinosa, Francisco

    We describe a rigorous formalism to study some extrema statistics problems, like maximum probability events or escape rate processes, by taking into account that the Hamilton-Jacobi equation completes, in a natural way, the required set of boundary conditions of the Euler-Lagrange equation, for this kind of variational problem. We apply this approach to a one-dimensional stochastic process, driven by colored noise, for a double-parabola potential, where we have one stable and one unstable steady states.

  19. The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations

    NASA Technical Reports Server (NTRS)

    Osher, Stanley

    1989-01-01

    Simple inequalities for the Riemann problem for a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave) are presented. The initial data is globally continuous, affine in each orthant, with a possible jump in normal derivative across each coordinate plane, x sub i = 0. The inequalities become equalities wherever a maxmin equals a minmax and thus an exact closed form solution to this problem is then obtained.

  20. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Hu, Changqing; Shu, Chi-Wang

    1998-01-01

    In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.

  1. Stress intensity factors for part-elliptical cracks emanating from dimpled rivet holes

    NASA Astrophysics Data System (ADS)

    Wang, Ailun; She, Chongmin; Lin, Gang; Zhou, You; Guo, Wanlin

    2014-11-01

    Detailed investigations on the stress intensity factors (SIFs) for corner cracks emanated from interference fitted dimpled rivet holes are conducted using three-dimensional finite element method. The influences of the crack length a, elliptical shape factor t, far-end stress S and interference magnitude δ on the stress intensity factors are systematically studied. The SIFs for corner cracks emanated from open holes are also investigated for comparisons. An empirical formula of the normalized SIF is proposed by use of the least square method for convenience of the engineering application, which is a function of the crack length a, elliptical shape factor t, far-end stress S, interference magnitude δ and the normalized elliptical centrifugal angle φn. Based on the empirical formula, a crack growth simulation for a rivet filled hole is conducted, which shows a good agreement with the test data.

  2. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  3. A new method for the identification of non-Gaussian line profiles in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Van Der Marel, Roeland P.; Franx, Marijn

    1993-01-01

    A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.

  4. The effects of the initial mass function on the chemical evolution of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    De Masi, Carlo; Matteucci, F.; Vincenzo, F.

    2018-03-01

    We describe the use of our chemical evolution model to reproduce the abundance patterns observed in a catalogue of elliptical galaxies from the Sloan Digital Sky Survey Data Release 4. The model assumes ellipticals form by fast gas accretion, and suffer a strong burst of star formation followed by a galactic wind, which quenches star formation. Models with fixed initial mass function (IMF) failed in simultaneously reproducing the observed trends with the galactic mass. So, we tested a varying IMF; contrary to the diffused claim that the IMF should become bottom heavier in more massive galaxies, we find a better agreement with data by assuming an inverse trend, where the IMF goes from being bottom heavy in less massive galaxies to top heavy in more massive ones. This naturally produces a downsizing in star formation, favouring massive stars in largest galaxies. Finally, we tested the use of the integrated Galactic IMF, obtained by averaging the canonical IMF over the mass distribution function of the clusters where star formation is assumed to take place. We combined two prescriptions, valid for different SFR regimes, to obtain the Integrated Initial Mass Function values along the whole evolution of the galaxies in our models. Predicted abundance trends reproduce the observed slopes, but they have an offset relative to the data. We conclude that bottom-heavier IMFs do not reproduce the properties of the most massive ellipticals, at variance with previous suggestions. On the other hand, an IMF varying with galactic mass from bottom heavier to top heavier should be preferred.

  5. Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija

    2014-10-01

    We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.

  6. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  7. Steady state numerical solutions for determining the location of MEMS on projectile

    NASA Astrophysics Data System (ADS)

    Abiprayu, K.; Abdigusna, M. F. F.; Gunawan, P. H.

    2018-03-01

    This paper is devoted to compare the numerical solutions for the steady and unsteady state heat distribution model on projectile. Here, the best location for installing of the MEMS on the projectile based on the surface temperature is investigated. Numerical iteration methods, Jacobi and Gauss-Seidel have been elaborated to solve the steady state heat distribution model on projectile. The results using Jacobi and Gauss-Seidel are shown identical but the discrepancy iteration cost for each methods is gained. Using Jacobi’s method, the iteration cost is 350 iterations. Meanwhile, using Gauss-Seidel 188 iterations are obtained, faster than the Jacobi’s method. The comparison of the simulation by steady state model and the unsteady state model by a reference is shown satisfying. Moreover, the best candidate for installing MEMS on projectile is observed at pointT(10, 0) which has the lowest temperature for the other points. The temperature using Jacobi and Gauss-Seidel for scenario 1 and 2 atT(10, 0) are 307 and 309 Kelvin respectively.

  8. Science, suffrage, and experimentation: Mary Putnam Jacobi and the controversy over vivisection in late nineteenth-century America.

    PubMed

    Bittel, Carla Jean

    2005-01-01

    This article examines the medical activism of the New York physician Mary Putnam Jacobi (1842-1906), to illustrate the problems of gender and science at the center of the vivisection debate in late nineteenth-century America. In the post-Civil War era, individuals both inside and outside the medical community considered vivisection to be a controversial practice. Physicians divided over the value of live animal experimentation, while reformers and activists campaigned against it. Jacobi stepped into the center of the controversy and tried to use her public defense of experimentation to the advantage of women in the medical profession. Her advocacy of vivisection was part of her broader effort to reform medical education, especially at women's institutions. It was also a political strategy aimed at associating women with scientific practices to advance a women's rights agenda. Her work demonstrates how debates over women in medicine and science in medicine, suffrage, and experimentation overlapped at a critical moment of historical transition.

  9. A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2001-01-01

    A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.

  10. Geometric constrained variational calculus. II: The second variation (Part I)

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2016-10-01

    Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

  11. On Leighton's comparison theorem

    NASA Astrophysics Data System (ADS)

    Ghatasheh, Ahmed; Weikard, Rudi

    2017-06-01

    We give a simple proof of a fairly flexible comparison theorem for equations of the type -(p (u‧ + su)) ‧ + rp (u‧ + su) + qu = 0 on a finite interval where 1 / p, r, s, and q are real and integrable. Flexibility is provided by two functions which may be chosen freely (within limits) according to the situation at hand. We illustrate this by presenting some examples and special cases which include Schrödinger equations with distributional potentials as well as Jacobi difference equations.

  12. Computing interface motion in compressible gas dynamics

    NASA Technical Reports Server (NTRS)

    Mulder, W.; Osher, S.; Sethan, James A.

    1992-01-01

    An analysis is conducted of the coupling of Osher and Sethian's (1988) 'Hamilton-Jacobi' level set formulation of the equations of motion for propagating interfaces to a system of conservation laws for compressible gas dynamics, giving attention to both the conservative and nonconservative differencing of the level set function. The capabilities of the method are illustrated in view of the results of numerical convergence studies of the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities for air-air and air-helium boundaries.

  13. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  14. Development of an Elliptical Trainer Physical Fitness Test

    DTIC Science & Technology

    2006-04-02

    have demonstrated caloric expenditures and ratings of perceived exertion (RPE) similar to those measured during treadmill running (Clay, 2000...elliptical trainer calculates and displays total caloric expenditure and distance for each workout session. Distance is a function of the force phase of the...total caloric expenditure will be the performance measure. Bout duration will be 12 min to make the exercise bout similar to Cooper’s 12-minute run

  15. J /ψ Elliptic Flow in Pb-Pb Collisions at √{sN N}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, A. P.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reshetin, A.; Reygers, K.; Riabov, V.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shirinkin, S.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Sputowska, I.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Toppi, M.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Xu, R.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yun, E.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, Y.; Zichichi, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration

    2017-12-01

    We report a precise measurement of the J /ψ elliptic flow in Pb-Pb collisions at √{sN N}=5.02 TeV with the ALICE detector at the LHC. The J /ψ mesons are reconstructed at midrapidity (|y |<0.9 ) in the dielectron decay channel and at forward rapidity (2.5

  16. J / ψ Elliptic Flow in Pb-Pb Collisions at s N N = 5.02 TeV

    DOE PAGES

    Acharya, S.; Adamová, D.; Adolfsson, J.; ...

    2017-12-15

    Here, we report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y| < 0.9) in the dielectron decay channel and at forward rapidity (2.5 < y < 4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v 2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v 2 is observed in the transverse momentum range 2 < p T < 8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v 2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low p T the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.« less

  17. J / ψ Elliptic Flow in Pb-Pb Collisions at s N N = 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S.; Adamová, D.; Adolfsson, J.

    Here, we report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y| < 0.9) in the dielectron decay channel and at forward rapidity (2.5 < y < 4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v 2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v 2 is observed in the transverse momentum range 2 < p T < 8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v 2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low p T the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.« less

  18. Semiclassical Wheeler-DeWitt equation: Solutions for long-wavelength fields

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Parry, J.

    1993-07-01

    In the long-wavelength approximation, a general set of semiclassical wave functionals is given for gravity and matter interacting in 3+1 dimensions. In the long-wavelength theory, one neglects second-order spatial gradients in the energy constraint. These solutions satisfy the Hamilton-Jacobi equation, the momentum constraint, and the equation of continuity. It is essential to introduce inhomogeneities to discuss the role of time. The time hypersurface is chosen to be a homogeneous field in the wave functional. It is shown how to introduce tracer particles through a dust field χ into the dynamical system. The formalism can be used to describe stochastic inflation.

  19. Algorithm For Optimal Control Of Large Structures

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Garba, John A..; Utku, Senol

    1989-01-01

    Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.

  20. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  1. Similarity considerations and conservation laws for magneto-static atmospheres

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1986-01-01

    The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are investigated analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a single nonlinear elliptic equation for the magnetic potential. Similarity solutions of the elliptic equation are obtained for the case of an isothermal atmosphere in a uniform gravitational field. The solutions are obtained from a consideration of the invariance group of the elliptic equation. The importance of symmetries of the elliptic equation also appears in the determination of conservation laws. It turns out that the elliptic equation can be written as a variational principle, and the symmetries of the variational functional lead (via Noether's theorem) to conservation laws for the equation. As an example of the application of the similarity solutions, a model magnetostatic atmosphere is constructed in which the current density J is proportional to the cube of the magnetic potential, and falls off exponentially with distance vertical to the base, with an 'e-folding' distance equal to the gravitational scale height. The solutions show the interplay between the gravitational force, the J x B force (B, magnetic field induction) and the gas pressure gradient.

  2. Task-Specific and Functional Effects of Speed-Focused Elliptical or Motor-Assisted Cycle Training in Children With Bilateral Cerebral Palsy: Randomized Clinical Trial.

    PubMed

    Damiano, Diane L; Stanley, Christopher J; Ohlrich, Laurie; Alter, Katharine E

    2017-08-01

    Locomotor training using treadmills or robotic devices is commonly utilized to improve gait in cerebral palsy (CP); however, effects are inconsistent and fail to exceed those of equally intense alternatives. Possible limitations of existing devices include fixed nonvariable rhythm and too much limb or body weight assistance. To quantify and compare effectiveness of a motor-assisted cycle and a novel alternative, an elliptical, in CP to improve interlimb reciprocal coordination through intensive speed-focused leg training. A total of 27 children with bilateral CP, 5 to 17 years old, were randomized to 12 weeks of 20 minutes, 5 days per week home-based training (elliptical = 14; cycle = 13) at a minimum of 40 revolutions per minute, with resistance added when speed target was achieved. Primary outcomes were self-selected and fastest voluntary cadence on the devices and gait speed. Secondary outcomes included knee muscle strength, and selective control and functional mobility measures. Cadence on trained but not nontrained devices increased, demonstrating task specificity of training and increased exercise capability. Mean gait speed did not increase in either group, nor did parent-reported functional mobility. Knee extensor strength increased in both. An interaction between group and time was seen in selective control with scores slightly increasing for the elliptical and decreasing for the cycle, possibly related to tighter limb coupling with cycling. Task-specific effects were similarly positive across groups, but no transfer was seen to gait or function. Training dose was low (≤20 hours) compared with intensive upper-limb training recommendations and may be insufficient to produce appreciable clinical change.

  3. Crossover ensembles of random matrices and skew-orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less

  4. Random Matrix Theory and Elliptic Curves

    DTIC Science & Technology

    2014-11-24

    distribution is unlimited. 1 ELLIPTIC CURVES AND THEIR L-FUNCTIONS 2 points on that curve. Counting rational points on curves is a field with a rich ...deficiency of zeros near the origin of the histograms in Figure 1. While as d becomes large this discretization becomes smaller and has less and less effect...order of 30), the regular oscillations seen at the origin become dominated by fluctuations of an arithmetic origin, influenced by zeros of the Riemann

  5. Quasi-periodic Solutions of the Kaup-Kupershmidt Hierarchy

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Wu, Lihua; He, Guoliang

    2013-08-01

    Based on solving the Lenard recursion equations and the zero-curvature equation, we derive the Kaup-Kupershmidt hierarchy associated with a 3×3 matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the Kaup-Kupershmidt hierarchy, we introduce a trigonal curve {K}_{m-1} and present the corresponding Baker-Akhiezer function and meromorphic function on it. The Abel map is introduced to straighten out the Kaup-Kupershmidt flows. With the aid of the properties of the Baker-Akhiezer function and the meromorphic function and their asymptotic expansions, we arrive at their explicit Riemann theta function representations. The Riemann-Jacobi inversion problem is achieved by comparing the asymptotic expansion of the Baker-Akhiezer function and its Riemann theta function representation, from which quasi-periodic solutions of the entire Kaup-Kupershmidt hierarchy are obtained in terms of the Riemann theta functions.

  6. A Model for Displacements Between Parallel Plates That Shows Change of Type from Hyperbolic to Elliptic

    NASA Astrophysics Data System (ADS)

    Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.

  7. Forward and inverse uncertainty quantification using multilevel Monte Carlo algorithms for an elliptic non-local equation

    DOE PAGES

    Jasra, Ajay; Law, Kody J. H.; Zhou, Yan

    2016-01-01

    Our paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined,s as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are usedmore » for a priori and a posteriori estimation, respectively, of quantities of interest. Furthermore, these algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.« less

  8. Forward and inverse uncertainty quantification using multilevel Monte Carlo algorithms for an elliptic non-local equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasra, Ajay; Law, Kody J. H.; Zhou, Yan

    Our paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined,s as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are usedmore » for a priori and a posteriori estimation, respectively, of quantities of interest. Furthermore, these algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.« less

  9. Anisotropic elliptic optical fibers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kang, Soon Ahm

    1991-01-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  10. Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson

    NASA Astrophysics Data System (ADS)

    Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth

    2012-04-01

    One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

  11. Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong

    2018-04-01

    We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.

  12. The Ellipticities of Cluster Early-type Galaxies from z ~ 1 to z ~ 0: No Evolution in the Overall Distribution of Bulge-to-Disk Ratios

    NASA Astrophysics Data System (ADS)

    Holden, B. P.; Franx, M.; Illingworth, G. D.; Postman, M.; van der Wel, A.; Kelson, D. D.; Blakeslee, J. P.; Ford, H.; Demarco, R.; Mei, S.

    2009-03-01

    We have compiled a sample of early-type cluster galaxies from 0 < z < 1.3 and measured the evolution of their ellipticity distributions. Our sample contains 487 galaxies in 17 z>0.3 clusters with high-quality space-based imaging and a comparable sample of 210 galaxies in 10 clusters at z < 0.05. We select early-type galaxies (elliptical and S0 galaxies) that fall within the cluster R 200, and which lie on the red-sequence in the magnitude range -19.3>MB > - 21, after correcting for luminosity evolution as measured by the fundamental plane. Our ellipticity measurements are made in a consistent manner over our whole sample. We perform extensive simulations to quantify the systematic and statistical errors, and find that it is crucial to use point-spread function (PSF)-corrected model fits; determinations of the ellipticity from Hubble Space Telescope image data that do not account for the PSF "blurring" are systematically and significantly biased to rounder ellipticities at redshifts z>0.3. We find that neither the median ellipticity, nor the shape of the ellipticity distribution of cluster early-type galaxies evolves with redshift from z ~ 0 to z>1 (i.e., over the last ~8 Gyr). The median ellipticity at z>0.3 is statistically identical with that at z < 0.05, being higher by only 0.01 ± 0.02 or 3 ± 6%, while the distribution of ellipticities at z>0.3 agrees with the shape of the z < 0.05 distribution at the 1-2% level (i.e., the probability that they are drawn from the same distribution is 98-99%). These results are strongly suggestive of an unchanging overall bulge-to-disk ratio distribution for cluster early-type galaxies over the last ~8 Gyr from z ~ 1 to z ~ 0. This result contrasts with that from visual classifications which show that the fraction of morphologically-selected disk-dominated early-type galaxies, or S0s, is significantly lower at z>0.4 than at z ~ 0. We find that the median disk-dominated early-type, or S0, galaxy has a somewhat higher ellipticity at z>0.3, suggesting that rounder S0s are being assigned as ellipticals. Taking the ellipticity measurements and assuming, as in all previous studies, that the intrinsic ellipticity distribution of both elliptical and S0 galaxies remains constant, then we conclude from the lack of evolution in the observed early-type ellipticity distribution that the relative fractions of ellipticals and S0s do not evolve from z ~ 1 to z = 0 for a red-sequence selected samples of galaxies in the cores of clusters of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission

    NASA Technical Reports Server (NTRS)

    Tsuda, Yuichi

    2007-01-01

    The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.

  14. Two-loop integrals for CP-even heavy quarkonium production and decays: elliptic sectors

    NASA Astrophysics Data System (ADS)

    Chen, Long-Bin; Jiang, Jun; Qiao, Cong-Feng

    2018-04-01

    By employing the differential equations, we compute analytically the elliptic sectors of two-loop master integrals appearing in the NNLO QCD corrections to CP-even heavy quarkonium exclusive production and decays, which turns out to be the last and toughest part in the relevant calculation. The integrals are found can be expressed as Goncharov polylogarithms and iterative integrals over elliptic functions. The master integrals may be applied to some other NNLO QCD calculations about heavy quarkonium exclusive production, like {γ}^{\\ast}γ \\to Q\\overline{Q} , {e}+{e}-\\to γ +Q\\overline{Q} , and H/{Z}^0\\to γ +Q\\overline{Q} , heavy quarkonium exclusive decays, and also the CP-even heavy quarkonium inclusive production and decays.

  15. Calcareous nannofossil and ammonite integrated biostratigraphy across the Jurassic - Cretaceous boundary strata of the Kopanitsa composite section (West Srednogorie Unit, southwest Bulgaria)

    NASA Astrophysics Data System (ADS)

    Stoykova, Kristalina; Idakieva, Vyara; Ivanov, Marin; Reháková, Daniela

    2018-04-01

    Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic-Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.

  16. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    PubMed

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  17. Miniaturized LTCC elliptic-function lowpass filters with side stopbands

    DOE PAGES

    Hsieh, Lung -Hwa; Dai, Steve Xunhu

    2015-05-28

    A compact, high-selectivity, and wide stopband lowpass filter is highly demanded in wireless communication systems to suppress adjacent harmonics and unwanted signals. In this letter, a new miniaturized lowpass filter with elliptic-function frequency response is introduced. The filter is fabricated in multilayer low temperature cofired ceramics. The size of the miniaturized filter is 5.5 × 3.9 × 1.72 mm3. As a result, the measured insertion loss of the filter is better than 0.37 dB from DC to 1.28 GHz and the measured stopband of the filter is great than 22 dB from 2.3 to 7.5 GHz.

  18. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  19. Energy dependence of elliptic flow over a large pseudorapidity range in Au+Au collisions at the BNL relativistic heavy ion collider.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  20. Model error estimation for distributed systems described by elliptic equations

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1983-01-01

    A function space approach is used to develop a theory for estimation of the errors inherent in an elliptic partial differential equation model for a distributed parameter system. By establishing knowledge of the inevitable deficiencies in the model, the error estimates provide a foundation for updating the model. The function space solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for static shape determination of large flexible systems.

