Dynamically consistent Jacobian inverse for mobile manipulators
NASA Astrophysics Data System (ADS)
Ratajczak, Joanna; Tchoń, Krzysztof
2016-06-01
By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.
Numerical pole assignment by eigenvalue Jacobian inversion
NASA Technical Reports Server (NTRS)
Sevaston, George E.
1986-01-01
A numerical procedure for solving the linear pole placement problem is developed which operates by the inversion of an analytically determined eigenvalue Jacobian matrix. Attention is given to convergence characteristics and pathological situations. It is not concluded that the algorithm developed is suitable for computer-aided control system design with particular reference to the scan platform pointing control system for the Galileo spacecraft.
NASA Technical Reports Server (NTRS)
Chen, Yu-Che; Walker, Ian D.; Cheatham, John B., Jr.
1992-01-01
We present a unified formulation for the inverse kinematics of redundant arms, based on a special formulation of the null space of the Jacobian. By extending (appropriately re-scaling) previously used null space parameterizations, we obtain, in a unified fashion, the manipulability measure, the null space projector, and particular solutions for the joint velocities. We obtain the minimum norm pseudo-inverse solution as a projection from any particular solution, and the method provides an intuitive visualization of the self-motion. The result is a computationally efficient, consistent approach to computing redundant robot inverse kinematics.
Unseren, M.A.; Reister, D.B.
1995-07-01
A method for kinematically modeling a constrained rigid body mechanical system and a method for controlling such a system termed input relegation control (IRC) were applied to resolve the kinematic redundancy of a serial link manipulator moving in an open chain configuration in. A set of equations was introduced to define a new vector variable parameterizing the redundant degrees of freedom (DOF) as a linear function of the joint velocities. The new set was combined with the classical kinematic velocity model of manipulator and solved to yield a well specified solution for the joint velocities as a function of the Cartesian velocities of the end effector and of the redundant DOF variable. In the previous work a technique was proposed for selecting the matrix relating the redundant DOF variable to the joint velocities which resulted in it rows being orthogonal to the rows of the Jacobian matrix. The implications for such a selection were not discussed in. In Part 1 of this report a basis for the joint space is suggested which provides considerable insight into why picking the aforementioned matrix to be orthogonal to the Jacobian is advantageous. A second objective of Part 1 is to compare the IRC method to the Extended Jacobian method of Baillieul and Martin and other related methods.
Challenges of Inversely Estimating Jacobian from Metabolomics Data
Sun, Xiaoliang; Länger, Bettina; Weckwerth, Wolfram
2015-01-01
Inferring dynamics of metabolic networks directly from metabolomics data provides a promising way to elucidate the underlying mechanisms of biological systems, as reported in our previous studies (Weckwerth, 2011; Sun and Weckwerth, 2012; Nägele et al., 2014) by a differential Jacobian approach. The Jacobian is solved from an overdetermined system of equations as JC + CJT = −2D, called Lyapunov Equation in its generic form,1 where J is the Jacobian, C is the covariance matrix of metabolomics data, and D is the fluctuation matrix. Lyapunov Equation can be further simplified as the linear form Ax = b. Frequently, this linear equation system is ill-conditioned, i.e., a small variation in the right side b results in a big change in the solution x, thus making the solution unstable and error-prone. At the same time, inaccurate estimation of covariance matrix and uncertainties in the fluctuation matrix bring biases to the solution x. Here, we first reviewed common approaches to circumvent the ill-conditioned problems, including total least squares, Tikhonov regularization, and truncated singular value decomposition. Then, we benchmarked these methods on several in silico kinetic models with small to large perturbations on the covariance and fluctuation matrices. The results identified that the accuracy of the reverse Jacobian is mainly dependent on the condition number of A, the perturbation amplitude of C, and the stiffness of the kinetic models. Our research contributes a systematical comparison of methods to inversely solve Jacobian from metabolomics data. PMID:26636075
NASA Technical Reports Server (NTRS)
Hsia, T. C.; Lu, G. Z.; Han, W. H.
1987-01-01
In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.
Robust inverse kinematics using damped least squares with dynamic weighting
NASA Technical Reports Server (NTRS)
Schinstock, D. E.; Faddis, T. N.; Greenway, R. B.
1994-01-01
This paper presents a general method for calculating the inverse kinematics with singularity and joint limit robustness for both redundant and non-redundant serial-link manipulators. Damped least squares inverse of the Jacobian is used with dynamic weighting matrices in approximating the solution. This reduces specific joint differential vectors. The algorithm gives an exact solution away from the singularities and joint limits, and an approximate solution at or near the singularities and/or joint limits. The procedure is here implemented for a six d.o.f. teleoperator and a well behaved slave manipulator resulted under teleoperational control.
A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators.
Tchoń, Krzysztof; Jakubiak, Janusz
2005-10-01
On the basis of a geometric characterization of repeatability we present a repeatable extended Jacobian inverse kinematics algorithm for mobile manipulators. The algorithm's dynamics have linear invariant subspaces in the configuration space. A standard Ritz approximation of platform controls results in a band-limited version of this algorithm. Computer simulations involving an RTR manipulator mounted on a kinematic car-type mobile platform are used in order to illustrate repeatability and performance of the algorithm.
NASA Astrophysics Data System (ADS)
Lin, J.; Lin, C. C.; Lo, H.-S.
2009-10-01
Interest in complex robotic systems is growing in new application areas. An example of such a robotic system is a dexterous manipulator mounted on an oscillatory base. In literature, such systems are known as macro/micro systems. This work proposes pseudo-inverse Jacobian feedback control laws and applies grey relational analysis for tuning outer-loop PID control parameters of Cartesian computed-torque control law for robotic manipulators mounted on oscillatory bases. The priority when modifying controller parameters should be the top ranking importance among parameters. Grey relational grade is utilized to investigate the sensitivity of tuning the auxiliary signal PID of the Cartesian computed-torque law to achieve desired performance. Results of this study can be feasible to numerous mechanical systems, such as mobile robots, gantry cranes, underwater robots, and other dynamic systems mounted on oscillatory bases, for moving the end-effector to a desired Cartesian position.
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
NASA Astrophysics Data System (ADS)
Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.
2017-01-01
We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.
Inverse Kinematics for a Parallel Myoelectric Elbow
2001-10-25
Inverse Kinematics for a Parallel Myoelectric Elbow A. Z. Escudero, Ja. Álvarez, L. Leija. Center of Research and Advanced Studies of the IPN...replacement above elbow are serial mechanisms driven by a DC motor and they include only one active articulation for the elbow [1]. Parallel mechanisms...are rather scarce [2]. The inverse kinematics model of a 3-degree of freedom parallel prosthetic elbow mechanism is reported. The mathematical
Inverse Kinematics of Concentric Tube Steerable Needles
Sears, Patrick; Dupont, Pierre E.
2013-01-01
Prior papers have introduced steerable needles composed of precurved concentric tubes. The curvature and extent of these needles can be controlled by the relative rotation and translation of the individual tubes. Under certain assumptions on the geometry and design of these needles, the forward kinematics problem can be solved in closed form by means of algebraic equations. The inverse kinematics problem, however, is not as straightforward owing to the nonlinear map between relative tube displacements and needle tip configuration as well as to the multiplicity of solutions as the number of tubes increases. This paper presents a general approach to solving the inverse kinematics problem using a pseudoinverse solution together with gradients of nullspace potential functions to enforce geometric and mechanical constraints. PMID:23685532
A Simplified Scheme for Kinematic Source Inversion
NASA Astrophysics Data System (ADS)
Iglesias, A.; Castro-Artola, O.; Singh, S.; Hjorleifsdottir, V.; Legrand, D.
2013-05-01
It is well known that different kinematic source inversion schemes lead to non-unique solutions. For this reason, a simplified scheme, which yields the main characteristics of the rupture process, rather than the details, may be desirable. In this work we propose a modification of the frequency-domain inversion scheme of Cotton & Campillo (1995) to extract kinematic parameters using simplified geometries (ellipses). The forward problem is re-parameterized by including one or two ellipses in which the displacement is smoothly distributed. For the ellipses we invert for the position of the centers within the fault plane, the major and minor semi-axes, the maximum displacements, the angles of rotation and a parameter that controls the distribution of slip. A simulated annealing scheme is used to invert near-source displacements. We first test the method on synthetic displacement records corresponding to the Guerrero-Oaxaca earthquake (20/03/2012, Mw=7.5) by comparing the results obtained from the modified technique with the original method. In the next step, we use displacements obtained by double numerical integration of recorded accelerograms. We find that, in spite of the simple geometry, the modified method leads to a good fit between observed and synthetic displacements and recovers the main rupture characteristics.
NASA Astrophysics Data System (ADS)
Shi, Zhong; Huang, Xuexiang; Hu, Tianjian; Tan, Qian; Hou, Yuzhuo
2016-10-01
Space teleoperation is an important space technology, and human-robot motion similarity can improve the flexibility and intuition of space teleoperation. This paper aims to obtain an appropriate kinematics mapping method of coupled Cartesian-joint space for space teleoperation. First, the coupled Cartesian-joint similarity principles concerning kinematics differences are defined. Then, a novel weighted augmented Jacobian matrix with a variable coefficient (WAJM-VC) method for kinematics mapping is proposed. The Jacobian matrix is augmented to achieve a global similarity of human-robot motion. A clamping weighted least norm scheme is introduced to achieve local optimizations, and the operating ratio coefficient is variable to pursue similarity in the elbow joint. Similarity in Cartesian space and the property of joint constraint satisfaction is analysed to determine the damping factor and clamping velocity. Finally, a teleoperation system based on human motion capture is established, and the experimental results indicate that the proposed WAJM-VC method can improve the flexibility and intuition of space teleoperation to complete complex space tasks.
Wang, X
1999-05-01
In this paper, the computational problem of inverse kinematics of arm prehension movements was investigated. How motions of each joint involved in arm movements can be used to control the end-effector (hand) position and orientation was first examined. It is shown that the inverse kinematics problem due to the kinematic redundancy in joint space is ill-posed only at the control of hand orientation but not at the control of hand position. Based upon this analysis, a previously proposed inverse kinematics algorithm (Wang et Verriest, 1998a) to predict arm reach postures was extended to a seven-DOF arm model to predict arm prehension postures using a separate control of hand position and orientation. The algorithm can be either in rule-based form or by optimization through appropriate choice of weight coefficients. Compared to the algebraic inverse kinematics algorithm, the proposed algorithm can handle the non-linearity of joint limits in a straightforward way. In addition, no matrix inverse calculation is needed, thus avoiding the stability and convergence problems often occurring near a singularity of the Jacobian. Since an end-effector motion-oriented method is used to describe joint movements, observed behaviors of arm movements can be easily implemented in the algorithm. The proposed algorithm provides a general frame for arm postural control and can be used as an efficient postural manipulation tool for computer-aided ergonomic evaluation.
Forward and inverse kinematics of double universal joint robot wrists
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1991-01-01
A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.
Inverse Kinematic Analysis of Human Hand Thumb Model
NASA Astrophysics Data System (ADS)
Toth-Tascau, Mirela; Pater, Flavius; Stoia, Dan Ioan; Menyhardt, Karoly; Rosu, Serban; Rusu, Lucian; Vigaru, Cosmina
2011-09-01
This paper deals with a kinematic model of the thumb of the human hand. The proposed model has 3 degrees of freedom being able to model the movements of the thumb tip with respect to the wrist joint centre. The kinematic equations are derived based on Denavit-Hartenberg Convention and solved in both direct and inverse way. Inverse kinematic analysis of human hand thumb model reveals multiple and connected solutions which are characteristic to nonlinear systems when the number of equations is greater than number of unknowns and correspond to natural movements of the finger.
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
Computational neural learning formalisms for manipulator inverse kinematics
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama
1989-01-01
An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.
Production of radioactive nuclides in inverse reaction kinematics
NASA Astrophysics Data System (ADS)
Traykov, E.; Rogachevskiy, A.; Bosswell, M.; Dammalapati, U.; Dendooven, P.; Dermois, O. C.; Jungmann, K.; Onderwater, C. J. G.; Sohani, M.; Willmann, L.; Wilschut, H. W.; Young, A. R.
2007-03-01
Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly relevant when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented.
Learning inverse kinematics: reduced sampling through decomposition into virtual robots.
de Angulo, Vicente Ruiz; Torras, Carme
2008-12-01
We propose a technique to speedup the learning of the inverse kinematics of a robot manipulator by decomposing it into two or more virtual robot arms. Unlike previous decomposition approaches, this one does not place any requirement on the robot architecture, and thus, it is completely general. Parametrized self-organizing maps are particularly adequate for this type of learning, and permit comparing results directly obtained and through the decomposition. Experimentation shows that time reductions of up to two orders of magnitude are easily attained.
Full Waveform Inversion Using the Adjoint Method for Earthquake Kinematics Inversion
NASA Astrophysics Data System (ADS)
Tago Pacheco, J.; Metivier, L.; Brossier, R.; Virieux, J.
2014-12-01
Extracting the information contained in seismograms for better description of the Earth structure and evolution is often based on only selected attributes of these signals. Exploiting the entire seismogram, Full Wave Inversion based on an adjoint estimation of the gradient and Hessian operators, has been recognized as a high-resolution imaging technique. Most of earthquake kinematics inversion are still based on the estimation of the Frechet derivatives for the gradient operator computation in linearized optimization. One may wonder the benefit of the adjoint formulation which avoids the estimation of these derivatives for the gradient estimation. Recently, Somala et al. (submitted) have detailed the adjoint method for earthquake kinematics inversion starting from the second-order wave equation in 3D media. They have used a conjugate gradient method for the optimization procedure. We explore a similar adjoint formulation based on the first-order wave equations while using different optimization schemes. Indeed, for earthquake kinematics inversion, the model space is the slip-rate spatio-temporal history over the fault. Seismograms obtained from a dislocation rupture simulation are linearly linked to this slip-rate distribution. Therefore, we introduce a simple systematic procedure based on Lagrangian formulation of the adjoint method in the linear problem of earthquake kinematics. We have developed both the gradient estimation using the adjoint formulation and the Hessian influence using the second-order adjoint formulation (Metivier et al, 2013, 2014). Since the earthquake kinematics is a linear problem, the minimization problem is quadratic, henceforth, only one solution of the Newton equations is needed with the Hessian impact. Moreover, the formal uncertainty estimation over slip-rate distribution could be deduced from this Hessian analysis. On simple synthetic examples for antiplane kinematic rupture configuration in 2D medium, we illustrate the properties of
Kinematic Waveform Inversion: Application in Southwest Iberia Seismicity
NASA Astrophysics Data System (ADS)
Domingues, A. L.; Custodio, S.; Cesca, S.
2011-12-01
The seismic activity that affects the Portuguese territory occurs mainly and more frequently offshore, in the south and southwest of Mainland Portugal. The study of the Portuguese seismicity is conditioned by the poor azimuthal coverage, due to the geographic location of Portugal, and by the large sedimentary basin west of the straight of Gibraltar (Cadiz Basin). In this work we focus on the study of regional seismicity in Portugal (mostly offshore earthquakes) using a recently developed package - the KIWI (Kinematic Waveform Inversion) tools. This new technique performs point and finite source inversions at regional distances. The KIWI routine is a multi-step approach composed of 3 steps, finding different source parameters at different steps. At first, we assume a point source approximation. We initially retrieve the focal mechanism of the earthquake (strike, dip, and rake), the seismic scalar moment M0 and the depth. This inversion step is performed in the spectral domain, by fitting amplitude spectra. In the second step, compressive and dilatation quadrants are retrieved, which is carried out in the time domain. Refined latitude and longitude for the centroid, as well as an earthquake origin time, are also given at this time. The final step of the inversion consists of a simplified finite-fault inversion. We assume the eikonal source model, and determine parameters such as the fault plane orientation (discrimination between fault and auxiliary plane), radius (rupture extension), nucleation point coordinates (indicative of directivity effects) and average rupture velocity of the earthquake. This inversion is performed in the frequency domain by fitting amplitude spectra in a wider frequency band (including higher frequencies). This multi-step approach has the advantage of using different inversion methods, seismic phases and range of frequencies to infer specific parameters. In this work we study 17 regional earthquakes occurred in Southwest Iberia between 2007
Coulomb excitation of radioactive nuclear beams in inverse kinematics
Zamfir, N.V. |||; Barton, C.J.; Brenner, D.S.; Casten, R.F. |; Gill, R.L.; Zilges, A. |
1996-12-31
Techniques for the measurement of B (E2:0{sub 1}{sup +} {r_arrow} 2{sub 1}{sup +}) values by Coulomb excitation of Radioactive Nuclear Beams in inverse kinematics are described. Using a thin, low Z target, the Coulomb excited beam nuclei will decay in flight downstream of the target. For long lifetimes (nanosecond range) these nuclei decay centimeters downstream of the target and for shorter lifetimes (picoseconds or less) they decay near the target. Corresponding to these two lifetime regimes two methods have been developed to measure {gamma} rays from the Coulomb excited nuclei: the lifetime method in which the lifetime of the excited state is deduced from the decay curve and the integral method in which the B(E2) value is extracted from the measured total Coulomb excitation cross section.
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.
Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G
2017-03-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.
Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1990-01-01
The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.
Inelastic Proton Scattering on 21Na in Inverse Kinematics
NASA Astrophysics Data System (ADS)
Austin, Roby
2009-10-01
R.A.E. Austin, R. Kanungo, S. Reeve, Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, A.G. Tuff, O. Roberts, University of York, UK; P.J. Woods, T. Davinson, G. J. Lotay, University of Edinburgh; C.-Y. Wu, Lawrence Livermore National Laboratory; H. Al Falou, G.C. Ball, M. Djongolov, A. Garnsworthy, G. Hackman, J.N. Orce, C.J. Pearson, S. Triambak, S.J. Williams, TRIUMF; C. Andreiou, D.S. Cross, N. Galinski, R. Kshetri, Simon Fraser University; C. Sumithrarachchi, M.A. Schumaker, University of Guelph; M.P. Jones, S.V. Rigby, University of Liverpool; D. Cline, A. Hayes, University of Rochester; T.E. Drake, University of Toronto; We describe an experiment and associated technique [1] to measure resonances of interest in astrophysical reactions. At the TRIUMF ISAC-II radioactive beam accelerator facility in Canada, particles inelastically scattered in inverse kinematics are detected with Bambino, a δE-E silicon telescope spanning 15-40 degrees in the lab. We use the TIGRESS to detect gamma rays in coincidence with the charged particles to cleanly select inelastic scattering events. We measured resonances above the alpha threshold in ^22Mg of relevance to the rate of break-out from the hot-CNO cycle via the reaction ^ 18Ne(α,p)^21Na. [1] PJ Woods et al. Rex-ISOLDE proposal 424 Cern (2003).
Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects
Fitzgerald, Sue-Anne; Brooks, Anna; van der Zwan, Rick; Blair, Duncan
2014-01-01
Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed. PMID:25469217
An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis
2013-03-01
AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks
Pain, S. D.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Johnson, Micah; Jones, K. L.; Kapler, R.; Kozub, R. L.; Livesay, Jake; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Wilson, Gemma L
2009-01-01
The development of high quality radioactive beams has made possible the measurement of transfer reactions in inverse kinematics on unstable nuclei. Measurement of (d,p) reactions on neutron-rich nuclei yield data on the evolution of nuclear structure away from stability, and are of astrophysical interest. Experimentally, (d,p) reactions on heavy (Z=50) fission fragments are complicated by the strongly inverse kinematics, and relatively low beam intensities. Consequently, ejectile detection with high resolution in position and energy, a high dynamic range and a high solid angular coverage is required. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new silicon detector array optimized for the measurement of (d,p) reactions in inverse kinematics.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
The collective coordinates Jacobian
NASA Astrophysics Data System (ADS)
Schwartz, Moshe; Vinograd, Guy
2002-05-01
We develop an expansion for the Jacobian of the transformation from particle coordinates to collective coordinates. As a demonstration, we use the lowest order of the expansion in conjunction with a variational principle to obtain the Percus Yevick equation for a monodisperse hard sphere system and the Lebowitz equations for a polydisperse hard sphere system.
NASA Astrophysics Data System (ADS)
Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo
2014-05-01
Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.
Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2004-01-01
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
Duindam, Vincent; Xu, Jijie; Alterovitz, Ron; Sastry, Shankar; Goldberg, Ken
2010-01-01
Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle. We present a constant-time motion planning algorithm for steerable needles based on explicit geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and path competitivity are analyzed using analytic comparisons with shortest path solutions for the Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local path adaptation using null-space results from redundant manipulator theory. Finally, we discuss several ways to use and extend the inverse kinematics solution to generate needle paths that avoid obstacles. PMID:21359051
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.
Cortical Network Modeling for Inverse Kinematic Computation of an Anthropomorphic Finger
Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Contreras-Vidal, José L.
2014-01-01
The performance of reaching movements to visual targets requires complex kinematic mechanisms such as redundant, multijointed, anthropomorphic actuators and thus is a difficult problem since the relationship between sensory and motor coordinates is highly nonlinear. In this article, we present a neural model able to learn the inverse kinematics of a simulated anthropomorphic robot finger (ShadowHand™ finger) having four degrees of freedom while performing 3D reaching movements. The results revealed that this neural model was able to control accurately and robustly the finger when performing single 3D reaching movements as well as more complex patterns of motion while generating kinematics comparable to those observed in human. The long term goal of this research is to design a bio-mimetic controller providing adaptive, robust and flexible control of dexterous robotic/prosthetics hands. PMID:22256258
Cortical network modeling for inverse kinematic computation of an anthropomorphic finger.
Gentili, Rodolphe J; Oh, Hyuk; Molina, Javier; Contreras-Vidal, José L
2011-01-01
The performance of reaching movements to visual targets requires complex kinematic mechanisms such as redundant, multijointed, anthropomorphic actuators and thus is a difficult problem since the relationship between sensory and motor coordinates is highly nonlinear. In this article, we present a neural model able to learn the inverse kinematics of a simulated anthropomorphic robot finger (ShadowHand™ finger) having four degrees of freedom while performing 3D reaching movements. The results revealed that this neural model was able to control accurately and robustly the finger when performing single 3D reaching movements as well as more complex patterns of motion while generating kinematics comparable to those observed in human. The long term goal of this research is to design a bio-mimetic controller providing adaptive, robust and flexible control of dexterous robotic/prosthetics hands.
Neutron Capture Surrogate Reaction on 75As in Inverse Kinematics Using (d,p(gamma))
Peters, W A; Cizewski, J A; Hatarik, R; O?Malley, P D; Jones, K L; Schmitt, K; Moazen, B H; Chae, K Y; Pittman, S T; Kozub, R L; Vieira, D; Jandel, M; Wilhelmy, J B; Matei, C; Escher, J; Bardayan, D W; Pain, S D; Smith, M S
2009-11-09
The {sup 75}As(d,p{gamma}) reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV {gamma}-ray from {sup 76}As in coincidence with ejected protons, from exciting {sup 76}As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover {gamma}-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the {sup 75}As experiment, and the efficacy and future plans of the (d,p{gamma}) surrogate campaign in inverse kinematics, are discussed.
Simkins, Matt
2016-05-01
A long-standing problem in muscle control is the "curse of dimensionality". In part, this problem relates to the fact that coordinated movement is only achieved through the simultaneous contraction and extension of multitude muscles to specific lengths. Couched in robotics terms, the problem includes the determination of forward and inverse kinematics. Of the many neurophysiological discoveries in cortex is the existence of position gradients. Geometrically, position gradients are described by planes in Euclidean space whereby neuronal activity increases as the hand approaches locations that lie in a plane. This work demonstrates that position gradients, when coupled with known physiology in the spinal cord, allows for a way to approximate proprioception (forward kinematics) and to specify muscle lengths for goal-directed postures (inverse kinematics). Moreover, position gradients provide a means to learn and adjust kinematics as animals learn to move and grow. This hypothesis is demonstrated using computer simulation of a human arm. Finally, experimental predictions are described that might confirm or falsify the hypothesis.
The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics
NASA Astrophysics Data System (ADS)
Grente, L.; Taïeb, J.; Chatillon, A.; Martin, J.-F.; Pellereau, É.; Boutoux, G.; Gorbinet, T.; Bélier, G.; Laurent, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamaño, M.; Audouin, L.; Casarejos, E.; Cortina-Gil, D.; Farget, F.; Fernández-Domínguez, B.; Heinz, A.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Lindberg, S.; Löher, B.; Nociforo, C.; Paradela, C.; Pietri, S.; Ramos, D.; Rodriguez-Sanchez, J.-L.; Rodríguez-Tajes, C.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Törnqvist, H.; Vargas, J.; Voss, B.; Weick, H.; Yan, Y.
2016-06-01
The SOFIA (Studies On FIssion with Aladin) experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.
A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)
Dülger, L. Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129
Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.
NASA Astrophysics Data System (ADS)
Yasuda, J.; Sasano, M.; Zegers, R. G. T.; Baba, H.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; Jhang, G.; Kameda, D.; Kubo, T.; Kurata-Nishimura, M.; Milman, E.; Motobayashi, T.; Otsu, H.; Panin, V.; Powell, W.; Sakai, H.; Sako, M.; Sato, H.; Shimizu, Y.; Stuhl, L.; Suzuki, H.; Tangwancharoen, S.; Takeda, H.; Uesaka, T.; Yoneda, K.; Zenihiro, J.; Kobayashi, T.; Sumikama, T.; Tako, T.; Nakamura, T.; Kondo, Y.; Togano, Y.; Shikata, M.; Tsubota, J.; Yako, K.; Shimoura, S.; Ota, S.; Kawase, S.; Kubota, Y.; Takaki, M.; Michimasa, S.; Kisamori, K.; Lee, C. S.; Tokieda, H.; Kobayashi, M.; Koyama, S.; Kobayashi, N.; Wakasa, T.; Sakaguchi, S.; Krasznahorkay, A.; Murakami, T.; Nakatsuka, N.; Kaneko, M.; Matsuda, Y.; Mucher, D.; Reichert, S.; Bazin, D.; Lee, J. W.
2016-06-01
We have combined the low-energy neutron detector WINDS (Wide-angle Inverse-kinematics Neutron Detectors for SHARAQ) and the SAMURAI spectrometer at RIKEN Nishina Center RI Beam Factory (RIBF) in order to perform (p, n) reactions in inverse kinematics for unstable nuclei in the mass region around A ∼ 100 . In this setup, WINDS is used for detecting recoil neutrons and the SAMURAI spectrometer is used for tagging decay channel of heavy residue. The first experiment by using the setup was performed to study Gamow-Teller transitions from 132Sn in April 2014. The atomic number Z and mass-to-charge ratio A / Q of the beam residues were determined from the measurements of time of flight, magnetic rigidity and energy loss. The obtained A / Q and Z resolutions were σA/Q = 0.14 % and σZ = 0.22 , respectively. Furthermore, owing to the large momentum acceptance (50 %) of SAMURAI, the beam residues associated with the γ , 1n and 2n decay channel were measured in the same magnetic field setting. The kinematic loci of the measured recoil neutron energy and laboratory angle are clearly seen. It shows that the excitation energy up to about 20 MeV can be reconstructed.
NASA Technical Reports Server (NTRS)
Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.
1989-01-01
Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.
NASA Astrophysics Data System (ADS)
Castro-Artola, O.; Iglesias Mendoza, A.
2012-04-01
Aiming to obtain some information about the rupture process of intermediate to great earthquakes, many waveform inversion schemes have been proposed. Usual methods involve several subfaults on the fault plane to obtain a detailed image of the kinematic rupture process. On the other hand, it has been questioned the resolution over obtained paramters on the inversion process. In the literature contradictory results can be found for the same earthquake, using different schemes. For this reason, recently, simplified schemes of the rupture process have been proposed, while not providing details it can recover their main characteristics. In this work we propose a modification of the Cotton & Campillo (1995) inversion scheme, while unlike considering the problem as a "rupture process tomographic inversion", we invert the main characteristics assuming simplified geometries (ellipses). Based on the work quoted, the direct problem is reparameterized including one or two ellipses in which the maximum displacement is distributed. For the first ellipse, the position of the center within the fault plane, the major and minor semi-axis are inverted. For the second one we invert the position with respect to the first ellipse and the two semi-axis. To avoid the linearization of the problem, we use a simulated annealing scheme for inversion. When there is not enough evidence of the proper fault plane, we perform an inversion for the two nodal planes published to solve the ambiguity between the auxiliary plane and the fault plane that a point source inversion schemes involve. We tested our method for the well studied earthquake September 30th 1999 Oaxaca (Mw=7.5) (e.g. Hernandez et al., 2001) which is one of the intraslab earthquakes within the Northamerican Plate of moderate magnitude and well recorded. The scheme is evaluated as well with the data generated by the "Escenario 2011" framework for an hypothetical earthquake in Guerrero, Mexico. Results will give us the opportunity to
Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián
2016-01-01
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.
Cortés, Camilo; de los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián
2016-01-01
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420
An inverse kinematics algorithm for a highly redundant variable-geometry-truss manipulator
NASA Technical Reports Server (NTRS)
Naccarato, Frank; Hughes, Peter
1989-01-01
A new class of robotic arm consists of a periodic sequence of truss substructures, each of which has several variable-length members. Such variable-geometry-truss manipulator (VGTMs) are inherently highly redundant and promise a significant increase in dexterity over conventional anthropomorphic manipulators. This dexterity may be exploited for both obstacle avoidance and controlled deployment in complex workspaces. The inverse kinematics problem for such unorthodox manipulators, however, becomes complex because of the large number of degrees of freedom, and conventional solutions to the inverse kinematics problem become inefficient because of the high degree of redundancy. A solution is presented to this problem based on a spline-like reference curve for the manipulator's shape. Such an approach has a number of advantages: (1) direct, intuitive manipulation of shape; (2) reduced calculation time; and (3) direct control over the effective degree of redundancy of the manipulator. Furthermore, although the algorithm was developed primarily for variable-geometry-truss manipulators, it is general enough for application to a number of manipulator designs.
Developing the (d,p γ) reaction as a surrogate for (n, γ) in inverse kinematics
NASA Astrophysics Data System (ADS)
Lepailleur, Alexandre; Baugher, Travis; Cizewski, Jolie; Ratkiewicz, Andrew; Walter, David; Pain, Steven; Smith, Karl; Garland, Heather; Goddess Collaboration
2016-09-01
The r-process that proceeds via (n, γ) reactions on neutron-rich nuclei is responsible for the synthesis of about half of the elements heavier than iron. Because (n, γ) measurements on short-lived isotopes are not possible, the (d,p γ) reaction is being investigated as a surrogate for (n, γ). Of particular importance is validating a surrogate in inverse kinematics. Therefore, the 95Mo(d,p γ) reaction was measured in inverse kinematics with stable beams from ATLAS and CD2 targets. Reaction protons were measured in coincidence with gamma rays with GODDESS - Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies. The Oak Ridge Rutgers University Barrel Array (ORRUBA) of position-sensitive silicon strip detectors was augmented with annular arrays of segmented strip detectors at backward and forward angles, resulting in a high-angular coverage for light ejectiles. Preliminary results from the 95Mo(d,p γ) study will be presented. This work was supported in part by the U.S. Department of Energy and National Science Foundation.
Integrated Analytic and Linearized Inverse Kinematics for Precise Full Body Interactions
NASA Astrophysics Data System (ADS)
Boulic, Ronan; Raunhardt, Daniel
Despite the large success of games grounded on movement-based interactions the current state of full body motion capture technologies still prevents the exploitation of precise interactions with complex environments. This paper focuses on ensuring a precise spatial correspondence between the user and the avatar. We build upon our past effort in human postural control with a Prioritized Inverse Kinematics framework. One of its key advantage is to ease the dynamic combination of postural and collision avoidance constraints. However its reliance on a linearized approximation of the problem makes it vulnerable to the well-known full extension singularity of the limbs. In such context the tracking performance is reduced and/or less believable intermediate postural solutions are produced. We address this issue by introducing a new type of analytic constraint that smoothly integrates within the prioritized Inverse Kinematics framework. The paper first recalls the background of full body 3D interactions and the advantages and drawbacks of the linearized IK solution. Then the Flexion-EXTension constraint (FLEXT in short) is introduced for the partial position control of limb-like articulated structures. Comparative results illustrate the interest of this new type of integrated analytical and linearized IK control.
Kinematically redundant robot manipulators
NASA Technical Reports Server (NTRS)
Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.
1987-01-01
Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.
NASA Astrophysics Data System (ADS)
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
NASA Astrophysics Data System (ADS)
Xu, Wenfu; She, Yu; Xu, Yangsheng
2014-12-01
Redundant space manipulators, including Space Station Remote Manipulator System (SSRMS), Special Purpose Dexterous Manipulator (SPDM) and European Robotic Arm (ERA), have been playing important roles in the construction and maintenance of International Space Station (ISS). They all have 7 revolute joints arranged in similar configurations, and are referred to as SSRMS-type manipulators. When a joint is locked in an arbitrary position due to some failures, a 7R manipulator degrades to a 6R manipulator. Without a spherical wrist or three consecutive parallel joints, the inverse kinematics of the 6R manipulator is very complex. In this paper, we propose effective methods to resolve the inverse kinematics for different cases of any joint locked in an arbitrary position. Firstly, configuration characteristics of the SSRMS-type redundant manipulators are analyzed. Then, an existing of closed-form inverse kinematics is discussed for locking different joints. Secondly, D-H frames and corresponding D-H parameters of the new 6-DOF manipulator formed by locking a joint in an arbitrary position are re-constructed. A unified table is then created to describe the kinematics for all possible cases of single joint locking failure. Thirdly, completely analytical and semi-analytical methods are presented to solve the inverse kinematics equations, and the former is used for locking joint 1, 2, 6 or 7 while the latter for locking joint 3, 4 or 5. Finally, typical cases for single joint locking are studied. The results verify the proposed methods.
Automated procedure for point and kinematic source inversion at regional distances
NASA Astrophysics Data System (ADS)
Cesca, Simone; Heimann, Sebastian; Stammler, Klaus; Dahm, Torsten
2010-06-01
The development of fast, automatic routines for the retrieval of point source parameters of medium to large earthquakes was convincingly established in the last years and decades, providing an increasing number of focal mechanism solutions. Original applications at teleseismic distances have been successively accompanied by specific routines for regional data sets. The majority of these methods are based on the fit of low-passed time traces. We present here a new technique for the automatic retrieval of point source parameters and highly parameterized kinematic rupture models at regional distances, assuming the recently proposed eikonal model to describe the extended source. In our approach we use a larger set of information to better constrain the source parameters, including the fit of amplitude spectra and displacements at different phases and frequency ranges. The time consumption of the inversion process is significantly improved, thanks to the implementation of Green's functions databases. We adopt a multistep inversion approach, finally providing the focal mechanism, magnitude, and centroid location of the point source. For events with magnitude higher than a threshold of Mw 5.5, source geometry, rupture extension, and average slip may be additionally retrieved. We discuss the methodology and the inversion stability, showing applications to significant earthquakes in two case areas. We focus on Germany and Greece, and their neighboring areas, considering major shallow earthquakes in the last 5 years. The proposed method is currently implemented for automatic data processing at the Seismological Observatory of the Federal Institute for Geosciences and Natural Resources in Germany.
Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics
Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas
2009-01-28
We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.
NASA Astrophysics Data System (ADS)
Chelnokov, Yu. N.
2013-01-01
The problem of reducing the body-attached coordinate system to the reference (programmed) coordinate system moving relative to the fixed coordinate system with a given instantaneous velocity screw along a given trajectory is considered in the kinematic statement. The biquaternion kinematic equations of motion of a rigid body in normalized and unnormalized finite displacement biquaternions are used as the mathematical model of motion, and the dual orthogonal projections of the instantaneous velocity screw of the body motion onto the body coordinate axes are used as the control. Various types of correction (stabilization), which are biquaternion analogs of position and integral corrections, are proposed. It is shown that the linear (obtained without linearization) and stationary biquaternion error equations that are invariant under any chosen programmed motion of the reference coordinate system can be obtained for the proposed types of correction and the use of unnormalized finite displacement biquaternions and four-dimensional dual controls allows one to construct globally regular control laws. The general solution of the error equation is constructed, and conditions for asymptotic stability of the programmed motion are obtained. The constructed theory of kinematic control of motion is used to solve inverse problems of robot-manipulator kinematics. The control problem under study is a generalization of the kinematic problem [1, 2] of reducing the body-attached coordinate system to the reference coordinate system rotating at a given (programmed) absolute angular velocity, and the presentedmethod for solving inverse problems of robotmanipulator kinematics is a development of the method proposed in [3-5].
Gravity modeling: the Jacobian function and its approximation
NASA Astrophysics Data System (ADS)
Strykowski, G.; Lauritsen, N. L. B.
2012-04-01
In mathematics, the elements of a Jacobian matrix are the first-order partial derivatives of a scalar function or a vector function with respect to another vector. In inversion theory of geophysics the elements of a Jacobian matrix are a measure of the change of the output signal caused by a local perturbation of a parameter of a given (Earth) model. The elements of a Jacobian matrix can be determined from the general Jacobian function. In gravity modeling this function consists of the "geometrical part" (related to the relative location in 3D of a field point with respect to the source element) and the "source-strength part" (related to the change of mass density of the source element). The explicit (functional) expressions for the Jacobian function can be quite complicated and depend both on the coordinates used (Cartesian, spherical, ellipsoidal) and on the mathematical parametrization of the source (e.g. the homogenous rectangular prism). In practice, and irrespective of the exact expression for the Jacobian function, its value on a computer will always be rounded to a finite number of digits. In fact, in using the exact formulas such finite representation may cause numerical instabilities. If the Jacobian function is smooth enough, it is an advantage to approximate it by a simpler function, e.g. a piecewise-polynomial, which numerically is more robust than the exact formulas and which is more suitable for the subsequent integration. In our contribution we include a whole family of the Jacobian functions which are associated with all the partial derivatives of the gravitational potential of order 0 to 2, i.e. including all the elements of the gravity gradient tensor. The quality of the support points for the subsequent polynomial approximation of the Jacobian function is ensured by using the exact prism formulas in quadruple precision. We will show some first results. Also, we will discuss how such approximated Jacobian functions can be used for large scale
NASA Technical Reports Server (NTRS)
Fielding, Eric; Sladen, Anthony; Avouac, Jean-Philippe; Li, Zhenhong; Ryder, Isabelle; Burgmann, Roland
2008-01-01
The presentations explores kinematics of the Wenchaun-Beichuan earthquake using data from ALOS, Envisat, and teleseismic recordings. Topics include geomorphic mapping, ALOS PALSAR range offsets, ALOS PALSAR interferometry, Envisat IM interferometry, Envisat ScanSAR, Joint GPS-InSAR inversion, and joint GPS-teleseismic inversion (static and kinematic).
Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1987-01-01
This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.
NASA Astrophysics Data System (ADS)
Cirella, A.; Piatanesi, A.; Spudich, P.; Cocco, M.; Tinti, E.
2007-12-01
We use a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. The unknown model parameters, spatially variable peak slip velocity, slip direction, rupture time and rise time, are given at the vertices of subfaults, whereas the parameters within a subfault can vary through a bilinear interpolation of the vertex values. The forward modeling is performed with a discrete wavenumber technique, whose Green's functions include the complete response of the vertically varying non-attenuating Earth structure. The GPS coseismic data are compared with the synthetic displacements using a L2 norm, while the recorded and modeled waveforms are compared in the frequency domain, using a cost function that is a hybrid representation between L1 and L2 norms. During the first stage (search), an algorithm based on heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of the parameter space. During this stage multiple Earth structures can be used to allow for uncertainty in the true structure. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation by weighting all models by the inverse of the cost function values. We do not use any smoothing operator. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some applications to recent earthquakes such as the 2000 western Tottori (Mw 6.7) and the 2007 Niigata (Mw 6.6) (Japan) earthquakes in order to test and show the effectiveness of the method. Our methodology allows the use of different slip velocity time functions and we emphasize the relevance of adopting source time functions in kinematic inversions
Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer
NASA Astrophysics Data System (ADS)
Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian
2015-10-01
Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.
NASA Astrophysics Data System (ADS)
Cesca, S.; Heimann, S.; Dahm, T.; Krüger, F.
2009-04-01
A main problem for stable and automated routines for the inversion of kinematic earthquake sources arise from the overparameterization of the rupture model, as occurs for example using slip map representations. Using such an approach, it is possible to well reproduce observations, but the inversion is often unstable and solutions ambiguous, as several different source models may equally well fit the observations. To overcome this problem and implement an automated kinematic inversion, we adopt the eikonal source model to represent the extended earthquake source. This model offers a flexible and realistic description of the rupture process, which is fully described by only 13 parameters. We use a multi-step inversion strategy, which has already been successfully applied at local and regional distances, in order to retrieve both point and extended source parameters. Significant source information, including focal mechanism, source depth, magnitude, centroid location, resolution of the fault plane ambiguity, rupture size, average slip and directivity effects can be provided. We include specific applications to a set of moderate to large earthquakes occurred in Japan, using broadband seismic data at regional and teleseismic distances. Quality and stability of inversion results are first discussed, by using full waveform information. Point source parameters are always well determined, while kinematic parameters such as the rupture extension, the average slip and the unilateral or bilateral character of the rupture can be resolved in many cases. The possibility of providing fast solutions, which are needed within early-warning systems, is further discussed.
Unseren, M.A.
1993-04-01
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.
Kinematics of back-arc inversion of the Western Black Sea Basin
NASA Astrophysics Data System (ADS)
Munteanu, I.; Matenco, L.; Dinu, C.; Cloetingh, S.
2011-10-01
Back-arc basin evolution is driven by processes active at the main subduction zone typically assuming the transition from an extensional back-arc, during the retreat of a mature slab, to a contractional basin, during high-strain collisional processes. Such a transition is observed in the Black Sea, where the accurate quantification of shortening effects is hampered by the kinematically unclear geometries of Cenozoic inversion. By means of seismic profiles interpretation, quantified deformation features and associated syn-tectonic geometries on the Romanian offshore, this study demonstrates that uplifted areas, observed by exploration studies, form a coherent thick-skinned thrust system with N-ward vergence. Thrusting inverted an existing geometry made up by successive grabens that were inherited from the Cretaceous extensional evolution. The shortening started during late Eocene times and gradually affected all areas of the Western Black Sea Basin during Oligocene and Miocene times, deformation being coherently correlated across its western margin. The mechanism of this generalized inversion is the transmission of stresses during the collision recorded in the Pontides-Balkanides system. Syn-tectonic sedimentation in the Western Black Sea demonstrates that this process was continuous and took place through the onset of gradual shortening migrating northward. Although the total amount of shortening is roughly constant in an E-W direction, individual thrusts have variable offsets, deformation being transferred between structures located at distance across the strike of the system. The Black Sea example demonstrates that the vergence and offset of thrusts can change rapidly along the strike of such a compressional back-arc system. This generates apparently contrasting geometries that accommodate the same orogenic shortening.
Direct measurement of 38K(p , γ) 39Ca in inverse kinematics
NASA Astrophysics Data System (ADS)
Lotay, Gavin; Christian, Gregory; Burke, Devin; Chen, Alan; Connolly, Devin; Davids, Barry; Fallis, Jenniffer; Hager, Ulrike; Hutcheon, Dave; Mahl, Adam; Rojas, Alex; Ruiz, Chris; Sun, Xuan
2014-09-01
Sensitivity studies have identified 38K(p , γ) 39Ca as one of a handful of significant reactions in ONe novae, with the potential to change 38Ar, 39K, and 40Ca abundances in ONe ejecta by factors of ~18, ~17 and ~24, respectively. We have performed the first ever measurement of this reaction using the DRAGON recoil mass separator at TRIUMF. The experiment was performed in inverse kinematics using a beam of radioactive 38K. To date, this is the most massive projectile ever used in a radiative capture experiment. The astrophysical reaction rate is expected to be dominated by low- l resonances inside the Gamow window. Hence we have focused our efforts on the resonances at Ec.m. = 386, 515, and 689 keV. In this talk, I will present an overview of the experiment and data analysis and show preliminary resonance strengths (or upper limits) measured at each of the three energies. Finally, I will discuss the astrophysical implications of the measurements as they relate to ONe novae.
NASA Astrophysics Data System (ADS)
Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.
2015-05-01
In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the 6He, 8He, 11Li, and 14Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the 8Li, 9Li, and 12Be nuclei.
Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V. Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.
2015-05-15
In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.
NASA Technical Reports Server (NTRS)
Williams, Robert L., III
1992-01-01
This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.