  1. Equidistant map projections of a triaxial ellipsoid with the use of reduced coordinates

    NASA Astrophysics Data System (ADS)

    Pędzich, Paweł

    2017-12-01

    The paper presents a new method of constructing equidistant map projections of a triaxial ellipsoid as a function of reduced coordinates. Equations for x and y coordinates are expressed with the use of the normal elliptic integral of the second kind and Jacobian elliptic functions. This solution allows to use common known and widely described in literature methods of solving such integrals and functions. The main advantage of this method is the fact that the calculations of x and y coordinates are practically based on a single algorithm that is required to solve the elliptic integral of the second kind. Equations are provided for three types of map projections: cylindrical, azimuthal and pseudocylindrical. These types of projections are often used in planetary cartography for presentation of entire and polar regions of extraterrestrial objects. The paper also contains equations for the calculation of the length of a meridian and a parallel of a triaxial ellipsoid in reduced coordinates. Moreover, graticules of three coordinates systems (planetographic, planetocentric and reduced) in developed map projections are presented. The basic properties of developed map projections are also described. The obtained map projections may be applied in planetary cartography in order to create maps of extraterrestrial objects.

  2. Computations of Wall Distances Based on Differential Equations

    NASA Technical Reports Server (NTRS)

    Tucker, Paul G.; Rumsey, Chris L.; Spalart, Philippe R.; Bartels, Robert E.; Biedron, Robert T.

    2004-01-01

    The use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored. Modifications that could palliate some turbulence-modeling anomalies are also discussed. Economy is of especial value for deforming/adaptive grid problems. For these, ideally, d is repeatedly computed. It is shown that the Eikonal and Hamilton-Jacobi equations can be easy to implement when written in implicit (or iterated) advection and advection-diffusion equation analogous forms, respectively. These, like the Poisson Laplacian term, are commonly occurring in CFD solvers, allowing the re-use of efficient algorithms and code components. The use of the NASA CFL3D CFD program to solve the implicit Eikonal and Hamilton-Jacobi equations is explored. The re-formulated d equations are easy to implement, and are found to have robust convergence. For accurate Eikonal solutions, upwind metric differences are required. The Poisson approach is also found effective, and easiest to implement. Modified distances are not found to affect global outputs such as lift and drag significantly, at least in common situations such as airfoil flows.

  3. On the conservation of the Jacobi integral in the post-Newtonian circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Dubeibe, F. L.; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-05-01

    In the present paper, using the first-order approximation of the n-body Lagrangian (derived on the basis of the post-Newtonian gravitational theory of Einstein, Infeld, and Hoffman), we explicitly write down the equations of motion for the planar circular restricted three-body problem in the Solar system. Additionally, with some simplified assumptions, we obtain two formulas for estimating the values of the mass-distance and velocity-speed of light ratios appropriate for a given post-Newtonian approximation. We show that the formulas derived in the present study, lead to good numerical accuracy in the conservation of the Jacobi constant and almost allow for an equivalence between the Lagrangian and Hamiltonian approaches at the same post-Newtonian order. Accordingly, the dynamics of the system is analyzed in terms of the Poincaré sections method and Lyapunov exponents, finding that for specific values of the Jacobi constant the dynamics can be either chaotic or regular. Our results suggest that the chaoticity of the post-Newtonian system is slightly increased in comparison with its Newtonian counterpart.

  4. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang

    2004-05-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.

  5. On global solutions of the random Hamilton-Jacobi equations and the KPZ problem

    NASA Astrophysics Data System (ADS)

    Bakhtin, Yuri; Khanin, Konstantin

    2018-04-01

    In this paper, we discuss possible qualitative approaches to the problem of KPZ universality. Throughout the paper, our point of view is based on the geometrical and dynamical properties of minimisers and shocks forming interlacing tree-like structures. We believe that the KPZ universality can be explained in terms of statistics of these structures evolving in time. The paper is focussed on the setting of the random Hamilton-Jacobi equations. We formulate several conjectures concerning global solutions and discuss how their properties are connected to the KPZ scalings in dimension 1  +  1. In the case of general viscous Hamilton-Jacobi equations with non-quadratic Hamiltonians, we define generalised directed polymers. We expect that their behaviour is similar to the behaviour of classical directed polymers, and present arguments in favour of this conjecture. We also define a new renormalisation transformation defined in purely geometrical terms and discuss conjectural properties of the corresponding fixed points. Most of our conjectures are widely open, and supported by only partial rigorous results for particular models.

  6. A New Control Paradigm for Stochastic Differential Equations

    NASA Astrophysics Data System (ADS)

    Schmid, Matthias J. A.

    This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension to scalar systems subject to state-dependent noise and to systems of higher order. The suggested control paradigm is further advanced when a sequential application of MLD control is considered. This technique yields a nominal path corresponding to the minimum total deviation probability on the entire time domain. It is demonstrated that this sequential optimization concept can be unified in a single objective function which is revealed to be the Jacobi field performance index on the entire domain subject to an endpoint deviation. The emerging closed-form term replaces the previously required nested optimization and, thus, results in a highly efficient application-ready control design. This effectively substantiates Minimum Path Deviation (MPD) control. The proposed control paradigm allows the specific problem of stochastic cost control to be addressed as a special case. This new technique is employed within this study for the stochastic cost problem giving rise to Cost Constrained MPD (CCMPD) as well as to Minimum Quadratic Cost Deviation (MQCD) control. An exemplary treatment of a generic scalar nonlinear system subject to quadratic costs is performed for MQCD control to demonstrate the elementary expandability of the new control paradigm. This work concludes with a numerical evaluation of both MPD and CCMPD control for three exemplary benchmark problems. Numerical issues associated with the simulation of SDEs are briefly discussed and illustrated. The numerical examples furnish proof of the successful design. This study is complemented by a thorough review of statistical control methods, stochastic processes, Large Deviations techniques and the Freidlin-Wentzell theory, providing a comprehensive, self-contained account. The presentation of the mathematical tools and concepts is of a unique character, specifically addressing an engineering audience.

  7. J/ψ Elliptic Flow in Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV.

    PubMed

    Acharya, S; Adamová, D; Adolfsson, J; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahn, S U; Aiola, S; Akindinov, A; Al-Turany, M; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Ali, Y; Alici, A; Alkin, A; Alme, J; Alt, T; Altenkamper, L; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andreou, D; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartsch, E; Bastid, N; Basu, S; Batigne, G; Batyunya, B; Batzing, P C; Bazo Alba, J L; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhattacharjee, B; Bhom, J; Bianchi, A; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Bratrud, L; Braun-Munzinger, P; Bregant, M; Broker, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Chandra, S; Chang, B; Chang, W; Chapeland, S; Chartier, M; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Chojnacki, M; Choudhury, S; Chowdhury, T; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Concas, M; Conesa Balbastre, G; Conesa Del Valle, Z; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Ding, Y; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Doremalen, L V R; Dubey, A K; Dubla, A; Ducroux, L; Dudi, S; Duggal, A K; Dukhishyam, M; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garg, K; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, J; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Haque, M R; Harris, J W; Harton, A; Hassan, H; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Hernandez, E G; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hills, C; Hippolyte, B; Hohlweger, B; Horak, D; Hornung, S; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Iga Buitron, S A; Ilkaev, R; Inaba, M; Ippolitov, M; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jaelani, S; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karczmarczyk, P; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Khabanova, Z; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, B; Kim, D; Kim, D J; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Konyushikhin, M; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Kreis, L; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lai, Y S; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Leogrande, E; León Monzón, I; Lévai, P; Li, X; Lien, J; Lietava, R; Lim, B; Lindal, S; Lindenstruth, V; Lindsay, S W; Lippmann, C; Lisa, M A; Litichevskyi, V; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Luhder, J R; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Masciocchi, S; Masera, M; Masoni, A; Masson, E; Mastroserio, A; Mathis, A M; Matuoka, P F T; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D L; Mikhaylov, K; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, A P; Mohanty, B; Mohisin Khan, M; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Myrcha, J W; Nag, D; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Narayan, A; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pacik, V; Pagano, D; Paić, G; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pareek, P; Park, J; Parmar, S; Passfeld, A; Pathak, S P; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pliquett, F; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Punin, V; Putschke, J; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reshetin, A; Reygers, K; Riabov, V; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Rosas, E D; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, C; Roy, P; Rubio Montero, A J; Rueda, O V; Rui, R; Rumyantsev, B; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Schaefer, B; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schmidt, N V; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shahoyan, R; Shaikh, W; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shirinkin, S; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silaeva, S; Silvermyr, D; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Sputowska, I; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stocco, D; Storetvedt, M M; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Thoresen, F; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Toppi, M; Torres, S R; Tripathy, S; Trogolo, S; Trombetta, G; Tropp, L; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wenzel, S C; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Willsher, E; Windelband, B; Witt, W E; Xu, R; Yalcin, S; Yamakawa, K; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yun, E; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, Y; Zichichi, A; Zimmermann, M B; Zinovjev, G; Zmeskal, J; Zou, S

    2017-12-15

    We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5

  8. Finding faults with the data

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Rudolph Giuliani and Hillary Rodham Clinton are crisscrossing upstate New York looking for votes in the U.S. Senate race. Also cutting back and forth across upstate New York are hundreds of faults of a kind characterized by very sporadic seismic activity according to Robert Jacobi, professor of geology at the University of Buffalo (UB), who conducted research with fellow UB geology professor John Fountain."We have proof that upstate New York is crisscrossed by faults," Jacobi said. "In the past, the Appalachian Plateau—which stretches from Albany to Buffalo—was considered a pretty boring place structurally without many faults or folds of any significance."

  9. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Sethian, James A.

    2006-01-01

    Borrowing from techniques developed for conservation law equations, we have developed both monotone and higher order accurate numerical schemes which discretize the Hamilton-Jacobi and level set equations on triangulated domains. The use of unstructured meshes containing triangles (2D) and tetrahedra (3D) easily accommodates mesh adaptation to resolve disparate level set feature scales with a minimal number of solution unknowns. The minisymposium talk will discuss these algorithmic developments and present sample calculations using our adaptive triangulation algorithm applied to various moving interface problems such as etching, deposition, and curvature flow.

  10. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less

  11. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi

    2016-11-01

    A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.

  12. Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au+Au Collisions at sNN=200GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-04-01

    This Letter presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v2 in Au+Au collisions at sNN=200GeV as a function of collision centrality. The relative nonstatistical fluctuations of the v2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (nonflow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.

  13. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-03-01

    We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.

  14. The augmented Lagrangian method for parameter estimation in elliptic systems

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Kunisch, Karl

    1990-01-01

    In this paper a new technique for the estimation of parameters in elliptic partial differential equations is developed. It is a hybrid method combining the output-least-squares and the equation error method. The new method is realized by an augmented Lagrangian formulation, and convergence as well as rate of convergence proofs are provided. Technically the critical step is the verification of a coercivity estimate of an appropriately defined Lagrangian functional. To obtain this coercivity estimate a seminorm regularization technique is used.

  15. Direct photon elliptic flow at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kim, Young-Min; Lee, Chang-Hwan; Teaney, Derek; Zahed, Ismail

    2017-07-01

    We use an event-by-event hydrodynamical description of the heavy-ion collision process with Glauber initial conditions to calculate the thermal emission of photons. The photon rates in the hadronic phase follow from a spectral function approach and a density expansion, while in the partonic phase they follow from the Arnold-Moore-Yaffe (AMY) perturbative rates. The calculated photon elliptic flows are lower than those reported recently by both the ALICE and PHENIX collaborations.

  16. Morphological and molecular review of Jacob's Mountain Stream Keelback Opisthotropis jacobi Angel Bourret, 1933 (Squamata: Natricidae) with description of a sibling species from northern Vietnam.

    PubMed

    Ziegler, Thomas; David, Patrick; Ziegler, Tim N; Pham, Cuong T; Nguyen, Truong Q; Le, Minh D

    2018-01-21

    New morphological data including hemipenis morphology is provided for Opisthotropis jacobi, a poorly known Mountain Stream Keelback from Vietnam and China, based on three newly collected individuals from Sa Pa (Lao Cai Province) and Tam Dao (Vinh Phuc Province) in northern Vietnam. In addition, morphological data from Vietnam is summarized based on the original description (Angel Bourret 1933), on the overview book by Bourret (1936) and on a number of smaller, little-known contributions by the latter author along with re-examination of specimens deposited in the herpetological collection of the Muséum national d'Histoire naturelle, Paris. We also sequenced a fragment of the mitochondrial cytochrome b from the newly collected specimens of the Jacob's Mountain Stream Keelback and performed molecular analyses of new and existing data of the genus. A recently discovered Opisthotropis population from Tay Yen Tu Nature Reserve in Bac Giang Province, northern Vietnam, which at the first glance resembled O. jacobi morphologically, is shown to diverge both genetically and morphologically from the existing species and is herein described as a new species. Opisthotropis voquyi sp. nov. is characterized by the combination of the following characters: internasal not in contact with loreal; one preocular; usually two postoculars; one anterior temporal; one posterior temporal; 7 or 8, rarely 9 supralabials; 25 maxillary teeth; subcaudals 74-86; 15 dorsal scale rows at neck, at midbody and before vent; body scales smooth or only with few faint keels; and dorsal scales being greyish, greyish-brown or brown in preservative, posteriorly more or less edged with pale greyish-brown. Phylogenetically, the new species is supported as a sister taxon to O. jacobi, but the two taxa are approximately 10% divergent based on cytochrome b data.

  17. Elliptic CY3folds and non-perturbative modular transformation

    NASA Astrophysics Data System (ADS)

    Iqbal, Amer; Shabbir, Khurram

    2016-03-01

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections.

  18. Statistics of Dark Matter Halos from Gravitational Lensing.

    PubMed

    Jain; Van Waerbeke L

    2000-02-10

    We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise ratio is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and is possibly not susceptible to the same systematic errors.

  19. Solitons on Noncommutative Torus as Elliptic Calogero-Gaudin Models, Branes and Laughlin Wave Functions

    NASA Astrophysics Data System (ADS)

    Hou, Bo-Yu; Peng, Dan-Tao; Shi, Kang-Jie; Yue, Rui-Hong

    For the noncommutative torus T, in the case of the noncommutative parameter θ = (Z)/(n), we construct the basis of Hilbert space Hn in terms of θ functions of the positions zi of n solitons. The wrapping around the torus generates the algebra An, which is the Zn × Zn Heisenberg group on θ functions. We find the generators g of a local elliptic su(n), which transform covariantly by the global gauge transformation of An. By acting on Hn we establish the isomorphism of An and g. We embed this g into the L-matrix of the elliptic Gaudin and Calogero-Moser models to give the dynamics. The moment map of this twisted cotangent sunT) bundle is matched to the D-equation with the Fayet-Illiopoulos source term, so the dynamics of the noncommutative solitons become that of the brane. The geometric configuration (k, u) of the spectral curve det|L(u) - k| = 0 describes the brane configuration, with the dynamical variables zi of the noncommutative solitons as the moduli T⊗ n/Sn. Furthermore, in the noncommutative Chern-Simons theory for the quantum Hall effect, the constrain equation with quasiparticle source is identified also with the moment map equation of the noncommutative sunT cotangent bundle with marked points. The eigenfunction of the Gaudin differential L-operators as the Laughlin wave function is solved by Bethe ansatz.

  20. On non-homogeneous tachyon condensation in closed string theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Rado, Laura

    2017-08-01

    Lorentzian continuation of the Sine-Liouville model describes non-homogeneous rolling closed string tachyon. Via T-duality, this relates to the gauged H + 3 Wess-Zumino-Witten model at subcritical level. This model is exactly solvable. We give a closed formula for the 3-point correlation functions for the model at level k within the range 0 < k < 2, which relates to the analogous quantity for k > 2 in a similar way as how the Harlow-Maltz-Witten 3-point function of timelike Liouville field theory relates to the analytic continuation of the Dorn-Otto-Zamolodchikov-Zamolodchikov structure constants: we find that the ratio between both 3-point functions can be written in terms of quotients of Jacobi's θ-functions, while their product exhibits remarkable cancellations and eventually factorizes. Our formula is consistent with previous proposals made in the literature.

  1. Evidence for biasing in the CfA survey

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1988-01-01

    Intrinsically bright galaxies appear systematically more correlated than faint galaxies in the Center for Astrophysics redshift survey. The amplification of the two-point correlation function behaves exponentially with luminosity, being essentially flat up to the knee of the luminosity function, then increasing markedly. The amplification reaches a factor of 3.5e + or - 0.4 in the very brightest galaxies. The effect is dominated by spirals rather than ellipticals, so that the correlation function of bright spirals becomes comparable to that of normal ellipticals. Similar results are obtained whether the correlation function is measured in two or three dimensions. The effect persists to separations of a correlation length or more, and is not confined to the cores of the Virgo, Coma, and Abell 1367 clusters, suggesting that the effect is caused by biasing, that is, galaxies kindle preferentially in more clustered regions, rather than by gravitational relaxation.

  2. Coherent superposition of propagation-invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, R.; Soskind, M.; Soskind, Y. G.

    2012-10-01

    The coherent superposition of propagation-invariant laser beams represents an important beam-shaping technique, and results in new beam shapes which retain the unique property of propagation invariance. Propagation-invariant laser beam shapes depend on the order of the propagating beam, and include Hermite-Gaussian and Laguerre-Gaussian beams, as well as the recently introduced Ince-Gaussian beams which additionally depend on the beam ellipticity parameter. While the superposition of Hermite-Gaussian and Laguerre-Gaussian beams has been discussed in the past, the coherent superposition of Ince-Gaussian laser beams has not received significant attention in literature. In this paper, we present the formation of propagation-invariant laser beams based on the coherent superposition of Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian beams of different orders. We also show the resulting field distributions of the superimposed Ince-Gaussian laser beams as a function of the ellipticity parameter. By changing the beam ellipticity parameter, we compare the various shapes of the superimposed propagation-invariant laser beams transitioning from Laguerre-Gaussian beams at one ellipticity extreme to Hermite-Gaussian beams at the other extreme.

  3. Periodic three-body orbits with vanishing angular momentum in the Jacobi-Poincaré ‘strong’ potential

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Petrović, Luka V.; Šuvakov, Milovan

    2017-10-01

    Moore (1993 Phys. Rev. Lett. 70 3675) and Montgomery (2005 Ergod. Theor. Dynam. Syst. 25 921-947) have argued that planar periodic orbits of three bodies moving in the Jacobi-Poincaré, or the ‘strong’ pairwise potential \\sumi>j\\frac{-1}{rij^2} , can have all possible topologies. Here we search systematically for such orbits with vanishing angular momentum and find 24 topologically distinct orbits, 22 of which are new, in a small section of the allowed phase space, with a tendency to overcrowd, due to overlapping initial conditions. The topologies of these 24 orbits belong to three algebraic sequences defined as functions of integer n=0, 1, 2, \\ldots . Each sequence extends to n \\to ∞ , but the separation of initial conditions for orbits with n ≥slant 10 becomes practically impossible with a numerical precision of 16 decimal places. Nevertheless, even with a precision of 16 decimals, it is clear that in each sequence both the orbit’s initial angle φn and its period T n approach finite values in the asymptotic limit (n \\to ∞ ). Two of three sequences are overlapping in the sense that their initial angles ϕ occupy the same segment on the circle and their asymptotic values φ∞ are (very) close to each other. The actions of these orbits rise linearly with the index n that describes the orbit’s topology, which is in agreement with the Newtonian case. We show that this behaviour is consistent with the assumption of analyticity of the action as a function of period.

  4. Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.

    2003-03-01

    We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.

  5. End of Life Disposal for Three Libration Point Missions through Manipulation of the Jacobi Constant and Zero Velocity Curves

    NASA Technical Reports Server (NTRS)

    Peterson, Jeremy D.; Brown, Jonathan M.

    2015-01-01

    The aim of this investigation is to determine the feasibility of mission disposal by inserting the spacecraft into a heliocentric orbit along the unstable manifold and then manipulating the Jacobi constant to prevent the spacecraft from returning to the Earth-Moon system. This investigation focuses around L1 orbits representative of ACE, WIND, and SOHO. It will model the impulsive delta-V necessary to close the zero velocity curves after escape through the L1 gateway in the circular restricted three body model and also include full ephemeris force models and higher fidelity finite maneuver models for the three spacecraft.