NASA Astrophysics Data System (ADS)
Bagchi, S.; Gibelin, J.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Achouri, N. L.; Akimune, H.; Bastin, B.; Boretzky, K.; Bouzomita, H.; Caamaño, M.; Càceres, L.; Damoy, S.; Delaunay, F.; Fernández-Domínguez, B.; Fujiwara, M.; Garg, U.; Grinyer, G. F.; Kamalou, O.; Khan, E.; Krasznahorkay, A.; Lhoutellier, G.; Libin, J. F.; Lukyanov, S.; Mazurek, K.; Najafi, M. A.; Pancin, J.; Penionzhkevich, Y.; Perrot, L.; Raabe, R.; Rigollet, C.; Roger, T.; Sambi, S.; Savajols, H.; Senoville, M.; Stodel, C.; Suen, L.; Thomas, J. C.; Vandebrouck, M.; Van de Walle, J.
2015-12-01
The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) compression modes have been studied in the doubly-magic unstable nucleus 56Ni. They were measured by inelastic α-particle scattering in inverse kinematics at 50 MeV/u with the MAYA active target at the GANIL facility. The centroid of the ISGMR has been obtained at Ex = 19.1 ± 0.5 MeV. Evidence for the low-lying part of the ISGDR has been found at Ex = 17.4 ± 0.7 MeV. The strength distribution for the dipole mode shows similarity with the prediction from the Hartree-Fock (HF) based random-phase approximation (RPA) [1]. These measurements confirm inelastic α-particle scattering as a suitable probe for exciting the ISGMR and the ISGDR modes in radioactive isotopes in inverse kinematics.
Jacobian transformed and detailed balance approximations for photon induced scattering
NASA Astrophysics Data System (ADS)
Wienke, B. R.; Budge, K. G.; Chang, J. H.; Dahl, J. A.; Hungerford, A. L.
2012-01-01
Photon emission and scattering are enhanced by the number of photons in the final state, and the photon transport equation reflects this in scattering-emission kernels and source terms. This is often a complication in both theoretical and numerical analyzes, requiring approximations and assumptions about background and material temperatures, incident and exiting photon energies, local thermodynamic equilibrium, plus other related aspects of photon scattering and emission. We review earlier schemes parameterizing photon scattering-emission processes, and suggest two alternative schemes. One links the product of photon and electron distributions in the final state to the product in the initial state by Jacobian transformation of kinematical variables (energy and angle), and the other links integrands of scattering kernels in a detailed balance requirement for overall (integrated) induced effects. Compton and inverse Compton differential scattering cross sections are detailed in appropriate limits, numerical integrations are performed over the induced scattering kernel, and for tabulation induced scattering terms are incorporated into effective cross sections for comparisons and numerical estimates. Relativistic electron distributions are assumed for calculations. Both Wien and Planckian distributions are contrasted for impact on induced scattering as LTE limit points. We find that both transformed and balanced approximations suggest larger induced scattering effects at high photon energies and low electron temperatures, and smaller effects in the opposite limits, compared to previous analyzes, with 10-20% increases in effective cross sections. We also note that both approximations can be simply implemented within existing transport modules or opacity processors as an additional term in the effective scattering cross section. Applications and comparisons include effective cross sections, kernel approximations, and impacts on radiative transport solutions in 1D
Estimating periodic organ motions based on inverse kinematics using tetrahedron mesh registration
NASA Astrophysics Data System (ADS)
Kang, Nahyup; Kim, Ji-Yeon; Kim, Kyung Hwan; Lee, Hyong-Euk; Kim, James D. K.
2013-03-01
Minimally/Non-invasive surgery has become increasingly widespread because of its therapeutic benefits such as less pain, less scarring, and shorter hospital stay. However, it is very difficult to eliminate the target cancer cells selectively without damaging nearby normal tissues and vessels since the tumors inside organs cannot be visually tracked in realtime with the existing imaging devices while organs are deformed by respiration and surgical instruments. Note that realtime 2D US imaging is widely used for monitoring the minimally invasive surgery such as Radiofrequency ablation; however, it is difficult to detect target tumors except high-echogenic regions because of its noisy and limited field of view. To handle these difficulties, we present a novel framework for estimating organ motion and deformed shape during respiration from the available features of 2D US images, by means of inverse kinematics utilizing 3D CT volumes at the inhale and exhale phases. First, we generate surface meshes of the target organ and tumor as well as centerlines of vessels at the two extreme phases considering surface correspondence. Then, the corresponding tetrahedron meshes are generated by coupling the internal components for volumetric modeling. Finally, a deformed organ mesh at an arbitrary phase is generated from the 2D US feature points for estimating the organ deformation and tumor position. To show effectiveness of the proposed method, the CT scans from real patient has been tested for estimating the motion and deformation of the liver. The experimental result shows that the average errors are less than 3mm in terms of tumor position as well as the whole surface shape.
Solving the differential biochemical Jacobian from metabolomics covariance data.
Nägele, Thomas; Mair, Andrea; Sun, Xiaoliang; Fragner, Lena; Teige, Markus; Weckwerth, Wolfram
2014-01-01
High-throughput molecular analysis has become an integral part in organismal systems biology. In contrast, due to a missing systematic linkage of the data with functional and predictive theoretical models of the underlying metabolic network the understanding of the resulting complex data sets is lacking far behind. Here, we present a biomathematical method addressing this problem by using metabolomics data for the inverse calculation of a biochemical Jacobian matrix, thereby linking computer-based genome-scale metabolic reconstruction and in vivo metabolic dynamics. The incongruity of metabolome coverage by typical metabolite profiling approaches and genome-scale metabolic reconstruction was solved by the design of superpathways to define a metabolic interaction matrix. A differential biochemical Jacobian was calculated using an approach which links this metabolic interaction matrix and the covariance of metabolomics data satisfying a Lyapunov equation. The predictions of the differential Jacobian from real metabolomic data were found to be correct by testing the corresponding enzymatic activities. Moreover it is demonstrated that the predictions of the biochemical Jacobian matrix allow for the design of parameter optimization strategies for ODE-based kinetic models of the system. The presented concept combines dynamic modelling strategies with large-scale steady state profiling approaches without the explicit knowledge of individual kinetic parameters. In summary, the presented strategy allows for the identification of regulatory key processes in the biochemical network directly from metabolomics data and is a fundamental achievement for the functional interpretation of metabolomics data.
Solving the Differential Biochemical Jacobian from Metabolomics Covariance Data
Nägele, Thomas; Mair, Andrea; Sun, Xiaoliang; Fragner, Lena; Teige, Markus; Weckwerth, Wolfram
2014-01-01
High-throughput molecular analysis has become an integral part in organismal systems biology. In contrast, due to a missing systematic linkage of the data with functional and predictive theoretical models of the underlying metabolic network the understanding of the resulting complex data sets is lacking far behind. Here, we present a biomathematical method addressing this problem by using metabolomics data for the inverse calculation of a biochemical Jacobian matrix, thereby linking computer-based genome-scale metabolic reconstruction and in vivo metabolic dynamics. The incongruity of metabolome coverage by typical metabolite profiling approaches and genome-scale metabolic reconstruction was solved by the design of superpathways to define a metabolic interaction matrix. A differential biochemical Jacobian was calculated using an approach which links this metabolic interaction matrix and the covariance of metabolomics data satisfying a Lyapunov equation. The predictions of the differential Jacobian from real metabolomic data were found to be correct by testing the corresponding enzymatic activities. Moreover it is demonstrated that the predictions of the biochemical Jacobian matrix allow for the design of parameter optimization strategies for ODE-based kinetic models of the system. The presented concept combines dynamic modelling strategies with large-scale steady state profiling approaches without the explicit knowledge of individual kinetic parameters. In summary, the presented strategy allows for the identification of regulatory key processes in the biochemical network directly from metabolomics data and is a fundamental achievement for the functional interpretation of metabolomics data. PMID:24695071
NASA Astrophysics Data System (ADS)
Rollins, Christopher; Barbot, Sylvain; Avouac, Jean-Philippe
2015-05-01
Due to its location on a transtensional section of the Pacific-North American plate boundary, the Salton Trough is a region featuring large strike-slip earthquakes within a regime of shallow asthenosphere, high heat flow, and complex faulting, and so postseismic deformation there may feature enhanced viscoelastic relaxation and afterslip that is particularly detectable at the surface. The 2010 El Mayor-Cucapah earthquake was the largest shock in the Salton Trough since 1892 and occurred close to the US-Mexico border, and so the postseismic deformation recorded by the continuous GPS network of southern California provides an opportunity to study the rheology of this region. Three-year postseismic transients extracted from GPS displacement time-series show four key features: (1) 1-2 cm of cumulative uplift in the Imperial Valley and 1 cm of subsidence in the Peninsular Ranges, (2) relatively large cumulative horizontal displacements 150 km from the rupture in the Peninsular Ranges, (3) rapidly decaying horizontal displacement rates in the first few months after the earthquake in the Imperial Valley, and (4) sustained horizontal velocities, following the rapid early motions, that were still visibly ongoing 3 years after the earthquake. Kinematic inversions show that the cumulative 3-year postseismic displacement field can be well fit by afterslip on and below the coseismic rupture, though these solutions require afterslip with a total moment equivalent to at least a earthquake and higher slip magnitudes than those predicted by coseismic stress changes. Forward modeling shows that stress-driven afterslip and viscoelastic relaxation in various configurations within the lithosphere can reproduce the early and later horizontal velocities in the Imperial Valley, while Newtonian viscoelastic relaxation in the asthenosphere can reproduce the uplift in the Imperial Valley and the subsidence and large westward displacements in the Peninsular Ranges. We present two forward
NASA Astrophysics Data System (ADS)
Hua-qing, LIU; Wang, LV
2017-02-01
The composite control strategy of CA-CMAC and ILC is adopted to solve the inverse kinematic problem of the redundant DOF manipulator during its real-time and high-precision tracking on the three-dimensional space target trajectory. A direct inverse model control strategy is adopted, in which CA-CMAC takes the current joint angles and the desired position increment of the manipulator as the input, and estimates the expected joint angle increments of the manipulator using the system history control experience. Then the estimated joint angles are taken as the initial value of the ILC module by which the control effect is improved iteratively. Based on the MATLAB, the tracking controls of linear and circular space target trajectories were simulated respectively. The results show that CA-CAMC and ILC composite control has better tracking precision and stability than CMAC control, while keeping the joint angles of the manipulator continuous and smooth during trajectory tracking.
NASA Astrophysics Data System (ADS)
Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.
2013-05-01
This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.
Geometry and kinematics of Late Cretaceous inversion structures in the Jiuquan Basin, western China
Wang, B.; Chen, H.; Yang, S.; Xiao, A.; Cheng, X.; Rupp, J.A.
2005-01-01
Late Cretaceous inversion structures, which are significant for oil and gas accumulation, are widely distributed throughout the Jiuquan Basin. These structures are primarily made up of inverted faults and fault-related folds. Most of the axial planes of folds are parallel to inverted faults trending north-east, indicating that the principal stress direction was north-west - south-east in the Late Cretaceous. The average inversion ratios of faults in the four sags that were investigated are 0.39, 0.29, 0.38, 0.32. The average inversion ratio in the Jiuquan Basin is 0.34 and the degree of inversion is moderate to strong. As moderate inversion is suitable for forming excellent hydrocarbon traps, there is considered to be significant potential in the basin for the presence of structural traps. ?? 2005 Elsevier Ltd. All rights reserved.
The Jacobian factor in free energy simulations
NASA Astrophysics Data System (ADS)
Boresch, Stefan; Karplus, Martin
1996-09-01
The role of Jacobian factors in free energy simulations is described. They provide a simple interpretation of ``moment of inertia correction'' and ``dynamic stretch free energy'' terms in such simulations. Since the relevant Jacobian factors can often be evaluated analytically by use of the configurational partition function of a polyatomic molecule, it is possible to subtract them from the simulation results when they make unphysical contributions. An important case arises in alchemical simulations that use a single topology method and introduce dummy particles to have the same number of atoms in the initial and final state. The more general utility of the Jacobian factors for simulations of complex systems is briefly discussed.
A new approach to solve inverse kinematics of a planar flexible continuum robot
NASA Astrophysics Data System (ADS)
Amouri, Ammar; Mahfoudi, Chawki; Zaatri, Abdelouahab; Merabti, Halim
2014-10-01
Research on the modeling of continuum robots, focused on ways to constrain the geometrical models, while maintaining maximum specificities and mechanical properties of the robot. In this paper we propose a new numerical solution for solving the inverse geometric model of a planar flexible continuum robot, we assuming that each section is curved in an arc of a circle, while having the central axis of the inextensible structure. The inverse geometric model for one section is calculated geometrically, whereas the extreme points, of each section, used in calculating the inverse geometric model for multi-section is calculated numerically using a particle swarm optimization (PSO) method. Simulation examples of this method are carried to validate the proposed approach.
Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data
NASA Astrophysics Data System (ADS)
Melgar, D.; Bock, Y.
2015-05-01
Rapid near-source earthquake source modeling relying only on strong motion data is limited by instrumental offsets and magnitude saturation, adversely affecting subsequent tsunami prediction. Seismogeodetic displacement and velocity waveforms estimated from an optimal combination of high-rate GPS and strong motion data overcome these limitations. Supplementing land-based data with offshore wave measurements by seafloor pressure sensors and GPS-equipped buoys can further improve the image of the earthquake source and prediction of tsunami extent, inundation, and runup. We present a kinematic source model obtained from a retrospective real-time analysis of a heterogeneous data set for the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake. Our model is consistent with conceptual models of subduction zones, exhibiting depth dependent behavior that is quantified through frequency domain analysis of slip rate functions. The stress drop distribution is found to be significantly more correlated with aftershock locations and mechanism types when off-shore data are included. The kinematic model parameters are then used as initial conditions in a fully nonlinear tsunami propagation analysis. Notably, we include the horizontal advection of steeply sloping bathymetric features. Comparison with post-event on-land survey measurements demonstrates that the tsunami's inundation and runup are predicted with considerable accuracy, only limited in scale by the resolution of available topography and bathymetry. We conclude that it is possible to produce credible and rapid, kinematic source models and tsunami predictions within minutes of earthquake onset time for near-source coastal regions most susceptible to loss of life and damage to critical infrastructure, regardless of earthquake magnitude.
Astrophysical rate of 15O(α,γ)19Ne via the (p,t) reaction in inverse kinematics
NASA Astrophysics Data System (ADS)
Davids, B.; van den Berg, A. M.; Dendooven, P.; Fleurot, F.; Hunyadi, M.; de Huu, M. A.; Siemssen, R. H.; Wilschut, H. W.; Wörtche, H. J.; Hernanz, M.; José, J.; Rehm, K. E.; Wuosmaa, A. H.; Segel, R. E.
2003-06-01
A recoil coincidence technique has been applied to measure the α-decay branching ratios of near-threshold states in 19Ne. Populating these states using the (p,t) reaction in inverse kinematics, we detected the recoils and their decay products with 100% geometric efficiency using a magnetic spectrometer. Combining our branching ratio measurements with independent determinations of the radiative widths of these states, we calculate the astrophysical rate of 15O(α,γ)19Ne. Using this reaction rate, we perform hydrodynamic calculations of nova outbursts and conclude that no significant breakout from the hot CNO cycles into the rp process occurs in novae via 15O(α,γ)19Ne.
NASA Astrophysics Data System (ADS)
Barbui, M.; Hagel, K.; Goldberg, V. Z.; Natowitz, J. B.; Zheng, H.; Giuliani, G.; Rapisarda, G. G.; Wuenschel, S.; Liu, X.
2014-03-01
We explored alpha clustering in 24Mg using the reaction 20Ne+α and the Thick Target Inverse Kinematics (TTIK) technique. 20Ne beams of energy 3.7 AMeV and 11 AMeV were delivered by the K150 cyclotron at Texas A&M University. The reaction chamber was filled with 4He gas at a pressure sufficient to stop the beam before the detectors. The energy of the light reaction products was measured by three silicon detector telescopes. The time relative to the cyclotron radiofrequency was also measured. For the first time the TTIK method was used to study both single and multiple α-particle decays. New results were obtained on elastic resonant α scattering, as well as on inelastic processes leading to high excitation energy systems decaying by multiple α-particle emission. Preliminary results will be shown on events with α-multiplicity one and two.
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1992-01-01
The forward position and velocity kinematics for the redundant eight-degree-of-freedom Advanced Research Manipulator 2 (ARM2) are presented. Inverse position and velocity kinematic solutions are also presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot be specified because they are known from the end-effector position and velocity. Second, one unknown must be specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded. There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate agreement between forward and inverse solutions.
Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1992-01-01
This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.
Spectroscopy of {sup 16}O Using {alpha}+{sup 12}C Resonant Scattering in Inverse Kinematics
Ashwood, N. I.; Freer, M.; Bloxham, T. R.; Curtis, N.; Haigh, P. J.; Price, D. L.; Achouri, N. L.; Catford, W. N.; Harlin, C. W.; Patterson, N. P.; Thomas, J. S.; Soic, N.
2009-08-26
A measurement of the {alpha}({sup 12}C,{alpha}){sup 12}C reaction has been performed using resonant scattering with a gas target. Beam energies of 46, 51, 56 and 63 MeV were used to populate resonances in the excitation energy range of 11.6 to 22.9 MeV in {sup 16}O. The angular distributions of the elastic scattering were measured at zero degrees using an array of segmented silicon strip detectors with a minimum range of 0 deg. to 30 deg. in the centre of mass. The spins of 8 resonances between 14.1 and 18.5 MeV were obtained, confirming spin assignments made using elastic scattering in normal kinematics. An R-matrix analysis of the data was performed which indicates that the present understanding of {sup 16}O in this region is good, but not complete.
Pin, F.G.; Belmans, P.F.R.; Culioli, J.C.; Carlson, D.D.; Tulloch, F.A.
1994-12-31
A new analytical method to resolve underspecified systems of algebraic equations is presented. The method is referred to as the Full Space Parameterization (FSP) method and utilizes easily- calculated projected solution vectors to generate the entire space of solutions of the underspecified system. Analytic parameterizations for both the space of solutions and the null space of the system reduce the determination of a task-requirement-based single solution to a m {minus} n dimensional problem, where m {minus} n is the degree of underspecification, or degree of redundancy, of the system. An analytical solution is presented to directly calculate the least-norm solution from the parameterized space and the results are compared to solutions of the standard pseudo-inverse algorithm which embodies the (least-norm) Moore-Penrose generalized inverse. Application of the new solution method to a variety of systems and task requirements are discussed and sample results using four-link planar manipulators with one or two degrees of redundancy and a seven degree-of-freedom manipulator with one or four degrees of redundancy are presented to illustrate the efficiency of the new FSP method and algorithm.
Leow, Alex D; Yanovsky, Igor; Chiang, Ming-Chang; Lee, Agatha D; Klunder, Andrea D; Lu, Allen; Becker, James T; Davis, Simon W; Toga, Arthur W; Thompson, Paul M
2007-06-01
Maps of local tissue compression or expansion are often computed by comparing magnetic resonance imaging (MRI) scans using nonlinear image registration. The resulting changes are commonly analyzed using tensor-based morphometry to make inferences about anatomical differences, often based on the Jacobian map, which estimates local tissue gain or loss. Here, we provide rigorous mathematical analyses of the Jacobian maps, and use themto motivate a new numerical method to construct unbiased nonlinear image registration. First, we argue that logarithmic transformation is crucial for analyzing Jacobian values representing morphometric differences. We then examine the statistical distributions of log-Jacobian maps by defining the Kullback-Leibler (KL) distance on material density functions arising in continuum-mechanical models. With this framework, unbiased image registration can be constructed by quantifying the symmetric KL-distance between the identity map and the resulting deformation. Implementation details, addressing the proposed unbiased registration as well as the minimization of symmetric image matching functionals, are then discussed and shown to be applicable to other registration methods, such as inverse consistent registration. In the results section, we test the proposed framework, as well as present an illustrative application mapping detailed 3-D brain changes in sequential magnetic resonance imaging scans of a patient diagnosed with semantic dementia. Using permutation tests, we show that the symmetrization of image registration statistically reduces skewness in the log-Jacobian map.
NASA Astrophysics Data System (ADS)
Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.
2015-10-01
Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.
Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography
Borsic, A.; Attardo, E. A.; Halter, R. J.
2012-01-01
Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of
ERIC Educational Resources Information Center
Brown, Malcolm
2009-01-01
Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…
Flux Jacobian Matrices For Equilibrium Real Gases
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1990-01-01
Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.
NASA Astrophysics Data System (ADS)
Roma, Maria; Pla, Oriol; Butillé, Mireia; Roca, Eduard; Ferrer, Oriol
2015-04-01
took place in them during a later contractional inversion. To achieve this goal an experimental program including seven different sand-box models has been carried out. The experimental results show that fault shape controls the geometry and the kinematic evolution of the ramp synclines formed on the hangingwall during extension and subsequent inversion. Regarding this, the experiments also demonstrate that the presence of a viscous layer changed significantly the kinematic of the basin developing two clearly different structural styles above and below the polymer. The kinematic of this basin during extension change dramatically when the silicone layer was depleted with the formation of primary welds. Since this moment model's kinematic becomes similar to the models without silicone. During the inversion, models show that low shortening produced the contractional reactivation of the major fault arched and uplifted the basin. In this scenario, if salt is rather continuous, took place an incipient reactivation of the silicone layer as a contractional detachment. By contrast, high shortening produces the total inversion of the detachment faults and the pop-up of the extensional basin. Finally, models are compared with different natural analogues from Iberia validating previous published interpretations or proposing new interpretations inferring the geometry of the major fault, specially if the presence of a salt interlayer in the deformed rocks is known or suspected.
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth
2016-07-01
Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to
NASA Astrophysics Data System (ADS)
Sasano, M.; Yasuda, J.; Zegers, R. G. T.; Baba, H.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; Jhang, G.; Kamaeda, D.; Kubo, T.; Kurata-Nishimura, M.; Milman, E.; Motobayashi, T.; Otsu, H.; Panin, V.; Powell, W.; Sakai, H.; Sako, M.; Sato, H.; Shimizu, Y.; Stuhl, L.; Suzuki, H.; Tangwancharoen, S.; Takeda, H.; Uesaka, T.; Yoneda, K.; Zenihiro, J.; Kobayashi, T.; Sumikama, T.; Tako, T.; Nakamura, T.; Kondo, Y.; Togano, Y.; Shikata, M.; Tsubota, J.; Yako, K.; Shimoura, K.; Ota, S.; Kawase, S.; Kubota, Y.; Takaki, M.; Michimasa, S.; Kisamori, K.; Lee, C. S.; Tokieda, H.; Kobayashi, M.; Koyama, S.; Kobayashi, N.; Wakasa, T.; Sakaguchi, S.; Krasznahorkay, A.; Murakami, T.; Nakatsuka, N.; Kaneko, M.; Matsuda, Y.; Mucher, D.; Reichert, S.; Bazin, D.; Lee, J. W.
2016-01-01
The charge-exchange (p,n) reaction at 220 MeV has been measured to extract the strength distribution of Gamow-Teller transitions from the doubly magic unstable nucleus 132Sn. A recently developed experimental technique of measuring the (p,n) reaction in inverse kinematics has been applied to the study of unstable nuclei in the mass region around A˜100 for the first time. We have combined the low-energy neutron detector WINDS and the SAMURAI spectrometer at the RIKEN radioactive isotope beam factory (RIBF). The particle identification plot for the reaction residues obtained by the spectrometer provides the clear separation of the CE reaction channel from other background events, enabling us to identify kinematic curves corresponding the (p, n) reaction. Further analysis to reconstruct the excitation energy spectrum is ongoing.
NASA Astrophysics Data System (ADS)
Kopp, Wassja A.; Leonhard, Kai
2016-12-01
We show how inverse metric tensors and rovibrational kinetic energy operators in terms of internal bond-angle coordinates can be obtained analytically following a factorization of the Jacobian worked out by Frederick and Woywod. The structure of these Jacobians is exploited in two ways: On one hand, the elements of the metric tensor as well as its determinant all have the form ∑rmsin (αn) cos (βo) . This form can be preserved by working with the adjugate metric tensor that can be obtained without divisions. On the other hand, the adjugate can be obtained with less effort by exploiting the lower triangular structure of the Jacobians. Together with a suitable choice of the wavefunction, we avoid singularities and show how to obtain analytical expressions for the rovibrational kinetic energy matrix elements.
Wang, Lejing; Fallavollita, Pascal; Zou, Rui; Chen, Xin; Weidert, Simon; Navab, Nassir
2012-05-01
For trauma and orthopedic surgery, maneuvering a mobile C-arm fluoroscope into a desired position to acquire an X-ray is a routine surgical task. The precision and ease of use of the C-arm becomes even more important for advanced interventional imaging techniques such as parallax-free X-ray image stitching. Today's standard mobile C-arms have been modeled with only five degrees of freedom (DOF), which definitely restricts their motions in 3-D Cartesian space. In this paper, we present a method to model both the mobile C-arm and patient's table as an integrated kinematic chain having six DOF without constraining table position. The closed-form solutions for the inverse kinematics problem are derived in order to obtain the required values for all C-arm joint and table movements to position the fluoroscope at a desired pose. The modeling method and the closed-form solutions can be applied to general isocentric or nonisocentric mobile C-arms. By achieving this we develop an efficient and intuitive inverse kinematics-based method for parallax-free panoramic X-ray imaging. In addition, we implement a 6-DOF C-arm system from a low-cost mobile fluoroscope to optimally acquire X-ray images based solely on the computation of the required movement for each joint by solving the inverse kinematics on a continuous basis. Through simulation experimentation, we demonstrate that the 6-DOF C-arm model has a larger working space than the 5-DOF model. C-arm repositioning experiments show the practicality and accuracy of our 6-DOF C-arm system. We also evaluate the novel parallax-free X-ray stitching method on phantom and dry bones. Using five trials, results show that parallax-free panoramas generated by our method are of high visual quality and within clinical tolerances for accurate evaluation of long bone geometry (i.e., image and metric measurement errors are less than 1% compared to ground-truth).
Suzuki, T.; Rainovski, G.; Koike, T.; Ahn, T.; Carpenter, M. P.; Costin, A.; Danchev, M.; Dewald, A.; Janssens, R. V. F.; Joshi, P.; Lister, C. J.; Moller, A.; Pietralla, N.; Shinozuka, T.; Timar, J.; Wadsworth, R.; Vaman, C.; Zhu, S.; Physics; Tohoku Univ.; Univ. of Sofia; State Univ. of New York; Univ. of Tennessee; Univ. zu Koln; Univ. of York; TU Darmstadt; ATOMKI, Hungary; Michigan State Univ.
2008-01-01
Lifetimes of chiral candidate structures in {sup 103,104}Rh were measured using the recoil distance Doppler-shift method. The Gammasphere detector array was used in conjunction with the Cologne plunger device. Excited states of {sup 103,104}Rh were populated by the {sup 11}B({sup 96}Zr,4n){sup 103}Rh and {sup 11}B({sup 96}Zr,3n){sup 104}Rh fusion-evaporation reactions in inverse kinematics. Three and five lifetimes of levels belonging to the proposed chiral doublet bands are measured in {sup 103}Rh and {sup 104}Rh, respectively. The previously observed even-odd spin dependence of the B(M1)/B(E2) values is caused by the variation in the B(E2) values, whereas the B(M1) values decrease as a function of spin.
Suzuki, T.; Rainovski, G.; Koike, T.; Ahn, T.; Costin, A.; Carpenter, M. P.; Janssens, R. V. F.; Lister, C. J.; Zhu, S.; Danchev, M.; Dewald, A.; Joshi, P.; Wadsworth, R.; Moeller, O.; Pietralla, N.; Shinozuka, T.; Timar, J.; Vaman, C.
2008-09-15
Lifetimes of chiral candidate structures in {sup 103,104}Rh were measured using the recoil distance Doppler-shift method. The Gammasphere detector array was used in conjunction with the Cologne plunger device. Excited states of {sup 103,104}Rh were populated by the {sup 11}B({sup 96}Zr,4n){sup 103}Rh and {sup 11}B({sup 96}Zr,3n){sup 104}Rh fusion-evaporation reactions in inverse kinematics. Three and five lifetimes of levels belonging to the proposed chiral doublet bands are measured in {sup 103}Rh and {sup 104}Rh, respectively. The previously observed even-odd spin dependence of the B(M1)/B(E2) values is caused by the variation in the B(E2) values, whereas the B(M1) values decrease as a function of spin.
Hacker, C.J.; Fries, G.A.; Pin, F.G.
1997-01-01
Few optimization methods exist for path planning of kinematically redundant manipulators. Among these, a universal method is lacking that takes advantage of a manipulator`s redundancy while satisfying possibly varying constraints and task requirements. Full Space Parameterization (FSP) is a new method that generates the entire solution space of underspecified systems of algebraic equations and then calculates the unique solution satisfying specific constraints and optimization criteria. The FSP method has been previously tested on several configurations of the redundant manipulator HERMIES-III. This report deals with the extension of the FSP driver, Inverse Kinematics On Redundant systems (IKOR), to include three-dimensional manipulation systems, possibly incorporating a mobile platform, with and without orientation control. The driver was also extended by integrating two optimized versions of the FSP solution generator as well as the ability to easily port to any manipulator. IKOR was first altered to include the ability to handle orientation control and to integrate an optimized solution generator. The resulting system was tested on a 4 degrees-of-redundancy manipulator arm and was found to successfully perform trajectories with least norm criteria while avoiding obstacles and joint limits. Next, the system was adapted and tested on a manipulator arm placed on a mobile platform yielding 7 degrees of redundancy. After successful testing on least norm trajectories while avoiding obstacles and joint limits, IKORv1.0 was developed. The system was successfully verified using comparisons with a current industry standard, the Moore Penrose Pseudo-Inverse. Finally, IKORv2.0 was created, which includes both the one shot and two step methods, manipulator portability, integration of a second optimized solution generator, and finally a more robust and usable code design.
Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space.
Giorelli, M; Renda, F; Calisti, M; Arienti, A; Ferri, G; Laschi, C
2015-05-13
This work addresses the inverse kinematics problem of a bioinspired octopus-like manipulator moving in three-dimensional space. The bioinspired manipulator has a conical soft structure that confers the ability of twirling around objects as a real octopus arm does. Despite the simple design, the soft conical shape manipulator driven by cables is described by nonlinear differential equations, which are difficult to solve analytically. Since exact solutions of the equations are not available, the Jacobian matrix cannot be calculated analytically and the classical iterative methods cannot be used. To overcome the intrinsic problems of methods based on the Jacobian matrix, this paper proposes a neural network learning the inverse kinematics of a soft octopus-like manipulator driven by cables. After the learning phase, a feed-forward neural network is able to represent the relation between manipulator tip positions and forces applied to the cables. Experimental results show that a desired tip position can be achieved in a short time, since heavy computations are avoided, with a degree of accuracy of 8% relative average error with respect to the total arm length.
NASA Astrophysics Data System (ADS)
Healy, D.; Kusznir, N.
2004-05-01
Recent discoveries of depth-dependent stretching and mantle exhumation at rifted continental margins require new models of margin formation. A two-dimensional coupled fluid mechanics/thermal kinematic model of sea-floor spreading initiation has been developed to predict the deformational and thermal evolution of rifted continental margins through time. The model can also include the effects of pre-breakup pure-shear stretching of continental lithosphere. Rifted margin lithosphere thinning and thermal evolution is dependent on ocean-ridge spreading rate (Vx), the mantle upwelling velocity beneath the ridge axis (Vz), and the pre-breakup lithosphere stretching factor (a). The model predicts the thinning of the upper crust, lower crust and lithospheric mantle of the continental margin, and the history of rifted margin subsidence, water depths and top basement heat-flow. We apply inverse methods to this new forward model of rifted margin formation to explore how successfully model input parameters may be extracted from observational data at rifted margins. The ability of the inverse method to find a unique solution has been established using synthetic data from forward modelling. Output parameters from the inversion are the horizontal and vertical velocities of sea-floor spreading, their variation with time, and the initial pre-breakup lithosphere stretching factor. Initial inversion tests used forward model predictions of the stretching of the upper crust, the whole crust and the whole lithosphere. These model predictions control the variation of crustal thickness and lithosphere temperature beneath the thinned continental margin and adjacent ocean, which in turn control margin subsidence and gravity anomaly. For application of the inversion procedure to observed data on rifted margins, the input data used are measured bathymetry, sediment thickness, gravity anomaly and upper crustal stretching. The forward problem is characterised by a non-linear relationship between
Off-diagonal Jacobian support for Nodal BCs
Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.
2015-01-01
In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \
NASA Astrophysics Data System (ADS)
Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura
2016-09-01
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.
Kinematic analysis of 7-DOF manipulators
NASA Technical Reports Server (NTRS)
Kreutz-Delgado, Kenneth; Long, Mark; Seraji, Homayoun
1992-01-01
This article presents a kinematic analysis of seven-degree-of-freedom serial link spatial manipulators with revolute joints. To uniquely determine the joint angles for a given end-effector position and orientation, the redundancy is parameterized by a scalar variable that defines the angle between the arm plane and a reference plane. The forward kinematic mappings from joint space to end-effector coordinates and arm angle and the augmented Jacobian matrix that gives end-effector and arm angle rates as functions of joint rates are presented. Conditions under which the augmented Jacobian becomes singular are also given and are shown to correspond to the arm being either at a kinematically singular configuration or at a nonsingular configuration for which the arm angle ceases to parameterize the redundancy.
Kinematic analysis of 7 DOF anthropomorphic arms
NASA Technical Reports Server (NTRS)
Kreutz-Delgado, K.; Long, M.; Seraji, H.
1990-01-01
A kinematic analysis of anthropomorphic seven-degree-of-freedom serial link spatial manipulators with revolute joints is presented. To uniquely determine joint angles for a given end-effector position and orientation, the redundancy is parameterized by a scalar variable which corresponds to the angle between the arm plane and a reference plane. The forward kinematic mappings from joint-space to end-effector coordinates and arm angle and the augmented Jacobian matrix which gives end-effector and arm angle rates as functions of joint rates are given. Conditions under which the augmented Jacobian becomes singular are given and are shown to correspond to the arm being either at a kinematically singular configuration or at a nonsingular configuration for which the arm angle ceases to parameterize the redundancy.
Differential Kinematics Of Contemporary Industrial Robots
NASA Astrophysics Data System (ADS)
Szkodny, T.
2014-08-01
The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented
Sipkin, S.A.; Needham, R.E.
1990-01-01
A waveform-inversion technique was applied to the digitally recorded long-period P-waveform data from the Global Digital Seismograph Network for the May 2 earthquake. The solution was constrained to be purely deviatoric but not to be a double couple. The source depth was determined by finding a trial depth that minimized the misfit to the data. By allowing the elements of the moment tensor to be independent, arbitrary functions of time, a gross estimate of the source-time history of the rupture process was obtained. A moderately well constrained fault-plane solution was also obtained by fitting the available long-and short-period teleseismic first-motion data. The strike, dip, and rake of the first-motion solution are 307{degree}, 70{degree}, and 90{degree}, respectively. This solution is very close to the best double-couple of the step-function moment-tensor solution of 303{degree}, 72{degree}, and 97{degree}. The best fitting depth is 11 km and the scalar moment is 4.7 {times} 10{sup 25} dyne-cm. The non-double-couple part of the moment tensor is 28%. This substantial non-double-couple component is apparently due to source complexity in which the strike of the fault plane rotated clockwise during rupture, from a strike of approximately 292{degree} to a strike of 302{degree}.
Piatanesi, A.; Cirella, A.; Spudich, P.; Cocco, M.
2007-01-01
We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green's functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Cirella, A.; Piatanesi, A.; Molinari, I.
2015-12-01
In this study, we investigate the rupture process of the 2012, May 20 and 29, Mw 6.1 and 5.9, respectively, Emilia-Romagna, Northern Italy, earthquakes. The two earthquakes struck a densely populated region, causing 26 fatalities and significantly damaging the economy of the region. We image the rupture history of these events, by separately and jointly inverting strong motions, GPS displacements and High-Rate GPS data. The region of interest is a sedimentary basin (the Po Plain) surrounded by the northern Apennines; and it is characterized by a significant presence of fluid and strong heterogeneities leading to remarkable site effects and liquefaction phenomena; for these reasons we adopt an ad-hoc velocity profiles at each station, by inverting in a low-intermediate frequency band (0 - 0.25 Hz). We use a two-stage non-linear inversion technique that, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage the algorithm performs a statistical analysis of the ensemble providing us the best-fitting model, the average model, and the associated standard deviation, coefficient of variation, moda and median distributions. The goal of our work is to constrain the earthquake rupture history and to assess the associated model uncertainty, to better understand the mechanics of the causative fault as well as the observed ground shaking.
Qin, Jin; Trudeau, Matthieu; Buchholz, Bryan; Katz, Jeffrey N; Xu, Xu; Dennerlein, Jack T
2014-04-01
Upper extremity kinematics during keyboard use is associated with musculoskeletal health among computer users; however, specific kinematics patterns are unclear. This study aimed to determine the dynamic roles of the shoulder, elbow, wrist and metacarpophalangeal (MCP) joints during a number entry task. Six subjects typed in phone numbers using their right index finger on a stand-alone numeric keypad. The contribution of each joint of the upper extremity to the fingertip movement during the task was calculated from the joint angle trajectory and the Jacobian matrix of a nine-degree-of-freedom kinematic representation of the finger, hand, forearm and upper arm. The results indicated that in the vertical direction where the greatest fingertip movement occurred, the MCP, wrist, elbow (including forearm) and shoulder joint contributed 10.2%, 55.6%, 27.7% and 6.5%, respectively, to the downward motion of the index finger averaged across subjects. The results demonstrated that the wrist and elbow contribute the most to the fingertip vertical movement, indicating that they play a major role in the keying motion and have a dynamic load beyond maintaining posture.
Force-free Jacobian equilibria for Vlasov-Maxwell plasmas
Abraham-Shrauner, B.
2013-10-15
New analytic force-free Vlasov-Maxwell equilibria for thin current sheets are presented. The magnetic flux densities are expressed in terms of Jacobian elliptic functions of one Cartesian spatial coordinate. The magnetic flux densities reduce to previously reported hyperbolic functions in one limit and sinusoidal functions in another limit of the modulus k. A much wider class of nonlinear force-free Vlasov-Maxwell equilibria open expanded possibilities for modeling of solar system, astrophysical and laboratory plasmas. Modified Maxwellian distribution functions are determined explicitly in terms of Jacobian elliptic functions. Conditions for double peaked distribution functions that could be unstable are developed.
NASA Astrophysics Data System (ADS)
Henry, Eric M.
The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. The multi-detector is capable of detecting individual products of the collision essential for the reconstruction of the collision dynamics. This is the first time CHIMERA has been used at low-energy, which offered a unique challenge for the calibration and interpretation of experimental data. Initial interrogation of the calibrated data revealed a class of selected events characterized by two coincident heavy fragments (atomic number Z>3) that together account for the majority of the total mass of the colliding system. These events are consistent with the complete fusion and subsequent binary split (fission) of a composite nucleus. The observed fission fragments are characterized by a broad A, Z distribution and are centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. Additional analysis of the kinematic relationship between the fission fragments was performed. Of note, is that the center-of-mass angular distribution (dsigma/dtheta) of the fission fragments exhibits an unexpected anisotropy inconsistent with a compound-nucleus reaction. This anisotropy is indicative of a dynamic fusion/fission-like process. The observed angular distribution features a forward-backward anisotropy most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions. The observations associated with this subset of events are similar to those reported for dynamic fragmentation of projectile-like fragments, but have not before been observed for a fusion/fission-like process. Comparisons to
Exploring Strange Nonchaotic Attractors through Jacobian Elliptic Functions
ERIC Educational Resources Information Center
Garcia-Hoz, A. Martinez; Chacon, R.
2011-01-01
We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of…
NASA Astrophysics Data System (ADS)
Asano, Kimiyuki; Iwata, Tomotaka
2016-08-01
The 2016 Kumamoto earthquake sequence started with an MJMA 6.5 foreshock occurring along the northern part of the Hinagu fault, central Kyushu, Japan, and the MJMA 7.3 mainshock occurred just 28 h after the foreshock. We analyzed the source rupture processes of the foreshock and mainshock by using the kinematic waveform inversion technique on strong motion data. The foreshock was characterized by right-lateral strike-slip occurring on a nearly vertical fault plane along the northern part of the Hinagu fault, and it had two large-slip areas: one near the hypocenter and another at a shallow depth. The rupture of the mainshock started from the deep portion of a northwest-dipping fault plane along the northern part of the Hinagu fault, then continued to transfer to the Futagawa fault. Most of the significant slip occurred on the Futagawa fault, and the shallow portion of the Hinagu fault also had a relatively large slip. The slip amount on the shallowest subfaults along the Futagawa fault was approximately 1-4 m, which is consistent with the emergence of surface breaks associated with this earthquake. Right-lateral strike-slip dominated on the fault segment along the Hinagu fault, but normal-slip components were estimated to make a significant contribution on the fault segment along the Futagawa fault. The large fault-parallel displacements recorded at two near-fault strong motion stations coincided with the spatiotemporal pattern of the fault slip history during the mainshock. The spatial relationship between the rupture areas of the foreshock and mainshock implies a complex fault structure in this region.
Generic robotic kinematic generator for virtual environment interfaces
NASA Astrophysics Data System (ADS)
Flueckiger, Lorenzo; Piguet, Laurent; Baur, Charles
1996-12-01
The expansion of robotic systems' performance, as well as the need for such machines to work in complex environments (hazardous, small, distant, etc.), involves the need for user interfaces which permit efficient teleoperation. Virtual Reality based interfaces provide the user with a new method for robot task planning and control: he or she can define tasks in a very intuitive way by interacting with a 3D computer generated representation of the world, which is continuously updated thanks to multiple sensors fusion and analysis. The Swiss Federal Institute of Technology has successfully tested different kinds of teleoperations. In the early 90s, a transatlantic teleoperation of a conventional robot manipulator with a vision feedback system to update the virtual world was achieved. This approach was then extended to perform teleoperation of several mobile robots (Khepera, Koala) as well as to control microrobots used for microsystems' assembly in the micrometer range. One of the problems encountered with such an approach is the necessity to program a specific kinematic algorithm for each kind of manipulator. To provide a more general solution, we started a project aiming at the design of a 'kinematic generator' (CINEGEN) for the simulation of generic serial and parallel mechanical chains. With CINEGEN, each manipulator is defined with an ascii file description and its attached graphics files; inserting a new manipulator simply requires a new description file, and none of the existing tools require modification. To have a real time behavior, we have chosen a numerical method based on the pseudo-Jacobian method to generate the inverse kinematics of the robot. The results obtained with an object-oriented implementation on a graphic workstation are presented in this paper.
Inversion strategies for visco-acoustic waveform inversion
NASA Astrophysics Data System (ADS)
Kamei, R.; Pratt, R. G.
2013-08-01
Visco-acoustic waveform inversion can potentially yield quantitative images of the distribution of both velocity and the attenuation parameters from seismic data. Intrinsic P-wave attenuation has been of particular interest, but has also proven challenging. Frequency-domain inversion allows attenuation and velocity relations to be easily incorporated, and allows a natural multiscale approach. The Laplace-Fourier approach extends this to allow the natural damping of waveforms to enhance early arrivals. Nevertheless, simultaneous inversion of velocity and attenuation leads to significant `cross-talk' between the resulting images, reflecting a lack of parameter resolution and indicating the need for pre-conditioning and regularization of the inverse problem. We analyse the cross-talk issue by partitioning the inversion parameters into two classes; the velocity parameter class, and the attenuation parameter class. Both parameters are defined at a reference frequency, and a dispersion relation is assumed that describes these parameters at any other frequency. We formulate the model gradients at a forward modelling frequency, and convert them to the reference frequency by employing the Jacobian of the coordinate change represented by the dispersion relation. We show that at a given modelling frequency, the Fréchet derivatives corresponding to these two parameter classes differ only by a 90° phase shift, meaning that the magnitudes of resulting model updates will be unscaled, and will not reflect the expected magnitudes in realistic (Q-1 ≪ 1) media. Due to the lack of scaling, cross-talk will be enhanced by poor subsurface illumination, by errors in kinematics, and by data noise. To solve these issues, we introduce an attenuation scaling term (the inverse of a penalty term) that is used to pre-condition the gradient by controlling the magnitudes of the updates to the attenuation parameters. Initial results from a suite of synthetic cross-hole tests using a three
Endomorphism rings of certain Jacobians in finite characteristic
Zarkhin, Yu G
2002-08-31
We prove that, under certain additional assumptions, the endomorphism ring of the Jacobian of a curve y{sup l}=f(x) contains a maximal commutative subring isomorphic to the ring of algebraic integers of the lth cyclotomic field. Here l is an odd prime dividing the degree n of the polynomial f and different from the characteristic of the algebraically closed ground field; moreover, n{>=}9. The additional assumptions stipulate that all coefficients of f lie in some subfield K over which its (the polynomial's) Galois group coincides with either the full symmetric group S{sub n} or with the alternating group A{sub n}.