  6. Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales.

    PubMed

    Seiffertt, John; Sanyal, Suman; Wunsch, Donald C

    2008-08-01

    The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research.

  7. Stable Numerical Approach for Fractional Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  8. Mechanical Slosh Models for Rocket-Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abram; Yang, Lee; Powers. Joseph; Hall, Charles

    2013-01-01

    Several analytical mechanical slosh models for a cylindrical tank with flat bottom are reviewed. Even though spacecrafts use cylinder shaped tanks, most of those tanks usually have elliptical domes. To extend the application of the analytical models for a cylindrical tank with elliptical domes, the modified slosh parameter models are proposed in this report by mapping an elliptical dome cylindrical tank to a flat top/bottom cylindrical tank while maintaining the equivalent liquid volume. For the low Bond number case, the low-g slosh models were also studied. Those low-g models can be used for Bond number > 10. The current low-g slosh models were also modified to extend their applications for the case that liquid height is smaller than the tank radius. All modified slosh models are implemented in MATLAB m-functions and are collected in the developed MST (Mechanical Slosh Toolbox).

  9. Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Fucci, Guglielmo; Kamenshchik, Alexander Yu; Kirsten, Klaus

    2005-03-01

    A general method is known to exist for studying Abelian and non-Abelian gauge theories, as well as Euclidean quantum gravity, at 1-loop level on manifolds with boundary. In the latter case, boundary conditions on metric perturbations h can be chosen to be completely invariant under infinitesimal diffeomorphisms, to preserve the invariance group of the theory and BRST symmetry. In the de Donder gauge, however, the resulting boundary-value problem for the Laplace-type operator acting on h is known to be self-adjoint but not strongly elliptic. The latter is a technical condition ensuring that a unique smooth solution of the boundary-value problem exists, which implies, in turn, that the global heat-kernel asymptotics yielding 1-loop divergences and 1-loop effective action actually exists. The present paper shows that, on the Euclidean 4-ball, only the scalar part of perturbative modes for quantum gravity is affected by the lack of strong ellipticity. Further evidence for lack of strong ellipticity, from an analytic point of view, is therefore obtained. Interestingly, three sectors of the scalar-perturbation problem remain elliptic, while lack of strong ellipticity is 'confined' to the remaining fourth sector. The integral representation of the resulting ζ-function asymptotics on the Euclidean 4-ball is also obtained; this remains regular at the origin by virtue of a spectral identity here obtained for the first time.

  10. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102 (2006) J. Rheinecker and J. M. Bowman, J. Chem. Phys. 125 133206 (2006)} S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson J. Phys. Chem. A 114 1556 (2010)

  11. Rogue periodic waves of the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-02-01

    Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.

  12. Rogue periodic waves of the focusing nonlinear Schrödinger equation.

    PubMed

    Chen, Jinbing; Pelinovsky, Dmitry E

    2018-02-01

    Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.

  13. Complex-valued derivative propagation method with approximate Bohmian trajectories: Application to electronic nonadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chou, Chia-Chun

    2018-05-01

    The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.

  14. Applications of a Property of the Schrödinger Equation to the Modeling of Conservative Discrete Systems

    NASA Astrophysics Data System (ADS)

    Popa, Alexandru

    1998-08-01

    Recently we have demonstrated in a mathematical paper the following property: The energy which results from the Schrödinger equation can be rigorously calculated by line integrals of analytical functions, if the Hamilton-Jacobi equation, written for the same system, is satisfied in the space of coordinates by a periodical trajectory. We present now an accurate analysis model of the conservative discrete systems, that is based on this property. The theory is checked for a lot of atomic systems. The experimental data, which are ionization energies, are taken from well known books.

  15. The D-dimensional non-relativistic particle in the Scarf Trigonometry plus Non-Central Rosen-Morse Potentials

    NASA Astrophysics Data System (ADS)

    Deta, U. A.; Lestari, N. A.; Yantidewi, M.; Suparmi, A.; Cari, C.

    2018-03-01

    The D-Dimensional Non-Relativistic Particle Properties in the Scarf Trigonometry plus Non-Central Rosen-Morse Potentials was investigated using an analytical method. The bound state energy is given approximately in the closed form. The approximate wave function for arbitrary l-state in D-dimensions are expressed in the form of generalised Jacobi Polynomials. The energy spectra of the particle are increased when the dimensions are higher. The relationship between the orbital number in each dimension is recursive. The special case in 3 dimensions is given to the ground state.

  16. Simplified solution for point contact deformation between two elastic solids

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.

    1976-01-01

    A linear-regression by the method of least squares is made on the geometric variables that occur in the equation for point contact deformation. The ellipticity and the complete eliptic integrals of the first and second kind are expressed as a function of the x, y-plane principal radii. The ellipticity was varied from 1 (circular contact) to 10 (a configuration approaching line contact). These simplified equations enable one to calculate easily the point-contact deformation to within 3 percent without resorting to charts or numerical methods.

  17. The divine clockwork: Bohr's correspondence principle and Nelson's stochastic mechanics for the atomic elliptic state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durran, Richard; Neate, Andrew; Truman, Aubrey

    2008-03-15

    We consider the Bohr correspondence limit of the Schroedinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than (1/{radical}(2)) which do not occur classically.

  18. Solution of D dimensional Dirac equation for hyperbolic tangent potential using NU method and its application in material properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com

    2016-02-08

    The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy.more » The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.« less

  19. Reduction and relative equilibria for the two-body problem on spaces of constant curvature

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; García-Naranjo, L. C.; Mamaev, I. S.; Montaldi, J.

    2018-06-01

    We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each q>0 we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except π /2. When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (`isosceles RE') and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At π /2, the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.

  20. Relativistic differential-difference momentum operators and noncommutative differential calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru

    2013-09-15

    The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less

  1. A study of the displacement of a Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Beard, J. E.; Pennock, G. R.

    1993-03-01

    The volumetric displacement of a Wankel rotary engine is a function of the trochoid ratio and the pin size ratio, assuming the engine has a unit depth and the number of lobes is specified. The mathematical expression which defines the displacement contains a function which can be evaluated directly and a normal elliptic integral of the second type which does not have an explicit solution. This paper focuses on the contribution of the elliptic integral to the total displacement of the engine. The influence of the elliptic integral is shown to account for as much as 20 percent of the total displacement, depending on the trochoid ratio and the pin size ratio. Two numerical integration techniques are compared in the paper, namely, the trapezoidal rule and Simpson's 1/3 rule. The bounds on the error, associated with each numerical method, are analyzed. The results indicate that the numerical method has a minimal effect on the accuracy of the calculated displacement for a practical number of integration steps. The paper also evaluates the influence of manufacturing tolerances on the calculated displacement and the actual displacement. Finally. a numerical example of the common three-lobed Wankel rotary engine is included for illustrative purposes.

  2. Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Detrixhe, Miles; Gibou, Frédéric

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  3. Convergence Results on Iteration Algorithms to Linear Systems

    PubMed Central

    Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo

    2014-01-01

    In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640

  4. Covariant approach of perturbations in Lovelock type brane gravity

    NASA Astrophysics Data System (ADS)

    Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín

    2016-12-01

    We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.

  5. Theory of the control of structures by low authority controllers

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.

    1978-01-01

    The novel idea presented is based on the observation that if a structure is controlled by distributed systems of sensors and actuators with limited authority, i.e., if the controller is allowed to modify only moderately the natural modes and frequencies of the structure, then it should be possible to apply root perturbation techniques to predict analytically the behavior of the total system. Attention is given to the root perturbation formula first derived by Jacobi for infinitesimal perturbations which neglect the induced eigenvector perturbation, a more general form of Jacobi's formula, first-order structural equations and modal state vectors, state-space equations for damper-augmented structures, and modal damping prediction formulas.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C., E-mail: davirodrigues.ufes@gmail.com

    The renormalization group framework can be applied to Quantum Field Theory on curved space-time, but there is no proof whether the beta-function of the gravitational coupling indeed goes to zero in the far infrared or not. In a recent paper [1] we have shown that the amount of dark matter inside spiral galaxies may be negligible if a small running of the General Relativity coupling G is present (δG/G{sub 0}∼<10{sup −7} across a galaxy). Here we extend the proposed model to elliptical galaxies and present a detailed analysis on the modeling of NGC 4494 (an ordinary elliptical) and NGC 4374more » (a giant elliptical). In order to compare our results to a well known alternative model to the standard dark matter picture, we also evaluate NGC 4374 with MOND. In this galaxy MOND leads to a significative discrepancy with the observed velocity dispersion curve and has a significative tendency towards tangential anisotropy. On the other hand, the approach based on the renormalization group and general relativity (RGGR) could be applied with good results to these elliptical galaxies and is compatible with lower mass-to-light ratios (of about the Kroupa IMF type)« less

  7. A PAndAS view of the resolved stellar populations in M31 dwarf elliptical satellites

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; PAndAS Collaboration

    We present the first truly global view of the closest elliptical galaxies, the dwarf elliptical (dE) companions of M31 NGC147 and NGC185. We exploit the deep PAndAS photometric dataset in order to investigate the resolved stellar content and structure of these dEs out to larger distances than ever previously probed. From the analysis of their old red giant branch stars, we derive density maps, full surface brightness profiles and metallicity distribution functions. We find that NGC147 shows pronounced tidal tails likely due to its interaction with M31, while NGC185 retains a regular elliptical shape over its entire extent. The two dEs follow a Sersic profile out to ˜5 kpc, and the effective radii derived in this study are a factor of two larger than previous literature values. While NGC185 shows a significant gradient in metallicity (˜-0.05 dex/kpc), this is almost absent in NGC147. The detailed understanding of nearby dEs is crucial for the studies of more distant objects, and we discuss how internal and environmental processes could have influenced the evolution of NGC147 and NGC185 in light of our results.

  8. Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at √{sNN} = 2.76 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-02-01

    This Letter describes the measurement of elliptic flow of charged particles in lead-lead collisions at √{sNN} = 2.76 TeV using the ATLAS detector at the Large Hadron Collider (LHC). The results are based on an integrated luminosity of approximately 7 μb-1. Elliptic flow is measured over a wide region in pseudorapidity, | η | < 2.5, and over a broad range in transverse momentum, 0.5

  9. Elliptic net and its cryptographic application

    NASA Astrophysics Data System (ADS)

    Muslim, Norliana; Said, Mohamad Rushdan Md

    2017-11-01

    Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.

  10. Elliptic biquaternion algebra

    NASA Astrophysics Data System (ADS)

    Özen, Kahraman Esen; Tosun, Murat

    2018-01-01

    In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.

  11. Algebro-geometric Solutions for the Derivative Burgers Hierarchy

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Fan, Engui; Qiao, Zhijun; Wang, Zhong

    2015-02-01

    Though completely integrable Camassa-Holm (CH) equation and Degasperis-Procesi (DP) equation are cast in the same peakon family, they possess the second- and third-order Lax operators, respectively. From the viewpoint of algebro-geometrical study, this difference lies in hyper-elliptic and non-hyper-elliptic curves. The non-hyperelliptic curves lead to great difficulty in the construction of algebro-geometric solutions of the DP equation. In this paper, we study algebro-geometric solutions for the derivative Burgers (DB) equation, which is derived by Qiao and Li (2004) as a short wave model of the DP equation with the help of functional gradient and a pair of Lenard operators. Based on the characteristic polynomial of a Lax matrix for the DB equation, we introduce a third order algebraic curve with genus , from which the associated Baker-Akhiezer functions, meromorphic function, and Dubrovin-type equations are constructed. Furthermore, the theory of algebraic curve is applied to derive explicit representations of the theta function for the Baker-Akhiezer functions and the meromorphic function. In particular, the algebro-geometric solutions are obtained for all equations in the whole DB hierarchy.

  12. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    PubMed Central

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-01-01

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system. PMID:26370993

  13. Looping probabilities of elastic chains: a path integral approach.

    PubMed

    Cotta-Ramusino, Ludovica; Maddocks, John H

    2010-11-01

    We consider an elastic chain at thermodynamic equilibrium with a heat bath, and derive an approximation to the probability density function, or pdf, governing the relative location and orientation of the two ends of the chain. Our motivation is to exploit continuum mechanics models for the computation of DNA looping probabilities, but here we focus on explaining the novel analytical aspects in the derivation of our approximation formula. Accordingly, and for simplicity, the current presentation is limited to the illustrative case of planar configurations. A path integral formalism is adopted, and, in the standard way, the first approximation to the looping pdf is obtained from a minimal energy configuration satisfying prescribed end conditions. Then we compute an additional factor in the pdf which encompasses the contributions of quadratic fluctuations about the minimum energy configuration along with a simultaneous evaluation of the partition function. The original aspects of our analysis are twofold. First, the quadratic Lagrangian describing the fluctuations has cross-terms that are linear in first derivatives. This, seemingly small, deviation from the structure of standard path integral examples complicates the necessary analysis significantly. Nevertheless, after a nonlinear change of variable of Riccati type, we show that the correction factor to the pdf can still be evaluated in terms of the solution to an initial value problem for the linear system of Jacobi ordinary differential equations associated with the second variation. The second novel aspect of our analysis is that we show that the Hamiltonian form of these linear Jacobi equations still provides the appropriate correction term in the inextensible, unshearable limit that is commonly adopted in polymer physics models of, e.g. DNA. Prior analyses of the inextensible case have had to introduce nonlinear and nonlocal integral constraints to express conditions on the relative displacement of the end points. Our approximation formula for the looping pdf is of quite general applicability as, in contrast to most prior approaches, no assumption is made of either uniformity of the elastic chain, nor of a straight intrinsic shape. If the chain is uniform the Jacobi system evaluated at certain minimum energy configurations has constant coefficients. In such cases our approximate pdf can be evaluated in an entirely explicit, closed form. We illustrate our analysis with a planar example of this type and compute an approximate probability of cyclization, i.e., of forming a closed loop, from a uniform elastic chain whose intrinsic shape is an open circular arc.

  14. Wavefronts, actions and caustics determined by the probability density of an Airy beam

    NASA Astrophysics Data System (ADS)

    Espíndola-Ramos, Ernesto; Silva-Ortigoza, Gilberto; Sosa-Sánchez, Citlalli Teresa; Julián-Macías, Israel; de Jesús Cabrera-Rosas, Omar; Ortega-Vidals, Paula; Alejandro Juárez-Reyes, Salvador; González-Juárez, Adriana; Silva-Ortigoza, Ramón

    2018-07-01

    The main contribution of the present work is to use the probability density of an Airy beam to identify its maxima with the family of caustics associated with the wavefronts determined by the level curves of a one-parameter family of solutions to the Hamilton–Jacobi equation with a given potential. To this end, we give a classical mechanics characterization of a solution of the one-dimensional Schrödinger equation in free space determined by a complete integral of the Hamilton–Jacobi and Laplace equations in free space. That is, with this type of solution, we associate a two-parameter family of wavefronts in the spacetime, which are the level curves of a one-parameter family of solutions to the Hamilton–Jacobi equation with a determined potential, and a one-parameter family of caustics. The general results are applied to an Airy beam to show that the maxima of its probability density provide a discrete set of: caustics, wavefronts and potentials. The results presented here are a natural generalization of those obtained by Berry and Balazs in 1979 for an Airy beam. Finally, we remark that, in a natural manner, each maxima of the probability density of an Airy beam determines a Hamiltonian system.

  15. Planetary nebulae as standard candles. IV - A test in the Leo I group

    NASA Technical Reports Server (NTRS)

    Ciardullo, Robin; Jacoby, George H.; Ford, Holland C.

    1989-01-01

    In this paper, PN are used to determine accurate distances to three galaxies in the Leo I group - The E0 giant elliptical NGC 3379, its optical companion, the SB0 spiral NGC 3384, and the smaller E6 elliptical NGC 3377. In all three galaxies, the luminosity-specific PN number densities are roughly the same, and the derived stellar death rates are in remarkable agreement with the predictions of stellar evolution theory. It is shown that the shape of the forbidden O III 5007 A PN luminosity function is the same in each galaxy and indistinguishable from that observed in M31 and M81. It is concluded that the PN luminosity function is an excellent standard candle for early-type galaxies.

  16. Aerostructural Shape and Topology Optimization of Aircraft Wings

    NASA Astrophysics Data System (ADS)

    James, Kai

    A series of novel algorithms for performing aerostructural shape and topology optimization are introduced and applied to the design of aircraft wings. An isoparametric level set method is developed for performing topology optimization of wings and other non-rectangular structures that must be modeled using a non-uniform, body-fitted mesh. The shape sensitivities are mapped to computational space using the transformation defined by the Jacobian of the isoparametric finite elements. The mapped sensitivities are then passed to the Hamilton-Jacobi equation, which is solved on a uniform Cartesian grid. The method is derived for several objective functions including mass, compliance, and global von Mises stress. The results are compared with SIMP results for several two-dimensional benchmark problems. The method is also demonstrated on a three-dimensional wingbox structure subject to fixed loading. It is shown that the isoparametric level set method is competitive with the SIMP method in terms of the final objective value as well as computation time. In a separate problem, the SIMP formulation is used to optimize the structural topology of a wingbox as part of a larger MDO framework. Here, topology optimization is combined with aerodynamic shape optimization, using a monolithic MDO architecture that includes aerostructural coupling. The aerodynamic loads are modeled using a three-dimensional panel method, and the structural analysis makes use of linear, isoparametric, hexahedral elements. The aerodynamic shape is parameterized via a set of twist variables representing the jig twist angle at equally spaced locations along the span of the wing. The sensitivities are determined analytically using a coupled adjoint method. The wing is optimized for minimum drag subject to a compliance constraint taken from a 2 g maneuver condition. The results from the MDO algorithm are compared with those of a sequential optimization procedure in order to quantify the benefits of the MDO approach. While the sequentially optimized wing exhibits a nearly-elliptical lift distribution, the MDO design seeks to push a greater portion of the load toward the root, thus reducing the structural deflection, and allowing for a lighter structure. By exploiting this trade-off, the MDO design achieves a 42% lower drag than the sequential result.

  17. Potential and field produced by a uniform or non-uniform elliptical beam inside a confocal elliptic vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regenstreif, E.

    The potential produced by an isolated beam of elliptic cross-section seems to have been considered first by L.C. Teng. Image effects of line charges in elliptic vacuum chambers were introduced into accelerator theory by L. J. Laslett. Various approximate solutions for elliptic beams of finite cross-section coasting inside an elliptic vacuum chamber were subsequently proposed by P. Lapostolle and C. Bovet. A rigorous expression is derived for the potential produced by an elliptic beam inside an elliptic vacuum chamber, provided the beam envelope and the vacuum chamber can be assimilated to confocal ellipses.

  18. The history of the Universe is an elliptic curve

    NASA Astrophysics Data System (ADS)

    Coquereaux, Robert

    2015-06-01

    Friedmann-Lemaître equations with contributions coming from matter, curvature, cosmological constant, and radiation, when written in terms of conformal time u rather than in terms of cosmic time t, can be solved explicitly in terms of standard Weierstrass elliptic functions. The spatial scale factor, the temperature, the densities, the Hubble function, and almost all quantities of cosmological interest (with the exception of t itself) are elliptic functions of u, in particular they are bi-periodic with respect to a lattice of the complex plane, when one takes u complex. After recalling the basics of the theory, we use these explicit expressions, as well as the experimental constraints on the present values of density parameters (we choose for the curvature density a small value in agreement with experimental bounds) to display the evolution of the main cosmological quantities for one real period 2{{ω }r} of conformal time (the cosmic time t ‘never ends’ but it goes to infinity for a finite value {{u}f}\\lt 2{{ω }r} of u). A given history of the Universe, specified by the measured values of present-day densities, is associated with a lattice in the complex plane, or with an elliptic curve, and therefore with two Weierstrass invariants {{g}2},{{g}3}. Using the same experimental data we calculate the values of these invariants, as well as the associated modular parameter and the corresponding Klein j-invariant. If one takes the flat case k = 0, the lattice is only defined up to homotheties, and if one, moreover, neglects the radiation contribution, the j-invariant vanishes and the corresponding modular parameter τ can be chosen in one corner of the standard fundamental domain of the modular group (equihanharmonic case: τ =exp (2iπ /3)). Several exact—i.e., non-numerical—results of independent interest are obtained in that case.

  19. Vortex conception of rotor and mutual effect of screw/propellers

    NASA Technical Reports Server (NTRS)

    Lepilkin, A. M.

    1986-01-01

    A vortex theory of screw/propellers with variable circulation according to the blade and its azimuth is proposed, the problem is formulated and circulation is expanded in a Fourier series. Equations are given for inductive velocities in space for crews, including those with an infinitely large number of blades and expansion of the inductive velocity by blade azimuth of a second screw. Multiparameter improper integrals are given as a combination of elliptical integrals and elementary functions, and it is shown how to reduce elliptical integrals of the third kind with a complex parameter to integrals with a real parameter.

  20. Two-mode elliptical-core weighted fiber sensors for vibration analysis

    NASA Technical Reports Server (NTRS)

    Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.

    1992-01-01

    Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.

  1. Complexity of parallel implementation of domain decomposition techniques for elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, W.D.; Keyes, D.E.

    1988-03-01

    The authors discuss the parallel implementation of preconditioned conjugate gradient (PCG)-based domain decomposition techniques for self-adjoint elliptic partial differential equations in two dimensions on several architectures. The complexity of these methods is described on a variety of message-passing parallel computers as a function of the size of the problem, number of processors and relative communication speeds of the processors. They show that communication startups are very important, and that even the small amount of global communication in these methods can significantly reduce the performance of many message-passing architectures.

  2. Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves

    NASA Astrophysics Data System (ADS)

    Kanazawa, Atsushi

    2017-04-01

    We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of X can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials.

  3. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu; University of California Santa Barbara, Santa Barbara, CA, 93106; Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling,more » and show state-of-the-art speedup values for the fast sweeping method.« less

  4. Optimization of the launcher ascent trajectory leading to the global optimum without any initialization: the breakthrough of the Hamilton-Jacobi-Bellman approach

    NASA Astrophysics Data System (ADS)

    Bourgeois, E.; Bokanowski, O.; Zidani, H.; Désilles, A.

    2018-06-01

    The resolution of the launcher ascent trajectory problem by the so-called Hamilton-Jacobi-Bellman (HJB) approach, relying on the Dynamic Programming Principle, has been investigated. The method gives a global optimum and does not need any initialization procedure. Despite these advantages, this approach is seldom used because of the dicculties of computing the solution of the HJB equation for high dimension problems. The present study shows that an eccient resolution is found. An illustration of the method is proposed on a heavy class launcher, for a typical GEO (Geostationary Earth Orbit) mission. This study has been performed in the frame of the Centre National d'Etudes Spatiales (CNES) Launchers Research & Technology Program.

  5. High-Order Central WENO Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third-order scheme: one scheme that is based on a genuinely two-dimensional Central WENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multi-dimensional fifth-order scheme. Our numerical examples in one, two and three space dimensions verify the expected order of accuracy of the schemes.

  6. On optimal improvements of classical iterative schemes for Z-matrices

    NASA Astrophysics Data System (ADS)

    Noutsos, D.; Tzoumas, M.

    2006-04-01

    Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z- or an M-matrix, that make the associated Jacobi and Gauss-Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161-170], Gunawardena et al. [LAA 154-156 (1991) 123-143]. In this work we generalize the previous preconditioners to obtain optimal methods. "Good" Jacobi and Gauss-Seidel algorithms are given and preconditioners, that eliminate more than one entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov subspace methods is studied.

  7. Ballistic Transport for Limit-Periodic Jacobi Matrices with Applications to Quantum Many-Body Problems

    NASA Astrophysics Data System (ADS)

    Fillman, Jake

    2017-03-01

    We study Jacobi matrices that are uniformly approximated by periodic operators. We show that if the rate of approximation is sufficiently rapid, then the associated quantum dynamics are ballistic in a rather strong sense; namely, the (normalized) Heisenberg evolution of the position operator converges strongly to a self-adjoint operator that is injective on the space of absolutely summable sequences. In particular, this means that all transport exponents corresponding to well-localized initial states are equal to one. Our result may be applied to a class of quantum many-body problems. Specifically, we establish a lower bound on the Lieb-Robinson velocity for an isotropic XY spin chain on the integers with limit-periodic couplings.

  8. Chain mapping approach of Hamiltonian for FMO complex using associated, generalized and exceptional Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Arjmandi, M. B.; Marahem, F.

    2016-06-01

    The excitation energy transfer (EET) in photosynthesis complex has been widely investigated in recent years. However, one of the main problems is simulation of this complex under realistic condition. In this paper by using the associated, generalized and exceptional Jacobi polynomials, firstly, we introduce the spectral density of Fenna-Matthews-Olson (FMO) complex. Afterward, we obtain a map that transforms the Hamiltonian of FMO complex as an open quantum system to a one-dimensional chain of oscillatory modes with only nearest neighbor interaction in which the system is coupled only to first mode of chain. The frequency and coupling strength of each mode can be analytically obtained from recurrence coefficient of mentioned orthogonal polynomials.

  9. Photometric geodesy of main-belt asteroids. IV - An updated analysis of lightcurves for poles, periods, and shapes

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R.

    1991-01-01

    The Drummond et al. (1988) analysis of main-belt asteroids is presently extended, using three independent methods to derive poles, periods, phase functions, and triaxial ellipsoid shapes from lightcurve maxima and minima. This group of 26 asteroids is also reinvestigated with a view to the distributions of triaxial shapes and obliquity distributions. Poles weakly tend to avoid asteroid orbital planes; a rough-smooth dichotomization appears to be justified by the persistence of two solar phase angle-amplitude relations. Seven of the objects may be Jacobi ellipsoids if axial ratios are slightly exaggerated by a systematic effect of the analytical method employed.

  10. Analytical bound-state solutions of the Schrödinger equation for the Manning-Rosen plus Hulthén potential within SUSY quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.

    2018-01-01

    In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any l≠0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.

  11. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

    NASA Astrophysics Data System (ADS)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2018-05-01

    We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

  12. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong

    2015-11-01

    The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optics ellipticity performance of an unobscured off-axis space telescope.

    PubMed

    Zeng, Fei; Zhang, Xin; Zhang, Jianping; Shi, Guangwei; Wu, Hongbo

    2014-10-20

    With the development of astronomy, more and more attention is paid to the survey of dark matter. Dark matter cannot be seen directly but can be detected by weak gravitational lensing measurement. Ellipticity is an important parameter used to define the shape of a galaxy. Galaxy ellipticity changes with weak gravitational lensing and nonideal optics. With our design of an unobscured off-axis telescope, we implement the simulation and calculation of optics ellipticity. With an accurate model of optics PSF, the characteristic of ellipticity is modeled and analyzed. It is shown that with good optical design, the full field ellipticity can be quite small. The spatial ellipticity change can be modeled by cubic interpolation with very high accuracy. We also modeled the ellipticity variance with time and analyzed the tolerance. It is shown that the unobscured off-axis telescope has good ellipticity performance and fulfills the requirement of dark matter survey.

  14. Analytical and finite element performance evaluation of embedded piezoelectric sensors in polyethylene

    NASA Astrophysics Data System (ADS)

    Safaei, Mohsen; Anton, Steven R.

    2017-04-01

    A common application of piezoelectric transducers is to obtain operational data from working structures and dynamic components. Collected data can then be used to evaluate dynamic characterization of the system, perform structural health monitoring, or implement various other assessments. In some applications, piezoelectric transducers are bonded inside the host structure to satisfy system requirements; for example, piezoelectric transducers can be embedded inside the biopolymers of total joint replacements to evaluate the functionality of the artificial joint. The interactions between the piezoelectric device (inhomogeneity) and the surrounding polymer matrix determine the mechanical behavior of the matrix and the electromechanical behavior of the sensor. In this work, an analytical approach is employed to evaluate the electromechanical performance of 2-D plane strain piezoelectric elements of both circular and rectangular-shape inhomogeneities. These piezoelectric elements are embedded inside medical grade ultra-high molecular weight (UHMW) polyethylene, a material commonly used for bearing surfaces of joint replacements, such as total knee replacements (TKRs). Using the famous Eshelby inhomogeneity solution, the stress and electric field inside the circular (elliptical) inhomogeneity is obtained by decoupling the solution into purely elastic and dielectric systems of equations. For rectangular (non-elliptical) inhomogeneities, an approximation method based on the boundary integral function is utilized and the same decoupling method is employed. In order to validate the analytical result, a finite element analysis is performed for both the circular and rectangular inhomogeneities and the error for each case is calculated. For elliptical geometry, the error is less than 1% for stress and electric fields inside and outside the piezoelectric inhomogeneity, whereas, the error for non-elliptical geometry is obtained as 11% and 7% for stress and electric field inside the inhomogeneity, respectively.

  15. Ideal hydrodynamics and elliptic flow at CERN Super Proton Synchrotron (SPS) energies: Importance of the initial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Hannah; Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main; Bleicher, Marcus

    2009-05-15

    The elliptic flow excitation function calculated in a full (3+1) dimensional hybrid Boltzmann approach with an intermediate hydrodynamic stage for heavy ion reactions from GSI Schwerionen Synchrotron to the highest CERN Super Proton Synchrotron (SPS) energies is discussed in the context of the experimental data. In this study, we employ a hadron gas equation of state to investigate the differences in the dynamics and viscosity effects. The specific event-by-event setup with initial conditions and freeze-out from a nonequilibrium transport model allows for a direct comparison between ideal fluid dynamics and transport simulations. At higher SPS energies, where the pure transportmore » calculation cannot account for the high elliptic flow values, the smaller mean free path in the hydrodynamic evolution leads to higher elliptic flow values. In contrast to previous studies within pure hydrodynamics, the more realistic initial conditions employed here and the inclusion of a sequential final state hadronic decoupling provides results that are in line with the experimental data almost over the whole energy range from E{sub lab}=2-160A GeV. Thus, this new approach leads to a substantially different shape of the v{sub 2}/{epsilon} scaling curve as a function of (1/SdN{sub ch}/dy) in line with the experimental data compared to previous ideal hydrodynamic calculations. This hints at a strong influence of the initial conditions for the hydrodynamic evolution on the finally observed v{sub 2} values, thus questioning the standard interpretation that the hydrodynamic limit is only reached at BNL Relativistic Heavy Ion Collider energies.« less

  16. THE OPTICAL COLORS OF GIANT ELLIPTICAL GALAXIES AND THEIR METAL-RICH GLOBULAR CLUSTERS INDICATE A BOTTOM-HEAVY INITIAL MASS FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Diederik Kruijssen, J. M., E-mail: goudfroo@stsci.edu, E-mail: kruijssen@mpa-garching.mpg.de

    2013-01-10

    We report a systematic and statistically significant offset between the optical (g - z or B - I) colors of seven massive elliptical galaxies and the mean colors of their associated massive metal-rich globular clusters (GCs) in the sense that the parent galaxies are redder by {approx}0.12-0.20 mag at a given galactocentric distance. However, spectroscopic indices in the blue indicate that the luminosity-weighted ages and metallicities of such galaxies are equal to that of their averaged massive metal-rich GCs at a given galactocentric distance, to within small uncertainties. The observed color differences between the red GC systems and their parentmore » galaxies cannot be explained by the presence of multiple stellar generations in massive metal-rich GCs, as the impact of the latter to the populations' integrated g - z or B - I colors is found to be negligible. However, we show that this paradox can be explained if the stellar initial mass function (IMF) in these massive elliptical galaxies was significantly steeper at subsolar masses than canonical IMFs derived from star counts in the solar neighborhood, with the GC colors having become bluer due to dynamical evolution, causing a significant flattening of the stellar MF of the average surviving GC.« less

  17. Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael

    2013-01-01

    The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.

  18. Umbral orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Sendino, J. E.; del Olmo, M. A.

    2010-12-23

    We present an umbral operator version of the classical orthogonal polynomials. We obtain three families which are the umbral counterpart of the Jacobi, Laguerre and Hermite polynomials in the classical case.

  19. Elliptical optical solitary waves in a finite nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Minzoni, Antonmaria A.; Sciberras, Luke W.; Smyth, Noel F.; Worthy, Annette L.

    2015-05-01

    The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-section. In this article the evolution of such elliptical beams is explored through the use of an approximate methodology based on modulation theory. An approximate method is used as the equations that govern the optical system have no known exact solitary wave solution. This study brings to light two distinct phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dominated by the shedding of angular momentum loss through spiral waves. The second phase is dominated by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to modulation theory, the "chirp" variational method is also used to study this evolution. Due to the significant role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radiation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Finally, full numerical solutions of the governing equations are compared with solutions obtained using the various variational approximations, with the best agreement achieved with modulation theory due to its ability to include both mass and angular momentum losses to shed diffractive radiation.

  20. Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: An intrinsic Hamilton-Jacobi approach

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald; Renn, Jürgen; Sundermeyer, Kurt

    2016-02-01

    Classical background independence is reflected in Lagrangian general relativity through covariance under the full diffeomorphism group. We show how this independence can be maintained in a Hamilton-Jacobi approach that does not accord special privilege to any geometric structure. Intrinsic space-time curvature-based coordinates grant equal status to all geometric backgrounds. They play an essential role as a starting point for inequivalent semiclassical quantizations. The scheme calls into question Wheeler’s geometrodynamical approach and the associated Wheeler-DeWitt equation in which 3-metrics are featured geometrical objects. The formalism deals with variables that are manifestly invariant under the full diffeomorphism group. Yet, perhaps paradoxically, the liberty in selecting intrinsic coordinates is precisely as broad as is the original diffeomorphism freedom. We show how various ideas from the past five decades concerning the true degrees of freedom of general relativity can be interpreted in light of this new constrained Hamiltonian description. In particular, we show how the Kuchař multi-fingered time approach can be understood as a means of introducing full four-dimensional diffeomorphism invariants. Every choice of new phase space variables yields new Einstein-Hamilton-Jacobi constraining relations, and corresponding intrinsic Schrödinger equations. We show how to implement this freedom by canonical transformation of the intrinsic Hamiltonian. We also reinterpret and rectify significant work by Dittrich on the construction of “Dirac observables.”

  1. Proposal for extension of ORSA to include phasing in to prove successive encounters of an asteroid between Earth and Mars

    NASA Astrophysics Data System (ADS)

    Jolitz, Benjamin

    Ben Jolitz 2/6/10 Proposal for extension of ORSA to include phasing in to prove successive encounters of an asteroid between Earth and Mars Phasing is the act of changing the phase angle between two sinusoidal functions. In the case of orbits, which are ellipses drawn by sinusoidal functions, phasing is the act of matching one orbit to another. Finding the phasing parameters of a captured asteroid, a non-Keplarian object, in a resonant bi-elliptic orbit and simulation thereof is rather difficult without specialized and esoteric applications. However, open source in the last ten years has made incredible advance-ments, and some projects originally designed for orbital reconstruction have been released to the public on an AS IS basis; one such project is ORSA -Orbital Reconstruction, Simulation, Analysis. ORSA, however, does not have methods for evaluating the relative changes to a phase angle of a bi-elliptic orbit in a recursive manner for successive encounters. For years, space shuttles and other celestial transport vessels have been faced with the difficulty of docking with the International Space Station, a task which involves matching the craft to the unique elliptical orbit of the ISS such that the shuttle will meet the ISS with the appropriate orbital parameters. However, calculation of such requires consideration of only the Earth and it's effect on rather small, man-made objects. In electrical engineering, the concept of a phase lock loop is used to match the frequency and phase of a controlled oscillator with a given set of input signals. In our test case, we wish compute the successive bi-elliptic half orbits of a captured asteroid that traverses between Earth and Mars using gravitational interactions with the intent of computing the relative phase angle between the desired half orbit and current orbit such that a timed encounter with Earth or Mars is possible. The goal of this proposal is to extend ORSA to maintain relative phase angle between bi-elliptic orbits for successive encounters.

  2. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2003-01-01

    In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.

  3. Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Lakshtanov, E.; Vainberg, B.

    2013-10-01

    The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).

  4. Ellipticities of Elliptical Galaxies in Different Environments

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  5. Discontinuous dual-primal mixed finite elements for elliptic problems

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo

    2000-01-01

    We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.

  6. TM triple-mode microwave filter

    NASA Astrophysics Data System (ADS)

    Lai, S.-L.; Lin, W.-G.

    1990-12-01

    A novel realization of triple-mode six-pole microwave filters that use only TM modes is presented. The application involves TM triple degeneracies in cylindrical cavities using triple-mode elliptic function filter synthesis. Experimental results are reported.

  7. Analysis of a parallelized nonlinear elliptic boundary value problem solver with application to reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.; Smooke, Mitchell D.

    1987-01-01

    A parallelized finite difference code based on the Newton method for systems of nonlinear elliptic boundary value problems in two dimensions is analyzed in terms of computational complexity and parallel efficiency. An approximate cost function depending on 15 dimensionless parameters is derived for algorithms based on stripwise and boxwise decompositions of the domain and a one-to-one assignment of the strip or box subdomains to processors. The sensitivity of the cost functions to the parameters is explored in regions of parameter space corresponding to model small-order systems with inexpensive function evaluations and also a coupled system of nineteen equations with very expensive function evaluations. The algorithm was implemented on the Intel Hypercube, and some experimental results for the model problems with stripwise decompositions are presented and compared with the theory. In the context of computational combustion problems, multiprocessors of either message-passing or shared-memory type may be employed with stripwise decompositions to realize speedup of O(n), where n is mesh resolution in one direction, for reasonable n.

  8. Optimal Control Problems with Switching Points. Ph.D. Thesis, 1990 Final Report

    NASA Technical Reports Server (NTRS)

    Seywald, Hans

    1991-01-01

    The main idea of this report is to give an overview of the problems and difficulties that arise in solving optimal control problems with switching points. A brief discussion of existing optimality conditions is given and a numerical approach for solving the multipoint boundary value problems associated with the first-order necessary conditions of optimal control is presented. Two real-life aerospace optimization problems are treated explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in the presence of a dynamic pressure limit, and range maximization for a supersonic aircraft flying in the vertical, also in the presence of a dynamic pressure limit. In the second problem singular control appears along arcs with active dynamic pressure limit, which in the context of optimal control, represents a first-order state inequality constraint. An extension of the Generalized Legendre-Clebsch Condition to the case of singular control along state/control constrained arcs is presented and is applied to the aircraft range maximization problem stated above. A contribution to the field of Jacobi Necessary Conditions is made by giving a new proof for the non-optimality of conjugate paths in the Accessory Minimum Problem. Because of its simple and explicit character, the new proof may provide the basis for an extension of Jacobi's Necessary Condition to the case of the trajectories with interior point constraints. Finally, the result that touch points cannot occur for first-order state inequality constraints is extended to the case of vector valued control functions.

  9. Multigrid method for stability problems

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1988-01-01

    The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.

  10. Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Ortenzi, G.

    2013-12-01

    The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.

  11. Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?

    NASA Astrophysics Data System (ADS)

    Cenarro, A. J.; Gorgas, J.; Vazdekis, A.; Cardiel, N.; Peletier, R. F.

    2003-02-01

    We present new relations between recently defined line-strength indices in the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocity dispersion (σ0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log σ0. These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.