Kinematic analysis of the ARID manipulator
NASA Technical Reports Server (NTRS)
Doty, Keith L
1992-01-01
The kinematic structure of the ARID manipulator lends itself to simple forward and inverse kinematics analysis. The purpose of this paper is to fully document and verify an existing analysis. The symbolic software package MATHEMATICA was used to produce and verify the equations presented here. In the analysis to follow, the standard Devenit-Hartenberg kinematic parameters of the ARID were employed.
Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita
2013-03-01
Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.
NASA Technical Reports Server (NTRS)
La Budde, R. A.
1972-01-01
Sampling techniques have been used previously to evaluate Jacobian determinants that occur in classical mechanical descriptions of molecular scattering. These determinants also occur in the quasiclassical approximation. A new technique is described which can be used to evaluate Jacobian determinants which occur in either description. This method is expected to be valuable in the study of reactive scattering using the quasiclassical approximation.
Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston
2012-06-01
Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.
Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods
Brown, J.; Brune, P.
2013-07-01
Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)
Solving Nonlinear Solid Mechanics Problems with the Jacobian-Free Newton Krylov Method
J. D. Hales; S. R. Novascone; R. L. Williamson; D. R. Gaston; M. R. Tonks
2012-06-01
The solution of the equations governing solid mechanics is often obtained via Newton's method. This approach can be problematic if the determination, storage, or solution cost associated with the Jacobian is high. These challenges are magnified for multiphysics applications with many coupled variables. Jacobian-free Newton-Krylov (JFNK) methods avoid many of the difficulties associated with the Jacobian by using a finite difference approximation. BISON is a parallel, object-oriented, nonlinear solid mechanics and multiphysics application that leverages JFNK methods. We overview JFNK, outline the capabilities of BISON, and demonstrate the effectiveness of JFNK for solid mechanics and solid mechanics coupled to other PDEs using a series of demonstration problems.
Bonnet, Vincent; Mazzà, Claudia; Fraisse, Philippe; Cappozzo, Aurelio
2013-07-01
This study aimed at the real-time estimation of the lower-limb joint and torso kinematics during a squat exercise, performed in the sagittal plane, using a single inertial measurement unit placed on the lower back. The human body was modeled with a 3-DOF planar chain. The planar IMU orientation and vertical displacement were estimated using one angular velocity and two acceleration components and a weighted Fourier linear combiner. The ankle, knee, and hip joint angles were thereafter obtained through a novel inverse kinematic module based on the use of a Jacobian pseudoinverse matrix and null-space decoupling. The aforementioned algorithms were validated on a humanoid robot for which the mechanical model used and the measured joint angles virtually exhibited no inaccuracies. Joint angles were estimated with a maximal error of 1.5°. The performance of the proposed analytical and experimental methodology was also assessed by conducting an experiment on human volunteers and by comparing the relevant results with those obtained through the more conventional photogrammetric approach. The joint angles provided by the two methods displayed differences equal to 3±1°. These results, associated with the real-time capability of the method, open the door to future field applications in both rehabilitation and sport.
NASA Astrophysics Data System (ADS)
Hoffmann, V.-E.; Dunkl, I.; von Eynatten, H.; Jähne, F.; Voigt, T.; Kley, J.
2009-04-01
During the Late Cretaceous to Early Tertiary some parts of the Central European Basin System (CEBS) were uplifted along NW-SE to WNW-ESE striking compressive fault systems. As a result Pre-Zechstein (Permian) basement is exposed at the southern border of the CEBS from Central Germany to the sudetes still further east (e.g. Harz Mountains, Thuringian Forest). Thrust-related basins like the Subhercynian Cretaceous Basin (SCB) in the foreland of the Harz Mountains accumulated up to 2500m of siliciclastic and chemical sediments in only 10 million years (Late Turonian to Lower Campanian, Voigt et al., 2006). By means of low-temperature thermochronology it is possible to characterise these basin inversion processes with respect to timing, pattern and rates of cooling and exhumation. Differed authors have already applied Apatite Fission Track analysis (AFT) in certain areas of the southern margin of CEBS. Thomson and Zeh (2000) published AFT apparent ages of 69 to 81 Ma for the Ruhla Crystalline Complex in the Thuringian Forest. Similar AFT-ages (73-84 Ma) of granitoids from the Harz Mountains were reported by Thomson et al. (1997). The late Carboniferous felsic volcanic rocks near Halle yield a much broader range of AFT apparent ages (75-108 Ma; Jacobs and Breitkreuz, 2003). Comparable AFT-ages (84-90 Ma) had been also observed for gabbros from the north-eastern part of the Mid German Crystalline High (Ventura et al. 2003). The present study tries to bridge some of the major gaps in the regional distribution of thermochronological data by analysing samples from central and southern parts of the CEBS. Overall almost 50 AFT-ages from Saxony-Anhalt, Lower Saxony, Thuringia, Hesse and North Rhine-Westphalia were measured. Emphasis is placed on the regions from the Harz Mountains to the Rhenish Uplands and the Thuringian Forest and its foreland. Furthermore, apatite (U-Th)/He thermochronology is used to better constrain the time-temperature history models. Apart from some
Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix
2002-01-01
We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.
Kinematics of the six-degree-of-freedom force-reflecting Kraft Master
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1991-01-01
Presented here are kinematic equations for a six degree of freedom force-reflecting hand controller. The forward kinematics solution is developed and shown in simplified form. The Jacobian matrix, which uses terms from the forward kinematics solution, is derived. Both of these kinematic solutions require joint angle inputs. A calibration method is presented to determine the hand controller joint angles given the respective potentiometer readings. The kinematic relationship describing the mechanical coupling between the hand and controller shoulder and elbow joints is given. These kinematic equations may be used in an algorithm to control the hand controller as a telerobotic system component. The purpose of the hand controller is two-fold: operator commands to the telerobotic system are entered using the hand controller, and contact forces and moments from the task are reflected to the operator via the hand controller.
Hicks, H.R.; Dory, R.A.; Holmes, J.A.
1983-01-01
We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J/sub 0/(rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model.
Patton, T; Du, K; Bayouth, J; Christensen, G; Reinhardt, J
2015-06-15
Purpose: Longitudinal changes in lung ventilation following radiation therapy can be mapped using four-dimensional computed tomography(4DCT) and image registration. This study aimed to predict ventilation changes caused by radiation therapy(RT) as a function of pre-RT ventilation and delivered dose. Methods: 4DCT images were acquired before and 3 months after radiation therapy for 13 subjects. Jacobian ventilation maps were calculated from the 4DCT images, warped to a common coordinate system, and a Jacobian ratio map was computed voxel-by-voxel as the ratio of post-RT to pre-RT Jacobian calculations. A leave-one-out method was used to build a response model for each subject: post-RT to pre-RT Jacobian ratio data and dose distributions of 12 subjects were applied to the subject’s pre-RT Jacobian map to predict the post-RT Jacobian. The predicted Jacobian map was compared to the actual post-RT Jacobian map to evaluate efficacy. Within this cohort, 8 subjects had repeat pre-RT scans that were compared as a reference for no ventilation change. Maps were compared using gamma pass rate criteria of 2mm distance-to-agreement and 6% ventilation difference. Gamma pass rates were compared using paired t-tests to determine significant differences. Further analysis masked non-radiation induced changes by excluding voxels below specified dose thresholds. Results: Visual inspection demonstrates the predicted post-RT ventilation map is similar to the actual map in magnitude and distribution. Quantitatively, the percentage of voxels in agreement when excluding voxels receiving below specified doses are: 74%/20Gy, 73%/10Gy, 73%/5Gy, and 71%/0Gy. By comparison, repeat scans produced 73% of voxels within the 6%/2mm criteria. The agreement of the actual post-RT maps with the predicted maps was significantly better than agreement with pre-RT maps (p<0.02). Conclusion: This work validates that significant changes to ventilation post-RT can be predicted. The differences between the
Kinematics and control of redundant robotic arm based on dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Branz, Francesco; Antonello, Andrea; Carron, Andrea; Carli, Ruggero; Francesconi, Alessandro
2015-04-01
Soft robotics is a promising field and its application to space mechanisms could represent a breakthrough in space technologies by enabling new operative scenarios (e.g. soft manipulators, capture systems). Dielectric Elastomers Actuators have been under deep study for a number of years and have shown several advantages that could be of key importance for space applications. Among such advantages the most notable are high conversion efficiency, distributed actuation, self-sensing capability, multi-degree-of-freedom design, light weight and low cost. The big potentialities of double cone actuators have been proven in terms of good performances (i.e. stroke and force/torque), ease of manufacturing and durability. In this work the kinematic, dynamic and control design of a two-joint redundant robotic arm is presented. Two double cone actuators are assembled in series to form a two-link design. Each joint has two degrees of freedom (one rotational and one translational) for a total of four. The arm is designed to move in a 2-D environment (i.e. the horizontal plane) with 4 DoF, consequently having two degrees of redundancy. The redundancy is exploited in order to minimize the joint loads. The kinematic design with redundant Jacobian inversion is presented. The selected control algorithm is described along with the results of a number of dynamic simulations that have been executed for performance verification. Finally, an experimental setup is presented based on a flexible structure that counteracts gravity during testing in order to better emulate future zero-gravity applications.
Real-Time Inverse Kinematics for Humans
2004-03-15
International Journal of Industrial Ergonomics , v16 n2 1995, p 95. Jung, Eui S.; Choe, Jaeho, 1996, “Human reach posture...prediction based on psychophysical discomfort”, International Journal of Industrial Ergonomics , v18 n2-3 Sep 1996, pp. 173-179. Jung, Eui S.; Choe...Jaeho, 1996, “Human reach posture prediction based on psychophysical discomfort”, International Journal of Industrial Ergonomics , v18 n2-3 Sep
Flux Jacobian matrices and generaled Roe average for an equilibrium real gas
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1988-01-01
Inviscid flux Jacobian matrices and their properties used in numerical solutions of conservation laws are extended to general, equilibrium gas laws. Exact and approximate generalizations of the Roe average are presented. Results are given for one-dimensional flow, and then extended to three-dimensional flow with time-varying grids.
Kinematic functions for the 7 DOF robotics research arm
NASA Technical Reports Server (NTRS)
Kreutz, K.; Long, M.; Seraji, Homayoun
1989-01-01
The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived.
Magnetotelluric inversion via reverse time migration algorithm of seismic data
Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.
Magnetotelluric inversion via reverse time migration algorithm of seismic data
NASA Astrophysics Data System (ADS)
Ha, Taeyoung; Shin, Changsoo
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nédélec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.
NASA Astrophysics Data System (ADS)
Fujii, Fumio; Yamakawa, Yuki; Noguchi, Hirohisa
2010-07-01
In the previous publications of the authors, an eigenanalysis-free computational procedure has been proposed to extract the bifurcation buckling mode(s) from the LDL T -decomposed symmetric stiffness matrix in the vicinity of a stability point. Any eigensolver, for instance, inverse iteration or subspace method, is not necessary. The procedure has been verified in numerical examples and well works in multiple and clustered bifurcation problems too. This present paper will extend the eigenanalysis-free procedure to the LDU-decomposed non-symmetric Jacobian matrix, from which both left and right critical eigenvectors relevant to the stability point may be extracted in a similar way. The idea is mathematical and totally independent of the physical problem to be solved, so that it is applicable to any non-symmetric square matrix in stability problems including plasticity with non-associated flow rules, contact and fluid-structure interaction. The linear-algebraic background of non-symmetric eigenvalue problems is firstly described. The present paper will then mention the role play of the left and right critical eigenvectors in stability analysis and the eigenanalysis-free LDU-procedure is proposed. Numerical examples of elastoplastic bifurcation are illustrated for verification and discussion. In APPENDICES, a bench model visualizes the mechanical meaning of the left and right critical singular vectors of a rectangular matrix.
Fault tolerant kinematic control of hyper-redundant manipulators
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth S.
1994-01-01
Hyper-redundant spatial manipulators possess fault-tolerant features because of their redundant structure. The kinematic control of these manipulators is investigated with special emphasis on fault-tolerant control. The manipulator tasks are viewed in the end-effector space while actuator commands are in joint-space, requiring an inverse kinematic algorithm to generate joint-angle commands from the end-effector ones. The rate-inverse kinematic control algorithm presented in this paper utilizes the pseudoinverse to accommodate for joint motor failures. An optimal scale factor for the robust inverse is derived.
Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion
NASA Astrophysics Data System (ADS)
Braden, H. W.; Enolski, V. Z.; Fedorov, Yu N.
2013-07-01
We present an algebraic geometrical and analytical description of the Goryachev case of rigid body motion. It belongs to a family of systems sharing the same properties: although completely integrable, they are not algebraically integrable, their solution is not meromorphic in the complex time and involves dynamics on the strata of the Jacobian varieties of trigonal curves. Although the strata of hyperelliptic Jacobians have already appeared in the literature in the context of some dynamical systems, the Goryachev case is the first example of an integrable system whose solution involves a more general curve. Several new features (and formulae) are encountered in the solution given in terms of sigma-functions of such a curve.
A Jacobian generalization of the pseudo-Nambu-Goldstone boson potential
NASA Astrophysics Data System (ADS)
Hipólito-Ricaldi, W. S.; Villanueva, J. R.
We enlarge the classes of inflaton and quintessence fields by generalizing the pseudo-Nambu-Goldstone boson potential by means of elliptic Jacobian functions, which are characterized by a parameter k. We use such a generalization to implement an inflationary era and a late acceleration of the universe. As an inflationary model, the Jacobian generalization leads us to a number of e-foldings and a primordial spectrum of perturbations compatible with the Planck Collaboration 2015. As a quintessence model, a study of the evolution of its equation-of-state (EoS) and its w‧-w plane helps us to classify it as a thawing model. This allows us to consider analytical approximations for the EoS recently discovered for thawing quintessence. By using JLA supernovae Ia and Hubble parameter H(z) data sets, we perform an observational analysis of the viability of the model as quintessence.
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-04-29
We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less
NASA Astrophysics Data System (ADS)
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-08-01
We develop a new approach for solving the nonlinear Richards' equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioning strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. We also show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-04-29
We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioning strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.
NASA Astrophysics Data System (ADS)
Kaus, B.; Popov, A.
2015-12-01
The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results
NASA Astrophysics Data System (ADS)
Yu. Moshin, Pavel; Reshetnyak, Alexander A.
2016-07-01
We continue our research1-4 and extend the class of finite BRST-anti-BRST transformations with odd-valued parameters λa, a = 1, 2, introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST-anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST-anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST-anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST-anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters λa is obtained, providing the equivalence of path integrals in any 3-parameter Rξ-like gauges. The Gribov-Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in Rξ-like gauges, in a gauge-independent way using field-dependent BRST-anti-BRST transformations, and in Rξ-like gauges using transverse-like non-Abelian gauge fields.
Acceleration of k-Eigenvalue / Criticality Calculations using the Jacobian-Free Newton-Krylov Method
Dana Knoll; HyeongKae Park; Chris Newman
2011-02-01
We present a new approach for the $k$--eigenvalue problem using a combination of classical power iteration and the Jacobian--free Newton--Krylov method (JFNK). The method poses the $k$--eigenvalue problem as a fully coupled nonlinear system, which is solved by JFNK with an effective block preconditioning consisting of the power iteration and algebraic multigrid. We demonstrate effectiveness and algorithmic scalability of the method on a 1-D, one group problem and two 2-D two group problems and provide comparison to other efforts using silmilar algorithmic approaches.
Assessing the quality of curvilinear coordinate meshes by decomposing the Jacobian matrix
NASA Technical Reports Server (NTRS)
Kerlick, G. D.; Klopfer, G. H.
1982-01-01
An algebraic decomposition of the Jacobian matrix which relates physical and computational variables is presented. This invertible decomposition parameterizes the mesh by the physically intuitive qualities of cell orientation, cell orthogonality, cell volume, and cell aspect ratio. The decomposition can be used to analyze numerically generated curvilinear coordinate meshes and to assess the contribution of the mesh to the truncation error for any specific differential operator and algorithm. This is worked out in detail for Laplace's equation in nonconservative and conservative forms. The analysis is applied to the solution of the full potential code TAIR, showing grid plots, carpet plots, and truncation error for a NACA 0012 airfoil.
Jacobian-Based Iterative Method for Magnetic Localization in Robotic Capsule Endoscopy.
Di Natali, Christian; Beccani, Marco; Simaan, Nabil; Valdastri, Pietro
2016-04-01
The purpose of this study is to validate a Jacobian-based iterative method for real-time localization of magnetically controlled endoscopic capsules. The proposed approach applies finite-element solutions to the magnetic field problem and least-squares interpolations to obtain closed-form and fast estimates of the magnetic field. By defining a closed-form expression for the Jacobian of the magnetic field relative to changes in the capsule pose, we are able to obtain an iterative localization at a faster computational time when compared with prior works, without suffering from the inaccuracies stemming from dipole assumptions. This new algorithm can be used in conjunction with an absolute localization technique that provides initialization values at a slower refresh rate. The proposed approach was assessed via simulation and experimental trials, adopting a wireless capsule equipped with a permanent magnet, six magnetic field sensors, and an inertial measurement unit. The overall refresh rate, including sensor data acquisition and wireless communication was 7 ms, thus enabling closed-loop control strategies for magnetic manipulation running faster than 100 Hz. The average localization error, expressed in cylindrical coordinates was below 7 mm in both the radial and axial components and 5° in the azimuthal component. The average error for the capsule orientation angles, obtained by fusing gyroscope and inclinometer measurements, was below 5°.
Recovery Discontinuous Galerkin Jacobian-Free Newton-Krylov Method for All-Speed Flows
HyeongKae Park; Robert Nourgaliev; Vincent Mousseau; Dana Knoll
2008-07-01
A novel numerical algorithm (rDG-JFNK) for all-speed fluid flows with heat conduction and viscosity is introduced. The rDG-JFNK combines the Discontinuous Galerkin spatial discretization with the implicit Runge-Kutta time integration under the Jacobian-free Newton-Krylov framework. We solve fully-compressible Navier-Stokes equations without operator-splitting of hyperbolic, diffusion and reaction terms, which enables fully-coupled high-order temporal discretization. The stability constraint is removed due to the L-stable Explicit, Singly Diagonal Implicit Runge-Kutta (ESDIRK) scheme. The governing equations are solved in the conservative form, which allows one to accurately compute shock dynamics, as well as low-speed flows. For spatial discretization, we develop a “recovery” family of DG, exhibiting nearly-spectral accuracy. To precondition the Krylov-based linear solver (GMRES), we developed an “Operator-Split”-(OS) Physics Based Preconditioner (PBP), in which we transform/simplify the fully-coupled system to a sequence of segregated scalar problems, each can be solved efficiently with Multigrid method. Each scalar problem is designed to target/cluster eigenvalues of the Jacobian matrix associated with a specific physics.
NASA Astrophysics Data System (ADS)
Bisetti, Fabrizio
2012-06-01
Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.
Jacobian-Based Iterative Method for Magnetic Localization in Robotic Capsule Endoscopy
Di Natali, Christian; Beccani, Marco; Simaan, Nabil; Valdastri, Pietro
2016-01-01
The purpose of this study is to validate a Jacobian-based iterative method for real-time localization of magnetically controlled endoscopic capsules. The proposed approach applies finite-element solutions to the magnetic field problem and least-squares interpolations to obtain closed-form and fast estimates of the magnetic field. By defining a closed-form expression for the Jacobian of the magnetic field relative to changes in the capsule pose, we are able to obtain an iterative localization at a faster computational time when compared with prior works, without suffering from the inaccuracies stemming from dipole assumptions. This new algorithm can be used in conjunction with an absolute localization technique that provides initialization values at a slower refresh rate. The proposed approach was assessed via simulation and experimental trials, adopting a wireless capsule equipped with a permanent magnet, six magnetic field sensors, and an inertial measurement unit. The overall refresh rate, including sensor data acquisition and wireless communication was 7 ms, thus enabling closed-loop control strategies for magnetic manipulation running faster than 100 Hz. The average localization error, expressed in cylindrical coordinates was below 7 mm in both the radial and axial components and 5° in the azimuthal component. The average error for the capsule orientation angles, obtained by fusing gyroscope and inclinometer measurements, was below 5°. PMID:27087799
Joseph, Ilon
2014-05-27
Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for solving the problem of coupling codes that address dfferent physics models. As communication capability between individual submodules varies, different choices of coupling algorithms are required. The more communication that is available, the more possible it becomes to exploit the simple sparsity pattern of the Jacobian, albeit of a large system. The less communication that is available, the more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large time steps. In general, methods that use constrained or reduced subsystems can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a kinetic neutrals code is discussed as an example.
Huang, C Q; Xie, L F; Liu, Y L
2012-11-01
In framework of traditional PID controllers, there are only three parameters available to tune, as a result, performance of the resulting system is always limited. As for Cartesian regulation of robot manipulators with uncertain Jacobian matrix, a scheme of PID controllers with error-dependent integral action is proposed. Compare with traditional PID controllers, the error-dependent integration is employed in the proposed PID controller, in which more parameters are available to be tuned. It provides additional flexibility for controller characteristics and tuning as well, and hence makes better transient performance. In addition, asymptotic stability of the resulting closed-loop system is guaranteed. All signals in the system are bounded when exogenous disturbances and measurement noises are bounded. Numerical example demonstrates the superior transient performance of the proposed controller over the traditional one via Cartesian space set-point manipulation of two-link robotic manipulator.
Sdika, Michaël
2008-02-01
This paper presents a new nonrigid monomodality image registration algorithm based on B-splines. The deformation is described by a cubic B-spline field and found by minimizing the energy between a reference image and a deformed version of a floating image. To penalize noninvertible transformation, we propose two different constraints on the Jacobian of the transformation and its derivatives. The problem is modeled by an inequality constrained optimization problem which is efficiently solved by a combination of the multipliers method and the L-BFGS algorithm to handle the large number of variables and constraints of the registration of 3-D images. Numerical experiments are presented on magnetic resonance images using synthetic deformations and atlas based segmentation.
Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels
NASA Technical Reports Server (NTRS)
Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Hollingshead, M.; Goodman, H. Michael (Technical Monitor)
2000-01-01
The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: 7 HIRS (High-resolution Infrared Sounder) and 4 AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging, In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models, Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.
Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels
NASA Technical Reports Server (NTRS)
Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Atlas, Robert (Technical Monitor)
2000-01-01
The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: seven HIRS (High-resolution Infrared Sounder) and four AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.
Real time markerless motion tracking using linked kinematic chains
Luck, Jason P.; Small, Daniel E.
2007-08-14
A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.
NASA Astrophysics Data System (ADS)
Andersen, David R.; Bershady, Matthew A.
2013-05-01
Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained Hα velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i kin = 23° for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20° and 6% at 30°. Kinematic inclinations are consistent with photometric and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical "face-on" Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15° and 5% at 30°. This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.
NASA Astrophysics Data System (ADS)
Zhang, Jian-dong; Chen, Bin
2017-01-01
The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,R) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.
Resolving spectral information from time domain induced polarization data through 2-D inversion
NASA Astrophysics Data System (ADS)
Fiandaca, Gianluca; Ramm, James; Binley, Andrew; Gazoty, Aurélie; Christiansen, Anders Vest; Auken, Esben
2013-02-01
Field-based time domain (TD) induced polarization (IP) surveys are usually modelled by taking into account only the integral chargeability, thus disregarding spectral content. Furthermore, the effect of the transmitted waveform is commonly neglected, biasing inversion results. Given these limitations of conventional approaches, a new 2-D inversion algorithm has been developed using the full voltage decay of the IP response, together with an accurate description of the transmitter waveform and receiver transfer function. This allows reconstruction of the spectral information contained in the TD decay series. The inversion algorithm is based around a 2-D complex conductivity kernel that is computed over a range of frequencies and converted to the TD through a fast Hankel transform. Two key points in the implementation ensure that computation times are minimized. First, the speed of the Jacobian computation, time transformed from frequency domain through the same transformation adopted for the forward response is optimized. Secondly, the reduction of the number of frequencies where the forward response and Jacobian are calculated: cubic splines are used to interpolate the responses to the frequency sampling necessary in the fast Hankel transform. These features, together with parallel computation, ensure inversion times comparable with those of direct current algorithms. The algorithm has been developed in a laterally constrained inversion scheme, and handles both smooth and layered inversions; the latter being helpful in sedimentary environments, where quasi-layered models often represent the actual geology more accurately than smooth minimum-structure models. In the layered inversion approach, a general method to derive the thickness derivative from the complex conductivity Jacobian is also proposed. One synthetic example of layered inversion and one field example of smooth inversion show the capability of the algorithm and illustrates a complete uncertainty
NASA Astrophysics Data System (ADS)
Zhou, Kang; Hou, Jian; Fu, Hongfei; Wei, Bei; Liu, Yongge
2017-01-01
Relative permeability controls the flow of multiphase fluids in porous media. The estimation of relative permeability is generally solved by Levenberg-Marquardt method with finite difference Jacobian approximation (LM-FD). However, the method can hardly be used in large-scale reservoirs because of unbearably huge computational cost. To eliminate this problem, the paper introduces the idea of simultaneous perturbation to simplify the generation of the Jacobian matrix needed in the Levenberg-Marquardt procedure and denotes the improved method as LM-SP. It is verified by numerical experiments and then applied to laboratory experiments and a real commercial oilfield. Numerical experiment indicates that LM-SP uses only 16.1% computational cost to obtain similar estimation of relative permeability and prediction of production performance compared with LM-FD. Laboratory experiment also shows the LM-SP has a 60.4% decrease in simulation cost while a 68.5% increase in estimation accuracy compared with the earlier published results. This is mainly because LM-FD needs 2n (n is the number of controlling knots) simulations to approximate Jacobian in each iteration, while only 2 simulations are enough in basic LM-SP. The convergence rate and estimation accuracy of LM-SP can be improved by averaging several simultaneous perturbation Jacobian approximations but the computational cost of each iteration may be increased. Considering the estimation accuracy and computational cost, averaging two Jacobian approximations is recommended in this paper. As the number of unknown controlling knots increases from 7 to 15, the saved simulation runs by LM-SP than LM-FD increases from 114 to 1164. This indicates LM-SP is more suitable than LM-FD for multivariate problems. Field application further proves the applicability of LM-SP on large real field as well as small laboratory problems.
Testing Earthquake Source Inversion Methodologies
NASA Astrophysics Data System (ADS)
Page, Morgan; Mai, P. Martin; Schorlemmer, Danijel
2011-03-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquake-related computations, such as ground motion simulations and static stress change calculations.
Testing earthquake source inversion methodologies
Page, M.; Mai, P.M.; Schorlemmer, D.
2011-01-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.
Dirken, J J; Vlaanderen, W
1994-01-01
Inversion of the uterus is a rare complication of childbirth. A primigravida aged 21 and a multigravida aged 32, hospitalized as emergency cases because of inversion of the uterus with major blood loss, were treated with infusion of liquids (to combat shock), repositioning of the uterus under anaesthesia and prevention of reinversion by uterine tonics. Inversion of the uterus should be part of the differential diagnosis in every case of fluxus post partum.
NASA Astrophysics Data System (ADS)
Bernardara, M.; Tabuada, G.
2016-06-01
Conjectures of Beilinson-Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [20]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [26], [27] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases S of small dimension satisfy Murre's conjecture (when \\dim (S)≤ 1), Grothendieck's standard conjecture of Lefschetz type (when \\dim (S)≤ 2), and Hodge's conjecture (when \\dim(S)≤ 3).
NASA Astrophysics Data System (ADS)
Reshetnyak, A. A.; Moshin, P. Yu.
2017-03-01
A review of the finite field-dependent Becchi-Rouet-Stora-Tyutin (BRST) and BRST-antiBRST transformations is presented. Exact rules for calculating the Jacobian of the corresponding change of variables in the partition function are given. Infrared peculiarities under Rξ-gauges in the Yang-Mills theory and the Standard Model are examined in a gauge-invariant way with an appropriate horizon functional and unaffected N = 1, 2 BRST symmetries.
Inverse Fourier Transform in the Gamma Coordinate System
Wei, Yuchuan; Yu, Hengyong; Wang, Ge
2011-01-01
This paper provides auxiliary results for our general scheme of computed tomography. In 3D parallel-beam geometry, we first demonstrate that the inverse Fourier transform in different coordinate systems leads to different reconstruction formulas and explain why the Radon formula cannot directly work with truncated projection data. Also, we introduce a gamma coordinate system, analyze its properties, compute the Jacobian of the coordinate transform, and define weight functions for the inverse Fourier transform assuming a simple scanning model. Then, we generate Orlov's theorem and a weighted Radon formula from the inverse Fourier transform in the new system. Furthermore, we present the motion equation of the frequency plane and the conditions for sharp points of the instantaneous rotation axis. Our analysis on the motion of the frequency plane is related to the Frenet-Serret theorem in the differential geometry. PMID:21076520
An Implicit Energy-Conservative 2D Fokker-Planck Algorithm. II. Jacobian-Free Newton-Krylov Solver
NASA Astrophysics Data System (ADS)
Chacón, L.; Barnes, D. C.; Knoll, D. A.; Miley, G. H.
2000-01-01
Energy-conservative implicit integration schemes for the Fokker-Planck transport equation in multidimensional geometries require inverting a dense, non-symmetric matrix (Jacobian), which is very expensive to store and solve using standard solvers. However, these limitations can be overcome with Newton-Krylov iterative techniques, since they can be implemented Jacobian-free (the Jacobian matrix from Newton's algorithm is never formed nor stored to proceed with the iteration), and their convergence can be accelerated by preconditioning the original problem. In this document, the efficient numerical implementation of an implicit energy-conservative scheme for multidimensional Fokker-Planck problems using multigrid-preconditioned Krylov methods is discussed. Results show that multigrid preconditioning is very effective in speeding convergence and decreasing CPU requirements, particularly in fine meshes. The solver is demonstrated on grids up to 128×128 points in a 2D cylindrical velocity space (vr, vp) with implicit time steps of the order of the collisional time scale of the problem, τ. The method preserves particles exactly, and energy conservation is improved over alternative approaches, particularly in coarse meshes. Typical errors in the total energy over a time period of 10τ remain below a percent.
Kinematic synthesis of bevel-gear-type robotic wrist mechanisms
NASA Astrophysics Data System (ADS)
Lin, Chen-Chou
workplace are derived. The workspace boundary equations can be derived via both geometric consideration and Jacobian analysis. The workspace is divided by inner and outer boundaries into regions of accessibility of zero, two, and four. The design criteria of full workspace and a maximum four-root region are established.
Visual servoing of robot manipulators -- Part 1: Projective kinematics
Ruf, A.; Horaud, R.
1999-11-01
Visual servoing of robot manipulators is a key technique where the appearance of an object in the image plane is used to control the velocity of the end-effector such that the desired position is reached in the scene. The vast majority of visual servoing methods proposed so far uses calibrated robots in conjunction with calibrated cameras. It has been shown that the behavior of visual control loops does not degrade too much in the presence of calibration errors. Nevertheless, camera and robot calibration are complex and time-consuming processes requiring special-purpose mechanical devices, such as theodolites and calibration jigs. In this paper, the authors, suggest formulating a visual servoing control loop in nonmetric space, which in this case amounts to the projective space in which a triangulation of the scene using an uncalibrated stereo rig is expressed. The major consequence of controlling the robot in nonmetric space rather than in Euclidean space is that both the robot's direct kinematic map and the robot's Jacobian matrix must be defined in this space as well. Finally, they provide a practical method to estimate the projective kinematic model and they describe some preliminary simulated experiments that use this nonmetric model to perform stereo-based servoing. Nevertheless, in-depth analysis of projective control will be the topic of a forthcoming paper.
Oliver, Gretchen D; Keeley, David W
2010-12-01
It was the purpose of our study to examine the kinematics of the pelvis and torso and determine their relationship to the kinematics of the shoulder in high-school baseball pitchers. A single group, repeated-measures design was used to collect pelvis, torso, and shoulder kinematics throughout the pitching motion. Subjects threw a series of maximal effort fastballs to a catcher located the regulation distance (18.44m) from the pitching mound, and those data from the fastest pitch passing through the strike zone were analyzed. After test trials, kinematic data were analyzed using a series of descriptive statistics to identify outliers and determine the nature of the distribution before testing for the presence of relationships between the various parameters. Results indicated that for several parameters, the actions at and about the shoulder are strongly related to the actions of the pelvis and torso throughout the pitching motion. However, although pelvis and torso kinematics throughout the pitching motion were inversely related to both shoulder elevation and the plane of shoulder elevation, only the rate of axial torso rotation was significantly related to these shoulder parameters. More importantly, the rate of axial torso rotation is significantly related to these shoulder parameters in a way that may help explain the high rate of shoulder injury in high-school pitchers. Therefore, strength training should focus on developing a strong stable core including the gluteal musculature in an attempt to control the rate of torso rotation during the pitch.
Microwave spectrum of the H2DO+ ion: Inversion-rotation transitions and inversion splitting
NASA Astrophysics Data System (ADS)
Furuya, Takashi; Saito, Shuji; Araki, Mitsunori
2007-12-01
Inversion-rotation spectral lines of the monodeuterated hydronium ion, H2DO+, have been observed by a source-modulation spectrometer in the millimeter- to submillimeter-wave region. The ion was generated by a hollow-cathode discharge in a gas mixture of H2O and D2O. Nine inversion-rotation lines were measured precisely for the lowest pair of inversion doublets in the frequency region from 210to720GHz. The measured lines were analyzed to derive rotational constants in the inversion-doublet states and inversion splitting. The inversion splitting in the ground state was determined to be 1215866(410)MHz, that is, 40.5569(137)cm-1, where the numbers in parentheses give probable uncertainties estimated from the Jacobian matrix of the assumed centrifugal distortion constants of the inversion-doublet states. The determined inversion splitting is off by -0.58cm-1 from the predicted value of 41.14cm-1 by Rayamäki et al. using high-order coupled cluster ab initio calculations [J. Chem. Phys. 118, 10929 (2003)], and by 0.039cm-1 from the observed value of 40.518(10)cm-1 by Dong and Nesbitt using high-resolution jet-cooled infrared spectroscopy [J. Chem. Phys. 125, 144311 (2006)] beyond the quoted uncertainty. The most astronomically important transition 000--10+ for the ortho species was measured at 673257.024(31)MHz, which could be used as a radioastronomical probe investigating interstellar chemistry of deuterium fractionation in space.
An optimal resolved rate law for kinematically redundant manipulators
NASA Technical Reports Server (NTRS)
Bourgeois, B. J.
1987-01-01
The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.
Kinematic analysis of platform-type robotic manipulators
NASA Astrophysics Data System (ADS)
Shi, Xiaolun
New methods are developed for the kinematic analysis of serial and platform-type parallel robotic manipulators, including forward and inverse kinematic solutions, singularity identifications and workspace evaluation. Differences between serial and platform-type parallel manipulators, which can provide substantially improved end-point rigidity compared with the conventional serial robotic arms, are addressed. The problem of determining the screw parameters of rigid body motion from initial and final position data is discussed, as a basis to search for a general and efficient procedure to solve the complex forward kinematics problem of platform-type manipulators. Several Screw-Theory based approaches for solving the inverse instantaneous problem of 6 DOF serial manipulators are studied and compared in terms of their computational efficiency, accuracy, sensitivity to data error and capability of dealing with singularities. A modified Vector Decomposition method is then proposed for solving the IIK problem and for singularity analysis of serial kinematic chains, the method is especially effective when applied to the wrist partitioned serial manipulators, which are essential components to any platform-type parallel manipulators. By using the data of three point positions, velocities, and accelerations of the end effector a general method is developed for solving the forward kinematics problem, including position, velocity and acceleration kinematics, of platform-type manipulators. The solution procedure can be applied to a wide variety of platform-type manipulators such as the 6 DOF Steward Platform manipulator and other models. It is found that while the solution for the forward position kinematics of a platform-type manipulator can be obtained by solving a non-linear system of equations, the closed-form solutions for forward rate and acceleration kinematics can be found by solving a system of linear equations. Based on the proposed kinematic formulations, an algorithm
Three tooth kinematic coupling
Hale, Layton C.
2000-01-01
A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.
HyeongKae Park; Robert R. Nourgaliev; Richard C. Martineau; Dana A. Knoll
2008-09-01
We present high-order accurate spatiotemporal discretization of all-speed flow solvers using Jacobian-free Newton Krylov framework. One of the key developments in this work is the physics-based preconditioner for the all-speed flow, which makes use of traditional semi-implicit schemes. The physics-based preconditioner is developed in the primitive variable form, which allows a straightforward separation of physical phenomena. Numerical examples demonstrate that the developed preconditioner effectively reduces the number of the Krylov iterations, and the efficiency is independent of the Mach number and mesh sizes under a fixed CFL condition.
NASA Astrophysics Data System (ADS)
Sergienko, Olga
2013-04-01
Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.
ERIC Educational Resources Information Center
Nelson, Jane Bray; Nelson, Jim
2009-01-01
Written by Jim and Jane Nelson, Teaching About Kinematics is the latest AAPT/PTRA resource book. Based on physics education research, the book provides teachers with the resources needed to introduce students to some of the fundamental building blocks of physics. It is a carefully thought-out, step-by-step laboratory-based introduction to the…
ERIC Educational Resources Information Center
Coleman, J. J.
1982-01-01
Describes mathematics of the nonliner relationships between a constant-speed, capstan-driven magnetic tape transport mechanism and a constant-angular-velocity take-up reel. The relationship, derived from the sum of a partial, serves in recognition of a finite tape. Thickness can serve as an example of rotational kinematics. (Author/SK)
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Asgharzadeh, Hafez
2015-11-01
Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.
Kinematic manipulation of molecular chains subject to rigid constraints
Manocha, D.; Zhu, Yunshan
1994-12-31
We present algorithms for kinematic manipulation of molecular chains subject to fixed bond lengths and bond angles. They are useful for calculating conformations of a molecule subject to geometric constraints, such as those derived from two-dimensional NMR experiments. Other applications include searching out the full range of conformations available to a molecule such as cyclic configurations. We make use of results from robot kinematics and recently developed algorithms for solving polynomial systems. In particular, we model the molecule as a serial chain using the Denavit-Hartenberg formulation and reduce these problems to inverse kinematics of a serial chain. We also highlight the relationship between molecular embedding problems and inverse kinematics. As compared to earlier methods, the main advantages of the kinematic formulation are its generality to all molecular chains without any restrictions on the geometry and efficiency in terms of performance. The algorithms give us real time performance (order of tens of milliseconds) on smaller chains and are applicable to all chains.
Global inversion for anisotropy during full-waveform inversion
NASA Astrophysics Data System (ADS)
Debens, H. A.; Warner, M.; Umpleby, A.
2015-12-01
Full-waveform inversion (FWI) is a powerful tool for quantitative estimation of high-resolution high-fidelity models of subsurface seismic parameters, typically P-wave velocity. The solution to FWI's posed nonlinear inverse problem is obtained via an iterative series of linearized local updates to a start model, assuming this model lies within the basin of attraction to the global minimum. Thanks to many successful published applications to three-dimensional (3D) field datasets, its advance has been rapid and driven in large-part by the oil and gas industry. The consideration of seismic anisotropy during FWI is of vital importance, as it holds influence over both the kinematics and dynamics of seismic waveforms. If not appropriately taken into account then inadequacies in the anisotropy model are likely to manifest as significant error in the recovered velocity model. Conventionally, anisotropic FWI employs either an a priori anisotropy model, held fixed during FWI, or it uses a multi-parameter local inversion scheme to recover the anisotropy as part of the FWI; both of these methods can be problematic. Constructing an anisotropy model prior to FWI often involves intensive (and hence expensive) iterative procedures, such as travel-time tomography or moveout velocity analysis. On the other hand, introducing multiple parameters to FWI itself increases the complexity of what is already an underdetermined inverse problem. We propose that global rather than local FWI can be used to recover the long-wavelength acoustic anisotropy model, and that this can then be followed by more-conventional local FWI to recover the detailed model. We validate this approach using a full 3D field dataset, demonstrating that it avoids problems associated to crosstalk that can bedevil local inversion schemes, and reconciles well with in situ borehole measurements. Although our approach includes a global inversion for anisotropy, it is nonetheless affordable and practical for 3D field data.
NASA Astrophysics Data System (ADS)
Egbert, Gary D.
2012-07-01
We describe novel hybrid algorithms for inversion of electromagnetic geophysical data, combining the computational and storage efficiency of a conjugate gradient approach with an Occam scheme for regularization and step-length control. The basic algorithm is based on the observation that iterative solution of the symmetric (Gauss-Newton) normal equations with conjugate gradients effectively generates a sequence of sensitivities for different linear combinations of the data, allowing construction of the Jacobian for a projection of the original full data space. The Occam scheme can then be applied to this projected problem, with the tradeoff parameter chosen by assessing fit to the full data set. For EM geophysical problems with multiple transmitters (either multiple frequencies or source geometries) an extension of the basic hybrid algorithm is possible. In this case multiple forward and adjoint solutions (one each for each transmitter) are required for each step in the iterative normal equation solver, and each corresponds to the sensitivity for a separate linear combination of data. From the perspective of the hybrid approach, with conjugate gradients generating an approximation to the full Jacobian, it is advantageous to save all of the component sensitivities, and use these to solve the projected problem in a larger subspace. We illustrate the algorithms on a simple problem, 2-D magnetotelluric inversion, using synthetic data. Both the basic and modified hybrid schemes produce essentially the same result as an Occam inversion based on a full calculation of the Jacobian, and the modified scheme requires significantly fewer steps (relative to the basic hybrid scheme) to converge to an adequate solution to the normal equations. The algorithms are expected to be useful primarily for 3-D inverse problems for which the computational burden is heavily dominated by solution to the forward and adjoint problems.
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-15
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the
NASA Astrophysics Data System (ADS)
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for non-linear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form a preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the
Speaker independent acoustic-to-articulatory inversion
NASA Astrophysics Data System (ADS)
Ji, An
Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.
Laplace-domain waveform inversion versus refraction-traveltime tomography
NASA Astrophysics Data System (ADS)
Bae, Ho Seuk; Pyun, Sukjoon; Shin, Changsoo; Marfurt, Kurt J.; Chung, Wookeen
2012-07-01
Geophysicists and applied mathematicians have proposed a rich suite of long-wavelength velocity estimation algorithms to construct starting velocity models for subsequent pre-stack depth migration and inversion. Refraction-traveltime tomography derives subsurface velocity models from picked first-arrival traveltimes. In contrast, Laplace-domain waveform inversion recovers long-wavelength velocity structure using the weighted amplitudes of first and later arrivals. There are several implementations of first-arrival traveltime inversion, with most based on ray tracing, and some based on the damped monochromatic wave equation, which accurately represent simple and finite-frequency first arrivals. Computationally, Laplace-domain wavefield inversion is quite similar to refraction-traveltime tomography using damped monochromatic wavefield, but the objective functions used in inversion are radically different. As in classical ray trace-based traveltime inversion, the objective of refraction-traveltime tomography using damped monochromatic wavefield is to match the phase (traveltime) of the first arrival of each measured seismic trace. In contrast, the objective of Laplace-domain wavefield inversion is to match the weighted amplitudes of both first and later arrivals to the weighted amplitudes of the measured seismic trace. Principles of refraction-traveltime tomography were used to generate velocity models of the earth one century ago. Laplace-domain waveform inversion is a more recently introduced algorithm and has been less rigorously studied by the seismic research community, with many workers believing it be equivalent to finite-frequency first-arrival traveltime tomography. We show that Laplace-domain waveform inversion is both theoretically and empirically different from finite-frequency first-arrival traveltime tomography. Specifically, we examine the Jacobian (sensitivity) kernels used in the two inversion schemes to quantify the different sensitivities (and hence
A KBE tool for solving the mechanisms kinematics
NASA Astrophysics Data System (ADS)
Rusu, C.; Tiuca, T. L.; Noveanu, S.; Mândru, D.