  12. Hamilton-Jacobi formalism for inflation with non-minimal derivative coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikhahmadi, Haidar; Saridakis, Emmanuel N.; Aghamohammadi, Ali

    2016-10-01

    In inflation with nonminimal derivative coupling there is not a conformal transformation to the Einstein frame where calculations are straightforward, and thus in order to extract inflationary observables one needs to perform a detailed and lengthy perturbation investigation. In this work we bypass this problem by performing a Hamilton-Jacobi analysis, namely rewriting the cosmological equations considering the scalar field to be the time variable. We apply the method to two specific models, namely the power-law and the exponential cases, and for each model we calculate various observables such as the tensor-to-scalar ratio, and the spectral index and its running. Wemore » compare them with 2013 and 2015 Planck data, and we show that they are in a very good agreement with observations.« less

  13. Classification of Hamilton-Jacobi separation in orthogonal coordinates with diagonal curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajaratnam, Krishan, E-mail: k2rajara@uwaterloo.ca; McLenaghan, Raymond G., E-mail: rgmclenaghan@uwaterloo.ca

    2014-08-15

    We find all orthogonal metrics where the geodesic Hamilton-Jacobi equation separates and the Riemann curvature tensor satisfies a certain equation (called the diagonal curvature condition). All orthogonal metrics of constant curvature satisfy the diagonal curvature condition. The metrics we find either correspond to a Benenti system or are warped product metrics where the induced metric on the base manifold corresponds to a Benenti system. Furthermore, we show that most metrics we find are characterized by concircular tensors; these metrics, called Kalnins-Eisenhart-Miller metrics, have an intrinsic characterization which can be used to obtain them on a given space. In conjunction withmore » other results, we show that the metrics we found constitute all separable metrics for Riemannian spaces of constant curvature and de Sitter space.« less

  14. The classical limit of minimal length uncertainty relation: revisit with the Hamilton-Jacobi method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaobo; Wang, Peng; Yang, Haitang, E-mail: guoxiaobo@swust.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn

    2016-05-01

    The existence of a minimum measurable length could deform not only the standard quantum mechanics but also classical physics. The effects of the minimal length on classical orbits of particles in a gravitation field have been investigated before, using the deformed Poisson bracket or Schwarzschild metric. In this paper, we first use the Hamilton-Jacobi method to derive the deformed equations of motion in the context of Newtonian mechanics and general relativity. We then employ them to study the precession of planetary orbits, deflection of light, and time delay in radar propagation. We also set limits on the deformation parameter bymore » comparing our results with the observational measurements. Finally, comparison with results from previous papers is given at the end of this paper.« less

  15. Full-dimensional vibrational calculations of five-atom molecules using a combination of Radau and Jacobi coordinates: Applications to methane and fluoromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhiqiang; Chen, Jun; University of Chinese Academy of Sciences, Beijing 100049

    Full quantum mechanical calculations of vibrational energies of methane and fluoromethane are carried out using a polyspherical description combining Radau and Jacobi coordinates. The Hamiltonian is built in a potential-optimized discrete variable representation, and vibrational energies are solved using an iterative eigensolver. This new approach can be applied to a large variety of molecules. In particular, we show that it is able to accurately and efficiently compute eigenstates for four different molecules : CH{sub 4}, CHD{sub 3}, CH{sub 2}D{sub 2}, and CH{sub 3}F. Very good agreement is obtained with the results reported previously in the literature with different approaches andmore » with experimental data.« less

  16. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)

    2002-01-01

    We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].

  17. Elliptic genus of singular algebraic varieties and quotients

    NASA Astrophysics Data System (ADS)

    Libgober, Anatoly

    2018-02-01

    This paper discusses the basic properties of various versions of the two-variable elliptic genus with special attention to the equivariant elliptic genus. The main applications are to the elliptic genera attached to non-compact GITs, including the theories regarding the elliptic genera of phases on N  =  2 introduced in Witten (1993 Nucl. Phys. B 403 159-222).

  18. How Does Abundance Affect the Strength of UV Emission in Elliptical Galaxies?

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Brown, Thomas

    2005-01-01

    This program used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe elliptical galaxies with the intention of measuring the chemical abundances in their hot stellar populations. It was designed to complement an earlier FUSE program that observed elliptical galaxies with strong UV emission. The current program originally planned observations of two ellipticals with weak UV emission (M32 and M49). Once FUSE encountered pointing control problems in certain regions of the sky (particularly Virgo, which is very unfortunate for the study of ellipticals in general), M49 was replaced with the bulge of M31, which has a similar UV-to-optical flux ratio as the center of M49. As the closest elliptical galaxy and the one with the weakest UV-to-optical flux ratio, M32 was an obvious choice of target, but M49 was the ideal complementary target, because it has a very low reddening (unlike M32). With the inability of FUSE to point at Virgo, nearly all of the best elliptical galaxies (bright galaxies with low foreground extinction) were also lost, and this severely hampered three FUSE programs of the PI, all focused on the hot stellar populations of ellipticals. M31 was the best replacement for M49, but like M32, it suffers from significant foreground reddening. Strong Galactic ISM lines heavily contaminate the FUSE spectra of M31 and M32. These ISM lines are coincident with the photospheric lines from the stellar populations (whereas M49, with little foreground ISM and significant redshift, would not have suffered from this problem). We have reduced the faint (and thus difficult) data for M31 and M32, producing final co-added spectra representing all of the exposures, but we have not yet finished our analysis, due to the complication of the contaminating ISM. The silver lining here is the set of CHI lines at 1175 Angstroms, which are not significantly contaminated by the ISM. A comparison of the M31 spectrum with other galaxies observed by FEE showed a surprising result: the hot stars in M31 seem to have a similar carbon abundance to those stars in galaxies with much brighter UV emission. The fraction of these hot stars in a population should be a strong function of chemical abundances, so this finding warrants further exploration, and we are proceeding with our analysis. Because the UV emission in these galaxies comes from a population of extreme horizontal branch stars, the PI (Brown) presented this result at a June 2003 conference on such stars.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide.more » The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.« less

  20. On the alleged collisional origin of the Kirkwood Gaps. [in asteroid belt

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1975-01-01

    This paper examines two proposed mechanisms whereby asteroidal collisions and close approaches may have given rise to the Kirkwood Gaps. The first hypothesis is that asteroids in near-resonant orbits have markedly increased collision probabilities and so are preferentially destroyed, or suffer decay in population density, within the resonance zones. A simple order-of-magnitude analysis shows that this hypothesis is untenable since it leads to conclusions which are either unrealistic or not in accord with present understanding of asteroidal physics. The second hypothesis is the Brouwer-Jefferys theory that collisions would smooth an asteroidal distribution function, as a function of Jacobi constant, thus forming resonance gaps. This hypothesis is examined by direct numerical integration of 50 asteroid orbits near the 2:1 resonance, with collisions simulated by random variables. No tendency to form a gap was observed.

  1. F-theory models on K3 surfaces with various Mordell-Weil ranks — constructions that use quadratic base change of rational elliptic surfaces

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke

    2018-05-01

    We constructed several families of elliptic K3 surfaces with Mordell-Weil groups of ranks from 1 to 4. We studied F-theory compactifications on these elliptic K3 surfaces times a K3 surface. Gluing pairs of identical rational elliptic surfaces with nonzero Mordell-Weil ranks yields elliptic K3 surfaces, the Mordell-Weil groups of which have nonzero ranks. The sum of the ranks of the singularity type and the Mordell-Weil group of any rational elliptic surface with a global section is 8. By utilizing this property, families of rational elliptic surfaces with various nonzero Mordell-Weil ranks can be obtained by choosing appropriate singularity types. Gluing pairs of these rational elliptic surfaces yields families of elliptic K3 surfaces with various nonzero Mordell-Weil ranks. We also determined the global structures of the gauge groups that arise in F-theory compactifications on the resulting K3 surfaces times a K3 surface. U(1) gauge fields arise in these compactifications.

  2. Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei; Guo, Qi

    2011-10-01

    The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.

  3. The Algorithms of Euclid and Jacobi

    ERIC Educational Resources Information Center

    Johnson, R. W.; Waterman, M. S.

    1976-01-01

    In a thesis written for the Doctor of Arts in Mathematics, the connection between Euclid's algorithm and continued fractions is developed and extended to n dimensions. Applications to computer sciences are noted. (SD)

  4. Shape measurement biases from underfitting and ellipticity gradients

    DOE PAGES

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF)more » and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 10 3 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less

  5. Angular spectra of the intrinsic galaxy ellipticity field, their observability and their impact on lensing in tomographic surveys

    NASA Astrophysics Data System (ADS)

    Schäfer, Björn Malte; Merkel, Philipp M.

    2017-09-01

    This paper describes intrinsic ellipticity correlations between galaxies, their statistical properties, their observability with future surveys and their interference with weak gravitational lensing measurements. Using an angular-momentum-based, quadratic intrinsic alignment model we derive correlation functions of the ellipticity components and project them to yield the four non-zero angular ellipticity spectra C^ɛ _E(ℓ), C^ɛ _B(ℓ), C^ɛ _C(ℓ) and C^ɛ _S(ℓ) in their generalization to tomographic surveys. For a Euclid-like survey, these spectra would have amplitudes smaller than the weak lensing effect on non-linear structures, but would constitute an important systematics. Computing estimation biases for cosmological parameters derived from an alignment-contaminated survey suggests biases of +5σw for the dark energy equation of state parameter w, -20σ _{Ω _m} for the matter density Ωm and -12σ _{σ _8} for the spectrum normalization σ8. Intrinsic alignments yield a signal that is easily observable with a survey similar to Euclid: while not independent, significances for estimates of each of the four spectra reach values of tens of σ if weak lensing and shape noise are considered as noise sources, which suggests relative uncertainties on alignment parameters at the percent level, implying that galaxy alignment mechanisms can be investigated by future surveys.

  6. The Puzzlingly Small Ca II Triplet Absorption in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Saglia, R. P.; Maraston, Claudia; Thomas, Daniel; Bender, Ralf; Colless, Matthew

    2002-11-01

    We measure the central values (within Re/8) of the Ca II triplet line indices CaT* and CaT and the Paschen index PaT at 8600 Å for a 93% complete sample of 75 nearby early-type galaxies with BT<12 mag and Vgal<2490 km s-1. We find that the values of CaT* are constant to within 5% over the range of central velocity dispersions 100 km s-1<=σ<=340 km s-1, while the PaT (and CaT) values are mildly anticorrelated with σ. Using simple and composite stellar population models, we show the following: (1) The measured CaT* and CaT are lower than expected from simple stellar population (SSP) models with Salpeter initial mass functions (IMFs) and with metallicities and ages derived from optical Lick (Fe, Mg, and Hβ) indices. Uncertainties in the calibration, the fitting functions, and the SSP modeling taken separately cannot explain the discrepancy. On average, the observed PaT values are within the range allowed by the models and the large uncertainties in the fitting functions. (2) The steepening of the IMF at low masses required to lower the CaT* and CaT indices to the observed values is incompatible with the measured FeH index at 9916 Å and the dynamical mass-to-light ratios of elliptical galaxies. (3) Composite stellar populations with a low-metallicity component reduce the disagreement, but rather artificial metallicity distributions are needed. Another explanation may be that calcium is indeed underabundant in elliptical galaxies.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel Ray; Waltz, Jacob I.

    The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less

  8. Coherent distributions for the rigid rotator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorescu, Marius

    2016-06-15

    Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödingermore » equation.« less

  9. Stochastic optimal control of ultradiffusion processes with application to dynamic portfolio management

    NASA Astrophysics Data System (ADS)

    Marcozzi, Michael D.

    2008-12-01

    We consider theoretical and approximation aspects of the stochastic optimal control of ultradiffusion processes in the context of a prototype model for the selling price of a European call option. Within a continuous-time framework, the dynamic management of a portfolio of assets is effected through continuous or point control, activation costs, and phase delay. The performance index is derived from the unique weak variational solution to the ultraparabolic Hamilton-Jacobi equation; the value function is the optimal realization of the performance index relative to all feasible portfolios. An approximation procedure based upon a temporal box scheme/finite element method is analyzed; numerical examples are presented in order to demonstrate the viability of the approach.

  10. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance.

    PubMed

    Marsan, Nina Ajmone; Westenberg, Jos J M; Ypenburg, Claudia; Delgado, Victoria; van Bommel, Rutger J; Roes, Stijntje D; Nucifora, Gaetano; van der Geest, Rob J; de Roos, Albert; Reiber, Johan C; Schalij, Martin J; Bax, Jeroen J

    2009-11-01

    The aim of this study was to evaluate feasibility and accuracy of real-time 3-dimensional (3D) echocardiography for quantification of mitral regurgitation (MR), in a head-to-head comparison with velocity-encoded cardiac magnetic resonance (VE-CMR). Accurate grading of MR severity is crucial for appropriate patient management but remains challenging. VE-CMR with 3D three-directional acquisition has been recently proposed as the reference method. A total of 64 patients with functional MR were included. A VE-CMR acquisition was applied to quantify mitral regurgitant volume (Rvol). Color Doppler 3D echocardiography was applied for direct measurement, in "en face" view, of mitral effective regurgitant orifice area (EROA); Rvol was subsequently calculated as EROA multiplied by the velocity-time integral of the regurgitant jet on the continuous-wave Doppler. To assess the relative potential error of the conventional approach, color Doppler 2-dimensional (2D) echocardiography was performed: vena contracta width was measured in the 4-chamber view and EROA calculated as circular (EROA-4CH); EROA was also calculated as elliptical (EROA-elliptical), measuring vena contracta also in the 2-chamber view. From these 2D measurements of EROA, the Rvols were also calculated. The EROA measured by 3D echocardiography was significantly higher than EROA-4CH (p < 0.001) and EROA-elliptical (p < 0.001), with a significant bias between these measurements (0.10 cm(2) and 0.06 cm(2), respectively). Rvol measured by 3D echocardiography showed excellent correlation with Rvol measured by CMR (r = 0.94), without a significant difference between these techniques (mean difference = -0.08 ml/beat). Conversely, 2D echocardiographic approach from the 4-chamber view significantly underestimated Rvol (p = 0.006) as compared with CMR (mean difference = 2.9 ml/beat). The 2D elliptical approach demonstrated a better agreement with CMR (mean difference = -1.6 ml/beat, p = 0.04). Quantification of EROA and Rvol of functional MR with 3D echocardiography is feasible and accurate as compared with VE-CMR; the currently recommended 2D echocardiographic approach significantly underestimates both EROA and Rvol.

  11. Symmetric tops in combined electric fields: Conditional quasisolvability via the quantum Hamilton-Jacobi theory

    NASA Astrophysics Data System (ADS)

    Schatz, Konrad; Friedrich, Bretislav; Becker, Simon; Schmidt, Burkhard

    2018-05-01

    We make use of the quantum Hamilton-Jacobi (QHJ) theory to investigate conditional quasisolvability of the quantum symmetric top subject to combined electric fields (symmetric top pendulum). We derive the conditions of quasisolvability of the time-independent Schrödinger equation as well as the corresponding finite sets of exact analytic solutions. We do so for this prototypical trigonometric system as well as for its anti-isospectral hyperbolic counterpart. An examination of the algebraic and numerical spectra of these two systems reveals mutually closely related patterns. The QHJ approach allows us to retrieve the closed-form solutions for the spherical and planar pendula and the Razavy system that had been obtained in our earlier work via supersymmetric quantum mechanics as well as to find a cornucopia of additional exact analytic solutions.

  12. A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Ezz-Eldien, S. S.; Van Gorder, Robert A.

    2014-12-01

    The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrödinger equation (T-FSE) and the space-fractional Schrödinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrödinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.

  13. Variation of parameters using Battin's universal functions

    NASA Astrophysics Data System (ADS)

    Burton, James R., III; Melton, Robert G.

    This paper presents a variation of parameters analysis, suitable for use in situations involving small perturbations to the two-body problem, using Battin's universal functions. Unlike the universal variable formulation, this approach avoids the need to switch among different functional representations if the orbit transitions from elliptical, through parabolic, to hyperbolic state, making it attractive for use in simulating low-thrust trajectories ascending to escape or capturing into orbit.

  14. Transmission of isotropic light across a dielectric surface in two and three dimensions.

    NASA Technical Reports Server (NTRS)

    Allen, W. A.

    1973-01-01

    Average transmittance of polarized diffuse light across a dielectric surface is calculated in both two and three dimensions. The incident light in both cases is confined to an angular range measured from the surface normal. Limiting values in three dimensions correspond to known results for two cases, (1) normal incidence, and (2) diffuse light incident from a 180 deg cone. The two-dimensional formulation is solvable in terms of elliptic functions and incomplete elliptic integrals of the first, second, and third kinds. Results are displayed graphically for values of transmittances in excess of 0.9 associated with relative indices of refraction in the range m = 1.0 to m = 2.6.

  15. SL(2, C) group action on cohomological field theories

    NASA Astrophysics Data System (ADS)

    Basalaev, Alexey

    2018-01-01

    We introduce the S} (2,C) group action on a partition function of a cohomological field theory via a certain Givental's action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a simple-elliptic singularity the action introduced coincides with the transformation of Milanov-Ruan changing the primitive form (cf. Milanov and Ruan in Gromov-Witten theory of elliptic orbifold P1 and quasi-modular forms, arXiv:1106.2321 , 2011).

  16. Polarization-singular processing of biological layers laser images to diagnose and classify their optical properties

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Telenga, O. Y.

    2011-09-01

    Presented in this work are the results of investigation aimed at analysis of coordinate distributions for azimuths and ellipticity of polarization (polarization maps) in blood plasma layers laser images of three groups of patients: healthy (group 1), with dysplasia (group 2) and cancer of cervix uteri (group 3). To characterize polarization maps for all groups of samples, the authors have offered to use three groups of parameters: statistical moments of the first to the fourth orders, autocorrelation functions, logarithmic dependences for power spectra related to distributions of azimuths and ellipticity of polarization inherent to blood plasma laser images. Ascertained are the criteria for diagnostics and differentiation of cervix uteri pathological changes.

  17. Theoretical results for starved elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    Eighteen cases were used in the theoretical study of the influence of lubricant starvation on film thickness and pressure in elliptical elastohydrodynamic conjunctions. From the results a simple and important critical dimensionless inlet boundary distance at which lubricant starvation becomes significant was specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Furthermore, it was found that the film thickness for a starved condition is written in dimensionless terms as a function of the inlet distance parameter and the film thickness for a fully flooded condition. Contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions.

  18. On the Cubic Lattice Green Functions

    NASA Astrophysics Data System (ADS)

    Joyce, G. S.

    1994-05-01

    Wheatstone Physics Laboratory, King's College, University of London, Strand, London WC2R 2LS, U.K. It is proved that K (k+) = [(4-eta )1/2 - (1 - eta )1/2]K(k-), where eta is a complex variable which lies in a certain region R2 of the eta plane, and K (k±) are complete elliptic integrals of the first kind with moduli k± which are given by k±2equiv k±2(eta ) = 1/2 ± 1/4eta (4 - eta )1/2 - 1/4(2-eta )(1-eta )1/2. This basic result is then used to express the face-centred cubic and simple cubic lattice Green functions at the origin in terms of the square of a complete elliptic integral of the first kind. Several new identities involving the Heun function F(a, b; α , β , γ , δ ; eta ) are also derived. Next it is shown that the three cubic lattice Green functions all have parametric representations which involve the Green function for the two-dimensional honeycomb lattice. Finally, the results are applied to a variety of problems in lattice statistics. In particular, a new simplified formula for the generating function of staircase polygons on a four-dimensional hypercubic lattice is derived.

  19. Investigating the Density of Isolated Field Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ulgen, E. Kaan

    2016-02-01

    In this thesis, 215.590 elliptical galaxies with M(r) ≤ -21 in the CFHTLS-W1 field which is covering 72 sq. deg on the sky are examined . Criterion given by Smith et al. (2004) has been used to determine isolated elliptical galaxies. 118 isolated elliptical galaxies have been determined in total. By using g, r and i photometric bands, the true-colour images of candidates are produced and visually inspected. In order to have a clean list of IfEs some candidates are excluded from the final sample after visual inspection. The final sample consists of 60 IfEs which corresponds to the 0.027 per cent of the whole sample. In other words, IfE density in the W1 is 0.8 IfE / sq.deg. Since the formation of the ellipticals in the isolated regions is not known clearly, it is crucial to determine IfEs and compare their photometric and morphological properties to the normal or cluster ellipticals. When the (g-i) distributions of three different elliptical galaxy class are compared, it is found that they have almost the same colours. When the redshift distributions of the galaxies are considered, it can be seen that IfEs formed later than the cluster and normal ellipticals. The average redshift of IfEs is determined as zphot=0.284, while for normal and cluster ellipticals, it is, respectively, 0.410 and 0.732. In addition, when the effective radii of the three elliptical systems are considered, it is found that the IfEs are bigger than the other two elliptical classes.

  20. The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix

    NASA Astrophysics Data System (ADS)

    Antipov, Yuri A.

    2014-10-01

    A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.

  1. Effects of the pion-nucleon potential in 197Au+197Au collisions at 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Su, Jun; Zhu, Long; Zhang, Feng-Shou

    2018-06-01

    The influence of the pion-nucleon potential on the pion dynamics in 197Au+197Au collisions at 1.5 GeV/nucleon for different centrality intervals is investigated in the framework of the isospin-dependent quantum molecular dynamics model. It is found that the observables related to pions, such as the rapidity distributions, the rapidity dependencies of the directed flow and the elliptic flow, the centrality dependencies of the directed flow and the elliptic flow, and the transverse momentum distribution of the strength function of the azimuthal anisotropy are sensitive to the pion-nucleon potential. The pion multiplicity and the polar-angle distributions of pions are less affected by the pion-nucleon potential. The comparisons to the experimental data, in particular to the rapidity distributions of the directed flow and the elliptic flow, favor the stronger pion-nucleon potential derived from the phenomenological ansatz proposed by Gale and Kapusta [C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987), 10.1103/PhysRevC.35.2107].

  2. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at s N N = 2.76 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    Tmore » he anisotropy of the azimuthal distributions of charged particles produced in s N N = 2.76 eV PbPb collisions is studied with the CMS experiment at the LHC. he elliptic anisotropy parameter, v 2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. he anisotropy is presented as a function of transverse momentum (p), pseudorapidity (η) over a broad kinematic range, 0.3<20 GeV/c, |η|<2.4, and in 12 classes of collision centrality from 0 to 80%. he results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.« less

  3. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at s N N = 2.76 TeV

    DOE PAGES

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...

    2013-01-07

    Tmore » he anisotropy of the azimuthal distributions of charged particles produced in s N N = 2.76 eV PbPb collisions is studied with the CMS experiment at the LHC. he elliptic anisotropy parameter, v 2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. he anisotropy is presented as a function of transverse momentum (p), pseudorapidity (η) over a broad kinematic range, 0.3<20 GeV/c, |η|<2.4, and in 12 classes of collision centrality from 0 to 80%. he results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.« less

  4. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  5. A robust variant of block Jacobi-Davidson for extracting a large number of eigenpairs: Application to grid-based real-space density functional theory

    NASA Astrophysics Data System (ADS)

    Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.

    2017-09-01

    In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.

  6. A robust variant of block Jacobi-Davidson for extracting a large number of eigenpairs: Application to grid-based real-space density functional theory.

    PubMed

    Lee, M; Leiter, K; Eisner, C; Breuer, A; Wang, X

    2017-09-21

    In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.

  7. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  8. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  9. Analytical Solutions of the Schrödinger Equation for the Manning-Rosen plus Hulthén Potential Within SUSY Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.

    2018-02-01

    In this paper, the bound state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by implementing the novel improved scheme to surmount the centrifugal term. The energy eigenvalues and corresponding radial wave functions are defined for any l ≠ 0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM) methods. By using these two different methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is demonstrated. The energy levels are worked out and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.

  10. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    PubMed

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  11. An analytic method to account for drag in the Vinti Satellite theory

    NASA Technical Reports Server (NTRS)

    Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.

    1974-01-01

    To retain separability in the Vinti theory of earth satellite motion when a nonconservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In this approach, the Hamiltonian is preserved in form, and remains the total energy, but the initial or boundary conditions and hence the Jacobi constants of the motion advance with time through the variational equations. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which adheres to tabular data at all altitudes and simultaneously reduced the variational equations to indefinite integrals with closed form evaluations. The values of the limits for any arbitrary time interval are obtained from the Vinti program.

  12. Optimal coordination and control of posture and movements.

    PubMed

    Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns

    2009-01-01

    This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.

  13. Infinite horizon problems on stratifiable state-constraints sets

    NASA Astrophysics Data System (ADS)

    Hermosilla, C.; Zidani, H.

    2015-02-01

    This paper deals with a state-constrained control problem. It is well known that, unless some compatibility condition between constraints and dynamics holds, the Value Function has not enough regularity, or can fail to be the unique constrained viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. Here, we consider the case of a set of constraints having a stratified structure. Under this circumstance, the interior of this set may be empty or disconnected, and the admissible trajectories may have the only option to stay on the boundary without possible approximation in the interior of the constraints. In such situations, the classical pointing qualification hypothesis is not relevant. The discontinuous Value Function is then characterized by means of a system of HJB equations on each stratum that composes the state-constraints. This result is obtained under a local controllability assumption which is required only on the strata where some chattering phenomena could occur.

  14. Event-Triggered Adaptive Dynamic Programming for Continuous-Time Systems With Control Constraints.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2016-08-31

    In this paper, an event-triggered near optimal control structure is developed for nonlinear continuous-time systems with control constraints. Due to the saturating actuators, a nonquadratic cost function is introduced and the Hamilton-Jacobi-Bellman (HJB) equation for constrained nonlinear continuous-time systems is formulated. In order to solve the HJB equation, an actor-critic framework is presented. The critic network is used to approximate the cost function and the action network is used to estimate the optimal control law. In addition, in the proposed method, the control signal is transmitted in an aperiodic manner to reduce the computational and the transmission cost. Both the networks are only updated at the trigger instants decided by the event-triggered condition. Detailed Lyapunov analysis is provided to guarantee that the closed-loop event-triggered system is ultimately bounded. Three case studies are used to demonstrate the effectiveness of the proposed method.

  15. Color Dispersion as an Indicator of Stellar Population Complexity: Insights from the Pixel Color–Magnitude Diagrams of 32 Bright Galaxies in Abell 1139 and Abell 2589

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Pak, Mina; Lee, Hye-Ran; Oh, Sree

    2018-04-01

    We investigate the properties of bright galaxies of various morphological types in Abell 1139 and Abell 2589, using pixel color–magnitude diagram (pCMD) analysis. The sample contains 32 galaxies brighter than M r = ‑21.3 mag with spectroscopic redshifts, which are deeply imaged in the g and r bands using the MegaCam mounted on the Canada–France–Hawaii Telescope. After masking contaminants with two-step procedures, we examine how the detailed properties in the pCMDs depend on galaxy morphology and infrared color. The mean g ‑ r color as a function of surface brightness (μ r ) in the pCMD of a galaxy shows good performance in distinguishing between early- and late-type galaxies, but it is not perfect because of the similarity between elliptical galaxies and bulge-dominated spiral galaxies. On the other hand, the g ‑ r color dispersion as a function of μ r works better. We find that the best set of parameters for galaxy classification is a combination of the minimum color dispersion at μ r ≤ 21.2 mag arcsec‑2 and the maximum color dispersion at 20.0 ≤ μ r ≤ 21.0 mag arcsec‑2 the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Finally, the color dispersion measurements of an elliptical galaxy appear to be correlated with the Wide-field Infrared Survey Explorer infrared color ([4.6]–[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  16. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038

  17. Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański

    NASA Astrophysics Data System (ADS)

    Sheftel, Mikhail; Yazıcı, Devrim

    2016-09-01

    We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.

  18. Modulated elliptic wave and asymptotic solitons in a shock problem to the modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Kotlyarov, Vladimir; Minakov, Alexander

    2015-07-01

    We study the long-time asymptotic behavior of the Cauchy problem for the modified Korteweg—de Vries equation with an initial function of the step type. This function rapidly tends to zero as x\\to +∞ and to some positive constant c as x\\to -∞ . In 1989 Khruslov and Kotlyarov have found (Khruslov and Kotlyarov 1989 Inverse Problems 5 1075-88) that for a large time the solution breaks up into a train of asymptotic solitons located in the domain 4{c}2t-{C}N{ln}t\\lt x≤slant 4{c}2t ({C}N is a constant). The number N of these solitons grows unboundedly as t\\to ∞ . In 2010 Kotlyarov and Minakov have studied temporary asymptotics of the solution of the Cauchy problem on the whole line (Kotlyarov and Minakov 2010 J. Math. Phys. 51 093506) and have found that in the domain -6{c}2t\\lt x\\lt 4{c}2t this solution is described by a modulated elliptic wave. We consider here the modulated elliptic wave in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. Our main result shows that the modulated elliptic wave also breaks up into solitons, which are similar to the asymptotic solitons in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88), but differ from them in phase. It means that the modulated elliptic wave does not represent the asymptotics of the solution in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. The correct asymptotic behavior of the solution is given by the train of asymptotic solitons given in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88). However, in the asymptotic regime as t\\to ∞ in the region 4{c}2t-\\displaystyle \\frac{N+1/4}{c}{ln}t\\lt x\\lt 4{c}2t-\\displaystyle \\frac{N-3/4}{c}{ln}t we can watch precisely a pair of solitons with numbers N. One of them is the asymptotic soliton while the other soliton is generated from the elliptic wave. Their phases become closer to each other for a large N, i.e. these solitons are also close to each other. This result gives the answer on a very important question about matching of the asymptotic formulas in the mentioned region where the both formulas are well-defined. Thus we have here a new and previously unknown mechanism (5.35) of matching of the asymptotics of the solution in the adjacent regions.

  19. A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Guan, Liang; Xue, Bo

    A hierarchy of generalized Jaulent-Miodek (JM) equations related to a new spectral problem with energy-dependent potentials is proposed. Depending on the Lax matrix and elliptic variables, the generalized JM hierarchy is decomposed into two systems of solvable ordinary differential equations. Explicit theta function representations of the meromorphic function and the Baker-Akhiezer function are constructed, the solutions of the hierarchy are obtained based on the theory of algebraic curves.

  20. On the Behavior of Eisenstein Series Through Elliptic Degeneration

    NASA Astrophysics Data System (ADS)

    Garbin, D.; Pippich, A.-M. V.

    2009-12-01

    Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.

  1. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  2. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakalli, I., E-mail: izzet.sakalli@emu.edu.tr; Mirekhtiary, S. F., E-mail: fatemeh.mirekhtiary@emu.edu.tr

    2013-10-15

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropicmore » coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.« less

  3. On classical mechanical systems with non-linear constraints

    NASA Astrophysics Data System (ADS)

    Terra, Gláucio; Kobayashi, Marcelo H.

    2004-03-01

    In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.

  4. A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance

    NASA Astrophysics Data System (ADS)

    Witte, J. H.; Reisinger, C.

    2010-09-01

    We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.

  5. Viscous warm inflation: Hamilton-Jacobi formalism

    NASA Astrophysics Data System (ADS)

    Akhtari, L.; Mohammadi, A.; Sayar, K.; Saaidi, Kh.

    2017-04-01

    Using Hamilton-Jacobi formalism, the scenario of warm inflation with viscous pressure is considered. The formalism gives a way of computing the slow-rolling parameter without extra approximation, and it is well-known as a powerful method in cold inflation. The model is studied in detail for three different cases of the dissipation and bulk viscous pressure coefficients. In the first case where both coefficients are taken as constant, it is shown that the case could not portray warm inflationary scenario compatible with observational data even it is possible to restrict the model parameters. For other cases, the results shows that the model could properly predicts the perturbation parameters in which they stay in perfect agreement with Planck data. As a further argument, r -ns and αs -ns are drown that show the acquired result could stand in acceptable area expressing a compatibility with observational data.

  6. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Sethian, James A.

    1997-01-01

    Borrowing from techniques developed for conservation law equations, numerical schemes which discretize the Hamilton-Jacobi (H-J), level set, and Eikonal equations on triangulated domains are presented. The first scheme is a provably monotone discretization for certain forms of the H-J equations. Unfortunately, the basic scheme lacks proper Lipschitz continuity of the numerical Hamiltonian. By employing a virtual edge flipping technique, Lipschitz continuity of the numerical flux is restored on acute triangulations. Next, schemes are introduced and developed based on the weaker concept of positive coefficient approximations for homogeneous Hamiltonians. These schemes possess a discrete maximum principle on arbitrary triangulations and naturally exhibit proper Lipschitz continuity of the numerical Hamiltonian. Finally, a class of Petrov-Galerkin approximations are considered. These schemes are stabilized via a least-squares bilinear form. The Petrov-Galerkin schemes do not possess a discrete maximum principle but generalize to high order accuracy.

  7. Quantitative Compactness Estimates for Hamilton-Jacobi Equations

    NASA Astrophysics Data System (ADS)

    Ancona, Fabio; Cannarsa, Piermarco; Nguyen, Khai T.

    2016-02-01

    We study quantitative compactness estimates in {W^{1,1}_{loc}} for the map {S_t}, {t > 0} that is associated with the given initial data {u_0in Lip (R^N)} for the corresponding solution {S_t u_0} of a Hamilton-Jacobi equation u_t+Hbig(nabla_{x} ubig)=0, qquad t≥ 0,quad xinR^N, with a uniformly convex Hamiltonian {H=H(p)}. We provide upper and lower estimates of order {1/\\varepsilon^N} on the Kolmogorov {\\varepsilon}-entropy in {W^{1,1}} of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of "resolution" of a numerical method implemented for this equation.

  8. Elaborative processing in the Korsakoff syndrome: context versus habit.

    PubMed

    Van Damme, Ilse; d'Ydewalle, Géry

    2008-07-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness. Psychology and Aging, 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were created during initial training, whereupon cued-recall memory performance was examined, with habit opposing as well as facilitating recollection of earlier studied words. A first group of patients was instructed and tested in the same way as healthy controls and showed poor test performance. Nevertheless, when given more processing and response time, additional explanation, and explicit encouragement, a second group of patients performed similarly to healthy controls. The results suggest that, when given adequate support, Korsakoff patients are able to encode and make use of semantic, contextual, and sequential information. Word distinctiveness, however, only influenced performance of controls.

  9. Matched asymptotic expansion of the Hamilton-Jacobi-Bellman equation for aeroassisted plane-change maneuvers

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Melamed, Nahum

    1993-01-01

    In this paper we develop a general procedure for constructing a matched asymptotic expansion of the Hamilton-Jacobi-Bellman equation based on the method of characteristics. The development is for a class of perturbation problems whose solution exhibits two-time-scale behavior. A regular expansion for problems of this type is inappropriate since it is not uniformly valid over a narrow range of the independent variable. Of particular interest here is the manner in which matching and boundary conditions are enforced when the expansion is carried out to first order. Two cases are distinguished - one where the left boundary condition coincides with or lies to the right of the singular region and one where the left boundary condition lies to the left of the singular region. A simple example is used to illustrate the procedure, and its potential application to aeroassisted plane change is described.

  10. Global temperatures and the global warming ``debate''

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2009-04-01

    Many ordinary citizens listen to pronouncements on talk radio casting doubt on anthropogenic global warming. Some op-ed columnists likewise cast doubts, and are read by credulous citizens. For example, on 8 March 2009, the Boston Globe published a column by Jeff Jacoby, ``Where's global warming?'' According to Jacoby, ``But it isn't such hints of a planetary warming trend that have been piling up in profusion lately. Just the opposite.'' He goes on to write, ``the science of climate change is not nearly as important as the religion of climate change,'' and blamed Al Gore for getting his mistaken views accepted. George Will at the Washington Post also expressed denial. As a result, 44% of U.S. voters, according to the January 19 2009 Rasmussen Report, blame long-term planetary trends for global warming, not human beings. Is there global cooling, as skeptics claim? We examine the temperature record.

  11. A numerical technique for linear elliptic partial differential equations in polygonal domains.

    PubMed

    Hashemzadeh, P; Fokas, A S; Smitheman, S A

    2015-03-08

    Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear PDEs usually referred to as the unified transform ( or the Fokas transform ) was introduced by the second author in the late Nineties. For linear elliptic PDEs, this method can be considered as the analogue of Green's function approach but now it is formulated in the complex Fourier plane instead of the physical plane. It employs two global relations also formulated in the Fourier plane which couple the Dirichlet and the Neumann boundary values. These relations can be used to characterize the unknown boundary values in terms of the given boundary data, yielding an elegant approach for determining the Dirichlet to Neumann map . The numerical implementation of the unified transform can be considered as the counterpart in the Fourier plane of the well-known boundary integral method which is formulated in the physical plane. For this implementation, one must choose (i) a suitable basis for expanding the unknown functions and (ii) an appropriate set of complex values, which we refer to as collocation points, at which to evaluate the global relations. Here, by employing a variety of examples we present simple guidelines of how the above choices can be made. Furthermore, we provide concrete rules for choosing the collocation points so that the condition number of the matrix of the associated linear system remains low.

  12. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  13. Elliptical field-of-view PROPELLER imaging.

    PubMed

    Devaraj, Ajit; Pipe, James G

    2009-09-01

    Traditionally two-dimensional scans are designed to support an isotropic field-of-view (iFOV). When imaging elongated objects, significant savings in scan time can potentially be achieved by supporting an elliptical field-of-view (eFOV). This work presents an empirical closed-form solution to adapt the PROPELLER trajectory for an eFOV. The proposed solution is built on the geometry of the PROPELLER trajectory permitting the scan prescription and data reconstruction to remain largely similar to standard PROPELLER. The achieved FOV is experimentally validated by the point spread function (PSF) of a phantom scan. The details of potential savings in scan time and the signal-to-noise ratio (SNR) performance in comparison to iFOV scans for both phantom and in-vivo images are also described.

  14. Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes–Vanstone elliptic curve cryptosystem

    NASA Astrophysics Data System (ADS)

    Liu, Zeyu; Xia, Tiecheng; Wang, Jinbo

    2018-03-01

    We propose a new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional difference. Moreover, the chaos behaviors of the proposed map are observed and the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits are derived, respectively. Finally, with the secret keys generated by Menezes–Vanstone elliptic curve cryptosystem, we apply the discrete fractional map into color image encryption. After that, the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072147 and 11271008).

  15. Induced Ellipticity for Inspiraling Binary Systems

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Xianyu, Zhong-Zhi

    2018-01-01

    Although gravitational waves tend to erase eccentricity of an inspiraling binary system, ellipticity can be generated in the presence of surrounding matter. We present a semianalytical method for understanding the eccentricity distribution of binary black holes (BHs) in the presence of a supermassive BH in a galactic center. Given a matter distribution, we show how to determine the resultant eccentricity analytically in the presence of both tidal forces and evaporation up to one cutoff and one matter-distribution-independent function, paving the way for understanding the environment of detected inspiraling BHs. We furthermore generalize Kozai–Lidov dynamics to situations where perturbation theory breaks down for short time intervals, allowing more general angular momentum exchange, such that eccentricity is generated even when all bodies orbit in the same plane.

  16. Gravitational instantons from minimal surfaces

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Hortaçsu, M.; Kalayci, J.; Nutku, Y.

    1999-02-01

    Physical properties of gravitational instantons which are derivable from minimal surfaces in three-dimensional Euclidean space are examined using the Newman-Penrose formalism for Euclidean signature. The gravitational instanton that corresponds to the helicoid minimal surface is investigated in detail. This is a metric of Bianchi type 0264-9381/16/2/024/img9, or E(2), which admits a hidden symmetry due to the existence of a quadratic Killing tensor. It leads to a complete separation of variables in the Hamilton-Jacobi equation for geodesics, as well as in Laplace's equation for a massless scalar field. The scalar Green function can be obtained in closed form, which enables us to calculate the vacuum fluctuations of a massless scalar field in the background of this instanton.