2016-08-01
Knowledge-Based-Engineering (KBE) is a research field in which the methodologies and technologies for capturing and re-using the engineering knowledge are studied. Nowadays, the mechanisms design is accomplished by using various CAD software. Since, every CAD system includes KBE tools, those can be used to reduce time and simplify the mechanism's design process.One step in the design of the mechanisms with more than one degree of freedom is the direct and inverse kinematic analysis. This step can be difficult, because many calculations are involved and usually more than one solution exists. The geometrical constraints defined in the CAD system for the mechanism linkage's assembling, offer a simple solution for the kinematics analysis.This paper presents a KBE tool useful for kinematics analysis.The automation of repetitive tasks is implemented in an external application written in C# that it is also presented.
Decoding intentions from movement kinematics
Cavallo, Andrea; Koul, Atesh; Ansuini, Caterina; Capozzi, Francesca; Becchio, Cristina
2016-01-01
How do we understand the intentions of other people? There has been a longstanding controversy over whether it is possible to understand others’ intentions by simply observing their movements. Here, we show that indeed movement kinematics can form the basis for intention detection. By combining kinematics and psychophysical methods with classification and regression tree (CART) modeling, we found that observers utilized a subset of discriminant kinematic features over the total kinematic pattern in order to detect intention from observation of simple motor acts. Intention discriminability covaried with movement kinematics on a trial-by-trial basis, and was directly related to the expression of discriminative features in the observed movements. These findings demonstrate a definable and measurable relationship between the specific features of observed movements and the ability to discriminate intention, providing quantitative evidence of the significance of movement kinematics for anticipating others’ intentional actions. PMID:27845434
NASA Astrophysics Data System (ADS)
Büsing, Henrik
2013-04-01
Two-phase flow in porous media occurs in various settings, such as the sequestration of CO2 in the subsurface, radioactive waste management, the flow of oil or gas in hydrocarbon reservoirs, or groundwater remediation. To model the sequestration of CO2, we consider a fully coupled formulation of the system of nonlinear, partial differential equations. For the solution of this system, we employ the Box method after Huber & Helmig (2000) for the space discretization and the fully implicit Euler method for the time discretization. After linearization with Newton's method, it remains to solve a linear system in every Newton step. We compare different iterative methods (BiCGStab, GMRES, AGMG, c.f., [Notay (2012)]) combined with different preconditioners (ILU0, ASM, Jacobi, and AMG as preconditioner) for the solution of these systems. The required Jacobians can be obtained elegantly with automatic differentiation (AD) [Griewank & Walther (2008)], a source code transformation providing exact derivatives. We compare the performance of the different iterative methods with their respective preconditioners for these linear systems. Furthermore, we analyze linear systems obtained by approximating the Jacobian with finite differences in terms of Newton steps per time step, steps of the iterative solvers and the overall solution time. Finally, we study the influence of heterogeneities in permeability and porosity on the performance of the iterative solvers and their robustness in this respect. References [Griewank & Walther(2008)] Griewank, A. & Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, PA, 2nd edn. [Huber & Helmig(2000)] Huber, R. & Helmig, R., 2000. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Computational Geosciences, 4, 141-164. [Notay(2012)] Notay, Y., 2012. Aggregation-based algebraic multigrid for convection
NASA Astrophysics Data System (ADS)
Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan
2014-11-01
We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-08-24
This study presents a numerical investigation on using the Jacobian-free Newton–Krylov (JFNK) method to solve the two-phase flow four-equation drift flux model with realistic constitutive correlations (‘closure models’). The drift flux model is based on Isshi and his collaborators’ work. Additional constitutive correlations for vertical channel flow, such as two-phase flow pressure drop, flow regime map, wall boiling and interfacial heat transfer models, were taken from the RELAP5-3D Code Manual and included to complete the model. The staggered grid finite volume method and fully implicit backward Euler method was used for the spatial discretization and time integration schemes, respectively. The Jacobian-free Newton–Krylov method shows no difficulty in solving the two-phase flow drift flux model with a discrete flow regime map. In addition to the Jacobian-free approach, the preconditioning matrix is obtained by using the default finite differencing method provided in the PETSc package, and consequently the labor-intensive implementation of complex analytical Jacobian matrix is avoided. Extensive and successful numerical verification and validation have been performed to prove the correct implementation of the models and methods. Code-to-code comparison with RELAP5-3D has further demonstrated the successful implementation of the drift flux model.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-08-24
This study presents a numerical investigation on using the Jacobian-free Newton–Krylov (JFNK) method to solve the two-phase flow four-equation drift flux model with realistic constitutive correlations (‘closure models’). The drift flux model is based on Isshi and his collaborators’ work. Additional constitutive correlations for vertical channel flow, such as two-phase flow pressure drop, flow regime map, wall boiling and interfacial heat transfer models, were taken from the RELAP5-3D Code Manual and included to complete the model. The staggered grid finite volume method and fully implicit backward Euler method was used for the spatial discretization and time integration schemes, respectively. Themore » Jacobian-free Newton–Krylov method shows no difficulty in solving the two-phase flow drift flux model with a discrete flow regime map. In addition to the Jacobian-free approach, the preconditioning matrix is obtained by using the default finite differencing method provided in the PETSc package, and consequently the labor-intensive implementation of complex analytical Jacobian matrix is avoided. Extensive and successful numerical verification and validation have been performed to prove the correct implementation of the models and methods. Code-to-code comparison with RELAP5-3D has further demonstrated the successful implementation of the drift flux model.« less
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.
Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data
Gary D. Egbert
2007-03-22
The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to the full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before
Karimova, D.K.; Pavlovskaya, E.D.
1984-01-01
Proper motions determined by the authors are utilized to study the kinematics of 79 O-type stars at distance r< or =2.5 kpc. The sample is divided into two groups, having space-velocity dispersions tau/sub I/roughly-equal10 km/sec, sigma/sub II/roughly-equal35 km/sec. Solutions for the velocity-field parameters for group I yield a galactic angular rotation speed ..omega../sub 0/ = 24.9 km sec/sup -1/ kpc/sup -1/ at the sun (for R/sub 0/ = 10.0 kpc) and an Oort constant A = 12.2 km sec/sup -1/ kpc/sup -1/. Most of the O stars exhibit a small z-velocity directed away from the galactic plane. The velocity-ellipsoid parameters and box-orbit elements are calculated.
Rattlesnake strike behavior: kinematics
Kardong; v
1998-03-01
The predatory behavior of rattlesnakes includes many distinctive preparatory phases leading to an extremely rapid strike, during which venom is injected. The rodent prey is then rapidly released, removing the snake's head from retaliation by the prey. The quick action of the venom makes possible the recovery of the dispatched prey during the ensuing poststrike period. The strike is usually completed in less than 0.5 s, placing a premium on an accurate strike that produces no significant errors in fang placement that could result in poor envenomation and subsequent loss of the prey. To clarify the basis for effective strike performance, we examined the basic kinematics of the rapid strike using high-speed film analysis. We scored numerous strike variables. Four major results were obtained. (1) Neurosensory control of the strike is based primarily upon sensory inputs via the eyes and facial pits to launch the strike, and upon tactile stimuli after contact. Correction for errors in targeting occurs not by a change in strike trajectory, but by fang repositioning after the jaws have made contact with the prey. (2) The rattlesnake strike is based upon great versatility and variation in recruitment of body segments and body postures. (3) Forces generated during acceleration of the head are transferred to posterior body sections to decelerate the head before contact with the prey, thereby reducing impact forces upon the snake's jaws. (4) Body acceleration is based on two patterns of body displacement, one in which acute sections of the body open like a gate, the other in which body segments flow around postural curves similar to movements seen during locomotion. There is one major implication of these results: recruitment of body segments, launch postures and kinematic features of the strike may be quite varied from strike to strike, but the overall predatory success of each strike by a rattlesnake is very consistent.
Robust Inversion and Data Compression in Control Allocation
NASA Technical Reports Server (NTRS)
Hodel, A. Scottedward
2000-01-01
We present an off-line computational method for control allocation design. The control allocation function delta = F(z)tau = delta (sub 0) (z) mapping commanded body-frame torques to actuator commands is implicitly specified by trim condition delta (sub 0) (z) and by a robust pseudo-inverse problem double vertical line I - G(z) F(z) double vertical line less than epsilon (z) where G(z) is a system Jacobian evaluated at operating point z, z circumflex is an estimate of z, and epsilon (z) less than 1 is a specified error tolerance. The allocation function F(z) = sigma (sub i) psi (z) F (sub i) is computed using a heuristic technique for selecting wavelet basis functions psi and a constrained least-squares criterion for selecting the allocation matrices F (sub i). The method is applied to entry trajectory control allocation for a reusable launch vehicle (X-33).
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
Development of fully Bayesian multiple-time-window source inversion
NASA Astrophysics Data System (ADS)
Kubo, Hisahiko; Asano, Kimiyuki; Iwata, Tomotaka; Aoi, Shin
2016-03-01
In the estimation of spatiotemporal slip models, kinematic source inversions using Akaike's Bayesian Information Criterion (ABIC) and the multiple-time-window method have often been used. However, there are cases in which conventional ABIC-based source inversions do not work well in the determination of hyperparameters when a non-negative slip constraint is used. In order to overcome this problem, a new source inversion method was developed in this study. The new method introduces a fully Bayesian method into the kinematic multiple-time-window source inversion. The multiple-time-window method is one common way of parametrizing a source time function and is highly flexible in terms of the shape of the source time function. The probability distributions of model parameters and hyperparameters can be directly obtained by using the Markov chain Monte Carlo method. These probability distributions are useful for simply evaluating the uniqueness and reliability of the derived model, which is another advantage of a fully Bayesian method. This newly developed source inversion method was applied to the 2011 Ibaraki-oki, Japan, earthquake (Mw 7.9) to demonstrate its usefulness. It was demonstrated that the problem with using the conventional ABIC-based source inversion method for hyperparameter determination appeared in the spatiotemporal source inversion of this event and that the newly developed source inversion could overcome this problem.
Application of Large-Scale Inversion Algorithms to Hydraulic Tomography in an Alluvial Aquifer.
Fischer, P; Jardani, A; Soueid Ahmed, A; Abbas, M; Wang, X; Jourde, H; Lecoq, N
2017-03-01
Large-scale inversion methods have been recently developed and permitted now to considerably reduce the computation time and memory needed for inversions of models with a large amount of parameters and data. In this work, we have applied a deterministic geostatistical inversion algorithm to a hydraulic tomography investigation conducted in an experimental field site situated within an alluvial aquifer in Southern France. This application aims to achieve a 2-D large-scale modeling of the spatial transmissivity distribution of the site. The inversion algorithm uses a quasi-Newton iterative process based on a Bayesian approach. We compared the results obtained by using three different methodologies for sensitivity analysis: an adjoint-state method, a finite-difference method, and a principal component geostatistical approach (PCGA). The PCGA is a large-scale adapted method which was developed for inversions with a large number of parameters by using an approximation of the covariance matrix, and by avoiding the calculation of the full Jacobian sensitivity matrix. We reconstructed high-resolution transmissivity fields (composed of up to 25,600 cells) which generated good correlations between the measured and computed hydraulic heads. In particular, we show that, by combining the PCGA inversion method and the hydraulic tomography method, we are able to substantially reduce the computation time of the inversions, while still producing high-quality inversion results as those obtained from the other sensitivity analysis methodologies.
Stellar population and kinematics of NGC 404
NASA Astrophysics Data System (ADS)
Bouchard, A.; Prugniel, P.; Koleva, M.; Sharina, M.
2010-04-01
Context. NGC 404 is a nearly face-on, nearby low-luminosity lenticular galaxy. Probing its characteristics provides a wealth of information on the details of the possible evolution processes of dS0 galaxies, which may not be possible in other, more distant objects. Aims: We study the internal kinematics and the spatial distribution of the star formation history in NGC 404. Methods: We obtained long-slit spectroscopy at the OHP 1m93 telescope along the major and minor axes of NGC 404. The spectra had a resolution R = 3600 covering a wavelength range from 4600 to 5500 Å. The data were fitted against the Pegase. HR stellar population models to derive the internal stellar kinematics, ages, and metallicities simultaneously. All this was done while taking any instrumental contamination to the line-of-sight velocity distribution into account. First, the global properties of the galaxy were analysed by fitting a single model to the data and looking at the kinematic variations and SSP equivalent age and metallicities as a function of radius. Afterwards, the stellar populations were decomposed into 4 individually analysed components. Results: NGC 404 clearly shows two radial velocity inversions along its major axis. The kinematically decoupled core rotates in the same direction as the neutral hydrogen shell that surrounds the galaxy. We resolved the star formation history in the core of the galaxy into 4 events: a very young (< 150 Myr, and [Fe/H] = 0.4) component with constant ongoing star formation, a second young (430 Myr) component with [Fe/H] = 0.1, an intermediate population (1.7 Gyr) that has [Fe/H] = -0.05, and finally an old (12 Gyr) component with [Fe/H] = -1.26. The two young components fade very quickly with radius, leaving only the intermediate and old population at a radius of 25´´ (370 pc) from the centre. Conclusions: We conclude that NGC 404 had a spiral morphology about 1 Gyr ago and that one or many merger events has triggered a morphological transition
NASA Astrophysics Data System (ADS)
Lin, C.-H.; Gallagher, P. T.
The goal of this study is to investigate the driving mechanisms of CMEs and to infer the magnetic field properties at the onset of the instability. We use EIT 195 Å images and LASCO white-light coronagraph data of a CME event that occurred on 17 December 2006. It was a long-duration event, and was associated with an occulted C2.1 class flare. To determine the driving mechanism, we quantitatively and qualitatively compared the observationally obtained kinematic evolution with that predicted by three CME models: the breakout model (BO, see Antiochos et al. 1999; Lynch et al. 2008; DeVore and Antiochos 2008), the catastrophe model (CM, see Priest and Forbes 2000), and the toroidal instability model (TI, see Chen 1989; Kliem and Török 2006). Our results indicate that this CME is best represented by the CM model. We infer that, at the onset of the instability, the Alfvén speed is approximately 120 km s-1 and the height of the flux rope is roughly 100-200Mm. These parameter values are related to the magnetic environment and the loop geometry and can be used to infer the magnetic condition at the onset of the eruption.We intend to submit the full analysis to A&A.
Tensor networks from kinematic space
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...
2016-07-20
We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry,more » obtaining a detailed agreement which includes the entwinement sector. In conclusion, we discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.« less
Tensor networks from kinematic space
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2016-07-20
We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry, obtaining a detailed agreement which includes the entwinement sector. In conclusion, we discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.
Kinematic precision of gear trains
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.
1982-01-01
Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.
Kinematic precision of gear trains
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.
1983-01-01
Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733
One-dimensional kinematics of particle stream flow with application to solar wind simulation
NASA Technical Reports Server (NTRS)
Olmsted, C.; Akasofu, S.-L.
1985-01-01
A simple kinematic method for determining the particle velocity distribution of a model solar wind for which the spatial distribution of particles is given as a function of particle travel time has been developed by Hakamada and Akasofu (1982). Here their method is formalized mathematically and an inverse procedure for determining the particle distribution from a given velocity distribution is derived. This inverse procedure is then applied to a simulated velocity distribution obtained from an MHD finite difference code.
Improved kinematic options in ALEGRA.
Farnsworth, Grant V.; Robinson, Allen Conrad
2003-12-01
Algorithms for higher order accuracy modeling of kinematic behavior within the ALEGRA framework are presented. These techniques improve the behavior of the code when kinematic errors are found, ensure orthonormality of the rotation tensor at each time step, and increase the accuracy of the Lagrangian stretch and rotation tensor update algorithm. The implementation of these improvements in ALEGRA is described. A short discussion of issues related to improving the accuracy of the stress update procedures is also included.
Aero-optimum hovering kinematics.
Nabawy, Mostafa R A; Crowther, William J
2015-08-07
Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible.
NASA Astrophysics Data System (ADS)
Asgharzadeh, Hafez; Borazjani, Iman
2014-11-01
Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Kinematics, controls, and path planning results for a redundant manipulator
NASA Technical Reports Server (NTRS)
Gretz, Bruce; Tilley, Scott W.
1989-01-01
The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.
Deformation field validation and inversion applied to adaptive radiation therapy
NASA Astrophysics Data System (ADS)
Vercauteren, Tom; De Gersem, Werner; Olteanu, Luiza A. M.; Madani, Indira; Duprez, Fréderic; Berwouts, Dieter; Speleers, Bruno; De Neve, Wilfried
2013-08-01
Development and implementation of chronological and anti-chronological adaptive dose accumulation strategies in adaptive intensity-modulated radiation therapy (IMRT) for head-and-neck cancer. An algorithm based on Newton iterations was implemented to efficiently compute inverse deformation fields (DFs). Four verification steps were performed to ensure a valid dose propagation: intra-cell folding detection finds zero or negative Jacobian determinants in the input DF; inter-cell folding detection is implemented on the resolution of the output DF; a region growing algorithm detects undefined values in the output DF; DF domains can be composed and displayed on the CT data. In 2011, one patient with nonmetastatic head and neck cancer selected from a three phase adaptive DPBN study was used to illustrate the algorithms implemented for adaptive chronological and anti-chronological dose accumulation. The patient received three 18F-FDG-PET/CTs prior to each treatment phase and one CT after finalizing treatment. Contour propagation and DF generation between two consecutive CTs was performed in Atlas-based autosegmentation (ABAS). Deformable image registration based dose accumulations were performed on CT1 and CT4. Dose propagation was done using combinations of DFs or their inversions. We have implemented a chronological and anti-chronological dose accumulation algorithm based on DF inversion. Algorithms were designed and implemented to detect cell folding.
Kinematic analysis of a flexible six-DOF parallel mechanism.
Jing, Feng-Shui; Tan, Min; Hou, Zeng-Guang; Liang, Zi-Ze; Wang, Yun-Kuan; Gupta, Madan M; Nikiforuk, Peter N
2006-04-01
In this paper, a new type of six-degrees of freedom (DOF) flexible parallel mechanism (FPM) is presented. This type of parallel mechanism possesses several favorable properties: (1) its number of DOFs is independent of the number of serial chains which make up the mechanism; (2) it has no kinematical singularities; (3) it is designed to move on rails, and therefore its workspace is much larger than that of a conventional parallel manipulator; and (4) without changing the number of DOFs and the kinematics of the mechanisms, the number of the serial chains can be reconfigured according to the needs of the tasks. These properties make the mechanism very preferable in practice, especially for such tasks as joining huge ship blocks, in which the manipulated objects vary dramatically both in weights and dimensions. Furthermore, the mechanism can be used as either a fully actuated system or an underactuated system. In the fully actuated case, the mechanism has six DOF motion capabilities and manipulation capabilities. However, in the underactuated case, the mechanism still has six DOF motion capabilities, but it has only five DOF manipulation capabilities. In this paper, both the inverse and forward kinematics are studied and expressed in a closed form. The workspace and singularity analysis of the mechanism are also presented. An example is presented to illustrate how to calculate the kinematics of the mechanism in both fully-actuated and underactuated cases. Finally, an application of such a mechanism to manufacturing industry is introduced.
A global approach for using kinematic redundancy to minimize base reactions of manipulators
NASA Technical Reports Server (NTRS)
Chung, C. L.; Desa, S.
1989-01-01
An important consideration in the use of manipulators in microgravity environments is the minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the manipulator on its base as it performs its tasks. One approach which was proposed and implemented is to use the redundant degree of freedom in a kinematically redundant manipulator to plan manipulator trajectories to minimize base reactions. A global approach was developed for minimizing the magnitude of the base reactions for kinematically redundant manipulators which integrates the Partitioned Jacobian method of redundancy resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which is the time-integral of the magnitude of the base reactions. The global approach was also compared with a local approach developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one redundant degree-of-freedom. The results show that the global approach is more effective in reducing and smoothing the base force while the local approach is superior in reducing the base moment.
Kinematics of a New High Precision Three Degree-of-Freedom Parallel Manipulator
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2005-01-01
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most sixteen assembly configurations for the manipulator. In addition, it is shown that the sixteen solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
Visualized kinematics code for two-body nuclear reactions
NASA Astrophysics Data System (ADS)
Lee, E. J.; Chae, K. Y.
2016-05-01
The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.
Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.
2007-06-15
Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log-Jacobian
Christensen, Gary E; Song, Joo Hyun; Lu, Wei; El Naqa, Issam; Low, Daniel A
2007-06-01
Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log-Jacobian
Locative Inversion in Cantonese.
ERIC Educational Resources Information Center
Mok, Sui-Sang
This study investigates the phenomenon of "Locative Inversion" in Cantonese. The term "Locative Inversion" indicates that the locative phrase (LP) syntactic process in Cantonese and the appears at the sentence-initial position and its logical subject occurs postverbally. It is demonstrated that this Locative Inversion is a…
Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.
2015-10-15
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.
KINEMATIC ANALYSIS OF MODULAR, TRUSS-BASED MANIPULATOR UNITS
Salerno, R. J.
1994-06-01
solution techniques are developed for solving the "forward" or "direct" and "inverse" kinematic problems for these geometries. The" forward" kinematic problem is that of finding the position and orientation of the distal end of the VGT relative to the proximal end, given the specific displacements of the (linear) actuators. This problem is rarely solvable in closed form. However, powerful iterative algorithms capable of solution in real time on typical modern robot control hardware are presented. The "inverse" kinematic problem is that of finding the required actuator displacements given the position and orientation of the distal end of the VGT relative to the proximal end. For specific VGT geometries, closed-form solutions are presented. For the more general problem, iterative algorithms capable of solution in real time are again derived and presented.
NASA Astrophysics Data System (ADS)
Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.
2010-06-01
In this work we present scanning Fabry-Perot Hα observations of the isolated interacting galaxy pair NGC 5278/9 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields, various kinematic parameters and rotation curves for both galaxies. Our kinematical results together with the fact that dust lanes have been detected in both galaxies, as well as the analysis of surface brightness profiles along the minor axis, allowed us to determine that both components of the interacting pair are trailing spirals.
Occupant Kinematics in Laboratory Rollover Tests: PMHS Response.
Lessley, David J; Riley, Patrick; Zhang, Qi; Foltz, Patrick; Overby, Brian; Heltzel, Sara; Sochor, Mark; Crandall, Jeff; Kerrigan, Jason R
2014-11-01
The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover event. The DRoTS was used to drop/catch and rotate the test buck, which replicated the occupant compartment of a typical mid-sized SUV, around its center of gravity without roof-to-ground contact. The studied test conditions included a quasi-static inversion (4 tests), an inverted drop and catch that produced a 3 g vertical deceleration (4 tests), a pure dynamic roll at 360 degrees/second (11 tests), and a roll with a superimposed drop and catch produced vertical deceleration (17 tests). Each PMHS was restrained with a three-point belt and was tested in both leading-side and trailing-side front-row seating positions. Whole-body kinematics were measured using a 3D motion capture system that quantified occupant displacement relative to the vehicle buck for the X-axis (longitudinal), Y-axis (lateral), and Z-axis (vertical) directions. Additionally the spine was divided into five segments to describe intrasegmental kinematics of the spine, including segment rotations as well as spinal extension and compression. The reported data represent the most complete set of kinematic response targets for a restrained occupant in a variety of dynamic rollover conditions, and are immediately useful for efforts to evaluate and improve existing ATDs and computational models for use in the rollover crash environment.
Trajectory optimization for kinematically redundant arms
NASA Technical Reports Server (NTRS)
Carignan, Craig R.
1991-01-01
A review of local optimization methods for resolving joint configurations in underconstrained manipulation tasks is conducted. A new approach is developed for observing joint limits and avoiding obstacles during the trajectory planning. The methodology is used in a four-link arm example to avoid a workspace singularity and is compared with results using the extended Moore-Penrose technique. An alternative measure of arm 'manipulability' based directly on the rank of the Jacobian is also introduced.
Kinematics and trajectory generation for MIRADAS arms
NASA Astrophysics Data System (ADS)
Sabater, J.; Gómez, J. M.; Torra, J.; López, M.; Raines, S. N.; Eikenberry, S. S.
2015-05-01
The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS) is a NIR multi-object spectrograph for the Gran Telescopio Canarias (GTC). The instrument has a multiplexing system (MXS) that enables the simultaneous observation of twenty objects located within its field of view. These user selected targets are acquired by twenty deployable robotic probe arms with pickoff mirror optics operating at cryogenic temperatures. The MIRADAS probe arm is a close-loop mechanism designed with optics simplicity in mind, presenting good stability when it is operated upside down. Calculating optimum collision-free trajectories requires a good knowledge of the MIRADAS arm behavior based on its geometry and its mechanical constraints. This study introduces a geometric model for the two degree-of-freedom (DoF) mechanism, including solutions for the forward and inverse kinematics problem. The concepts of zone-of-avoidance (ZoA), workspace and envelope of MIRADAS arm are presented and studied. Finally, the paper proposes two different patrolling approaches that can be exploited when planning trajectories.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This report presents results from the research grant entitled Active Control of Robot Manipulators, funded by the Goddard Space Flight Center, under Grant NAG5-780, for the period July 1, 1988 to January 1, 1989. An analysis is presented of a 6 degree-of-freedom robot end-effector built to study telerobotic assembly of NASA hardware in space. Since the end-effector is required to perform high precision motion in a limited workspace, closed-kinematic mechanisms are chosen for its design. A closed-form solution is obtained for the inverse kinematic problem and an iterative procedure employing Newton-Raphson method is proposed to solve the forward kinematic problem. A study of the end-effector workspace results in a general procedure for the workspace determination based on link constraints. Computer simulation results are presented.
MEERSCHAERT, MARK M.; STRAKA, PETER
2013-01-01
The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled. PMID:25045216
Kinematic and stability motion limits for a hexapod walking machine
NASA Astrophysics Data System (ADS)
Dunton, Elizabeth M.
1995-03-01
The major problem addressed by this research is to investigate and implement the basic concepts necessary to lay the groundwork for efficient forms of motion planning, motion control, and gait algorithms with respect to hexapod walking machines. Specifically, the approach taken was to develop and implement the concepts of a stability margin and a joint space motion margin on an object-oriented representation of the Aquarobot. The model was generated in Franz Common Lisp and simulated via Allegro Common Windows. A method by which distance computations can be calculated and applied to the center of mass and triangular support pattern of a walking machine to determine the stability margin is introduced. Inverse kinematics and joint limits are utilized to ascertain the joint space motion margin of the model. Response to impending instability and the effect when a joint hits or approaches a joint kinematic limit on the motion of the hexapod walking machine by stopping the model is also addressed. The results are as follows: the concepts of the joint space motion margin and the stability margin can be successfully implemented on a kinematic model and graphical simulation of a hexapod walking machine. These concepts contribute to future work in the area of more efficient free gait algorithms, specifically asynchronous gait algorithms.
Analysis of a closed-kinematic chain robot manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1988-01-01
Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.
NASA Astrophysics Data System (ADS)
Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.
2014-12-01
We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic
Contact kinematics of biomimetic scales
Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan
2014-12-08
Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.
Kinematic Fitting of Detached Vertices
Mattione, Paul
2007-05-01
The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.
Inversion of high frequency surface waves with fundamental and higher modes
Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.
2003-01-01
The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.
ERIC Educational Resources Information Center
Bedard, Catherine; Belin, Pascal
2004-01-01
Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…
Teaching about Inverse Functions
ERIC Educational Resources Information Center
Esty, Warren
2005-01-01
In their sections on inverses most precalculus texts emphasize an algorithm for finding f [superscript -1] given f. However, inspection of precalculus and calculus texts shows that students will never again use the algorithm, which suggests the textbook emphasis may be misplaced. Inverses appear primarily when equations need to be solved, which…
Dewpoint temperature inversions analyzed
NASA Technical Reports Server (NTRS)
Ashby, W. C.; Bogner, M. A.; Moses, H.
1969-01-01
Dewpoint temperature inversion, with regard to other simultaneous meteorological conditions, was examined to establish the influence of meteorological variables on the variation of dewpoint temperature with height. This report covers instrumentation and available data, all the climatological features of dewpoint inversions, and specific special cases.
The SAMI Galaxy Survey: asymmetry in gas kinematics and its links to stellar mass and star formation
NASA Astrophysics Data System (ADS)
Bloom, J. V.; Fogarty, L. M. R.; Croom, S. M.; Schaefer, A.; Bryant, J. J.; Cortese, L.; Richards, S.; Bland-Hawthorn, J.; Ho, I.-T.; Scott, N.; Goldstein, G.; Medling, A.; Brough, S.; Sweet, S. M.; Cecil, G.; López-Sánchez, A.; Glazebrook, K.; Parker, Q.; Allen, J. T.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N.; Owers, M. S.; Sharp, R.
2017-02-01
We study the properties of kinematically disturbed galaxies in the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey using a quantitative criterion, based on kinemetry (Krajnović et al.). The approach, similar to the application of kinemetry by Shapiro et al., uses ionized gas kinematics, probed by H α emission. By this method, 23 ± 7 per cent of our 360-galaxy sub-sample of the SAMI Galaxy Survey are kinematically asymmetric. Visual classifications agree with our kinemetric results for 90 per cent of asymmetric and 95 per cent of normal galaxies. We find that stellar mass and kinematic asymmetry are inversely correlated and that kinematic asymmetry is both more frequent and stronger in low-mass galaxies. This builds on previous studies that found high fractions of kinematic asymmetry in low-mass galaxies using a variety of different methods. Concentration of star formation and kinematic disturbance are found to be correlated, confirming results found in previous work. This effect is stronger for high-mass galaxies (log(M*) > 10) and indicates that kinematic disturbance is linked to centrally concentrated star formation. Comparison of the inner (within 0.5Re) and outer H α equivalent widths of asymmetric and normal galaxies shows a small but significant increase in inner equivalent width for asymmetric galaxies.
Of cilium and flagellum kinematics
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Promode R.; Hansen, Joshua C.
2009-11-01
The kinematics of propulsion of small animals such as paramecium and spermatozoa is considered. Larger scale models of the cilium and flagellum have been built and a four-motor apparatus has been constructed to reproduce their known periodic motions. The cilium model has transverse deformational ability in one plane only, while the flagellum model has such ability in two planes. When the flagellum model is given a push-pull in one diametral plane, instead of transverse deflection in one plane, it forms a coil. Berg & Anderson's postulation (Nature 245 1973) that a flagellum rotates, is recalled. The kinematics of cilia of paramecium, of the whipping motion of the spermatozoa flagella, and of the flapping motion (rolling and pitching) of the pectoral fins of much larger animals such penguins, have been reproduced in the same basic paramecium apparatus. The results suggest that each of the tiny individual paramecium propulsors have the intrinsic dormant kinematic and structural building blocks to optimize into higher Reynolds number propulsors. A synthetic hypothesis on how small might have become large is animated.
Cobal-Grassman, M.; CDF Collaboration
1996-01-01
We present an update of the top quark analysis using kinematic techniques in {rho}{ovr string {rho}} collisions at {radical}s = 1.8 TeV with the Collider Detector at Fermilab (CDF). We reported before on a study which used 19.3 pb{sup -1} of data from the 1992-93 collider run, but now we use a larger data sample of 67 pb{sup -1}. First, we analyze the total transverse energy of the hard collision in W+{ge}3 jet events, showing the likely presence of a t{ovr string t} component in the event sample. Next, we compare in more detail the kinematic structure of W+{ge}3 jet events with expectations for top pair production and with background processes, predominantly direct W+ jet production. We again find W+{ge}3 jet events which cannot be explained in terms of background, but show kinematic features as expected from top. These events also show evidence for beauty quarks. The findings confirm the observation of top events made earlier in the data of the 1992-93 collider run.
Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation
NASA Astrophysics Data System (ADS)
Mossahebi, Sina
Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy
Towards Extending Forward Kinematic Models on Hyper-Redundant Manipulator to Cooperative Bionic Arms
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Lakhal, Othman; Merzouki, Rochdi
2017-01-01
Forward Kinematics is a stepping stone towards finding an inverse solution and subsequently a dynamic model of a robot. Hence a study and comparison of various Forward Kinematic Models (FKMs) is necessary for robot design. This paper deals with comparison of three FKMs on the same hyper-redundant Compact Bionic Handling Assistant (CBHA) manipulator under same conditions. The aim of this study is to project on modeling cooperative bionic manipulators. Two of these methods are quantitative methods, Arc Geometry HTM (Homogeneous Transformation Matrix) Method and Dual Quaternion Method, while the other one is Hybrid Method which uses both quantitative as well as qualitative approach. The methods are compared theoretically and experimental results are discussed to add further insight to the comparison. HTM is the widely used and accepted technique, is taken as reference and trajectory deviation in other techniques are compared with respect to HTM. Which method allows obtaining an accurate kinematic behavior of the CBHA, controlled in the real-time.
Note: a Piezo Tip/Tilt Platform: structure, kinematics, and experiments.
Du, Z; Su, Y; Yang, W; Dong, W
2014-04-01
A Piezo Tip/Tilt Platform (PT(2)P) is presented with its structure, kinematics, and preliminary experiments. Two essential models of the presented PT(2)P, an equivalent hinge of the flexure hinge and a simplified model of the transmission mechanism, are discussed with the analysis on the structure of the PT(2)P. Based on these models, the inverse kinematics of the PT(2)P is derived. Two experiments are conducted on a prototype of the PT(2)P. The kinematic model is verified with experimental results, which also indicate that the resolution and the repeatability of the PT(2)P is, respectively, better than 0.50 μrad and 0.25 μrad.
The brown dwarf kinematics project
NASA Astrophysics Data System (ADS)
Faherty, Jackie K.
2010-10-01
Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.
Kinematically complete chemical reaction dynamics
NASA Astrophysics Data System (ADS)
Trippel, S.; Stei, M.; Otto, R.; Hlavenka, P.; Mikosch, J.; Eichhorn, C.; Lourderaj, U.; Zhang, J. X.; Hase, W. L.; Weidemüller, M.; Wester, R.
2009-11-01
Kinematically complete studies of molecular reactions offer an unprecedented level of insight into the dynamics and the different mechanisms by which chemical reactions occur. We have developed a scheme to study ion-molecule reactions by velocity map imaging at very low collision energies. Results for the elementary nucleophilic substitution (SN2) reaction Cl- + CH3I → ClCH3 + I- are presented and compared to high-level direct dynamics trajectory calculations. Furthermore, an improved design of the crossed-beam imaging spectrometer with full three-dimensional measurement capabilities is discussed and characterization measurements using photoionization of NH3 and photodissociation of CH3I are presented.
On steady kinematic helical dynamos
NASA Astrophysics Data System (ADS)
Eltayeb, I. A.; Loper, D. E.
The equations governing steady kinematic helical dynamos are studied, using the formalism of Benton (1979), when the flow has no radial component (in cylindrical coordinates). It is shown that all solutions must decay exponentially to zero at large distances, s, from the axis of the helix. When the flow depends on s only it is shown that a necessary condition for dynamo action is that the flow possesses components along both the primary and secondary helices. It is also found that periodic motion of one mode along the primary helix cannot support dynamo action even if the field is composed of mean and periodic parts.
Development of a sensor coordinated kinematic model for neural network controller training
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1990-01-01
A robotic benchmark problem useful for evaluating alternative neural network controllers is presented. Specifically, it derives two camera models and the kinematic equations of a multiple degree of freedom manipulator whose end effector is under observation. The mapping developed include forward and inverse translations from binocular images to 3-D target position and the inverse kinematics of mapping point positions into manipulator commands in joint space. Implementation is detailed for a three degree of freedom manipulator with one revolute joint at the base and two prismatic joints on the arms. The example is restricted to operate within a unit cube with arm links of 0.6 and 0.4 units respectively. The development is presented in the context of more complex simulations and a logical path for extension of the benchmark to higher degree of freedom manipulators is presented.
Morpho-kinematic modeling of planetary nebulae
NASA Astrophysics Data System (ADS)
Chan, Tsz-Pan (Henry)
2009-11-01
The Planetary Nebulae (PNe) are the transition phase between asymptotic giant branch (AGB) star and white dwarfs for stars with masses between 1 and 8 M⊙. They were originally thought to be well-studied and can be explained with simple models. With the advance of imaging technology especially on Space Telescope (HST), the shapes of PNe have been found to be much more complex than we assumed to be. We aimed to investigate on the basic but mysterious intrinsic three-dimensional structures using the newly developed modeling software. Astronomers usually use the morphological classification on group and classify different properties of PNe. Over the past century many attempts have been made for this classification to seek for explaining and understanding the threedimensional structure that is responsible for the observed images. There have been two beliefs in explaining the variety of shapes of PNe and among them the most amazing one is that the morphologies can be accounted by different orientations of a single structure (Khromov & Kohoutek, 1968). Motivated by the study of Ring Nebula on its intrinsic structure, we investigated the possibility that different types of morphology in PNe can be explained by a single model. We used the newly developed modeling code SHAPE (Steffen et al., 2006), which cooperates the use of spatial information as well as its kinematics, and aimed to quantitatively investigate the basic structure inside PNe. We investigated two classical nebulae: NGC 2346 and NGC 2440. We proposed a simple but adequate model for these nebulae. Stimulated optical images and the p-v arrays were derived by the modeling code SHAPE to make comparison with the observed data to seek for the correctness of the model. Hubble velocity field and inverse square law density distribution were assumed throughout the modeling process. This model provides insights in seeking further adequate intrinsic structure of PNe.
The inverse electroencephalography pipeline
NASA Astrophysics Data System (ADS)
Weinstein, David Michael
The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.
NASA Astrophysics Data System (ADS)
Viallet, M.; Goffrey, T.; Baraffe, I.; Folini, D.; Geroux, C.; Popov, M. V.; Pratt, J.; Walder, R.
2016-02-01
This work is a continuation of our efforts to develop an efficient implicit solver for multidimensional hydrodynamics for the purpose of studying important physical processes in stellar interiors, such as turbulent convection and overshooting. We present an implicit solver that results from the combination of a Jacobian-free Newton-Krylov method and a preconditioning technique tailored to the inviscid, compressible equations of stellar hydrodynamics. We assess the accuracy and performance of the solver for both 2D and 3D problems for Mach numbers down to 10-6. Although our applications concern flows in stellar interiors, the method can be applied to general advection and/or diffusion-dominated flows. The method presented in this paper opens up new avenues in 3D modeling of realistic stellar interiors allowing the study of important problems in stellar structure and evolution.
Bernsen, Erik; Dijkstra, Henk A.; Thies, Jonas; Wubs, Fred W.
2010-10-20
In present-day forward time stepping ocean-climate models, capturing both the wind-driven and thermohaline components, a substantial amount of CPU time is needed in a so-called spin-up simulation to determine an equilibrium solution. In this paper, we present methodology based on Jacobian-Free Newton-Krylov methods to reduce the computational time for such a spin-up problem. We apply the method to an idealized configuration of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown that a typical speed-up of a factor 10-25 with respect to the original MOM4 code can be achieved and that this speed-up increases with increasing horizontal resolution.
Ballistic representation for kinematic access
NASA Astrophysics Data System (ADS)
Alfano, Salvatore
2011-01-01
This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.
Robust adaptive kinematic control of redundant robots
NASA Technical Reports Server (NTRS)
Tarokh, M.; Zuck, D. D.
1992-01-01
The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments.
NASA Astrophysics Data System (ADS)
Stoica, Alin; Pisla, Doina; Andras, Szilaghyi; Gherman, Bogdan; Gyurka, Bela-Zoltan; Plitea, Nicolae
2013-03-01
In the last ten years, due to development in robotic assisted surgery, the minimally invasive surgery has greatly changed. Until now, the vast majority of robots used in surgery, have serial structures. Due to the orientation parallel module, the structure is able to reduce the pressure exerted on the entrance point in the patient's abdominal wall. The parallel robot can also handle both a laparoscope as well an active instrument for different surgical procedures. The advantage of this parallel structure is that the geometric model has been obtained through an analytical approach. The kinematic modelling of a new parallel architecture, the inverse and direct geometric model and the inverse and direct kinematic models for velocities and accelerations are being determined. The paper will demonstrate that with this parallel structure, one can obtain the necessary workspace required for a minimally invasive operation. The robot workspace was generated using the inverse geometric model. An indepth study of different types of singularity is performed, allowing the development of safe control algorithms of the experimental model. Some kinematic simulation results and the experimental model of the robot are presented in the paper.
Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Validation of Inertial Measurement Units for Upper Body Kinematics.
Morrow, Melissa M B; Lowndes, Bethany; Fortune, Emma; Kaufman, Kenton R; Hallbeck, Susan
2016-12-05
The purpose of this study was to validate a commercially available IMU system against a standard lab-based motion capture system for the measurement of shoulder elevation, elbow flexion, trunk flexion/extension and neck flexion/extension kinematics. The validation analyses were applied to six surgical faculty members performing a standard, simulated surgical training task that mimics minimally invasive surgery. Three-dimensional joint kinematics were simultaneously recorded by an optical motion capture system and an IMU system with six sensors placed on the head, chest, and bilateral upper and lower arms. The sensor-to-segment axes alignment was accomplished manually. The IMU neck and trunk IMU flexion/extension angles were accurate to within 2.9±0.9 degrees and 1.6±1.1 degrees, respectively. The IMU shoulder elevation measure was accurate to within 6.8±2.7 degrees and the elbow flexion measure was accurate to within 8.2±2.8 degrees. In the Bland-Altman analyses, there were no significant systematic errors present; however, there was a significant inversely proportional error across all joints. As the gold standard measurement increased, the IMU underestimated the magnitude of the joint angle. This study reports acceptable accuracy of a commercially available IMU system; however, results should be interpreted as protocol specific.
Conformational analysis of molecular chains using nano-kinematics.
Manocha, D; Zhu, Y; Wright, W
1995-02-01
We present algorithms for 3-D manipulation and conformational analysis of molecular chains, when bond lengths, bond angles and related dihedral angles remain fixed. These algorithms are useful for local deformations of linear molecules, exact ring closure in cyclic molecules and molecular embedding for short chains. Other possible applications include structure prediction, protein folding, conformation energy analysis and 3D molecular matching and docking. The algorithms are applicable to all serial molecular chains and make no assumptions about their geometry. We make use of results on direct and inverse kinematics from robotics and mechanics literature and show the correspondence between kinematics and conformational analysis of molecules. In particular, we pose these problems algebraically and compute all the solutions making use of the structure of these equations and matrix computations. The algorithms have been implemented and perform well in practice. In particular, they take tens of milliseconds on current workstations for local deformations and chain closures on molecular chains consisting of six or fewer rotatable dihedral angles.
A Kinematically Consistent Two-Point Correlation Function
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1998-01-01
A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.
Hart, K.A.
1994-01-01
During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.
Zhu, Lin; Dai, Zhenxue; Gong, Huili; ...
2015-06-12
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
Zhu, Lin; Dai, Zhenxue; Gong, Huili; Gable, Carl; Teatini, Pietro
2015-06-12
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in an accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.
Finite Element Based Anisotropic 3D Inversion of Marine CSEM Data
NASA Astrophysics Data System (ADS)
Chung, Y.; Byun, J.
2015-12-01
In order to interpret three-dimensional (3D) marine controlled-source electromagnetic (MCSEM) data, it is critical to accurately determine electrical anisotropy because ignoring anisotropy can produce misleading artifacts. In this study, we present an inversion method for 3D subsurface imaging in media with an inhomogeneous and anisotropic conductivity distribution. Direct solvers are incorporated both in the forward and inverse problems, For the forward problem, the vector Helmholtz equation for the secondary electric field is discretized on a hexahedral mesh using edge finite elements, then a direct sparse-matrix solver is chosen to effectively reuse its factorization both in the survey simulation and Jacobian computation. The inversion method is formulated as a functional optimization with an objective functional containing terms measuring data misfit and model structure by means of smoothness and anisotropy. These measures are efficiently incorporated through the use of an iteratively reweighted least-squares scheme. The objective functional is minimized by a Gauss-Newton approach using a direct dense-matrix solver. We demonstrate the accuracy and applicability of the algorithm by testing it on synthetic data sets.
Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves
Xia, J.; Miller, R.D.; Park, C.B.
1999-01-01
The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.
Anisotropic superconductivity driven by kinematic interaction
NASA Astrophysics Data System (ADS)
Ivanov, V. A.
2000-11-01
We have analysed the effect of kinematic pairing on the symmetry of superconducting order parameter for a square lattice in the frame of the strongly correlated Hubbard model. It is argued that in the first perturbation order the kinematic interaction renormalizes the Hubbard-I dispersions and provides at low doping the mixed singlet (s + s*)-wave superconductivity, giving way at higher doping to the triplet p-wave superconductivity. The obtained phase diagram depends only on the hopping integral parameter. The influence of the Coulomb repulsion on the kinematic superconducting pairing has been estimated. The (s + s*)-wave gap and the thermodynamic critical magnetic field have been derived.