  17. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  18. On the relationship between the classical Dicke-Jaynes-Cummings-Gaudin model and the nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dianlou; Geng, Xue

    2013-05-15

    In this paper, the relationship between the classical Dicke-Jaynes-Cummings-Gaudin (DJCG) model and the nonlinear Schroedinger (NLS) equation is studied. It is shown that the classical DJCG model is equivalent to a stationary NLS equation. Moreover, the standard NLS equation can be solved by the classical DJCG model and a suitably chosen higher order flow. Further, it is also shown that classical DJCG model can be transformed into the classical Gaudin spin model in an external magnetic field through a deformation of Lax matrix. Finally, the separated variables are constructed on the common level sets of Casimir functions and the generalizedmore » action-angle coordinates are introduced via the Hamilton-Jacobi equation.« less

  19. Mayer control problem with probabilistic uncertainty on initial positions

    NASA Astrophysics Data System (ADS)

    Marigonda, Antonio; Quincampoix, Marc

    2018-03-01

    In this paper we introduce and study an optimal control problem in the Mayer's form in the space of probability measures on Rn endowed with the Wasserstein distance. Our aim is to study optimality conditions when the knowledge of the initial state and velocity is subject to some uncertainty, which are modeled by a probability measure on Rd and by a vector-valued measure on Rd, respectively. We provide a characterization of the value function of such a problem as unique solution of an Hamilton-Jacobi-Bellman equation in the space of measures in a suitable viscosity sense. Some applications to a pursuit-evasion game with uncertainty in the state space is also discussed, proving the existence of a value for the game.

  20. On Steady-State Tropical Cyclones

    DTIC Science & Technology

    2014-01-01

    components of the velocity vector, specific humidity, suspended liquid water, perturbation Exner function and perturbation density potential...vorticity and spin-up function, respectively. If the flow is symmetrically stable, the partial differential equation (10) is elliptic with a forcing term...Upper-level inflow jets A prominent feature of the radial velocity component shown in Figure 2(c) is the layered structure of inflow and outflow in the

  1. Elliptic genus of E-strings

    NASA Astrophysics Data System (ADS)

    Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun

    2017-09-01

    We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.

  2. The stability of perfect elliptic disks. 1: The maximum streaming case

    NASA Technical Reports Server (NTRS)

    Levine, Stephen E.; Sparke, Linda S.

    1994-01-01

    Self-consistent distribution functions are constructed for two-dimensional perfect elliptic disks (for which the potential is exactly integrable) in the limit of maximum streaming; these are tested for stability by N-body integration. To obtain a discrete representation for each model, simulated annealing is used to choose a set of orbits which sample the distribution function and reproduce the required density profile while carrying the greatest possible amount of angular momentum. A quiet start technique is developed to place particles on these orbits uniformly in action-angle space, making the initial conditions as smooth as possible. The roundest models exhibit spiral instabilities similar to those of cold axisymmetric disks; the most elongated models show bending instabilities like those seen in prolate systems. Between these extremes, there is a range of axial ratios 0.25 approximately less than b/a approximately less than 0.6 within which these models appear to be stable. All the methods developed in this investigation can easily be extended to integrable potentials in three dimensions.

  3. Identification of the Parameters of Menétrey -Willam Failure Surface of Calcium Silicate Units

    NASA Astrophysics Data System (ADS)

    Radosław, Jasiński

    2017-10-01

    The identification of parameters of Menétrey-Willamsurface made of concrete, masonry or autoclaved aerated concrete is not complicated. It is much more difficult to identify failure parameters of masonry units with cavities. This paper describes the concept of identifying the parameters of Menétrey-Willam failure surface (M-W-3) with reference to masonry units with vertical cavities. The M-W-3 surface is defined by uniaxial compressive strength fc, uniaxial tensile strength ft and eccentricity of elliptical function e. A test stand was built to identify surface parameters. It was used to test behaviour of masonry units under triaxial stress and conduct tests on whole masonry units in the uniaxial state. Results from tests on tens of silicate masonry units are presented in the Haigh-Westergaard (H-W) space. Statistical analyses were used to identify the shape of surface meridian, and then to determine eccentricity of the elliptical function.

  4. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  5. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  6. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  7. Nuclear spin circular dichroism.

    PubMed

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  8. Elliptic-symmetry vector optical fields.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  9. Double ionization of neon in elliptically polarized femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard

    2018-06-01

    We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.

  10. The properties of radio ellipticals

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Disney, M. J.; Wall, J. V.; Rodgers, A. W.

    1984-03-01

    The authors present optical and additional radio data for the bright galaxies of the Disney & Wall survey. These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas.

  11. Overdetermined elliptic problems in topological disks

    NASA Astrophysics Data System (ADS)

    Mira, Pablo

    2018-06-01

    We introduce a method, based on the Poincaré-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems.

  12. Kernel functions and Baecklund transformations for relativistic Calogero-Moser and Toda systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallnaes, Martin; Ruijsenaars, Simon

    We obtain kernel functions associated with the quantum relativistic Toda systems, both for the periodic version and for the nonperiodic version with its dual. This involves taking limits of previously known results concerning kernel functions for the elliptic and hyperbolic relativistic Calogero-Moser systems. We show that the special kernel functions at issue admit a limit that yields generating functions of Baecklund transformations for the classical relativistic Calogero-Moser and Toda systems. We also obtain the nonrelativistic counterparts of our results, which tie in with previous results in the literature.

  13. Model's sparse representation based on reduced mixed GMsFE basis methods

    NASA Astrophysics Data System (ADS)

    Jiang, Lijian; Li, Qiuqi

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.

  14. The Radio Luminosity Function and Galaxy Evolution in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; Hornschemeier, Ann E.; Mabasher, Bahram; Brudgesm Terrry J.; Hudson, Michael J.; Marzke, Ronald O.; Smith, Russell J.

    2008-01-01

    We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (> approx. 3x10(exp 22) W/Hz) and low (< approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN.

  15. Model's sparse representation based on reduced mixed GMsFE basis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less

  16. Motion4D-library extended

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2011-06-01

    The new version of the Motion4D-library now also includes the integration of a Sachs basis and the Jacobi equation to determine gravitational lensing of pointlike sources for arbitrary spacetimes.New version program summaryProgram title: Motion4D-libraryCatalogue identifier: AEEX_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 219 441No. of bytes in distributed program, including test data, etc.: 6 968 223Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, WindowsRAM: 61 MbytesClassification: 1.5External routines: Gnu Scientic Library (GSL) (http://www.gnu.org/software/gsl/)Catalogue identifier of previous version: AEEX_v2_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 703Does the new version supersede the previous version?: YesNature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes. Determine gravitational lensing by integration of Jacobi equation and parallel transport of Sachs basis.Solution method: Integration of ordinary differential equations.Reasons for new version: The main novelty of the current version is the extension to integrate the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. In combination, the change of the cross section of a light bundle and thus the gravitational lensing effect of a spacetime can be determined. Furthermore, we have implemented several new metrics.Summary of revisions: The main novelty of the current version is the integration of the Jacobi equation and the parallel transport of the Sachs basis along null geodesics. The corresponding set of equations readd2xμdλ2=-Γρσμdxρdλdxσdλ, ds1,2μdλ=-Γρσμdxρdλs1,2σ, d2Y1,2μdλ2=-2ΓρσμdxρdλdY1,2σdλ-Γρσ,νμdxρdλdxσdλYν, where (1) is the geodesic equation, (2) represents the parallel transport of the two Sachs basis vectors s, and (3) is the Jacobi equation for the two Jacobi fields Y.The initial directions of the Sachs basis vectors s=(0,s)=s1,2μ∂ are defined perpendicular to the initial direction υ→ of the light ray, see also Fig. 1,s=(-, s=(-. Display OmittedA congruence of null geodesics with central null geodesic γ which starts at the observer O with an infinitesimal circular cross section is defined by the above mentioned two Jacobi fields with initial conditions Y1,2μ|=0 and (dY1,2μ/dλ)|=s1,2μ. The cross section of this congruence along γ is described by the Jacobian J(λ)=gYiμsjν|. However, to determine the gravitational lensing of a pointlike source S that is connected to the observer via γ, we need the reverse Jacobian JS. Fortunately, the reverse Jacobian is just the negative transpose of the original Jacobian JO,J:=JS=-(J)T. The Jacobian J transforms the circular shape of the congruence into an ellipse whose shape parameters (M: major/minor axis, ψ: angle of major axis, ɛ: ellipticity) readM=2αsinζcosζ-βsin2ζ+J112+J212, ψ=arctan2(Jcosζ+Jsinζ,Jcosζ+Jsinζ), ɛ=‖M-M‖‖M+M‖ withζ=12arctan2αβ,ζ=ζ+π2, and the parameters α=JJ+JJ, β=J112-J122+J212-J222. The magnification factor is given byμ=λ2MM. These shape parameters can be easily visualized in the new version of the GeodesicViewer, see Ref. [1]. A detailed discussion of gravitational lensing can be found, for example, in Schneider et al. [2].In the following, a list of newly implemented metrics is given:BertottiKasner: see Rindler [3].BesselGravWaveCart: gravitational Bessel wave from Kramer [4].DeSitterUniv, DeSitterUnivConf: de Sitter universe in Cartesian and conformal coordinates.Ernst: Black hole in a magnetic universe by Ernst [5].ExtremeReissnerNordstromDihole: see Chandrasekhar [6].HalilsoyWave: see Ref. [7].JaNeWi: Janis-Newman-Winicour metric, see Ref. [8].MinkowskiConformal: Minkowski metric in conformally rescaled coordinates.PTD_AI, PTD_AII, PTD_AIII, PTD_BI, PTD_BII, PTD_BIII, PTD_C Petrov-Type D - Levi-Civita spacetimes, see Ref. [7].PainleveGullstrand: Schwarzschild metric in Painlevé-Gullstrand coordinates, see Ref. [9].PlaneGravWave: Plane gravitational wave, see Ref. [10].SchwarzschildIsotropic: Schwarzschild metric in isotropic coordinates, see Ref. [11].SchwarzschildTortoise: Schwarzschild metric in tortoise coordinates, see Ref. [11].Sultana-Dyer: A black hole in the Einstein-de Sitter universe by Sultana and Dyer [12].TaubNUT: see Ref. [13]. The Christoffel symbols and the natural local tetrads of these new metrics are given in the Catalogue of Spacetimes, Ref. [14].To study the behavior of geodesics, it is often useful to determine an effective potential like in classical mechanics. For several metrics, we followed the Euler-Lagrangian approach as described by Rindler [10] and implemented an effective potential for a specific situation. As an example, consider the Lagrangian L=-αt˙+α-1r˙+r2φ˙ for timelike geodesics in the ϑ=π/2 hypersurface in the Schwarzschild spacetime with α=1-2m/r. The Euler-Lagrangian equations lead to the energy balance equation r˙+V(r)=k2 with the effective potential V(r)=(r-2m)(r2+h2)/r3 and the constants of motion k=αt˙ and h=r2φ˙. The constants of motion for a timelike geodesic that starts at (r=10m,φ=0) with initial direction ξ=π/4 with respect to the black hole direction and with initial velocity β=0.7 read k≈1.252 and h≈6.931. Then, from the energy balance equation we immediately obtain the radius of closest approach r≈5.927.Beside a standard Runge-Kutta fourth-order integrator and the integrators of the Gnu Scientific Library (GSL), we also implemented a standard Bulirsch-Stoer integrator.Running time: The test runs provided with the distribution require only a few seconds to run.References:T. Müller, New version announcement to the GeodesicViewer, http://cpc.cs.qub.ac.uk/summaries/AEFP_v2_0.html.P. Schneider, J. Ehlers, E. E. Falco, Gravitational Lenses, Springer, 1992.W. Rindler, Phys. Lett. A 245 (1998) 363.D. Kramer, Ann. Phys. 9 (2000) 331.F.J. Ernst, J. Math. Phys. 17 (1976) 54.S. Chandrasekhar, Proc. R. Soc. Lond. A 421 (1989) 227.H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of the Einstein Field Equations, Cambridge University Press, 2009.A.I. Janis, E.T. Newman, J. Winicour, Phys. Rev. Lett. 20 (1968) 878.K. Martel, E. Poisson, Am. J. Phys. 69 (2001) 476.W. Rindler, Relativity - Special, General, and Cosmology, Oxford University Press, Oxford, 2007.C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. Freeman, 1973.J. Sultana, C.C. Dyer, Gen. Relativ. Gravit. 37 (2005) 1349.D. Bini, C. Cherubini, Robert T. Jantzen, Class. Quantum Grav. 19 (2002) 5481.T. Muller, F. Grave, arXiv:0904.4184 [gr-qc].

  17. Optimal four-impulse rendezvous between coplanar elliptical orbits

    NASA Astrophysics Data System (ADS)

    Wang, JianXia; Baoyin, HeXi; Li, JunFeng; Sun, FuChun

    2011-04-01

    Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solution. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital rendezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vector theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large eccentricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentricity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution. If the initial values are taken randomly, it is difficult to converge to the optimal solution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindricalmore » coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of arbitrary shape, such as Chebyshev cylindrical particles with a small deformation, stadiums (with oval shape), or other non-circular geometries.« less

  19. Cotton-type and joint invariants for linear elliptic systems.

    PubMed

    Aslam, A; Mahomed, F M

    2013-01-01

    Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.

  20. Cotton-Type and Joint Invariants for Linear Elliptic Systems

    PubMed Central

    Aslam, A.; Mahomed, F. M.

    2013-01-01

    Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871

  1. Theory of a refined earth model

    NASA Technical Reports Server (NTRS)

    Krause, H. G. L.

    1968-01-01

    Refined equations are derived relating the variations of the earths gravity and radius as functions of longitude and latitude. They particularly relate the oblateness coefficients of the old harmonics and the difference of the polar radii /respectively, ellipticities and polar gravity accelerations/ in the Northern and Southern Hemispheres.

  2. Spectral collocation methods

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.

    1987-01-01

    This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.

  3. Elliptic Flow in Au+Au Collisions at √sNN = 130 GeV

    NASA Astrophysics Data System (ADS)

    Ackermann, K. H.; Adams, N.; Adler, C.; Ahammed, Z.; Ahmad, S.; Allgower, C.; Amsbaugh, J.; Anderson, M.; Anderssen, E.; Arnesen, H.; Arnold, L.; Averichev, G. S.; Baldwin, A.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Beddo, M.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Bennett, S.; Bercovitz, J.; Berger, J.; Betts, W.; Bichsel, H.; Bieser, F.; Bland, L. C.; Bloomer, M.; Blyth, C. O.; Boehm, J.; Bonner, B. E.; Bonnet, D.; Bossingham, R.; Botlo, M.; Boucham, A.; Bouillo, N.; Bouvier, S.; Bradley, K.; Brady, F. P.; Braithwaite, E. S.; Braithwaite, W.; Brandin, A.; Brown, R. L.; Brugalette, G.; Byrd, C.; Caines, H.; Calderón de La Barca Sánchez, M.; Cardenas, A.; Carr, L.; Carroll, J.; Castillo, J.; Caylor, B.; Cebra, D.; Chatopadhyay, S.; Chen, M. L.; Chen, W.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Chrin, J.; Christie, W.; Coffin, J. P.; Conin, L.; Consiglio, C.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Danilov, V. I.; Dayton, D.; Demello, M.; Deng, W. S.; Derevschikov, A. A.; Dialinas, M.; Diaz, H.; Deyoung, P. A.; Didenko, L.; Dimassimo, D.; Dioguardi, J.; Dominik, W.; Drancourt, C.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Eggert, T.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Etkin, A.; Fachini, P.; Feliciano, C.; Ferenc, D.; Ferguson, M. I.; Fessler, H.; Finch, E.; Fine, V.; Fisyak, Y.; Flierl, D.; Flores, I.; Foley, K. J.; Fritz, D.; Gagunashvili, N.; Gans, J.; Gazdzicki, M.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Gojak, C.; Grabski, J.; Grachov, O.; Grau, M.; Greiner, D.; Greiner, L.; Grigoriev, V.; Grosnick, D.; Gross, J.; Guilloux, G.; Gushin, E.; Hall, J.; Hallman, T. J.; Hardtke, D.; Harper, G.; Harris, J. W.; He, P.; Heffner, M.; Heppelmann, S.; Herston, T.; Hill, D.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Howe, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Hunt, W.; Hunter, J.; Igo, G. J.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Jacobson, S.; Jared, R.; Jensen, P.; Johnson, I.; Jones, P. G.; Judd, E.; Kaneta, M.; Kaplan, M.; Keane, D.; Kenney, V. P.; Khodinov, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Koehler, G.; Konstantinov, A. S.; Kormilitsyne, V.; Kotchenda, L.; Kotov, I.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Krupien, T.; Kuczewski, P.; Kuhn, C.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamas-Valverde, J.; Lamont, M. A.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lecompte, T.; Leonhardt, W. J.; Leontiev, V. M.; Leszczynski, P.; Levine, M. J.; Li, Q.; Li, Q.; Li, Z.; Liaw, C.-J.; Lin, J.; Lindenbaum, S. J.; Lindenstruth, V.; Lindstrom, P. J.; Lisa, M. A.; Liu, H.; Ljubicic, T.; Llope, W. J.; Locurto, G.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Lopiano, D.; Love, W. A.; Lutz, J. R.; Lynn, D.; Madansky, L.; Maier, R.; Majka, R.; Maliszewski, A.; Margetis, S.; Marks, K.; Marstaller, R.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; Matyushevski, E. A.; McParland, C.; McShane, T. S.; Meier, J.; Melnick, Yu.; Meschanin, A.; Middlekamp, P.; Mikhalin, N.; Miller, B.; Milosevich, Z.; Minaev, N. G.; Minor, B.; Mitchell, J.; Mogavero, E.; Moiseenko, V. A.; Moltz, D.; Moore, C. F.; Morozov, V.; Morse, R.; de Moura, M. M.; Munhoz, M. G.; Mutchler, G. S.; Nelson, J. M.; Nevski, P.; Ngo, T.; Nguyen, M.; Nguyen, T.; Nikitin, V. A.; Nogach, L. V.; Noggle, T.; Norman, B.; Nurushev, S. B.; Nussbaum, T.; Nystrand, J.; Odyniec, G.; Ogawa, A.; Ogilvie, C. A.; Olchanski, K.; Oldenburg, M.; Olson, D.; Ososkov, G. A.; Ott, G.; Padrazo, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Pentia, M.; Perevotchikov, V.; Peryt, W.; Petrov, V. A.; Pinganaud, W.; Pirogov, S.; Platner, E.; Pluta, J.; Polk, I.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Puskar-Pasewicz, J.; Rai, G.; Rasson, J.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J.; Renfordt, R. E.; Retiere, F.; Ridiger, A.; Riso, J.; Ritter, H. G.; Roberts, J. B.; Roehrich, D.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Russ, D.; Rykov, V.; Sakrejda, I.; Sanchez, R.; Sandler, Z.; Sandweiss, J.; Sappenfield, P.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Scheblien, J.; Scheetz, R.; Schlueter, R.; Schmitz, N.; Schroeder, L. S.; Schulz, M.; Schüttauf, A.; Sedlmeir, J.; Seger, J.; Seliverstov, D.; Seyboth, J.; Seyboth, P.; Seymour, R.; Shakaliev, E. I.; Shestermanov, K. E.; Shi, Y.; Shimanskii, S. S.; Shuman, D.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Smykov, L. P.; Snellings, R.; Solberg, K.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Stone, N.; Stone, R.; Strikhanov, M.; Stringfellow, B.; Stroebele, H.; Struck, C.; Suaide, A. A.; Sugarbaker, E.; Suire, C.; Symons, T. J.; Takahashi, J.; Tang, A. H.; Tarchini, A.; Tarzian, J.; Thomas, J. H.; Tikhomirov, V.; Szanto de Toledo, A.; Tonse, S.; Trainor, T.; Trentalange, S.; Tokarev, M.; Tonjes, M. B.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; Vakula, I.; van Buren, G.; Vandermolen, A. M.; Vanyashin, A.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Visser, G.; Voloshin, S. A.; Vu, C.; Wang, F.; Ward, H.; Weerasundara, D.; Weidenbach, R.; Wells, R.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitfield, J. P.; Whitten, C.; Wieman, H.; Willson, R.; Wilson, K.; Wirth, J.; Wisdom, J.; Wissink, S. W.; Witt, R.; Wolf, J.; Wood, L.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yokosawa, A.; Yurevich, V. I.; Zanevski, Y. V.; Zhang, J.; Zhang, W. M.; Zhu, J.; Zimmerman, D.; Zoulkarneev, R.; Zubarev, A. N.

    2001-01-01

    Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sNN = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

  4. About Consumerist Education

    ERIC Educational Resources Information Center

    Gottfried, Paul

    2002-01-01

    According to Gottfried, the growing and increasingly crass commercialization of American higher education is an amply documented phenomenon, and one that receives continuing empirical and anecdotal verification. It is, furthermore, a problem that draws notice from across the political spectrum, from social democrat Russell Jacobi to…

  5. Boundary conditions estimation on a road network using compressed sensing.

    DOT National Transportation Integrated Search

    2016-02-01

    This report presents a new boundary condition estimation framework for transportation networks in which : the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a : Hamilton-Jacobi equation, we pose th...

  6. Variation of Marine Geoid Due to Ocean Circulation and Sea Level Change

    NASA Astrophysics Data System (ADS)

    Chu, P. C.

    2017-12-01

    Sea level (S) change and ocean circulation largely affect the gravity field and in turns the marine geoid (N). Difference between the two, D = S - N, is the dynamic ocean topography (DOT), whose gradient represents the large-scale surface geostrophic circulations. Thus, temporal variability of marine geoid (δN) is caused by the sea level change (δS) and the DOT variation (δD), δN = δS - δD. Here, δS is identified from temporally varying satellite altimeter measures; δD is calculated from the change of DOT. For large-scale processes with conservation of potential vorticity, the geostrophic flows take minimum energy state. Based on that, a new elliptic equation is derived in this study to determine D. Here, H is the water depth; and (X, Y) are forcing functions calculated from the in-situ density. The well-posed elliptic equation is integrated numerically on 1o grids for the world oceans with the boundary values taken from the mean DOT (1993-2006) field at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/, the forcing function F calculated from the three-dimensional temperature and salinity of the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2, and sea-floor topography (H) from the NOAA ETOPO5. The numerical solution compares reasonably well (relative root mean square difference of 0.09) with the NASA/JPL satellite observation of the difference between the time-averaged sea surface height and the geoid. In-situ ocean measurements of temperature, salinity, and velocity have also rapidly advanced such that the global ocean is now continuously monitored by near 4,000 free-drifting profiling floats (called Argo) from the surface to 2000 m depth with all data being relayed and made publicly available within hours after collection (http://www.argo.ucsd.edu/). This provides a huge database of temperature and salinity and in turns the forcing function F for the governing elliptic equation of DOT. Along with satellite altimetry data, the marine geoid (N) can be updated in a short time period. Further application of this elliptic equation method on the high-precision altimetry measurements of SSH such as the Surface Water and Ocean Topography (SWOT) is also presented.

  7. Controlling orbital angular momentum of an optical vortex by varying its ellipticity

    NASA Astrophysics Data System (ADS)

    Kotlyar, Victor V.; Kovalev, Alexey A.

    2018-03-01

    An exact analytical expression is obtained for the orbital angular momentum (OAM) of a Gaussian optical vortex with a different degree of ellipticity. The OAM turned out to be proportional to the ratio of two Legendre polynomials of adjoining orders. It is shown that if an elliptical optical vortex is embedded into the center of the waist of a circularly symmetrical Gaussian beam, then the normalized OAM of such laser beam is fractional and it does not exceed the topological charge n. If, on the contrary, a circularly symmetrical optical vortex is embedded into the center of the waist of an elliptical Gaussian beam, then the OAM is equal to n. If the optical vortex and the Gaussian beam have the same (or matched) ellipticity degree, then the OAM of the laser beam is greater than n. Continuous varying of the OAM of a laser beam by varying its ellipticity degree can be used in optical trapping for accelerated motion of microscopic particles along an elliptical trajectory as well as in quantum informatics for detecting OAM-entangled photons.

  8. Forward-backward elliptic anisotropy correlations in parton cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L. X.; Graduate School of the Chinese Academy of Sciences, Beijing 100080; Ma, G. L.

    2011-04-15

    A potential experimental probe, the forward-backward elliptic anisotropy correlation (C{sub FB}), has been proposed by Liao and Koch to distinguish the jet and true elliptic flow contribution to the measured elliptic flow (v{sub 2}) in relativistic heavy-ion collisions. The jet and flow fluctuation contribution to elliptic flow is investigated within the framework of a multiphase transport model using the C{sub FB} probe. We find that the C{sub FB} correlation is remarkably different from, and about two times that, proposed by Liao and Koch. It originates from the correlation between fluctuation of forward and that of backward elliptic flow at amore » low transverse momentum, which is mainly caused by the initial correlation between fluctuation of forward and that of backward eccentricity. This results in an amendment of the C{sub FB} by a term related to the correlation between fluctuation of forward and that of backward elliptic flow. Our results suggest that a suitable rapidity gap for C{sub FB} correlation studies is about {+-}3.5.« less

  9. Design and optimal control of on-orbit servicing trajectory for target vehicle in non-coplanar elliptical orbit

    NASA Astrophysics Data System (ADS)

    Zhou, Wenyong; Yuan, Jianping; Luo, Jianjun

    2005-11-01

    Autonomous on-orbit servicing provides flexibility to space systems and has great value both in civil and in military. When a satellite performs on-orbit servicing tasks, flying around is the basic type of motion. This paper is concerned with the design and control problems of a chaser satellite flying around a target spacecraft in non-coplanar elliptical orbit for a long time. At first, a mathematical model used to design a long-term flying around trajectory is presented, which is applicable to the situation that the target spacecraft flies in an elliptical orbit. The conditions of the target at the centre of the flying around path are deduced. Considering the safety and task requirements, a long-term flying around trajectory is designed. Taking into account perturbations and navigation errors which can cause the trajectory unstable and mission impossible, a two-impulse control method is put forward. Genetic algorithm is used to minimize the cost function which considers fuel consumption and bias simultaneously. Some simulation works are carried out and the results indicate the flying around mathematical model and the trajectory control method can be used in the design and control of a long-term flying around trajectory.

  10. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  11. A new strong-lensing galaxy at z=0.066: Another elliptical galaxy with a lightweight IMF

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-05-01

    We report the discovery of a new low-redshift galaxy-scale gravitational lens, identified from a systematic search of publicly available MUSE observations. The lens galaxy, 2MASXJ04035024-0239275, is a giant elliptical at z = 0.06604 with a velocity dispersion of σ = 314 km s-1. The lensed source has a redshift of 0.19165 and forms a pair of bright images on either side of the lens centre. The Einstein radius is 1.5 arcsec, projecting to 1.8 kpc, which is just one quarter of the galaxy effective radius. After correcting for an estimated 19 per cent dark matter contribution, we find that the stellar mass-to-light ratio from lensing is consistent with that expected for a Milky Way initial mass function (IMF). Combining the new system with three previously-studied low-redshift lenses of similar σ, the derived mean mass excess factor (relative to a Kroupa IMF) is ⟨α⟩ = 1.09±0.08. With all four systems, the intrinsic scatter in α for massive elliptical galaxies can be limited to <0.32, at 90 per cent confidence.

  12. A new weak Galerkin finite element method for elliptic interface problems

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu; ...

    2016-08-26

    We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less

  13. A new weak Galerkin finite element method for elliptic interface problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less

  14. Refractive optics to compensate x-ray mirror shape-errors

    NASA Astrophysics Data System (ADS)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  15. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    NASA Astrophysics Data System (ADS)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-12-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  16. Ellipticity of near-threshold harmonics from stretched molecules.

    PubMed

    Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-11-30

    We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses.

  17. Non-elliptic wavevector anisotropy for magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Narita, Y.

    2015-11-01

    A model of non-elliptic wavevector anisotropy is developed for the inertial-range spectrum of magnetohydrodynamic turbulence and is presented in the two-dimensional wavevector domain spanning the directions parallel and perpendicular to the mean magnetic field. The non-elliptic model is a variation of the elliptic model with different scalings along the parallel and the perpendicular components of the wavevectors to the mean magnetic field. The non-elliptic anisotropy model reproduces the smooth transition of the power-law spectra from an index of -2 in the parallel projection with respect to the mean magnetic field to an index of -5/3 in the perpendicular projection observed in solar wind turbulence, and is as competitive as the critical balance model to explain the measured frequency spectra in the solar wind. The parameters in the non-elliptic spectrum model are compared with the solar wind observations.

  18. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  19. New method for automatic optimization of glass combination in optical systems working in the visible range

    NASA Astrophysics Data System (ADS)

    Ralea, Daniel; Marginean, Raluca-Maria; Marzu, Marinica

    1998-07-01

    The algorithm presented in this paper proposes a way to find the optimum glasses that assure a better correction for optical apparatus with the human eye as a final receiver. The model (Ne, v1, v2), based on the Buchdahl formula, gives an approximation error for the refraction index less than 5(DOT)10-5 for visible domain. We introduced in the merit function used for optimizing the optical system an operand that describes the existence of an optical glass. This operand was defined so that the obtained value for Ne, v1 and v2 can be closed to some values for a real glass. A definition for this operand is obtained using the PNe, Pv1, Pv2, probabilities of existence for a glass with a certain parameter Ne, v1 or v2. Another possibility to define this operand is to describe the volume occupied by the optical glass in (Ne, v1, v2) space with some elliptical functions. The probabilities and the elliptical functions were found after an analysis for all optical glasses listed in the Schott catalogues was made.

  20. Blending Two Major Techniques in Order to Compute [Pi

    ERIC Educational Resources Information Center

    Guasti, M. Fernandez

    2005-01-01

    Three major techniques are employed to calculate [pi]. Namely, (i) the perimeter of polygons inscribed or circumscribed in a circle, (ii) calculus based methods using integral representations of inverse trigonometric functions, and (iii) modular identities derived from the transformation theory of elliptic integrals. This note presents a…

  1. The Origin of Dwarf Ellipticals in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.

    2008-02-01

    We study the evolution of dwarf (LH < 109.6 LH⊙) star-forming and quiescent galaxies in the Virgo Cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemospectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star-forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short timescales (<=150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low-luminosity, high surface brightness star-forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness Magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground-based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star-forming and quiescent systems is consistent with a rapid (<1 Gyr) transitional phase between the two dwarf galaxy populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star-forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.

  2. Comparative analysis of speed's impact on muscle demands during partial body weight support motor-assisted elliptical training.

    PubMed

    Burnfield, Judith M; Irons, Sonya L; Buster, Thad W; Taylor, Adam P; Hildner, Gretchen A; Shu, Yu

    2014-01-01

    Individuals with walking limitations often experience challenges engaging in functionally relevant exercise. An adapted elliptical trainer (motor to assist pedal movement, integrated body weight harness, ramps/stairs, and grab rails) has been developed to help individuals with physical disabilities and chronic conditions regain/retain walking capacity and fitness. However, limited published studies are available to guide therapeutic interventions. This repeated measures study examined the influence of motor-assisted elliptical training speed on lower extremity muscle demands at four body weight support (BWS) levels commonly used therapeutically for walking. Electromyography (EMG) and pedal trajectory data were recorded as ten individuals without known disability used the motor-assisted elliptical trainer at three speeds [20,40, 60 revolutions per minute (RPM)] during each BWS level (0%, 20%, 40%, 60%). Overall, the EMG activity (peak, mean, duration) in key stabilizer muscles (i.e., gluteus medius, gluteus maximus, vastus lateralis, medial gastrocnemius and soleus) recorded at 60 RPM exceeded those at 40 RPM, which were higher than values at 20 RPM in all but three situations (gluteus medius mean at 0% BWS, vastus lateralis mean at 20% BWS, soleus duration at 40% BWS); however, these differences did not always achieve statistical significance. Slower motor-assisted speeds can be used to accommodate weakness of gluteus medius, gluteus maximus, vastus lateralis, medial gastrocnemius and soleus. As strength improves, training at faster motor-assisted speeds may provide a means to progressively challenge key lower extremity stabilizers. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    PubMed

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  4. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  5. Pulsating strings with mixed three-form flux

    NASA Astrophysics Data System (ADS)

    Hernández, Rafael; Nieto, Juan Miguel; Ruiz, Roberto

    2018-04-01

    Circular strings pulsating in AdS 3 × S 3 × T 4 with mixed R-R and NS-NS three-form fluxes can be described by an integrable deformation of the one-dimensional Neumann-Rosochatius mechanical model. In this article we find a general class of pulsating solutions to this integrable system that can be expressed in terms of elliptic functions. In the limit of strings moving in AdS 3 with pure NS-NS three-form flux, where the action reduces to the SL(2, ℝ) WZW model, we find agreement with the analysis of the classical solutions of the system performed using spectral flow by Maldacena and Ooguri. We use our elliptic solutions in AdS 3 to extend the dispersion relation beyond the limit of pure NS-NS flux.

  6. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.

  7. Investigation of Composite Structures

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.

    2000-01-01

    This final report consists of a compilation of four separate written documents, three dealing with the response and failure of elliptical composite cylinders to an internal pressure load, and the fourth dealing with the influence of manufacturing imperfections in curved composite panels. The three focused on elliptical cylinders consist of the following: 1 - A paper entitled "Progressive Failure Analysis of Internally Pressurized Elliptical Composite Cylinders," 2 - A paper entitled "Influence of Geometric Nonlinearities on the Response and Failure of Internally Pressurized Elliptical Composite Cylinders," and 3 - A report entitled "Response and Failure of Internally Pressurized Elliptical Composite Cyclinders." The document which deals with the influence of manufacturing imperfections is a paper entitled "Manufacturing Distortions of Curved Composite Panels."

  8. Book review: Conservation biology of Hawaiian forest birds: Implications for island avifauna

    USGS Publications Warehouse

    Engstrom, R. Todd; van Riper, Charles

    2010-01-01

    Review info: Conservation Biology of Hawaiian Forest Birds: Implications for Island Avifauna. By Thane K. Pratt, Carter T. Atkinson, Paul C. Banko, James D. Jacobi, and Bethany L. Woodworth, Eds., 2009. ISBN 978-0300141085, 707 pp.

  9. Labor History and Industrial Relations: A Symposium.

    ERIC Educational Resources Information Center

    Salvatore, Nick; And Others

    1989-01-01

    Includes "Labor History, Industrial Relations, and the Crisis of American Labor" (Brody); "Reckoning with Company Unions: The Case of Thompson Products, 1934-1964" (Jacoby); "Managers and Nonunion Workers in the Rubber Industry: Union Avoidance Strategies in the 1930s" (Nelson); and "'Light Manufacturing': The…

  10. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    NASA Astrophysics Data System (ADS)

    Jiao, Yujian; Wang, Li-Lian; Huang, Can

    2016-01-01

    The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.

  11. Weak-lensing shear estimates with general adaptive moments, and studies of bias by pixellation, PSF distortions, and noise

    NASA Astrophysics Data System (ADS)

    Simon, Patrick; Schneider, Peter

    2017-08-01

    In weak gravitational lensing, weighted quadrupole moments of the brightness profile in galaxy images are a common way to estimate gravitational shear. We have employed general adaptive moments (GLAM ) to study causes of shear bias on a fundamental level and for a practical definition of an image ellipticity. The GLAM ellipticity has useful properties for any chosen weight profile: the weighted ellipticity is identical to that of isophotes of elliptical images, and in absence of noise and pixellation it is always an unbiased estimator of reduced shear. We show that moment-based techniques, adaptive or unweighted, are similar to a model-based approach in the sense that they can be seen as imperfect fit of an elliptical profile to the image. Due to residuals in the fit, moment-based estimates of ellipticities are prone to underfitting bias when inferred from observed images. The estimation is fundamentally limited mainly by pixellation which destroys information on the original, pre-seeing image. We give an optimised estimator for the pre-seeing GLAM ellipticity and quantify its bias for noise-free images. To deal with images where pixel noise is prominent, we consider a Bayesian approach to infer GLAM ellipticity where, similar to the noise-free case, the ellipticity posterior can be inconsistent with the true ellipticity if we do not properly account for our ignorance about fit residuals. This underfitting bias, quantified in the paper, does not vary with the overall noise level but changes with the pre-seeing brightness profile and the correlation or heterogeneity of pixel noise over the image. Furthermore, when inferring a constant ellipticity or, more relevantly, constant shear from a source sample with a distribution of intrinsic properties (sizes, centroid positions, intrinsic shapes), an additional, now noise-dependent bias arises towards low signal-to-noise if incorrect prior densities for the intrinsic properties are used. We discuss the origin of this prior bias. With regard to a fully-Bayesian lensing analysis, we point out that passing tests with source samples subject to constant shear may not be sufficient for an analysis of sources with varying shear.

  12. THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilman, David J.; Erwin, Peter

    2012-02-20

    We present results of an analysis of the local (z {approx} 0) morphology-environment relation for 911 bright (M{sub B} < -19) galaxies, based on matching classical RC3 morphologies with the Sloan Digital Sky Survey based group catalog of Yang et al., which includes halo mass estimates. This allows us to study how the relative fractions of spirals, lenticulars, and ellipticals depend on halo mass over a range of 10{sup 11.7}-10{sup 14.8} h{sup -1} M{sub Sun }, from isolated single-galaxy halos to massive groups and low-mass clusters. We pay particular attention to how morphology relates to central versus satellite status (wheremore » 'central' galaxies are the most massive within their halo). The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this as evidence for a scenario where elliptical galaxies are always formed, probably via mergers, as central galaxies within their halos, with satellite ellipticals being previously central galaxies accreted onto a larger halo. The overall fraction of galaxies which are S0 increases strongly with halo mass, from {approx}10% to {approx}70%. Here, too, we find striking differences between the central and satellite populations. 20% {+-} 2% of central galaxies with stellar masses M{sub *} > 10{sup 10.5} M{sub Sun} are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (>10{sup 13} h{sup -1} M{sub Sun }) halos, where they are 69% {+-} 4% of the M{sub *} > 10{sup 10.5} M{sub Sun} satellite population. This suggests two channels for forming S0 galaxies: one which operates for central galaxies and another which transforms lower-mass (M{sub *} {approx}< 10{sup 11} M{sub Sun }) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is consistent with other recent studies which indicate that bars are not strongly influenced by galaxy environment. Radio sources in high-mass central galaxies are common, similarly so for elliptical and S0 galaxies, with a frequency that increases with the halo mass. Emission-line active galactic nuclei (mostly LINERs) are more common in S0s, but show no strong trends with environment.« less

  13. State transformations and Hamiltonian structures for optimal control in discrete systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  14. DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu

    Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less

  15. A comparison of practical assessment methods to determine treadmill, cycle and elliptical ergometer VO2peak

    PubMed Central

    Mays, Ryan J.; Boér, Nicholas F.; Mealey, Lisa M.; Kim, Kevin H.; Goss, Fredric L.

    2015-01-01

    This investigation compared estimated and predicted peak oxygen consumption (VO2peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer and elliptical ergometer. Seventeen women (mean ± SE: 21.9 ± .3 yrs) exercised to exhaustion on all modalities. ACSM metabolic equations were used to estimate VO2peak. Digital displays on the elliptical ergometer were used to estimate VO2peak. Two individual linear regression methods were used to predict VO2peak: 1) two steady state heart rate (HR) responses up to 85% of age-predicted HRmax, and 2) multiple steady state/non-steady state HR responses up to 85% of age-predicted HRmax. Estimated VO2peak for the treadmill (46.3 ± 1.3 ml · kg−1 · min−1) and the elliptical ergometer (44.4 ± 1.0 ml · kg−1 · min−1) did not differ. The cycle ergometer estimated VO2peak (36.5 ± 1.0 ml · kg−1 · min−1) was lower (p < .001) than the estimated VO2peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2peak predicted from steady state (51.4 ± .8 ml · kg−1 · min−1) and steady state/non-steady state (50.3 ± 2.0 ml · kg−1 · min−1) models were higher than estimated elliptical ergometer VO2peak, p < .01. HRmax and estimates of VO2peak were similar between the treadmill and elliptical ergometer, thus cross-modal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2peak. PMID:20393357

  16. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems ⋆

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2013-01-01

    This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green's functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green's functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong. PMID:23519600

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechin, Ivan, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru; ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218; Zotov, Andrei, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru

    In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov,more » and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder’s elliptic R-matrix are also discussed.« less

  18. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  19. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    NASA Astrophysics Data System (ADS)

    Djidel, S.; Bouamar, M.; Khedrouche, D.

    2016-04-01

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  20. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses.

    PubMed

    Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

Top