Kinematic determinants of human locomotion.
Borghese, N A; Bianchi, L; Lacquaniti, F
1996-01-01
1. The aim of this study was to find kinematic patterns that are invariant across the normal range of locomotion speeds. Subjects walked at different, freely chosen speeds ranging from 0.9 to 2.1 m s-1, while motion and ground reaction forces on the right side of the body were recorded in three-dimensional space. 2. The time course of the anatomical angles of flexion-extension at the hip and ankle was variable not only across subjects, but even from trial to trial in the same subject. By contrast, the time course of the changes in the angles of elevation of each limb segment (pelvis, thigh, shank and foot) relative to the vertical was stereotyped across subjects. 3. To compare the waveforms across speeds, data were scaled in time relative to gait cycle duration. The pattern of ground reaction forces was highly speed dependent. Several distinct families of curves could be recognized in the flexion-extension angles at the hip and ankle. Instead, the waveforms of global length and elevation of the limb, elevation angles of all limb segments and flexion-extension at the knee were invariant with speed. 4. When gait trajectories at all speeds are plotted in the position space defined by the elevation angles of the limb segments, they describe regular loops on a plane. The statistical characteristics of these angular covariations were quantified by means of principal component analysis. The first two principal components accounted together for > 99% of the total experimental variance, and were quantitatively comparable in all subjects. 5. This constraint of planar covariation of the elevation angles is closely reminiscent of that previously described for the control of posture. The existence of laws of intersegmental co-ordination, common to the control of posture and locomotion, presumably assures the maintenance of dynamic equilibrium during forward progression, and the anticipatory adaptation to potentially destabilizing factors by means of co-ordinated kinematic
Inverse heat conduction problems
NASA Astrophysics Data System (ADS)
Orlande, Helcio Rangel Barreto
We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Ledesma, Ragnar
1993-01-01
A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.
Edge-driven microplate kinematics
Schouten, Hans; Klitgord, Kim D.; Gallo, David G.
1993-01-01
It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.
Kinematic dynamo of inertial waves
NASA Astrophysics Data System (ADS)
Herreman, Wietze; Le Gal, Patrice; Le Dizes, Stephane
2008-11-01
Inertial waves are natural oscillatory tridimensional perturbations in rapidly rotating flows. They can be driven to high amplitudes by an external oscillatory forcing such as precession, or by a parametric instability such as in the elliptical instability. Inertial waves were observed in a MHD-flow (Gans, 1971, JFM ; Kelley et al., 2008, GAFD) and could be responsable of dynamo action. For travelling waves, a constructive alpha-effect was identified (Moffatt, 1970, JFM), but it does not apply to confined inertial wave flows. Yet, recent numerical work demonstrated that precession driven MHD flows can sustain magnetic fields (Tilgner, 2005, POF; Wu & Roberts, 2008, GAFD). This motivates us to study more precisely how inertial waves can exhibit dynamo action. Using a numerical code in cylindrical geometry, we find that standing inertial waves can generate a kinematic dynamo. We show that the dynamo-action results from a second order interaction of the diffusive eigenmodes of the magnetic field with the inertial wave. Scaling laws are obtained, which allows us to to apply the results to flows of geophysical interest.
NASA Technical Reports Server (NTRS)
Danly, L.
1986-01-01
Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.
Inverse Functions and their Derivatives.
ERIC Educational Resources Information Center
Snapper, Ernst
1990-01-01
Presented is a method of interchanging the x-axis and y-axis for viewing the graph of the inverse function. Discussed are the inverse function and the usual proofs that are used for the function. (KR)
Intersections, ideals, and inversion
Vasco, D.W.
1998-10-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2015-09-01
The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3D code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less
Salinger, Andy; Evans, Katherine J; Lemieux, Jean-Francois; Holland, David; Payne, Tony; Price, Stephen; Knoll, Dana
2011-01-01
We have implemented the Jacobian-free Newton-Krylov (JFNK) method for solving the rst-order ice sheet momentum equation in order to improve the numerical performance of the Community Ice Sheet Model (CISM), the land ice component of the Community Earth System Model (CESM). Our JFNK implementation is based on signicant re-use of existing code. For example, our physics-based preconditioner uses the original Picard linear solver in CISM. For several test cases spanning a range of geometries and boundary conditions, our JFNK implementation is 1.84-3.62 times more efficient than the standard Picard solver in CISM. Importantly, this computational gain of JFNK over the Picard solver increases when rening the grid. Global convergence of the JFNK solver has been signicantly improved by rescaling the equation for the basal boundary condition and through the use of an inexact Newton method. While a diverse set of test cases show that our JFNK implementation is usually robust, for some problems it may fail to converge with increasing resolution (as does the Picard solver). Globalization through parameter continuation did not remedy this problem and future work to improve robustness will explore a combination of Picard and JFNK and the use of homotopy methods.
Kinematic control of extreme jump angles in the red leg running frog (Kassina maculata).
Richards, Christopher Thomas; Porro, Laura Beatriz; Collings, Amber Jade
2017-03-08
The kinematic flexibility of frog hindlimbs enables multiple locomotor modes within a single species. Prior work has extensively explored maximum performance capacity in frogs; however, the mechanisms by which anurans modulate performance within locomotor modes remain unclear. We explored how Kassina maculata, a species known for both running and jumping abilities, modulates takeoff angle from horizontal to nearly vertical. Specifically, how do 3D motions of leg segments coordinate to move the center of mass (COM) upwards and forwards? How do joint rotations modulate jump angle? High-speed video was used to quantify 3D joint angles and their respective rotation axis vectors. Inverse kinematics was used to determine how hip, knee and ankle rotations contribute to components of COM motion. Independent of takeoff angle, leg segment retraction (rearward rotation) was twofold greater than adduction (downward rotation). Additionally, the joint rotation axis vectors reoriented through time suggesting dynamic shifts in relative roles of joints. We found two hypothetical mechanisms for increasing takeoff angle: Firstly, greater knee and ankle excursion increased shank adduction, elevating the COM. Secondly, during the steepest jumps the body rotated rapidly backwards to redirect the COM velocity. This rotation was not caused by pelvic angle extension, but rather by kinematic transmission from leg segments via reorientation of the joint rotation axes. We propose that K. maculata uses proximal leg retraction as the principal kinematic drive while dynamically tuning jump trajectory by knee and ankle joint modulation.
Statistical Methods for Estimation of Direct and Differential Kinematics of the Vocal Tract
Lammert, Adam; Goldstein, Louis; Narayanan, Shrikanth; Iskarous, Khalil
2012-01-01
We present and evaluate two statistical methods for estimating kinematic relationships of the speech production system: Artificial Neural Networks and Locally-Weighted Regression. The work is motivated by the need to characterize this motor system, with particular focus on estimating differential aspects of kinematics. Kinematic analysis will facilitate progress in a variety of areas, including the nature of speech production goals, articulatory redundancy and, relatedly, acoustic-to-articulatory inversion. Statistical methods must be used to estimate these relationships from data since they are infeasible to express in closed form. Statistical models are optimized and evaluated – using a heldout data validation procedure – on two sets of synthetic speech data. The theoretical and practical advantages of both methods are also discussed. It is shown that both direct and differential kinematics can be estimated with high accuracy, even for complex, nonlinear relationships. Locally-Weighted Regression displays the best overall performance, which may be due to practical advantages in its training procedure. Moreover, accurate estimation can be achieved using only a modest amount of training data, as judged by convergence of performance. The algorithms are also applied to real-time MRI data, and the results are generally consistent with those obtained from synthetic data. PMID:24052685
Atarod, Mohammad; Frank, Cyril B; Shrive, Nigel G
2014-03-01
The interactions between different tissues within the knee joint and between different kinematic DOF and joint flexion during normal gait were investigated. These interactions change following ACL transection, in both short (4 weeks) and long (20 weeks) term. Ten skeletally mature sheep were used in control (N = 5) and experimental (N = 5) groups. The 6-DOF stifle joint motion was first measured during normal gait. The control group were then euthanized and mounted on a unique robotic testing platform for kinetic measurements. The experimental group underwent ACL transection surgery, and kinematics measurements were repeated 4 and 20 weeks post-operatively. The experimental group were then euthanized and underwent kinetic assessment using the robotic system. Results indicated significant couplings between joint flexion vs. abduction and internal tibial rotation, as well as medial, anterior, and superior tibial translations during both normal and ACL-deficient gait. Distinct kinetic interactions were also observed between different tissues within the knee joint. Direct relationships were found between ACL vs. LM/MM, and PCL vs. MCL loads during normal gait; inverse relationships were detected between ACL vs. PCL and PCL vs. LM/MM loads. These kinetic interaction patterns were considerably altered by ACL injury. Significant inter-subject variability in joint kinematics and tissue loading patterns during gait was also observed. This study provides further understanding of the in vivo function of different tissues within the knee joint and their couplings with joint kinematics during normal gait and over time following ACL transection.
Uncertainty estimation in finite fault inversion
NASA Astrophysics Data System (ADS)
Dettmer, Jan; Cummins, Phil R.; Benavente, Roberto
2016-04-01
This work considers uncertainty estimation for kinematic rupture models in finite fault inversion by Bayesian sampling. Since the general problem of slip estimation on an unknown fault from incomplete and noisy data is highly non-linear and currently intractable, assumptions are typically made to simplify the problem. These almost always include linearization of the time dependence of rupture by considering multiple discrete time windows, and a tessellation of the fault surface into a set of 'subfaults' whose dimensions are fixed below what is subjectively thought to be resolvable by the data. Even non-linear parameterizations are based on a fixed discretization. This results in over-parametrized models which include more parameters than resolvable by the data and require regularization criteria that stabilize the inversion. While it is increasingly common to consider slip uncertainties arising from observational error, the effects of the assumptions implicit in parameterization choices are rarely if ever considered. Here, we show that linearization and discretization assumptions can strongly affect both slip and uncertainty estimates and that therefore the selection of parametrizations should be included in the inference process. We apply Bayesian model selection to study the effect of parametrization choice on inversion results. The Bayesian sampling method which produces inversion results is based on a trans-dimensional rupture discretization which adapts the spatial and temporal parametrization complexity based on data information and does not require regularization. Slip magnitude, direction and rupture velocity are unknowns across the fault and causal first rupture times are obtained by solving the Eikonal equation for a spatially variable rupture-velocity field. The method provides automated local adaptation of rupture complexity based on data information and does not assume globally constant resolution. This is an important quality since seismic data do not
a Six-Link Kinematic Chain Model of Human Body Using Kane's Method
NASA Astrophysics Data System (ADS)
Rambely, A. S.; Fazrolrozi
A biomechanics model of six-link kinematic chain of human body is developed by using Kane's method. The kinematic data comprise of six segments; foot, calf, thigh, trunk, upper arm and forearm, are obtained through data collection of walking, running and jumping using the Vicon Nexus system. The motion capture system uses 12 Vicon MX-3+ cameras and 12 Vicon MX-F40 cameras, two DV (50 Hz) cameras and a force plate (100 Hz). Inverse dynamics approach is used to obtain the unknown value of torques produced by joint segments during walking, running and jumping activities. The results show that the largest value of torques produced occurs at the foot segment.
Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping
2015-12-01
The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation.
Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.
2016-12-01
A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.
NASA Technical Reports Server (NTRS)
Hennessey, Michael P.; Huang, Paul C.; Bunnell, Charles T.
1989-01-01
An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control.
Foot kinematics and loading of professional athletes in American football-specific tasks.
Riley, Patrick O; Kent, Richard W; Dierks, Tracy A; Lievers, W Brent; Frimenko, Rebecca E; Crandall, Jeff R
2013-09-01
The purpose of this study was to describe stance foot and ankle kinematics and the associated ground reaction forces at the upper end of human performance in professional football players during commonly performed football-specific tasks. Nine participants were recruited from the spring training squad of a professional football team. In a motion analysis laboratory setting, participants performed three activities used at the NFL Scouting Combine to assess player speed and agility: the 3-cone drill, the shuttle run, and the standing high jump. The talocrural and first metatarsophalangial joint dorsiflexion, subtalar joint inversion, and the ground reaction forces were determined for the load bearing portions of each activity. We documented load-bearing foot and ankle kinematics of elite football players performing competition-simulating activities, and confirmed our hypothesis that the talocrural, subtalar, and metatarsophalangeal joint ranges of motion for the activities studied approached or exceeded reported physiological limits.
Interplanetary stream magnetism - Kinematic effects
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Barouch, E.
1976-01-01
The particle density and the magnetic-field intensity and direction are calculated for volume elements of the solar wind as a function of the initial magnetic-field direction and the initial speed gradient. It is assumed that the velocity is constant and radial. These assumptions are approximately valid between about 0.1 and 1.0 AU for many streams. Time profiles of the particle density, field intensity, and velocity are calculated for corotating streams, neglecting effects of pressure gradients. The compression and rarefaction of the magnetic field depend sensitively on the initial field direction. By averaging over a typical stream, it is found that the average radial field intensity is inversely proportional to the square of the heliocentric distance, whereas the average intensity in the direction of the planets' motion does not vary in a simple way, consistent with deep space observations. Changes of field direction may be very large, depending on the initial angle; but when the initial angle at 0.1 AU is such that the base of the field line corotates with the sun, the spiral angle is the preferred direction at 1 AU. The theory is also applicable to nonstationary flows.
KINEMATIC AND SPATIAL SUBSTRUCTURE IN NGC 2264
Tobin, John J.; Hartmann, Lee; Hsu, Wen-Hsin; Mateo, Mario; Fűrész, Gabor
2015-04-15
We present an expanded kinematic study of the young cluster NGC 2264 based upon optical radial velocities measured using multi-fiber echelle spectroscopy at the 6.5 m MMT and Magellan telescopes. We report radial velocities for 695 stars, of which approximately 407 stars are confirmed or very likely members. Our results more than double the number of members with radial velocities from Fűrész et al., resulting in a much better defined kinematic relationship between the stellar population and the associated molecular gas. In particular, we find that there is a significant subset of stars that are systematically blueshifted with respect to the molecular ({sup 13}CO) gas. The detection of Lithium absorption and/or infrared excesses in this blueshifted population suggests that at least some of these stars are cluster members; we suggest some speculative scenarios to explain their kinematics. Our results also more clearly define the redshifted population of stars in the northern end of the cluster; we suggest that the stellar and gas kinematics of this region are the result of a bubble driven by the wind from O7 star S Mon. Our results emphasize the complexity of the spatial and kinematic structure of NGC 2264, important for eventually building up a comprehensive picture of cluster formation.
NASA Astrophysics Data System (ADS)
Dionicio, V.; Satriano, C.; Kiraly, E.; Vilotte, J.-P.; Bernard, P.
2012-04-01
In recent years the seismic observation has made a huge leap forward in terms of coverage and density of recording stations. This instrumental effort has fostered the development of new approaches to the study of the seismic rupture, which can potentially support and complement the classical finite source kinematic modeling. The availability of dense seismic arrays makes today possible to image the earthquake extended source through the coherent interferometry of the wave radiation emitted during the rupture propagation. One of the advantages of this approach is to deliver images of the source emissivity that do not need a-priori information on the rupture speed or on the fault geometry, while they can constrain these parameters for kinematic inversion. Moreover, coherent interferometry provides intrinsically high frequency images of the rupture, since it works at frequencies that are generally one or two order of magnitudes higher than those used for kinematic slip inversion. The combination and the joint interpretation of coherent imaging and finite source slip modeling opens up new perspectives in the study of the rupture processes, in relation to the geometry and the strength of the fault asperities. We effectively combined coherent rupture imaging and kinematic modeling for the study of the rupture process of two mega-thrust events: the 2010, Mw 8.8 Maule earthquake (Chile) and the 2011, Mw 9.0 Tohoku earthquake. The joint analysis of the rupture images shows, for both the earthquakes, distinctive patterns in the space-time distribution of high-frequency emissivity and low-frequency coherent slip. We interpret these results in terms of their implications on the geometry and mechanical properties of the subduction interface and the dynamical properties of the rupture.
Kinematic reconstruction of the Caribbean region since the Early Jurassic
NASA Astrophysics Data System (ADS)
Boschman, L. M.; Van Hinsbergen, D. J.
2013-12-01
The Caribbean region has a complex tectonic history that resulted from the interplay of the North and South American, the Caribbean, and (Paleo-)Pacific plates. Being largely surrounded by long-lived subduction zones and transform boundaries, reconstructing Caribbean plate motion into the global plate circuit cannot be done using marine magnetic anomalies. Here, we present a fully quantitative, kinematically consistent tectonic reconstruction, back to 200 Ma, using the Atlantic plate circuit as boundary condition. This reconstruction is made in GPlates freeware and all reconstruction files are made available. To restore Caribbean plate motion between the American continents, we use a reconstruction hierarchy based on strike-slip and thrust belt records, using regionally extensive geological phenomena such as the Great Arc of the Caribbean, the Caribbean Large Igneous Province (CLIP) and the Caribeana high-pressure belt as correlation markers. The resulting model restores the Caribbean plate back along the Cayman Trough and strike-slip faults in Guatemala, offshore Nicaragua, offshore Belize and along the Northern Andes towards its position of origin, west of the North and South American continents. Two plate kinematic scenarios for the origin of the Caribbean plate lithosphere are evaluated; an origin from Proto-Caribbean/Atlantic spreading, or from spreading within the Panthalassa domain: we conclude that the latter can provide a simpler explanation. Placing our reconstruction in the most recent mantle reference frames shows that the CLIP erupted 2-3000 km east of, and is probably not the result of the plume head stage of the Galápagos hotspot. Finally, our reconstruction suggests that all modern subduction zones surrounding the Caribbean plate probably formed by inversion of transform faults, two of these (along the southern Mexican and NW South American margins) strongly diachronously as a result of migrating trench-trench-transform triple junctions.
Acquisition of vowel articulation in childhood investigated by acoustic-to-articulatory inversion.
Oohashi, Hiroki; Watanabe, Hama; Taga, Gentaro
2017-02-01
While the acoustical features of speech sounds in children have been extensively studied, limited information is available as to their articulation during speech production. Instead of directly measuring articulatory movements, this study used an acoustic-to-articulatory inversion model with scalable vocal tract size to estimate developmental changes in articulatory state during vowel production. Using a pseudo-inverse Jacobian matrix of a model mapping seven articulatory parameters to acoustic ones, the formant frequencies of each vowel produced by three Japanese children over time at ages between 6 and 60 months were transformed into articulatory parameters. We conducted the discriminant analysis to reveal differences in articulatory states for production of each vowel. The analysis suggested that development of vowel production went through gradual functionalization of articulatory parameters. At 6-9 months, the coordination of position of tongue body and lip aperture forms three vowels: front, back, and central. At 10-17 months, recruitments of jaw and tongue apex enable differentiation of these three vowels into five. At 18 months and older, recruitment of tongue shape produces more distinct vowels specific to Japanese. These results suggest that the jaw and tongue apex contributed to speech production by young children regardless of kinds of vowel. Moreover, initial articulatory states for each vowel could be distinguished by the manner of coordination between lip and tongue, and these initial states are differentiated and refined into articulations adjusted to the native language over the course of development.
NASA Astrophysics Data System (ADS)
Xie, Fugui; Liu, Xin-Jun
2016-06-01
This study introduces a high-speed parallel robot with Schönflies motion. This robot exhibits a promising prospect in realizing high-speed pick-andplace manipulation for packaging production lines. The robot has four identical limbs and a single platform. Its compact structure and single-platform concept provides this robot with good dynamic response potential. A line graph method based on Grassmann line geometry is used to investigate the mobility characteristics of the proposed robot. A generalized Blanding rule is also introduced into this procedure to realize mutual conversion between the line graphs for motions and constraints. Subsequently, the inverse kinematics is derived, and the singularity issue of the robot is investigated using both qualitative and quantitative approaches. Input and output transmission singularity indices are defined based on the reciprocal product in screw theory and the virtual coefficient by considering motion/force transmission performance. Thereafter, the singular loci of the proposed robot with specific geometric parameters are derived. The mobility analysis, inverse kinematics modeling, and singularity analysis conducted in this study are helpful in developing the robot.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
Kinematics of the Most Efficient Cilium
NASA Astrophysics Data System (ADS)
Eloy, Christophe; Lauga, Eric
2012-07-01
In a variety of biological processes, eukaryotic cells use cilia to transport flow. Although cilia have a remarkably conserved internal molecular structure, experimental observations report very diverse kinematics. To address this diversity, we determine numerically the kinematics and energetics of the most efficient cilium. Specifically, we compute the time-periodic deformation of a wall-bound elastic filament leading to transport of a surrounding fluid at minimum energetic cost, where the cost is taken to be the positive work done by all internal molecular motors. The optimal kinematics are found to strongly depend on the cilium bending rigidity through a single dimensionless number, the Sperm number, and closely resemble the two-stroke ciliary beating pattern observed experimentally.
Optimal pumping kinematics of a cilium
NASA Astrophysics Data System (ADS)
Eloy, Christophe; Lauga, Eric
2012-11-01
In a variety of biological processes, eukaryotic cells use cilia to transport flow. Although the internal molecular structure of cilia has been remarkably conserved throughout evolution, experimental observations report qualitatively diverse kinematics in different species. To address this diversity, we have determined numerically the kinematics of the most efficient cilium. Specifically, we have computed the time-periodic deformation of a wall-bound elastic filament leading to transport of a surrounding fluid at minimum energetic cost. Here, the energetic cost is taken to be the sum of positive works done by the internal torques, such that elastic energy is not conservative. The optimal kinematics are found to strongly depend on the cilium bending rigidity through a single dimensionless number, the Sperm number Sp, and closely resemble the two-stroke ciliary beating pattern observed experimentally. We acknowledge supports from the EU (fellowship PIOF-GA-2009-252542 to C.E.) and the NSF (grant CBET-0746285 to E.L.).
Gas Kinematics in the Multiphase Circumgalactic Medium
NASA Astrophysics Data System (ADS)
Nielsen, Nikole M.; Kacprzak, Glenn G.; Churchill, Christopher W.; Murphy, Michael T.; Muzahid, Sowgat; Charlton, Jane C.; Evans, Jessica L.
2017-03-01
We use high-resolution Keck, VLT, or Hubble Space Telescope spectra of background quasars to examine the kinematic properties of the multiphase, metal-enriched circumgalactic medium in the outskirts of galaxies at 0.08 < z gal < 1.0, focusing on the low-ionization Mgii and high-ionization Ovi doublets. The absorption kinematics of low-ionization gas in the circumgalactic medium depend strongly on the star formation activity and the location about the host galaxy, where the largest velocity dispersions are associated with blue, face-on galaxies probed along the minor axis. Conversely, high-ionization gas kinematics are independent of galaxy star formation activity and orientation.
SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS
NASA Technical Reports Server (NTRS)
Bach, R.
1994-01-01
The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential
Kinetic and kinematic differences between deadlifts and goodmornings
2013-01-01
Background In order to improve training performance, as well as avoid overloading during prevention and rehabilitation exercises in patients, the aim of this study was to understand the biomechanical differences in the knee, hip and the back between the exercises “Goodmornings” (GMs) and “Deadlifts” (DLs). Methods The kinetics and kinematics of 13 subjects, performing GMs and DLs with an additional 25% (GMs), 25% and 50% (DLs) body weight (BW) on the barbell were analysed. Using the kinetic and kinematic data captured using a 3D motion analysis and force plates, an inverse approach with a quasi-static solution was used to calculate the sagittal moments and angles in the knee, hip and the trunk. The maximum moments and joint angles were statistically tested using ANOVA with a Bonferroni adjustment. Results The observed maximal flexion angle of the knee was 5.3 ± 6.7° for GMs and 107.8 ± 22.4° and 103.4 ± 22.6° for DLs with 25% and 50% BW respectively. Of the hip, the maximal flexion angle was 25% smaller during GMs compared to DLs. No difference in kinematics of the trunk between the two exercises was observed. For DLs, the resulting sagittal moment in the knee was an external flexion moment, whereas during GMs an external extension moment was present. Importantly, no larger sagittal knee joint moments were observed when using a heavier weight on the barbell during DLs, but higher sagittal moments were found at the hip and L4/L5. Compared to GMs, DLs produced a lower sagittal moment at the hip using 25% BW while generating the same sagittal moment at L4/L5. Conclusions The two exercises exhibited different motion patterns for the lower extremities but not for the trunk. To strengthen the hip while including a large range of motion, DLs using 50% BW should be chosen. Due to their ability to avoid knee flexion or a knee flexion moment, GMs should be preferentially chosen over DLs as ACL rupture prevention exercises. Here, in order to shift
Graph Theory Roots of Spatial Operators for Kinematics and Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component
Inverse Kinematics Studies of Intermediate-Energy Reactions Relevant for SEE and Medical Problems
Aichelin, J.; Bargholtz, Ch.; Geren, L.; Tegner, P.-E.; Zartova, I.; Blomgren, J.; Olsson, N.; Budzanowski, A.; Czech, B.; Skwirczynska, I.; Chubarov, M.; Lozhkin, O.; Murin, Yu.; Pljuschev, V.; Zubkov, M.; Ekstroem, C.; Kolozhvari, A.; Persson, H.; Westerberg, L.; Jakobsson, B.
2005-05-24
The lack of systematic experimental checks on the intermediate-energy nuclear model simulations of heavily ionizing recoils from nucleon-nucleus collisions -- critical inputs for the Single Event Effect analysis of microelectronics and dosimetry calculations including high-LET components in the cancer tumor radiation therapy -- has been a primary motivation for a new experiment planned at the CELSIUS nuclear storage ring of The Svedberg Laboratory, Uppsala, Sweden. Details of the experiment and the first results from a feasibility study are presented here.
Inverse-kinematics one-neutron pickup with fast rare-isotope beams
Gade, A.; Baugher, T.; Brown, B. A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Stroberg, S. R.; Tostevin, J. A.; Bazin, D.; Campbell, C. M.; Grinyer, G. F.; Weisshaar, D.; Winkler, R.; Meierbachtol, K.; Walsh, K. A.
2011-05-15
Measurements and reaction model calculations are reported for single-neutron pickup reactions onto a fast {sup 22}Mg secondary beam at 84 MeV per nucleon. Measurements made on both carbon and beryllium targets, having very different structures, were used to investigate the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and {gamma}-ray spectroscopy of the projectile-like reaction residue for final-state resolution, which permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the {sup 12}C({sup 22}Mg,{sup 23}Mg+{gamma})X reaction largely proceeds as a direct two-body reaction, with the neutron transfer producing bound {sup 11}C target residues. The corresponding reaction on the {sup 9}Be target seems to largely leave the {sup 8}Be residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei and also their expected sensitivity to neutron high-l (intruder) states, which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.
Inverse-kinematics one-neutron pickup with fast rare-isotope beams
NASA Astrophysics Data System (ADS)
Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Campbell, C. M.; Glasmacher, T.; Grinyer, G. F.; McDaniel, S.; Meierbachtol, K.; Ratkiewicz, A.; Stroberg, S. R.; Walsh, K. A.; Weisshaar, D.; Winkler, R.
2011-05-01
Measurements and reaction model calculations are reported for single-neutron pickup reactions onto a fast Mg22 secondary beam at 84 MeV per nucleon. Measurements made on both carbon and beryllium targets, having very different structures, were used to investigate the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and γ-ray spectroscopy of the projectile-like reaction residue for final-state resolution, which permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the 12C(22Mg,23Mg+γ)X reaction largely proceeds as a direct two-body reaction, with the neutron transfer producing bound C11 target residues. The corresponding reaction on the Be9 target seems to largely leave the Be8 residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei and also their expected sensitivity to neutron high-ℓ (intruder) states, which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.
Block model of western US kinematics from inversion of geodetic, fault slip, and earthquake data
NASA Astrophysics Data System (ADS)
McCaffrey, R.
2003-12-01
The active deformation of the southwestern US (30° to 41° N) is represented by a finite number of rotating, elastic spherical caps. Horizontal GPS velocities (1583), fault slip rates (94), and earthquake slip vectors (116) are inverted for block angular velocities, locking on block-bounding faults, and the rotation of individual GPS velocity fields relative to North America. GPS velocities are modeled as a combination of rigid block rotations and elastic strain rates resulting from interactions of adjacent blocks across bounding faults. The resulting Pacific - North America pole is indistinguishable from that of Beavan et al. (2001) and satisfies spreading in the Gulf of California and earthquake slip vectors in addition to GPS. The largest blocks, the Sierra Nevada - Great Valley and the eastern Basin and Range, show internal strain rates, after removing the elastic component, of only a few nanostrain/a, demonstrating long term approximately rigid behavior. Most fault slip data are satisfied except that the San Jacinto fault appears to be significantly faster than inferred from geology while the Coachella and San Bernardino segments of the San Andreas fault are slower, suggesting the San Andreas system is straightening out in Southern California. Vertical axis rotation rates for most blocks are clockwise and in magnitude more like the Pacific than North America. One exception is the eastern Basin and Range (242° E to 248° E) which rotates slowly anticlockwise about a pole offshore Baja.
First inverse-kinematics fission measurements in a gaseous active target
NASA Astrophysics Data System (ADS)
Rodríguez-Tajes, C.; Farget, F.; Acosta, L.; Alvarez-Pol, H.; Babo, M.; Boulay, F.; Caamaño, M.; Damoy, S.; Fernández-Domínguez, B.; Galaviz, D.; Grinyer, G. F.; Grinyer, J.; Harakeh, M. N.; Konczykowski, P.; Martel, I.; Pancin, J.; Randisi, G.; Renzi, F.; Roger, T.; Sánchez-Benítez, A. M.; Teubig, P.; Vandebrouck, M.
2017-02-01
The fission of a variety of actinides was induced by fusion and transfer reactions between a 238U beam and 12C nuclei, in the active target MAYA. The performance of MAYA was studied, as well as its capability to reconstruct the fission-fragment trajectories. Furthermore, a full characterization of the different transfer reactions was achieved, and the populated excitation-energy distributions were investigated as a function of the kinetic energy in the entrance channel. The ratio between transfer- and fusion-induced fission cross-sections was also determined, in order to investigate the competition between both reaction types and its evolution with the incident energy. The experimental results will be discussed with a view to forthcoming radioactive-ion beam facilities, and next-generation active-target setups.
Kinematics and Control of Robot Manipulators
NASA Astrophysics Data System (ADS)
Paden, Bradley Evan
This dissertation focuses on the kinematics and control of robot manipulators. The contribution to kinematics is a fundamental theorem on the design of manipulators with six revolute joints. The theorem states, roughly speaking, that manipulators which have six revolute joints and are modeled after the human arm are optimal and essentially unique. In developing the mathematical framework to prove this theorem, we define precisely the notions of length of a manipulator, well-connected-workspace, and work-volume. We contribute to control a set of analysis techniques for the design of variable structure (sliding mode) controllers for manipulators. The organization of the dissertation is the following. After introductory remarks in chapter one, the group of proper rigid motions, G, is introduced in chapter two. The tangent bundle of G is introduced and it is shown that the velocity of a rigid body can be represented by an element in the Lie algebra of G (commonly called a twist). Further, rigid motions which are exponentials of twists are used to describe four commonly occurring subproblems in robot kinematics. In chapter three, the exponentials of twists are used to write the forward kinematic map of robot manipulators and the subproblems of chapter two are used to solve the Stanford manipulator and an elbow manipulator. Chapter four focuses on manipulator singularities. Twist coordinates are used to find critical points of the forward kinematic map. The contribution to kinematics is contained in chapter five where a mathematical framework for studying the relationship between the design of 6R manipulators and their performance is developed. Chapter seven contains the contribution to control. The work of A. F. Filippov on differential equations with discontinuous right-hand-side and the work of F. H. Clarke on generalized gradients are combined to obtain a calculus for analyzing nonsmooth gradient systems. The techniques developed are applied to design a simple
Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates
NASA Astrophysics Data System (ADS)
Muluneh, A. A.; Cuffaro, M.; Doglioni, C.
2013-12-01
The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The
NASA Technical Reports Server (NTRS)
Ostro, Steven J.; Connelly, Robert
1987-01-01
One of the most fundamental physical properties of any asteroid is its shape. Lightcurves provide the only source of shape information for most asteroids. Unfortunately, the functional form of a lightcurve is determined by the viewing/illumination geometry and the asteroid's light scattering characteristics as well as its shape, and in general it is impossible to determine an asteroid's shape from lightcurves. A technique called convex-profile inversion (CPI) that obtains a convex profile, P, from any lightcurve is introduced. If certain ideal conditions are satisfied, then P is an estimator for the asteroid's mean cross section, C, a convex set defined as the average of all cross sections C(z) cut by planes a distance z above the asteroids's equatorial plane. C is therefore a 2-D average of the asteroid's 3-D shape.
Kinematic problem of rigid body orientation control
NASA Astrophysics Data System (ADS)
Plotnikov, P. K.; Sergeev, A. N.; Chelnokov, Iu. N.
1991-10-01
The problem of reducing a coordinate system linked with a rigid body to a reference coordinate system rotating with a specified (programmed) angular velocity is analyzed using a kinematic formulation. The mathematic model of motion includes kinematic equations of the angular motion of a rigid body in nonnormalized quaternions; used as the controls are projections of the absolute angular velocity of body rotation to the coordinate axes. Two kinds of correction are proposed which represent quaternion analogs of the positional and integral corrections. Linear error equations for the orientation control system are obtained for the types of correction proposed here.
KINEMATIC DISTANCES OF GALACTIC PLANETARY NEBULAE
Yang, A. Y.; Tian, W. W.; Zhu, H.; Wu, D.; Leahy, D. A. E-mail: ayyang@bao.ac.cn
2016-03-15
We construct H i absorption spectra for 18 planetary nebulae (PNs) and their background sources using data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNs, among which 15 objects’ kinematic distances are obtained for the first time. The distance uncertainties of 13 PNs range from 10% to 50%, which is a significant improvement with uncertainties of a factor of two or three smaller than most previous distance measurements. We confirm that PN G030.2−00.1 is not a PN because of its large distance found here.
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2015-01-01
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors
Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2015-01-01
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the
Detailed stellar and gaseous kinematics of M31
NASA Astrophysics Data System (ADS)
Opitsch, Michael; Fabricius, Maximilian; Saglia, Roberto; Bender, Ralf; Williams, Michael
2015-02-01
We have collected optical integral field spectroscopic data for M31 with the spectrograph VIRUS-W that result in kinematic maps of unprecedented detail. These reveal the presence of two kinematically distinct gas components.
Camera-Only Kinematics for Small Lunar Rovers
NASA Astrophysics Data System (ADS)
Fang, E.; Suresh, S.; Whittaker, W.
2016-11-01
Knowledge of the kinematic state of rovers is critical. Existing methods add sensors and wiring to moving parts, which can fail and adds mass and volume. This research presents a method to optically determine kinematic state using a single camera.
KINEMATIC DISTANCE ASSIGNMENTS WITH H I ABSORPTION
Jones, Courtney; Dickey, John M.
2012-07-01
Using H I absorption spectra from the International Galactic Plane Survey, a new method is implemented to resolve the kinematic distance ambiguity for 75 H II regions with known systemic velocities from radio recombination lines. A further 40 kinematic distance determinations are made for H II region candidates without known systemic velocities through an investigation of the presence of H I absorption around the terminal velocity. New kinematic distance determinations can be used to further constrain spiral arm parameters and the location and extent of other structures in the Milky Way disk. H I absorption toward continuum sources beyond the solar circle is also investigated. Follow-up studies of H I at higher resolution than the 1' to 2' of existing Galactic Plane Surveys will provide kinematic distances to many more H II regions on the far side of the Galactic center. On the basis of the velocity channel summation technique developed in this paper, a much larger sample of H II regions will be analyzed in a future paper to remove the near-far distance ambiguity.
KINEMATICS OF STELLAR POPULATIONS IN POSTSTARBURST GALAXIES
Hiner, Kyle D.; Canalizo, Gabriela E-mail: khiner@astro-udec.cl
2015-01-20
Poststarburst galaxies host a population of early-type stars (A or F) but simultaneously lack indicators of ongoing star formation such as [O II] emission. Two distinct stellar populations have been identified in these systems: a young poststarburst population superimposed on an older host population. We present a study of nine poststarburst galaxies with the following objectives: (1) to investigate whether and how kinematical differences between the young and old populations of stars can be measured, and (2) to gain insight into the formation mechanism of the young population in these systems. We fit high signal-to-noise spectra with two independent populations in distinct spectral regions: the Balmer region, the Mg IB region, and the Ca triplet when available. We show that the kinematics of the two populations largely track one another if measured in the Balmer region with high signal-to-noise data. Results from examining the Faber-Jackson relation and the fundamental plane indicate that these objects are not kinematically disturbed relative to more evolved spheroids. A case study of the internal kinematics of one object in our sample shows it to be pressure supported and not rotationally dominated. Overall our results are consistent with merger-induced starburst scenarios where the young population is observed during the later stages of the merger.
Compton Effect with Non-Relativistic Kinematics
ERIC Educational Resources Information Center
Shivalingaswamy, T.; Kagali, B. A.
2011-01-01
In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…
Kinematics of foldable discrete space cranes
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.
1985-01-01
Exact kinematic description of a NASA proposed prototype foldable-deployable discrete space crane are presented. A computer program is developed which maps the geometry of the crane once controlling parameters are specified. The program uses a building block type approach in which it calculates the local coordinates of each repeating cell and then combines them with respect to a global coordinates system.
Kinematic Measurements from YouTube Videos
ERIC Educational Resources Information Center
Ruiz, Michael J.
2009-01-01
Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.…
Stellar Archeology : Chemical Compositions and Kinematics
NASA Astrophysics Data System (ADS)
Stringer, Bayard; Carney, Bruce
2011-10-01
The λ-CDM model of cosmology predicts a hierarchical formation mechanism of galaxies, with smaller units accreting to construct larger ones. The detection of merger events in external galaxies is well known, and the detection and analysis of merger remnants in the Milky Way is a key component in piecing together the history of our home galaxy. Statistical analyses of stellar kinematics in the solar neighborhood reveal much kinematic structure in the Galactic disk, but it is not readily apparent whether this structure is extragalactic or dynamical in origin. The most prominent structures are quickly identified as well known moving groups of stars such as the Hercules, Sirius, and Hyades stellar streams. Additionally, a subset of kinematically selected stars observed at McDonald Observatory are members of a stellar stream putatively identified by Amina Helmi as part of a merger remnant. A semi-automated, high resolution spectral analysis is applied to 504 F and G dwarf stars, and the results are amenable to Kolmogorov-Smirnov membership hypothesis testing. In all four cases, the kinematic streams have chemistries roughly consistent with the Galactic disk trends, although the statistical analyses suggest some subtle differences.
ANALYTIC MODELING OF THE MORETON WAVE KINEMATICS
Temmer, M.; Veronig, A. M.
2009-09-10
The issue whether Moreton waves are flare-ignited or coronal mass ejection (CME)-driven, or a combination of both, is still a matter of debate. We develop an analytical model describing the evolution of a large-amplitude coronal wave emitted by the expansion of a circular source surface in order to mimic the evolution of a Moreton wave. The model results are confronted with observations of a strong Moreton wave observed in association with the X3.8/3B flare/CME event from 2005 January 17. Using different input parameters for the expansion of the source region, either derived from the real CME observations (assuming that the upward moving CME drives the wave), or synthetically generated scenarios (expanding flare region, lateral expansion of the CME flanks), we calculate the kinematics of the associated Moreton wave signature. Those model input parameters are determined which fit the observed Moreton wave kinematics best. Using the measured kinematics of the upward moving CME as the model input, we are not able to reproduce the observed Moreton wave kinematics. The observations of the Moreton wave can be reproduced only by applying a strong and impulsive acceleration for the source region expansion acting in a piston mechanism scenario. Based on these results we propose that the expansion of the flaring region or the lateral expansion of the CME flanks is more likely the driver of the Moreton wave than the upward moving CME front.
Modular theory of inverse systems
NASA Technical Reports Server (NTRS)
1979-01-01
The relationship between multivariable zeros and inverse systems was explored. A definition of zero module is given in such a way that it is basis independent. The existence of essential right and left inverses were established. The way in which the abstract zero module captured previous definitions of multivariable zeros is explained and examples are presented.
NASA Astrophysics Data System (ADS)
Simons, Raymond C.; Kassin, Susan A.; Trump, Jonathan R.; Weiner, Benjamin J.; Heckman, Timothy M.; Barro, Guillermo; Koo, David C.; Guo, Yicheng; Pacifici, Camilla; Koekemoer, Anton; Stephens, Andrew W.
2016-10-01
We present results from a survey of the internal kinematics of 49 star-forming galaxies at z˜ 2 in the CANDELS fields with the Keck/MOSFIRE spectrograph, Survey in the near-Infrared of Galaxies with Multiple position Angles (SIGMA). Kinematics (rotation velocity V rot and gas velocity dispersion {σ }g) are measured from nebular emission lines which trace the hot ionized gas surrounding star-forming regions. We find that by z˜ 2, massive star-forming galaxies ({log} {M}* /{M}⊙ ≳ 10.2) have assembled primitive disks: their kinematics are dominated by rotation, they are consistent with a marginally stable disk model, and they form a Tully-Fisher relation. These massive galaxies have values of {V}{rot}/{σ }g that are factors of 2-5 lower than local well-ordered galaxies at similar masses. Such results are consistent with findings by other studies. We find that low-mass galaxies ({log} {M}* /{M}⊙ ≲ 10.2) at this epoch are still in the early stages of disk assembly: their kinematics are often dominated by gas velocity dispersion and they fall from the Tully-Fisher relation to significantly low values of V rot. This “kinematic downsizing” implies that the process(es) responsible for disrupting disks at z˜ 2 have a stronger effect and/or are more active in low-mass systems. In conclusion, we find that the period of rapid stellar mass growth at z˜ 2 is coincident with the nascent assembly of low-mass disks and the assembly and settling of high-mass disks.
The Maiden Voyage of a Kinematics Robot
NASA Astrophysics Data System (ADS)
Greenwolfe, Matthew L.
2015-04-01
In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).
Inverse problem in hydrogeology
NASA Astrophysics Data System (ADS)
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le
Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations
ERIC Educational Resources Information Center
Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto
2011-01-01
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…
Keck Spectroscopy of NGVS Sources: Milky Way Halo Star Kinematics
NASA Astrophysics Data System (ADS)
Zhang, Hao; Guhathakurta, Puragra; Peng, Eric W.; Toloba, Elisa; Next Generation Virgo Cluster Survey (NGVS) Collaboration
2017-01-01
We present a study of the kinematics of main sequence turnoff stars in the halo of the Milky Way based on Next Generation Virgo Cluster Survey photometry and Keck/DEIMOS spectroscopic follow-up. Specifically, we investigate the properties of the Virgo overdensity and Sagittarius stream Milky Way halo substructures in the foreground of the Virgo Cluster of galaxies. We use an inverse concentration (iC) parameter that characterizes the angular size of a source, which is defined by the magnitude difference measured by two different apertures for the same object. After combining this information as well as redshift measured from spectra into a Z vs iC plot, all of the objects are separated clearly into three categories: foreground Milky Way stars, Virgo globular clusters, and background galaxies. Most objects located in unexpected regions in the V_iC plot are subsequently rejected through a rigorous examination due to low spectral quality or bad imaging quality, indicating that our sample selection approach gives a very clean classification. We then select Sagittarius stream stars and Virgo overdensity stars out of the foreground star sample to characterize their distributions of spatial position, radial velocity and metallicity, from which we can probe deeper into the history of structure formation in the Milky Way Galaxy. This research was supported by NASA and the National Science Foundation. HZ has been sponsored by China Scholarship Council to carry out this research project at University of California, Santa Cruz.
Inverting Source Time Functions to determine the fault kinematic characteristics
NASA Astrophysics Data System (ADS)
Toraldo Serra, E. M.; Orefice, A.; Emolo, A.; Zollo, A.
2012-04-01
In seismology, the analisys of source kinematic parameters (slip-rate and rupture velocity ecc.) is a fundamental way to study the time-history of the rupture process that occurs during a seismic event. To this end various method to reconstruct source kinematics models from the inversion of seismogram have been proposed during the time. In this work we present an alternative methodology to infer source models. We aim, indeed, at obtaining the slip and rupture velocity distribution on the fault plane inverting the apparent Source Time Functions (STFs). This kind of analysis, rather than a classical inversion based on a direct study of seismograms recorded at various stations, may have several advantages. A major advantage is related to the possibility to overcome in the forward modeling any problem related to the computation of the Green's function, as the choice of the correct and reliable propagation model. To retrieve reliable STF, we apply the stabilized deconvolution technique proposed by Vallée [2004]. Based on Empirical Green's Functions (EGF) approach, this technique integrates in the deconvolution process four physical constraints on the STFs, that are causality, positivity, limited duration, and equal area. In any case the EGF approach suffers from certain limitations related to the selection of valuable Empirical Green Function, especially for small events. The approach used to invert the STFs is based on the technique of Emolo and Zollo [2005] to invert strong-motion data. In particular, the slip and the rupture velocity values are specified only at a set of control-points on the fault plane and their distributions on the whole fault are then obtained by a bicubic interpolation. The final slip and rupture velocity values at the fault-grid nodes are then determined by searching for the maximum of a fitness function (based of comparison between real and synthetic STFs) by using the Genetic Algorithm. The number of control-points is progressively increased
A Generalization of the Spherical Inversion
ERIC Educational Resources Information Center
Ramírez, José L.; Rubiano, Gustavo N.
2017-01-01
In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…
McDonnell, Lisa K; Hume, Patria A; Nolte, Volker
2013-09-01
The aim of this narrative review was to propose a deterministic model based on a review of previous research documenting the evidence for the associations between average kayak velocity and kinematic variables in sprint kayaking. Literature was reviewed after searching electronic databases using key words 'kayak,' 'biomechanics,' 'velocity,' 'kinematics,' and 'performance.' Our kinematic deterministic model for sprint kayaking performance shows that the average kayak velocity is determined by kayak stroke displacement and stroke time. Stroke time had the strongest correlation with 200-m race time (r = 0.86, p < 0.001), and stroke rate (inversely proportional to stroke time) was strongly correlated with average horizontal velocity over two consecutive strokes at race pace (r = -0.83, p < 0.05). Increased stroke rate via decreased absolute water phase time and increased relative water phase time were indicative of more elite performance. There was no significant relationship between stroke displacement and velocity; however, a large decrease in stroke displacement may be detrimental to performance. Individual characteristics may be responsible for a paddlers' ability to achieve and sustain a given stroke rate. Coaches should theoretically focus interventions on increasing stroke rate while maintaining stroke displacement; however this hypothesis should be confirmed with prospective studies.
3D kinematics using dual quaternions: theory and applications in neuroscience
Leclercq, Guillaume; Lefèvre, Philippe; Blohm, Gunnar
2013-01-01
In behavioral neuroscience, many experiments are developed in 1 or 2 spatial dimensions, but when scientists tackle problems in 3-dimensions (3D), they often face problems or new challenges. Results obtained for lower dimensions are not always extendable in 3D. In motor planning of eye, gaze or arm movements, or sensorimotor transformation problems, the 3D kinematics of external (stimuli) or internal (body parts) must often be considered: how to describe the 3D position and orientation of these objects and link them together? We describe how dual quaternions provide a convenient way to describe the 3D kinematics for position only (point transformation) or for combined position and orientation (through line transformation), easily modeling rotations, translations or screw motions or combinations of these. We also derive expressions for the velocities of points and lines as well as the transformation velocities. Then, we apply these tools to a motor planning task for manual tracking and to the modeling of forward and inverse kinematics of a seven-dof three-link arm to show the interest of dual quaternions as a tool to build models for these kinds of applications. PMID:23443667
Symmetry for Flavor-Kinematics Duality from an Action
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Shen, Chia-Hsien
2017-03-01
We propose a new representation of the nonlinear sigma model that exhibits a manifest duality between flavor and kinematics. The fields couple exclusively through cubic Feynman vertices which define the structure constants of an underlying kinematic algebra. The action is invariant under a combination of internal and spacetime symmetries whose conservation equations imply flavor-kinematics duality, ensuring that all Feynman diagrams satisfy kinematic Jacobi identities. Substituting flavor for kinematics, we derive a new cubic action for the special Galileon theory. In this picture, the vanishing soft behavior of amplitudes is a by-product of the Weinberg soft theorem.
Goal Directed Model Inversion: A Study of Dynamic Behavior
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome 0 "would have been right if the outcome had been the desired one." The algorithm then proceeds as follows: (1) store the action that produced the wrong outcome as a "target" (2) redefine the wrong outcome as a desired goal (3) submit the new desired goal to the system (4) compare the new action with the target action and modify the system by using a suitable algorithm for credit assignment (Back propagation in our example) (5) resubmit the original goal. Prior publications by our group in this area focused on demonstrating empirical results based on the inverse kinematic problem for a simulated robotic arm. In this paper we apply the inversion process to much simpler analytic functions in order to elucidate the dynamic behavior of the system and to determine the sensitivity of the learning process to various parameters. This understanding will be necessary for the acceptance of GDMI as a practical tool.
Why does inverse modeling of drainage inventories work?
NASA Astrophysics Data System (ADS)
White, Nicky; Roberts, Gareth
2016-04-01
We describe and apply a linear inverse model which calculates spatial and temporal patterns of uplift rate by minimizing the misfit between inventories of observed and predicted longitudinal river profiles. This approach builds upon a more general, non-linear, optimization model, which suggests that shapes of river profiles are dominantly controlled by upstream advection of kinematic waves of incision produced by spatial and temporal changes in regional uplift rate. We have tested both algorithms by inverting thousands of river profiles from Africa, Eurasia, the Americas, and Australia. For each continent, the drainage network was constructed from a digital elevation model and the fidelity of river profiles extracted from this network was carefully checked using satellite imagery. Spatial and temporal patterns of both uplift rate and cumulative uplift were calibrated using independent geologic and geophysical observations. Inverse modeling of these substantial inventories of river profiles suggests that drainage networks contain coherent signals that record the regional growth of elevation. In the second part of this presentation, we use spectral analysis of river profiles to suggest why drainage networks behave in a coherent, albeit non-linear, fashion. Our analysis implies that large-scale topographic signals injected into landscapes generate spectral slopes that are usually red (i.e. Brownian). At wavelengths shorter than tens of km, spectral slopes whiten which suggests that coherent topographic signals cease to exist at these shorter length scales. Our results suggest that inverse modeling of drainage networks can reveal useful information about landscape growth through space and time.
Inversion of Attributes and Full Waveforms of Ground Penetrating Radar Data Using PEST
NASA Astrophysics Data System (ADS)
Jazayeri, S.; Kruse, S.; Esmaeili, S.
2015-12-01
We seek to establish a method, based on freely available software, for inverting GPR signals for the underlying physical properties (electrical permittivity, magnetic permeability, target geometries). Such a procedure should be useful for classroom instruction and for analyzing surface GPR surveys over simple targets. We explore the applicability of the PEST parameter estimation software package for GPR inversion (www.pesthomepage.org). PEST is designed to invert data sets with large numbers of parameters, and offers a variety of inversion methods. Although primarily used in hydrogeology, the code has been applied to a wide variety of physical problems. The PEST code requires forward model input; the forward model of the GPR signal is done with the GPRMax package (www.gprmax.com). The problem of extracting the physical characteristics of a subsurface anomaly from the GPR data is highly nonlinear. For synthetic models of simple targets in homogeneous backgrounds, we find PEST's nonlinear Gauss-Marquardt-Levenberg algorithm is preferred. This method requires an initial model, for which the weighted differences between model-generated data and those of the "true" synthetic model (the objective function) are calculated. In order to do this, the Jacobian matrix and the derivatives of the observation data in respect to the model parameters are computed using a finite differences method. Next, the iterative process of building new models by updating the initial values starts in order to minimize the objective function. Another measure of the goodness of the final acceptable model is the correlation coefficient which is calculated based on the method of Cooley and Naff. An accepted final model satisfies both of these conditions. Models to date show that physical properties of simple isolated targets against homogeneous backgrounds can be obtained from multiple traces from common-offset surface surveys. Ongoing work examines the inversion capabilities with more complex
NASA Astrophysics Data System (ADS)
Saini, Indu; Singh, Vijay Pal
2016-07-01
Isomorphism identification is a difficult problem in kinematic chains (KC). There are a number of methods proposed by many researchers to detect the isomorphism and inversion of kinematic chain but each has its own shortcomings. Purpose of this paper is to give an efficient and reliable method for detection of isomorphism and inversion among the KC which can be less time consuming among many other related techniques. An attempt has been made to provide satisfactory solution to detection of isomorphism by using Hamming method. The Hamming Number is computed by using the direct method of writing the Hamming matrix, which save time and effort. Link Hamming string which is defined as the string obtained by concatenating the link Hamming number and the frequency of individual Hamming numbers in that row is then formed. Finally, chain Hamming string defined as the string obtained by the concatenation of the chain Hamming number and the link Hamming strings in descending order is formed. This method is implemented on the nine links two degree of freedom.
Inverse problems in mathematical physics
NASA Astrophysics Data System (ADS)
Glasko, V. B.
Procedures for the correct formulation and solution of inverse problems, which usually belong to the class of ill-posed problems, are discussed. Attention is given to the concept of the conditionally correct statement of a problem, the concept of quasi-solution, and the fundamentals of regularization theory. The discussion also covers the uniqueness of solutions to inverse problems in mathematical physics, with consideration given to problems involving layered media, impedance problems, gravimetric problems, and inverse problems of heat conduction. The problem of stability and regularizing operators are also discussed.
Surface growth kinematics via local curve evolution.
Moulton, Derek E; Goriely, Alain
2014-01-01
A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process.
Kinematical uniqueness of homogeneous isotropic LQC
NASA Astrophysics Data System (ADS)
Engle, Jonathan; Hanusch, Maximilian
2017-01-01
In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space {{{R}}\\text{Bohr}} , as well as for the Fleischhack one {R}\\sqcup {{{R}}\\text{Bohr}} . We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on {{{R}}\\text{Bohr}} is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on {R} in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.
Galactic warp kinematics: model vs. observations
NASA Astrophysics Data System (ADS)
Abedi, H.; Figueras, F.; Aguilar, L.; Mateu, C.; Romero-Gómez, M.; López-Corredoira, M.; Garzón, F.
2015-05-01
We test the capability of several methods to identify and characterise the warping of the stellar disc of our Galaxy in the Gaia era. We have developed a first kinematic model for the galactic warp and derived the analytical expressions for the force field of a warped Miyamoto- Nagai potential. We have generated realistic mock catalogues of OB, A and red clump stars within the warped galactic disc, where a very complete model of Gaia observables and their expected errors are included. We use the family of Great Circle Cell Counts (GC3) methods and LonKin methods for detecting and characterising the galactic warp. As a complementary work, we look into one of the existing proper motion catalogue namely the UCAC4, and look for the kinematic signature of the warp. We demonstrate the necessity of correcting for a possible residual rotation of the Hipparcos celestial reference frame with respect to the extra galactic inertial one.
Kinematics of the symbiotic system R Aqr
NASA Astrophysics Data System (ADS)
Navarro, S.; Corral, L. J.; Steffen, W.
2014-04-01
We present the results of the kinematical analysis of the symbiotic system R Aqr. We obtained high dispersion spectra with the MES spectrograph at the 2.1 m telescope of San Pedro Mártir (MEZCAL). The used filter were Ha + [NII], (λc = 6575Å, Δλ = 90Å). We analyse the [NII] λλ6583 line. When the observations are compared with previous ones by Solf (1992) we detected an important change in the projected velocities of the observed knots, supporting the idea of a precessing jet. We are working also in a 3-D kinematic model for the object using the measured velocities and the state of the model is presented.
Kinematics of horizontal and vertical caterpillar crawling.
van Griethuijsen, Linnea I; Trimmer, Barry A
2009-05-01
Unlike horizontal crawling, vertical crawling involves two counteracting forces: torque rotating the body around its center of mass and gravity resisting forward movement. The influence of these forces on kinematics has been examined in the soft-bodied larval stage of Manduca sexta. We found that crawling and climbing are accomplished using the same movements, with both segment timing and proleg lift indistinguishable in horizontal and vertical locomotion. Minor differences were detected in stride length and in the delay between crawls, which led to a lower crawling speed in the vertical orientation. Although these differences were statistically significant, they were much smaller than the variation in kinematic parameters between animals. The ability of Manduca to crawl and climb using the same movements is best explained by Manduca's relatively small size, slow speed and strong, controlled, passive grip made possible by its proleg/crochets.
The kinematic advantage of electric cars
NASA Astrophysics Data System (ADS)
Meyn, Jan-Peter
2015-11-01
Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.
SKIRT: Stellar Kinematics Including Radiative Transfer
NASA Astrophysics Data System (ADS)
Baes, Maarten; Dejonghe, Herwig; Davies, Jonathan
2011-09-01
SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar
2016-07-01
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the
NASA Astrophysics Data System (ADS)
Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.
2017-02-01
A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.
Kinematics of Hooke universal joint robot wrists
NASA Technical Reports Server (NTRS)
Mckinney, William S., Jr.
1988-01-01
The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.
Kinematic Diversity in Rorqual Whale Feeding Mechanisms.
Cade, David E; Friedlaender, Ari S; Calambokidis, John; Goldbogen, Jeremy A
2016-10-10
Rorqual whales exhibit an extreme lunge filter-feeding strategy characterized by acceleration to high speed and engulfment of a large volume of prey-laden water [1-4]. Although tagging studies have quantified the kinematics of lunge feeding, the timing of engulfment relative to body acceleration has been modeled conflictingly because it could never be directly measured [5-7]. The temporal coordination of these processes has a major impact on the hydrodynamics and energetics of this high-cost feeding strategy [5-9]. If engulfment and body acceleration are temporally distinct, the overall cost of this dynamic feeding event would be minimized. However, greater temporal overlap of these two phases would theoretically result in higher drag and greater energetic costs. To address this discrepancy, we used animal-borne synchronized video and 3D movement sensors to quantify the kinematics of both the skull and body during feeding events. Krill-feeding blue and humpback whales exhibited temporally distinct acceleration and engulfment phases, with humpback whales reaching maximum gape earlier than blue whales. In these whales, engulfment coincided largely with body deceleration; however, humpback whales pursuing more agile fish demonstrated highly variable coordination of skull and body kinematics in the context of complex prey-herding techniques. These data suggest that rorquals modulate the coordination of acceleration and engulfment to optimize foraging efficiency by minimizing locomotor costs and maximizing prey capture. Moreover, this newfound kinematic diversity observed among rorquals indicates that the energetic efficiency of foraging is driven both by the whale's engulfment capacity and the comparative locomotor capabilities of predator and prey. VIDEO ABSTRACT.
Fracture Control for NIRSpec Kinematic Mounts
NASA Astrophysics Data System (ADS)
Vorel, M.; Novo, F.; Jollet, D.; Sinnema, G.; Jentsch, M.
2014-06-01
An ESA contribution to the JWST is the Near Infra-Red Spectrograph (NIRSpec) capable of high-resolution spectroscopy. The development of the NIRSpec was commissioned to Astrium. This contribution deals with the fracture control for the optical bench kinematic (OBK) mounts which are critical structural elements of the NIRSpec platform. A summary of the main activities is given as well as difficulties encountered throughout the process and solutions adopted.
Kinematics and dynamics of sphenisciform wings
NASA Astrophysics Data System (ADS)
Noca, Flavio; Crisinel, Fabien; Munier, Pierre
2011-11-01
Three-dimensional scans of three different species of taxidermied penguins (Aptenodytes patagonicus, Pygoscelis papua, and Spheniscus magellanicus) have been performed. A three-dimensional reproduction of an African penguin (Sphenicus demersus) wing was manufactured and tested in a hydrodynamic channel. A six-degree-of-freedom robot was programmed to perform the three dimensional kinematics, obtained from actual footage. A six-component force balance was used to retrieve the dynamics of the wing motion. Results will be presented and discussed.
Efficient Kinematic Computations For 7-DOF Manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Long, Mark K.; Kreutz-Delgado, Kenneth
1994-01-01
Efficient algorithms for forward kinematic mappings of seven-degree-of-freedom (7-DOF) robotic manipulator having revolute joints developed on basis of representation of redundant DOF in terms of parameter called "arm angle." Continuing effort to exploit redundancy in manipulator according to concept of basic and additional tasks. Concept also discussed in "Configuration-Control Scheme Copes With Singularities" (NPO-18556) and "Increasing the Dexterity of Redundant Robots" (NPO-17801).
The kinematic component of the cosmological redshift
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2011-05-01
It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.
Lower extremity kinematics of athletics curve sprinting.
Alt, Tobias; Heinrich, Kai; Funken, Johannes; Potthast, Wolfgang
2015-01-01
Curve running requires the generation of centripetal force altering the movement pattern in comparison to the straight path run. The question arises which kinematic modulations emerge while bend sprinting at high velocities. It has been suggested that during curve sprints the legs fulfil different functions. A three-dimensional motion analysis (16 high-speed cameras) was conducted to compare the segmental kinematics of the lower extremity during the stance phases of linear and curve sprints (radius: 36.5 m) of six sprinters of national competitive level. Peak joint angles substantially differed in the frontal and transversal plane whereas sagittal plane kinematics remained unchanged. During the prolonged left stance phase (left: 107.5 ms, right: 95.7 ms, straight: 104.4 ms) the maximum values of ankle eversion (left: 12.7°, right: 2.6°, straight: 6.6°), hip adduction (left: 13.8°, right: 5.5°, straight: 8.8°) and hip external rotation (left: 21.6°, right: 12.9°, straight: 16.7°) were significantly higher. The inside leg seemed to stabilise the movement in the frontal plane (eversion-adduction strategy) whereas the outside leg provided and controlled the motion in the horizontal plane (rotation strategy). These results extend the principal understanding of the effects of curve sprinting on lower extremity kinematics. This helps to increase the understanding of nonlinear human bipedal locomotion, which in turn might lead to improvements in athletic performance and injury prevention.
Kinematics in irregular galaxies: NGC 4449.
NASA Astrophysics Data System (ADS)
Valdez, M.; Rosado, M.
1998-11-01
A kinematical analysis of the irregular galaxy NGC 4449 is presented based on the Fabry-Perot interferometer PUMA observations. In NGC 4449 we analyse its global velocity field, HII regions population as well as the SNR population identified on radioastronomy studies. Our first results for NGC 4449 show that the optical velocity field, presents a decreasing gradient in velocity along the optical bar and an anticorrelation with respect to the velocity field of the HI halo.
Kinematics and dynamics of the Uranian rings
NASA Technical Reports Server (NTRS)
French, Richard G.
1987-01-01
The self-gravity model of apse alignment was tested by comparing its predictions about structure within the epsilon ring with an extensive set of observed occultation profiles covering a wide range of ring longitudes. The self-gravity model as presently constructed is inconsistent with the observations. The Lindblad resonance survey and Shepherd satellite ring perturbation are discussed. The kinematic model of the Uranian ring orbit was enhanced to accommodate Voyager observations as well as ground-based occultation observations.
Scapula Kinematics of Youth Baseball Players
Oliver, Gretchen; Weimar, Wendi
2015-01-01
Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg), with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER) and maximum humeral internal rotation (MIR) during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly. PMID:26839605
Dynamic control of kinematically redundant manipulators
NASA Astrophysics Data System (ADS)
Lin, Zhengcheng
1993-03-01
A robot manipulator is said to be kinematically redundant when it has more degrees of freedom than are necessary to accomplish a particular task. Useful control strategies are designed for kinematically redundant manipulators in order to enhance their performance. Following the impedance control approach, the problem of minimizing redundant manipulator collision impacts is addressed. The configuration control approach is used to reduce impulsive forces, while a simplified impedance control scheme is formulated to minimize rebound effects. A new Cartesian control strategy for redundant flexible-joint manipulators is proposed. The main idea in this hybrid scheme is to control not only the manipulator's end-effector but also its links, so as to achieve specified positions and velocities for the end-effector and the links. Finally, a new application of kinematically redundant manipulators is proposed: using redundancy resolution to compensate for joint flexibility. This redundancy resolution scheme is incorporated in a control strategy for redundant flexible-joint manipulators. The problem of possible algorithmic singularities is considered, and a scheme is suggested which makes the controller robust with respect to such singularities.
New Kinematical Constraints on Cosmic Acceleration
Rapetti, David; Allen, Steve W.; Amin, Mustafa A.; Blandford, Roger; /-KIPAC, Menlo Park
2007-05-25
We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.
Scapula Kinematics of Youth Baseball Players.
Oliver, Gretchen; Weimar, Wendi
2015-12-22
Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg), with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER) and maximum humeral internal rotation (MIR) during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly.
Mahan, G. D.
2014-09-21
We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.
NASA Astrophysics Data System (ADS)
Mahan, G. D.
2014-09-01
We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.
Temperature Inversions Have Cold Bottoms.
ERIC Educational Resources Information Center
Bohren, Craig F.; Brown, Gail M.
1982-01-01
Uses discussion and illustrations of several demonstrations on air temperature differences and atmospheric stability to explain the phenomena of temperature inversions. Relates this to the smog in Los Angeles and discusses the implications. (DC)
Inversion layer MOS solar cells
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1986-01-01
Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.
NASA Astrophysics Data System (ADS)
Gance, J.; Samyn, K.; Grandjean, G.; Malet, J.-P.
2012-04-01
This work presents a traveltime inversion method developed specially for imaging detailed subsurface features in the case of heterogeneous soils. The algorithm considers the initial SIRT algorithm proposed by Grandjean and Sage (2004) based on the use of Fresnel wavepaths and a probabilistic reconstruction approach. The method is improved by using a Quasi-Newton method, more robust than SIRT. It is demonstrated that the Jacobian matrix is approximated by the Fresnel weights, without introducing too large uncertainties. In addition to its robustness, this inversion algorithm proposes a regularization strategy based on the physics of wave propagation in soil. This allows to overcome the use of numerical regularization operators, always difficult to parameterize, and to remove the subjectivity of the user in the inversion result. Moreover, as the width of Fresnel volume is related to the frequency, an increase of frequency (and therefore a decrease of Fresnel wavepaths width) is introduced for each step in order to cover the entire finite bandwidth of the source signal. The inversion is thus controlled by large variations of velocities in the first steps and more and more detailed heterogeneities of the soil in the following steps. This technique is applied to a real dataset acquired at the Super-Sauze landslide (French Alps) and allows to highlight the presence of a deep water supply interpreted as a preferential flow path within the landslide.
Inversion-symmetric topological insulators
NASA Astrophysics Data System (ADS)
Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei
2011-06-01
We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion
Computation of inverse magnetic cascades
NASA Technical Reports Server (NTRS)
Montgomery, D.
1981-01-01
Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.
Inversion Algorithms for Geophysical Problems
1987-12-16
ktdud* Sccumy Oass/Kjoon) Inversion Algorithms for Geophysical Problems (U) 12. PERSONAL AUTHOR(S) Lanzano, Paolo 13 «. TYPE OF REPORT Final 13b...spectral density. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 13 UNCLASSIFIED/UNLIMITED D SAME AS RPT n OTIC USERS 22a. NAME OF RESPONSIBLE...Research Laboratory ’^^ SSZ ’.Washington. DC 20375-5000 NRLrMemorandum Report-6138 Inversion Algorithms for Geophysical Problems p. LANZANO Space
Computational tool for comparison of kinematic mechanisms and commonly used kinematic models
Hollerbach, K.; Hollister, A.M.; Van Vorhis, R.L.
1997-03-01
Accurate, reliable, and reproducible methods to measure the movements of human joints have been elusive. Currently, three-dimensional recording methods are used to track the motion of one segment relative to another as the joint moves. Six parameters describe the moving segment`s location and orientation relative to the reference segment: three translations (x, y, and z) and three rotations (yaw, pitch and roll) in the reference frame. The raw data can be difficult to interpret. For this reason, several methods have been developed to measure the motion of human joints and to describe the resulting data. For example, instant helical axes or screw deviation axes (Kinzell et al., 1972), the Joint Coordinate System of Grood and Suntay (1983), and the Euler angle method have been used to describe the movements of bones relative to each other. None of these methods takes into account the physical kinematic mechanism producing the joint motion. More recently, Lupichuk (1995) has developed an algorithm to find, for an arbitrary revolute, the axis` position and orientation in three- dimensional space. Each of these methods has advantages and disadvantages in analyzing joint kinematics. The authors have developed software to provide a means of comparing these methods for arbitrary, single degree of freedom, kinematic mechanisms. Our objective is to demonstrate the software and to show how it can be used to compare the results from the different kinematic models as they are applied to specific kinematic mechanisms.
In vivo kinematics and articular surface congruency of total ankle arthroplasty during gait.
Yamaguchi, Satoshi; Tanaka, Yasuhito; Banks, Scott; Kosugi, Shinichi; Sasho, Takahisa; Takahashi, Kazuhisa; Takakura, Yoshinori
2012-08-09
Relatively high rates of loosening and implant failure have been reported after total ankle arthroplasty. Abnormal kinematics and incongruency of the articular surface may cause increased contact pressure and rotational torque applied to the implant, leading to loosening and implant failure. We measured in vivo kinematics of two-component total ankle arthroplasty (TNK ankle), and assessed congruency of the articular surface during the stance phase of gait. Eighteen ankles of 15 patients with a mean age of 75±6 years (mean±standard deviation) and follow-up of 44±38 months were enrolled. Lateral fluoroscopic images were taken during the stance phase of gait. 3D-2D model-image registration was performed using the fluoroscopic image and the implant models, and three-dimensional kinematics of the implant and incongruency of the articular surface were determined. The mean ranges of motion were 11.1±4.6°, 0.8±0.4°, and 2.6±1.5° for dorsi-/plantarflexion, inversion/eversion, and internal/external rotation, respectively. At least one type of incongruency of the articular surface occurred in eight of 18 ankles, including anterior hinging in one ankle, medial or lateral lift off in four ankles, and excessive axial rotation in five ankles. Among the four ankles in which lift off occurred during gait, only one ankle showed lift off in the static weightbearing radiograph. Our observations will provide useful data against which kinematics of other implant designs, such as three-component total ankle arthroplasty, can be compared. Our results also showed that evaluation of lift off in the standard weightbearing radiograph may not predict its occurrence during gait.
Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1986-01-01
The inverse and forward dynamics problems for multi-link serial manipulators are solved by using recursive techniques from linear filtering and smoothing theory. The pivotal step is to cast the system dynamics and kinematics as a two-point boundary-value problem. Solution of this problem leads to filtering and smoothing techniques identical to the equations of Kalman filtering and Bryson-Frazier fixed time-interval smoothing. The solutions prescribe an inward filtering recursion to compute a sequence of constraint moments and forces followed by an outward recursion to determine a corresponding sequence of angular and linear accelerations. In addition to providing techniques to compute joint accelerations from applied joint moments (and vice versa), the report provides an approach to evaluate recursively the composite multi-link system inertia matrix and its inverse. The report lays the foundation for the potential use of filtering and smoothing techniques in robot inverse and forward dynamics and in robot control design.
He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank
2016-04-01
When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component.
He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank
2016-01-01
When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580
Inverse Compton Scattering in Mildly Relativistic Plasma
NASA Technical Reports Server (NTRS)
Molnar, S. M.; Birkinshaw, M.
1998-01-01
We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.
Multidimensional NMR inversion without Kronecker products: Multilinear inversion
NASA Astrophysics Data System (ADS)
Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos
2016-08-01
Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.
Chang, Young-Hui; Auyang, Arick G; Scholz, John P; Nichols, T Richard
2009-11-01
Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.
Begon, Mickaël; Bélaise, Colombe; Naaim, Alexandre; Lundberg, Arne; Chèze, Laurence
2016-10-20
Markers put on the arm undergo large soft tissue artefact (STA). Using markers on the forearm, multibody kinematics optimization (MKO) helps improve the accuracy of the arm kinematics especially its longitudinal rotation. However deleterious effect of STA may persist and affect other segment estimate. The objective was to present an innovative multibody kinematics optimization algorithm with projection of markers onto a requested axis of the local system of coordinates, to cancel their deleterious effect on this degree-of-freedom. Four subjects equipped with markers put on intracortical pins inserted into the humerus, on skin (scapula, arm and forearm) and subsequently on rigid cuffs (arm and forearm) performed analytic, daily-living, sports and range-of-motion tasks. Scapulohumeral kinematics was estimated using 1) pin markers (reference), 2) single-body optimization, 3) MKO, 4) MKO with projection of all arm markers and 5) MKO with projection of a selection of arm markers. Approaches 2-4 were applied to markers put on the skin and the cuff. The main findings were that multibody kinematics optimization improved the accuracy of 40-50% and the projection algorithm added an extra 20% when applied to cuff markers or a selection of skin markers (all but the medial epicondyle). Therefore, the projection algorithm performed better than multibody and single-body optimizations, especially when using markers put on a cuff. Error of humerus orientation was reduced by half to finally be less than 5°. To conclude, this innovative algorithm is a promising approach for estimating accurate upper-limb kinematics.
Canopy Components Temperature Retrieval through Bayesian inversion of Directional measurements
NASA Astrophysics Data System (ADS)
Timmermans, J.; Verhoef, W.; van der Tol, C.; Jia, L.; Su, Z.
2008-12-01
In the calculation of Evapotranspiration the kinematic temperature of the individual canopy components plays a crucial role. Most remote sensing algorithms, like SEBAL and SEBS, use a single surface temperature to calculate the evapotranspiration. These algorithms break down when used for canopies with a heterogeneous kinematic temperature profile. A two-source or four-source approach would result in much more realistic values of the evapotranspiration. Single view Nadir looking sensors are not able to extract the multiple kinetic temperatures with high precision. The use of multi-directional sensors is therefore essential. A bi-angular setup is sufficient to separate soil and canopy temperatures (e.g. Jia et al. 2003). For separation of sunlit and shaded soil or vegetation temperatures measurements at additional angles are needed. Calculation of the component temperatures from measured thermal radiances requires the use of more sophisticated radiative transfer models, because the use of fractional vegetation cover alone is no longer sufficient for an inversion scheme for four components. The radiative transfer model used for the calculation of the component temperatures was the four stream SAIL radiative transfer model (Verhoef et al. 2007). We present the algorithm used and the results obtained for the Bayesian inversion. The results were obtained using several directional measurement configurations. The configurations were chosen such to represent various present and future satellite-borne sensors. In this way the configurations give a clear indication of the possibilities of multi-directional thermal remote sensing. References Jia. L. Li, Z. -I., Menenti, M., Su, Z., Verhoef, W. and Wan, Z. (2003), "A practical algorithm to infer soil and foliage component temperatures from bi-angular ATSR-2 data", International Journal of Remote Sensing, 24:23, 4739-4760. Verhoef, W. Jia, L. Xiao, Q. Su, Z., (2007), "Unified optical-thermal four-stream radiative transfer
Kinematic Structures Description of Bionic Hand Based on VF Set
NASA Astrophysics Data System (ADS)
Liu, Xiancan; Bai, Pengying; Luo, Min; Gao, Meng; Zhan, Qiang
2017-03-01
This paper presents a method for describing kinematic structure of bionic hand based on VF (virtual finger) set. At first, a 20 DOFs (degrees of freedom) human hand kinematic model is built, which is expressed by five fingers’ kinematic chains consisting of kinematic pairs and symbols that represent geometric relationships of kinematic pairs’ axes. Based on the concept of VF, the hand fingers are divided into two types: VFAA having adduction/abduction motion and VFFE having flexion/extension motion. The concept of VF set comprising VFAAs and VFFEs is defined, human hand and six basic grasp postures are described by VF set. Then, the structures corresponding VFAA and VFFE are given according to active and passive forms of finger joints, and VFFE Structure-Base comprising 20 conventional structures is built. Based on VF set and the structures of VFAA and VFFE, VF sets and kinematic structures of several classic bionic hands are given.
A Novel Algorithm for the Generation of Distinct Kinematic Chain
NASA Astrophysics Data System (ADS)
Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao
2016-07-01
Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.
Kinematics of transition during human accelerated sprinting
Nagahara, Ryu; Matsubayashi, Takeo; Matsuo, Akifumi; Zushi, Koji
2014-01-01
ABSTRACT This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG) during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed. PMID:24996923
Structure and kinematics of molecular jets
NASA Astrophysics Data System (ADS)
Snell, R. L.
1986-04-01
Observational studies of the structure and kinematics of the supersonic molecular gas in star-forming regions are reviewed. These studies have suggested that the bulk of the high-velocity gas may be ambient-cloud material swept up by a collimated stellar wind. The actual structures of these outflows, however, are poorly understood. One source that may provide a better understanding of molecular outflows is that in the nearby dark cloud LDN 1551. New observations of this outflow are presented and discussed in context of the models proposed by Snell and Schloerb.
Confined kinematics of suspended rigid fibres
NASA Astrophysics Data System (ADS)
Scheuer, A.; Perez, M.; Abisset-Chavanne, E.; Chinesta, F.; Keunings, R.
2016-10-01
We address the extension of Jeffery's model, governing the orientation of rods immersed in a Newtonian fluid, to confined regimes occurring when the thickness of the flow domain is narrower than the rod length. The main modelling ingredients concern: (i) the consideration of the rod interactions with one or both gap walls and their effects on the rod orientation kinematics; (ii) the consideration of non-uniform strain rates at the scale of the rod, requiring higher-order descriptions. Such scenarios are very close to those encountered in real composites forming processes and have never been appropriately addressed from a microstructural point of view.
Quantum simulation of noncausal kinematic transformations.
Alvarez-Rodriguez, U; Casanova, J; Lamata, L; Solano, E
2013-08-30
We propose the implementation of Galileo group symmetry operations or, in general, linear coordinate transformations in a quantum simulator. With an appropriate encoding, unitary gates applied to our quantum system give rise to Galilean boosts or spatial and time parity operations in the simulated dynamics. This framework provides us with a flexible toolbox that enhances the versatility of quantum simulation theory, allowing the direct access to dynamical quantities that would otherwise require full tomography. Furthermore, this method enables the study of noncausal kinematics and phenomena beyond special relativity in a quantum controllable system.
Cosmological Applications of the Gaussian Kinematic Formula
NASA Astrophysics Data System (ADS)
Fantaye, Yabebal T.; Marinucci, Domenico
2014-05-01
The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances.
Mapping Dark Matter Halos with Stellar Kinematics
NASA Astrophysics Data System (ADS)
Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.
2013-07-01
Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same
Kinematics of Low Surface Brightness Galaxies
NASA Astrophysics Data System (ADS)
Cardullo, A.; Pizzella, A.; Corsini, E. M.; Bertola, F.
2008-10-01
We analyzed the kinematic of 12 low surface-brightness (LSB) galaxies to study the correlation between the disk circular velocity V_{c} and the central velocity dispersion of the spheroidal component σ_{0}. This relation has been claimed to be either the same power-law relation tep{buy} or a different linear one tep{piz} with respect to high surface-brightness (HSB) galaxies. We confirm here that LSB and HSB galaxies follow two different linear V_{c}-σ_{0} relations.
Kinematics and Fluid Dynamics of Jellyfish Maneuvering
NASA Astrophysics Data System (ADS)
Miller, Laura; Hoover, Alex
2014-11-01
Jellyfish propel themselves through the water through periodic contractions of their elastic bells. Some jellyfish, such as the moon jellyfish Aurelia aurita and the upside down jellyfish Cassiopea xamachana, can perform turns via asymmetric contractions of the bell. The fluid dynamics of jellyfish forward propulsion and turning is explored here by analyzing the contraction kinematics of several species and using flow visualization to quantify the resulting flow fields. The asymmetric contraction and structure of the jellyfish generates asymmetries in the starting and stopping vortices. This creates a diagonal jet and a net torque acting on the jellyfish. Results are compared to immersed boundary simulations
Kinematic Rupture Process Of Karakocan-Elazig Earthquake, Eastern Turkey
NASA Astrophysics Data System (ADS)
Bekler, F. N.; Ozel, N. M.; Tanircan, G. B.
2012-04-01
An earthquake (Mw=5.9) hit Elazig in the eastern part of Turkey on March 8, 2010 at 02:32 (GMT). It is located midway between the provincial capital of Elazığ and Bingöl with coordinates reported as 38o48.42N and 40o5.99E by Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI). Source characterization and slip history were estimated the main and four moderate size earthquake almost at the same location. The earthquake occurred at one of the tectonically very active East Anatolian Fault zone starts at the Karlıova triple junction, where it meets the North Anatolian fault to the NE. Multi time-window linear waveform inversion technique (MTWIT) was applied to strong ground motion (SGM) data. Theoretical Green's functions between subfaults and stations were calculated by a Discrete Wave Number Method (DWNM) using 1-D velocity structure. Inversion technique used in this study yields a non unique solution. Therefore various rupture models have been tried until both observed and synthetic data were matched. Results show simple patterns in slip distributions. Maximum slip is 0.78 and seismic moment is 1.435E+25 dyne.cm from the kinematic rupture process of the strike slip faulting. In this study, we searched a stable 1-D crustal velocity model with low RMS misfit to construct the theoretical Green's function between each sub-fault and each station among the 4 different models. These are Preliminary Reference Earth Model (PREM; Dziewonski and Anderson, 1981), International Association of Seismology and the Physics of the Earth's Interior (IASP91) (Kennett and Engdahl, 1991), Kandilli Observatory and Earthquake Research Institute (KOERI) earthquake location model, explosion model (Gurbuz, 2004). We have collected previous studies Rebollar et al., (2001), Ichinose et al., (1997), Abdel-Fattah (2002), Somerville et al., (1999), Wells and Coppersmith (1994) on source information of moderate size earthquakes occurred worldwide and compared with
Timothy C. Johnson; Roeof J. Versteeg; Andy Ward; Frederick D. Day-Lewis; Andre Revil
2010-09-01
Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics, both for characterizing the electrical properties of the subsurface, and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Current multichannel and multielectrode data collections systems are able to collect large amounts of data in relatively short periods of time. However, practitioners are often unable to fully utilize these large data sets and the information they contain due to the processing limitations of standard desktop computers. This limitation can be addressed by utilizing the storage and processing capabilities of high-performance parallel computing environments. We present a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polarization data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We demonstrate the corresponding parallel code for three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, WA; (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy; and (3) resistivity and IP monitoring of biostimulation at a superfund site in Brandywine, MD. Inverse analysis of each of these data sets would be limited (or impossible) in a standard serial computing environment which underscores the need for high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications.
Changes in knee kinematics following total knee arthroplasty.
Akbari Shandiz, Mohsen; Boulos, Paul; Saevarsson, Stefan Karl; Yoo, Sam; Miller, Stephen; Anglin, Carolyn
2016-04-01
Total knee arthroplasty (TKA) changes the knee joint in both intentional and unintentional, known and unknown, ways. Patellofemoral and tibiofemoral kinematics play an important role in postoperative pain, function, satisfaction and revision, yet are largely unknown. Preoperative kinematics, postoperative kinematics or changes in kinematics may help identify causes of poor clinical outcome. Patellofemoral kinematics are challenging to record since the patella is obscured by the metal femoral component in X-ray and moves under the skin. The purpose of this study was to determine the kinematic degrees of freedom having significant changes and to evaluate the variability in individual changes to allow future study of patients with poor clinical outcomes. We prospectively studied the 6 degrees of freedom patellofemoral and tibiofemoral weightbearing kinematics, tibiofemoral contact points and helical axes of rotation of nine subjects before and at least 1 year after total knee arthroplasty using clinically available computed tomography and radiographic imaging systems. Normal kinematics for healthy individuals were identified from the literature. Significant differences existed between pre-TKA and post-TKA kinematics, with the post-TKA kinematics being closer to normal. While on average the pre-total knee arthroplasty knees in this group displayed no pivoting (only translation), individually only five knees displayed this behaviour (of these, two showed lateral pivoting, one showed medial pivoting and one showed central pivoting). There was considerable variability postoperatively as well (five central, two lateral and two medial pivoting). Both preop and postop, flexion behaviour was more hinge-like medially and more rolling laterally. Helical axes were more consistent postop for this group. An inclusive understanding of the pre-TKA and post-TKA kinematics and changes in kinematics due to total knee arthroplasty could improve implant design, patient diagnosis and
The 2011, Mw 6.2, Christchurch earthquakes (New Zealand): faults geometry and source kinematics
NASA Astrophysics Data System (ADS)
Toraldo Serra, E.; Delouis, B.; Emolo, A.; Zollo, A.
2012-12-01
The geometrical characteristics and the space-time distribution of the kinematic source parameters of the 21 February 2011, Mw 6.2, Christchurch earthquake, New Zealand, have been inferred through a joint inversion of geodetic and strong-motion data. The geodetic data consist of both Global Position System (GPS), from campaign and continuous stations, and Synthetic Aperture Radar (SAR) interferograms from two ascending satellite tracks. The strong-motion data have been recorded at 10 stations located in the Canterbury Plane, offering a quite good azimuthal coverage of the event. Before performing the data inversion, several preliminary analyses on individual data-sets have been carried out, in order to find the optimal lay-out for the inversion. In particular, the consistency between GPS and InSAR data was checked and some GPS measurements, characterized by large errors, were excluded from the data-set. The strong-motion analyses were instead primarily addressed, to identify the reliable frequency range to be used, through the analysis of stability of S-wave polarization. The kinematic rupture model was obtained using the nonlinear joint inversion scheme proposed by Delouis et al. (2000), which is based on the simulated annealing algorithm. In particular, for any sub-source in which the fault plane is discretized, we explore for the direction, duration and amplitude of the slip vector, and for the rupture offset time. The geometry and orientation of the fault plane to be used in the inversion procedure is preliminarily inferred from the analysis of the geodetic data. In order to account for the complex pattern of the superficial deformation data (especially of the InSAR data), we adopted a source model consisting of two partially overlapping fault segments, whose dimensions are 15x11 and 7x7 km2, and striking at 60o and 10o, respectively. From the data inversion we found a slip distribution for the largest plane characterized by a high slip area, with a maximum
Optimization and geophysical inverse problems
Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.
2000-10-01
A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness
Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate
NASA Astrophysics Data System (ADS)
Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi
2015-09-01
Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.
Probabilistic inversion: a preliminary discussion
NASA Astrophysics Data System (ADS)
Battista Rossi, Giovanni; Crenna, Francesco
2015-02-01
We continue the discussion on the possibility of interpreting probability as a logic, that we have started in the previous IMEKO TC1-TC7-TC13 Symposium. We show here how a probabilistic logic can be extended up to including direct and inverse functions. We also discuss the relationship between this framework and the Bayes-Laplace rule, showing how the latter can be formally interpreted as a probabilistic inversion device. We suggest that these findings open a new perspective in the evaluation of measurement uncertainty.
Thermoelectric properties of inverse opals
NASA Astrophysics Data System (ADS)
Mahan, G. D.; Poilvert, N.; Crespi, V. H.
2016-02-01
Rayleigh's method [Philos. Mag. Ser. 5 34, 481 (1892)] is used to solve for the classical thermoelectric equations in inverse opals. His theory predicts that in an inverse opal, with periodic holes, the Seebeck coefficient and the figure of merit are identical to that of the bulk material. We also provide a major revision to Rayleigh's method, in using the electrochemical potential as an important variable, instead of the electrostatic potential. We also show that in some cases, the thermal boundary resistance is important in the effective thermal conductivity.
Statistical inference for inverse problems
NASA Astrophysics Data System (ADS)
Bissantz, Nicolai; Holzmann, Hajo
2008-06-01
In this paper we study statistical inference for certain inverse problems. We go beyond mere estimation purposes and review and develop the construction of confidence intervals and confidence bands in some inverse problems, including deconvolution and the backward heat equation. Further, we discuss the construction of certain hypothesis tests, in particular concerning the number of local maxima of the unknown function. The methods are illustrated in a case study, where we analyze the distribution of heliocentric escape velocities of galaxies in the Centaurus galaxy cluster, and provide statistical evidence for its bimodality.
Chemical Shift Anisotropy Selective Inversion*
Caporini, Marc. A.; Turner, Christopher. J.; Bielecki, Anthony; Griffin, Robert G.
2009-01-01
Magic Angle Spinning (MAS) is used in solid-state NMR to remove the broadening effects of the chemical shift anisotropy (CSA). In this work we investigate a technique that can reintroduce the CSA in order to selectively invert transverse magnetization. The technique involves an amplitude sweep of the radio frequency field through a multiple of the spinning frequency. The selectivity of this inversion mechanism is determined by the size of the CSA. We develop a theoretical framework to describe this process and demonstrate the CSA selective inversion with numerical simulations and experimental data. We combine this approach with cross polarization (CP) for potential applications in multi-dimensional MAS NMR. PMID:19648036
Multiphase inverse modeling: An Overview
Finsterle, S.
1998-03-01
Inverse modeling is a technique to derive model-related parameters from a variety of observations made on hydrogeologic systems, from small-scale laboratory experiments to field tests to long-term geothermal reservoir responses. If properly chosen, these observations contain information about the system behavior that is relevant to the performance of a geothermal field. Estimating model-related parameters and reducing their uncertainty is an important step in model development, because errors in the parameters constitute a major source of prediction errors. This paper contains an overview of inverse modeling applications using the ITOUGH2 code, demonstrating the possibilities and limitations of a formalized approach to the parameter estimation problem.
Population inversion by chirped pulses
Lu Tianshi
2011-09-15
In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.
Yamaguchi, Satoshi; Tanaka, Yasuhito; Kosugi, Shinichi; Takakura, Yoshinori; Sasho, Takahisa; Banks, Scott A
2011-04-07
Relatively high rates of loosening and implant failure have been reported after total ankle arthroplasty, especially in first and second generation implants. Abnormal kinematics and incongruency of the articular surface may cause increased loads applied to the implant with concomitant polyethylene wear, resulting in loosening and implant failure. The purpose of this study was to measure three-dimensional kinematics of two-component total ankle arthroplasty during non-weightbearing and weightbearing activities, and to investigate incongruency of the articular surfaces during these activities. Forty-seven patients with a mean age of 71 years were enrolled. Radiographs were taken at non-weightbearing maximal dorsiflexion and plantarflexion, and weightbearing maximal dorsiflexion, plantarflexion, and neutral position. 3D-2D model-image registration was performed using the radiographs and the three-dimensional implant models, and three-dimensional joint angles were determined. The implanted ankles showed 18.1±8.6° (mean±standard deviation) of plantarflexion, 0.1±0.7° of inversion, 1.2±2.0° of internal rotation, and 0.8±0.6mm of posterior translation of the talar component in the non-weightbearing activity, and 17.8±7.5° of plantarflexion, 0.4±0.5° of inversion, 1.8±2.0° of internal rotation, and 0.7±0.5mm of posterior translation in the weightbearing activity. There were no significant differences between the non-weightbearing and weightbearing kinematics except for the plantarflexion angle. Incongruency of the articular surface occurred in more than 75% of the ankles. Our observations will provide useful data against which kinematics of other implant designs, such as three-component total ankle arthroplasty, can be compared.
Wang, Hongzhao; Huo, Ming; An, Xiangde; Li, Yong; Onoda, Ko; Li, Desheng; Huang, Qiuchen; Maruyama, Hitoshi
2016-04-01
[Purpose] This study was performed to investigate the changes in lower leg proximal end and forefoot kinematics, and reliability of measurement during different paces of barefoot racewalking on treadmill. [Subjects] Eleven junior racewalking men participated in this study. [Methods] To identify changes in lower leg proximal end and forefoot kinematics, during different paces of barefoot racewalking on a treadmill, a wireless motion recorder (MVP-RF8-BC) was used. Interclass correlation coefficients (ICC 1, 2) were used to estimate reliability. [Results] There were significant differences in the lower leg proximal end and forefoot maximum medial/lateral rotations at a pace of 9 km/h compared with those at a pace of 5 km/h pace. The intra-examiner reliability estimates ranged from 0.82 and 0.89 to 0.87 and 0.93 for lower leg proximal end inversion/eversion rotation and medial/lateral rotation, and from 0.92 and 0.84 to 0.93 and 0.91 for forefoot inversion/eversion rotation and medial/lateral rotation. [Conclusion] We conclude that the lower leg proximal end and forefoot kinematics of barefoot racewalking on a treadmill are influenced by different paces and that assessment of lower leg proximal end and forefoot kinematics by means of the wireless motion recorder (MVP-RF8-BC) is adequately reliable. This information may be useful for determining exercise prescriptions.
Wang, Hongzhao; Huo, Ming; An, Xiangde; Li, Yong; Onoda, Ko; Li, Desheng; Huang, Qiuchen; Maruyama, Hitoshi
2016-01-01
[Purpose] This study was performed to investigate the changes in lower leg proximal end and forefoot kinematics, and reliability of measurement during different paces of barefoot racewalking on treadmill. [Subjects] Eleven junior racewalking men participated in this study. [Methods] To identify changes in lower leg proximal end and forefoot kinematics, during different paces of barefoot racewalking on a treadmill, a wireless motion recorder (MVP-RF8-BC) was used. Interclass correlation coefficients (ICC 1, 2) were used to estimate reliability. [Results] There were significant differences in the lower leg proximal end and forefoot maximum medial/lateral rotations at a pace of 9 km/h compared with those at a pace of 5 km/h pace. The intra-examiner reliability estimates ranged from 0.82 and 0.89 to 0.87 and 0.93 for lower leg proximal end inversion/eversion rotation and medial/lateral rotation, and from 0.92 and 0.84 to 0.93 and 0.91 for forefoot inversion/eversion rotation and medial/lateral rotation. [Conclusion] We conclude that the lower leg proximal end and forefoot kinematics of barefoot racewalking on a treadmill are influenced by different paces and that assessment of lower leg proximal end and forefoot kinematics by means of the wireless motion recorder (MVP-RF8-BC) is adequately reliable. This information may be useful for determining exercise prescriptions. PMID:27190445
APOGEE Kinematics. I. Overview of the Kinematics of the Galactic Bulge as Mapped By APOGEE
NASA Astrophysics Data System (ADS)
Ness, M.; Zasowski, G.; Johnson, J. A.; Athanassoula, E.; Majewski, S. R.; García Pérez, A. E.; Bird, J.; Nidever, D.; Schneider, Donald P.; Sobeck, J.; Frinchaboy, P.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey
2016-03-01
We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the midplane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes of 0° < l < 65°, and primarily across latitudes of | b| < 5° in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very center of the bulge, with the smallest gradients in both kinematic and chemical space inside the innermost region (| l,b| ) < (5°, 5°). The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge-on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of | b| < 2° appears to have a corresponding signature in [{Fe}/{{H}}] and [α /{Fe}]. Stars with [{Fe}/{{H}}] > -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,| b| ) < (15°, 12°) out to the disk for stars with [{Fe}/{{H}}] > -1.0, and the chemodynamics across (l, b) suggests that the stars in the inner Galaxy with [{Fe}/{{H}}] > -1.0 originate in the disk.
Development of advanced blade pitching kinematics for cycloturbines and cyclorotors
NASA Astrophysics Data System (ADS)
Adams, Zachary Howard
to achieve optimum performance. A novel inverse method was developed implementing a new semi-empirical curvilinear flow blade aerodynamic coefficient model to predict optimum cycloturbine blade pitch waveforms from the ideal fluid deceleration. These improved blade pitch waveforms were evaluated on a 1.37m diameter by 1.37m span cycloturbine to definitively characterize their improvement over existing blade pitch motions and demonstrate the practicality of a variable blade pitch system. The Fluxline Optimal pitching kinematics outperformed sinusoidal and fixed pitching kinematics. The turbine achieved a mean gross aerodynamic power coefficient of 0.44 (95% confidence interval: [0.388,0.490]) and 0.52 (95% confidence interval: [0.426,0.614]) at tip speed ratios (TSRs) of 1.5 and 2.25 respectively which exceeds all other low TSR vertical axis wind turbines. Two-dimensional incompressible Reynolds-averaged Navier-Stokes computational fluid dynamic simulations were used to characterize higher order effects of the blade interaction with the fluid. These simulations suggest Fluxline Optimal pitch kinematics achieve high power coefficients by evenly extracting energy from the flow without blade stall or detached turbine wakes. Fluxline Theory was adapted to inform the design of high efficiency cyclorotors by incorporating the concept of rotor angle of attack as well as a power and drag loss model for blade support structure. A blade element version of this theory predicts rotor performance. For hovering, a simplified variation of the theory instructs that cyclorotors will achieve the greatest power loading at low disk loadings with high solidity blades pitched to maximum lift coefficient. Increasing lift coefficients in the upstream portion of the rotor disproportionately increases performance compared to magnifying lift in the downstream portion. This suggests airfoil sections that counter curvilinear flow effects could improve hovering efficiency. Additionally, the
Dissecting new physics models through kinematic edges
NASA Astrophysics Data System (ADS)
Iyer, Abhishek M.; Maitra, Ushoshi
2017-02-01
Kinematic edges in the invariant mass distributions of different final state particles are typically a signal of new physics. In this work we propose a scenario wherein these edges could be utilized in discriminating between different classes of models. To this effect, we consider the resonant production of a heavy Higgs like resonance (H1) as a case study. Such states are a characteristic feature of many new physics scenarios beyond the standard model (SM). In the event of a discovery, it is essential to identify the true nature of the underlying theory. In this work we propose a channel, H1→t2t , where t2 is a vectorlike gauge singlet top-partner that decays into W b , Z t , h t . Invariant mass distributions constructed out of these final states are characterized by the presence of kinematic edges, which are unique to the topology under consideration. Further, since all the final state particles are SM states, the position in the edges of these invariant mass distributions can be used to exclusively determine the masses of the resonances. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these edge like features, in the specific invariant mass distributions considered here, in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non-MSSM-like scenarios.
Multiplanar breast kinematics during different exercise modalities.
Risius, Deborah; Milligan, Alexandra; Mills, Chris; Scurr, Joanna
2015-01-01
Multiplanar breast movement reduction is crucial to increasing physical activity participation amongst women. To date, research has focused on breast movement during running, but until breast movement is understood during different exercise modalities, the breast support requirements for specific activities are unknown. To understand breast support requirements during different exercise modalities, this study aimed to determine multiplanar breast kinematics during running, jumping and agility tasks. Sixteen 32D participants had markers attached to their right nipple and torso. Relative multiplanar breast displacement was calculated during bare-breasted treadmill running (10 kph), maximum countermovement jumping and an agility t-test. Exercise modality influenced the magnitude and direction of breast displacement, velocity and acceleration (p < .05). Jumping produced greater vertical breast displacement (.09 m) but less mediolateral breast displacement (.05 m) than running or the agility task, but agility tasks produced the highest multiplanar breast velocities and acceleration. Breast movement during jumping was predominantly in the vertical direction, whereas the agility task produced a greater percentage of mediolateral breast acceleration than running or jumping. Exercise modality impacted upon the magnitude and distribution of bare-breasted multiplanar breast kinematics in this homogenous 32D cohort. Therefore, to reduce breast movement in women of a 32D bra size, manufacturers may wish to design sport-specific products, with greater vertical support for exercise modalities incorporating jumping and greater mediolateral support for agility tasks.
The Kinematics of Turbulent Boundary Layer Structure
NASA Technical Reports Server (NTRS)
Robinson, Stephen Kern
1991-01-01
The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.
Kinematics of Signature Writing in Healthy Aging*
Caligiuri, Michael P.; Kim, Chi; Landy, Kelly M.
2014-01-01
Forensic document examiners (FDE) called upon to distinguish a genuine from a forged signature of an elderly person are often required to consider the question of age-related deterioration and whether the available exemplars reliably capture the natural effects of aging of the original writer. An understanding of the statistical relationship between advanced age and handwriting movements can reduce the uncertainty that may exist in an examiner’s approach to questioned signatures formed by elderly writers. The primary purpose of this study was to systematically examine age-related changes in signature kinematics in healthy writers. Forty-two healthy subjects between the ages of 60–91 years participated in this study. Signatures were recorded using a digitizing tablet and commercial software was used to examine the temporal and spatial stroke kinematics and pen pressure. Results indicated that vertical stroke duration and dysfluency increased with age, whereas vertical stroke amplitude and velocity decreased with age. Pen pressure decreased with age. We found that a linear model characterized the best-fit relationship between advanced age and handwriting movement parameters for signature formation. Male writers exhibited stronger age effects than female writers, especially for pen pressure and stroke dysfluency. The present study contributes to an understanding of how advanced age alters signature formation in otherwise healthy adults. PMID:24673648
Nuclear Rings in Galaxies - A Kinematic Perspective
NASA Technical Reports Server (NTRS)
Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain
2011-01-01
We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.
Kinematically consistent models of viscoelastic stress evolution
NASA Astrophysics Data System (ADS)
DeVries, Phoebe M. R.; Meade, Brendan J.
2016-05-01
Following large earthquakes, coseismic stresses at the base of the seismogenic zone may induce rapid viscoelastic deformation in the lower crust and upper mantle. As stresses diffuse away from the primary slip surface in these lower layers, the magnitudes of stress at distant locations (>1 fault length away) may slowly increase. This stress relaxation process has been used to explain delayed earthquake triggering sequences like the 1992 Mw = 7.3 Landers and 1999 Mw = 7.1 Hector Mine earthquakes in California. However, a conceptual difficulty associated with these models is that the magnitudes of stresses asymptote to constant values over long time scales. This effect introduces persistent perturbations to the total stress field over many earthquake cycles. Here we present a kinematically consistent viscoelastic stress transfer model where the total perturbation to the stress field at the end of the earthquake cycle is zero everywhere. With kinematically consistent models, hypotheses about the potential likelihood of viscoelastically triggered earthquakes may be based on the timing of stress maxima, rather than on any arbitrary or empirically constrained stress thresholds. Based on these models, we infer that earthquakes triggered by viscoelastic earthquake cycle effects may be most likely to occur during the first 50% of the earthquake cycle regardless of the assumed long-term and transient viscosities.
Friction Stir Welding at MSFC: Kinematics
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
2001-01-01
In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.
The SPM Kinematic Catalogue of Planetary Nebulae
NASA Astrophysics Data System (ADS)
López, J. A.; Richer, M.; Riesgo, H.; Steffen, W.; Meaburn, J.; García-Segura, G.; Escalante, K.
2006-06-01
We present a progress report on the San Pedro Mártir Kinematic Catalogue of Planetary Nebulae. Both, galactic PNe from the disk, bulge and halo populations, and PNe from galaxies in the local group from a diverse range of metallicities have been observed. Most of the observations have been made with the 2.1-m SPM telescope and the Manchester Echelle Spectrometer (Meaburn et al. 2003, RevMexAA, 39, 185). The data consists of spatially resoved long slit spectra at resolutions of ˜ 10 km s^{-1}. For most galactic targets more than one slit positions has been observed. The interpretation of the 3D structures and outflows derived from the kinematic data is being performed with the aid of SHAPE (see the contributions by Steffen, López, & Escalante, Steffen & López in this symposium). This unique database of high dispersion spectra will allow a firm characterisation of nebular shell properties in relation to progenitors from diverse stellar populations.
Against relative timing invariance in movement kinematics.
Burgess-Limerick, R; Neal, R J; Abernethy, B
1992-05-01
The kinematics of stair climbing were examined to test the assertion that relative timing is an invariant feature of human gait. Six male and four female subjects were video-recorded (at 60 Hz) while they climbed a flight of stairs 10 times at each of three speeds. Each gait cycle was divided into three segments by the maximum and minimum angular displacement of the left knee and left foot contact. Gentner's (1987) analysis methods were applied to the individual subject data to determine whether the duration of the segments remained a fixed proportion of gait cycle duration across changes in stair-climbing speed. A similar analysis was performed using knee velocity maxima to partition the gait cycle. Regardless of how the gait cycle was divided, relative timing was not found to remain strictly invariant across changes in speed. This conclusion is contrary to previous studies of relative timing that involved less conservative analysis but is consistent with the wider gait literature. Strict invariant relative timing may not be a fundamental feature of movement kinematics.
Kinematic criterion for breaking of shoaling waves
NASA Astrophysics Data System (ADS)
Liberzon, Dan; Itay, Uri
2016-11-01
Validity of a kinematic criterion for breaking of shoaling waves was examined experimentally. Results obtained by simultaneous measurements of water surface velocity by PTV and of the propagation velocity of a steep crest up to the point of breaking inception during shoaling will be reported. The experiments performed in a large wave tank examining breaking behavior of gentle spillers during shoaling on three different slopes suggest a validity of the recently proposed kinematic criterion. The breaking inception was found to occur when the horizontal velocity of the water surface on the steep (local steepness of 0.41-0.6) crest reaches a threshold value of 0.85-0.95 of that of the crest propagation. The exact moment and position of breaking inception detected using a Phase Time Method (PTM), characterizing a unique shape of the local frequency fluctuations at the inception. Future implementation of the PTM method for detection of breaking events in irregular wave fields will be discussed. Supported by German-Israeli Foundation for Scientific Research and Development (GIF) Grant #2019392.
THE KINEMATICS OF PRIMATE MIDFOOT FLEXIBILITY
Greiner, Thomas M.; Ball, Kevin A.
2015-01-01
This study describes a unique assessment of primate intrinsic foot joint kinematics based upon bone pin rigid cluster tracking. It challenges the assumption that human evolution resulted in a reduction of midfoot flexibility, which has been identified in other primates as the “midtarsal break.” Rigid cluster pins were inserted into the foot bones of human, chimpanzee, baboon and macaque cadavers. The positions of these bone pins were monitored during a plantarflexion-dorsiflexion movement cycle. Analysis resolved flexion-extension movement patterns and the associated orientation of rotational axes for the talonavicular, calcaneocuboid and lateral cubometatarsal joints. Results show that midfoot flexibility occurs primarily at the talonavicular and cubometatarsal joints. The rotational magnitudes are roughly similar between humans and chimps. There is also a similarity among evaluated primates in the observed rotations of the lateral cubometatarsal joint, but there was much greater rotation observed for the talonavicular joint, which may serve to differentiate monkeys from the hominines. It appears that the capability for a midtarsal break is present within the human foot. A consideration of the joint axes shows that the medial and lateral joints have opposing orientations, which has been associated with a rigid locking mechanism in the human foot. However, the potential for this same mechanism also appears in the chimpanzee foot. These findings demonstrate a functional similarity within the midfoot of the hominines. Therefore, the kinematic capabilities and restrictions for the skeletal linkages of the human foot may not be as unique as has been previously suggested. PMID:25234343
NASA Astrophysics Data System (ADS)
Lohman, R. B.; Simons, M.
2004-12-01
We examine inversions of geodetic data for fault slip and discuss how inferred results are affected by choices of regularization. The final goal of any slip inversion is to enhance our understanding of the dynamics governing fault zone processes through kinematic descriptions of fault zone behavior at various temporal and spatial scales. Important kinematic observations include ascertaining whether fault slip is correlated with topographic and gravitational anomalies, whether coseismic and postseismic slip occur on complementary or overlapping regions of the fault plane, and how aftershock distributions compare with areas of coseismic and postseismic slip. Fault slip inversions are generally poorly-determined inverse problems requiring some sort of regularization. Attempts to place inversion results in the context of understanding fault zone processes should be accompanied by careful treatment of how the applied regularization affects characteristics of the inferred slip model. Most regularization techniques involve defining a metric that quantifies the solution "simplicity". A frequently employed method defines a "simple" slip distribution as one that is spatially smooth, balancing the fit to the data vs. the spatial complexity of the slip distribution. One problem related to the use of smoothing constraints is the "smearing" of fault slip into poorly-resolved areas on the fault plane. In addition, even if the data is fit well by a point source, the fact that a point source is spatially "rough" will force the inversion to choose a smoother model with slip over a broader area. Therefore, when we interpret the area of inferred slip we must ask whether the slipping area is truly constrained by the data, or whether it could be fit equally well by a more spatially compact source with larger amplitudes of slip. We introduce an alternate regularization technique for fault slip inversions, where we seek an end member model that is the smallest region of fault slip that
Action Understanding as Inverse Planning
ERIC Educational Resources Information Center
Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.
2009-01-01
Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…
Inversions. Popular Lectures in Mathematics.
ERIC Educational Resources Information Center
Bakel'man, I. Ya
Inversions are transformations of geometric figures, under which straight lines may be mapped to circles, and conversely. The use of such mapping allows development of a unified method of solution for many of the problems of elementary geometry, especially those concerning constructions and "pencils" of curves. This book discusses the inversion…
Wave-equation dispersion inversion
NASA Astrophysics Data System (ADS)
Li, Jing; Feng, Zongcai; Schuster, Gerard
2017-03-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Inverse dynamics of a 3 degree of freedom spatial flexible manipulator
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Serna, M.
1989-01-01
A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.
Nataraj, Raviraj; Li, Zong-Ming
2013-09-01
This study presents a methodology to determine thumb and index finger kinematics while utilizing a minimal set of markers. The motion capture of skin-surface markers presents inherent challenges for the accurate and comprehensive measurement of digit kinematics. As such, it is desirable to utilize robust methods for assessing digit kinematics with fewer markers. The approach presented in this study involved coordinate system alignment, locating joint centers of rotation, and a solution model to estimate three-dimensional (3-D) digit kinematics. The solution model for each digit was based on assumptions of rigid-body interactions, specific degrees of freedom (DOFs) at each located joint, and the aligned coordinate system definitions. Techniques of inverse kinematics and optimization were applied to calculate the 3-D position and orientation of digit segments during pinching between the thumb and index finger. The 3-D joint center locations were reliably fitted with mean coefficients of variation below 5%. A parameterized form of the solution model yielded feasible solutions that met specified tolerance and convergence criteria for over 85% of the test points. The solution results were intuitive to the pinching function. The thumb was measured to be rotated about the CMC joint to bring it into opposition to the index finger and larger rotational excursions (>10 deg) were observed in flexion/extension compared to abduction/adduction and axial rotation for all joints. While the solution model produced results similar to those computed from a full marker set, the model facilitated the usage of fewer markers, which inherently lessened the effects of passive motion error and reduced the post-experimental effort required for marker processing.
Deployable antenna kinematics using tensegrity structure design
NASA Astrophysics Data System (ADS)
Knight, Byron Franklin
With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer
A School Experiment in Kinematics: Shooting from a Ballistic Cart
ERIC Educational Resources Information Center
Kranjc, T.; Razpet, N.
2011-01-01
Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is…
Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease
ERIC Educational Resources Information Center
Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai
2012-01-01
Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…
Zero-Inertial Recession for a Kinematic Wave Model
Technology Transfer Automated Retrieval System (TEKTRAN)
Kinematic-wave models of surface irrigation assume a fixed relationship between depth and discharge (typically, normal depth). When surface irrigation inflow is cut off, the calculated upstream flow depth goes to zero, since the discharge is zero. For short time steps, use of the Kinematic Wave mode...
Kinematics Card Sort Activity: Insight into Students' Thinking
ERIC Educational Resources Information Center
Berryhill, Erin; Herrington, Deborah; Oliver, Keith
2016-01-01
Kinematics is a topic students are unknowingly aware of well before entering the physics classroom. Students observe motion on a daily basis. They are constantly interpreting and making sense of their observations, unintentionally building their own understanding of kinematics before receiving any formal instruction. Unfortunately, when students…
Kinematic Signatures of Telic and Atelic Events in ASL Predicates
ERIC Educational Resources Information Center
Malaia, Evie; Wilbur, Ronnie B.
2012-01-01
This article presents an experimental investigation of kinematics of verb sign production in American Sign Language (ASL) using motion capture data. The results confirm that event structure differences in the meaning of the verbs are reflected in the kinematic formation: for example, in the telic verbs (throw, hit), the end-point of the event is…
Numerical analysis of kinematic soil—pile interaction
NASA Astrophysics Data System (ADS)
Castelli, Francesco; Maugeri, Michele; Mylonakis, George
2008-07-01
In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000@. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.
Uncertainty quantification in kinematic wave models
Wang, Peng; Tartakovsky, Daniel M.
2012-10-01
We developed a probabilistic approach to quantify parametric uncertainty in first-order hyperbolic conservation laws (kinematic wave equations). The approach relies on the derivation of a deterministic equation for the cumulative density function (CDF) of the system state, in which probabilistic descriptions (probability density functions or PDFs) of the system parameters and/or initial and boundary conditions serve as inputs. In contrast to PDF equations, which are often used in other contexts, CDF equations allow for straightforward and unambiguous determination of boundary conditions with respect to sample variables.The accuracy and robustness of solutions of the CDF equation for one such system, the Saint-Venant equations of river flows, were investigated via comparison with Monte Carlo simulations.
Kinematic tests of exotic flat cosmological models
NASA Technical Reports Server (NTRS)
Charlton, Jane C.; Turner, Michael S.
1987-01-01
Theoretical prejudice and inflationary models of the very early universe strongly favor the flat, Einstein-de Sitter model of the universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the universe which posses a smooth component of energy density. The kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings is studied in detail. The observational tests which can be used to discriminate between these models are also discussed. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations.
Kinematic tests of exotic flat cosmological models
Charlton, J.C.; Turner, M.S.
1987-02-01
Theoretical prejudice and inflationary models of the very early universe strongly favor the flat, Einstein-de Sitter model of the universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the universe which posses a smooth component of energy density. The kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings is studied in detail. The observational tests which can be used to discriminate between these models are also discussed. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations. 58 references.
Deriving CME kinematics from multipoint space observations
NASA Astrophysics Data System (ADS)
Mrotzek, Niclas; Pluta, Adam; Bothmer, Volker; Davies, Jackie; Harrison, Richard
2016-04-01
It is commonly believed that the kinematics of CMEs consist of an early Lorentz acceleration phase near the Sun followed by a decelerating drag-force phase at distances further out. To better understand the physical processes of CME evolution, and also to predict more accurately their arrival times at other heliospheric locations, we have analysed CMEs using multipoint coronagraph observations from STEREO and SOHO. The CME speed evolution is analysed by applying time-series GCS-modelling. The analysis is extended to distances further away from the Sun through analysis of observations from the STEREO heliospheric imagers. The results are compared to those obtained from the geometrical modelling of time-elongation profiles of CMEs extracted from J-maps. We discuss the implications of our results in the context of state-of-the-art space weather predictions. The studies are carried out in the EU FP7 project HELCATS (Heliospheric Cataloguing, Analysis and Techniques Service).
Unraveling L_{n,k}: Grassmannian Kinematics
Kaplan, Jared; /SLAC
2010-02-15
It was recently proposed that the leading singularities of the S-Matrix of N = 4 super Yang-Mills theory arise as the residues of a contour integral over a Grassmannian manifold, with space-time locality encoded through residue theorems generalizing Cauchy's theorem to more than one variable. We provide a method to identify the residue corresponding to any leading singularity, and we carry this out explicitly for all leading singularities at tree level and one-loop. We also give several examples at higher loops, including all generic two-loop leading singularities and an interesting four-loop object. As an example we consider a 12-pt N{sup 4}MHV leading singularity at two loops that has a kinematic structure involving double square roots. Our analysis results in a simple picture for how the topological structure of loop graphs is reflected in various substructures within the Grassmannian.
A digital videofluoroscopic technique for spine kinematics.
Breen, A; Allen, R; Morris, A
1989-01-01
The kinematic behaviour of the vertebral segments under the influence of spinal injury and other mechanical problems is difficult to quantify in patients. This paper describes the use of a calibration model and human subjects to investigate the accuracy of a method for determining lumbar intervertebral rotations using images digitized from an image intensifier. The main influences were found to be observer error in marking co-ordinates, scaling of the image presented by the computer's monitor, distortion caused by out-of-plane images and loss of image quality as a result of scattered radiation from the soft tissues. The technique may be valuable in the light of its efficiency and low X-ray exposure to patients.
Shear dynamo problem: Quasilinear kinematic theory.
Sridhar, S; Subramanian, Kandaswamy
2009-04-01
Large-scale dynamo action due to turbulence in the presence of a linear shear flow is studied. Our treatment is quasilinear and kinematic but is nonperturbative in the shear strength. We derive the integrodifferential equation for the evolution of the mean magnetic field by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. For nonhelical turbulence the time evolution of the cross-shear components of the mean field does not depend on any other components excepting themselves. This is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence the shear-current assisted dynamo is essentially absent, although large-scale nonhelical dynamo action is not ruled out.
Robot Calibration Using Iteration and Differential Kinematics
NASA Astrophysics Data System (ADS)
Ye, S. H.; Wang, Y.; Ren, Y. J.; Li, D. K.
2006-10-01
In the applications of seam laser tracking welding robot and general measuring robot station based on stereo vision, the robot calibration is the most difficult step during the whole system calibration progress. Many calibration methods were put forward, but the exact location of base frame has to be known no matter which method was employed. However, the accurate base frame location is hard to be known. In order to obtain the position of base coordinate, this paper presents a novel iterative algorithm which can also get parameters' deviations at the same time. It was a method of employing differential kinematics to solve link parameters' deviations and approaching real values step-by-step. In the end, experiment validation was provided.
Relativistic kinematics for motion faster than light
NASA Technical Reports Server (NTRS)
Jones, R. T.
1982-01-01
The use of conformal coordinates in relativistic kinematics is illustrated and a simple extension of the theory of motions faster than light is provided. An object traveling at a speed greater than light discloses its presence by appearing suddenly at a point, splitting into two apparent objects which then recede from each other at sublight velocities. According to the present theory motion at speeds faster than light would not benefit a space traveler, since the twin paradox becomes inverted at such speeds. In Einstein's theory travel at the velocity of light in an intertial system is equivalent to infinite velocity for the traveler. In the present theory the converse is also true; travel at infinite velocity is equivalent to the velocity of light for the traveler.
Kinematic tests of exotic flat cosmological models
Charlton, J.C.; Turner, M.S.
1986-05-01
Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations.
Top quark kinematics and mass determination
Williams, H.H.
1994-10-01
An analysis is presented of 10 W + {ge} 3 jet events, each with evidence for the presence of a b quark, that were recently observed by the CDF collaboration. Seven of these events include a fourth jet and can be explicitly reconstructed as t{bar t} production. The best estimate of the top quark mass is M{sub t} = 174 {+-} 10{sub {minus}12}{sup +13} GeV/c{sup 2}. A study has also been performed to see if the kinematical properties of events with W + {ge} 3 jets gives evidence for top production. An excess of events with large jet energies, compared to that expected from direct production of W + {ge} 3 jets, is observed. A large fraction of these events also contain a b-quark and a fourth jet.
Global and regional kinematics from SLR stations
NASA Technical Reports Server (NTRS)
Dunn, Peter J.
1994-01-01
The stations of the Global Laser Tracking Network have significantly contributed to the measurement of plate kinematics. The expanding network of progressively improved instruments clearly demonstrates the systems' centimeter positioning accuracy. Several satellite laser ranging (SLR) analysis groups have adopted techniques to distill geodynamic information from the Lageos-1 satellite observations using orbital arc lengths from an hour to a decade. SLR observations now provide the scale for the International Terrestrial Reference System and help to define the Earth's polar motion in this system. Agreement between positions separately determined with SLR, VLBI and GPS systems has been established at the level of a few centimeters in position and a few millimeters per year in horizontal velocity.
Galaxy simulations: Kinematics and mock observations
NASA Astrophysics Data System (ADS)
Moody, Christopher E.
2013-08-01
There are six topics to my thesis, which are: (1) slow rotator production in varied simulation schemes and kinematically decoupled cores and twists in those simulations, (2) the change in number of clumps in radiation pressure and no-radiation pressure simulations, (3) Sunrise experiments and failures including UVJ color-color dust experiments and UVbeta slopes, (4) the Sunrise image pipeline and algorithms. Cosmological simulations of have typically produced too many stars at early times. We find that the additional radiation pressure (RP) feedback suppresses star formation globally by a factor of ~ 3. Despite this reduction, the simulation still overproduces stars by a factor of ~ 2 with respect to the predictions provided by abundance matching methods. In simulations with RP the number of clumps falls dramatically. However, only clumps with masses Mclump/Mdisk ≤ 8% are impacted by the inclusion of RP, and clump counts above this range are comparable. Above this mass, the difference between and RP and no-RP contrast ratios diminishes. If we restrict our selection to galaxies hosting at least a single clump above this mass range then clump numbers, contrast ratios, survival fractions and total clump masses show little discrepancy between RP and no-RP simulations. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps. New kinematic observations from ATLAS3D have highlighted the need to understand the evolutionary mechanism leading to a spectrum of fast-rotator and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamic simulations sampling idealized galaxy merger formation scenarios constructed from model
NASA Astrophysics Data System (ADS)
Glen, R. A.; Hancock, P. L.; Whittaker, A.
Several models of basin inversion described in the literature are tested in a study of Triassic and Early Jurassic strata exposed along the southern margin of the Bristol Channel Basin in Somerset, England that has been exhumed by <3 km. Two key features of the superbly exposed normal faults are that they formed at several times during basin evolution—not during Triassic to Early Jurassic growth, but during Late Jurassic rifting, and during and after inversion; and that >95% of them are still in net extension, despite widespread kinematic evidence for reverse reactivation. When coupled with the general absence of thin-skinned thrusts and the widespread occurrence of regional contractional folds, it appears that none of three main inversion models—the fault-reactivation model, the thin-skinned model and the buttress model—are by themselves applicable. We erect a new model of basin inversion, the distributed deformation model, which consists of three stages of basin inversion. Stage one involved early partial reactivation of large-displacement steep normal faults. Stage two was dominated by folding, wherein fault blocks underwent oblique (non-coaxial) shortening by map scale folding, accompanied by formation of outer arc normal faults, minor cleavage and neoformed thrusts. Stage three involved reverse reactivation of outer arc normal faults and activation of oblique and strike-slip faults that partitioned deformation into compartments.
Kinematic analysis of Toxoplasma gondii motility.
Frixione, E; Mondragón, R; Meza, I
1996-01-01
Toxoplasma gondii tachyzoites execute a complex and little understood combination of rapid movements to reach and penetrate human or other animals cells. In the present study, computer-assisted simulation was used to quantitatively analyze the motility of these parasites in three-dimensional space with spatial and temporal resolutions in the micrometer and subsecond ranges. A digital model based on electron-micrographs of a serially sectioned tachyzoite was animated according to a videomicrographed sequence of a characteristic repetitive movement. Keyframe animation defined over 150 frames by a total of 36 kinematic parameters for specific motions, of both the whole model and particular domains, resulted in a real-time life-like simulation of the videorecorded tachyzoite movement. The kinematic values indicate that a full revolution of the model is composed of three half-turns accomplished in nearly 5 s with two phases: a relatively slow 180 degrees tilting with regard to the substratum plane, followed by fast (over 200 degrees/s) spinning almost simultaneous with pivoting around the posterior end, each clockwise and for about 180 degrees. Maximal flexing of the body, as well as bowing and retraction of its anterior end, occur at midway during the tilting phase. An estimated 70 degrees. clockwise torsion of the body seems to precede the spinning-pivoting phase. The results suggest the operation of two basic forces in the motility of T. gondii tachyzoites: (1) a clockwise torque that causes torsion, spinning, and pivoting; and (2) a longitudinal pull that contracts, bends and tilts the parasite. We discuss the possibility that both of these forces might result from the action of an actin-myosin system enveloping the twisted framework of microtubules characteristic of these organisms.
Kinematics of Visually-Guided Eye Movements
Hess, Bernhard J. M.; Thomassen, Jakob S.
2014-01-01
One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain. PMID:24751602
A kinematic study of finswimming at surface.
Gautier, Jimmy; Baly, Laurent; Zanone, Pier-Giorgio; Watier, Bruno
2004-06-01
Finswimming is a sport of speed practiced on the surface or underwater, in which performance is based on whole-body oscillations. The present study investigated the undulatory motion performed by finswimmers at the surface. This study aiming to analyze the influence of the interaction of gender, practice level, and race distance on selected kinematic parameters. Six elite and six novices finswimmers equipped with joints markers (wrist, elbow, shoulder, hip, knee, and ankle) were recorded in the sagittal plane. The position of these anatomical marks was digitized at 50 Hz. An automated motion analysis software yielded velocity, vertical amplitude, frequency, and angular position. Results showed that stroke frequency decreased whereas the mean amplitude of all joints increased with increasing race distance (p < 0.01). Mean joint amplitude for the upper limbs (wrist, elbow and shoulder) was smaller for experts than for novices. Whereas that of the ankle was larger, so that the oscillation amplitude increased from shoulder to ankle. Elite male finswimmers were pitching more acutely than female. Moreover, elite male finswimmers showed a smaller knee bending than novices and than elite females (p < 0.01). This indicated that elite male finswimmers attempt to reduce drag forces thanks to a weak knee bending and a low upper limbs pitch. To sum up, gender, expertise, and race distance affect the performance and its kinematics in terms frontal drag. Expertise in finswimming requires taking advantage of the mechanical constraints pertaining to hydrodynamic constraints in order to optimize performance. Key PointsFinswimmers are at one and the same time a propelling and a propelled body. This study investigates the undulatory motion performed by finswimmers at the surface.Elite male finswimmers were pitching more acutely than female swimmers and showed a smaller knee bending than both novices and elite female swimmers.Finswimmers tended to perform a dolphin-like motion, which
Kinematics of Hα Emitting Stars in Andromeda
NASA Astrophysics Data System (ADS)
Ilango, Megha; Ilango, Anita; Damon, Gabriel; Prichard, Laura; Guhathakurta, Puragra; PHAT Collaboration; SPLASH Collaboration
2017-01-01
Studying emission line stars helps improve our understanding of stellar evolution, types of stars, and their environments. In this study, we analyzed stars exhibiting Hα emission (Hα stars) in the Andromeda Galaxy. We used a combination of spectroscopic and photometric diagnostic methods to remove a population of foreground Milky Way (MW) star contaminants from our data set. The Hα stars were selected from a sample of 5295 spectra from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) survey and accompanying photometric data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey. Velocities of two classes of Hα stars, main sequence (MS) stars and asymptotic giant branch (AGB) stars, were analyzed through a novel Age-Velocity Difference Correlation (AVDC) method, which utilizes line-of-sight velocity differences (LOSVDs) in order to estimate the age of a rare stellar population. Histograms, weighted means, and weighted standard deviations of the LOSVDs were used to conclude that MS stars are more kinematically coherent than AGB stars, and that Hα stars are kinematically comparable and thus close in age to their non-Hα counterparts. With these results, it can definitively be inferred that mass loss is important in two stages of stellar evolution: massive MS and intermediate mass AGB. We hypothesized that this mass loss could either occur as a normal part of MS and AGB evolution, or that it could be emitted by only a subpopulation of MS and AGB stars throughout their life cycle. Our use of the novel AVDC method sets a precedent for the use of similar methods in predicting the ages of rare stellar subgroups.This research was supported by NASA and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.
NASA Astrophysics Data System (ADS)
Navabpour, Payman; Malz, Alexander; Kley, Jonas; Siegburg, Melanie; Kasch, Norbert; Ustaszewski, Kamil
2017-01-01
The structural evolution of Central Europe reflects contrasting tectonic regimes after the Variscan orogeny during Mesozoic - Cenozoic time. The brittle deformation related to each tectonic regime is localized mainly along major fault zones, creating complex fracture patterns and kinematics through time with diverging interpretations on the number and succession of the causing events. By contrast, fracture patterns in less deformed domains often provide a pristine structural inventory. We investigate the brittle deformation of a relatively stable, wide area of the central German platform using fault-slip data to identify the regional stress fields required to satisfy the data. In a non-classical approach, and in order to avoid local stress variations and misinterpretations, the fault-slip data are scaled up throughout the study area into subsets of consistent kinematics and chronology for sedimentary cover and crystalline basement rocks. Direct stress tensor inversion was performed through an iterative refining process, and the computed stress tensors were verified using field-based observations. Criteria on relative tilt geometry and indicators of kinematic change suggest a succession of events, which begins with a post-Triassic normal faulting regime with σ3 axis trending NE-SW. The deformation then follows by strike-slip and thrust faulting regimes with a change of σ1 axis from N-S to NE-SW, supposedly in the Late Cretaceous. Two younger events are characterized by Cenozoic normal and oblique thrust faulting regimes with NW-SE-trending σ3 and σ1 axes, respectively. The fracture patterns of both the cover and basement rocks appear to record the same states of stress.
Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage
NASA Astrophysics Data System (ADS)
Li, Chun-Xia; Gu, Guo-Ying; Yang, Mei-Ju; Zhu, Li-Min
2013-12-01
This paper presents the design, analysis, and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage driven by piezoelectric stack actuators. The stage is designed with two kinematic chains. In each kinematic chain, the end-effector of the stage is connected to the base by two symmetrically distributed flexure modules, respectively. Each flexure module comprises a fixed-fixed beam and a parallelogram flexure serving as two orthogonal prismatic joints. With the purpose to achieve high resonance frequencies of the stage, a novel center-thickened beam which has large stiffness is proposed to act as the fixed-fixed beam. The center-thickened beam also contributes to reducing cross-coupling and restricting parasitic motion. To decouple the motion in two axes totally, a symmetric configuration is adopted for the parallelogram flexures. Based on the analytical models established in static and dynamic analysis, the dimensions of the stage are optimized in order to maximize the first resonance frequency. Then finite element analysis is utilized to validate the design and a prototype of the stage is fabricated for performance tests. According to the results of static and dynamic tests, the resonance frequencies of the developed stage are over 13.6 kHz and the workspace is 11.2 μm × 11.6 μm with the cross-coupling between two axes less than 0.52%. It is clearly demonstrated that the developed stage has high resonance frequencies, a relatively large travel range, and nearly decoupled performance between two axes. For high-speed tracking performance tests, an inversion-based feedforward controller is implemented for the stage to compensate for the positioning errors caused by mechanical vibration. The experimental results show that good tracking performance at high speed is achieved, which validates the effectiveness of the developed stage.
Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers
NASA Astrophysics Data System (ADS)
Calkins, Michael A.; Long, Louie; Nieves, David; Julien, Keith; Tobias, Steven M.
2016-12-01
Most large-scale planetary magnetic fields are thought to be driven by low Rossby number convection of a low magnetic Prandtl number fluid. Here kinematic dynamo action is investigated with an asymptotic, rapidly rotating dynamo model for the plane layer geometry that is intrinsically low magnetic Prandtl number. The thermal Prandtl number and Rayleigh number are varied to illustrate fundamental changes in flow regime, ranging from laminar cellular convection to geostrophic turbulence in which an inverse energy cascade is present. A decrease in the efficiency of the convection to generate a dynamo, as determined by an increase in the critical magnetic Reynolds number, is observed as the buoyancy forcing is increased. This decreased efficiency may result from both the loss of correlations associated with the increasingly disordered states of flow that are generated, and boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial characteristics of the large-scale magnetic field is dependent only weakly on changes in flow behavior. In contrast, the behavior of the small-scale magnetic field is directly dependent on, and therefore shows significant variations with, the small-scale convective flow field. However, our results are limited to the linear, kinematic dynamo regime; future simulations that include the Lorentz force are therefore necessary to assess the robustness of these results.
Mu, Zonggao; Han, Liang; Xu, Wenfu; Li, Bing; Liang, Bin
2016-01-01
A space manipulator plays an important role in spacecraft capturing, repairing, maintenance, and so on. However, the harsh space environment will cause its joints fail to work. For a non-redundant manipulator, single joint locked failure will cause it to lose one degree of freedom (DOF), hence reducing its movement ability. In this paper, the key problems related to the fault-tolerant including kinematics, workspace, and trajectory planning of a non-redundant space manipulator under single joint failure are handled. First, the analytical inverse kinematics equations are derived for the 5-DOF manipulator formed by locking the failure joint of the original 6-DOF manipulator. Then, the reachable end-effector pose (position and orientation) is determined. Further, we define the missions can be completed by the 5-DOF manipulator. According to the constraints of the on-orbital mission, we determine the grasp envelope required for the end-effector. Combining the manipulability of the manipulator and the performance of its end-effector, a fault tolerance parameter is defined and a planning method is proposed to generate the reasonable trajectory, based on which the 5-DOF manipulator can complete the desired tasks. Finally, typical cases are simulated and the simulation results verify the proposed method.
Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview.
Duprey, Sonia; Naaim, Alexandre; Moissenet, Florent; Begon, Mickaël; Chèze, Laurence
2016-12-09
Soft tissue artefact (STA), i.e. the motion of the skin, fat and muscles gliding on the underlying bone, may lead to a marker position error reaching up to 8.7cm for the particular case of the scapula. Multibody kinematics optimisation (MKO) is one of the most efficient approaches used to reduce STA. It consists in minimising the distance between the positions of experimental markers on a subject skin and the simulated positions of the same markers embedded on a kinematic model. However, the efficiency of MKO directly relies on the chosen kinematic model. This paper proposes an overview of the different upper limb models available in the literature and a discussion about their applicability to MKO. The advantages of each joint model with respect to its biofidelity to functional anatomy are detailed both for the shoulder and the forearm areas. Models capabilities of personalisation and of adaptation to pathological cases are also discussed. Concerning model efficiency in terms of STA reduction in MKO algorithms, a lack of quantitative assessment in the literature is noted. In priority, future studies should concern the evaluation and quantification of STA reduction depending on upper limb joint constraints.
Momentum resolution in inverse photoemission
Zumbülte, A.; Schmidt, A. B.; Donath, M.
2015-01-15
We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.
NASA Technical Reports Server (NTRS)
Hedland, D. A.; Degonia, P. K.
1974-01-01
The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.
Broadband synthetic aperture geoacoustic inversion.
Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S
2013-07-01
A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment.
Inverse statistics and information content
NASA Astrophysics Data System (ADS)
Ebadi, H.; Bolgorian, Meysam; Jafari, G. R.
2010-12-01
Inverse statistics analysis studies the distribution of investment horizons to achieve a predefined level of return. This distribution provides a maximum investment horizon which determines the most likely horizon for gaining a specific return. There exists a significant difference between inverse statistics of financial market data and a fractional Brownian motion (fBm) as an uncorrelated time-series, which is a suitable criteria to measure information content in financial data. In this paper we perform this analysis for the DJIA and S&P500 as two developed markets and Tehran price index (TEPIX) as an emerging market. We also compare these probability distributions with fBm probability, to detect when the behavior of the stocks are the same as fBm.
NASA Astrophysics Data System (ADS)
Gershanov, V. Yu.; Garmashov, S. I.
2015-01-01
We prove the existence of an effect inverse to the Gibbs-Thomson effect for mass transfer in systems consisting of a solid phase and the solution of the solid phase material in a certain solvent. The effect involves a change in the shape of the interface due to a variation of the equilibrium concentrations under it, which is induced by external conditions, and exists in the presence of a negative feedback for mass transfer associated with capillary effects.
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; Márquez, I.; Barrera-Ballesteros, J. K.; Masegosa, J.; Husemann, B.; Falcón-Barroso, J.; Lyubenova, M.; Sánchez, S. F.; Walcher, J.; Mast, D.; García-Benito, R.; Méndez-Abreu, J.; van de Ven, G.; Spekkens, K.; Holmes, L.; Monreal-Ibero, A.; del Olmo, A.; Ziegler, B.; Bland-Hawthorn, J.; Sánchez-Blázquez, P.; Iglesias-Páramo, J.; Aguerri, J. A. L.; Papaderos, P.; Gomes, J. M.; Marino, R. A.; González Delgado, R. M.; Cortijo-Ferrero, C.; López-Sánchez, A. R.; Bekeraitė, S.; Wisotzki, L.; Bomans, D.
2015-01-01
Context. Ionized gas kinematics provide important clues to the dynamical structure of galaxies and hold constraints to the processes driving their evolution. Aims: The motivation of this work is to provide an overall characterization of the kinematic behavior of the ionized gas of the galaxies included in the Calar Alto Legacy Integral field Area (CALIFA), offering kinematic clues to potential users of the CALIFA survey for including kinematical criteria in their selection of targets for specific studies. From the first 200 galaxies observed by CALIFA survey in its two configurations, we present the two-dimensional kinematic view of the 177 galaxies satisfaying a gas content/detection threshold. Methods: After removing the stellar contribution, we used the cross-correlation technique to obtain the radial velocity of the dominant gaseous component for each spectrum in the CALIFA data cubes for different emission lines (namely, [O ii] λλ3726,3729, [O iii] λλ4959,5007, Hα+[N ii] λλ6548,6584, and [SII]λλ6716,6730). The main kinematic parameters measured on the plane of the sky were directly derived from the radial velocities with no assumptions on the internal prevailing motions. Evidence of the presence of several gaseous components with different kinematics were detected by using [O iii] λλ4959,5007 emission line profiles. Results: At the velocity resolution of CALIFA, most objects in the sample show regular velocity fields, although the ionized-gas kinematics are rarely consistent with simple coplanar circular motions. Thirty-five percent of the objects present evidence of a displacement between the photometric and kinematic centers larger than the original spaxel radii. Only 17% of the objects in the sample exhibit kinematic lopsidedness when comparing receding and approaching sides of the velocity fields, but most of them are interacting galaxies exhibiting nuclear activity (AGN or LINER). Early-type (E+S0) galaxies in the sample present clear
Viscoacoustic anisotropic full waveform inversion
NASA Astrophysics Data System (ADS)
Qu, Yingming; Li, Zhenchun; Huang, Jianping; Li, Jinli
2017-01-01
A viscoacoustic vertical transverse isotropic (VTI) quasi-differential wave equation, which takes account for both the viscosity and anisotropy of media, is proposed for wavefield simulation in this study. The finite difference method is used to solve the equations, for which the attenuation terms are solved in the wavenumber domain, and all remaining terms in the time-space domain. To stabilize the adjoint wavefield, robust regularization operators are applied to the wave equation to eliminate the high-frequency component of the numerical noise produced during the backward propagation of the viscoacoustic wavefield. Based on these strategies, we derive the corresponding gradient formula and implement a viscoacoustic VTI full waveform inversion (FWI). Numerical tests verify that our proposed viscoacoustic VTI FWI can produce accurate and stable inversion results for viscoacoustic VTI data sets. In addition, we test our method's sensitivity to velocity, Q, and anisotropic parameters. Our results show that the sensitivity to velocity is much higher than that to Q and anisotropic parameters. As such, our proposed method can produce acceptable inversion results as long as the Q and anisotropic parameters are within predefined thresholds.
Sequential Geoacoustic Filtering and Geoacoustic Inversion
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sequential Geoacoustic Filtering and Geoacoustic Inversion ...geoacoustic inversion methods, their use in the analysis of shallow water experimental data, and evaluation of geoacoustic model and parameter...uncertainties including the mapping of these uncertainties through to system performance uncertainties. OBJECTIVES Analysis of geoacoustic inversion
On the Magic Square and Inverse
ERIC Educational Resources Information Center
Elzaidi, S. M.
2005-01-01
In this note, we give a method for finding the inverse of a three by three magic square matrix without using the usual methods for finding the inverse of a matrix. Also we give a method for finding the inverse of a three by three magic square matrix whose entries are also matrices. By using these ideas, we can construct large matrices whose…
Inversion: A Most Useful Kind of Transformation.
ERIC Educational Resources Information Center
Dubrovsky, Vladimir
1992-01-01
The transformation assigning to every point its inverse with respect to a circle with given radius and center is called an inversion. Discusses inversion with respect to points, circles, angles, distances, space, and the parallel postulate. Exercises related to these topics are included. (MDH)
Wing kinematics in a hovering dronefly minimize power expenditure.
Wu, J H; Sun, M
2014-10-15
When an insect hovers or performs constant-speed flight, its wings flap at certain amplitude, frequency, angle of attack, etc., and the flight is balanced (vertical force equals to the weight, and horizontal force and pitch moment are zero). It is possible that when some other sets of values of wing kinematical parameters are used, the force and moment balance conditions can still be satisfied. Does the wing kinematics used by a constant-speed flying insect minimize the power expenditure? In this study, whether the wing kinematics used by a freely hovering dronefly minimizes its energy expenditure was investigated. First, the power consumption using the set of values of wing kinematical parameters that was actually employed by the insect was computed. Then, the kinematical parameters were changed while keeping the equilibrium flight conditions satisfied, and the power consumption was recalculated. It was found that wing kinematical parameters used by the freely hovering dronefly are very close to that minimize its energy consumption, and they can ensure the margin of controllability from hovering to maneuvers. That is, slight change of wing kinematical parameters did not cause significant change of the specific power (maintained a relatively small value).
Motor control of voluntary arm movements. Kinematic and modelling study.
Corradini, M L; Gentilucci, M; Leo, T; Rizzolatti, G
1992-01-01
The motor control of pointing and reaching-to-grasp movements was investigated using two different approaches (kinematic and modelling) in order to establish whether the type of control varies according to modifications of arm kinematics. Kinematic analysis of arm movements was performed on subjects' hand trajectories directed to large and small stimuli located at two different distances. The subjects were required either to grasp and to point to each stimulus. The kinematics of the subsequent movement, during which subject's hand came back to the starting position, were also studied. For both movements, kinematic analysis was performed on hand linear trajectories as well as on joint angular trajectories of shoulder and elbow. The second approach consisted in the parametric identification of the black box (ARMAX) model of the controller driving the arm movement. Such controller is hypothesized to work for the correct execution of the motor act. The order of the controller ARMAX model was analyzed with respect to the different experimental conditions (distal task, stimulus size and distance). Results from kinematic analysis showed that target distance and size influenced kinematic parameters both of angular and linear displacements. Nevertheless, the structure of the motor program was found to remain constant with distance and distal task, while it varied with precision requirements due to stimulus size. The estimated model order of the controller confirmed the invariance of the control law with regard to movement amplitude, whereas it was sensitive to target size.
NASA Astrophysics Data System (ADS)
Del Gaudio, Sergio; Causse, Mathieu; Festa, Gaetano
2015-10-01
The use of simulated accelerograms may improve the evaluation of the seismic hazard when an accurate modelling of both source and propagation is performed. In this paper, we performed broad-band simulations of the 2009, M 6.3 L'Aquila earthquake, coupling a k-2 kinematic model for the seismic source with empirical Green's functions (EGFs) as propagators. We extracted 10 EGFs candidates from a database of aftershocks satisfying quality criteria based on signal-to-noise ratio, fault proximity, small magnitude, similar focal mechanism and stress drop. For comparison with real observations, we also derived a low-frequency kinematic model, based on inversion of ground displacement as integrated from strong motion data. Kinematic properties of the inverted model (rupture velocity, position of the rupture nucleation, low-frequency slip and roughness degree of slip heterogeneity) were used as constraints in the k-2 model, to test the use of a single specific EGF against the use of the whole set of EGFs. Comparison to real observations based on spectral and peak ground acceleration shows that the use of all available EGFs improves the fit of simulations to real data. Moreover the epistemic variability related to the selection of a specific EGF is significantly larger (two to three times) than recent observations of between event variability, that is the variability associated with the randomness of the rupture process. We finally performed `blind' simulations releasing all the information on source kinematics and only considering the fault geometry and the magnitude of the target event as known features. We computed peak ground acceleration, acceleration Fourier and response spectra. Simulations follow the same trend with distance as real observations. In most cases these latter fall within one sigma from predictions. Predictions with source parameters constrained at low frequency do not perform better than `blind' simulations, showing that extrapolation of the low
From nearby to distant galaxies: kinematical and dynamical studies
NASA Astrophysics Data System (ADS)
Epinat, Benoit
2009-09-01
Kinematical studies of low and high redshift galaxies enables to probe galaxy formation and evolution scenarios. Integral field spectroscopy is a powerful tool to study with accuracy nearby galaxies kinematics. Recent observations also gives a new 2D vision of high redshift galaxies kinematics. This work mostly relies on the kinematical sample of galaxies GHASP. This control sample, composed of 203 local spiral and irregular galaxies in low density environments observed with Fabry-Perot techniques in the Ha line (6563 A), is by now the largest sample of Fabry-Perot data. After a revue on Fabry-Perot interferometry and a presentation of new data reduction procedures, my implications on both 3D-NTT Fabry-Perot instrument and the wide field spectrograph project (WFSpec) for galaxy evolution study with the european ELT are developed. The second section is dedicated to GHASP data. This sample have been fully reduced and analysed using new methods. The kinematical analysis of 2D kinematical maps has been undertaken with the study of the dark matter distribution, the rotation curves shape, bar signatures and the ionized gas velocity dispersion. In a third section, this local reference sample is used as a zero point for high redshift galaxies kinematical studies. The GHASP sample is projected at high redshift (z=1.7) in order to disentangle evolution effects from distance biases in high redshift galaxies kinematical data observed with SINFONI, OSIRIS and GIRAFFE. The kinematical analysis of new SINFONI high redshift observations is also presented and high redshift data found in the literature are compared with GHASP projected sample, suggesting some evolution of the galaxy dynamical support within the ages.
Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u
2010-09-01
The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.
Internal Kinematics of Distant Field Galaxies
NASA Astrophysics Data System (ADS)
Ing, Kristine Mei Lan
1998-08-01
We study faint blue field galaxies in two complementary ways by targeting red-shifted, broadened emission lines: (1) a detailed study of a small but representative sample using resolved images that reveal the internal kinematics of individual galaxies, and analyzing effects like ionized gas distribution and galaxy inclination that tend to bias the results obtained from spatially unresolved galaxy spectra; and (2) a study of a spatially unresolved but statistically complete sample within our color, magnitude, and redshift cuts. In order to facilitate comparison of distant and local galaxies, we have developed a methodology to study distant galaxies in as much detail as is customary for nearby galaxies, using state-of-the-art data. The ultimate goal of such a comparison is to determine the amount of evolution of the mass-to-light ratio of individual galaxies and to thereby constrain models of galaxy formation and evolution. In a followup to our recent multifiber spectroscopic study of the linewidth-vs-luminosity relation in faint blue galaxies at < z>~ 0.25 (Rix et al. 1997, MNRAS, 285, 779), we have carried out a detailed study of the internal kinematics of 10 distant (z = 0.30[-]0.44), faint (B = 20[-]24), blue (B-R <= 1.2) field galaxies using the Rutgers Fabry-Perot (RFP) instrument on the Cerro Tololo Interamerican Observatory's 4-meter telescope. In deriving rotation speeds from fiber spectra, we had to rely on large and somewhat uncertain statistical corrections for the effects of non-uniform gas distribution, disk inclination, shape of the rotation curve, and seeing. Using fitting disk models to the RFP datacube, complemented by surface photometry and isophotal shapes derived from high angular resolution Hubble Space Telescope Wide Field/Planetary Camera-2 images in the F814W ('I') or F555W ('V') Band and deep H-Band (1.6 μm) images obtained with the Near InfraRed Camera on the Keck 10-meter telescope, the RFP study addresses these issues directly and yields
Quantum gravity kinematics from extended TQFTs
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Geiller, Marc
2017-01-01
In this paper, we show how extended topological quantum field theories (TQFTs) can be used to obtain a kinematical setup for quantum gravity, i.e. a kinematical Hilbert space together with a representation of the observable algebra including operators of quantum geometry. In particular, we consider the holonomy-flux algebra of (2 + 1)-dimensional Euclidean loop quantum gravity, and construct a new representation of this algebra that incorporates a positive cosmological constant. The vacuum state underlying our representation is defined by the Turaev-Viro TQFT. This vacuum state can be thought of as being peaked on connections with homogeneous curvature. We therefore construct here a generalization, or more precisely a quantum deformation at root of unity, of the previously introduced SU(2) BF representation. The extended Turaev-Viro TQFT provides a description of the excitations on top of the vacuum. These curvature and torsion excitations are classified by the Drinfeld center category of the quantum deformation of SU(2), and are essential in order to allow for a representation of the holonomies and fluxes. The holonomies and fluxes are generalized to ribbon operators which create and interact with the excitations. These excitations agree with the ones induced by massive and spinning particles, and therefore the framework presented here allows automatically for a description of the coupling of such matter to (2+1)-dimensional gravity with a cosmological constant. The new representation constructed here presents a number of advantages over the representations which exist so far. In particular, it possesses a very useful finiteness property which guarantees the discreteness of spectra for a wide class of quantum (intrinsic and extrinsic) geometrical operators. Also, the notion of basic excitations leads to a so-called fusion basis which offers exciting possibilities for the construction of states with interesting global properties, as well as states with certain
Line profiles from discrete kinematic data
NASA Astrophysics Data System (ADS)
Amorisco, N. C.; Evans, N. W.
2012-08-01
We develop a method to extract the shape information of line profiles from discrete kinematic data. The Gauss-Hermite expansion, which is widely used to describe the line-of-sight velocity distributions extracted from absorption spectra of elliptical galaxies, is not readily applicable to samples of discrete stellar velocity measurements, accompanied by individual measurement errors and probabilities of membership. These include data sets on the kinematics of globular clusters and planetary nebulae in the outer parts of elliptical galaxies, as well as giant stars in the Local Group galaxies and the stellar populations of the Milky Way. We introduce two-parameter families of probability distributions describing symmetric and asymmetric distortions of the line profiles from Gaussianity. These are used as the basis of a maximum likelihood estimator to quantify the shape of the line profiles. Tests show that the method outperforms a Gauss-Hermite expansion for discrete data, with a lower limit for the relative gain of ≈2 for sample sizes N ≈ 800. To ensure that our methods can give reliable descriptions of the shape, we develop an efficient test to assess the statistical quality of the obtained fit. As an application, we turn our attention to the discrete velocity data sets of the dwarf spheroidals (dSphs) of the Milky Way. Sculptor and Fornax have data sets of ≳1000 line-of-sight velocities of probable member stars. In Sculptor, the symmetric deviations are everywhere consistent with velocity distributions more peaked than Gaussian. In Fornax, instead, there is an evolution in the symmetric deviations of the line profile from a peakier to more flat-topped distribution on moving outwards. Although the data sets for Carina and Sextans are smaller, they still comprise several hundreds of stars. Our methods are sensitive enough to detect evidence for velocity distributions more peaked than Gaussian. These results suggest a radially biased orbital structure for the
Kinematical and Dynamical Modeling of Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Mamon, G. A.; Łokas, E.; Dekel, A.; Stoehr, F.; Cox, T. J.
Elements of kinematical and dynamical modeling of elliptical galaxies are presented. In projection, NFW models resemble Sérsic models, but with a very narrow range of shapes (m=3±1). The total density profile of ellipticals cannot be NFW-like because the predicted local M/L and aperture velocity dispersion within an effective radius (R_e) are much lower than observed. Stars must then dominate ellipticals out to a few R_e. Fitting an NFW model to the total density profile of Sérsic+NFW (stars+dark matter [DM]) ellipticals results in very high concentration parameters, as found by X-ray observers. Kinematical modeling of ellipticals assuming an isotropic NFW DM model underestimates M/L at the virial radius by a factor of 1.6 to 2.4, because dissipationless ΛCDM halos have slightly different density profiles and slightly radial velocity anisotropy. In N-body+gas simulations of ellipticals as merger remnants of spirals embedded in DM halos, the slope of the DM density profile is steeper when the initial spiral galaxies are gas-rich. The Hansen & Moore (2006) relation between anisotropy and the slope of the density profile breaks down for gas and DM, but the stars follow an analogous relation with slightly less radial anisotropies for a given density slope. Using kurtosis (h_4) to infer anisotropy in ellipticals is dangerous, as h4 is also sensitive to small levels of rotation. The stationary Jeans equation provides accurate masses out to 8 R_e. The discrepancy between the modeling of Romanowsky et al. (2003), indicating a dearth of DM in ellipticals, and the simulations analyzed by Dekel et al. (2005), which match the spectroscopic observations of ellipticals, is partly due to radial anisotropy and to observing oblate ellipticals face-on. However, one of the 15 solutions to the orbit modeling of Romanowsky et al. is found to have an amount and concentration of DM consistent with ΛCDM predictions.
New inverse synthetic aperture radar algorithm for translational motion compensation
NASA Astrophysics Data System (ADS)
Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.
1991-10-01
Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.
Kinematic Seismic Rupture Parameters from a Doppler Analysis
NASA Astrophysics Data System (ADS)
Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.
2010-05-01
The radiation emitted from extended seismic sources, mainly when the rupture spreads in preferred directions, presents spectral deviations as a function of the observation location. This aspect, unobserved to point sources, and named as directivity, are manifested by an increase in the frequency and amplitude of seismic waves when the rupture occurs in the direction of the seismic station and a decrease in the frequency and amplitude if it occurs in the opposite direction. The model of directivity that supports the method is a Doppler analysis based on a kinematic source model of rupture and wave propagation through a structural medium with spherical symmetry [1]. A unilateral rupture can be viewed as a sequence of shocks produced along certain paths on the fault. According this model, the seismic record at any point on the Earth's surface contains a signature of the rupture process that originated the recorded waveform. Calculating the rupture direction and velocity by a general Doppler equation, - the goal of this work - using a dataset of common time-delays read from waveforms recorded at different distances around the epicenter, requires the normalization of measures to a standard value of slowness. This normalization involves a non-linear inversion that we solve numerically using an iterative least-squares approach. The evaluation of the performance of this technique was done through a set of synthetic and real applications. We present the application of the method at four real case studies, the following earthquakes: Arequipa, Peru (Mw = 8.4, June 23, 2001); Denali, AK, USA (Mw = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria (Mw = 6.8, May 21, 2003); and Sumatra, Indonesia (Mw = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data. [1] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining
Pratt, Emma J; Reeves, Mark L; van der Meulen, Jill M; Heller, Ben W; Good, Tim R
2012-07-01
Functional electrical stimulation (FES) applied to the common peroneal nerve is commonly prescribed to correct both equinus and excessive foot inversion in swing and initial contact. This paper presents the development of a simple shoe model, to allow quantification of 3-D shoe (foot and footwear) kinematics in clinical situations when footwear is required, e.g. with FES systems requiring footswitches. To preliminarily validate the shoe model, barefoot 'normal' adult data (n=11) processed using validated 3-D foot models, were reprocessed with the shoe model. Outputs were compared through calculation of waveform similarity and correlation. Clinical utility of the shoe model is demonstrated through the presentation of 3-D shoe kinematics, calculated from a cohort of existing unilateral common peroneal FES users (n=16), both with and without FES. A trend of reduced inversion at mid-swing and initial contact was seen, although this was not found to be statistically significant (p≤0.0125). The shoe model was found to be practical to use in a clinical environment, and has potential to contribute to the evidence base for interventions such as common peroneal FES.
Tiling spaces are inverse limits
NASA Astrophysics Data System (ADS)
Sadun, Lorenzo
2003-11-01
Let M be an arbitrary Riemannian homogeneous space, and let Ω be a space of tilings of M, with finite local complexity (relative to some symmetry group Γ) and closed in the natural topology. Then Ω is the inverse limit of a sequence of compact finite-dimensional branched manifolds. The branched manifolds are (finite) unions of cells, constructed from the tiles themselves and the group Γ. This result extends previous results of Anderson and Putnam, of Ormes, Radin, and Sadun, of Bellissard, Benedetti, and Gambaudo, and of Gähler. In particular, the construction in this paper is a natural generalization of Gähler's.
The Inverse of Banded Matrices
2013-01-01
of Br,n. For these sequences to be well-defined, we assume that none of the denominators kis are zero (which is equivalent to the below-defined U...numbers of summed or subtracted terms in computing the inverse of a term of an upper (lower) triangular matrix are the generalized order-k Fibonacci ... Fibonacci numbers are the usual Fibonacci numbers, that is, f 2m = Fm (mth Fibonacci number). When also k = 3, c1 = c2 = c3 = 1, then the generalized order-3
Scapulothoracic kinematics during tennis forehand drive.
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Dumas, Raphaël
2014-06-01
Scapular dyskinesis is recognized as an abnormality in the kinetic chain; yet, there has been little research quantifying scapular motion during sport tasks. Tennis forehand drives of eight highly skilled tennis players were studied to assess the scapulothoracic kinematics and evaluate repeatability using video-based motion analysis. Scapulothoracic downward/upward rotation, posterior/anterior tilt, and internal/external rotation were computed using an acromial marker cluster. On average, the upward rotation, anterior tilt, and internal rotation varied from 1 degrees to 26 degrees, from 7 degrees to 32 degrees, and from 42 degrees to 100 degrees, respectively, during the tennis forehand drive. During the backswing and forward swing phases of the forehand stroke, small changes were observed for the three scapular angle values, while all angles increased rapidly during the follow-through phase. This suggests that the tennis forehand drive may contribute to scapula dyskinesis, mainly due to the great amplitude in scapulothoracic anterior tilt and internal rotation observed during the follow-through phase. Knowledge of normal scapula motion during sport tasks performed at high velocity could improve the understanding of various sport-specific adaptations and pathologies.
The [N II] Kinematics of R Aquarii
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Vogel, S. N.; VanBuren, D.; Strong, J. P.; Lyon, R. G.; Dorband, J. E.
1998-01-01
We report a kinematic study of the symbiotic star system R Aqr derived from [N H]lambda 6584 emission observations with a Fabry-Perot imaging spectrometer. The [N II] spatial structure of the R Aqr jet, first observed circa 1977, and surrounding hourglass-shaped nebulosity, due to an explosion approximately 660 years ago, are derived from 41 velocity planes spaced at approximately 12 km/s intervals. Fabry-Perot imagery shows the elliptical nebulosity comprising the waist of the hourglass shell is consistent with a circular ring expanding radially at 55 km/s as seen at an inclination angle, i approximately 70 deg. Fabry-Perot imagery shows the two-sided R Aqr jet is collimated flow in opposite directions. The intensity-velocity structure of the strong NE jet component is shown in contrast to the amorphous SW jet component. We offer a idealized schematic model for the R Aqr jet motion which results in a small-scale helical structure forming around a larger-scale helical path. The implications of such a jet model are discussed. We present a movie showing a side-by-side comparison of the spatial structure of the model and the data as a function of the 41 velocity planes.
Kinematical properties of coronal mass ejections
NASA Astrophysics Data System (ADS)
Temmer, M.
2016-11-01
Coronal mass ejections (CMEs) are the most dynamic phenomena in our solar system. They abruptly disrupt the continuous outflow of solar wind by expelling huge clouds of magnetized plasma into interplanetary space with velocities enabling to cross the Sun-Earth distance within a few days. Earth-directed CMEs may cause severe geomagnetic storms when their embedded magnetic fields and the shocks ahead compress and reconnect with the Earth's magnetic field. The transit times and impacts in detail depend on the initial CME velocity, size, and mass, as well as on the conditions and coupling processes with the ambient solar wind flow in interplanetary space. The observed CME parameters may be severely affected by projection effects and the constant changing environmental conditions are hard to derive. This makes it difficult to fully understand the physics behind CME evolution, preventing to do a reliable forecast of Earth-directed events. This short review focusing on observational data, shows recent methods which were developed to derive the CME kinematical profile for the entire Sun-Earth distance range as well as studies which were performed to shed light on the physical processes that CMEs encounter when propagating from Sun to Earth.
Tibiocalcaneal kinematics of barefoot versus shod running.
Stacoff, A; Nigg, B M; Reinschmidt, C; van den Bogert, A J; Lundberg, A
2000-11-01
Barefoot running kinematics has been described to vary considerably from shod running. However, previous investigations were typically based on externally mounted shoe and/or skin markers, which have been shown to overestimate skeletal movements. Thus, the purpose of this study was to compare calcaneal and tibial movements of barefoot versus shod running using skeletal markers. Intracortical bone pins with reflective marker triads were inserted under standard local anesthetic into the calcaneus and tibia of five healthy male subjects. The subjects ran barefoot, with a normal shoe, with three shoe soles and two orthotic modifications. The three-dimensional tibiocalcaneal rotations were determined using a joint coordinate system approach. Test variables were defined for eversion and tibial rotation. The results showed that the differences in bone movements between barefoot and shod running were small and unsystematic (mean effects being less than 2 degrees ) compared with the differences between the subjects (up to 10 degrees ). However, differences may occur during midstance when extreme shoe modifications (i.e. posterior orthosis) are used. It is concluded that calcaneal and tibial movement patterns do not differ substantially between barefoot and shod running, and that the effects of these interventions are subject specific. The result of this in vivo study contrasts with previous investigations using skin and shoe mounted markers and suggests that these discrepancies may be the result of the overestimation with externally mounted markers.
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.
Thermally Insulating, Kinematic Tensioned-Fiber Suspension
NASA Technical Reports Server (NTRS)
Voellmer, George M.
2004-01-01
A salt pill and some parts of a thermally insulating, kinematic suspension system that holds the salt pill rigidly in an adiabatic-demagnetization refrigerator (ADR) is presented. "Salt pill" in this context denotes a unit comprising a cylindrical container, a matrix of gold wires in the container, and a cylinder of ferric ammonium alum (a paramagnetic salt) that has been deposited on the wires. The structural members used in this system for both thermal insulation and positioning are aromatic polyamide fibers (Kevlar(R) or equivalent) under tension. This suspension system is designed to satisfy several special requirements to ensure the proper operation of the ADR. These requirements are to (1) maintain the salt pill at a specified position within the cylindrical bore of an electromagnet; (2) prevent vibrations, which would cause dissipation of heat in the salt pill; and (3) minimize the conduction of heat from the electromagnet bore and other neighboring objects to the salt pill; all while (4) protecting the salt pill (which is fragile) against all tensile and bending loads other than those attributable to its own weight. In addition, the system is required to consist of two subsystems -- one for the top end and one for the bottom end of the salt pill -- that can be assembled and tensioned separately from each other and from the salt pill, then later attached to the salt pill.
SHIELD: Neutral Gas Kinematics and Dynamics
NASA Astrophysics Data System (ADS)
McNichols, Andrew T.; Teich, Yaron G.; Nims, Elise; Cannon, John M.; Adams, Elizabeth A. K.; Bernstein-Cooper, Elijah Z.; Giovanelli, Riccardo; Haynes, Martha P.; Józsa, Gyula I. G.; McQuinn, Kristen B. W.; Salzer, John J.; Skillman, Evan D.; Warren, Steven R.; Dolphin, Andrew; Elson, E. C.; Haurberg, Nathalie; Ott, Jürgen; Saintonge, Amelie; Cave, Ian; Hagen, Cedric; Huang, Shan; Janowiecki, Steven; Marshall, Melissa V.; Thomann, Clara M.; Van Sistine, Angela
2016-11-01
We present kinematic analyses of the 12 galaxies in the “Survey of H i in Extremely Low-mass Dwarfs” (SHIELD). We use multi-configuration interferometric observations of the H i 21 cm emission line from the Karl G. Jansky Very Large Array (VLA)22 to produce image cubes at a variety of spatial and spectral resolutions. Both two- and three-dimensional fitting techniques are employed in an attempt to derive inclination-corrected rotation curves for each galaxy. In most cases, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make spatially resolved position-velocity cuts, corrected for inclination using the stellar components, to estimate the circular rotation velocities. We find {v}{circ} ≤slant 30 km s-1 for the entire survey population. Baryonic masses are calculated using single-dish H i fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are then placed on the baryonic Tully-Fisher relation. There exists an empirical threshold rotational velocity, V {}{rot} < 15 km s-1, below which current observations cannot differentiate coherent rotation from pressure support. The SHIELD galaxies are representative of an important population of galaxies whose properties cannot be described by current models of rotationally dominated galaxy dynamics.
Kinematic dynamo, supersymmetry breaking, and chaos
NASA Astrophysics Data System (ADS)
Ovchinnikov, Igor V.; Enßlin, Torsten A.
2016-04-01
The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.
GLOBAL H I KINEMATICS IN DWARF GALAXIES
Stilp, Adrienne M.; Dalcanton, Julianne J.; Warren, Steven R.; Skillman, Evan; Ott, Juergen; Koribalski, Baerbel
2013-03-10
H I line widths are typically interpreted as a measure of interstellar medium turbulence, which is potentially driven by star formation (SF). In an effort to better understand the possible connections between line widths and SF, we have characterized H I kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce average global H I line profiles. These ''superprofiles'' are composed of a central narrow peak ({approx}6-10 km s{sup -1}) with higher-velocity wings to either side that contain {approx}10%-15% of the total flux. The superprofiles are all very similar, indicating a universal global H I profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of SF, with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical properties, we find that the velocity dispersion of the central peak is correlated with ({Sigma}{sub HI}). The fraction of mass and characteristic velocity of the high-velocity wings are correlated with measures of SF, consistent with the picture that SF drives surrounding H I to higher velocities. While gravitational instabilities provide too little energy, the SF in the sample galaxies does provide enough energy through supernovae, with realistic estimates of the coupling efficiency, to produce the observed superprofiles.
Kinematic analysis of rope skipper's stability
NASA Astrophysics Data System (ADS)
Ab Ghani, Nor Atikah; Rambely, Azmin Sham
2014-06-01
There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.
On the Kinematics of Undulator Girder Motion
Welch, J; /SLAC
2011-08-18
The theory of rigid body kinematics is used to derive equations that govern the control and measurement of the position and orientation of undulator girders. The equations form the basis of the girder matlab software on the LCLS control system. The equations are linear for small motion and easily inverted as desired. For reference, some relevant girder geometrical data is also given. Equations 6-8 relate the linear potentiometer readings to the motion of the girder. Equations 9-11 relate the cam shaft angles to the motion of the girder. Both sets are easily inverted to either obtain the girder motion from the angles or readings, or, to find the angles and readings that would give a desired motion. The motion of any point on the girder can be calculated by applying either sets of equations to the two cam-planes and extrapolating in the z coordinate using equation 19. The formulation of the equations is quite general and easily coded via matrix and vector methods. They form the basis of the girder matlab software on the LCLS control system.
Kinematic mental simulations in abduction and deduction
Khemlani, Sangeet Suresh; Mackiewicz, Robert; Bucciarelli, Monica; Johnson-Laird, Philip N.
2013-01-01
We present a theory, and its computer implementation, of how mental simulations underlie the abductions of informal algorithms and deductions from these algorithms. Three experiments tested the theory’s predictions, using an environment of a single railway track and a siding. This environment is akin to a universal Turing machine, but it is simple enough for nonprogrammers to use. Participants solved problems that required use of the siding to rearrange the order of cars in a train (experiment 1). Participants abduced and described in their own words algorithms that solved such problems for trains of any length, and, as the use of simulation predicts, they favored “while-loops” over “for-loops” in their descriptions (experiment 2). Given descriptions of loops of procedures, participants deduced the consequences for given trains of six cars, doing so without access to the railway environment (experiment 3). As the theory predicts, difficulty in rearranging trains depends on the numbers of moves and cars to be moved, whereas in formulating an algorithm and deducing its consequences, it depends on the Kolmogorov complexity of the algorithm. Overall, the results corroborated the use of a kinematic mental model in creating and testing informal algorithms and showed that individuals differ reliably in the ability to carry out these tasks. PMID:24082090
Restraints and occupant kinematics in vehicular rollovers.
Meyer, Steven E; Herbst, Brian; Forrest, Stephen; Syson, Stephen R; Sances, Anthony; Kumaresan, Srirangam
2002-01-01
Occupant kinematics and the potential for injury in vehicular rollover crashes are dramatically affected by various restraint system characteristics. This study reviews previous research that utilized various methodologies and test fixtures to evaluate restrained occupant motions, primarily in the vertical direction, during both inverted and quasi-static simulated rollover environments. Additional laboratory tests were conducted in order to understand the static and dynamic excursion of restrained humans and surrogates in typical production motor vehicles under inverted circumstances. These tests indicated that volunteer occupants restrained within a complete vehicle by typical production 3 point seat belts will move vertically towards the vehicle roof structure by approximately 50-150 mm in production vehicles, depending on occupant size and belt configuration, when inverted and subjected to a static 1 g acceleration. Dynamic inverted vehicle drop testing in 3-point belt production vehicles, resulting in 4 to 11 g impacts, resulted in surrogates moving only about an additional 23 to 55 mm beyond the static inverted 1 g excursions.
Feeding underground: kinematics of feeding in caecilians.
Herrel, Anthony; Measey, G John
2012-11-01
Caecilians are limbless amphibians that have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Observations on feeding behavior are rare and restricted to above-ground feeding in laboratory conditions. Here we report data on feeding in tunnels using both external video and X-ray recordings of caecilians feeding on invertebrate prey. Our data show feeding kinematics similar to those previously reported, including the pronounced neck bending observed during above-ground feeding. Our data illustrate, however, that caecilians may be much faster than previously suspected, with lunge speeds of up to 7 cm sec(-1). Although gape cycles are often slow (0.67 ± 0.29 sec), rapid jaw closure is observed during prey capture, with cycle times and jaw movement velocities similar to those observed in other terrestrial tetrapods. Finally, our data suggest that gape angles may be large (64.8 ± 18°) and that gape profiles are variable, often lacking distinct slow and fast opening and closing phases. These data illustrate the importance of recording naturalistic feeding behavior and shed light on how these animals are capable of capturing and processing prey in constrained underground environments. Additional data on species with divergent cranial morphologies would be needed to better understand the co-evolution between feeding, burrowing, and cranial design in caecilians.
SHIELD: Neutral Gas Kinematics and Dynamics
NASA Astrophysics Data System (ADS)
McNichols, Andrew; Teich, Yaron; Cannon, John M.; SHIELD Team
2016-01-01
The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we present new results of detailed kinematic analyses of these systems using multi-configuration, high spatial (˜300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array. For each source, we produce velocity fields and dispersion maps using different spatial and spectral resolution representations of the data in order to attempt derivation of an inclination-corrected rotation curve. While both two- and three-dimensional fitting techniques are employed, the comparable magnitudes of velocity dispersion and projected rotation result in degeneracies that prohibit unambiguous circular velocity solutions. We thus make multiple position-velocity cuts across each galaxy to determine the maximum circular rotation velocity (≤ 30 km-1 for the survey population). Baryonic masses are calculated using single-dish H I fluxes from Arecibo and stellar masses derived from HST and Spitzer imaging. Comparison is made with total dynamical masses estimated from the position-velocity analysis. The SHIELD galaxies are contextualized on the baryonic Tully-Fisher relation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.
NASA Astrophysics Data System (ADS)
Zupan, L. H.; Merfeld, D. M.
2005-09-01
Our sense of self-motion and self-orientation results from combining information from different sources. We hypothesize that the central nervous system (CNS) uses internal models of the laws of physics to merge cues provided by different sensory systems. Different models that include internal models have been proposed; we focus herein on that referred to as the sensory weighting model (Zupan et al 2002 Biol. Cybern. 86 209-30). For simplicity, we isolate the portion of the sensory weighting model that estimates head angular velocity: it includes an inverse internal model of head kinematics and an 'idiotropic' vector aligned with the main body axis. Following a post-rotatory tilt in the dark, which is a rapid tilt following a constant-velocity rotation about an earth-vertical axis, the inverse internal model is applied to conflicting vestibular signals. Consequently, the CNS computes an inaccurate estimate of head angular velocity that shifts toward alignment with an estimate of gravity. Since reflexive eye movements known as vestibulo-ocular reflexes (VOR) compensate for this estimate of head angular velocity, the model predicts that the VOR rotation axis shifts toward alignment with this estimate of gravity and that the VOR time constant depends on final head orientation. These predictions are consistent with experimental data.
Enhancement of Kinematic Accelerations by Wavenumber Correlation Filtering
Hong, Chang-Ki; Kwon, Jay Hyoun
2016-01-01
To obtain kinematic accelerations with high accuracy and reliability, multiple Global Positioning System (GPS) receivers with a single antenna can be used for airborne gravimetry. The data collected from each receiver can be processed for kinematic accelerations that may be combined using simple averaging. Here, however, uncorrelated errors from instrument errors in each receiver also will be included that degrade the final solutions. Therefore, in this study, the wavenumber correlation filter (WCF) is applied to extract only the higher positively correlated wavenumber components of the kinematic accelerations for the enhancement of the final solution. The in situ airborne GPS data from two receivers were wavenumber-correlation-filtered to show about 0.07835 Gal improvement in accuracy relative to the solution from the raw kinematic accelerations. PMID:27608026
Correlation Between University Students' Kinematic Achievement and Learning Styles
NASA Astrophysics Data System (ADS)
Çirkinoǧlu, A. G.; Dem&ircidot, N.
2007-04-01
In the literature, some researches on kinematics revealed that students have many difficulties in connecting graphs and physics. Also some researches showed that the method used in classroom affects students' further learning. In this study the correlation between university students' kinematics achieve and learning style are investigated. In this purpose Kinematics Achievement Test and Learning Style Inventory were applied to 573 students enrolled in general physics 1 courses at Balikesir University in the fall semester of 2005-2006. Kinematics Test, consists of 12 multiple choose and 6 open ended questions, was developed by researchers to assess students' understanding, interpreting, and drawing graphs. Learning Style Inventory, a 24 items test including visual, auditory, and kinesthetic learning styles, was developed and used by Barsch. The data obtained from in this study were analyzed necessary statistical calculations (T-test, correlation, ANOVA, etc.) by using SPSS statistical program. Based on the research findings, the tentative recommendations are made.
Kinematics Around the Non-Thermal Superbubble in IC10
NASA Astrophysics Data System (ADS)
Bullejos, A.; Rosado, M.
2002-02-01
We study the kinematics around a non-thermal superbubble found by Yang & Skillman. Considering the H II and [S II] profiles, we find that between 3 and 6 supernovae are required to form this superbubble.
Kinematic distributions for electron pair production by muons
NASA Technical Reports Server (NTRS)
Linsker, R.
1972-01-01
Cross sections and kinematic distributions for the trident production process plus or negative muon plus charge yields plus or minus muon plus electron plus positron plus charge (with charge = dipion moment and Fe) are given for beam energies of 100 to 300 GeV at fixed (electron positron) masses from 5 to 15 GeV. This process is interesting as a test of quantum electrodynamics at high energies, and in particular as a test of the form of the photon propagator at large timelike (four-momentum) squared. For this purpose, it is desirable to impose kinematic cuts that favor those Bethe-Heitler graphs which contain a timelike photon propagator. It is found that there are substantial differences between the kinematic distributions for the full Bethe-Heitler matrix element and the distributions for the two timelike-photon graphs alone; these differences can be exploited in the selection of appropriate kinematic cuts.
The Kinematics of the Lag-Luminosity Relationship
Salmonson, J D
2004-03-17
Herein I review the argument that kinematics, i.e. relativistic motions of the emitting source in gamma-ray bursts (GRBs), are the cause of the lag-luminosity relationship observed in bursts with known redshifts.
Rotation and inversion in nitrosamines
NASA Astrophysics Data System (ADS)
Kirste, Karl; Rademacher, Paul
1981-04-01
Geometry optimizations of the ground states as well as of the transition states for internal rotation and inversion have been performed by the semiempirical MNDO method for dimethyl nitrosamine (1), perfluordimethyl nitrosamine (2), N-nitroso aziridine (3), and N-nitroso azetidine (4). It was found that the potential barrier to internal rotation about the N-N bond is always of lower energy than that to inversion on the nitroso nitrogen. While the ground states tend to adopt structures which enable mesomerism, the lowest transition state is characterized by a pyramidal sp3-hybridized amino nitrogen. In accordance with experimental results the low barriers to rotation of 2 (7.96 kcal mol -1), 3 (3.38 kcal mol -1) and 4 (9.97 kcal mol -1) in comparison with 1 (12.54 kcal mol -1) indicate that in donor-acceptor molecules the transfer of charge can be limited by electronic and stereochemical effects. In particular, the equivalence of the α-methylene hydrogens which was observed in the NMR-spectrum of 3 is due to unhindered rotation and ring inveirsion.
Elucidation of kinematical and dynamical structure of the Galactic bulge
NASA Astrophysics Data System (ADS)
Yano, T.; Gouda, N.; Ueda, H.; Koyama, H.; Kan-ya, Y.; Taruya, A.
2008-07-01
Future space mission of astrometric satellite, GAIA and JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration), will produce astrometric parameter, such as positions, parallaxes, and proper motions of stars in the Galactic bulge. Then kinematical information will be obtained in the future. Accordingly it is expected that our understanding of the dynamical structure will be greatly improved. Therefore it is important to make a method to construct a kinematical and dynamical structure of the Galactic bulge immediately.
Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Barouch, E.
1974-01-01
The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.
The Relationships between Logical Thinking, Gender, and Kinematics Graph Interpretation Skills
ERIC Educational Resources Information Center
Bektasli, Behzat; White, Arthur L.
2012-01-01
Problem Statement: Kinematics is one of the topics in physics where graphs are used broadly. Kinematics includes many abstract formulas, and students usually try to solve problems with those formulas. However, using a kinematics graph instead of formulas might be a better option for problem solving in kinematics. Graphs are abstract…
Desailly, Eric; Khouri, Nejib; Sardain, Philippe; Yepremian, Daniel; Lacouture, Patrick
2011-10-01
Spasticity of the rectus femoris (RF) is one of the possible causes of stiff knee gait (SKG) in cerebral palsy. Musculoskeletal studies have shown that in SKG, length and speed of the RF are affected. No evaluation had been made to quantify the modifications of those parameters after surgery. The effect of this operation on gait quality and on RF kinematics was assessed in this study in order to identify kinematic patterns that may aid its diagnosis. For 26 transfers, clinical gait analysis pre- and post-surgery was used to compute the Gait Deviation Index (GDI) and Goldberg's index. The kinematics of the Original RF path (ORFp) was studied before and after surgery. The expression ORFp was chosen to avoid any confusion between this modeling parameter, whose computation was unchanged, and the actual anatomical path that was modified by surgery. The gait quality was improved (+18±12GDI) and there was an inverse relation between the pre-operative GDI and its improvement. The Golberg's index was improved (88% of the cases). The operation had a significant effect on the normalization of the timings of maximum length and speed of the ORFp. The improvement of SKG was correlated with the normalization of the timing of the ORFp's maximum length. The global improvement of the gait quality and of the SKG was demonstrated. Some parameters of muscular kinematics (RF length and velocity) have been standardized, showing an effect of the transfer not only during the swing, but also during stance. The premature timing of the ORFp peak length has been identified as a prognostic factor of a successful surgical outcome.